
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 427–443
December 7-11, 2022 ©2022 Association for Computational Linguistics

Sentence-Incremental Neural Coreference Resolution

Matt Grenander Shay B. Cohen Mark Steedman
School of Informatics

University of Edinburgh
matt.grenander@ed.ac.uk

scohen@inf.ed.ac.uk, m.steedman@ed.ac.uk

Abstract

We propose a sentence-incremental neural
coreference resolution system which incre-
mentally builds clusters after marking mention
boundaries in a shift-reduce method. The sys-
tem is aimed at bridging two recent approaches
at coreference resolution: (1) state-of-the-art
non-incremental models that incur quadratic
complexity in document length with high com-
putational cost, and (2) memory network-
based models which operate incrementally but
do not generalize beyond pronouns. For com-
parison, we simulate an incremental setting
by constraining non-incremental systems to
form partial coreference chains before observ-
ing new sentences. In this setting, our system
outperforms comparable state-of-the-art meth-
ods by 2 F1 on OntoNotes and 6.8 F1 on the
CODI-CRAC 2021 corpus. In a conventional
coreference setup, our system achieves 76.3 F1
on OntoNotes and 45.5 F1 on CODI-CRAC
2021, which is comparable to state-of-the-art
baselines. We also analyze variations of our
system and show that the degree of incremen-
tality in the encoder has a surprisingly large
effect on the resulting performance.1

1 Introduction

Coreference Resolution (CR) is a task in which a
system detects and resolves linguistic expressions
that refer to the same entity. It is typically per-
formed in two steps: in mention detection, the
model predicts which expressions are referential,
and in mention clustering, the model computes
each mention’s antecedent. Many recently pro-
posed systems follow a mention-pair formulation
from Lee et al. (2017), in which all possible spans
are ranked and then scored against each other. In
particular, methods that augment this approach
with large, pre-trained language models achieve
state-of-the-art results (Joshi et al., 2019, 2020).

1Code is available at:
https://github.com/mgrenander/sentence-incremental-coref

In 2004, on the Waterfront Promenade
originally constructed for viewing only the
scenery of Hong Kong Island and Victoria Har-

bor, the Hong Kong Tourism Board also con-
structed the Avenue of Stars, memorializing
Hong Kong’s 100-year film history .

Figure 1: An example from the OntoNotes dataset
which highlights the need for incremental systems to
identify spans rather than tokens as mentions. The men-
tions cannot be resolved solely from the prefix ‘Hong
Kong’, and the clustering decision should be delayed
until the full mention is observed.

Despite impressive performance, these methods
are computationally demanding. For a text with
n tokens, they will score up to O(n2) spans, fol-
lowed by up toO(n4) span comparisons. They also
process documents non-incrementally, requiring ac-
cess to the entire document before processing can
begin. These properties present challenges when
insufficient computational resources are available,
or when the task setup is incremental, such as in di-
alogue (e.g. Khosla et al. 2021). From a cognitive
perspective, these methods are also unappealing be-
cause research on “garden-path” effects show that
humans resolve referring expressions incrementally
(Altmann and Steedman, 1988).

These drawbacks have led to renewed interest
in incremental coreference resolution systems, in
which document tokens are processed sequentially.
Some recent approaches use memory networks to
track entities in differentiable memory cells (Liu
et al., 2019; Toshniwal et al., 2020a). These models
demonstrate proficiency at proper name and pro-
noun resolution (Webster et al., 2018). However,
they seem unlikely to generalize to more compli-
cated coreference tasks due to a strict interpreta-
tion of incrementality. Both Liu et al. (2019) and
Toshniwal et al. (2020a) resolve mentions word-
by-word, making coreference decisions possibly

427

mailto:matt.grenander@ed.ac.uk
mailto:scohen@inf.ed.ac.uk
mailto:m.steedman@ed.ac.uk
https://github.com/mgrenander/sentence-incremental-coref

before the full noun phrase has been observed. The
approach is adequate for proper names and pro-
nouns, but it may fail to distinguish entities who
share the same phrase prefix. For example, in Fig-
ure 1, three mentions all begin with ‘Hong Kong’,
though all belong to separate entities. In this case,
it is difficult to see how a system using word-level
predictions would resolve these mentions to differ-
ent entities.

Motivated by this recent work, we propose a new
system that processes a document incrementally at
the sentence-level, creating and updating corefer-
ence clusters after each sentence is observed. The
system addresses deficiencies in memory network-
based approaches by delaying mention clustering
decisions until the full mention has been observed.
These goals are achieved through a novel mention
detector based on shift-reduce parsing, which iden-
tifies mentions by marking left and right mention
boundaries. Identified mention candidates are then
passed to an online mention clustering model simi-
lar to Toshniwal et al. (2020b) and Xia et al. (2020).
The model proposes a linear number of spans per
sentence, reducing computational requirements and
maintaining more cognitive plausibility compared
to non-incremental methods.

In order to compare non-incremental and incre-
mental systems on equal footing, we propose a new
sentence-incremental evaluation setting. In this
setting, systems receive sentences incrementally
and must form partial coreference chains before
observing the next sentence. This setting mimics
human coreference processing more closely, and is
a more suitable evaluation setting for downstream
tasks in which full document access is generally not
available (e.g. for dialogue (Andreas et al., 2020)).

Using the sentence-incremental setting, we
demonstrate that our model outperforms compa-
rable systems adapted from partly incremental
methods (Xia et al., 2020) across two corpora,
the OntoNotes dataset (Pradhan et al., 2012) and
the recently released CODI-CRAC 2021 corpus
(Khosla et al., 2021). Moreover, we show that in a
conventional evaluation setting, where the model
can access the entire document, our system retains
close to state-of-the-art performance. However, the
sentence-incremental setting is substantially out-
performed by non-sentence-incremental systems.
Analyzing the difference between these two set-
tings reveals that the encoder is heavily dependent
on how many sentences it can observe at a time.

The analysis suggests better representations of the
entities and their context may improve performance
in the sentence-incremental setting. Nevertheless,
our results provides new state-of-the-art baselines
for sentence-incremental evaluation.

2 Related Work

Non-incremental mention-pair models have domi-
nated the field in recent years, with many following
the formulation presented by Lee et al. (2017). Sev-
eral extensions have led to performance improve-
ments, such as adding higher-order inference (Lee
et al., 2018), and replacing the encoder with BERT
and SpanBERT (Joshi et al., 2019, 2020). Exten-
sions to this approach have looked at reformulat-
ing the problem as question-answering (Wu et al.,
2020), simplifying span representations (Kirstain
et al., 2021), and incorporating coherence signals
from centering theory (Chai and Strube, 2022). Al-
though our work is orthogonal to this line of re-
search, we compare our system against this type of
non-incremental model.

Toshniwal et al. (2020b) and Xia et al. (2020)
adapt the non-incremental system of Joshi et al.
(2020) so that mention clustering is performed in-
crementally. Their resulting models achieve similar
performance to the original non-incremental one.
However, in their formulation, document encoding,
mention detection and certain clustering decisions
still fully depend on Joshi et al. (2020). The result-
ing model still requires access to the full document
in order to compute coreference chains. Yu et al.
(2020b) similarly present an incremental mention
clustering approach where mention detection is per-
formed non-incrementally as Lee et al. (2017).

Memory network-based approaches identify co-
referring expressions by writing and updating en-
tities into cells within a fixed-length memory (Liu
et al., 2019; Toshniwal et al., 2020a). These mod-
els demonstrate how fully incremental coreference
systems can be achieved. However, the formulation
operates on token-level predictions, and does not
easily extend to either nested mentions or certain
multi-token mentions (e.g. in Figure 1).

Cross-document coreference resolution (CDCR)
requires systems to compute coreference chains
across documents, raising scalability challenges as
the number of documents increases. Given these
challenges, incremental CDCR systems are crucial
(Allaway et al., 2021; Logan IV et al., 2021) due
to lower memory requirements. However, these

428

works are not directly comparable to ours since
they assume gold mentions are provided as input.

Other, earlier, incremental coreference systems
also often ignore or diminish the role of mention
detection. For example, Webster and Curran (2014)
use an external parser for mention detection, requir-
ing an additional model. Klenner and Tuggener
(2011) assume gold mentions as input.

Recently, Liu et al. (2022) propose a coreference
resolution system based a seq2seq formulation us-
ing hidden variables. Although their focus is on
adding structure to seq2seq models, their system
can also be viewed as transition-based like ours.

Our incremental mention detector bears simi-
larities to certain models for nested named-entity
recognition (NER). In particular, Wang et al. (2018)
present an incremental neural model for nested
NER based on a shift-reduce algorithm. Their de-
duction rules differ greatly from ours as they model
mention spans using complete binary trees, and are
aimed at NER rather than mention detection.

Recent work has also explored incremental trans-
former architectures (Katharopoulos et al., 2020;
Kasai et al., 2021), and adapting these architectures
to NLU tasks (though not coreference resolution)
(Madureira and Schlangen, 2020; Kahardipraja
et al., 2021). In this work, we focus on the sim-
pler sentence-incremental setting, believing it to be
sufficient for downstream tasks.

3 Method

Given a document, the goal is to output a set of
clusters C = {C1, . . . , CK}, where mentions within
each cluster are co-referring. We assume mentions
may be nested but otherwise do not overlap. This
assumption allows us to model mentions using a
method analogous to shift-reduce, where shifting
corresponds to either incrementing the buffer index
or marking a left mention boundary, and reduc-
ing corresponds to marking a right boundary and
resolving the mention to an entity cluster.

3.1 Shift-Reduce Framework

The main idea is to mark mention boundaries us-
ing PUSH, POP or PEEK actions, or to pass over
a non-boundary token with the ADVANCE action.
After POP or PEEK actions, a mention candidate
is created using the current top-of-stack and buffer
elements. The resulting mention candidate is then
either resolved to an existing cluster or initialized
as a new entity cluster.

Initial [∅, 0,∅,∅]

Final [∅, n,A, C]

PUSH
[S, i, A, C]

[S|wi, i, A|PUSH, C]

ADVANCE
[S, i, A, C]

[S, i+ 1, A|ADVANCE, C]

POP
[S|v, i, A, C]

[S, i, A|POP, C|COREF(v, wi)]

PEEK
[S|v, i, A, C]

[S|v, i, A|PEEK, C|COREF(v, wi)]

Figure 2: Deduction rules for our coreference resolver.
[S, i, A, C] denotes the stack S, buffer index i, action
history A, and cluster set C. The COREF function indi-
cates that span (v, wi) is clustered and added to C.

We represent the state as [S, i, A, C], where S
is the stack, i is the buffer index, A is the action
history and C is the current set of clusters. At each
time step, one of four actions is taken:

• PUSH: Place the word at buffer index i on top
of the stack, marking a left mention boundary.

• ADVANCE: Move the buffer index forward.

• POP: Remove the top element from S and
create a mention candidate using this element
and the current buffer element. Score the can-
didate against existing clusters and resolve it
(or create a new cluster).

• PEEK: Create a mention candidate using the
top element on the stack and the current buffer
element. Score the candidate against existing
clusters and resolve it (or create a new cluster).

The PEEK action does not alter the stack but is
otherwise identical to POP. This action is critical
for detecting mentions sharing a left boundary.

Several hard action constraints ensure that only
valid actions are taken and the final state is always
reached. For example, PUSH can only be called
once per token, or else the model would be marking
the left boundary multiple times. The full list of
constraints is described in the appendix.

429

We denote the set of valid actions as
V(S, i, A, C). The conditional probability of se-
lecting action at based on state pt can then be
expressed as:

pM (at| pt) =
exp(wat · fM (pt))∑

a′∈V(S,i,A,C) exp (wa′ · fM (pt))
,

where fM is a two-layer neural network, and wat
is a column vector selecting action at.

If POP or PEEK operations are predicted, the
mention candidate is then scored against existing
clusters. Depending on these scores, the mention
is either (a) resolved to an existing cluster, or (b)
initialized as a new entity cluster. Define the set
of possible coreference actions as Ak, which in-
cludes resolving to existing clusters {C1, . . . , Ck}
and creating new cluster Ck+1. We can write the
conditional probability of coreference prediction
zj based on mention candidate mj as:

pC(zj |mj) =
exp(wzj · sC(mj))∑

z′∈Ak exp(wz′ · sC(mj))
,

where sC is a function scoring the mention candi-
date against {C1, . . . , Ck, Ck+1} (described in Sec-
tion 3.2.2).

The terminal state is reached when the final
buffer element has been processed and the stack is
empty. At this point, all mentions have been clus-
tered and we return all non-singleton entity clusters.
Figure 2 presents a more formal description of the
deduction rules, while an example is also shown in
Figure 3.

3.2 Neural Implementation

3.2.1 Mention Detector
Document tokens are first encoded using a pre-
trained language model. The concatenated word
embeddings, x1, . . . , xn, form the buffer for the
shift-reduce mechanism. Assuming current word
xi and time step t, we denote the buffer as bt = xi.

The stack is represented using a Stack-LSTM
(Dyer et al., 2015). Let xs1 , . . . , xsL be the cur-
rently marked left mention boundaries pushed to
the stack. Then the stack representation at time t
is:

st = StackLSTM[xs1 , . . . , xsL].

We encode the action history a0, . . . , at−1 with
learned embeddings for each of the four actions.

The action history at t is encoded with an LSTM
over previous action embeddings:

at = LSTM[a0, . . . , at−1].

Then, the parser state is represented by the con-
catenation of buffer, stack, action history and addi-
tional mention features φM :

pt = [bt; st;at;φM (bt, st)],

where φM denotes learnable embeddings corre-
sponding to useful mention features such as span
width and document genre. For span width, we use
embeddings measuring the distance from the top
of the stack to the current buffer token (i.e. i− sL),
or 0 if the stack is empty.

3.2.2 Mention Clustering Model

The mention clustering is similar to previous online
clustering methods (Toshniwal et al., 2020b; Xia
et al., 2020; Webster and Curran, 2014), though we
take care to avoid dependence on non-incremental
pre-trained language models which have already
been fine-tuned to this task.

Given a mention candidate’s span representation
v, we score v against the existing entity cluster
representations m1, . . . ,mk:

sC(v) = [fC(m1, v), . . . , fC(mk, v), α]

fC(mi, v) = MLP([v,mi, v �mi, φC(v,mi)])

i∗ = arg max
i∈{1,...,k+1}

sC(v)

where fC is two-layer neural network, α is a thresh-
old value for creating a new cluster, v �mi is the
element-wise product and φC encodes useful fea-
tures between v and mi: the number of entities
in mi, mention distance between v and mi, the
previous coreference action and document genre.

If the scores between v and all cluster representa-
tions m1, . . . ,mk are below some threshold value
α (i.e. i∗ = k + 1), we initialize a new entity
cluster with v. Otherwise, we update the cluster
representation mi∗ via a weighted average using
the number of entities represented by mi∗ :

mi∗ ← β ·mi∗ + (1− β) · v,

where β = |mi∗ |
|mi∗ |+1 is the weighting term.

430

Step Action(s) Stack Buffer Clusters

1. PUSH [Auto] Auto workers ended their strike ∅
2. ADVANCE [Auto] workers ended their strike ∅
3. POP [∅] workers ended their strike { Auto workers }

4. ADVANCE [∅] ended their strike { Auto workers }

5. ADVANCE [∅] their strike { Auto workers }

6. PUSH [their] their strike { Auto workers }

7. PEEK [their] their strike { Auto workers, their }

8. ADVANCE [their] strike { Auto workers, their }

9. POP [∅] strike { Auto workers, their } { their strike }

10. ADVANCE [∅] ∅ { Auto workers, their } { their strike }

Figure 3: Example of the shift-reduce system for the sentence “Auto workers ended their strike”. ∅ denotes the
empty stack or empty cluster set. Expressions within brackets mean they are co-referring. In each step, the Stack
and Buffer show the result of applying the given action.

3.2.3 Training
Training is done via teaching forcing. At each time
step, the model predicts the gold action given the
present state. The state is then updated using the
gold action. At each step, we compute mention
detection loss LM and coreference loss LC .

The mention detection loss LM is calculated
using the cross-entropy between the predicted
mention detection action and gold action at∗ ∈
V(S, i, A, C):

LM = −
∑

t

log pM (at∗ | pt),

where t sums over time steps across all documents.
Similarly, the coreference loss LC is defined

by the cross entropy between the highest-scoring
coreference action and the gold coreference deci-
sion zj∗ ∈ Ak:

LC = −
∑

j

log pC(zj∗ |mj),

where j sums over mentions across all documents.
The entire network is then trained to optimize the
sum of the two losses, LM +LC . During inference,
we predict actions using greedy decoding, updating
the state solely with predicted actions.

Figure 4 presents a summary of the various com-
ponents and the overall algorithm.

4 Experiments

4.1 Datasets
We train and evaluate our system on the OntoNotes
5.0 dataset (Weischedel et al., 2013), using the
same setup described in the CoNLL-2012 Shared

Task (Pradhan et al., 2012). OntoNotes includes
7 document genres and does not restrict mention
token length; annotations cover pronouns, noun
phrases and heads of verb phrases. We evaluate
using the MUC (Vilain et al., 1995), B3 (Bagga and
Baldwin, 1998) and CEAFφ4 (Luo, 2005) metrics
and their average (the CoNLL score), using the
official CoNLL-2012 scorer.

We also test models on the the recently re-
leased CODI-CRAC 2021 corpus (Khosla et al.,
2021). This dataset annotates coreference (and
other anaphora-related tasks) for 134 documents
across 4 separate dialogue corpora (Light, Urbanek
et al. 2019, AMI, Carletta 2006, Persuasion, Wang
et al. 2019 and Switchboard, Godfrey et al. 1992).
The dataset suits incremental systems well since
dialogue can be naturally presented as incremen-
tal utterances. Given the small dataset size, we
use it for evaluation only, using models trained
on OntoNotes. Since OntoNotes marks document
genre (which systems often use as a feature), we as-
sociate CODI-CRAC documents with OntoNotes’
‘telephone conversation’ genre, since it is the most
similar. We remove singleton clusters due to lack
of annotation in the training set. We again evalu-
ate using MUC, B3 and CEAFφ4 , using the official
Universal Anaphora scorer (Yu et al., 2022).

4.2 Model Components
4.2.1 Document Encoder
Recent models on coreference resolution often use
SpanBERT (Joshi et al., 2020) for word embed-
dings (Wu et al. (2020); Toshniwal et al. (2020b);
Xia et al. (2020); Xu and Choi (2020), among oth-
ers), since Joshi et al. (2020) demonstrate Span-

431

Document
Encoder

Mention
Detector

Coreference
Resolver

(s1, s2), (s3, s4)

(s5, s6), . . .

(sA, sB)

Cluster
Embeddings

[0.3, . . .] (sA, sB)

pM (at| pt) pC(zt| (sA, sB))

Figure 4: A summary of the overall algorithm. After document encoding, the mention detector predicts transition
actions PUSH, POP, PEEK or ADVANCE using the parser state pt. If a mention is predicted, the coreference
resolver then clusters it to an existing cluster representation or creates a new cluster. Clustering a mention implies
a coreference relation with mentions in the cluster. The steps can all be performed incrementally, assuming the
document encoder is also incremental.

BERT’s proficiency for entity-related tasks such
as coreference resolution. However, SpanBERT
is unsuitable for incremental applications because
it expects all its input simultaneously and cannot
partially process text while waiting for future input.

Instead, we turn to XLNet2 (Yang et al., 2019),
which extends the earlier Transformer-XL (Dai
et al., 2019). XLNet differs from typical pre-trained
language models as it can efficiently cache and
reuse its previous outputs. The caching mechanism
allows for recurrent computation to be performed
efficiently. Cached outputs provide a context to the
current sentence being processed.

We experiment using XLNet in two settings:
in the Sentence-Incremental (Sent-Inc) setting,
each sentence is processed sequentially, and par-
tial coreference clusters are computed before the
next sentence is observed. After each sentence is
processed, we accumulate XLNet’s outputs (up to
a cutoff point) and reuse them when processing
the next sentence. We limit the number of cached
tokens so that the cached and ‘active’ tokens do
not exceed 512, so that our work remains compa-
rable to other recent works. Although the mention
detector is token-incremental and the mention clus-
tering component is span-incremental, the docu-
ment encoder is sentence-incremental, so overall
we describe the system as sentence-incremental.

In the Part-Incremental (Part-Inc) setting, we
allow XLNet to access multiple sentences simulta-
neously. We experiment both with and without the
cache mechanism, using up to a total of 512 tokens
at a time. This setting is comparable to experiments

2We use the base version due to memory restrictions.

in Xia et al. (2020) and Toshniwal et al. (2020b),
where document encoding is also non-incremental.
In our case, both mention detection and mention
clustering components remain incremental as in the
Sentence-Incremental setting. In this way, we can
isolate the effect of sentence-incrementality on the
document encoder (XLNet).

4.2.2 Span Representation
We use a similar span representation to Lee et al.
(2017): for a span (i, j), we concatenate word em-
beddings (xi, xj), an attention-weighted average
x̄ and learnable embeddings for span width and
speaker ID (the speaker for (i, j)). We use 20-
dimensional learned embeddings for all features
(span width, speaker ID, document genre, action
history, mention distance and number of entities in
each cluster).

4.2.3 Training
We use Adam to train task-specific parameters, and
AdamW for XLNet’s parameters (Kingma and Ba,
2015; Loshchilov and Hutter, 2019). The gradient
is accumulated across one document before updat-
ing model weights. We use a learning rate sched-
uler with a linear decay, and additionally warmup
SpanBERT’s parameters for the first 10% update
steps. For the mention detector, we balance the
loss weights based on the frequency of each action
in the training set. This step is important because
most tokens do not correspond to mention bound-
aries, meaning the ADVANCE action is by far the
most prevalent in the training set.

Training converges within 15 epochs. The model
is implemented in PyTorch (Paszke et al., 2019). A

432

complete list of hyperparameters is included in the
appendix.

4.3 Comparisons
We compare against several recent works with
varying degrees of incrementality. Table 1 sum-
marizes their differences in incrementality com-
pared to ours, as well as the span complexity. Joshi
et al. (2020) is a non-incremental formulation: it
adopts the end-to-end and coarse-to-fine formula-
tions from Lee et al. (2017) and Lee et al. (2018),
replacing the LSTM encoder with their novel Span-
BERT architecture.

Model Incremental Span
Components Complexity

SpanBERT None O(n4)

longdoc Mention Clustering O(n2m)
ICoref Mention Clustering O(n2m)

Part-Inc (Ours) Mention Detection + O(nm)
Mention Clustering

ICoref-inc All O(n2m)
Sent-Inc (Ours) All O(nm)

Table 1: The list of systems we compare, alongside
their incrementality (on a sentence-level) and span com-
plexity. ‘All Components’ means document encoding,
mention detection and mention clustering. n is the
number of tokens and m is the number of entities.

The longdoc (Toshniwal et al., 2020b) and
ICoref (Xia et al., 2020) systems adapt Joshi et al.
(2020) so that mention clustering is done incre-
mentally. However, both models avoid modify-
ing the non-incremental document encoding and
mention detection steps from Joshi et al. (2020),
and the resulting systems are only partly incre-
mental. Since Toshniwal et al. (2020b) and Xia
et al. (2020) only experiment with SpanBERT-large,
we re-train their implementations with SpanBERT-
base to fairly compare against our own systems.

Xia et al. (2020) also provide a truly sentence-
incremental version of their system, which we
call ICoref-inc3. This version is trained by en-
coding tokens and proposing mentions sentence-
by-sentence, independently processing each sen-
tence as it is observed while maintaining entity
clusters across sentences. Since ICoref-inc is fully
sentence-incremental, it provides the fairest com-
parison to our own Sentence-Incremental setting.
Having more incremental components results in

3Specifically, this system is the “Train 1-sentence / Infer-
ence 1-sentence” model from Xia et al. (2020)’s Table 4.

increased difficulty on the coreference task, as the
system must rely on partial information when mak-
ing clustering decisions.

We do not compare against Liu et al. (2019) and
Toshniwal et al. (2020a)’s token-incremental mod-
els. Besides being generally unsuitable for span-
based coreference, they also do not handle nested
mentions. Roughly 11% of OntoNotes’ mentions
are nested, meaning that training these systems on
OntoNotes is infeasible.

4.3.1 Span Complexity
Table 1 also compares the span complexity between
systems, in terms of how many spans must be
scored and compared. This comparison is analytic
and not runtime-based, and so ignores handcrafted
memory-saving techniques such as eviction and
span pruning. Joshi et al. (2020) score all possi-
ble spans and compare them pairwise, meaning
their system runs in O(n4), where n is the number
of tokens. Toshniwal et al. (2020b) and Xia et al.
(2020) reduce the complexity to O(n2m), where
m is the number of entities, by incrementally clus-
tering mentions. Finally, we claim our systems’
span complexity is O(nm). Our mention detector
proposes O(n) spans, as we can show each action
is linearly bounded in the number of tokens. Our
reduced complexity speaks to its increased cog-
nitive plausibility compared to the part- and non-
incremental systems, which consider a quadratic
number of spans.

Note that the runtime is not comparable because
non-incremental methods process the entire doc-
ument in parallel, whereas ours is not paralleliz-
able and therefore slower. We also note that this
comparison does not have any bearing on memory
requirements, since Toshniwal et al. (2020b) and
Xia et al. (2020) both maintain constant memory
through eviction strategies.

5 Results

5.1 OntoNotes

The main results for OntoNotes are shown in Table
2. First, SpanBERT (Joshi et al., 2020), being
non-incremental, unsurprisingly outperforms other
systems, both part and sentence incremental.

Within partly incremental systems, the ICoref
model (Xia et al., 2020) performs best, below Span-
BERT by 0.4 F1. Our Part-Inc model performs
comparably to longdoc (Toshniwal et al., 2020b),
only trailing ICoref by 0.7 F1 points.

433

MUC B3 CEAFφ4 Avg.
Model SI Rec. Prec. F1 Rec. Prec. F1 Rec. Prec. F1 F1

SpanBERT-l (Joshi et al., 2020) None 84.8 85.8 85.3 77.9 78.3 78.1 74.2 76.4 75.3 79.6
CorefQA-l (Wu et al., 2020) None 87.4 88.6 88.0 82.0 82.4 82.2 78.3 79.9 79.1 83.1
s2e (Kirstain et al., 2021) None 85.1 86.5 85.8 77.9 80.3 79.1 75.4 76.8 76.1 80.3
s2e+se_ct(Chai and Strube, 2022) None 85.3 87.2 86.3 78.6 80.7 79.6 75.2 78.2 76.7 80.9

SpanBERT-b (Joshi et al., 2020) None 83.1 84.3 83.7 75.3 76.2 75.8 71.2 74.6 72.9 77.4
CorefQA-b (Wu et al., 2020) None 87.4 85.2 86.3 76.5 78.7 77.6 75.6 76.0 75.8 79.9

longdoc (Toshniwal et al., 2020b) Part 83.3 83.0 83.2 75.5 74.1 74.8 70.1 72.8 71.4 76.4
ICoref (Xia et al., 2020) Part 83.1 84.2 83.6 74.3 75.8 75.0 71.7 73.3 72.5 77.0
Part-Inc (Ours) Part 83.7 82.1 82.9 75.9 73.0 74.4 68.8 74.5 71.6 76.3

ICoref-inc (Xia et al., 2020) All 74.0 79.7 76.7 58.6 70.6 64.0 63.7 63.1 63.4 68.0
Sent-Inc (Ours) All 78.1 79.4 78.8 68.9 68.3 68.6 55.8 71.2 62.5 70.0

Table 2: Main results on the OntoNotes 5.0 test set with the CoNLL 2012 Shared Task metrics and the average
F1 (the CoNLL F1 score). The ‘SI’ column denotes the sentence-incrementality of each system, summarizing
details in Table 1. The top four systems are not directly comparable to ours, since they train with a ‘large’ encoder
(either SpanBERT or Longformer (Beltagy et al., 2020)). Note that scores for Xia et al. (2020) and Toshniwal et al.
(2020b) differ from their reported results because we re-train them with SpanBERT-base instead of large.

Model LIGHT AMI PERS. SWBD. Avg.

SpanB 57.7 33.8 53.7 50.2 48.9

ICoref 54.7 33.7 51.5 48.1 47.0
Part-Inc 53.5 32.4 50.5 46.9 45.8

IC-inc 45.5 21.9 41.3 36.6 36.3
Sent-Inc 50.5 31.6 46.4 44.7 43.3

Table 3: Main results for the CODI-CRAC 2021 cor-
pus. All scores denote the CoNLL F1 score (average of
MUC, B3 and CEAFφ4

). Here, SpanB=SpanBERT, and
IC-inc=ICoref-inc.

The advantages of our method are more evi-
dent in the sentence-incremental evaluation. Since
ICoref-inc relies on SpanBERT to encode tokens
and score mentions, its performance suffers consid-
erably when evaluated in the sentence-incremental
setting. In contrast, the Sent-Inc model effectively
uses the history of previous processed sentences
and outperforms ICoref-inc by 2 F1 points. Still,
both systems suffer considerably when compared
to their part-incremental counterparts: ICoref drops
by 9 F1 points and our model by 6.3 F1. In Section
6, we explore the main causes of this drop.

5.2 CODI-CRAC

The results on the CODI-CRAC corpus are shown
in Table 3. We observe many of the same trends
as in OntoNotes: the non-incremental SpanBERT
again surpasses other models, achieving 2.9 F1
higher than ICoref.

Within partly incremental systems, our Part-Inc
system trails ICoref by 1.2 F1. We omit the long-

doc results from this table, after finding its perfor-
mance surprisingly plummets when evaluated on
CODI-CRAC. On all subsets, it scores below 2 F1,
indicating issues with model transfer. Other works
have explored this topic in depth (Toshniwal et al.,
2021), and we do not investigate further here.

In the Sentence Incremental setting, although
our Sent-Inc model again outperforms Xia et al.
(2020)’s ICoref-inc, the performance difference
is much larger here: 7 F1 compared to 2 F1 in
OntoNotes. The gap between the Sent-Inc and
Part-Inc is also much smaller: only 2.5 F1 points
compared to 6.3 F1 on OntoNotes. The difference
in performances between the two datasets may sug-
gest our model is better suited to the inherent incre-
mentality in a dialogue setting.

6 Analysis

The dramatic performance gap between the Sent-
Inc and Part-Inc settings may be surprising. Since
coreference resolution is primarily processed in-
crementally by humans, why does access to future
tokens affect the Sent-Inc model so heavily?

To investigate this issue deeper, we design addi-
tional k-Sentence-Incremental settings. In each set-
ting, the system accesses k sentences (S1, . . . , Sk)
at a time as active input, and 512 − ∑k

i=1 |Sk|
tokens as memory. In each setting, the model ob-
serves the same number of tokens (512), but varies
the amount of active input vs. memory. The men-
tion detection and mention clustering steps remain
the same and are still incremental; the only change
is in the encoder.

434

Varying k in this way allows us to the test the
effect of more or less incrementality on the sys-
tem. When k = 1, we recover the original Sent-
Inc model. When k is large enough (in prac-
tice, 24), we get the Part-Inc model. For each
k ∈ {1, 4, 8, 12, 16, 20, 24}, we fully train the cor-
responding model on OntoNotes as described in
Section 4, and evaluate on the dev set.

0 5 10 15 20 25

68

70

72

74

76

k-Sentence Setting

Sc
or

e

Recall
Precision
F1

Figure 5: The CoNLL performance (average of MUC,
B3 and CEAFφ4) of each k-Sentence-Incremental
model on the OntoNotes dev set.

The results are shown in Figure 5. There are a
few notable characteristics. The first is that as k
increases, we see a much more dramatic lift when
k is small (e.g. moving from 1 to 4 sentences) com-
pared to when k is large. This effect corresponds
to the intuition that coreferring expressions are usu-
ally close to their antecedent. The more corefer-
ence chains the model can observe simultaneously,
the better it is at resolving them.

The second noteworthy trend is that increasing
k improves recall (9.7%) far more than precision
(3.8%). Although not shown here, we observe this
trend across all three metrics within the CoNLL
score (MUC, B3 and CEAFφ4). The result means
that finding and resolving true coreference links
(i.e. reducing false negatives) is a far more serious
obstacle for the Sent-Inc model than for Part-Inc.
Since the only difference in these models is how
many embeddings are cached, the result suggests
caching or not caching embeddings plays a large
role in finding and correctly resolving mentions.

7 Future Work

A major goal would be to elevate incremental
coreference resolvers to the same level as non-

incremental ones. As we showed in Section 6, a
large part of the performance difference occurs be-
cause the XLNet encoder does not effectively han-
dle incremental input. A simple strategy therefore
may be to swap out that encoder for a more power-
ful one. However, few pre-trained language models
targeted at NLU tasks are naturally incremental.
One candidate is GPT-J (Wang and Komatsuzaki,
2021) but its size is prohibitively large.

Other ways to bridge this gap may come from im-
proving the mention detection component. A simi-
lar task is nested named entity recognition, where
the system must identify named entity boundaries
and coarsely classify them. Recent nested NER
systems such as Katiyar and Cardie (2018) or Yu
et al. (2020a) may provide directions for improving
mention detection in our incremental formulation.

8 Conclusion

We propose a sentence-incremental coreference
resolution model using a shift-reduce formulation.
The model delays mention clustering until the full
span has been observed, alleviating a key flaw with
previous incremental systems. It efficiently pro-
cesses text, and avoids scoring a quadratic number
of spans during mention detection.

In a sentence-incremental setting, our method
outperforms strong baselines adapted from state-
of-the-art systems. When access to the full docu-
ment is allowed, the proposed system achieves sim-
ilar performance to state-of-the-art methods while
maintaining a higher level of incrementality. We
investigate why this relaxation has such a dramatic
effect, finding that the document encoder does not
make effective use of its memory cache.

Our sentence-incremental results suggest an im-
portant point: non-incremental methods are not ef-
fective tools when they must be used incrementally.
Creating new, incremental coreference resolvers
that perform at the same level as non-incremental
ones is a challenging but meaningful goal. Achiev-
ing this result would make a significant impact
in downstream applications where text is received
incrementally, such as dialogue systems or conver-
sational question answering (e.g. Andreas et al.
2020; Martin et al. 2020). Our proposal demon-
strates an important step towards highly effective,
incremental coreference resolution systems.

435

Limitations

In this work, we have experimented with training
neural networks on OntoNotes and evaluating on
other datasets (the CODI-CRAC 2021 corpus). Sev-
eral recently published papers have explored the
difficulties of coreference resolution model transfer
(Subramanian and Roth, 2019; Xia and Van Durme,
2021; Toshniwal et al., 2021; Yuan et al., 2022).
These works have noted generalization problems
with models trained on OntoNotes, with one par-
ticular difficulty that OntoNotes does not annotate
singleton clusters, or ‘markable’ mentions.

Several recent works have addressed general-
ization issues by training on additional resources
(Subramanian and Roth, 2019; Xia and Van Durme,
2021; Toshniwal et al., 2021; Yuan et al., 2022).
In particular, Toshniwal et al. (2021) augment
OntoNotes with pseudo-singletons: a fully trained
coreference resolver scores all spans in the text,
and the top-scoring spans outside of gold mentions
are regarded as singletons. The authors show that
adding pseudo-singletons to the OntoNotes training
data improves (1) coreference resolution metrics
on OntoNotes and (2) generalization capabilities.
Pseudo-singletons are especially helpful for trans-
fer learning from OntoNotes because other corefer-
ence datasets will often annotate singletons.

In our experiments, we attempted to use their
published pseudo-singletons, but faced difficulties
because the pseudo-singletons do not respect the
“non-crossing bracketing” structure in OntoNotes,
and overlap arbitrarily (not only nested). Our men-
tion detector assumes mentions may be nested but
otherwise do not overlap, and determining which
pseudo-singletons to filter out without redoing the
whole experiment was not feasible. We leave the
problem for future work, but we agree that models
trained on OntoNotes without heuristically added
singletons are limited in their generalization capa-
bilities.

Our experiments have focused on the base ver-
sions of XLNet and SpanBERT due to resource
requirements. Training our models requires a GPU
with 16 GB of memory; we used NVIDIA Tesla
V100 16 GB cards. Greater memory efficiency
could be achieved by extending the memory to be
more dynamic. In the current system, entities are
added but never evicted. Ideally, when a referent
is no longer relevant to the context, it should be
detected and removed. This concept has been ex-
plored with memory network-based systems (Liu

et al., 2019; Toshniwal et al., 2020a), and also re-
cent partly incremental systems (Xia et al., 2020;
Toshniwal et al., 2020b). Memory-based systems
using dynamic eviction strategies appear in other
NLP tasks as well, such as semantic parsing (Jain
and Lapata, 2021).

Ethical Considerations

NLP systems such as ours must be employed with
special consideration that they do not demonstrate
unwanted patterns towards protected groups. Previ-
ously, systems have been shown to learn harmful
associations from training corpora. For example,
Bolukbasi et al. (2016) show that word embeddings
trained on a news corpus exhibit gender stereotypes,
such as associating “receptionist” with “female”.

Coreference resolution systems in particular may
learn gender biases, and methods exist to counter
this effect (Rudinger et al., 2018; Zhao et al., 2018).
Our system is trained on OntoNotes, which include
data from a diverse set of sources such as Wall
Street Journal articles, telephone conversations and
Bible passages. Our final trained model may there-
fore reflect undesirable content from these texts.

Any off-the-shelf deployment of our model
should first check whether the model is harmful
towards any protected group, and appropriate miti-
gation should be taken. For example, evaluating on
specialized datasets such as Webster et al. (2018)
may indicate whether the system unfairly predicts
certain labels based on gender.

Acknowledgements

We would like to thank Ratish Puduppully and
Miloš Stanojević as well as the anonymous re-
viewers for their helpful discussions and feedback.
This work used the Cirrus UK National Tier-2
HPC Service at EPCC (http://www.cirrus.ac.uk)
funded by the University of Edinburgh and EPSRC
(EP/P020267/1), as well as the Baskerville Tier
2 HPC service (https://www.baskerville.ac.uk/).
Baskerville was funded by the EPSRC and
UKRI through the World Class Labs scheme
(EP/T022221/1) and the Digital Research Infras-
tructure programme (EP/W032244/1) and is oper-
ated by Advanced Research Computing at the Uni-
versity of Birmingham. The work was partly sup-
ported by ERC Advanced Fellowship GA 742137
SEMANTAX and the University of Edinburgh
Huawei Laboratory.

436

http://www.cirrus.ac.uk
https://www.baskerville.ac.uk/

References
Emily Allaway, Shuai Wang, and Miguel Ballesteros.

2021. Sequential cross-document coreference res-
olution. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 4659–4671, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Gerry Altmann and Mark Steedman. 1988. Interac-
tion with context during human sentence processing.
Cognition, 30(3):191–238.

Jacob Andreas, John Bufe, David Burkett, Charles
Chen, Josh Clausman, Jean Crawford, Kate Crim,
Jordan DeLoach, Leah Dorner, Jason Eisner, Hao
Fang, Alan Guo, David Hall, Kristin Hayes, Kellie
Hill, Diana Ho, Wendy Iwaszuk, Smriti Jha, Dan
Klein, Jayant Krishnamurthy, Theo Lanman, Percy
Liang, Christopher H. Lin, Ilya Lintsbakh, Andy Mc-
Govern, Aleksandr Nisnevich, Adam Pauls, Dmitrij
Petters, Brent Read, Dan Roth, Subhro Roy, Jesse
Rusak, Beth Short, Div Slomin, Ben Snyder,
Stephon Striplin, Yu Su, Zachary Tellman, Sam
Thomson, Andrei Vorobev, Izabela Witoszko, Jason
Wolfe, Abby Wray, Yuchen Zhang, and Alexander
Zotov. 2020. Task-oriented dialogue as dataflow
synthesis. Transactions of the Association for Com-
putational Linguistics, 8:556–571.

Amit Bagga and Breck Baldwin. 1998. Algorithms
for scoring coreference chains. In The first interna-
tional conference on language resources and evalua-
tion workshop on linguistics coreference, volume 1,
pages 563–566. Citeseer.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
arXiv:2004.05150.

Tolga Bolukbasi, Kai-Wei Chang, James Zou,
Venkatesh Saligrama, and Adam Kalai. 2016.
Man is to computer programmer as woman is to
homemaker? debiasing word embeddings. In Pro-
ceedings of the 30th International Conference on
Neural Information Processing Systems, NIPS’16,
page 4356–4364, Red Hook, NY, USA. Curran
Associates Inc.

J. Carletta. 2006. Announcing the ami meeting corpus.
In The ELRA Newsletter 11(1), pages 3 – 5.

Haixia Chai and Michael Strube. 2022. Incorporating
centering theory into neural coreference resolution.
In Proceedings of the 2022 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 2996–3002, Seattle, United States. Associa-
tion for Computational Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th

Annual Meeting of the Association for Computa-
tional Linguistics, pages 2978–2988, Florence, Italy.
Association for Computational Linguistics.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A. Smith. 2015. Transition-
based dependency parsing with stack long short-
term memory. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference
on Natural Language Processing (Volume 1: Long
Papers), pages 334–343, Beijing, China. Associa-
tion for Computational Linguistics.

John J. Godfrey, Edward C. Holliman, and Jane Mc-
Daniel. 1992. Switchboard: Telephone speech cor-
pus for research and development. In Proceed-
ings of the 1992 IEEE International Conference on
Acoustics, Speech and Signal Processing - Volume 1,
ICASSP’92, page 517–520, USA. IEEE Computer
Society.

Parag Jain and Mirella Lapata. 2021. Memory-Based
Semantic Parsing. Transactions of the Association
for Computational Linguistics, 9:1197–1212.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S.
Weld, Luke Zettlemoyer, and Omer Levy. 2020.
SpanBERT: Improving pre-training by representing
and predicting spans. Transactions of the Associa-
tion for Computational Linguistics, 8:64–77.

Mandar Joshi, Omer Levy, Luke Zettlemoyer, and
Daniel Weld. 2019. BERT for coreference reso-
lution: Baselines and analysis. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5803–5808, Hong Kong,
China. Association for Computational Linguistics.

Patrick Kahardipraja, Brielen Madureira, and David
Schlangen. 2021. Towards incremental transform-
ers: An empirical analysis of transformer models
for incremental NLU. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1178–1189, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama,
Gabriel Ilharco, Nikolaos Pappas, Yi Mao, Weizhu
Chen, and Noah A. Smith. 2021. Finetuning pre-
trained transformers into RNNs. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 10630–10643, On-
line and Punta Cana, Dominican Republic. Associa-
tion for Computational Linguistics.

A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret.
2020. Transformers are RNNs: Fast autoregressive
transformers with linear attention. In Proceedings of
the International Conference on Machine Learning
(ICML).

437

https://doi.org/10.18653/v1/2021.emnlp-main.382
https://doi.org/10.18653/v1/2021.emnlp-main.382
https://doi.org/https://doi.org/10.1016/0010-0277(88)90020-0
https://doi.org/https://doi.org/10.1016/0010-0277(88)90020-0
https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.1162/tacl_a_00333
https://doi.org/10.18653/v1/2022.naacl-main.218
https://doi.org/10.18653/v1/2022.naacl-main.218
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.3115/v1/P15-1033
https://doi.org/10.1162/tacl_a_00422
https://doi.org/10.1162/tacl_a_00422
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.1162/tacl_a_00300
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/D19-1588
https://doi.org/10.18653/v1/2021.emnlp-main.90
https://doi.org/10.18653/v1/2021.emnlp-main.90
https://doi.org/10.18653/v1/2021.emnlp-main.90
https://doi.org/10.18653/v1/2021.emnlp-main.830
https://doi.org/10.18653/v1/2021.emnlp-main.830

Arzoo Katiyar and Claire Cardie. 2018. Nested named
entity recognition revisited. In Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long Pa-
pers), pages 861–871, New Orleans, Louisiana. As-
sociation for Computational Linguistics.

Sopan Khosla, Juntao Yu, Ramesh Manuvinakurike,
Vincent Ng, Massimo Poesio, Michael Strube, and
Carolyn Rosé. 2021. The CODI-CRAC 2021 shared
task on anaphora, bridging, and discourse deixis in
dialogue. In Proceedings of the CODI-CRAC 2021
Shared Task on Anaphora, Bridging, and Discourse
Deixis in Dialogue, pages 1–15, Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Yuval Kirstain, Ori Ram, and Omer Levy. 2021. Coref-
erence resolution without span representations. In
Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 2: Short Papers), pages
14–19, Online. Association for Computational Lin-
guistics.

Manfred Klenner and Don Tuggener. 2011. An incre-
mental entity-mention model for coreference resolu-
tion with restrictive antecedent accessibility. In Pro-
ceedings of the International Conference Recent Ad-
vances in Natural Language Processing 2011, pages
178–185, Hissar, Bulgaria. Association for Compu-
tational Linguistics.

Kenton Lee, Luheng He, Mike Lewis, and Luke Zettle-
moyer. 2017. End-to-end neural coreference reso-
lution. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 188–197, Copenhagen, Denmark. Association
for Computational Linguistics.

Kenton Lee, Luheng He, and Luke Zettlemoyer. 2018.
Higher-order coreference resolution with coarse-to-
fine inference. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 2 (Short Papers), pages
687–692, New Orleans, Louisiana. Association for
Computational Linguistics.

Fei Liu, Luke Zettlemoyer, and Jacob Eisenstein. 2019.
The referential reader: A recurrent entity network
for anaphora resolution. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 5918–5925, Florence, Italy.
Association for Computational Linguistics.

Tianyu Liu, Yuchen Eleanor Jiang, Nicholas Monath,
Ryan Cotterell, and Mrinmaya Sachan. 2022.

Transition-based structured prediction with autore-
gressive models. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, Abu Dhabi, United Arab Emirates and
Virtual. Association for Computational Lingustics.

Robert L Logan IV, Andrew McCallum, Sameer Singh,
and Dan Bikel. 2021. Benchmarking scalable meth-
ods for streaming cross document entity coreference.
In Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the
11th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
4717–4731, Online. Association for Computational
Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Processing,
pages 25–32, Vancouver, British Columbia, Canada.
Association for Computational Linguistics.

Brielen Madureira and David Schlangen. 2020. In-
cremental processing in the age of non-incremental
encoders: An empirical assessment of bidirectional
models for incremental NLU. In Proceedings of
the 2020 Conference on Empirical Methods in Natu-
ral Language Processing (EMNLP), pages 357–374,
Online. Association for Computational Linguistics.

Scott Martin, Shivani Poddar, and Kartikeya Upasani.
2020. MuDoCo: Corpus for multidomain corefer-
ence resolution and referring expression generation.
In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 104–111, Marseille,
France. European Language Resources Association.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. Py-
torch: An imperative style, high-performance deep
learning library. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 8024–8035. Curran Asso-
ciates, Inc.

Sameer Pradhan, Alessandro Moschitti, Nianwen Xue,
Olga Uryupina, and Yuchen Zhang. 2012. CoNLL-
2012 shared task: Modeling multilingual unre-
stricted coreference in OntoNotes. In Joint Confer-
ence on EMNLP and CoNLL - Shared Task, pages
1–40, Jeju Island, Korea. Association for Computa-
tional Linguistics.

Rachel Rudinger, Jason Naradowsky, Brian Leonard,
and Benjamin Van Durme. 2018. Gender bias in

438

https://doi.org/10.18653/v1/N18-1079
https://doi.org/10.18653/v1/N18-1079
https://doi.org/10.18653/v1/2021.codi-sharedtask.1
https://doi.org/10.18653/v1/2021.codi-sharedtask.1
https://doi.org/10.18653/v1/2021.codi-sharedtask.1
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2021.acl-short.3
https://doi.org/10.18653/v1/2021.acl-short.3
https://aclanthology.org/R11-1025
https://aclanthology.org/R11-1025
https://aclanthology.org/R11-1025
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/D17-1018
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/N18-2108
https://doi.org/10.18653/v1/P19-1593
https://doi.org/10.18653/v1/P19-1593
https://doi.org/10.18653/v1/2021.acl-long.364
https://doi.org/10.18653/v1/2021.acl-long.364
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://aclanthology.org/H05-1004
https://aclanthology.org/H05-1004
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://doi.org/10.18653/v1/2020.emnlp-main.26
https://aclanthology.org/2020.lrec-1.13
https://aclanthology.org/2020.lrec-1.13
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://aclanthology.org/W12-4501
https://doi.org/10.18653/v1/N18-2002

coreference resolution. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 8–14, New Orleans, Louisiana. Association
for Computational Linguistics.

Sanjay Subramanian and Dan Roth. 2019. Improving
generalization in coreference resolution via adversar-
ial training. In Proceedings of the Eighth Joint Con-
ference on Lexical and Computational Semantics
(*SEM 2019), pages 192–197, Minneapolis, Min-
nesota. Association for Computational Linguistics.

Shubham Toshniwal, Allyson Ettinger, Kevin Gimpel,
and Karen Livescu. 2020a. PeTra: A Sparsely Su-
pervised Memory Model for People Tracking. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5415–
5428, Online. Association for Computational Lin-
guistics.

Shubham Toshniwal, Sam Wiseman, Allyson Ettinger,
Karen Livescu, and Kevin Gimpel. 2020b. Learn-
ing to Ignore: Long Document Coreference with
Bounded Memory Neural Networks. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
8519–8526, Online. Association for Computational
Linguistics.

Shubham Toshniwal, Patrick Xia, Sam Wiseman,
Karen Livescu, and Kevin Gimpel. 2021. On gener-
alization in coreference resolution. In Proceedings
of the Fourth Workshop on Computational Models of
Reference, Anaphora and Coreference, pages 111–
120, Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Jack Urbanek, Angela Fan, Siddharth Karamcheti,
Saachi Jain, Samuel Humeau, Emily Dinan, Tim
Rocktäschel, Douwe Kiela, Arthur Szlam, and Ja-
son Weston. 2019. Learning to speak and act in
a fantasy text adventure game. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 673–683, Hong
Kong, China. Association for Computational Lin-
guistics.

Marc Vilain, John Burger, John Aberdeen, Dennis Con-
nolly, and Lynette Hirschman. 1995. A model-
theoretic coreference scoring scheme. In Sixth Mes-
sage Understanding Conference (MUC-6): Proceed-
ings of a Conference Held in Columbia, Maryland,
November 6-8, 1995.

Bailin Wang, Wei Lu, Yu Wang, and Hongxia Jin. 2018.
A neural transition-based model for nested mention
recognition. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1011–1017, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Ben Wang and Aran Komatsuzaki. 2021. GPT-J-
6B: A 6 Billion Parameter Autoregressive Language
Model. GitHub.

Xuewei Wang, Weiyan Shi, Richard Kim, Yoojung Oh,
Sijia Yang, Jingwen Zhang, and Zhou Yu. 2019. Per-
suasion for good: Towards a personalized persuasive
dialogue system for social good. In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5635–5649, Florence,
Italy. Association for Computational Linguistics.

Kellie Webster and James R. Curran. 2014. Limited
memory incremental coreference resolution. In Pro-
ceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Tech-
nical Papers, pages 2129–2139, Dublin, Ireland.
Dublin City University and Association for Compu-
tational Linguistics.

Kellie Webster, Marta Recasens, Vera Axelrod, and Ja-
son Baldridge. 2018. Mind the GAP: A balanced
corpus of gendered ambiguous pronouns. Transac-
tions of the Association for Computational Linguis-
tics, 6:605–617.

Ralph Weischedel, Martha Palmer, Mitchell Marcus,
Eduard Hovy, Sameer Pradhan, Lance Ramshaw, Ni-
anwen Xue, Ann Taylor, Jeff Kaufman, Michelle
Franchini, Mohammed El-Bachouti, Robert Belvin,
and Ann Houston. 2013. Ontonotes release 5.0.
LDC2013T19, Philadelphia, Penn.: Linguistic Data
Consortium.

Wei Wu, Fei Wang, Arianna Yuan, Fei Wu, and Ji-
wei Li. 2020. CorefQA: Coreference resolution as
query-based span prediction. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 6953–6963, Online. As-
sociation for Computational Linguistics.

Patrick Xia, João Sedoc, and Benjamin Van Durme.
2020. Incremental neural coreference resolution in
constant memory. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 8617–8624, Online. As-
sociation for Computational Linguistics.

Patrick Xia and Benjamin Van Durme. 2021. Moving
on from OntoNotes: Coreference resolution model
transfer. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 5241–5256, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

Liyan Xu and Jinho D. Choi. 2020. Revealing the myth
of higher-order inference in coreference resolution.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 8527–8533, Online. Association for Computa-
tional Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.

439

https://doi.org/10.18653/v1/N18-2002
https://doi.org/10.18653/v1/S19-1021
https://doi.org/10.18653/v1/S19-1021
https://doi.org/10.18653/v1/S19-1021
https://doi.org/10.18653/v1/2020.acl-main.481
https://doi.org/10.18653/v1/2020.acl-main.481
https://doi.org/10.18653/v1/2020.emnlp-main.685
https://doi.org/10.18653/v1/2020.emnlp-main.685
https://doi.org/10.18653/v1/2020.emnlp-main.685
https://doi.org/10.18653/v1/2021.crac-1.12
https://doi.org/10.18653/v1/2021.crac-1.12
https://doi.org/10.18653/v1/D19-1062
https://doi.org/10.18653/v1/D19-1062
https://aclanthology.org/M95-1005
https://aclanthology.org/M95-1005
https://doi.org/10.18653/v1/D18-1124
https://doi.org/10.18653/v1/D18-1124
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.18653/v1/P19-1566
https://doi.org/10.18653/v1/P19-1566
https://doi.org/10.18653/v1/P19-1566
https://aclanthology.org/C14-1201
https://aclanthology.org/C14-1201
https://doi.org/10.1162/tacl_a_00240
https://doi.org/10.1162/tacl_a_00240
https://doi.org/10.18653/v1/2020.acl-main.622
https://doi.org/10.18653/v1/2020.acl-main.622
https://doi.org/10.18653/v1/2020.emnlp-main.695
https://doi.org/10.18653/v1/2020.emnlp-main.695
https://doi.org/10.18653/v1/2021.emnlp-main.425
https://doi.org/10.18653/v1/2021.emnlp-main.425
https://doi.org/10.18653/v1/2021.emnlp-main.425
https://doi.org/10.18653/v1/2020.emnlp-main.686
https://doi.org/10.18653/v1/2020.emnlp-main.686

Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural In-
formation Processing Systems, volume 32. Curran
Associates, Inc.

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020a.
Named entity recognition as dependency parsing. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 6470–
6476, Online. Association for Computational Lin-
guistics.

Juntao Yu, Sopan Khosla, Nafise Moosavi, Silviu Paun,
Sameer Pradhan, and Massimo Poesio. 2022. The
universal anaphora scorer. In Proceedings of the
13th Language Resources and Evaluation Confer-
ence, Marseille, France. European Language Re-
sources Association.

Juntao Yu, Alexandra Uma, and Massimo Poesio.
2020b. A cluster ranking model for full anaphora
resolution. In Proceedings of the 12th Language Re-
sources and Evaluation Conference, pages 11–20,
Marseille, France. European Language Resources
Association.

Michelle Yuan, Patrick Xia, Chandler May, Benjamin
Van Durme, and Jordan Boyd-Graber. 2022. Adapt-
ing coreference resolution models through active
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 7533–7549, Dublin,
Ireland. Association for Computational Linguistics.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In Proceedings of the 2018 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 2 (Short Papers), pages 15–20,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

A Action Constraints

To ensure the final state is always reached, it is
necessary to enforce a set of rules during mention
detection:

1. ADVANCE can only be called on the final to-
ken if the stack is empty.

2. POP and PEEK can only be called if the stack
is non-empty.

3. PUSH can only be called once per token, en-
suring that left boundaries are only marked
once.

4. PUSH cannot directly follow POP or PEEK.
Allowing this action sequence would either
admit multiple paths to the same mention or
non-nested overlapping mentions.

5. POP cannot directly follow PEEK, or else the
same mention would be proposed twice.

6. PEEK cannot be called on the final token. This
action would imply the stack is non-empty on
the final token, and that POP must be called.

B k-Sentence-Incremental Mention
Detection

We repeat the experiment in Section 6 for mention
detection. For each k-Sentence-Incremental setting,
we evaluate on the dev set and record the mention
detection recall, precision and F1.

The results are shown in Figure 6. Certain trends
remain the same as for the CoNLL score, namely
that performance rises more when k is small com-
pared to when it is large. However, we do not
see the same dramatic difference in recall between
k = 1 to k = 24 settings as in Section 6. Here,
the difference in recall between the two settings is
around 3%, whereas in Figure 5 it is 9.7%.

Overall, the reduced severity between k = 1
and k = 24 settings compared to Figure 5 most
likely indicate that XLNet’s caching deficiencies
affect mention clustering (particularly false nega-
tives) more seriously than mention detection.

0 5 10 15 20 25

82

83

84

85

86

87

k-Sentence Setting

Sc
or

e

Recall
Precision
F1

Figure 6: Mention Detection performance (average
of MUC, B3 and CEAFφ4

) of each k-Sentence-
Incremental model on the OntoNotes dev set.

C Partitioning Document Clusters

We explore the deficiency in the previous section
further, guided by the hypothesis that XLNet relies
on active inputs and cannot effectively use its mem-
ory. We partition each document into segments of
k sentences, and call the number of sentences in

440

https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/dc6a7e655d7e5840e66733e9ee67cc69-Paper.pdf
https://doi.org/10.18653/v1/2020.acl-main.577
https://aclanthology.org/2020.lrec-1.2
https://aclanthology.org/2020.lrec-1.2
https://doi.org/10.18653/v1/2022.acl-long.519
https://doi.org/10.18653/v1/2022.acl-long.519
https://doi.org/10.18653/v1/2022.acl-long.519
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003
https://doi.org/10.18653/v1/N18-2003

0 10 20 30 40 50

70

75

80

85

Partition Size

R
ec

al
l

k = 1 k = 4 k = 8 k = 12

k = 16 k = 20 k = 24

(a)

0 10 20 30 40 50

80

82

84

86

88

90

Partition Size

R
ec

al
l

k = 1 k = 4 k = 8 k = 12

k = 16 k = 20 k = 24

(b)

Figure 7: Evaluation results on the OntoNotes dev set when the gold labels and k-Sentence-Incremental predictions
are partitioned according to various sizes. Figure 7a shows the CoNLL recall scores for coreference resolution.
Figure 7b shows the mention detection recall scores. Notice that whenever k is equal to the partition size, there is
a noticeable performance increase, indicating that XLNet relies heavily on active inputs rather than its memory.

each segment the ‘partition size’. Within each seg-
ment, we maintain the original coreference links.
However, we remove the coreference links between
segments. For each k-Sentence-Incremental model,
we similarly partition their coreference predictions,
and evaluate against the partitioned gold labels on
the OntoNotes dev set.

Each segment therefore is independent from the
other, and we can measure how reliant the model
is on its active inputs by observing performance
change across partition sizes. For example, when
the partition size is 1, the only coreference links are
intra-sentential ones. In this case, models are only
evaluated on their intra-sentential coreference reso-
lution ability. When the partition size is large, the
models are evaluated on the documents’ original
coreference chains. Since the previous experiments
demonstrated shifts in incrementality heavily af-
fected recall, we measure the mention detection
recall and CoNLL recall score.

The results are shown in Figure 7. All models do
well when the partition size is one, reflecting the
fact that intra-sentential coreference is generally
simpler than distantly linked mentions. As the par-
tition size increases, model performance decreases
as the coreference chains become more spread apart
and raise the task difficulty. Crucially, we notice
a upward performance bump whenever the parti-
tion size matches the k-Sentence-Incremental set-

ting, for both coreference performance and mention
detection When k matches the partition size, the
model observes coreference chains that are always
within the active input window. This performance
bump therefore indicates XLNet is much better at
mention detection and coreference when the coref-
erence chain occurs within its active inputs. Perfor-
mance suffers whenever the model must rely more
on its memory (whenever k is not equal to the
partition size). In particular, these results suggest
that more powerful pre-trained language models,
in particular ones that can take better advantage of
cached representations, may be more successful at
incremental coreference resolution.

D Speaker Embeddings

The ICoref-inc model from Xia et al. (2020) is an
important comparison point as the only baseline
in the sentence-incremental setting. While ICoref-
inc does not rely on speaker embeddings, our own
models (both Part-Inc and Sent-Inc) do. Given the
important role of speaker identity in a dialogue
setting, it is useful to know the effect of removing
these embeddings in our models.

We compare the Sent-Inc model with and with-
out speaker embeddings in Table 4 for OntoNotes,
and Table 5 for CODI-CRAC. We find that speaker
embeddings play little to no role in coreference
performance. In OntoNotes, removing speaker

441

MUC B3 CEAFφ4 Avg.
Model Rec. Prec. F1 Rec. Prec. F1 Rec. Prec. F1 F1

Sent-Inc 76.4 78.7 77.6 68.0 68.2 68.1 56.1 70.6 62.6 69.4
−speaker 76.4 79.0 77.7 68.0 68.6 68.3 56.3 70.8 62.7 69.5

Table 4: Results on the OntoNotes dev set comparing the Sent-Inc model with and without speaker embeddings.

Model LIGHT AMI PERS. SWBD. Avg.

Sent-Inc 50.6 32.5 48.5 44.4 44.0
−speaker 50.1 32.0 49.6 43.3 43.8

Table 5: Results on the CODI-CRAC dev set compar-
ing the Sent-Inc model with and without speaker em-
beddings.

embeddings improves CoNLL F1 by 0.1, and in
CODI-CRAC, it decreases performance by 0.2 F1.
In both cases, the results are unlikely to be sta-
tistically significant. The finding indicates that
Sent-Inc’s advantage over ICoref-inc is not simply
due to feature selection but a true modelling ad-
vantage. It also suggests that further performance
improvements are possible if speaker identity can
be better represented, since Sent-Inc effectively
ignores the speaker embeddings. One possibility,
from Wu et al. (2020), is to preprocess the text
with speaker tags directly included in the input,
rather than including it separately. This way, the
document encoder directly learns how to handle
speakers, instead of relying on a separate embed-
ding in downstream classifiers.

E XLNet in Non-Incremental Baselines

Choosing XLNet as the document encoder is moti-
vated by the fact that XLNet can efficiently cache
and reuse input, making it suitable for incremen-
tal processing. However, XLNet can also be used
non-incrementally in the same way as SpanBERT.
In particular, we can train Joshi et al. (2020)’s
coreference system using XLNet instead of Span-
BERT. This experiment allows us to compare how
the choice of pre-trained language model affects
performance.

Table 6 shows results of training Joshi et al.
(2020) with an XLNet encoder instead of Span-
BERT on the OntoNotes dev set. XLNet signif-
icantly underperforms compared to SpanBERT,
scoring almost 7 CoNLL F1 points lower. Surpris-
ingly, XLNet is an effective document encoder for
our Part-Incremental formulation (achieving 76.3
F1 on the OntoNotes test set), but ineffective when

used in Joshi et al. (2020)’s non-incremental setup.
We do not attempt swapping the fine-tuned XLNet
into Toshniwal et al. (2020b) or Xia et al. (2020)
as it seems unlikely to yield useful results.

F Hyperparameters and Other Model
Details

The main hyperparameters are listed in Table 7.
The bottom four rows refer to the maximum

number of learned embeddings we use for each
feature. Additionally:

• The top performing Part-Inc model uses 20
sentences as active input, with the remainder
as memory (up to 512 tokens total).

• During training, the Sent-Inc model accumu-
lates gradients after every 32 sentences to en-
sure that the memory used does not exceed
capacity.

Our implementation is based off of Xu and Choi
(2020)’s codebase. We find their model hyperpa-
rameters are already extremely well-tuned, and so
we do not explore further hyperparameter tuning
for these cases. Regarding new hyperparameters in-
troduced in this work, we follow previous work
in choosing sensible values. For example, the
StackLSTM and Action History LSTM hidden
sizes follow Dyer et al. (2015)’s recommendations.

We train all models using NVIDIA Tesla V100
16 GB cards on an HPC cluster. Training conver-
gence takes approximately 24 hours. Both Sent-Inc
and Part-Inc models contain around 140 million
parameters.

G Dataset Details

For all datasets, we follow standard preprocessing
steps such as tokenization, mapping subword units
to token IDs, and adding segment boundary tokens
(such as [CLS] and [SEP]). Since our algorithms
rely on teacher forcing, we compute gold actions
for both mention detection and mention clustering
steps.

The English portion of OntoNotes 5.0 contains
3493 documents, divided into 2802/343/348

442

MUC B3 CEAFφ4 Avg.
Model Rec. Prec. F1 Rec. Prec. F1 Rec. Prec. F1 F1

SpanBERT+e2e-coref 82.5 84.3 83.4 75.8 76.8 76.3 71.7 74.7 73.1 77.6
XLNet+e2e-coref 70.3 80.8 75.2 63.7 73.0 68.0 67.5 70.4 68.9 70.7

Table 6: Results from non-incremental methods on the OntoNotes dev set with different pretrained language
models. e2e-coref refers to the non-incremental formulation from Lee et al. (2018), which is adapted in Joshi et al.
(2020).

Hyperparameter Value

Encoder Learning Rate 2e-5
Task Learning Rate 1e-4
Adam Eps 1e-6
Adam Weight Decay 1e-2
Gradient Clipping Norm 1
Dropout Rate 0.3
StackLSTM Hidden Size 200
Action History Hidden Size 30
fM Hidden Size 1000
fC Hidden Size 3000
New Cell Threshold (α) 0.0
φC Max Entity Count 10
φC Max Mention Distance 10
φM Max Span Width 30
Max Speaker Number 20

Table 7: Hyperparameters used during training.

splits for training, validation and test sections,
respectively. The corpus contains examples
for English, Chinese and Arabic; however,
we only use the English portion in this paper.
Details to download the dataset can be found at:
https://catalog.ldc.upenn.edu/LDC2013T19.
The official scorer is available at
https://github.com/conll/reference-coreference-
scorers. We do not remove data from OntoNotes.

The CODI-CRAC 2021 corpus contains 134
English documents, split into 60 documents for
validation and 74 documents for testing. Since
we use the corpus solely for evaluation, we
only use the test set. The corpus is available at:
https://codalab.lisn.upsaclay.fr/competitions/614,
although a license from the Linguistic Data
Corsortium (LDC) is needed for the Switchboard
portion. The official scorer can be found at:
https://github.com/juntaoy/universal-anaphora-
scorer. As detailed in Section 4.1, we remove
singletons due to lack of training data.

H Evaluation Metrics

As mentioned in Section 4, we evaluate using the
MUC, B3 and CEAFφ4metrics, together with their
average – commonly referred to as the CoNLL
score after its usage in the CoNLL 2012 Shared
Task (Pradhan et al., 2012).

None of the metrics have a trivial definition.
Each metric measures different aspects of the pre-
dicted coreference chains. We do not provide a
full definition of each metric here, but note that
MUC corresponds to a link-based measure, B3 is a
mention-based measure, and CEAFφ4 is an entity-
based measure. We refer the reader to the CoNLL
2012 Shared Task paper (Pradhan et al., 2012) for
an overview of all three metrics and to the original
papers for a full description (Vilain et al., 1995;
Bagga and Baldwin, 1998; Luo, 2005).

443

https://catalog.ldc.upenn.edu/LDC2013T19
https://github.com/conll/reference-coreference-scorers
https://github.com/conll/reference-coreference-scorers
https://codalab.lisn.upsaclay.fr/competitions/614
https://github.com/juntaoy/universal-anaphora-scorer
https://github.com/juntaoy/universal-anaphora-scorer

