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Abstract
Recently, Sharpness-Aware Minimization
(SAM) algorithm has shown state-of-the-art
generalization abilities in vision tasks. It
demonstrates that flat minima tend to imply
better generalization abilities. However,
it has some difficulty implying SAM to
some natural language tasks, especially to
models with drastic gradient changes, such as
RNNs. In this work, we analyze the relation
between the flatness of the local minimum
and its generalization ability from a novel
and straightforward theoretical perspective.
We propose that the shift of the training
and test distributions can be equivalently
seen as a virtual parameter corruption or
perturbation, which can explain why flat
minima that are robust against parameter
corruptions or perturbations have better
generalization performances. On its basis, we
propose a Gradient-Strength based Adaptive
Sharpness-Aware Minimization (GA-SAM)
algorithm to help to learn algorithms find
flat minima that generalize better. Results
in various language benchmarks validate
the effectiveness of the proposed GA-SAM
algorithm on natural language tasks.

1 Introduction

Recently, researchers (Wu et al., 2020; Weng et al.,
2020; Sun et al., 2021; Zhang et al., 2021; Foret
et al., 2020; Liu et al., 2021) propose that for
better generalization ability, learning algorithms
should find flat minima that have better robust-
ness resistant to parameter corruptions or pertur-
bations. Many learning algorithms that take the
flatness or sharpness of the parameters into con-
sideration are motivated by the observation that
flat minima tend to imply better generalization
abilities. Among them, Sharpness-Aware Mini-
mization (SAM) (Foret et al., 2020) algorithm has
achieved state-of-the-art generalization abilities in
vision tasks. It adopts virtual adversarial parame-
ter corruptions or perturbations during training and

lowers the risk after parameter corruptions. How-
ever, traditional SAM algorithms usually adopt
fixed strengths of parameter corruptions and con-
straint the corruptions with L2-norm or L+∞-norm
balls. It cannot conduct flexible strengths of param-
eter corruptions for different parameters, or during
different stages of training. Thus, it is difficult to
apply SAM to some natural language tasks, espe-
cially to models with drastic gradient changes, such
as RNNs. To settle this issue, many adaptive SAM
algorithms (Kwon et al., 2021; Liu et al., 2021) are
proposed empirically. In this work, we propose a
gradient-strength based adaptive solution based on
our theoretical framework.

Existing studies (Wu et al., 2020; Zhang et al.,
2021) try to explain the relation between the
flatness of the local minimum and its general-
ization ability according to Probably Approxi-
mately Correct (PAC) Bayesian generalization
bounds (Neyshabur et al., 2017). In this work,
we propose a novel theoretical framework to ana-
lyze this relation from a more intuitive and direct
perspective. In the Distributionally Robust Opti-
mization (DRO) (Rahimian and Mehrotra, 2019)
field, the elementary assumption is that there ex-
ists a shift between the distributions of the train-
ing set and the test set. We propose that a small
distribution shift can be equivalently seen as a vir-
tual parameter corruption or perturbation on the
loss function. We conduct analytic trials to ver-
ify our theoretical account and the results show
that it fits the simulation well and can therefore
explain why flat minima that are robust against pa-
rameter corruptions or perturbations have better
generalization performances. We also analyze the
strength of the parameter corruption within this
framework, based on which we propose a Gradient-
Strength based Adaptive Sharpness-Aware Mini-
mization (GA-SAM) algorithm, which can set flex-
ible strengths of parameter corruptions for different
parameter groups, during different training stages.
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To validate the effectiveness of the proposed
GA-SAM algorithm, we choose several natural
language models and benchmarks, including Con-
volution Neural Networks (CNN) (Kim, 2014)
on text classification, Long Short-term Memory
(LSTM) (Merity et al., 2017) networks on lan-
guage modeling, and Transformer (Vaswani et al.,
2017) on neural machine translation. We also com-
pare our proposed GA-SAM algorithm with the
traditional SAM algorithm (Foret et al., 2020) and
its multiple variants, including multi-step adver-
sarial parameter defense algorithm (Zhang et al.,
2021), adaptive SAM (Kwon et al., 2021), layer-
wise SAM (Liu et al., 2021) and other possible
variants of our proposed algorithm. Experimental
results show that our proposed GA-SAM gains bet-
ter generalization compared to the traditional SAM
algorithm and other variants.

Our contributions can be summarized as follows:

• We propose a novel theoretical framework to
analyze the relation between the flatness of the
local minimum and its generalization ability.
Under our proposed theoretical framework,
the shift of the training and test distributions
can be equivalently seen as a virtual parameter
corruption or perturbation. Thus, the flatness
or the robustness against parameter corrup-
tions can indicate the generalization ability.

• On the basis of our novel framework, we fur-
ther propose a Gradient-Strength based Adap-
tive Sharpness-Aware Minimization (GA-
SAM) algorithm to set flexible strengths of
parameter corruptions for different parameter
groups, during different stages of training for
an improvement over generalization ability.

• Experimental results show the effectiveness
of the GA-SAM algorithm compared to the
traditional SAM algorithm and its variants.

2 Proposed Theoretical Framework

In this section, we propose a novel theoretical
framework to reveal the relation between distri-
bution shifts and parameter corruptions from an
intuitive and direct theoretical perspective.

2.1 Preliminary

Let us consider a neural network with the parame-
ter vector w ∈ Rn. For a data instance z = (x, y),
denote ℓ(w; z) as the loss of the data instance,

L(w;D) as the average loss of a dataset D, and
p(z) as the probability distribution of D, we have:

L(w;D) = Ez∼p(z)[ℓ] =

∫

z
p(z)ℓ(w; z)dz. (1)

Denote θ as the optimal parameter:

θ = argmin
w

L(w;D), (2)

and the Hessian matrix on θ is H = ∇2
θL(θ;D).

Similarly, denote D∗ and p∗(z) as the test set
and its distribution, θ∗ as its optimal parameter,
and the Hessian matrix on θ∗ is H∗. Define the
parameter shift of the test and training minima as
δ = θ∗ − θ.

Suppose n parameters are divided into l groups
and the i-th group has n(i) parameters (e.g., l =
1, n = n(1) when the whole model adopt the
same strength and we call it model-wise, n =
l, n(i) = 1 when element-wise, l is the layer
number when layer-wise, l is the filter number
when filter-wise, etc.), w = [wT

(1), · · · ,wT
(l)]

T

and g = ∇wL(w;D) = [gT
(1), · · · ,gT

(l)]
T, and

δ = [δT
(1), δ

T
(2), · · · , δT

(i), · · · , δT
(l)]

T.

2.2 The Distribution Shift between the
Training and Test Sets

The elementary assumption in the Distributionally
Robust Optimization (DRO) (Rahimian and Mehro-
tra, 2019) field is that there exists a small distribu-
tional shift between the training and test sets. Pre-
vious studies usually assume that the divergence
or the distance of the training and test distribu-
tions is bounded by a constant, e.g., the Kullback-
Leibler divergence (Kullback and Leibler, 1951),
KL(p(z)||p∗(z)) ≤ Constant. In this work, more
generally, we assume that the f -divergence (Rényi,
1961) Df of the distributions is bounded by Cf :

Df (p
∗(z)||p(z)) =

∫

z
p(z)f

(p∗(z)
p(z)

)
≤ Cf , (3)

where the function f is convex and f(1) = 0, its
Taylor expansion should also satisfy f(1 + x) =
a1x+ a2x

2 + o(x2), a2 ̸= 0. For example, for the
Kullback-Leibler divergence (KL-div), f(1+x) =
(1 + x) log(1 + x) = x+ x2/2 + o(x2).

2.3 Parameter Corruptions as Results of
Distribution Shifts

We propose a novel theoretical framework to ana-
lyze this relation from a more intuitive and direct
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perspective. The main theoretical motivation is
Theorem 1. Proofs and details are in Appendix.
Theorem 1. The distribution shifts of datasets D
and D∗ can be equivalently treated as a parameter
corruption near the corresponding minima,

L(θ∗ + v;D∗) ≈ L(θ + v;D) + Constant, (4)

where Constant=L(θ∗;D∗) − L(θ;D). Let a =
−δ, when w is near θ and θ∗, we have

L(w;D∗) ≈ L(w + a;D) + Constant. (5)

It shows that the distribution shifts will cause a
parameter corruption or parameter shift. Therefore,
optimizing the parameter corruption risk L(w +
a;D) can help optimize the loss on the test set
L(w;D∗). Define S as the possible corruption
constraint set of potential corruptions a. Since a =
−δ is determined by the invisible distribution shifts,
we optimize the risk under potential corruptions a
instead, which is exactly the SAM optimization,

θSAM = argmin
w

max
a∈S
L(w + a;D). (6)

Thus, we reveal why flat minima that are robust
against potential parameter corruptions or pertur-
bations have better generalization performances in
our theoretical framework. Traditional SAM algo-
rithms adopt fixed strengths of parameter corrup-
tions and constraint the corruptions with L2-norm
or L+∞-norm balls, namely S = {a : ∥a∥2 ≤ ϵ}
or S = {a : ∥a∥+∞ ≤ ϵ}. However, in Theorem 2,
it reveals that the potential parameter corruption
δ is determined by the distribution shifts and the
local geometry near the local minimum in the loss
basin. Based on this, we have Proposition 1.
Theorem 2. Define r(z) = p∗(z)/p(z)− 1. When
the distribution shift is small enough, namely r(z)
is small, we can estimate the parameter shift δ as,

δ = −H−1Ep[r(z)∇θℓ(θ; z)] + o(∥δ∥2). (7)

Proposition 1. Suppose the loss L(w;D) is µ-
strongly convex1, and Df (p

∗||p) ≤ Cf , there exists

Cδ =
1 + o(1)

µ

√
Cf

a2
Ep(z)

[
∥∇θℓ(θ; z)∥22

]
(8)

such that ∥δ∥2 ≤ Cδ , namely Cδ is a upper bound.

1Note that L is only required to be µ-strongly convex in
the neighborhood of the loss basin including θ and θ∗, instead
of the entire Rn.
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Figure 1: Visualizations of the training loss, test loss,
and the shifted training loss. The shifted training loss is
similar to the test loss near the local minimum.

2.4 Verification of the Theoretical Framework

In this section, we conduct several analytic trials2

to verify our theoretical explanations and analyze
the corruption strength. Results show that our theo-
retical framework fits the simulation.

Visualization of Distribution Shift Effects.
Fig. 1 visualizes the training loss, test loss and
the shifted training loss. The shifted training
loss is similar to the test loss near the local min-
imum, namely we have L(w;D∗) ≈ L(w −
δ;D)+Constant, which validates Theorem 1. This
phenomenon can also be observed in visualizations
of training and test loss landscapes in other studies.

Relation between Corruption Strength and
Distribution Shift Strength. We conduct analytic
trials to reveal the relation between the corruption
strength and the distribution shift to verify our the-
oretical framework. Suppose D is the training set
and D∗ is the test set. We can construct a mixed
dataset Dmix, mixed with (1 − η) of the training
data from D and η of the test data from D∗. We
have pmix = (1 − η)p + ηp∗ approximately. De-
fine η as the relatively distribution shift strength
betweenDmix andD. Proposition 2 reveals that the
corruption strength is proportional to the distribu-
tion shift strength, which fits both the simulation
results of analytic trails in Fig. 2 and the intuition.

Proposition 2. Suppose the mixed distribution of
Dmix is pmix = (1 − η)p + ηp∗, then we have
Df (p

mix||p) ≤ Cmix
f = η2Cf . Denote θmix as the

optimal parameter on Dmix, δmix = θmix − θ, then

2The details of trials are in Appendix.
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Figure 2: Results of ∥δ∥2 of 100 trials with the same
training set D and different mixed test sets Dmix (mixed
with (1−η) of the training data fromD and η of the test
data from D∗). η can be utilized to measure the strength
of the distribution shift between D and Dmix. Results
show that there exists an approximately linear relation-
ship between ∥δ∥2 and distribution shift strengths.

we have:

∥δmix∥2
∥δ∥2

=
Cmix
δ

Cδ
= η + o(1). (9)

3 Gradient-Strength based Adaptive
Sharpness-Aware Minimization

In this section, we propose a Gradient-Strength
based Adaptive Sharpness-Aware Minimization
(GA-SAM) algorithm based on the proposed
theoretical framework, which conducts flexible
strengths of parameter corruptions for different pa-
rameter groups for better generalization abilities.

3.1 Adaptive Sharpness-Aware Minimization

As illustrated in Section 2.3, the SAM (Foret et al.,
2020) optimization objective is exactly the risk un-
der potential corruption as a result of distribution
shift,

θ = argmin
w

max
a∈S
L(w + a;D), (10)

where the constraint S is S = {a : ∥a∥p ≤ ϵ}.
Adaptive SAM algorithms (Kwon et al., 2021;

Liu et al., 2021) are proposed to set flexible
strengths of parameter corruptions, which set the
constraint S as S = {a : ∥T−1a∥p ≤ ϵ},
where T is the transformation matrix (usually
diagonal) controlling the corruption strengths of
corresponding parameter groups. Define T =
diag{T(1)In(1)

, · · · , T(l)In(l)
}, where T(i) controls

the corruption strengths of group i. Adaptive
SAM (ASAM) (Kwon et al., 2021) empirically
adopts T(i) = ∥w(i)∥2 element-wisely or filter-
wisely in CNNs, and layer-wise SAM (Layer-
SAM) (Liu et al., 2021) empirically adopts T(i) =
∥w(i)∥2/∥g(i)∥2 layer-wisely.

3.2 The Relation between the Corruption
Strength and the Gradient Strength

We hope to derive T from the theoretical frame-
work instead of setting T empirically.

In Theorem 2, besides the term r(z) determined
by the distribution shift, corruption strength is also
determined by the local geometry near the local
minimum (H,∇θℓ(θ; z)). Suppose n is the pa-
rameter number, G = Ep(z)[∥∇θℓ(θ; z)∥2]/

√
n

is the average gradient strength. Suppose
the Fisher information matrix assumption (Pas-
canu and Bengio, 2013) holds, namely H =
Ep(z)[∇θℓ(θ; z)∇θℓ(θ; z)

T], the local geometry is
determined by the gradient strength G.

In Proposition 3, we analyze the relation be-
tween the corruption strength and the gradient
strength. We have ∥δ∥2 ∝

√
n/G and ∥δ(i)∥2 ∝√

n(i)/G(i), corruption strengths and scales T
should be determined by gradient strengths G.

Proposition 3. Define the average gradient
strength as G = Ep(z)[∥∇θℓ(θ; z)∥2]/

√
n, and

the average gradient strength of group i as G(i) =
Ep(z)[∥∇θ(i)ℓ(θ; z)∥2]/

√
n(i), then

∥δ∥2 ∝
√
n

G
, ∥δ(i)∥2 ∝

√
n(i)

G(i)
. (11)

3.3 Proposed Algorithm

Our proposed algorithm adopts the constraint S =
{a : ∥T−1a∥p ≤ ϵ} in SAM learning, where T are
adaptive scales derived from the theoretical frame-
work, and we adopt the multi-step implementation.

In Proposition 3, we have ∥δ(i)∥2 ∝ √n(i)/G(i).
To make the scale of the virtual corruptions a(i)
propotional to the scale of δ(i), we should en-
sure that ∥a(i)∥2 ∝ ∥δ(i)∥2. Suppose a =
∥a(i)∥2/√n(i) is the average scale of a(i), we have
a ∝ T(i)ϵ, we should ensure that

∥a(i)∥2 = a
√
n(i) ∝ ∥δ(i)∥2 ∝

√
n(i)

G(i)
, (12)

and we can set T(i)ϵ
√
n(i) ∝ √n(i)/G(i), therefore

T(i) ∝ 1/G(i) =
√
n(i)/Ep(z)[∥∇θ(i)ℓ(θ; z)∥2].
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We use ∥g(i)∥2 to replace Ep(z)[∥∇θ(i)ℓ(θ; z)∥2],
then our proposal is derived,

T(i) =

√
n(i)

∥g(i)∥2
√
n
. (13)

Existing algorithms are mainly single-step based,
we adopt the multi-step implementation inspired
by multi-step adversarial parameter defense algo-
rithm (Zhang et al., 2021), which optimizes

θ = argmin
w

EB

[
K∑

k=0

L(w + ak;B)
K + 1

]
, (14)

where a0 = 0. Suppose the k-th update of the
corruption is uk = argmax∥T−1u∥p≤η u

Tgk−1,
which is generated based on ak−1 and gk−1 =
∇wL(w + ak−1;B), where η is the step size and
following Zhang et al. (2021), we set η = 1.5ϵ/K,
then

uk =
η
(
T sgn(gk−1)

)
⊙ |Tgk−1|

1
p−1

∥|Tgk−1|
1

p−1 ∥p
. (15)

To get the k-th corruption ak, we project the
updated corruption ak−1 + uk into the set S,

ak = ΠS(ak−1 + uk), (16)

and the solutions to the commonly adopted L2-
norm and L+∞-norm constraints are:

Π∥T−1v∥2≤ϵ(v) =
min{∥T−1v∥2, ϵ}v

∥T−1v∥2
; (17)

Π∥T−1v∥+∞≤ϵ(v) = T clip(T−1v,−ϵ, ϵ). (18)

To summarize, we adopt the adaptive scale T(i)

according to the gradient strength and a multi-step
implementation. It should be noted that even when
K = 1, our multi-step implementation, which opti-
mizes (L(w)+L(w+a1))/2, is different from the
single-step SAM implementation, which optimizes
L(w + a1). However, when K = 1, they have
similar speeds since they both require to generate
a1 and need two backward propagation processes.
Our multi-step implementation, however, allows
setting a larger K for better generalization.

We name the proposed algorithm as the Gradient-
Strength based Adaptive SAM (GA-SAM). The
algorithm is shown in Algorithm 1. The proofs and
theoretical details are in Appendix.

4 Experiments

In this section, we report the tasks, datasets, and
implementation details. Main results are in Table 1.

Algorithm 1 GA-SAM Algorithm

Require: Parameters w; loss L and dataset D;
steps K; training iterations; batch size |B|.

1: Prepare batches {B} and initialize w.
2: Calculate T with T(i) =

√
n(i)

∥g(i)∥2
√
n

.
3: while Training do
4: a0 ← 0.
5: Calculate the initial loss: L(w;B).
6: for k = 1 to K do

7: Get uk =
η
(
T sgn(gk−1)

)
⊙|Tgk−1|

1
p−1

∥|Tgk−1|
1

p−1 ∥p
.

8: Get ak ← ΠS(ak−1 + uk) as Eq. (16).
9: Calculate the risk: L(w + ak;B).

10: end for
11: Update w as minimizing Eq. (14).
12: end while

4.1 Tasks and Datasets

We adopt three typical neural networks and natural
language tasks to validate the effectiveness of the
proposed GA-SAM algorithm on NLP tasks.

On the text classification task, we adopt Convo-
lution Neural Networks (CNN) (Kim, 2014) on the
IMDb movie reviews dataset (IMDB) (Maas et al.,
2011) with the accuracy (ACC) evaluation metric.
On the language modeling task, we adopt Long
Short-term Memory (LSTM) (Merity et al., 2017)
networks on the English Penn TreeBank (PTB-
LM) (Marcus et al., 1993) dataset with the per-
plexity (PPL) evaluation metric. On the neural
machine translation task, we adopt the Trans-
former (Vaswani et al., 2017) model based on
the Fairseq implementation (Ott et al., 2019) on
IWSLT 15 English-Vietnamese (En-Vi) (Cettolo
et al., 2015) and IWSLT 14 German-English (De-
En) (Cettolo et al., 2014) datasets with the BLEU
score evaluation metric. Compared with the classi-
fication and language modeling tasks, the datasets
of the machine translation task are relatively large.
Other details are in Appendix.

4.2 Implementations

We implement our proposed GA-SAM algorithm
with a multi-step risk minimization, and set layer-
wise adaptive scales T(i) =

√
n(i)/(∥g(i)∥2

√
n).

We also compare our proposed GA-SAM with
other existing algorithms. The traditional SAM
algorithm (Foret et al., 2020) adopts a single-
step risk implementation and sets fixed scales.
ASAM (Kwon et al., 2021) adopts a single-step
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Dataset
Approach IMDB (ACC) PTB-LM (PPL) En-Vi (BLEU) De-En (BLEU)

Base Model CNN LSTM Transformer Transformer

Baseline w/o SAM 84.42±0.12 86.70±0.54 30.60±0.21 35.41±0.13

Single-step
SAM 84.75±0.31 (+0.33) 89.66±0.25 (+2.96) 30.79±0.15 (+0.19) 35.61±0.18 (+0.20)

ASAM 85.05±0.22 (+0.63) 90.08±0.24 (+3.38) 30.81±0.24 (+0.21) 35.56±0.17 (+0.15)

Layer-SAM 85.27±0.19 (+0.83) 89.82±0.10 (+3.12) 30.70±0.27(+0.10) 35.78±0.08 (+0.37)

Multi-step
Multi-step Defense 84.87±0.15 (+0.45) 84.74±0.42 (-1.96) 30.95±0.12 (+0.35) 35.86±0.13 (+0.45)

Proposed GA-SAM 86.11±0.22 (+1.69) 84.52±0.26 (-2.18) 31.15±0.29 (+0.55) 35.95±0.15 (+0.54)

Table 1: Results of baselines and different SAM algorithms. Results show the effectiveness of GA-SAM.

risk implementation and sets element-wise adaptive
scales T(i) = |w(i)|. Layer-SAM (Liu et al., 2021)
adopts a single-step risk implementation and sets
layer-wise adaptive scales T(i) = ∥w(i)∥2/∥g(i)∥2.
The multi-step adversarial parameter defense algo-
rithm (Zhang et al., 2021) adopts a multi-step risk
implementation and sets fixed scales. We also try
to combine these techniques and implement other
possible variants of GA-SAM, and we conduct an
ablation study to compare GA-SAM with these
variants.

For a fair comparison, the settings of differ-
ent SAM algorithms and variants are the same
as the base models except for the SAM settings
(K, ϵ, Lp, T(i)). We grid search the optimal SAM
hyper-parameters for each algorithm. The details
of base models and hyper-parameters are in Ap-
pendix.

4.3 Main Results

The main results are shown in Table 1. Evidently,
our proposed GA-SAM leads to significant perfor-
mance gains over the base models.

Single-step SAM algorithms cannot improve the
performance of the LSTM base model on the lan-
guage modeling task. SAM algorithms that set
adaptive scales cannot improve the performance of
the traditional SAM algorithm consistently. But
it may help deal with drastic changes in gradient
scales of different parameters or different learning
phases in NLP tasks. The multi-step risk mini-
mization generally outperforms SAM and helps
improve the stability of learning and the general-
ization abilities of models. GA-SAM can both
achieve the adaptive scales deduced from the the-
oretical framework and help improve the stability
and the generalization via the multi-step implemen-
tation. Thus, GA-SAM outperforms base models

Approach IMDB (ACC) PTB-LM (PPL)

Baseline 84.42±0.12 86.70±0.54

SAM 84.75±0.31 (+0.33) 89.66±0.25 (+2.96)

GA-SAM 86.11±0.22 (+1.69) 84.52±0.26 (-2.18)

Single-step 85.86±0.25 (+1.44) 89.97±0.27 (+3.27)

Element-wise 84.87±0.14 (+0.45) 84.69±0.38 (-2.01)
Model-wise 85.32±0.21 (+0.90) 84.55±0.39 (-2.15)

Variants with other scales T(i):
1 84.87±0.15 (+0.45) 84.74±0.42 (-1.96)

∥w(i)∥2/∥g(i)∥2 85.82±0.06 (+1.40) 84.58±0.27 (-2.12)
1/∥g(i)∥2 85.81±0.23 (+1.39) 84.90±0.32 (-1.80)

∥w(i)∥2/√n(i) 85.06±0.07 (+0.64) 85.04±0.15 (-1.66)
∥w(i)∥2 85.42±0.10 (+1.00) 85.03±0.57 (-1.67)

Table 2: Results of the ablation study. GA-SAM
(K = 1) is compared to multiple variants. Results
show that GA-SAM outperforms other variants, and
gradient-strength based adaptive scales usually outper-
form other scales.

and other SAM algorithms.

5 Analysis

In this section, we first conduct an ablation study
and analyze the hyper-parameters. Then we illus-
trate the sharpness and Hessian spectra with GA-
SAM and analyze the difference between CV and
NLP learning to explain why NLP tasks need GA-
SAM.

5.1 Ablation Study

We implement the single-step variants, element-
wise or model-wise variants, and variants with
other scales T(i) on IMDB and PTB-LM. The re-
sults of the ablation study are reported in Table 2.
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Approach IMDB (ACC) PTB-LM (PPL)

Baseline 84.42±0.12 86.70±0.54

GA-SAM w/ diff. (with different) K:
K = 1 86.11±0.22 (+1.69) 84.52±0.26 (-2.18)
K = 2 85.83±0.23 (+1.41) 84.48±0.52 (-2.22)
K = 3 84.97±0.23 (+0.55) 84.14±0.29 (-2.56)
K = 4 77.55±3.25 (-6.87) 84.05±0.23 (-2.65)
K = 5 70.49±5.10 (-13.9) 84.59±0.36 (-2.11)

w/ diff. ϵ (L2): ×10−2 ×10−3

ϵ = 0.1× 84.93±0.27 (+0.51) 85.24±0.40 (-1.46)
ϵ = 0.5× 85.11±0.22 (+0.69) 84.90±0.09 (-1.80)
ϵ = 1× 85.36±0.26 (+0.94) 84.91±0.17 (-1.79)
ϵ = 5× 85.62±0.70 (+1.20) 84.69±0.40 (-2.01)
ϵ = 10× 85.77±0.11 (+1.35) 85.38±0.41 (-1.32)
ϵ = 50× 64.14±10.3 (-20.3) 507.0±243 (+420)

w/ diff. ϵ (L+∞): ×10−4 ×10−5

ϵ = 0.2× 84.91±0.89 (+0.49) 85.12±0.55 (-1.58)
ϵ = 0.5× 85.54±0.18 (+1.12) 85.19±0.86 (-1.51)
ϵ = 0.8× 85.63±0.15 (+1.21) 84.52±0.26 (-2.18)
ϵ = 1× 86.11±0.22 (+1.69) 85.06±0.51 (-1.64)
ϵ = 2× 85.74±0.18 (+1.32) 85.20±0.94 (-0.96)
ϵ = 5× 65.96±2.74 (-18.5) 85.87±1.19 (-0.83)

Table 3: Analysis of hyper-parameters. We implement
GA-SAM with different K and ϵ (under L2 and L+∞).

Experimental results show that layer-wise im-
plementation outperforms element-wise or model-
wise implementations and GA-SAM with the multi-
step implementation (K = 1) outperforms GA-
SAM with the single-step implementation.

For adaptive scales, the multi-step adversar-
ial parameter defense algorithm (Zhang et al.,
2021) adopts T(i) = 1. We also adopt T(i) =
∥w(i)∥2/∥g(i)∥2 following Liu et al. (2021), and
T(i) = ∥w(i)∥2 following Kwon et al. (2021). We
also try other variants with similar formulas. Ex-
perimental results show that GA-SAM outperforms
other variants. Gradient-strength (∥g(i)∥2) based
adaptive scales usually outperform other adaptive
scales, and adaptive scales can enhance the multi-
step adversarial parameter defense algorithm gen-
erally, which validates our theoretical framework.

5.2 Analysis of Hyper-parameters
We analyze the influence of hyper-parameters and
settings in GA-SAM learning in Table 3.

On IMDB, adopting larger K cannot improve
the accuracy, while on PTB-LM, larger K can
achieve better PPL. The reason might be that on
PTB-LM, the LSTM model with more drastic gra-
dient changes needs more steps for better stability.

Corruption Baseline GA-SAM

w/o Corruption 30.60±0.21 31.15±0.29

L2, ϵ = 0.05 30.26 (-0.34) 30.90 (-0.25)
L2, ϵ = 0.1 29.36 (-1.24) 30.26 (-0.89)
L2, ϵ = 0.2 6.46 (-24.14) 17.87 (-13.28)

L+∞, ϵ = 0.0001 30.30 (-0.30) 30.72 (-0.43)
L+∞, ϵ = 0.0002 29.95 (-0.65) 30.67 (-0.48)
L+∞, ϵ = 0.0005 5.33 (-25.27) 29.14 (-2.01)

Table 4: The parameter robustness of baselines and
GA-SAM on En-Vi. Minima with GA-SAM are more
robust.
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Figure 3: Top 50 eigenvalues of Hessians of baselines
and GA-SAM. GA-SAM can help find flat minima.

Both under L2 and L+∞ constraints, on both
datasets, the performance can often be improved
substantially with small ϵ. However, when ϵ grows
too large, it may harm the learning and the perfor-
mance will drop. We also find that in this work, the
best performance is achieved under L+∞.

5.3 Sharpness and Parameter Robustness

As analyzed in our theoretical framework, flat min-
ima tend to imply better generalization abilities. In
this section, we validate that GA-SAM can help
find flat minima, which tends to help improve the
generalization abilities of models.

The sharpness near the local minima can be eval-
uated by the parameter robustness against param-
eter corruptions via the multi-step adversarial pa-
rameter corruption algorithm (Zhang et al., 2021).
In Table 4, we evaluate the robustness of the base-
lines and models with GA-SAM against the L2 or
L+∞ constrained parameter corruptions on En-Vi.
We can see that models with GA-SAM are more
robust than baselines, which implies that GA-SAM
can help find flat minima. We also adopt the Fisher
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Approach En-Vi (BLEU) De-En (BLEU)

Baseline 30.60±0.21 35.41±0.13

SAM 30.79±0.15 (+0.19) 35.61±0.18 (+0.20)

FreeLB 30.91±0.09 (+0.31) 35.49±0.11 (+0.08)

GA-SAM 31.15±0.29 (+0.55) 35.95±0.15 (+0.54)

Table 5: Comparisons to FreeLB.

information matrix assumption (Pascanu and Ben-
gio, 2013) to estimate the top 50 eigenvalues of
the Hessian matrix to evaluate the sharpness of
minima. As shown in Fig. 3, the eigenvalues of
models with GA-SAM are lower, which illustrates
that GA-SAM can help find flat minima.

5.4 Comparisons to Adversarial Training.
Some adversarial training algorithms improve the
generalization ability of neural networks by op-
timizing the loss of virtual adversarial exam-
ples. In this section, we compare GA-SAM
with FreeLB (Zhu et al., 2019), an existing high-
performance algorithm for NLP tasks, on En-Vi
and De-En. Detailed settings are in Appendix.

In Table 5, we can see that FreeLB (Zhu et al.,
2019) can improve the accuracy of NLP models.
The reasons that FreeLB (Zhu et al., 2019) works
may lie in two aspects: (1) FreeLB adopts a multi-
step minimization that is helpful for training sta-
bility; and (2) FreeLB only involves attacks on
word embeddings while the ideal attack strengths
for parameters in different layers vary a lot due to
gradient vanishing and explosion in NLP models.
Therefore, FreeLB does not need flexible scales as
necessarily as SAM. However, GA-SAM can still
outperform FreeLB.

5.5 Why NLP Tasks Need GA-SAM
Compared with the traditional SAM algorithm,
GA-SAM adopts the multi-step risk minimization
and gradient-strength based adaptive corruption
strengths. From the ablation study, we can see
that the multi-step risk minimization can enhance
the traditional SAM algorithm on NLP tasks. It
shows that NLP tasks do need GA-SAM for bet-
ter stability and generalization with the multi-step
risk minimization algorithm. The gradient-strength
based adaptive corruption strengths can also en-
hance SAM algorithms since gradient strengths
change drastically during different learning phases
and gradient strengths vary in different layers.
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Figure 4: Gradient norms in different learning phases.

1 2 3 4 5 6
-th Layer

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Gr
ad

ie
nt

 N
or

m

Encoder
Decoder

Figure 5: Gradient norms of different layers in Trans-
former encoder and decoder. 6-th layer is the highest
layer in the encoder or decoder, which has the largest
gradients.

In this section, we further visualize the gradi-
ent strengths during different learning phases and
different layers on En-Vi to illustrate why NLP
tasks need GA-SAM. As shown in Fig. 4, during
the early phase of learning, the gradient norms are
much larger and we should conduct parameter cor-
ruptions with smaller strengths. As shown in Fig. 5,
we can see that higher layers of the Transformer
encoder or decoder have larger gradients and need
smaller parameter corruptions. To conclude, we
need gradient-strength based adaptive corruption
strengths since gradient strengths vary in differ-
ent learning phases and different layers, while the
traditional SAM algorithm fails to conduct flexi-
ble strengths of parameter corruptions for different
parameters, or during different stages of training.

5.6 Computational Complexity

Single-step implementations usually involve two
forward and backward propagations, including one
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for generating the corruption a and another for
optimizing the L(w + a) loss function or the
L(w) + λaT∇wL(w) loss function). Multi-step
implementations involve K + 1 forward and back-
ward propagations, including K + 1 times for for-
warding and backwarding {L(w + ak)}0≤k≤K .

Therefore, when K = 1, the neural network
forward and backward propagation cost (involving
two forward and backward propagations) of GA-
SAM is the same as SAM or GA-SAM with the
single-step implementation. In Table 2, we con-
duct a fair comparison between GA-SAM (K = 1)
and SAM or GA-SAM with the single-step imple-
mentation (all involve two forward and backward
propagations). GA-SAM still outperforms SAM
and GA-SAM with the single-step implementation,
which illustrates the effectiveness of our proposed
GA-SAM and the multi-step implementation.

6 Related Work

6.1 Parameter Corruptions or Perturbations

Besides adversarial examples (Szegedy et al., 2014;
Kurakin et al., 2017; Carlini and Wagner, 2017) and
adversarial training (Goodfellow et al., 2015; Wang
et al., 2019; Madry et al., 2018; Zhang et al., 2019;
Zhu et al., 2019) concerning adversarial examples,
existing studies also concerns small changes on
neural network parameters, namely parameter cor-
ruptions (Sun et al., 2021; Zhang et al., 2021) or
perturbations (Garg et al., 2020; Wu et al., 2020).

Existing studies research parameter corruptions
or perturbations mainly for better generalization
ability (Zheng et al., 2020; Foret et al., 2020; Kwon
et al., 2021; Liu et al., 2021; Du et al., 2021; Sun
et al., 2021; Zhang et al., 2021), safety issue (Garg
et al., 2020; Rakin et al., 2020), analyzing the loss
change allocation to parameters (Lan et al., 2019),
analyzing the compression (Arora et al., 2018) or
parameter quantization (Nagel et al., 2019; Migacz,
2017; Alizadeh et al., 2020).

6.2 Generalization and Flat Minima

Existing studies (Dinh et al., 2017; Keskar et al.,
2017; Chaudhari et al., 2017; Xie et al., 2020; Wu
et al., 2020; Sun et al., 2021; Zhang et al., 2021)
show that local minima that are robust against to pa-
rameter corruptions are usually flat minima, which
tends to have better generalization ability. A line of
Sharpness-aware Minimization (SAM) (Foret et al.,
2020) algorithms drive parameters away from sharp
minima via virtual parameter corruptions. Other

researches acquire flat minima via adopting adap-
tive scales of parameter corruptions (Kwon et al.,
2021; Liu et al., 2021), rescaling parameter corrup-
tions (Liu et al., 2021; Du et al., 2021), adopting a
multi-step implementation (Zhang et al., 2021) or
sharpness-aware learning rates (Yue et al., 2020).

7 Limitation and Broader Impact

Limitation. One limitation of our work is that, sim-
ilar to other SAM learning, the hyper-parameters
tuning, especially ϵ, involves many numerical ex-
periments, which is time costly and environmen-
tally unfriendly. To settle this issue, we recommend
researchers binary search the proper order of mag-
nitude of ϵ first, and then grid search ϵ in a small
range for a faster hyper-parameter search, instead
of directly grid searching ϵ in a large range.

Broader Impact. Our work is beneficial for the
security of NLP models since our work can help
improve the robustness of NLP models against pa-
rameter corruptions, which can occur as random
noises at the hardware level, quantization, or model
compression. Our work also has negative social
impacts. Our proposed GA-SAM can be utilized
to enhance NLP models and improve the accuracy
of base models. However, the hyper-parameters
tuning, especially ϵ, involves many numerical ex-
periments, which is also a limitation of our work,
and it is environmentally unfriendly.

8 Conclusion

In this paper, we propose a novel theoretical frame-
work to analyze the relation between parameter
corruptions and generalization abilities. Based on
our proposed framework, we propose a Gradient-
Strength based Adaptive Sharpness-Aware Mini-
mization (GA-SAM) algorithm. Experimental re-
sults validate the effectiveness of GA-SAM com-
pared to the traditional SAM algorithm and its vari-
ants. Further analyses also show that GA-SAM can
help find flat minima and improve the generaliza-
tion ability of neural networks.
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A Theoretical Details

A.1 Proofs of Theorem 1

Theorem 1. The distribution shifts of datasets D
and D∗ can be equivalently treated as a parameter
corruption near the corresponding minima,

L(θ∗ + v;D∗) ≈ L(θ + v;D) + Constant,
(19)

where Constant=L(θ∗;D∗) − L(θ;D). Let a =
−δ, when w is near θ and θ∗, we have

L(w;D∗) ≈ L(w + a;D) + Constant. (20)

Proof. Define f(v) = L(θ∗ + v;D∗) − L(θ +
v;D), namely L(θ∗ + v;D∗) = L(θ + v;D) +
f(v). First we prove there exists CH = ρC

1
2
f +

LCδ = o(1) such that ∥H∗ −H∥2 ≤ CH , where
ρ = Ep(z)[∥∇2

θℓ(θ; z)∥22]
1
2 , and ∥∇2

θ∗ℓ(θ∗; z) −
∇2

θℓ(θ; z)
∥∥
2
≤ L∥θ∗ − θ∥2. We have,

∥H∗ −H∥2 (21)

=
∥∥
∫

z

{(
p∗(z)− p(z)

)
∇2

θℓ(θ; z) (22)

+ p∗(z)(∇2
θ∗ℓ(θ∗; z)−∇2

θℓ(θ; z)
}
dz
∥∥
2

(23)

≤
∥∥Ep(z)

[(p∗(z)
p(z)

− 1
)
∇2

θℓ(θ; z)
]∥∥

2
(24)

+
∥∥Ep∗(z)

[
∇2

θ∗ℓ(θ∗; z)−∇2
θℓ(θ; z)

]∥∥
2

(25)

≤
∥∥Ep(z)

[
r(z)∇2

θℓ(θ; z)
]∥∥

2
+ L∥δ∥2 (26)

≤ Ep(z)[|r(z)|2]
1
2Ep(z)

[
∥∇2

θℓ(θ; z)∥22
] 1
2 (27)

+ LCδ (28)

= ρC
1
2
f + LCδ = CH . (29)

Consider the gradients,

∇vf(v) (30)

= ∇vL(θ∗ + v;D∗)−∇vL(θ + v;D) (31)

= (H∗ −H)v + o(∥v∥2), (32)

∇vL(θ + v;D) = Hv + o(∥v∥2), (33)
∥∇vf(v)∥2

∥∇vL(θ + v;D)∥2
(34)

=
∥(H∗ −H)v∥2 + o(∥v∥2)
∥Hv∥2 + o(∥v∥2)

(35)

≤ CH + o(1)

µ+ o(1)
= o(1). (36)

Consider the function f , ∇vf(0) =
0,∇2

vf(0) = H∗ −H ,

|f(v)− f(0)| (37)

=
1

2
vT(∇2

vf(0))v + o(∥v∥22) (38)

≤ 1

2
CH∥v∥22 + o(∥v∥22), (39)

|L(θ + v;D)− L(θ;D)| (40)

= |vT∇θL(θ;D) +
1

2
vTHv|+ o(∥v∥22) (41)

≥ 1

2
µ∥v∥22 + o(∥v∥22), (42)

|f(v)− f(0)|
|L(θ + v;D)− L(θ;D)| (43)

≤
1
2CH∥v∥22 + o(∥v∥22)
1
2µ∥v∥22 + o(∥v∥22)

(44)

=
CH + o(1)

µ+ o(1)
= o(1). (45)

Therefore, the change in the term f(v) in the
loss function can be omitted compared to the
change in the loss function,

L(θ∗ + v;D∗) (46)

= L(θ + v;D) + f(v) (47)

≈ L(θ + v;D) + f(0) (48)

= L(θ + v;D) + Constant. (49)

Let a = −δ,w = θ∗ + v, we have,

L(w;D∗) ≈ L(w + a;D) + Constant. (50)

A.2 Proofs of Theorem 2
Theorem 2. Define r(z) = p∗(z)/p(z)− 1. When
the distribution shift is small enough, namely r(z)
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is small, we can estimate the parameter shift δ as,

δ = −H−1Ep[r(z)∇θℓ(θ; z)] + o(∥δ∥2). (51)

Proof. With the change-of-measure technique, we
have

Ep(z)

[
r(z)

]
= 0. (52)

According to the definition,

∇θL(θ;D) = ∇θ∗L(θ∗;D∗) = 0. (53)

Conduct Taylor Expansion, we have,

0 = ∇θ∗L(θ∗;D∗)−∇θL(θ;D) (54)

= ∇θ∗L(θ∗;D∗)− (55)(
∇θ∗L(θ∗;D)−H(−δ) + o(∥δ∥2)

)
. (56)

Solve it, we have,

δ = −H−1
(
∇θ∗L(θ∗;D∗) (57)

−∇θ∗L(θ∗;D)
)
+ o(∥δ∥2). (58)

Consider ∇θ∗L(θ∗;D∗)−∇θ∗L(θ∗;D),

∇θ∗L(θ∗;D∗)−∇θ∗L(θ∗;D) (59)

=

∫

z

(
p∗(z)− p(z)

)
∇θ∗ℓ(θ∗; z)dz (60)

=

∫

z

(p∗(z)
p(z)

− 1
)
p(z)∇θ∗ℓ(θ∗; z)dz (61)

= Ep(z)[r(z)∇θ∗ℓ(θ∗; z)] (62)

= Ep(z)[r(z)
(
∇θℓ(θ; z)+ (63)

∇2
θℓ(θ; z)δ + o(∥δ∥2)

)
] (64)

= Ep(z)[r(z)∇θℓ(θ; z)] + o(∥δ∥2), (65)

where the term r(z)∇2
θℓ(θ; z)δ = o(∥δ∥2) since

the distribution shift r(z) = o(1). To conclude,

δ = −H−1Ep[r(z)∇θℓ(θ; z)] + o(∥δ∥2). (66)

A.3 Proofs of Propositions
Proposition 1. Suppose the loss L(w;D) is µ-
strongly convex3, and Df (p

∗||p) ≤ Cf , there exists

Cδ =
1 + o(1)

µ

√
Cf

a2
Ep(z)

[
∥∇θℓ(θ; z)∥22

]
(67)

such that ∥δ∥2 ≤ Cδ , namely Cδ is a upper bound.

3Note that L is only required to be µ-strongly convex in
the neighborhood of the loss basin including θ and θ∗, instead
of the entire Rn.

Proof. With the change-of-measure technique, we
have:

Ep(z)

[
r(z)

]
= 0. (68)

Then

Df (p
∗||p) = Ep(z)

[
f(1 + r(z))] (69)

= Ep(z)

[
a1r + a2|r|2 + o(r)2] (70)

= (a2 + o(1))Ep(z)

[
|r|2
]
≤ Cf . (71)

Therefore,

Ep(z)

[
|r|2
]
≤ (1 + o(1))Cf

a2
. (72)

According to the upper bound of Ep(z)

[
|r|2
]
,

∥∥Ep(z)

[
r(z)∇θℓ(θ; z)]

∥∥
2

(73)

≤ Ep(z)

[
|r(z)|2

] 1
2Ep(z)

[
∥∇θℓ(θ; z)∥2]

1
2 (74)

≤
√

(1 + o(1))Cf

a2
Ep(z)

[
∥∇θℓ(θ; z)∥2

]
. (75)

Therefore,

µ∥δ∥2 ≤ ∥Hδ∥2 (76)

=
∥∥Ep(z)

[
r(z)∇θℓ(θ; z)]

∥∥
2

(77)

≤
√

(1 + o(1))Cf

a2
Ep(z)

[
∥∇θℓ(θ; z)∥2

]
. (78)

There exists

Cδ =
1 + o(1)

µ

√
Cf

a2
Ep(z)

[
∥∇θℓ(θ; z)∥22

]
(79)

such that ∥δ∥2 ≤ Cδ.

Proposition 2. Suppose the mixed distribution of
Dmix is pmix = (1 − η)p + ηp∗, then we have
Df (p

mix||p) ≤ Cmix
f = η2Cf . Denote θmix as the

optimal parameter on Dmix, δmix = θmix − θ, then
we have:

∥δmix∥2
∥δ∥2

=
Cmix
δ

Cδ
= η + o(1). (80)

Proof.

rmix(z) =
pmix(z)

p(z)
− 1 = η × r(z). (81)
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Proposition 3. Define the average gradient
strength as G = Ep(z)[∥∇θℓ(θ; z)∥2]/

√
n, and

the average gradient strength of group i as G(i) =
Ep(z)[∥∇θ(i)ℓ(θ; z)∥2]/

√
n(i), then

∥δ∥2 ∝
√
n

G
, ∥δ(i)∥2 ∝

√
n(i)

G(i)
. (82)

Proof. Suppose λ denotes the average values of
eigenvalues of the Hessian matrix, according to
the Fisher information matrix assumption (Pascanu
and Bengio, 2013),

H = Ep(z)[∇θℓ(θ; z)∇θℓ(θ; z)
T], (83)

λ =
tr(H)

n
(84)

=
Ep(z)[tr(∇θℓ(θ; z)∇θℓ(θ; z)

T)]

n
(85)

=
Ep(z)[∥∇θℓ(θ; z)∥22]

n
∝ G2. (86)

We have,

Hδ = −Ep(z)[r(z)∇θℓ(θ; z)] + o(∥δ∥2), (87)

∥Hδ∥2 ∝ λ∥δ∥2 ∝ G2∥δ∥2, (88)

∥Ep(z)[r(z)∇θℓ(θ; z)]∥2 ∝
√
nG. (89)

Therefore,

G2∥δ∥2 ∝
√
nG, (90)

∥δ∥2 ∝
√
n

G
. (91)

Assume ∂2L(θ;D)/(∂θ(i)∂θ(j)) = 0 for i ̸= j,
namely H = diag{H(1),H(2), · · · ,H(l)}, where
H(i) = Ep(z)[∇θ(i)ℓ(θ; z)∇θ(i)ℓ(θ; z)

T], then

H(i)δ(i) = −Ep(z)[r(z)∇θ(i)ℓ] + o(∥δ∥2), (92)

∥δ(i)∥2 ∝
√
n(i)

G(i)
. (93)

A.4 Details of Multi-step Implementation

Zhang et al. (2021) give the close-formed solution
of uk+1 under the constraint ∥u∥p = η,

uk+1 = argmax
∥u∥p=η

gT
ku (94)

= η

(
sgn(gk)⊙

|gk|
1

p−1

∥|gk|
1

p−1 ∥p

)
. (95)

When the constraint is S = {u : ∥T−1u∥p =
η}, gT

ku = (TgT
k)(T

−1u), namely

T−1uk+1 =
η
(
sgn(Tgk)

)
⊙ |Tgk|

1
p−1

∥|Tgk|
1

p−1 ∥p
. (96)

Therefore,

uk+1 =
η
(
T sgn(gk)

)
⊙ |Tgk|

1
p−1

∥|Tgk|
1

p−1 ∥p
. (97)

To get the k-th corruption ak, we project the
updated corruption ak−1+uk into the set S. Zhang
et al. (2021) give the projecting functions,

ΠS(v) = min{∥v∥2, ϵ}
v

∥v∥2
(p = 2); (98)

ΠS(v) = clip(v,−ϵ, ϵ) (p = +∞); (99)

similarly, when S = {u : ∥T−1u∥p ≤ ϵ}, we
may assume T−1ΠS(v) = ΠS(T

−1v). Suppose
x = T−1v, we have,

T−1Π∥x∥2≤ϵ(v) =min{∥x∥2, ϵ}
x

∥x∥2
; (100)

T−1Π∥x∥+∞≤ϵ(v) = clip(x,−ϵ, ϵ). (101)

Therefore,

Π∥T−1v∥2≤ϵ(v) =
min{∥T−1v∥2, ϵ}v

∥T−1v∥2
; (102)

Π∥T−1v∥+∞≤ϵ(v) = T clip(T−1v,−ϵ, ϵ).
(103)

B Datasets and Baseline Implementations

In this section, we introduce the datasets and base-
line implementations. The models enhanced with
SAM algorithms adopt the same hyper-parameters
to baselines except for the SAM hyper-parameter
settings (K,T(i), ϵ, Lp). All experiments are con-
ducted on NVIDIA TITAN RTX GPUs. We con-
duct every experiment for 4 runs and report the
mean and validation results.

B.1 IMDB
We implement the base model TextCNN (Kim,
2014) on the IMDb movie reviews dataset
(IMDB) (Maas et al., 2011). The reviews are clas-
sified into 3 classes, namely the positive reviews,
negative reviews, and neutral reviews. The training
size is 25000, the validation size is 25000, and the
test size is 50000. In the preprocessing of the text,
the vocab size is 30000, and the text length is 200.
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The embedding size is 500. In TextCNN, the filter
window sizes are 3, 4, and 5, with 500 feature maps
each. The optimizer is Adam with a learning rate
of 10−3 and a batch size of 64. We train models for
10 epochs and test the accuracy on the checkpoint
with the best valid accuracy.

B.2 PTB-LM
We implement a 2-layer LSTM as a language
model following Merity et al. (2017) on the word-
level Penn TreeBank dataset (PTB)4(Marcus et al.,
1993). In the preprocessing of the text, the vocab
size is 10000. We use the SGD optimizer with an
initial learning rate of 50 and a gradient norm clip
of 0.25. We adopt a learning rate decay of 0.5 after
10 epochs. The input and output embeddings are
tied. The embedding size is 500, and the hidden
size is 500. We train models for 20 epochs and test
the perplexity on the checkpoint with the lowest
valid perplexity.

B.3 En-Vi
We implement the transformer model following the
fairseq Ott et al. (2019) “transformer_wmt_en_de”
implementation as our baseline model on the En-
Vi dataset, which is provided by the IWSLT 2015
Evaluation Campaign (Cettolo et al., 2015). The
training size is 133K, the validation set is TED
tst2012 with a size of 1553 sentences, and the test
set is TED tst2013 with a size of 1268 sentences.
In the preprocessing of the text, the English and
Vietnamese vocabulary sizes are 17200 and 7800
respectively. We use the same hyper-parameters
following fairseq (Ott et al., 2019). We train the
model for 52 epochs and adopt a checkpoint aver-
age of 10. In testing, We adopt the BLEU metric
and the beam size of the model inference is 5.

B.4 De-En
We implement the transformer model following the
fairseq Ott et al. (2019) “transformer_wmt_en_de”
implementation as our baseline model on the De-
En dataset, which is provided by the IWSLT 2014
Evaluation Campaign (Cettolo et al., 2014). We
use the same dataset splits and the same hyper-
parameters following fairseq (Ott et al., 2019). The
training, validation and test sizes are 153K, 7K,
and 7K, respectively. In the preprocessing of the
text, we adopt the BPE technique, and the German
and English vocabulary sizes are 8848 and 6632

4Dataset is available at https://www.kaggle.com/
nltkdata/penn-tree-bank?select=ptb

respectively. We train the model for 70 epochs and
adopt a checkpoint average of 10. In testing, We
adopt the BLEU metric and the beam size of the
model inference is 5.

C Experimental Settings

In this section, we report experimental settings in
the paper, including analytic trial details and hyper-
parameters of different algorithms.

C.1 Analytic Trial Settings

We conduct a 3-layer Multi-Layer Perceptrons
(MLP, sizes are 784, 100, 100, 10) on the MNIST
dataset (LeCun et al., 1998). The test minimum
θ∗ is fine-tuned from the training minimum θ, and
δ = θ∗ − θ. We utilize linear interpolation to plot
αθ + (1 − α)θ∗ for different α, for visualizing
the training loss, test loss and the shifted training
loss. It can be concluded that the shifted training
loss is similar to the test loss near the local mini-
mum. To visualize the relation between ∥δ∥2 and
the distribution shift. We conduct 100 trials with
the same training set D and different mixed test
sets Dmix (mixed with (1− η) of the training data
from D and η of the test data from D∗). Here the
test minimum is fine-tuned from the training mini-
mum and δ = θ∗−θ. η can be utilized to measure
the strength of the distribution shift between D
and Dmix. η = 1%, 2%, 3%, · · · , 99%, 100%. Re-
sults show that there exists an approximately linear
relationship between ∥δ∥2 and distribution shift
strengths.

C.2 Main Result Settings

We try both L2 and L+∞. For ϵ, we first binary
search proper order of magnitude, for example
10−5 to 10−4, then we grid search ϵ, for exam-
ple, {1× 10−5, 2× 10−5, 5× 10−5, 8× 10−5, 1×
10−4, 2× 10−4, 5× 10−4, 8× 10−4}.

SAM on Transformer Models. The Trans-
former models need larger K and more detailed
hyper-parameter tuning since SAM learning on
the Transformer is unstable. Besides, Zhang et al.
(2021) propose that SAM learning in the early stage
may harm the learning. In our GA-SAM, ∥g∥2 is
large and we can omit the SAM learning in the
early stage. Therefore, we adopt K = 2 in multi-
step implementations, and following Zhang et al.
(2021), we adopt a start epoch of 30 for Trans-
former models.
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C.2.1 IMDB
On the IMDB dataset, we adopt K = 1. On SAM,
L+∞, ϵ = 2 × 10−5. On ASAM, L+∞, ϵ = 5 ×
10−3. On Layer-SAM, L2, ϵ = 1×10−5. On Multi-
step Defense, L+∞, ϵ = 2× 10−5. On GA-SAM,
L+∞, ϵ = 1× 10−4.

C.2.2 PTB-LM
On the PTB-LM dataset, we adopt K = 1. On
SAM, L2, ϵ = 5 × 10−3. On ASAM, L+∞, ϵ =
5× 10−4. On Layer-SAM, L2, ϵ = 1× 10−6. On
Multi-step Defense, L+∞, ϵ = 1× 10−3. On GA-
SAM, L+∞, ϵ = 8× 10−6.

C.2.3 En-Vi
On the En-Vi dataset, we adopt K = 2 in multi-
step implementations, and following Zhang et al.
(2021), we adopt a start epoch of 30 and similar
hyper-parameters. On SAM, L+∞, ϵ = 1.2×10−3.
On ASAM, L+∞, ϵ = 5× 10−4. On Layer-SAM,
L+∞, ϵ = 1 × 10−3. On Multi-step Defense,
L+∞, ϵ = 5× 10−4. On GA-SAM, L+∞, ϵ = 0.9.

C.2.4 De-En
On the De-En dataset, we adopt K = 2 in multi-
step implementations, and following Zhang et al.
(2021), we adopt a start epoch of 30 and similar
hyper-parameters. On SAM, L+∞, ϵ = 5× 10−4.
On ASAM, L+∞, ϵ = 2× 10−4. On Layer-SAM,
L+∞, ϵ = 3 × 10−3. On Multi-step Defense,
L+∞, ϵ = 5× 10−4. On GA-SAM, L+∞, ϵ = 0.8.

C.3 Ablation Study Settings
In this section, we report hyper-parameter settings
in the ablation study.

C.3.1 IMDB
On the IMDB dataset. On single-step implemen-
tation, L+∞, ϵ = 5× 10−5. On element-wise im-
plementation, L+∞, ϵ = 5 × 10−6. On model-
wise implementation, L+∞, ϵ = 5 × 10−5. For
T(i) = ∥w(i)∥2/∥g(i)∥2, L+∞, ϵ = 2 × 10−5.
For T(i) = 1/∥g(i)∥2, L+∞, ϵ = 5 × 10−5. For
T(i) = ∥w(i)∥2/√n(i), L+∞, ϵ = 5 × 10−3. For
T(i) = ∥w(i)∥2, L+∞, ϵ = 5× 10−6.

C.3.2 PTB-LM
On the PTB-LM dataset. On single-step imple-
mentation, L2, ϵ = 5 × 10−3. On element-wise
implementation, L+∞, ϵ = 2 × 10−6. On model-
wise implementation, L+∞, ϵ = 5 × 10−6. For
T(i) = ∥w(i)∥2/∥g(i)∥2, L2, ϵ = 2 × 10−5. For
T(i) = 1/∥g(i)∥2, L+∞, ϵ = 5 × 10−6. For

T(i) = ∥w(i)∥2/√n(i), L+∞, ϵ = 1 × 10−4. For
T(i) = ∥w(i)∥2, L+∞, ϵ = 1× 10−7.

C.4 Adversarial Training Settings
In this section, we report hyper-parameter settings
in the study of adversarial training.

C.4.1 En-Vi
On the En-Vi dataset, we adopt K = 1 and adopt a
start epoch of 30. We adopt the L+∞ constraint on
virtual attacks on word embeddings and grid search
ϵ in { 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2,
0.5 }. The best configuration is ϵ = 0.02.

C.4.2 De-En
On the De-En dataset, we adopt K = 3 and adopt a
start epoch of 30. We adopt the L+∞ constraint on
virtual attacks on word embeddings and grid search
ϵ in { 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2,
0.5 }. The best configuration is ϵ = 0.005.
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