
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 3863–3875
December 7-11, 2022 ©2022 Association for Computational Linguistics

Logical Neural Networks for Knowledge Base Completion with
Embeddings & Rules

Prithviraj Sen∗

Amazon
Breno W. S. R. de Carvalho

IBM Research
Ibrahim Abdelaziz

IBM Research

Pavan Kapanipathi
IBM Research

Salim Roukos
IBM Research

Alexander Gray
IBM Research

Abstract

Knowledge base completion (KBC) has bene-
fitted greatly by learning explainable rules in an
human-interpretable dialect such as first-order
logic. Rule-based KBC has so far, mainly fo-
cussed on learning one of two types of rules:
conjunction-of-disjunctions and disjunction-of-
conjunctions. We qualitatively show, via exam-
ples, that one of these has an advantage over
the other when it comes to achieving high qual-
ity KBC. To the best of our knowledge, we
are the first to propose learning both kinds of
rules within a common framework. To this end,
we propose to utilize logical neural networks
(LNN) (Riegel et al., 2020), a powerful neuro-
symbolic AI framework that can express both
kinds of rules and learn these end-to-end using
gradient-based optimization. Our in-depth ex-
periments show that our LNN-based approach
to learning rules for KBC leads to roughly 10%
relative improvements, if not more, over SotA
rule-based KBC methods. Moreover, by show-
ing how to combine our proposed methods
with knowledge graph embeddings we further
achieve additional 7.5% relative improvement.

1 Introduction

Knowledge bases (KB), e.g. Freebase (Bollacker
et al., 2008), are inherently incomplete thus tech-
niques have been proposed to identify facts missing
from a KB. Knowledge base completion (KBC)
can be broadly classified into knowledge graph em-
beddings (KGE) and rule-based knowledge base
completion (rule-based KBC). While KGE has
achieved highly accurate KBC by learning a low
dimensional hyperspace, rule-based KBC offers su-
perior explainability by learning rules in a human-
interpretable dialect such as first-order logic (FOL).

In this work, we take a closer look at rule-
based KBC. A knowledge base consists of facts
denoted by triples of the form ⟨h, r, t⟩ where

∗Work done while first author was at IBM Research.

∀P,N∃L : citizenOf(P,N)←bornIn(P,C)∧ partOf(C,N)

Al Pacino New York City U. S.
bornIn partOf

Figure 1: An FOL rule that infers a missing fact.

tail t and head h denote entities while r de-
notes a relation. Figure 1 shows a KB contain-
ing two facts ⟨Al Pacino, bornIn,New York City⟩,
⟨New York City, partOf,U. S.⟩ denoted by (solid)
directed edges. The goal of rule-based KBC is to
infer missing facts using FOL rules such as the
one shown on top of Figure 1 that combines a per-
son P ’s birth city C and the country in which C is
present in to ascertain P ’s citizenship. By substitut-
ing P/Al Pacino, C/New York City, and N/U. S.
into the rule we can infer that Al Pacino is a U. S.
citizen which is a fact missing from the KB (de-
noted by a dashed edge in Figure 1).

Most approaches that learn FOL rules for KBC
fall into one of two categories: edge-based (EB)
and path-based (PB). We compare their relative
strengths via an example. NeuralLP (Yang et al.,
2017) is perhaps the oldest example of an EB
KBC model. Intuitively, EB approaches learn
rules by breaking paths connecting the tail and
head of an existing fact into their constituent edges.
For instance, to predict missing facts for R0 in
Gtrain (Figure 2 (a)), EB learns that in the two
paths connecting head and tail of ⟨v1, R0, u1⟩, viz.

u1
R1−→ w1

R3−→ v1 and u1
R2−→ w2

R4−→ v1, the
first edge is annotated with either relation R1 or
R2, and the second edge is annotated with either
R3 or R4. In FOL syntax, this is expressed as:

∀U, V ∃W :R0(U, V)←{R1(U,W) ∨R2(U,W)}
∧ {R3(W,V) ∨R4(W,V)}

This kind of rule is called conjunction-of-
disjunctions since the conjunction operator (∧)

3863

u1

w1

w2

v1

R1

R2

R3

R4

R0 u2

w3

v2

R2 R4

R0

u3

w4

v3

R1 R4

R0

EB(u2, v2) = True
PB(u2, v2) = True
EB(u3, v3) = True
PB(u3, v3) = False

(a) (b) (c)

Figure 2: Edge-based (EB) vs. path-based (PB) KBC:
(a) Gtrain, (b) Gtest, and (c) Evaluation of rules on Gtest.

with and semantics is outside and the disjunction
operators (∨) with or semantics are inside. In con-
trast to EB, recently rule-based KBC has opted for
a path-based approach (PB) where paths are kept
intact. Given the paths connecting u1 and v1, PB
learns that in a missing R0 fact the tail and head
must either be connected by a path with an R1 edge
followed by an R3 edge, or an R2 edge followed
by an R4 edge which is expressed in FOL as:

∀U, V ∃W :R0(U, V)←{R1(U,W) ∧R3(W,V)}
∨ {R2(U,W) ∧R4(W,V)}

In contrast to the previous rule, this kind of
rule is called disjunction-of-conjunctions since the
disjunction operator (∨) is outside while the con-
junction operators (∧) are inside. Both EB and
PB’s learned rules correctly predict the missing
fact ⟨u2, R0, v2⟩ (Figure 2 (b)) which is connected

via u2
R2−→ w3

R4−→ v2 (Figure 2 (c)). However,
EB’s rule also claims ⟨u3, R0, v3⟩ (Figure 2 (b)),

connected by u3
R1−→ w4

R4−→ v3, is a missing
fact while PB’s rule predicts False in this case cor-
rectly indicating that it is a non-fact (indicated by a
dashed edge). EB’s claim is especially disconcert-
ing given that u3 and v3’s connecting path contains
an R1 edge followed by an R4 edge which is a
relation sequence that was never observed in Gtrain!

Previous rule-based KBC approaches have more
often than not restricted themselves to learning only
one kind of rule, e.g., Yang et al. (2017) learns
conjunction-of-disjunctions while MINERVA (Das
et al., 2018) and RNNLogic (Qu et al., 2021) learn
disjunction-of-conjunctions. In this paper, we pro-
pose to utilize Logical Neural Networks (LNN)
(Riegel et al., 2020), a recently proposed frame-
work for Neuro-symbolic AI (NeSy) that extends
Boolean logic to the continuous domain while
harboring close ties to FOL semantics thus en-
abling learning fully explainable rules for KBC
via gradient-based optimization. More impor-
tantly, LNN’s representation power surpasses that

of simpler NeSy variants used in EB rule-based
KBC approaches such as NeuralLP (Yang et al.,
2017) and DRUM (Sadeghian et al., 2019) allow-
ing learning of both conjunction-of-disjunctions
and disjunction-of-conjunctions. We propose an
enhanced LNN framework that improves its appli-
cability to KBC and propose LNN extensions of
EB and PB rule-based KBC within the same NeSy
framework that can then be compared on KBC
benchmarks fairly to determine whether the kind of
rule has any effect on KBC quality (as implied by
our example). Lastly, since LNNs extend logic to
the continuous-valued domain, it is relatively sim-
ple to combine our proposals with KGE to achieve
further improvements in KBC quality.

• We propose rule-based KBC with logical neural
networks to learn explainable rules end-to-end.

• We propose new LNN extensions, EB-LNN and
PB-LNN that learn conjunction-of-disjunctions
and disjunction-of-conjunctions, respectively.

• We also show how to combine our LNN exten-
sions with KGE to further improve KBC quality.

• Comprehensive experiments against 6 baselines
on 4 benchmarks show that:

• EB-LNN leads to ∼ 10% relative improve-
ment over EB-KBC baselines on average.
• PB-LNN leads to > 10% relative improve-

ment over PB-KBC baselines on average.
• PB-LNN leads to ∼ 40% relative improve-

ment over EB-LNN on avg., illustrating the
advantage of disjunction-of-conjunctions.
• By combining with KGE CP-N3 (Lacroix

et al., 2018), PB-LNN achieves further rel-
ative improvement of 7.5% on avg.

In the next section, we introduce notation and
define the KBC task. Section 3 proposes our LNN
extensions highlighting its advantages over other
NeSy frameworks. In Section 4, we apply LNN to
KBC. In Section 5, we present experiments compar-
ing our models against rule-based KBC baselines
before concluding with Section 6.

2 Notation and Problem Formulation

2.1 Notation
Let G = ⟨V,R, E⟩ denote a knowledge graph
(KG) comprising entities V , relationsR and edges
E ⊆ V × R × V . Each edge denotes a fact and
is given by a triple ⟨h, r, t⟩ where h, t ∈ V and
r ∈ R. Most KGs are incomplete, in other words,
there exist facts ⟨h, r, t⟩ /∈ E but hold true in the

3864

real world. In such a case, we would like to predict
facts missing from the KG before using it for down-
stream applications. Two forms of knowledge base
completion (KBC) are popular: tail entity predic-
tion ⟨h, r, ?⟩, and relation prediction ⟨h, ?, t⟩where
‘?’ indicates what needs to be predicted, with the
former being relatively more natural. For instance,
the task in Figure 1 ⟨Al Pacino, citizenOf, ?⟩ can
be equivalently stated in natural language as "What
is Al Pachino’s citizenship?". Following previous
work (Yang et al., 2017; Sadeghian et al., 2019;
Das et al., 2018; Lin et al., 2018; Qu et al., 2021),
we focus on predicting tails.

2.2 Problem Formulation

Given scoring function f , one way to answer query
⟨h, r, ?⟩ is to return the top-ranked entity from V:

argmaxt∈Vf(h, r, t)

In this work, we focus on learning rules in first-
order logic to score triples with, which has the ad-
ditional advantage of of being human-interpretable.
First-order logic consists of the three propositional
operators ∧ (conjunction), ∨ (disjunction) and ¬
(negation), besides ∃ (existential) and ∀ (for every)
operators. In particular, rule-based KBC has a rich
history of utilizing chain rules (also called open
path rules) of the form:

∀X0, Xm ∃X1, . . . Xm−1 :

r0(X0, Xm)← r1(X0, X1) ∧ . . . rm(Xm−1, Xm)

where ri ∈ R, ∀i = 0, . . .m, and X0, . . . Xm de-
note logical constants that can take values from V .
Essentially, the above rule states that r0(X0, Xm)
is a missing fact if ri(Xi−1, Xi), or equivalently
⟨Xi−1, ri, Xi⟩, holds true ∀i = 1, . . .m, which in
turn holds true if the path X0

r1−→ X1 . . .
ri−→

. . .
rm−→ Xm exists in the KG. Given such a rule, it

is straightforward to devise a scoring function that
can be used for tail prediction, i.e., f(h, r0, t) =

{
1 if h r1−→ . . .

ri−→ . . .
rm−→ t exists

0 otherwise

However, since logical operators are not differen-
tiable, learning such a rule is fraught with chal-
lenges . While inductive logic programming has
for long, attempted to learn rules from data, they
have trouble handling noisy nature of real-world
data and may not scale to real-world problem sizes.

To overcome these issues, we propose to utilize log-
ical neural networks (Riegel et al., 2020), a frame-
work that extends Boolean logic to the continuous
domain and is thus differentiable, which in turn, im-
plies that it can utilize gradient-based optimization
to learn rules from real-world data.

3 Enhanced Logical Neural Networks

While previous work has utilized neuro-symbolic
AI to learn rules for KBC, these have relied on
simplistic, parameter-free alternatives to logical op-
erators and harbor tenuous connections to Boolean
logic’s semantics. LNNs improve upon both as-
pects. Let us take the specific example of logi-
cal conjunction ∧, a core operator in propositional
logic. Since ∧ is not differentiable and thus cannot
be used to learn rules via gradient-based optimiza-
tion, NeuralLP (Yang et al., 2017) replaces it with
product t-norm:

Prod(x, y) = xy, ∀x, y ∈ [0, 1]

Prod(x, y) is depicted in Figure 3 (left) whose out-
put smoothly interpolates from 0 to 1 as the inputs
x and y increase. This is distinct from ∧ whose
truth table is defined to return true (1) only when
both its inputs are true (1), and false (0) other-
wise. In contrast, LNN conjunction is defined as:

⊗w,β.α(x) = relu1(1, β −w⊤(1− x))

subject to: β1− αw ≤ (1− α)1

β − (1− α)1⊤w ≥ α

w ≥ 0 (1)

where x ∈ [0, 1]n denotes n-ary input
vector, relu1(·) (Krizhevsky, 2010) denotes
max(0,min(1, ·)) (clamped version of relu (Nair
and Hinton, 2010)), w and β denote parameters,
0 (1) denote a vector of 0s (1s), and α denotes
a hyperparameter. A major advantage of ⊗ over
t-norms is the inclusion of parameters w, β that
can be learned thus improving fit to data. The
other advantage of⊗ is its close connections to ∧’s
semantics which is achieved via constraints. In-
tuitively, the constraints in Equation 1 ensure that
⊗(x) ∈ [0, 1− α] if any of its inputs are ≤ 1− α
(guaranteed by the first constraint in Equation 1),
and ⊗(x) ∈ [α, 1] if all of its inputs are ≥ α (guar-
anteed by the second constraint in Equation 1). The
first and second properties are direct translations
into continuous space of ∧ returning 0 if any of its
inputs are 0 and 1 if all inputs are 1. Figure 3 (right)

3865

 0
 0.4 0.7 1 0

 0.4
 0.7

 1

 0

 0.4
 0.7

 1

x y

 0

 0.4
 0.7
 1

 0
 0.4 0.7 1 0

 0.4
 0.7

 1

 0

 0.4
 0.7

 1

x y

 0

 0.4
 0.7
 1

Figure 3: Differentiable conjunctions: product t-norm
(left), and ⊗ with α = 0.7 (right)

0 1− α

false

α

transition

1

true

Figure 4: Interpreting ⊗ (α ≥ 1
2).

shows a binary ⊗ learned from ∧’s truth table with
α = 0.7 whose output remains ≤ 1 − 0.7 = 0.3
(in purple) before transitioning to ≥ 0.7 (in red) as
inputs increase.

Intuitively, ⊗ divides [0, 1] into three regions:
[0, 1− α] representing false, (1− α, α) denoting
a transitionary state, and [α, 1] representing true
(see Figure 4). From the interpretability perspec-
tive, we would like the transitionary state to be as
small as possible since it is unclear whether ⊗ is
true or false when its output is in this range. One
way to affect the size of the transitionary state is
by adjusting α which acts as a tunable knob. A
higher (lower) α corresponds to a larger (smaller)
transitionary state with α = 1/2 representing the
ideal case where the size reduces to 0 and every
output of ⊗ can be interpreted either as true or
false. Unfortunately, the following proposition
shows that this may not be possible for KBC:

Proposition 3.1. ⊗w,β,α is infeasible if α < n
n+1

where n denotes the number of inputs.

A system of equations is said to be feasible if there
exists at least one solution for it, otherwise it is
infeasible. The proof of Proposition 3.1 appears
in Appendix A and involves manipulating the con-
straints in Equation 1. It implies that unless we set
α above a certain lower bound, we cannot learn
w, β since no such parameter setting exists. On the
other hand, even if we set α ≥ n/(n+1) to satisfy
the lower bound, then the size of the transition state
cannot be reduced below (1− n

n+1 ,
n

n+1). This has
stark implications for KBC since some of the mod-
els we introduce in the next Section entail feeding
all relations appearing in the KG to an LNN oper-
ator, such as ⊗, to learn which relations from R
are useful for predicting missing facts. In this case

x1 x2 . . . xn

ϕ1 ϕ2 . . . ϕn

⊗

x1 x2 . . . xn

ϕ1 ϕ2 . . . ϕn

⊕

Figure 5: Composing with ϕ: Leads to more inter-
pretable learned operators ⊗ (left) and ⊕ (right) if
∃i = 1, . . . n : |xi| > 1.

however, as |R| increases1 so will the arity of the
LNN operator which in turn means n/(n+1)→ 1
(where n = |R|) thus resulting in a transition state
covering the whole range (0, 1) and the learned
LNN operator being rendered uninterpretable since
it would (almost) never return true or false.

Our main enhancement to the LNN framework
is to enable it to handle high-arity inputs. To this
end, we propose to exploit the fact that LNNs being
neural networks, allows composition of different
operators. Instead of burdening operators such as⊗
to learn from high arity inputs, we use the following
operator:

ϕw(x) = w⊤x subject to w ≥ 0,w⊤1 = 1

where x denotes (a vector of) inputs and w de-
notes learnable parameters. Since the constraints
involved in ϕ are much simpler, it can handle any
number of inputs. Instead of feeding a high-arity x
directly to ⊗, we can first feed it to ϕ and then feed
its output to ⊗ which being a single number allows
us to set α so that the ⊗ can have a much smaller
transition state. Figure 5 pictorially depicts the
composition where ⊕ denotes LNN’s disjunction
operator which is an extension of classical Boolean
logic’s disjunction operator ∨ to continuous space:

⊕w,β,α(x) = 1−⊗w,β,α(1− x)

where the same constraints from Equation 1 apply
since ⊕ is defined in terms of ⊗.

4 KBC with Logical Neural Networks

In this section, we introduce scoring functions that
can perform tail prediction using LNN operators
developed so far. All our scoring functions rely
on path counts. Let p = h

r1−→ . . .
ri−→ . . .

rm−→ t
connecting h, t ∈ V . We refer to the sequence of re-
lations r1, . . . rm as its relation path. Furthermore,
given an m-length relation path r = r1, . . . rm,

1e.g., for the FB15K-237 benchmark |R| = 237.

3866

Pr(u, v) denotes the set of all paths connecting h
to t in G via relation path r.

4.1 Edge-based Logical Neural Networks

Our first scoring function is a translation of the
conjunction-of-disjunction approach from Sec-
tion 1 where we replace the logical operators
with LNN operators. Score for triple ⟨h, r, t⟩,
EB-LNN(h, r, t) is defined as:

∑

r=
r1,...,rm

∑

p∈
Pr(h,t)

⊗w,β,α (ϕw1(er1), . . . ϕwm(erm))

where er ∈ {0, 1}|R| is a one-hot encoding whose
rth entry is 1 with 0s everywhere else. The above
scoring function exhaustively enumerates all rela-
tion paths r upto length m and assigns ⟨h, r, t⟩ a
score by counting the number of paths in Pr(h, t)
Essentially, we have replaced the logical conjunc-
tion with ⊗ and disjunctions with m ϕ operators
into the conjunction-of-disjunctions rule. Each ϕ
operator has its own set of weights, and combined
with the ⊗ operator’s weights and bias, this means
we have a total of 1+m+m|R| parameters that can
all be learned via gradient-based optimization. By
learning a relation-specific scoring function such
as the above, we can learn to predict missing facts
for relation r ∈ R.

4.2 Path-based Logical Neural Networks

Our second scoring function maintains integrity of
paths and considers the disjunction-of-conjunctions
rule introduced in Section 1. However, here we
make a simplification. Note that, unlike EB-LNN,
we do not need to learn the conjunctions in the
disjunction-of-conjunctions since these are already
given to us by the KG G. Each relation path r is a
conjunction and the count |Pr(h, t)| is essentially
all the information we need to compute ⟨h, r, t⟩’s
score. However, since each relation path is an input
to the outer disjunction, using ⊕ may compromise
its interpretability as there are |R|m of these where
m denotes the maximum path length. Instead, we
express PB-LNN(h, r, t) using a ϕ operator:

∑

r=r1,...,rm

|Pr(h, t)|ϕw(er)

where er ∈ {0, 1}|R|m is a one-hot encoding with
1 in its rth position and 0 everywhere else. The
total number of parameters is given by |R|m which

can be learned end-to-end using gradient-based op-
timization. By learning a relation-specific scoring
function such as the above, we can learn to predict
missing facts for relation r ∈ R.

4.3 Combining with Graph Embeddings

One of the drawbacks of EB or PB-LNN is that
they treat all paths in Pr(h, t) equally. This is
where utilizing KGE, which embed V andR into
a low-dimensional hyperspace, may help. KGEs
score more prevalent relation paths higher than
less frequent ones. Since LNNs already extend
Boolean logic to continuous-valued domain, it is
particularly simple for us to incorportate KGE. Our
goal is to bias the learning process so that relation
paths with larger KGE scores are assigned larger
weights. Let σ(p) denote the KGE score for path
p, PB − LNN(h, r, t) is then given by:

∑

r=r1,...rm

ϕw(er)
∑

p∈Pr(u,v)

σ(p)

EB-LNN can also be modified similarly. Note that,
there are at least 2 kinds of KGEs available in the
literature: 1) that rely on a similarity measure of the
triple ⟨h, r, t⟩, e.g., CP-N3 (Lacroix et al., 2018),
and 2) distance measure used to contrast t’s embed-
ding with some function of h and r’s embeddings,
e.g., RotatE (Sun et al., 2019). For brevity, we only
describe the use of similarity based KGE here. Ap-
pendix D describes utilizing distance-based KGE.

4.4 Training Logical Neural Networks

While LNN operators are amenable to gradient-
based learning, we still need to address how to
achieve constrained optimization to learn LNN pa-
rameters. Fortunately, there exist approaches that
can convert any system of linear constraints (in-
cluding equalities and inequalities) into a sequence
of differentiable operations such that we can sam-
ple parameters directly from the feasible set (Frerix
et al., 2020) which is what we use to train all our
LNNs. We also refer the interested reader to Sen
et al. (2022) and Riegel et al. (2020) which describe
additional LNN training algorithms.

Among various possible training algorithms,
based on extensive experimentation, we have found
the following scheme to perform reliably. In each
iteration, we sample uniformly at random a mini-
batch of positive triples B+ from ⟨h, r, t⟩ ∈ E
and corrupted, negative triples B− from ⟨h, r, t⟩ /∈
E , ∀h, t ∈ V , such that |B+| = |B−| to minimize

3867

Train Valid Test |R| |V|
Kinship 8544 1068 1074 50 104
Kinship (Qu et al.) 3206 2137 5343 50 104
UMLS 5216 652 661 92 135
UMLS (Qu et al.) 1959 1306 3264 92 135
WN18RR 86835 3034 3134 11 40943
FB15K-237 272155 17535 20466 237 14541

Table 1: Dataset Split Statistics. We also experiment
with Qu et al. (2021)’s splits for Kinship and UMLS.

the following margin ranking loss:
∑

⟨h,r,t⟩∈B+

∑

⟨h′,r,t′⟩∈B−
max{0, s(h′, t′)−s(h, t)+γ}

where γ denotes the margin hyperparameter and
s() denotes one of EB-LNN or PB-LNN.

5 Experimental Results

In this section, we compare the proposed methods
with other rule-based KBC approaches. Recall
that, in Section 2.2 we pose KBC as a ranking
task. Thus, we adopt ranking metrics to compare
the quality of the learned rules (Section 5.1). To
illustrate interpretability, we also list rule examples
in Section 5.2. For brevity, we next describe the
salient points of our experimental setup next, while
Appendix C provides a full details.
Datasets, Metrics and Baselines: Popular KBC
benchmarks include Kinship & UMLS (Kok and
Domingos, 2007), WN18RR (Dettmers et al.,
2018), and FB15K-237 (Toutanova and Chen,
2015). In addition to their standard splits, Qu
et al. (2021) define their own splits for Kinship
and UMLS which we also report results on. Table 1
provides dataset statistics. To evaluate the efficacy
of learned rules, we compute filtered ranks (Bor-
des et al., 2013) and report mean reciprocal rank
(MRR) and Hits@K (H@K) for K = {3, 10}. To
address the case where distinct tails are ranked the
same, which may mislead the evaluation (Sun et al.,
2020), we average across assignable ranks:

g(t) =
1

m+ 1

n+m∑

r=n

g̃(r)

where tail t is ranked at rank n along with m other
tails, g̃(r) is 1/r if metric is MRR and δ(r ≤ K) if
metric is Hits@K (δ denotes Dirac delta function).
Baselines: We include a variety of methods:

• EB baselines include NeuralLP (Yang et al.,
2017) and DRUM (Sadeghian et al., 2019). Both

of these rely on recurrent neural networks (RNN)
and variations thereof, to learn conjunction-of-
disjunctions.

• PB baselines include RNNLogic (rules only) (Qu
et al., 2021), MINERVA (Das et al., 2018) and
MultiHopKG (Lin et al., 2018) all of which learn
disjunction-of-conjunctions. While RNNLogic
relies on RNNs, the latter two utilize reinforce-
ment learning.

• Conditional theorem provers (CTP) (Minervini
et al., 2020), a scalable version of neural theorem
provers (Rocktäschel and Riedel, 2017).

• KGE combined with rule-based KBC which in-
cludes RNNLogic with RotatE (Sun et al., 2019)
denoted RNNLogic (w/ embd.).

Please see Appendix B for more details underly-
ing all of these approaches for KBC, including an
extended discussion on other closely related works.
Implementation: Following previous work (Yang
et al., 2017), we introduce inverse triples, i.e., for
each ⟨h, r, t⟩ ∈ E we add a new triple ⟨t, r−1, h⟩
where r−1 denotes a new, inverse relation. We
use Adagrad (Duchi et al., 2011) to train our
LNNs and tune hyperparameters on the valida-
tion set with step size ∈ {0.1, 1.0}, margin γ ∈
{0.1, 0.5, 1.0, 2.0}, α ∈ [5/6, 1) and batch size 8.
We learn rules up to length 4 for FB15K-237, 5 for
WN18RR, and 3 for Kinship and UMLS. We com-
bine our rule-learning approach with pre-trained
CP-N3 embeddings (Lacroix et al., 2018) of dimen-
sion 4K for FB15K-237, 3K for WN18RR, and
8K for Kinship and UMLS.

5.1 Quantitative Results and Discussion
Tables 2, 3 and 5 list results for all methods. We
first compare rule-based KBC methods (RULES),
followed by combinations with KGE (W/ EMBD.).
EB-LNN vs. EB baselines: On 3 out of 4 bench-
marks, EB-LNN outperforms NeuralLP with re-
spect to MRR (Table 2). A possible reason for this
is due to NeuralLP’s reliance on simpler operators
(e.g., product t-norm) whereas EB-LNN utilizes
LNN’s parameterized operators that achieve an im-
proved fit and have similar semantics as Boolean
logic’s (Section 3). Also note that, NeuralLP re-
lies on a recurrent neural network (RNN) to learn
its rules whereas EB-LNN uses a handful of LNN
operators, one ⊗ and few ϕ, resulting in a much
simpler architecture. EB-LNN also leads to better
MRR in 3 out of 4 datasets compared to DRUM,
which replaces the RNN with a bidirectional LSTM

3868

Kinship UMLS WN18RR FB15K-237
MRR H@10 H@3 MRR H@10 H@3 MRR H@10 H@3 MRR H@10 H@3

E
M

B
D

.

CP-N3 88.9 98.7 94.8 93.3 99.7 98.9 47.0∗ 54.0∗ − 36.0∗ 54.0∗ −
Complex-N3 89.2 98.6 94.7 95.9 99.7 98.9 48.0∗ 57.0∗ − 37.0∗ 56.0∗ −
RotatE 75.5 97.3 86.5 86.1 99.5 97.0 47.6∗ 57.1∗ 49.2∗ 33.8∗ 53.3∗ 37.5∗

Complex 83.7 98.4 91.6 94.5 99.7 98.0 44.0 49.6 44.9 31.8 49.1 34.7

R
U

L
E

S

NeuralLP 48.8 89.1 63.0 55.3 93.0 75.4 33.7 50.2 43.3 25.8 48.5 31.4
DRUM 40.0 86.1 48.2 61.8 97.9 91.2 34.8 52.1 44.6 25.8 49.1 31.5
CTP 70.3 93.9 79.7 80.1 97.0 91.0 − − − − − −
RNNLogic 64.5 91.1 72.9 71.0 91.1 82.1 45.5∗ 53.1∗ 47.5∗ 28.8∗ 44.5∗ 31.5∗

EB-LNN (Ours) 39.1 68.7 43.6 78.7 95.1 88.9 36.6 49.2 39.2 28.0 43.5 30.4
PB-LNN (Ours) 81.9 98.4 89.3 90.0 99.4 98.3 47.3 55.5 49.7 30.7 47.0 34.2

W
/E

M
B

D
. RNNLogic − − − − − − 48.3∗ 55.8∗ 49.7∗ 34.4∗ 53.0∗ 38.0∗w/ RotatE

PB-LNN (Ours)
91.1 99.2 96.5 94.5 100 99.2 48.5 56.1 50.2 35.1 53.0 39.1w/ CP-N3

Table 2: Results of LNN-based methods in comparison to other state-of-the-art approaches on standard splits. Bold
font denotes best within each category of KBC approaches. ∗ denotes results copied from original papers. CTP did
not scale to larger datasets. Lacroix et al. (2018) do not report H@3 for ComplEx-N3 and CP-N3 on WN18RR and
FB15K-237. Qu et al. (2021) do not report RNNLogic’s results on Kinship and UMLS with RotatE.

WN18RR FB15K-237
MRR H@10 H@3 MRR H@10 H@3

MINERVA∗ 44.8 51.3 45.6 29.3 45.6 32.9
MultiHopKG∗ 47.2 54.2 − 40.7 56.4 −

RNNLogic∗ 47.8 55.3 50.3 37.7 54.9 41.2
RNNLogic

50.6 59.2 52.3 44.3 64.0 48.9w/ RotatE∗

PB-LNN (Ours) 51.6 58.4 53.5 40.0 57.4 44.4
PB-LNN w/

51.9 59.0 53.9 44.8 63.6 49.5CP-N3 (Ours)

Table 3: Results on direct triples (excluding inverses).

(Hochreiter and Schmidhuber, 1997). In relative
terms, EB-LNN’s improvement over NeuralLP’s
(DRUM’s) MRR on Kinship, UMLS, WN18RR
and FB15K-237 are −19% (−2%), 42% (27%),
8% (5%) and 8% (8%) resulting in 10% (10%) av-
erage relative improvement, respectively.

PB-LNN vs. PB baselines: Table 2 compares
PB-LNN with RNNLogic (RULES), while Table 3
reports their results only on direct triples including
MINERVA’s (Das et al., 2018) and MultiHopKG’s
(Lin et al., 2018) as well. We exclude inverse triples
in Table 3 since Das et al. and Lin et al. also ex-
clude these from their evaluation. PB-LNN out-
performs all PB baselines in most cases. This is
clear indication that the LNN framework, along
with our enhancements, is up to the task of learning
rules for KBC. These results are even more impres-
sive considering that RNNLogic, MINERVA and
MultiHopKG rely on fairly sophisticated architec-
tures such as RNNs and neural reinforcement learn-

ing with reward shaping. Across all datasets, PB-
LNN leads to 11%, 25% and 4% average relative
improvements in MRR over RNNLogic’s, MIN-
ERVA’s and MultiHopKG’s, respectively.

PB vs. EB rule-based KBC: This is one of the
main questions we aim to answer. We note that, PB-
LNN outperforms EB-LNN (RULES) in all cases
(Table 2). A possible reason is the confusion EB
methods suffer from as illustrated in the example
from Section 1. Having said that, the margin of
difference separating PB-LNN and EB-LNN varies
with the dataset. For instance, on FB15K-237 EB-
LNN’s MRR comes close to PB-LNN’s. PB-LNN
leads to 40% average relative improvement in MRR
over EB-LNN’s across datasets, and is the best
performing among all rule-based KBC methods.
Only on FB15K-237, PB-LNN is outperformed
by NeuralLP and DRUM with respect to Hits@10.
However note that, since Hits@10 is a "lenient"
metric (one only needs to rank the correct tail entity
within the top 10) this is unlikely to matter in a
practical setting where PB-LNN’s superior MRR
and Hits@3 should hold it in good stead.

KGE with Rule-based KBC: We combine PB-
LNN (our best LNN-based approach) with CP-N3
embeddings (Lacroix et al., 2018) (Table 2 EMBD.
lists results of various KGEs for reference). Across
datasets, PB-LNN w/ CP-N3 leads to average rela-
tive improvements of 7% over PB-LNN’s (RULES)
MRR. In comparison to RNNLogic w/ RotatE, PB-
LNN w/ CP-N3 shows small but consistent im-
provements in both Table 2 (W/ EMBD.) and in

3869

FB15K-237

1) person_language(P,L)← nationality(P,N) ∧ spoken_in(L,N)
2) film_language(F,L)← film_country(F,C) ∧ spoken_in(L,C)
3) tv_program_language(P,L)← country_of_tv_program(P,N) ∧ official_language(N,L)
4) burial_place(P,L)← nationality(P,N) ∧ located_in(L,N)
5) country_of_tv_program(P,N)← tv_program_actor(P,A) ∧ born_in(A,L) ∧ located_in(L,N)
6) film_release_region(F,R)← film_crew(F, P) ∧ marriage_location(P,L) ∧ located_in(L,R)
7) marriage_location(P,L)← celebrity_friends(P, F) ∧ marriage_location(F,L′)

∧ location_adjoins(L′, L)

WN18RR

8) domain_topic(X,Y)← hypernym(X,U) ∧ hypernym(U, V) ∧ hypernym(W,V) ∧ hypernym(Z,W)
∧ domain_topic(Z, Y)

9) derivation(X,Y)← hypernym(X,U) ∧ hypernym(V,U) ∧ derivation(W,V) ∧ hypernym(W,Z)
∧ hypernym(Y,Z)

10) hypernym(X,Y)← member_meronym(U,X) ∧ hypernym(U, V) ∧ hypernym(W,V)
∧ member_meronym(W,Z) ∧ hypernym(Z, Y)

Table 4: Examples of PB-LNN’s learned rules.

Table 3 (results on direct triples only). Qu et al.
(2021) do not evaluate RNNLogic on Kinship and
UMLS’s standard splits, so we cannot report these
in Table 2. Table 5 reports results on Qu et al.’s Kin-
ship and UMLS splits which contain significantly
fewer triples in the training set (Table 1). PB-LNN
w/ CP-N3 shows significant improvements over
RNNLogic w/ RotatE illustrating that PB-LNN can
learn effective rules even if training data is scarce.

Besides the above experiments, we also compare
against conditional theorem provers (CTP) (Min-
ervini et al., 2020) which falls outside the EB vs.
PB nomenclature adopted in this work, relying on
theorem proving and soft unification instead. On
the smaller datasets Kinship and UMLS, PB-LNN
outperforms CTP by a wide margin (Table 2) and
despite being an improvement over neural theorem
provers (Rocktäschel and Riedel, 2017) in terms
of scalability, we were unable to scale CTP to the
larger WN18RR and FB15K-237 benchmarks.

5.2 Qualitative Analysis and Discusssion
Learned rules can be extracted from EB-LNN by
combining the various ϕ operators using Algorithm
1 proposed in Yang et al. (2017). Extracting learned
rules from PB-LNN is even simpler and can be
achieved by sorting the relation paths in descend-
ing order of wr. Table 4 presents some of the top
ranked rules learned by PB-LNN.
Rules for FB15K-237: Rule 1 in Table 4 describes
a learned rule that infers the language a person
speaks by exploiting knowledge of the language
spoken in her/his country of nationality. Shown

in terms of relation paths: P (person)
nationality−→

N(nation)
spoken_in←− L(language). Similarly, Rule 2

(3) uses the country of a film (TV program) to ascer-
tain its language. Rules 5, 6 and 7 are longer rules

with 3 relations each in their body. Rule 5 infers
a TV program’s country by first exploiting knowl-
edge of one of its actor’s birth place and then deter-
mining which country the birth place belongs to. In
terms of relation path: P (program)

tv_program_actor−→
A(actor) born_in−→ L(birth place) located_in−→ N(nation).
Rule 6 uses a film crew member’s marriage loca-
tion instead to ascertain the same. Rule 7 infers
the marriage location of a celebrity by exploiting
knowledge of where their friend got married.
Recursive Rules for WN18RR: WN18RR, being
a hierarchical KG, is quite sparse which calls for
learning longer rules. Notably, rules shown in Ta-
ble 4 include the same relation on both sides of
← denoting recursion. Learning recursive rules is
considered a relatively difficult task with only a
handful of previous works having tackled it, e.g.,
(Evans and Grefenstette, 2018), so it is interesting
to find that these are useful for predicting missing
facts from sparse KGs such as WN18RR.

5.3 Running Time
Table 6 reports training times for WN18RR and
FB15K-237. PB-LNN is more efficient than Neu-
ralLP and slower than RNNLogic. The bottleneck,
shared by all methods in Table 6, is due to exhaus-
tive enumeration of all possible paths.

6 Conclusion

Our goal is to lend structure to the area of KBC.
An ideal approach 1) should be interpretable, 2)
can accurately identify missing facts, and 3) can be
further improved using successful KBC techniques
(e.g., KGE). We categorized previous works into
edge-based or path-based rule-based KBC, and il-
lustrating via carefully constructed examples how
one of these may lead to rules better suited for KBC.

3870

Kinship UMLS
MRR H@10 H@3 MRR H@10 H@3

CP-N3 60.2 92.2 70.0 76.6 95.0 85.6
ComplEx-N3 60.5∗ 92.1∗ 71.0∗ 79.1∗ 95.7∗ 87.3∗

RotatE 65.1∗ 93.2∗ 75.5∗ 74.4∗ 93.9∗ 82.2∗

Complex 54.4 89.0 63.8 74.0 92.5 81.1

RNNLogic 63.9 92.4 73.1 74.5 92.4 83.3
PB-LNN (Ours) 67.4 95.0 77.0 81.5 96.6 91.8

RNNLogic
72.2∗ 94.9∗ 81.4∗ 84.2∗ 96.5∗ 89.1∗w/ RotatE

PB-LNN w/
72.2 96.9 81.6 87.6 98.0 94.7CP-N3 (Ours)

Table 5: Results on RNNLogic’s splits for Kinship and
UMLS. ∗ denotes results copied from Qu et al. (2021).

While previous rule-based KBC has utilized neuro-
symbolic AI (NeSy), we proposed the use of logi-
cal neural networks, a particularly powerful NeSy
framework, that is not only differentiable but also
harbors strong connections to Boolean logic’s se-
mantics resulting in improved interpretability. We
further enhanced the LNN framework to improve
its handling of high-arity inputs that is useful for
learning KBC rules. Our exhaustive experiments
confirm that 1) EB-LNN and PB-LNN outperform
their respective counterparts available in the litera-
ture, 2) PB-LNN is the more accurate of the two,
3) Combining with KGE leads to further improve-
ments in KBC quality, and 4) Learned rules can be
easily interpreted.

Riegel et al. (2020)’s original proposal of LNNs
mostly evaluated the framework on synthetic tasks
with limited size datasets. Besides our work in
this paper, Jiang et al. (2021) and Chaudhury et al.
(2021) have recently applied LNNs to learning
rules for short-text entity linking and helping an
agent solve text-world games (Adolphs and Hof-
mann, 2020). Since knowledge bases may benefit
diverse downstream applications including but not
limited to question-answering (Kapanipathi et al.,
2021), semantic search (Berant et al., 2013), and di-
alogue generation (He et al., 2017), we expect that
in future more efforts will be devoted to adapting
and utilizing expressive NeSy frameworks, such
as LNNs, to solve real-world applications. Other
avenues of future work include learning KBC rules
more efficiently and combining EB and PB into
one unified, approach for improved KBC.

7 Limitations

This is an instance of an NLP application with close
ties to Machine Learning, in that, we are less depen-

PB-LNN DRUM NeuralLP RNNLogic

WN18RR 2554 2406 3258 2280
FB15K-237 33552 55398 36732 24660

Table 6: Per-epoch training time (in seconds).

dent on the language employed in the Knowledge
Graph (KG). But we acknowledge that all of the
benchmark KGs employed in our experiments are
in English. Another concern would be the scala-
bility of rule-based KBC. As indicated in Table 6,
while our approach suffices for the KGs used in
these experiments, deploying our solution to larger
KGs would invariably require more GPU resources
and also benefit from further improvements to the
scalability of the learning technique.

8 Ethics Statement

All co-authors and contributors to this work commit
to EMNLP and ACL’s code of ethics. Knowledge
graphs are related to social networks, and while
techniques proposed here might, in theory, be used
to discover missing facts from a social network
which could in turn, lead to invasion of privacy, we
explicitly acknowledge that it is neither our goal
nor our intent to violate anyone’s right to privacy.

9 Acknowledgements

This work was completed prior to the first author’s
joining of Amazon, and while he was employed at
IBM Research. We gratefully acknowledge feed-
back from anonymous reviewers that undoubtedly
resulted in improvements to this work.

References
L. Adolphs and T. Hofmann. 2020. Ledeepchef deep re-

inforcement learning agent for families of text-based
games. In AAAI.

Jonathan Berant, Andrew Chou, Roy Frostig, and Percy
Liang. 2013. Semantic parsing on Freebase from
question-answer pairs. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1533–1544, Seattle, Wash-
ington, USA. Association for Computational Linguis-
tics.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a collabo-
ratively created graph database for structuring human
knowledge. In Proceedings of the 2008 ACM SIG-
MOD international conference on Management of
data, pages 1247–1250.

3871

https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NeurIPS.

Subhajit Chaudhury, Prithviraj Sen, Masaki Ono, Daiki
Kimura, Michiaki Tatsubori, and Asim Munawar.
2021. Neuro-symbolic approaches for text-based
policy learning. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 3073–3078, Online and Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
Luke Vilnis, Ishan Durugkar, Akshay Krishnamurthy,
Alex Smola, and Andrew McCallum. 2018. Go for a
walk and arrive at the answer: Reasoning over paths
in knowledge bases using reinforcement learning. In
ICLR.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d knowl-
edge graph embeddings. In Thirty-second AAAI con-
ference on artificial intelligence.

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. JMLR.

Richard Evans and Edward Grefenstette. 2018. Learn-
ing explanatory rules from noisy data. JAIR.

Thomas Frerix, Matthias Nießner, and Daniel Cremers.
2020. Homogeneous linear inequality constraints for
neural network activations. In CVPR Workshops.

Lise Getoor and Ben Taskar. 2007. Introduction to Sta-
tistical Relational Learning (Adaptive Computation
and Machine Learning). The MIT Press.

He He, Anusha Balakrishnan, Mihail Eric, and Percy
Liang. 2017. Learning symmetric collaborative dia-
logue agents with dynamic knowledge graph embed-
dings. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1766–1776, Vancouver,
Canada. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation.

Hang Jiang, Sairam Gurajada, Qiuhao Lu, Sumit Nee-
lam, Lucian Popa, Prithviraj Sen, Yunyao Li, and
Alexander Gray. 2021. LNN-EL: A neuro-symbolic
approach to short-text entity linking. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 775–787, Online.
Association for Computational Linguistics.

Pavan Kapanipathi, Ibrahim Abdelaziz, Srinivas Ravis-
hankar, Salim Roukos, Alexander Gray, Ramón Fer-
nandez Astudillo, Maria Chang, Cristina Cornelio,
Saswati Dana, Achille Fokoue, Dinesh Garg, Alfio

Gliozzo, Sairam Gurajada, Hima Karanam, Naweed
Khan, Dinesh Khandelwal, Young-Suk Lee, Yunyao
Li, Francois Luus, Ndivhuwo Makondo, Nandana
Mihindukulasooriya, Tahira Naseem, Sumit Neelam,
Lucian Popa, Revanth Gangi Reddy, Ryan Riegel,
Gaetano Rossiello, Udit Sharma, G P Shrivatsa Bhar-
gav, and Mo Yu. 2021. Leveraging Abstract Mean-
ing Representation for knowledge base question an-
swering. In Findings of the Association for Com-
putational Linguistics: ACL-IJCNLP 2021, pages
3884–3894, Online. Association for Computational
Linguistics.

Stanley Kok and Pedro Domingos. 2007. Statistical
predicate invention. In Proceedings of the 24th in-
ternational conference on Machine learning, pages
433–440.

A. Krizhevsky. 2010. Convolutional deep belief net-
works on CIFAR-10. Unpublished Manuscript.

Timothée Lacroix, Nicolas Usunier, and Guillaume
Obozinski. 2018. Canonical tensor decomposition
for knowledge base completion. In International
Conference on Machine Learning, pages 2863–2872.
PMLR.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2018. Multi-hop knowledge graph reasoning with
reward shaping. In EMNLP.

George A Miller. 1995. Wordnet: a lexical database for
english. Communications of the ACM, 38(11):39–41.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp,
Edward Grefenstette, and Tim Rocktäschel. 2020.
Learning reasoning strategies in end-to-end differ-
entiable proving. In International Conference on
Machine Learning, pages 6938–6949. PMLR.

Stephen Muggleton. 1996. Learning from positive data.
In Worshop on ILP.

Vinod Nair and Geoffrey Hinton. 2010. Rectified linear
units improve restricted boltzmann machines. In
ICML.

Meng Qu, Junkun Chen, Louis-Pascal Xhonneux,
Yoshua Bengio, and Jian Tang. 2021. RNNLogic:
Learning logic rules for reasoning on knowledge
graphs. In ICLR.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine Learning.

Ryan Riegel, Alexander Gray, Francois Luus, Naweed
Khan, Ndivhuwo Makondo, Ismail Yunus Akhal-
waya, Haifeng Qian, Ronald Fagin, Francisco Bara-
hona, Udit Sharma, Shajith Ikbal, Hima Karanam,
Sumit Neelam, Ankita Likhyani, and Santosh Srivas-
tava. 2020. Logical neural networks. CoRR.

Tim Rocktäschel and Sebastian Riedel. 2017. End-to-
end differentiable proving. In NeurIPS.

3872

https://doi.org/10.18653/v1/2021.emnlp-main.245
https://doi.org/10.18653/v1/2021.emnlp-main.245
https://doi.org/10.18653/v1/P17-1162
https://doi.org/10.18653/v1/P17-1162
https://doi.org/10.18653/v1/P17-1162
https://doi.org/10.18653/v1/2021.acl-long.64
https://doi.org/10.18653/v1/2021.acl-long.64
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339
https://doi.org/10.18653/v1/2021.findings-acl.339

Ali Sadeghian, Mohammadreza Armandpour, Patrick
Ding, and Daisy Zhe Wang. 2019. Drum: End-to-end
differentiable rule mining on knowledge graphs. In
NeurIPS.

Prithviraj Sen, Breno W. S. R. de Carvalho, Ryan Riegel,
and Alexander Gray. 2022. Neuro-symbolic induc-
tive logic programming with logical neural networks.
In AAAI.

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl
Stelzner, Robert Peharz, Thomas Liebig, and Kristian
Kersting. 2020. Conditional sum-product networks:
Imposing structure on deep probabilistic architec-
tures. In International Conference on Probabilistic
Graphical Models.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian
Tang. 2019. Rotate: Knowledge graph embedding by
relational rotation in complex space. In ICLR.

Zhiqing Sun, Shikhar Vashishth, Soumya Sanyal, Partha
Talukdar, and Yiming Yang. 2020. A re-evaluation
of knowledge graph completion methods. In ACL.

Kristina Toutanova and Danqi Chen. 2015. Observed
versus latent features for knowledge base and text
inference. In Proceedings of the 3rd workshop on
continuous vector space models and their composi-
tionality, pages 57–66.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric
Gaussier, and Guillaume Bouchard. 2016. Complex
embeddings for simple link prediction. In Interna-
tional conference on machine learning, pages 2071–
2080. PMLR.

Fan Yang, Zhilin Yang, and William W Cohen. 2017.
Differentiable learning of logical rules for knowledge
base reasoning. In NeurIPS.

Shuai Zhang, Yi Tay, Lina Yao, and Qi Liu. 2019.
Quaternion knowledge graph embeddings. In
NeurIPS.

A Proof for Proposition 3.1

Proof. A simple lower for α is given by observing
that ⊗w,β,α’s output when it is false, i.e., [0, 1−
α], should lie to the left of [α, 1], which is its output
when ⊗w,β,α is true, on the number line:

1− α ≤ α⇒ 1 ≤ 2α⇒ 1

2
≤ α

Deriving a tighter bound that depends on input x
requires analyzing the constraints in Equation 1
(in the main body). Beginning with the second
constraint:

β − (1− α)1⊤w ≥ α

(rearranging)⇒ β ≥ α+ (1− α)1⊤w (2)

We next consider implications from Equation 1’s
first constraint (main body):

β1− αw ≤ (1− α)1

(multiply by 1⊤)⇒ nβ − α1⊤w ≤ n(1− α)

(rearranging)⇒ β ≤ 1− α+
α

n
1⊤w

The last equation combined with Equation 2 im-
plies that:

α+ (1− α)1⊤w ≤ β ≤ 1− α+
α

n
1⊤w

⇒ α+ (1− α)1⊤w ≤ 1− α+
α

n
1⊤w

⇒ 2α− 1 ≤ (α+
α

n
− 1)1⊤w

We have already shown that α ≥ 1
2 which implies

that the above LHS in the above equation is ≥ 0.
Moreover, Equation 1 (main body) also enforces
that w ≥ 0. These observations imply that the first
term on RHS is also ≥ 0:

α+
α

n
− 1 ≥ 0

(rearranging)⇒ α ≥ n

n+ 1

Thus, if α < n
n+1 then ⊗w,β,α will not have any

solution which proves the Proposition.

B Related Work

Our work lies at the intersection of Knowledge
Base Completion and Rule-learning approaches.
Within KBC, knowledge graph embeddings is an-
other prevalent technique.

KBC has gained a lot of interest due to their
ability to handle the incompleteness of knowledge
bases. KGEs map entities and relations to a low-
dimensional vector space to infer new facts. These
techniques use neighborhood structure of an entity
or relation to learn their corresponding embedding.
Beginning with TransE (Bordes et al., 2013), KGEs
can now use complex vector spaces such as Com-
plEx (Trouillon et al., 2016), RotatE (Sun et al.,
2019), and QuatE (Zhang et al., 2019).

While KGE performance has improved signifi-
cantly over time, rule-based KBC has gained atten-
tion due to its inherent ability to be generate inter-
pretable rules (Yang et al., 2017; Sadeghian et al.,
2019; Rocktäschel and Riedel, 2017; Qu et al.,
2021). The core ideas in rule learning can be cate-
gorized into two groups based on their mechanism
to select relations for rules. While Edge-based (EB)

3873

methods break paths into its constituent edges, e.g.
NeuralLP (Yang et al., 2017), DRUM (Sadeghian
et al., 2019), Path-based (PB) maintains integrity
of paths; e.g., MINERVA (Das et al., 2018), RNN-
Logic (Qu et al., 2021). Recent trends in both these
types of rule learning approaches has shown signif-
icant increase in complexity for performance gains
over their simpler precursors. Among the first to
learn rules for KBC, NeuralLP (Yang et al., 2017)
uses a long short-term memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) as its rule generator.
DRUM (Sadeghian et al., 2019) improves upon
NeuralLP by learning multiple such rules obtained
using a bi-directional LSTM for more steps. MIN-
ERVA (Das et al., 2018) on the other hand, pro-
poses to learn the relation sequences appearing in
paths connecting source to destination vertices us-
ing neural reinforcement learning. RNNLogic (Qu
et al., 2021) is the latest to adopt a path-based ap-
proach for KBC that consists of two modules, a
rule-generator for suggesting high quality paths
and a reasoning predictor that uses said paths to
predict missing information. RNNLogic employs
expectation-maximization for training where the E-
step identifies useful paths per data instance (edge
in the KG) by sampling from an intractable pos-
terior while the M-step uses the per-instance use-
ful paths to update the overall set of paths. Both
DRUM and RNNLogic represent a significant in-
crease in complexity of their respective approaches
compared to NeuralLP and MINERVA.

Unlike these approaches, we propose to utilize
Logical Neural Networks (LNN) (Riegel et al.,
2020); a simple yet powerful neuro-symbolic ap-
proach (NeSy) which guarantees interpretability
by extending Boolean logic to the real-valued do-
main. Rules learned with LNNs are eminently inter-
pretable and furthermore, we achieve state-of-the-
art KBC quality across multiple datasets by com-
bining with KGE while preserving interpretability.

While NeSy enables us to learn rules end-to-end
via gradient-based optimization, it is not the only
technique available for learning rules. Inductive
logic programming (Muggleton, 1996) has for long
attempted to learn rules from real-world data but
neither scales to real-world problem sizes nor can
it handle noise inherent in real-world data. An-
other area of work is statistical relational learning
(Getoor and Taskar, 2007) that include Markov
logic networks (Richardson and Domingos, 2006)
however, previous work (Qu et al., 2021) has shown

that these neither lead to accurate KBC rules nor
do they scale to large KBC benchmarks we exper-
iment with in the main body. Interestingly, our
proposed addition to the LNN framework, the ϕ
operator, is identical to the gating node in sum-
product networks (Shao et al., 2020) where it func-
tions similar to a disjunction operator. While LNN
has a disjunction operator, its interpretability can
be compromised when faced with high-arity inputs
in applications such as KBC thus its addition en-
hances the LNN framework.

C Experimental Setup

C.1 Datasets

To evaluate our approach, we experiment on stan-
dard KBC benchmarks, viz. Unified Medical Lan-
guage System (UMLS) (Kok and Domingos, 2007),
Kinship (Kok and Domingos, 2007), WN18RR
(Dettmers et al., 2018), and FB15K-237 (Toutanova
and Chen, 2015).

• Unified Medical Language System (UMLS)
(Kok and Domingos, 2007): models relations
among biological concepts including drugs, dis-
eases, and treatments.

• Kinship (Kok and Domingos, 2007): comprises
relations among members of Central Australian
native tribe.

• WN18RR (Dettmers et al., 2018): a dataset de-
rived from WordNet (Miller, 1995) which is a
popular linguistic knowledge base comprising
on relations such as synonyms, hypernyms, and
hyponyms between words.

• FB15K-237 (Toutanova and Chen, 2015): is de-
rived from Freebase (Bollacker et al., 2008), a
knowledge graph with encyclopedic informa-
tion.

Table 1 (in the main body) provides dataset statis-
tics. We use standard train/validation/test splits for
all datasets. Note that, RNNLogic defined its own
splits for Kinship and UMLS, we report results on
these too for a fair comparison.

C.2 Coherent Metrics and Fair KBC
Evaluation

In the recent past, there has been intense criti-
cism on the metrics that are used to evaluate KBC
techniques. Specifically, for the KBC task where
answering ⟨h, r, ?⟩ requires the method to assign
probability to answers t, techniques, mostly in the
rule-learning category, assigned same probability

3874

scores across multiple answers. The evaluation in
most cases considered the minimum rank of the cor-
rect answer leading to overly optimistic and unfair
evaluation (Sun et al., 2020). This has resulted in
more accurate definition of KBC metrics proposed
by (Sun et al., 2020) which is used by RNNLogic
(Qu et al., 2021); the current state-of-the-art KBC
approach. Specifically, Sun et al. (2020) proposed
to compute the expectation over all candidate enti-
ties with the same score as the correct answer.

Given an unseen query ⟨h, r, ?⟩ we compute fil-
tered ranks (Bordes et al., 2013) for destination
vertices after removing the destinations that form
edges with h and r present in the train, test and
validation sets. Based on Sun et al. (2020)’s sug-
gestions, our definitions of mean reciprocal rank
(MRR) and Hits@K (H@K) satisfy two properties:
1) They assign a larger value to destinations ranked
lower, and 2) If destinations t1, . . . , tm share the
same rank n then each of them is assigned an aver-
age of ranks n, . . . , n+m− 1:

MRR(ti) =
1

m

n+m−1∑

r=n

1

r

H@K(ti) =
1

m

n+m−1∑

r=n

δ(r ≤ K)

where δ() denotes the Dirac delta function. We
include inverse triples and report averages across
the test set.

D Similarity-based and Distance-based
Knowledge Graph Embeddings

Let σ(p) denote the score of a path p assigned using
a KGE. We describe σ(p) for both similarity-based
(e.g., CP-N3 Lacroix et al. 2018) and distance-
based (e.g., RotatE Sun et al. 2019) KGE:

similarity-based: σ(p) =
∑

⟨h,r,t⟩∈p

1

1 + exp{−sim(h, r, t)}

distance-based: σ(p) =
∑

⟨h,r,t⟩∈p

exp{2(δ − d(h, r, t))} − 1

exp{2(δ − d(h, r, t))}+ 1

where δ denotes the margin parameter used by
the underlying distance-based KGE to convert dis-
tances into similarities. For both of these, we break
the path into a series of edges, use the underlying
KGE to compute similarity sim() or distance d()

for each triple (as the case may be) and aggregate
across all triples in the path. Based on extensive ex-
perimentation, we recommend sigmoid and tanh
as the non-linear activation for similarity-based and
distance-based KGE, respectively. See main body
as to how one may incorporate σ(p) into proposed
LNN scoring functions for KBC (e.g. PB-LNN).

3875

