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Abstract

Continual Learning for Named Entity Recogni-
tion (CL-NER) aims to learn a growing number
of entity types over time from a stream of data.
However, simply learning Other-Class in the
same way as new entity types amplifies the
catastrophic forgetting and leads to a substan-
tial performance drop. The main cause behind
this is that Other-Class samples usually con-
tain old entity types, and the old knowledge
in these Other-Class samples is not preserved
properly. Thanks to the causal inference, we
identify that the forgetting is caused by the
missing causal effect from the old data. To
this end, we propose a unified causal frame-
work to retrieve the causality from both new
entity types and Other-Class. Furthermore, we
apply curriculum learning to mitigate the im-
pact of label noise and introduce a self-adaptive
weight for balancing the causal effects between
new entity types and Other-Class. Experimen-
tal results on three benchmark datasets show
that our method outperforms the state-of-the-
art method by a large margin. Moreover, our
method can be combined with the existing state-
of-the-art methods to improve the performance
in CL-NER. 1

1 Introduction

Named Entity Recognition (NER) is a vital task
in various NLP applications (Ma and Hovy, 2016).
Traditional NER aims at extracting entities from un-
structured text and classifying them into a fixed set
of entity types (e.g., Person, Location, Organiza-
tion, etc). However, in many real-world scenarios,
the training data are streamed, and the NER sys-
tems are required to recognize new entity types to
support new functionalities, which can be formu-
lated into the paradigm of continual learning (CL,
a.k.a. incremental learning or lifelong learning)
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Figure 1: An illustration of Other-class in CL-NER.
Suppose that a model learns four entity types in
CoNLL2003 sequentially. “LOC”: Location; “MISC”:
Miscellaneous; “ORG”: Organisation; “PER”: Person.

(Thrun, 1998; Parisi et al., 2019). For instance,
voice assistants such as Siri or Alexa are often re-
quired to extract new entity types (e.g. Song, Band)
for grasping new intents (e.g. GetMusic) (Monaikul
et al., 2021).

However, as is well known, continual learning
faces a serious challenge called catastrophic for-
getting in learning new knowledge (McCloskey
and Cohen, 1989; Robins, 1995; Goodfellow et al.,
2013; Kirkpatrick et al., 2017). More specifically,
simply fine-tuning a NER system on new data usu-
ally leads to a substantial performance drop on
previous data. In contrast, a child can naturally
learn new concepts (e.g., Song and Band) without
forgetting the learned concepts (e.g., Person and
Location). Therefore, continual learning for NER
(CL-NER) is a ubiquitous issue and a big challenge
in achieving human-level intelligence.

In the standard setting of continual learning, only
new entity types are recognized by the model in
each CL step. For CL-NER, the new dataset con-
tains not only new entity types but also Other-class
tokens which do not belong to any new entity types.
For instance, about 89% tokens belongs to Other-
class in OntoNotes5 (Hovy et al., 2006). Unlike
accuracy-oriented tasks such as the image/text clas-
sification, NER inevitably introduces a vast number
of Other-class samples in training data. As a result,
the model strongly biases towards Other-class (Li
et al., 2020). Even worse, the meaning of Other-
class varies along with the continual learning pro-
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Figure 2: An illustration of the impact of Other-class
samples on OntoNotes5. We consider two scenarios
with different extra annotation levels on Other-class
samples: (1) annotate all recognized entity types on
the data in the current CL step (Current); (2) no extra
annotations on Other-class samples (None).

cess. For example, “Europe” is tagged as Location
if and only if the entity type Location is learned
in the current CL step. Otherwise, the token “Eu-
rope” will be tagged as Other-class. An illustration
is given in Figure 1 to demonstrate Other-class in
CL-NER. In a nutshell, the continually changing
meaning of Other-class as well as the imbalance
between the entity and Other-class tokens amplify
the forgetting problem in CL-NER.

Figure 2 is an illustration of the impact of Other-
class samples. We divide the training set into 18
disjoint splits, and each split corresponds to one
entity type to learn. Then, we only retain the la-
bels of the corresponding entity type in each split
while the other tokens are tagged as Other-class.
Next, the NER model learns 18 entity types one
after another, as in CL. To eliminate the impact
of forgetting, we assume that all recognized train-
ing data can be stored. Figure 2 shows two sce-
narios where Other-class samples are additionally
annotated with ground-truth labels or not. Results
show that ignoring the different meanings of Other-
classes affects the performance dramatically. The
main cause is that Other-class contains old enti-
ties. From another perspective, the old entities in
Other-class are similar to the reserved samples of
old classes in the data replay strategy (Rebuffi et al.,
2017). Therefore, we raise a question: how can we
learn from Other-class samples for anti-forgetting
in CL-NER?

In this study, we address this question with
a Causal Framework for CL-NER (CFNER)
based on causal inference (Glymour et al., 2016;
Schölkopf, 2022). Through causal lenses, we deter-
mine that the crux of CL-NER lies in establishing
causal links from the old data to new entity types

and Other-class. To achieve this, we utilize the old
model (i.e., the NER model trained on old entity
types) to recognize old entities in Other-class sam-
ples and distillate causal effects (Glymour et al.,
2016) from both new entity types and Other-class
simultaneously. In this way, the causality of Other-
class can be learned to preserve old knowledge,
while the different meanings of Other-classes can
be captured dynamically. In addition, we design
a curriculum learning (Bengio et al., 2009) strat-
egy to enhance the causal effect from Other-class
by mitigating the label noise generated by the old
model. Moreover, we introduce a self-adaptive
weight to dynamically balance the causal effects
from Other-class and new entity types. Extensive
experiments on three benchmark NER datasets,
i.e., OntoNotes5, i2b2 (Murphy et al., 2010) and
CoNLL2003 (Sang and De Meulder, 2003), vali-
date the effectiveness of the proposed method. The
experimental results show that our method out-
performs the previous state-of-the-art method in
CL-NER significantly. The main contributions are
summarized as follows:

• We frame CL-NER into a causal graph (Pearl,
2009) and propose a unified causal framework
to retrieve the causalities from both Other-
class and new entity types.

• We are the first to distillate causal effects from
Other-class for anti-forgetting in CL, and we
propose a curriculum learning strategy and
a self-adaptive weight to enhance the causal
effect in Other-class.

• Through extensive experiments, we show that
our method achieves the state-of-the-art per-
formance in CL-NER and can be implemented
as a plug-and-play module to further improve
the performances of other CL methods.

2 Related Work

2.1 Continual Learning for NER
Despite the fast development of CL in computer
vision, most of these methods (Douillard et al.,
2020; Rebuffi et al., 2017; Hou et al., 2019) are
devised for accuracy-oriented tasks such as image
classification and fail to preserve the old knowledge
in Other-class samples. In our experiment, we find
that simply applying these methods to CL-NER
does not lead to satisfactory performances.

In CL-NER, a straightforward solution for learn-
ing old knowledge from Other-class samples is
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self-training (Rosenberg et al., 2005; De Lange
et al., 2019). In each CL step, the old model is
used to annotate the Other-class samples in the
new dataset. Next, a new NER model is trained
to recognize both old and new entity types in the
dataset. The main disadvantage of self-training
is that the errors caused by wrong predictions of
the old model are propagated to the new model
(Monaikul et al., 2021). Monaikul et al. (2021)
proposed a method based on knowledge distilla-
tion (Hinton et al., 2015) called ExtendNER where
the old model acts as a teacher and the new model
acts as a student. Compared with self-training,
this distillation-based method takes the uncertainty
of the old model’s predictions into consideration
and reaches the state-of-the-art performance in CL-
NER.

Recently, Das et al. (2022) alleviates the prob-
lem of Other-tokens in few-shot NER by con-
trastive learning and pretraining techniques. Unlike
them, our method explicitly alleviates the problem
brought by Other-Class tokens through a causal
framework in CL-NER.

2.2 Causal Inference

Causal inference (Glymour et al., 2016; Schölkopf,
2022) has been recently introduced to various com-
puter vision and NLP tasks, such as semantic seg-
mentation (Zhang et al., 2020), long-tailed classifi-
cation (Tang et al., 2020; Nan et al., 2021), distantly
supervised NER (Zhang et al., 2021) and neural dia-
logue generation (Zhu et al., 2020). Hu et al. (2021)
first applied causal inference in CL and pointed out
that the vanishing old data effect leads to forgetting.
Inspired by the causal view in (Hu et al., 2021),
we mitigate the forgetting problem in CL-NER by
mining the old knowledge in Other-class samples.

3 Causal Views on (Anti-) Forgetting

In this section, we explain the (anti-) forgetting
in CL from a causal perspective. First, we model
the causalities among data, feature, and prediction
at any consecutive CL step with a causal graph
(Pearl, 2009) to identify the forgetting problem.
The causal graph is a directed acyclic graph whose
nodes are variables, and directed edges are causali-
ties between nodes. Next, we introduce how causal
effects are utilized for anti-forgetting.

3.1 Causal Graph

Figure 3a shows the causal graph of CL-NER when
no anti-forgetting techniques are used. Specifi-
cally, we denote the old data as S; the new data
as D; the feature of new data extracted from the
old and new model as X0 and X; the prediction
of new data as Ŷ (i.e., the probability distribution
(scores)). The causality between notes is as follows:
(1) D → X → Ŷ : D → X represents that the fea-
ture X is extracted by the backbone model (e.g.,
BERT (Devlin et al., 2019)), and X → Ŷ indicates
that the prediction Ŷ is obtained by using the fea-
ture X with the classifier (e.g., a fully-connected
layer); (2) S → X0 ← D: these links represent
that the old feature representation of new data X0

is determined by the new data D and the old model
trained on old data S. Figure 3a shows that the for-
getting happens because there are no causal links
between S and Ŷ . More explanations about the for-
getting in CL-NER are demonstrated in Appendix
A.

3.2 Colliding Effects

In order to build cause paths from S to Ŷ , a naive
solution is to store (a fraction of) old data, resulting
in a causal link S → D is built. However, storing
old data contradicts the scenario of CL to some
extent. To deal with this dilemma, Hu et al. (2021)
proposed to add a causal path S ↔ D between old
and new data by using Colliding Effect (Glymour
et al., 2016). Consequently, S and D will be cor-
related to each other when we control the collider
X0. Here is an intuitive example: a causal graph
sprinkler → pavement ← weather represents
the pavement’s condition (wet/dry) is determined
by both the weather (rainy/sunny) and the sprinkler
(on/off). Typically, the weather and the sprinkler
are independent of each other. However, if we ob-
serve that the pavement is wet and know that the
sprinkler is off, we can infer that the weather is
likely to be rainy, and vice versa.

4 A Causal Framework for CL-NER

In this section, we frame CL-NER into a causal
graph and identify that learning the causality in
Other-class is crucial for CL-NER. Based on the
characteristic of CL-NER, we propose a unified
causal framework to retrieve the causalities from
both Other-class and new entity types. We are the
first to distillate causal effects from Other-class for
anti-forgetting in CL. Furthermore, we introduce
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Figure 3: The causal graph for CL-NER: (a) forgetting happens when there are no causal paths from old data to new
predictions; (b) anti-forgetting is to build causal paths from old data to new predictions through new entities (DE)
and Other-class samples (DO). We call the causal effects in these two links EffectE and EffectO, respectively.
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Figure 4: A demonstration of the colliding effect. The anchor token’s feature (anchor features) collides with
matched tokens’ features (matched features) on the colliding feature in the old feature space. (a) initial: the class
boundary is retained since the new model is initialized by the old model condition. (b) w/o Colliding Effect: the
class boundary is forgot in the new feature space since there are no causal effects from old data to new predictions.
(c) w/ Colliding Effect: the class boundary is preserved after an CL step since the anchor and matched tokens collide
in the old feature space.

a curriculum-learning-based strategy and a self-
adaptive weight to allow the model to better learn
the causalities from Other-class samples.

4.1 Problem Formulation

In the i-th CL step, given an NER model Mi

which is trained on a set of entities Ei =
{e1, e2 · · · , eni}, the target of CL-NER is to
learn the best NER model Mi+1 to identify the
extended entity set Ei+1 = {e1, e2 · · · , eni+1}
with a training set annotated only with ENew

i =
{eni+1, eni+2, · · · , eni+1}.

Suppose the model consists of a backbone net-
work for feature extraction and a classifier for clas-
sification. As a common practice, Mi+1 is first
initialized by the parameter of Mi, and then the
dimensions of the classifier are extended to adapt
to new entity types. Then, Mi will guide the learn-
ing process of Mi+1 through knowledge distilla-
tion (Monaikul et al., 2021) or regularization terms
(Douillard et al., 2020) to preserve old knowledge.
Our method is based on knowledge distillation
where the old model Mi acts as a teacher and the

new model Mi+1 acts as a student. Our method
further distillates causal effects in the process of
knowledge distillation.

4.2 Distilling Colliding Effects in CL-NER

Based on the causal graph in Figure 3a, we figure
out that the crux of CL lies in building causal paths
between old data and prediction on the new model.
If we utilize colliding effects, the causal path be-
tween old and new data can be built without storing
old data.

To distillate the colliding effects, we first need
to find tokens in new data which have the same
feature representation X0 in the old feature space,
i.e., condition on X0. However, it is almost im-
possible to find such matched tokens since features
are sparse in high dimensional space (Altman and
Krzywinski, 2018). Following Hu et al. (2021), we
approximate the colliding effect using K-Nearest
Neighbor (KNN) strategy. Specifically, we select
a token as anchor token and search the k-nearest
neighbor tokens whose features bear a resemblance
to the anchor token’s feature in the old feature
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Figure 5: A demonstration of the proposed causal framework for CL-NER.

space. Next, when calculating the prediction of
the anchor token, we use matched tokens for joint
prediction. Note that in backpropagation, only the
gradient of the anchor token is computed. Figure
4 shows a demonstration for distilling colliding
effects.

Although Other-class tokens usually do not
directly guide the model to recognize new en-
tity types, they contain tokens from old entity
types, which allow models to recall what they have
learned. Naturally, we use the old model to recog-
nize the Other-class tokens which actually belong
to old entity types. Since these Other-class tokens
belong to the predefined entity types, we call them
as Defined-Other-Class tokens, and we call the rest
tokens in Other-class as Undefined-Other-Class
tokens.

Based on the characteristics of NER, we extend
the causal graph in Figure 3a to Figure 3b. The key
adjustment is that the node of new data is split into
two nodes, including new entity tokens DE and
Defined-Other-Class tokens DO. Then, we apply
the colliding effects on DE and DO respectively,
resulting in that DE and DO collide with S on
nodes XE

0 and XO
0 in the old feature space. In this

way, we build two causal paths from old data S to
new predictions Ŷ . In the causal graph, we ignore
the token from Undefined-Other-Class since they
do not help models learn new entity types or review
old knowledge. Moreover, we expect the model to
update instead of preserving the knowledge about
Other-class in each CL step. Here, we consider two
paths separately because the colliding effects are
distilled from different kinds of data and calculated

in different ways.

4.3 A causal framework for CL-NER

Formally, we define the total causal effects Effect
as follow:

Effect = EffectE + EffectO (1)

= −ΣiCE(Y i, Yi)− ΣjKL(Y j , Ỹj), (2)

s.t. Di ∈ DE , Dj ∈ DO.

In Eq.(1), EffectE and EffectO denote the colliding
effect of new entity types and Defined-Other-Class.
In Eq.(2), CE(·, ·) and KL(·, ·) represent the cross-
entropy and KL divergence loss, and Di,Dj are the
i-th,j-th token in new data. In cross-entropy loss,
Yi is the ground-truth entity type of the i-th token
in new data. In KL divergence loss, Ỹj is the soft
label of the j-th token given by the old model over
old entity types. In both losses, Y represents the
weighted average of prediction scores over anchor
and matched tokens. When calculating KL(·, ·), we
follow the common practice in knowledge distilla-
tion to introduce temperature parameters Tt, Ts for
teacher (old model) and student model (new model)
respectively. Here, we omit Tt, Ts in KL(·, ·) for
notation simplicity. The weighted average scores
of the i-th token is calculated as follow:

Y i = WiŶi +ΣK
k=1WikŶik (3)

s.t. Wi ≥Wi1 ≥Wi2 ≥ · · · ≥WiK

Wi +ΣK
k=1Wik = 1,

where the i-th token is the anchor token and K
matched tokens are selected according to the KNN
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strategy. We sort the K matched tokens in ascend-
ing order according to the distance to the anchor
token in the old feature space. Ŷi, Ŷik are the pre-
diction scores of the i-th token and its k-th matched
token, and Wi, Wik are the weight for Ŷi, Ŷik, re-
spectively. The weight constraints ensure that the
token closer to the colliding feature has a more
significant effect.

Until now, we calculate the effects in DE and
DO and ignore the Undefined-Other-Class. Follow-
ing Monaikul et al. (2021), we apply the standard
knowledge distillation to allow new models to learn
from old models. To this end, we just need to re-
write EffectO in Eq.(1) as follow:

EffectO = −ΣjKL(Y j , Ỹj)− ΣnKL(Ŷn, Ỹn)
(4)

s.t. Dj ∈ DO, Dn ∈ DUO,

where DUO is the data belong to the Undefined-
Other-Class. The Eq.(4) can be seen as calculat-
ing samples from DO and DUO in the same way,
except that samples from DUO have no matched
tokens. We summarize the proposed causal frame-
work in Figure 5.

4.4 Mitigating Label Noise in EffectO
In our method, we use the old model to predict the
labels of Defined-Other-Class tokens. However, it
inevitably generates label noise when calculating
EffectO. To address this problem, we adopt cur-
riculum learning to mitigate the label noise in the
proposed method.

Curriculum learning has been widely used for
handling label noises (Guo et al., 2018) in com-
puter vision. Arazo et al. (2019) empirically find
that networks tend to fit correct samples before
noisy samples. Motivated by this, we introduce a
confidence threshold δ (δ ∈ [0, 1]) to encourage the
model to learn first from clean Other-class samples
and then noisier ones. Specifically, when calcu-
lating EffectO, we only select Defined-Other-Class
tokens whose predictive confidences are larger than
δ for distilling colliding effects while others are for
knowledge distillation. The value of δ changes
along with the training process and the value of δ
in the i-th epoch is calculated as follow:

δi =

{
δ1 +

i−1
m−1(δm − δ1), 1 ≤ i ≤ m

δm, i > m,
(5)

where m, δ1 and δm are the predefined hyper-
parameters and δm should be smaller than δ1.

4.5 Balancing EffectE and EffectO
Figure 5 shows that the total causal effect Effect
consists of EffectE and EffectO, where EffectE is
for learning new entities while EffectO is for re-
viewing old knowledge. With the learning pro-
cess of CL, the need to preserve old knowledge
varies (Hou et al., 2019). For example, more ef-
forts should be made to preserve old knowledge
when there are 15 old classes and 1 new class v.s.
5 old classes and 1 new class. In response to this,
we introduce a self-adaptive weight for balancing
EffectE and EffectO:

λ = λbase

√
CO/CN (6)

where λbase is the initial weight and CO,CN are the
numbers of old and new entity types respectively.
In this way, the causal effects from new entity types
and Other-class are dynamically balanced when the
ratio of old classes to new classes changes. Finally,
the objective of the proposed method is given as
follow:

maxEffect = EffectE + λ ∗ EffectO (7)

5 Experiments

5.1 Settings
Datasets. We conduct experiments on three
widely used datasets, i.e., OntoNotes5 (Hovy et al.,
2006), i2b2 (Murphy et al., 2010) and CoNLL2003
(Sang and De Meulder, 2003). To ensure that each
entity type has enough samples for training, we
filter out the entity types which contain less than
50 training samples. We summarize the statistics
of the datasets in Table 5 in Appendix F.

Following Monaikul et al. (2021), we split the
training set into disjoint slices, and in each slice,
we only retain the labels which belong to the en-
tity types to learn while setting other labels to
Other-class. Different from Monaikul et al. (2021),
we adopt a greedy sampling strategy to partition
the training set to better simulate the real-world
scenario. Specifically, the sampling algorithm en-
courages that the samples of each entity type are
mainly distributed in the slice to learn. We provide
more explanations and the detailed algorithm in
Appendix B.
Training. We use bert-base-cased (Devlin et al.,
2019) as the backbone model and a fully-connected
layer for classification. Following previous work in
CL (Hu et al., 2021), we predefine a fixed order of
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Table 1: Comparisons with state-of-the-art methods on I2B2 and OntoNotes5. The average results as well as
standard derivations are provided. Mi-F1: micro-F1; Ma-F1: macro-F1; Forget: Forgetting; : higher is better; :
lower is better. The best F1 results are bold.

FG-1-PG-1 FG-2-PG-2 FG-8-PG-1 FG-8-PG-2
Dataset Method

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

17.43 13.81 28.57 21.43 20.83 18.11 23.60 23.54
Finetune Only

±0.54 ±1.14 ±0.26 ±0.41 ±1.78 ±1.66 ±0.15 ±0.38
12.31 17.14 34.67 24.62 39.26 27.23 36.22 26.08

PODNet
±0.35 ±1.03 ±2.65 ±1.76 ±1.38 ±0.93 ±12.9 ±7.42
43.86 31.31 64.32 43.53 57.86 33.04 68.54 46.94

LUCIR
±2.43 ±1.62 ±0.76 ±0.59 ±0.87 ±0.39 ±0.27 ±0.63
31.98 14.76 55.44 33.38 49.51 23.77 48.94 29.00

ST
±2.12 ±1.31 ±4.78 ±3.13 ±1.35 ±1.01 ±6.78 ±3.04
42.85 24.05 57.01 35.29 43.95 23.12 52.25 30.93

ExtendNER
±2.86 ±1.35 ±4.14 ±3.38 ±2.01 ±1.79 ±5.36 ±2.77
62.73 36.26 71.98 49.09 59.79 37.3 69.07 51.09

I2B2

CFNER(Ours) ±3.62 ±2.24 ±0.50 ±1.38 ±1.70 ±1.15 ±0.89 ±1.05

15.27 10.85 25.85 20.55 17.63 12.23 29.81 20.05
Finetune Only

±0.26 ±1.11 ±0.11 ±0.24 ±0.57 ±1.08 ±0.12 ±0.16
9.06 8.36 34.67 24.62 29.00 20.54 37.38 25.85

PODNet
±0.56 ±0.57 ±1.08 ±0.85 ±0.86 ±0.91 ±0.26 ±0.29
28.18 21.11 64.32 43.53 66.46 46.29 76.17 55.58

LUCIR
±1.15 ±0.84 ±1.79 ±1.11 ±0.46 ±0.38 ±0.09 ±0.55
50.71 33.24 68.93 50.63 73.59 49.41 77.07 53.32

ST
±0.79 ±1.06 ±1.67 ±1.66 ±0.66 ±0.77 ±0.62 ±0.63
50.53 32.84 67.61 49.26 73.12 49.55 76.85 54.37

ExtendNER
±0.86 ±0.84 ±1.53 ±1.49 ±0.93 ±0.90 ±0.77 ±0.57
58.94 42.22 72.59 55.96 78.92 57.51 80.68 60.52

OntoNotes5

CFNER(Ours) ±0.57 ±1.10 ±0.48 ±0.69 ±0.58 ±1.32 ±0.25 ±0.84

(a) I2B2 (FG-1-PG-1) (b) I2B2 (FG-2-PG-2) (c) I2B2 (FG-8-PG-1) (d) I2B2 (FG-8-PG-2)

(e) OntoNotes5 (FG-1-PG-1) (f) OntoNotes5 (FG-2-PG-2) (g) OntoNotes5 (FG-8-PG-1) (h) OntoNotes5 (FG-8-PG-2)

Figure 6: Comparison of the step-wise micro-f1 score on I2B2 (16 entity types), OntoNotes5 (18 entity types).

classes (alphabetically in this study) and train mod-
els with the corresponding data slice sequentially.
Specifically, FG entity types are used to train a
model as the initial model, and every PG entity
types are used for training in each CL step (denoted
as FG-a-PG-b). For evaluation, we only retain the
new entity types’ labels while setting other labels
to Other-class in the validation set. In each CL
step, we select the model with the best validation

performance for testing and the next step’s learning.
For testing, we retain the labels of all recognized
entity types while setting others to Other-class in
the test set.

Metrics. Considering the class imbalance prob-
lem in NER, we adopt Micro F1 and Macro F1 for
measuring the model performance. We report the
average result on all CL steps (including the first
step) as the final result.
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Baselines. We consider four baselines: Extend-
NER (Monaikul et al., 2021), Self-Training (ST)
(Rosenberg et al., 2005; De Lange et al., 2019),
LUCIR (Hou et al., 2019) and PODNet (Douillard
et al., 2020). ExtendNER is the previous state-of-
the-art method in CL-NER. LUCIR and PODNet
are state-of-the-art CL methods in computer vision.
Detailed descriptions of the baselines and their
training settings are demonstrated in Appendix C.
Hyper-Parameters. We set the number of
matched tokens K = 3, the weights Wi = 1/2
and Wik = 1

2K . For parameters in the curricu-
lum learning strategy, we set δ1 = 1, δm = 0 and
m = 10. We set the initial value of balancing
weight λbase = 2. More training details are shown
in Appendix D.

5.2 Results and Analysis

Comparisons with State-Of-The-Art. We con-
sider two scenarios for each dataset: (1) training the
first model the same as the following CL steps; (2)
training the first model with half of all entity types.
The former scenario is more challenging, whereas
the latter is closer to the real-world scenario since
it allows models to learn enough knowledge before
incremental learning. Apart from that, we consider
fine-tuning without any anti-forgetting techniques
(Finetune Only) as a lower bound for comparison.

The results on I2B2 and OntoNotes5 are sum-
marized in Table 1 and Figure 6. Due to the space
limitation, we provide the results on CoNLL2003
in Table 6 and Figure 9 in Appendix F. In most
cases, our method achieves the best performance.
Especially, our method outperforms the previous
state-of-the-art method in CL-NER (i,e., Extend-
NER) by a large margin. Besides, we visualize the
features of our method and ExtendNER for com-
parison in Appendix E. The performances of POD-
Net and LUCIR are much worse than our methods
when more CL steps are performed. The reason
could be that neither of them differentiates Other-
class from entity types, and the old knowledge in
Other-class is not preserved. Our method encour-
ages the model to review old knowledge from both
new entity types and Other-class in the form of
distilling causal effects.
Ablation Study. We ablate our method, and the
results are summarized in Table 2. To validate the
effectiveness of the proposed causal framework,
we only remove the colliding effects in Other-class
and new entity types for the settings w/o EffectO

Table 2: The ablation study of our method on three
datasets in the setting FG-1-PG-1. AW: adaptive weight;
CuL: curriculum learning strategy; Mi-F1: micro-F1;
Ma-F1: macro-F1.

Methods

I2B2 OntoNotes5 CoNLL2003

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

CFNER(Ours) 62.73 36.26 58.94 42.22 80.91 79.11
w/o AW 61.65 35.86 57.63 40.28 80.75 78.43
w/o CuL 61.21 34.79 57.95 39.54 80.32 78.71
w/o AW & CuL 60.78 33.15 56.83 38.95 79.89 77.54
w/o EffectO 59.68 30.56 53.09 34.99 78.68 76.15
w/o EffectE 53.62 28.75 54.88 37.29 79.83 77.45
w/o EffectO & EffectE 42.85 24.05 50.53 32.84 76.36 73.04

and w/o EffectE , respectively. Specifically, in the
w/o EffectO setting, we apply knowledge distil-
lation for all Other-class samples, while in w/o
EffectE setting, we calculate the cross-entropy loss
for classification. Note that our model is the same
as ExtendNER when no causal effects are used
(i.e., w/o EffectO & EffectE). The results show that
both EffectO and EffectE play essential roles in our
framework. Furthermore, the adaptive weight and
the curriculum-learning strategy help model better
learn causal effects in new data.

Table 3: Hyper-parameter analysis on I2B2 (FG-8-PG-
2). Mi-F1: micro-F1; Ma-F1: macro-F1.

K Mi-F1 Ma-F1 δ1 Mi-F1 Ma-F1 λbase Mi-F1 Ma-F1

1 65.48 46.82 0 65.25 46.33 0.5 69.27 48.71
2 67.12 49.37 0.5 66.09 48.51 1 69.46 52.45
3 69.07 51.09 0.9 68.23 49.1 2 69.07 51.09
5 70.25 52.51 0.95 68.64 49.66 5 64.4 46.65
10 70.69 52.26 1 69.07 51.09 10 54.12 40.66

Hyper-Parameter Analysis. We provide hyper-
parameter analysis on I2B2 with the setting FG-8-
PG-2. We consider three hyper-parameters: the
number of matched tokens K, the initial value
of balancing weight λbase and the initial value of
confidence threshold δ1. The results in Table 3
shows that a larger K is beneficial. However, as
K becomes larger, the run time increases corre-
spondingly. The reason is that more forward passes
are required during training. Therefore, We select
K = 3 by default to balance effectiveness and ef-
ficiency. Results also show that δ1 = 1 reaches
the best result, which indicates that it is more ef-
fective to learn EffectE first and then gradually in-
troduce EffectO during training. Otherwise, the
old model’s wrong predictions will significantly
affect the model’s performance. Additionally, we
find that the performance drops substantially when
λbase is too large. Note that we did not care-
fully search for the best hyper-parameters, and
the default ones are used throughout the experi-
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ments. Therefore, elaborately adjusting the hyper-
parameters may lead to superior performances on
specific datasets and scenarios.

Table 4: Combining our methods with other baselines on
three datasets in the setting FG-1-PG-1. Mi-F1: micro-
F1; Ma-F1: macro-F1. CF represents applying causal
effects.

Methods
I2B2 OntoNotes5 CoNLL2003

Mi-F1 Ma-F1 Mi-F1 Ma-F1 Mi-F1 Ma-F1

CFNER(Ours) 62.73 36.26 58.94 42.22 80.91 79.11

LUCIR 43.86 31.31 28.18 21.11 74.15 70.48
LUCIR+CF 66.27 38.52 62.03 44.34 81.28 79.56

ST 31.98 14.76 50.71 33.24 76.17 72.88
ST+CF 61.41 33.43 57.06 41.28 80.59 79.11

Combining with Other Baselines. Furthermore,
the proposed causal framework can be imple-
mented as a plug-and-play module (denoted as
CF). As shown in Figure 5, EffectE is based on
the cross-entropy loss for classifying new entities,
while EffectO is based on the KL divergence loss
for the prediction-level distillation. We use LUCIR
and ST as the baselines for a demonstration. To
combine LUCIR with our method, we substitute
the classification loss in LUCIR with EffectE and
substitute the feature-level distillation with EffectO.
When combining with ST, we only replace the soft
label with the hard label when calculating EffectO.
The results in Table 4 indicate that our method im-
proves LUCIR and ST substantially. It is worth
noticing that LUCIR+CF outperforms our method
consistently, indicating our method has the poten-
tial to combine with other CL methods in computer
vision and reach a superior performance in CL-
NER. In addition, CFNER outperforms ST+CF due
to the fact that soft labels convey more knowledge
than hard labels.

6 Conclusion

How can we learn from Other-class for anti-
forgetting in CL-NER? This question is answered
by the proposed causal framework in this study.
Although Other-class is “useless” in traditional
NER, we point out that in CL-NER, Other-class
samples are naturally reserved samples from old
classes, and we can distillate the causal effects from
them to preserve old knowledge. Moreover, we ap-
ply curriculum learning to alleviate the noisy label
problem to enhance the distillation of EffectO. We
further introduce a self-adaptive weight for dynam-
ically balancing causal effects between new entity

types and Other-class. Experimental results show
that the proposed causal framework not only out-
performs state-of-the-art methods but also can be
combined with other methods to further improve
performances.

Ethics Statement

For the consideration of ethical concerns, we would
make description as follows: (1) We conduct all
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consistent with the experimental results. (3) Our
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Limitations

Although the proposed method alleviates the catas-
trophic forgetting problem to some extent, its per-
formances are still unsatisfactory when more CL
steps are performed. Additionally, calculating
causal effects from Other-class depends on the old
model predictions, resulting in errors propagating
to the following CL steps. Moreover, the proposed
method requires more computation and a longer
training time since the predictions of matched sam-
ples are calculated.
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A Forgetting in CL-NER

To identify the cause of forgetting, we consider the
differences in prediction Y when the old data S
exists or not. For each CL step, the effect of old
data S can be calculate as:

EffectS = P (Ŷ = ŷ|do(S = s)) (8)

− P (Ŷ = ŷ|do(S = 0))

= P (Ŷ = ŷ|S = s)− P (Ŷ = ŷ|S = 0)
(9)

= P (Ŷ = ŷ)− P (Ŷ = ŷ) (10)

= 0, (11)

where do(·) is the causal intervention (Pearl, 2014,
2009) representing that assigning a certain value
to a variable without considering all parent nodes
(causes). In the first equation, do(S = 0) rep-
resents null intervention, i.e., setting old data to
null. In the second equation, P (Ŷ = ŷ|do(S) =
P (Ŷ = ŷ|S) due to the fact that S has no par-
ent nodes. In the third equation, P (Ŷ = ŷ|S) =
P (Ŷ = ŷ) since all causal paths from S to Y are
blocked by the collider X0. From Eq.(11), we find
that the missing old data effect causes the forgetting.
We neglect the effect of initial parameters adopted
from the old model since it will be exponentially de-
cayed towards 0 during learning (Kirkpatrick et al.,
2017).

B Greedy Sampling Algorithm for
CL-NER

In real-world scenarios, the new data should focus
on the new entity types, i.e., most sentences con-
tain the tokens from new entity types. Suppose
we randomly partition a dataset for CL-NER as in
Monaikul et al. (2021). In that case, each slice con-
tains a large number of sentences whose tokens all
belong to Other-class, resulting in that models tend
to bias to Other-class when inference. A straight-
forward solution is to filter out all sentences with
only Other-class tokens. However, it brings a new
problem: the slices’ sizes are imbalanced.

To address this problem, we propose a sampling
algorithm for partitioning a dataset in CL-NER (Al-
gorithm 1). Simply put, we allocate the sentence
containing low-frequency entity types to the corre-
sponding slice in priority until the slice contains the
required number of sentences. If a sentence con-
tains no entity types or the corresponding slices are
full, we randomly allocate the sentence to an incom-
plete slice. In this way, we partition the dataset into
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Figure 7: Comparison of the greedy sampling and random sampling on OntoNotes5. Each slice contains one entity
types to lean.

slices with balanced sizes, and each slice mainly
contains the entity types to learn.

For comparing Algorithm 1 and the random sam-
pling as in Monaikul et al. (2021), we provide the
label distributions in each slices of training data
in Figure 7. Figure 7 shows that the greedy sam-
pling generates more realistic datasets for CL-NER.
When we use the randomly partitioned dataset for
training in the setting FG-1-PG-1, the micro-f1
score of our method is 16.12, 17.43, and 12.75
(%) on OntoNotes5, I2B2, and CoNLL2003, re-
spectively, indicating that the number of entities in
each slice is inadequate for learning a NER model.
Therefore, the greedy sampling alleviates the need
for data in CL-NER.

C Baselines Introductions and Settings

The introductions about the baselines in experi-
ments and their experimental settings are as follows.
Note that we do not apply any reserved samples
from old classes in LUCIR and PODNet for a fair
comparison since our method requires no old data.

• Self-Training (ST) (Rosenberg et al., 2005;
De Lange et al., 2019): ST first utilizes the
old model to annotate the Other-class tokens
with old entity types. Then, the new model
is trained on new data with annotations of all
entity types. Finally, the cross-entropy loss on
all entity types is minimized.

• ExtendNER (Monaikul et al., 2021): Extend-
NER has a similar idea to ST, except that
the old model provides the soft label (i.e.,

probability distribution) of Other-class tokens.
Specifically, the cross-entropy loss is com-
puted for entity types’ tokens, and KL diver-
gence loss is computed for Other-class tokens.
During training, the sum of cross-entropy loss
and KL divergence loss is minimized. Follow-
ing Monaikul et al. (2021), we set the temper-
ature of the teacher (old model) and student
model (new model) to 1 and 2, respectively.

• LUCIR (Hou et al., 2019): LUCIR develops
a framework for incrementally learning a uni-
fied classifier for the continual image classifi-
cation tasks. The total loss consists of three
terms: (1) the cross-entropy loss on the new
classes samples; (2) the distillation loss on the
features extracted by the old model and those
by the new one; (3) the margin-ranking loss
on the reserved samples for old classes. In our
experiments, we compute the cross-entropy
loss for new entity types, the distillation loss
for all entity types, and the margin-ranking
loss for Other-class samples instead of the re-
served samples. Following (Hou et al., 2019),
λbase (i.e., loss weight for the distillation loss)
is set to 50, K (i.e., the top-K new class em-
beddings are chosen for the margin-ranking
loss) is set to 1 and m (i.e., the threshold of
margin ranking loss) is set to 0.5 for all the
tasks.

• PODNet (Douillard et al., 2020): PODNet
has a similar idea to LUCIR to combat the
catastrophic forgetting in continual learning
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Algorithm 1: Greedy Sampling Algorithm
for CL-NER
Input: D = {(si, ti)}ni=1: a training set

contains n sentences s and their
label sequences t;

Require : G: the number of slices; E : the
entity set; Ej : the entity set in the
j-th slice;

Output: G slices of datasets:
D(1),D(2), · · · ,D(G)

1 Initialize D(1), · · · ,D(G) = {}, · · · , {};
2 Initialize cnt1, · · · , cntG = 0, · · · , 0;
// Calculate the number of

sentences to allocate in each
slice

3 for j in range(1,G+1) do
4 nj = n ∗ |Ej |/|E|
5 end
6 Sort E in ascending order based on the

frequency in D;
7 for (si, ti) in D do
8 is_select = False;

// Allocate low frequency entity
types in priority

9 for e in E do
10 if not e in ti then
11 continue;
12 end
13 j is index of Ej s.t. e belongs to Ej ;
14 if cntj < nj then
15 D(j) = D(j) ∪ (si, ti);
16 cntj +=1;
17 is_select = True;
18 break;
19 end
20 end

// Otherwise, the sentence is
randomly assigned to an
incomplete slice

21 if not is_select then
22 randomly choice j s.t. cntj < nj ;
23 D(j) = D(j) ∪ (si, ti);
24 cntj +=1;
25 end
26 end
27 return D(1),D(2), · · · ,D(G);

for image classification. The total loss con-
sists of the classification loss and distillation
loss. To compute the distillation loss, PodNet

Table 5: The statistics and the entity sequence for each
dataset

# Class # Sent # Entity Entity sequence (Alphabetical Order)

CoNLL2003 4 21k 35k LOCATION, MISC, ORGANISATION, PERSON

I2B2 16 141k 29k

AGE, CITY, COUNTRY, DATE, DOCTOR, HOSPITAL,
IDNUM, MEDICALRECORD, ORGANIZATION,
PATIENT, PHONE, PROFESSION, STATE, STREET,
USERNAME, ZIP

OntoNotes5 18 77k 104k

CARDINAL, DATE, EVENT, FAC, GPE, LANGUAGE,
LAW, LOC, MONEY, NORP, ORDINAL, ORG,
PERCENT, PERSON, PRODUCT, QUANTITY, TIME,
WORK_OF_ART

constrains the output of each intermediate con-
volutional layer while LUCIR only considers
the final feature embeddings. For classifica-
tion, PODNet used NCA loss instead of the
cross-entropy loss. In our experiments, we
constrain the output of each intermediate stage
of BERT as PODNet constrains each stage of
a ResNet. Following (Douillard et al., 2020),
we set the λc (i.e., loss weight for the POD-
spatial loss) to 3 and λf (i.e., loss weight for
the POD-flat loss) to 1.

D Training Details

The models were implemented in Pytorch (Paszke
et al., 2019) on top of the BERT Huggingface im-
plementation (Wolf et al., 2019). We use the default
hyper-parameters in BERT: hidden dimensions are
768, and the max sequence length is 512. Fol-
lowing Hu et al. (2021), we normalize the feature
vector output by BERT and compute the cosine
similarities between the feature vector and class
representations for predictions.

We use the BIO tagging schema for all three
datasets. For CoNLL2003, we train the model
for ten epochs in each CL step. For OntoNotes5
and I2B2, we train the model for 20 epochs when
PG=2, and 10 epochs when PG=1. The batch size
is set as 8, and the learning rate is set as 4e-4. The
experiments are run on GeForce RTX 2080 Ti GPU.
Each experiment is repeated 5 times.

E T-SNE Visualizations

To deepen the understanding of the forgetting in
CL-NER, we visualize the feature representations
from BERT in Figure 8. Results show that our
method preserves more old knowledge and learns
better feature representations than ExtendNER.

F Additional Experimental Results
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(a) ExtendNER (b) CFNER(Ours)

Figure 8: The T-SNE visualization of the feature representations from BERT. The model is trained on OntoNotes5
in the setting FG-1-PG-1. We randomly select six classes for a demonstration.

Table 6: Comparisons with state-of-the-art methods on
CoNLL2003. The average results as well as standard
derivations are provided. Mi-F1: micro-F1; Ma-F1:
macro-F1. The best F1 results are bold.

FG-1-PG-1 FG-2-PG-1
Dataset Method

Mi-F1 Ma-F1 Mi-F1 Ma-F1

50.84 40.64 57.45 43.58
Finetune Only

±0.10 ±0.16 ±0.05 ±0.18
36.74 29.43 59.12 58.39

PODNet
±0.52 ±0.28 ±0.54 ±0.99
74.15 70.48 80.53 77.33

LUCIR
±0.43 ±0.66 ±0.31 ±0.31
76.17 72.88 76.65 66.72

ST
±0.91 ±1.12 ±0.24 ±0.11
76.36 73.04 76.66 66.36

ExtendNER
±0.98 ±1.8 ±0.66 ±0.64
80.91 79.11 80.83 75.20

CoNLL2003

CFNER(Ours) ±0.29 ±0.50 ±0.36 ±0.32

(a) CoNLL2003 (FG-1-PG-1)

(b) CoNLL2003 (FG-2-PG-1)

Figure 9: Comparison of the step-wise micro-f1 score
on CoNLL2003 (4 entity types).
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