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Abstract

Prompt tuning is a new few-shot transfer
learning technique that only tunes the learn-
able prompt for pre-trained vision and lan-
guage models such as CLIP. However, ex-
isting prompt tuning methods tend to learn
spurious or entangled representations, which
leads to poor generalization to unseen con-
cepts. Towards non-spurious and efficient
prompt learning from limited examples, this
paper presents a novel Counterfactual Prompt
Learning (CPL) method for vision and lan-
guage models, which simultaneously employs
counterfactual generation and contrastive learn-
ing in a joint optimization framework. Partic-
ularly, CPL constructs counterfactual by iden-
tifying minimal non-spurious feature change
between semantically-similar positive and neg-
ative samples that causes concept change and
learns more generalizable prompt representa-
tion from both factual and counterfactual exam-
ples via contrastive learning. Extensive exper-
iments demonstrate that CPL can obtain supe-
rior few-shot performance on different vision
and language tasks than previous prompt tuning
methods on CLIP. On image classification, we
achieve a 3.55% average relative improvement
on unseen classes across seven datasets; on
image-text retrieval and visual question answer-
ing, we gain up to 4.09% and 25.08% relative
improvements across three few-shot scenarios
on unseen test sets respectively.1

1 Introduction

Pre-trained vision and language foundation mod-
els (Radford et al., 2021; Jia et al., 2021) have
shown encouraging results toward open-domain
visual-concept matching. Benefiting from prompt
engineering (Song et al., 2022a; Liu et al., 2022),
where free-form text prompts are designed for spe-
cific task goals, those foundation models can be
easily transferred to a wide array of tasks under

1Our code is released at https://github.com/
eric-ai-lab/CPL.

A: A large long train on a
steel track

B: A large long train on a
steel track near a barn

What if we add a barn to image A
(or remove the barn from image B)?
Will the prompt be changed ?

Figure 1: A conceptual overview of counterfactual
prompt learning. CPL constructs counterfactuals by
identifying non-spurious feature change that causally
causes the prompt change. In this case, the “barn” fea-
ture is the essential cause between Prompt A and B.

zero-shot and few-shot scenarios, including im-
age classification (Deng et al., 2009), visual ques-
tion answering (Shen et al., 2021), image-text re-
trieval (Jia et al., 2021), etc. But manually con-
structing prompts for vision and language models
such as CLIP is a tedious, time-consuming process,
which usually requires prior domain knowledge
and leads to suboptimal solutions.

Prompt tuning (Lester et al., 2021), on the other
hand, liberates us from manual prompt engineering
and automates this process. Prompt tuning meth-
ods (Ju et al., 2021; Lin et al., 2014; Zhou et al.,
2022) are proposed to effectively transfer CLIP to
image recognition tasks after tuning a learnable
prompt with a few examples of the classes. How-
ever, those methods purely conduct empirical risk
minimization (ERM) and optimize for predictive
accuracy, which often produces spurious, ineffi-
cient, or entangled representations (Wang and Jor-
dan, 2021). Therefore, the generalization ability
of existing prompt tuning methods for vision and
language models is limited, and they often fail to
transfer well to unseen classes or concepts. For
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example, the image classification performance of
the SOTA method CoCoOp (Zhou et al., 2022) is
similar or even degrades on unseen classes when
compared with zero-shot CLIP.

Learning non-spurious representation for better
generalization requires disentangling features that
causally determine the prompts. One solution is
counterfactual reasoning. Counterfactual (“counter
to the facts”) is a concept that describes the human
capacity to learn from limited prior experiences by
imagining the outcome of an alternative action that
could have been taken. So we can do counterfac-
tual intervention by asking “what if ...” questions
in prompt learning. For example, as shown in Fig-
ure 1, a change in the visual feature of the barn
would cause the label to change (if we view the
two prompts as two labels).

Therefore, we introduce a new causality-based
approach, Counterfactual Prompt Learning (CPL),
for non-spurious and efficient prompt learning.
First, we introduce a text-based negative sampling
strategy to discover the most semantically-similar
negative sample based on text similarity. Then
we generate a counterfactual example by identify-
ing minimal non-spurious feature change between
semantically-similar positive and negative samples
that causally causes prompt change. Finally, we
adopt contrastive learning in the joint optimization
framework (with counterfactual construction) to
tune the learnable prompts using both factual and
counterfactual examples. The causally fine-tuned
prompts will eventually guide vision-and-language
foundation models to distinguish images from un-
seen concepts, thereby improving the generaliza-
tion ability of prompt learning.

We extensively evaluate CPL using seven stan-
dard datasets for image classification, two for
image-text-retrieval, and one for visual question
answering (VQA). We show that CPL outper-
forms the baseline on all three tasks: on im-
age classification, our method achieves 3.55%
average relative improvement on unseen classes
across the seven datasets in terms of accuracy;
on image-text retrieval, our method improves the
most (4.09% relative improvement in terms of
Recall@1) when using 0.5% of total training
instances on MSCOCO (Lin et al., 2014) and
Flickr30K (Plummer et al., 2015); on VQA, we
gain up to 25.08% relative improvement on the
VQAv2 (Goyal et al., 2017a) dataset.

Our main contributions are summarized below:

• We introduce Counterfactual Prompt
Learning (CPL), a task-agnostic causality-
based prompt learning method to effectively
transfer CLIP to unseen concepts for different
downstream tasks.

• We propose a text-based negative sam-
pling strategy, where we compute
BERTScore (Zhang et al., 2019) between text
prompts, based on which we sample the most
semantically-similar negative images.

• We introduce a optimization framework that
simultaneously constructs counterfactuals by
identifying minimal non-spurious feature
change, and learns the generalized prompt rep-
resentation from both factual and counterfac-
tual examples.

• We conduct extensive experiments on image
classification, image-text retrieval, and visual
question answering, and validate the superior-
ity of CPL to existing prompt tuning methods
in transferring effectiveness on unseen con-
cepts.

2 Related Work

Vision-and-Language Models. Vision-and-
Language models pre-trained on large-scale
image-text pairs have demonstrated great potential
in multimodal representation learning (Jia et al.,
2021; Yao et al., 2021; Yuan et al., 2021). Among
them, the representative CLIP (Radford et al.,
2021) benefits from 400M curated data and defines
various prompt templates to carry out zero-shot
image classification. However, those prompts still
require hand-crafted designs. In this work, we
automatically learn task-agnostic and task-relevant
prompts without human priors. In addition, by
considering the counterfactual examples, we
can further improve various vision-and-language
tasks, including visual question answering and
image-text retrieval in a few-shot scenario.

Prompt Tuning. Many works focus on learning
from discrete natural language prompts, e.g., Auto-
Prompt (Shin et al., 2020) elicits knowledge from
language models with automatically generated dis-
crete prompts. Lately, many other works (Zhou
et al., 2021, 2022) directly tune prompts in con-
tinuous vector forms. Guo et al. (2021) intro-
duces Q-Learning to optimize the soft prompt. P-
Tuning v2 (Liu et al., 2021) shows that continuous
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prompt tuning achieves the same performance as
fine-tuning in various settings. Prompt tuning also
receives great interest in the computer vision do-
main. For example, CoOp proposes a continuous
prompt optimization strategy to avoid prompt de-
sign. CoCoOp (Zhou et al., 2022) extends CoOp by
further learning an instance-conditional network to
generate an input-conditional token for each image.
However, these methods trained with empirical risk
minimization (ERM) may learn to rely on correla-
tions between class labels and spurious attributes
by minimizing average training error (Zhang et al.,
2022). They usually learn spurious, inefficient, and
entangled representation, lacking generalization
ability to unseen scenarios.

Counterfactual Reasoning. A number of re-
cent works have investigated generating counterfac-
tual images (Besserve et al., 2020), or counterfac-
tual text in specific language domains (e.g., court
view (Wu et al., 2020), dialogue generation (Zhu
et al., 2020), Natural Language Inference (Kaushik
et al., 2019; Gokhale et al., 2021), named entity
recognition (Zeng et al., 2020)); On the vision end,
Zhang et al. (2021) proposes to add intervention
over the changed domain on images during the
data-generation process and steer the generative
model to produce counterfactual features to aug-
ment the training process. Agarwal et al. (2020)
uses automated semantic image manipulations to
generate synthetic data to make models more ro-
bust against spurious correlations; On the vision
and language end, Chen et al. (2020) proposes to
generate counterfactual VQA samples by masking
critical objects in images or words in questions to
augment the training data and gain a huge improve-
ment on the VQAv2 dataset. Gokhale et al. (2020)
proposes template-based counterfactual image aug-
mentation methods. Fu et al. (2020) proposes a
novel training strategy for visual language naviga-
tion that dynamically generates counterfactuals to
account for unseen scenarios. To our best knowl-
edge, CPL is the first to apply counterfactual gener-
ation to prompt-based few-shot learning for vision
and language models.

Few-shot Learning. Recently, several few-shot
efficient learners on vision (He et al., 2022) and lan-
guage (Brown et al., 2020) tasks were proposed in-
cluding CLIP. GPT (Brown et al., 2020), as a strong
few-shot learner, is capable of performing a new
language task by learning from only a few training

instances. Frozen (Tsimpoukelli et al., 2021) is de-
veloped based on GPT and made into a multimodal
few-shot learner by expanding the soft prompting
to include a collection of images and text. Their
method demonstrates strong few-shot capabilities
on visual question answering and image classifi-
cation tasks. Similarly, CoCa (Yu et al., 2022) is
pre-trained from scratch and end-to-end using both
web-scale data and annotated images by consider-
ing all labels as text, therefore unifying supervi-
sion for learning representations through natural
language. It can achieve state-of-the-art perfor-
mance with few-shot transfer or by minimal task-
specific adaptation on a wide range of downstream
vision-and-language tasks, including visual recog-
nition, multimodal understanding, crossmodal re-
trieval, and image captioning. SimVLM (Wang
et al., 2021b) is pre-trained with prefix language
modeling on datasets with weak supervision. It
exhibits its efficacy on few-shot captioning tasks.
Even though all these models mentioned above can
already achieve improvement on some few-shot
tasks, how to exploit their few-shot reasoning abil-
ity using limited training examples still deserves
the effort. In this work, we study this direction
via the lens of prompt learning utilizing CLIP as a
starting point.

3 Counterfactual Prompt Learning

3.1 Problem Formulation
Our goal is to learn generalizable prompt repre-
sentation with limited data. The prompt in CLIP
is divided into two parts: task-agnostic prompt p
and task-relevant prompt h. Task-agnostic prompt
p is learned end-to-end automatically. The set of
task-relevant prompts H = {h0,h1, . . . ,hC} is
mapped from the label space Y with some prede-
fined rules hinging on the task type, where C is the
total number of classes. The final prompt tc is the
concatenation of the task-agnostic prompt and the
task-relevant prompt fed into CLIP’s text encoder:
tc = [p,hc].

Existing works to this problem (Zhou et al., 2021,
2022) propose to first extract visual feature v of
each input image by feeding it into CLIP’s vision
encoder F ; and text embeddings are generated by
feeding {tc}Cc=1 into the CLIP’s text encoder G.
The probability of i-th class is computed as

p(ti | x) =
e

<G(ti),v>
τ

∑C
c=1 e

<G(tc),v>
τ

, (1)
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Figure 2: The counterfactual prompt learning framework. We freeze the vision encoder F and the text encoder
G, and only optimize the task-agnostic prompts and the instance-conditioned net M (blue blocks). Please refer to
Section 3.2 for the explanation.

where τ is the temperature parameter, < · > de-
notes the cosine similarity. Cross-entropy loss is
then minimized and the gradients can be back-
propagated via the text encoder G to update the
learnable prompt representation p. During training,
the weights of CLIP always remain frozen. During
inference, Eq. 1 is used to compute the probability
for each class.

3.2 Method Overview

An overview of the Counterfactual Prompt Learn-
ing (CPL) framework is shown in Figure 2. For
pre-processing, we construct task-relevant prompts
for all training samples. The goal is to optimize
the task-agnostic prompt p.2 During training,
given a positive image-prompt pair, we first per-
form text-based negative sampling to find the most
semantically-similar negative sample based on text
similarity scores. Then we adopt a controllable
counterfactual generation strategy to construct the
counterfactual from the positive and negative sam-
ples in the visual feature space. Finally, we perform
contrastive learning using both generated counter-
factual image features and factual image features
in a joint optimization framework to fine-tune the
task-agnostic prompt p, allowing the model to un-

2Together with the instance-conditional net M as intro-
duced in Zhou et al. (2022). For simplicity, we will only use
p hereafter as p and M are always optimized together.

derstand non-spurious semantic information and
learn generalized prompt representations.

3.3 Controllable Counterfactual Generation

By viewing image feature v as a potential cause
of the label, a non-spurious feature shall be a suf-
ficient cause of the label. So we would like to
generate counterfactuals by identifying minimal
non-spurious feature change that causes the label
change. The illustration of the counterfactual con-
struction process is shown in Figure 3. Given posi-
tive image features v and negative image features
v−, we can generate negative counterfactual image
features v′ as below:

v′ = (1− u) ◦ v + u ◦ v−, (2)

where ◦ is the element-wise multiplication and u
is the parameter controlling the amount of nega-
tive image feature that replaces the positive image
feature. The negative image features are extracted
from those images similar to the original image
at the semantic level, which we will introduce in
Section 3.4.

To capture the non-spuriousness, we would like
to construct counterfactuals by replacing essential
non-spurious features only. This can be achieved
by minimizing the amount of feature change u∗

to the original image that can causally incur label
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Figure 3: Counterfactual generation process. v and
c are the positive image feature and label, while v−

and c− are the negative image feature and label. ◦ is
element-wise multiplication. By mixing v and v−, the
counterfactual image feature v′ is predicted as a nega-
tive label c− by the discriminator D. u is minimized
so a minimal change to the positive image feature u is
captured here to causally change the label.

change:

minimize
u∗ ∥u∗∥1
s.t. u∗ = argmax

u
Dc−(v

′).
(3)

Given the factual and counterfactual features v
and v′, we aim to learn the prompt that can help
CLIP better align visual features v and textual fea-
tures G(t) with same semantic meanings. This can
be achieved by maximizing the mutual information
(MI) between v and G(t). Therefore, by minimiz-
ing the InfoNCE loss (Hjelm et al., 2018), we can
maximize the lower bound on MI(v, G(t)). To this
end, we define the contrastive objective function
based on the InfoNCE estimator following Khosla
et al. (2020):

LCL(p,u
∗) = −log(

e
S(v,G(t))

τ

e
S(v,G(t))

τ + e
S(v′,G(t))

τ

),

(4)
where S (·, ·) is normally the cosine similarity func-
tion and τ is the temperature value.

3.4 Text-based Negative Sampling

We then discuss how to perform negative sampling
for constructing counterfactual features. As sug-
gested in Robinson et al. (2020), good negative
samples have different labels and are difficult to be
distinguished from an anchor point, while their se-
mantic representations are close (Suresh and Ong,
2021). Since not all negative samples can serve
as useful negatives (Chuang et al., 2020), indis-
criminate leverage of these data may harm model

robustness and algorithm efficiency. Therefore, dur-
ing training, in each batch, we only utilize the most
semantically-similar one to generate counterfactual
image features. Other image samples are filtered
out.

Semantic concepts may be highly complex in the
visual representations, and thus it is hard to directly
measure semantic similarity in the visual space.
While language is more expressive and naturally
preserves semantic meanings. Therefore, we pro-
pose a text-based negative sampling method. We
first measure the text similarity between prompts
with BERTScore (Zhang et al., 2019), which com-
putes pairwise cosine similarity between reference
sentences and candidate sentences using BERT
contextual embedding (Devlin et al., 2019). We
compute a similarity matrix with the value of each
element being:

sim(i, j) = BERTScore(hi,hj). (5)

Denote B as the collection of sampled instances.
During training, each prompt hc ∈ B (1 ≤ c ≤ C,
where C is the size of sampled instances) can be
treated as a query. Given a query prompt hq, its
most semantically similar prompt (the one with
the highest BERTScore) hk is searched from B.
Then we use the CLIP vision encoder to obtain the
features of the corresponding positive and negative
images v and v−.

3.5 Joint Optimization
In addition to the contrastive learning loss as intro-
duced in Eq. 4, we also adopt the standard cross-
entropy loss for training:

LCE(p) = −
∑

c

yc log p (tc | x) , (6)

where yc denotes the one-hot ground-truth an-
notation of the label. We treat all downstream
tasks in this work as classification tasks, where
the model predicts if the image and text prompt
pair is matched or not.

Then the task-agnostic prompt p is learned
by minimizing the weighted combination of con-
trastive learning loss and cross-entropy loss:

L(p) = LCE(p) + λ · LCL(p,u
∗), (7)

where λ determines the weight of LCL.
In fact, we can seek to put Eq. 3 and Eq. 7 in

a single-stage optimization framework. The in-
tuition is that we generate counterfactual image
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Algorithm 1 Counterfactual Prompt Learning
1: X: image space
2: Y: label space
3: hc: task-relevant prompt for the c-th class
4: H: the set of task-relevant prompts
5: p: the task-agnostic prompt
6: v: image features
7: v−: negative image features
8: u: parameter controls the generation of counterfactual

image features
9: function CPL(X,Y)

10: H← Y
11: tc ← [p,hc]
12: for each i, j do
13: sim(i, j) = BERTScore(hi,hj) ▷ Eq. 5
14: end for
15: for q in the batch do
16: v ← vq

17: Find the index k that maximize sim(q, k) with the
given index q

18: v− ← vk

19: Generate counterfactual image features ▷ Eq. 2
20: LCE ← cross-entropy loss ▷ Eq. 6
21: LCL ← contrastive loss ▷ Eq. 4
22: Update p and u with the joint optimization loss ▷

Eq. 7
23: end for
24: end function

features with minimal feature change that can max-
imize the negative prediction probability, and at
the same time, utilize contrastive learning to learn
the prompt that can guide CLIP to explicitly distin-
guish between factual images and counterfactual
images. Putting all pieces together, we have:

minimize
p,u∗ LCE(p) + λ · LCL(p,u

∗) + ∥u∗∥1
s.t. u∗ = argmax

u
Dc−(v

′)

where v′ = (1− u) ◦ v + u ◦ v−.
(8)

In Eq. 8, the gradients can be back-propagated all
the way through the text encoder G to the task-
agnostic prompt, making use of the rich knowledge
encoded in the pre-trained CLIP model to optimize
the prompt.

Algorithm 1 presents the learning algorithm of
CPL. In summary, given few input training samples
{(x1, y1) , . . . , (xn, yn)}, CPL consists of three
main steps: (1) compute the similarity matrix be-
tween different text prompts within the sampled
batch; (2) generate counterfactual image features;
(3) optimize p and u with contrastive learning loss
and cross-entropy loss.

3.6 Task-relevant Prompt Construction
We construct task-relevant prompts H for image
classification, image-text retrieval, and visual ques-
tion answering, respectively. For image classifi-

cation, the prompts are class labels for each task;
for image-text retrieval, captions for each image
are adopted as prompts; for visual question an-
swering, we first use a pre-trained generative T5
model (Raffel et al., 2019) to convert the question-
answer pairs into declarative sentences referring
to the VQA prompt generation method proposed
in Song et al. (2022b). Then, motivated by Wei et al.
(2022), we add additional category information into
the prompt generated from templates based on the
question type to help the model perform interme-
diate reasoning steps. Specifically, we add “The
question is asking about others” for Other ques-
tions before the generated declarative sentence. In
a similar vein, “The question is asking about yes
or no” and “The question is asking about numbers”
are added for Yes/No and Number questions.

4 Experiments

4.1 Tasks and Datasets

Image Classification. We employ seven pub-
licly available image classification datasets used
in CLIP: SUN397 (Xiao et al., 2010), Cal-
tech101 (Griffin et al., 2007), ImageNet (Deng
et al., 2009), OxfordPets (Parkhi et al., 2012),
StandfordCars (Krause et al., 2013), Flow-
ers102 (Nilsback and Zisserman, 2008), and
Food101 (Bossard et al., 2014). These datasets
constitute a comprehensive benchmark, which cov-
ers a diverse set of vision tasks including the clas-
sification of generic objects, fine-grained image
recognition, action classification, etc. To evaluate
the generalization ability of methods, we split those
datasets into seen and unseen classes. Only images
in the seen classes will be used for training. The
setting follows the few-shot evaluation protocol in
CLIP, where we use 16 shots for training and full
test sets for testing.

Image-Text Retrieval. We consider two datasets
for image-text retrieval: MSCOCO (Lin et al.,
2014) and Flickr30K (Plummer et al., 2015). We
adopt the widely used Karpathy split (Karpathy
and Fei-Fei, 2015) for both the MSCOCO and
Flickr30K datasets, where MSCOCO contains
113/5K/5K for train/validation/test. Flickr30K con-
tains 29K/1K/1K images for train/validation/test.
We construct few-shot setting subsets for both Co-
CoOp and CPL by taking 0.5%, 1%, and 3% of
training instances. We train the model with the sub-
sets and evaluate its performance on the complete
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Classes Method SUN397 Caltech101 ImageNet OxfordPets StanfordCars Flowers102 Food101 Average

Seen
CLIP 69.40 96.51 72.46 91.33 74.85 72.17 90.12 80.98
CoCoOp 79.08 [+13.95] 97.66 [+1.19] 76.01 [+4.90] 95.18 [+4.22] 70.91 [-5.26] 94.65 [+31.15] 90.67 [+0.61] 86.31 [+6.58]
CPL (ours) 81.05 [+16.79] 97.70 [+1.23] 78.81 [+8.76] 96.69 [+5.87] 75.51 [+0.88] 93.91 [+30.12] 93.01 [+3.21] 88.10 [+8.79]

Unseen
CLIP 75.40 94.10 68.09 97.04 74.95 77.87 91.30 82.68
CoCoOp 76.83 [+1.90] 93.92 [-0.19] 70.44 [+3.45] 97.78 [+0.76] 73.09 [-2.48] 69.24 [-11.08] 91.53 [+0.25] 81.83 [-1.02]
CPL (ours) 80.19 [+6.35] 94.94 [+0.89] 73.17 [+7.46] 98.81 [+1.82] 78.90 [+5.27] 72.30 [-7.15] 93.44 [+2.34] 84.54 [+2.25]

Table 1: Result comparison between CPL and CoCoOp (Zhou et al., 2022) on seen and unseen classes across
seven image classification datasets in terms of accuracy (%) under the few-shot setting. The relative difference (%)
compared with CLIP is reported in color.

Training data used Method Flickr30k MSCOCO Average

0 CLIP 83.00 53.35 68.18

0.5%
CoCoOp 82.40 [-0.72] 55.55 [+4.12] 68.98 [+1.17]
CPL (ours) 85.64 [+3.18] 57.91 [+8.55] 71.78 [+5.28]

1%
CoCoOp 84.80 [+2.17] 56.62 [+6.13] 70.71 [+3.71]
CPL (ours) 86.91 [+4.71] 58.43 [+9.52] 72.67 [+6.59]

3%
CoCoOp 85.90 [+3.49] 58.08 [+8.87] 71.99 [+5.59]
CPL (ours) 87.74 [+5.71] 59.96 [+12.39] 73.85 [+8.32]

Table 2: Result comparison between CPL and CoCoOp
on two image-text retrieval datasets, Flickr30k (Plum-
mer et al., 2015) and MSCOCO (Lin et al., 2014), on the
unseen test sets in terms of Recall@1 (%). The relative
difference (%) over CLIP is reported in color.

Training data used Method VQAv2

0 CLIP 11.83

0.5%
CoCoOp 27.98 [+136.52]
CPL w/o. Category Information 31.68 [+167.79]
CPL 33.39 [+182.25]

1%
CoCoOp 28.51 [+141.00]
CPL w/o. Category Information 34.70 [+193.32]
CPL 35.66 [+201.44]

3%
CoCoOp 30.18 [+155.11]
CPL w/o. Category Information 35.41 [+199.32]
CPL 36.32 [+207.02]

Table 3: Result comparison on the VQAv2
dataset (Goyal et al., 2017a) in terms of accuracy (%).
The relative improvements over CLIP are reported in
color. Incorporating category information into task-
relevant prompts can further improve the performance.

test set. We use Recall at 1 (R@1) as the default
evaluation metric.

Visual Question Answering. VQAv2 (Goyal
et al., 2017b) is an extended dataset from the
VQA (Antol et al., 2015) dataset. The questions are
categorized into three types: Number, Yes/No, and
Other. We set up the experiments following An-
derson et al. (2018), which treats visual question
answering as a classification problem: for each
question, the model picks the corresponding an-
swer from a given set of predefined most frequent
candidate answers and matches it with the image.

The questions are first converted into a masked
template using the pre-trained T5 model and pre-
defined rules. The infilled template along with the
questions will be turned into prompts that naturally
connect questions and answers. The model will
predict whether the given prompt and image pairs
are matched. We construct the few-shot setting by
taking 0.5%, 1%, and 3% instances for training.

4.2 Implementation Details

Baselines. We mainly compare CPL with Co-
CoOp (Zhou et al., 2022), one of the earliest prompt
tuning methods proposed for vision-and-language
pre-trained models. CoCoOp considers each input
image and injects the learnable instance-aware to-
kens into the context vectors as the final prompt.
For a fair comparison, both CPL and CoCoOp
adopt CLIP (Radford et al., 2021) as the pre-trained
vision-and-language backbone and are compared
with respect to their relative improvements over
zero-shot CLIP.

Prompt Tuning. The task-agnostic prompt is ran-
domly initialized from a zero-mean Gaussian dis-
tribution with the standard deviation 0.02, where
we set length L = 4 by default. For vision and
language tasks, in contrast to image classification,
where an image is labeled by a category, the task-
relevant prompts comprise more fine-grained de-
tails, usually a sentence. We here similarly to-
kenize the whole sentence using the CLIP word
embedding (Radford et al., 2021), and feed the tok-
enized results to the text encoder with task-agnostic
prompt vectors, to generate the language embed-
ding for each prompt. In both the image-text re-
trieval and visual question answering, all data in
the test set can be treated as belonging to unseen
classes.
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4.3 Main Results

Image Classification. The experimental results
for image classification are shown in Table 1. With
better prompts learned from counterfactual exam-
ples, our CPL method achieves clear advantages
over CoCoOp for both seen and unseen classes
across almost all datasets. Particularly on unseen
classes, we gain an average relative improvement
of 3.55%.

Meanwhile, CoCoOp shows its poor generaliza-
tion ability. Specifically, we found that CoCoOp
performs worse than CLIP on StandfordCars on
both seen and unseen classes, and on Caltech101
and Flower102 on unseen classes, indicating that it
tends to learn and leverage spurious relations and
could not generalize well on unseen classes in some
cases. We believe all these mentioned above can
be sufficient evidence that the main idea of CPL,
learning non-spurious prompt representation can
aid CLIP adapting at test time, is practical.

Image-Text Retrieval. Table 2 reports results on
image-text retrieval on the unseen test set. CPL
can beat the zero-shot CLIP consistently across
the three different settings, demonstrating that CPL
can also learn better prompt representation and
more effectively exploit the limited amount of data
on image-text retrieval. Meanwhile, CoCoOp per-
forms even worse than CLIP on Flickr30k using
0.5% training data, which suggests that a tiny quan-
tity of training data for image-text retrieval can lead
to spurious prompt representation if using naïve
instance-conditional prompt tuning method.

Visual Question Answering. For visual ques-
tion answering, the results are shown in Table 3.
As can be seen, CPL surpasses the baseline Co-
CoOp with a relative improvement of up to 25.08%
when using 1% instances for training. This proves
the concept that CPL can be effective on more
complicated vision-and-language tasks. In fact, vi-
sual question answering is more challenging for
zero-shot CLIP which is pre-trained for image-text
matching. During pre-training, CLIP sees most
sentences similar to captions in image-text retrieval
and those captions can be directly used as prompts;
while for VQA, question-answer pairs have to be
adapted into declarative prompts. Therefore, zero-
shot CLIP has poor performance on VQA, but few-
shot prompt tuning via CPL can help reduce the
prompt domain gap significantly. Apart from the
vanilla CPL method, we examined another variant
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Tiger cat
(BERTScore = 0.9126)

Tabby cat Jeep
(BERTScore = 0.8556)

A big bunch of ripe 
yellow bananas on 
display

The plate is empty on 
the table
(BERTScore = 0.8908)

Bunches of bananas are 
neatly arranged on a 
display
(BERTScore = 0.9313)

Figure 4: Visualization of the weights of the con-
troller parameter u on images. The first column is
the original positive examples; the second column is
BERT-sampled negative examples; the third column is
randomly-sampled negative examples for comparison.
The BERTScore between the text prompts of positive
examples and sampled examples are shown at the bot-
tom.

of CPL where we do not add additional category
information into the prompt (denoted as CPL w/o.
Category Information), the results indicate that con-
structing task-relevant prompts by adding categori-
cal information contributes to the improvement.

4.4 Ablation Analysis
Negative Sampling. We compare the random
sampling vs. BERTScore sampling over ImageNet
for image classification, MSCOCO for image-text
retrieval, and VQAv2 for visual question answering
in Table 4. With more challenging negative exam-
ples, BERTScore sampling leads to more effective
prompt tuning and overbeats random sampling on
all three tasks. The qualitative visualizations of
the two sampling strategies are shown in Figure 4,
from which it can be seen that BERTScore-sampled
images are much more semantically similar to the
original images.

Non-spurious Feature Visualization. We visual-
ize the heatmap of the learned non-spurious feature
weights in the image level in Figure 4. The weights
are mainly centralized on the semantically mean-
ingful regions that are aligned to the text prompts.

Number of Shots in Image Classification. We
then study the effects of the number of shots on
CPL for image classification. Following the few-
shot evaluation protocol adopted in CLIP, we use
4, 8, and 16 shots for training on ImageNet. From
Figure 5, increasing the number of shots keeps
improving the performance of both two methods
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Method ImageNet MSCOCO VQAv2

Random sampling 75.28 57.78 33.01
BERTScore sampling 76.02 58.43 35.66

Table 4: Random sampling vs. BERTScore sampling
for CPL over three tasks. On ImageNet, we measure the
average accuracy across seen and unseen classes. On
MSCOCO and VQAv2, we both use 1% instances for
few-shot learning.

72.83 72.94 73.17

70.25 70.32 70.44

Figure 5: Accuracy comparison on ImageNet (Deng
et al., 2009) unseen classes under three different shots.
CPL performs better than CoCoOp consistently and has
lower standard errors.

on unseen classes. Meanwhile, CPL outperforms
CoCoOp under the three different settings and has
lower standard errors.

Contribution of Contrastive Learning. In Sec-
tion 3, we use the coefficient λ to weigh the con-
trastive learning loss and combine it with the cross-
entropy loss. It is observed that the scale of con-
trastive learning loss is smaller, hence we try to use
a larger λ to balance the two loss terms. Figure 6
shows the average accuracy result across seen and
unseen classes on the SUN397 dataset under four
different λ values. Note that when λ is zero, there
is no contribution from the contrastive loss and the
method actually learns the prompt using standard
cross-entropy loss. From experimental results ob-
tained on the SUN397 dataset, we can observe that
using λ = 1 leads to the best performance.

5 Conclusion

In this paper, we propose a Counterfactual
Prompt Learning (CPL) framework to avoid time-
consuming prompt engineering and learn more gen-
eralizable prompt representation for vision and lan-
guage models. We conduct abundant experiments
on seven widely used image classification datasets,
two image-text retrieval datasets, and one visual
question answering dataset. Our proposed CPL

80.62

77.96

79.82
80.34

Figure 6: Ablation of four different λ values on the
SUN397 dataset in terms of average accuracy (%). The
performance of CPL peaks at λ = 1.

method outperforms the previous prompt tuning
baseline and the zero-shot CLIP across the three
tasks. In the future, we plan to develop more so-
phisticated methods based on CPL and extend CPL
to other vision and language tasks.

Limitations

There are fairness issues in large pre-trained vision
and language models such as CLIP. The proposed
prompt learning method in this study automatically
learns the prompt and does not address those issues
in the pre-trained model. Considering the method
is proposed for the few-shot setting, careful inspec-
tion and tuning are also needed when testing our
method on other biased datasets. The methodolo-
gies proposed in Booth et al. (2021) and Wang et al.
(2021a) may possibly be paired with CPL to po-
tentially address the issues. Another limitation is
the absence of explainability in CPL, which is a
common problem with existing soft prompt tun-
ing methods. Back-mapping tuned soft prompts
representation to natural language is a way for in-
terpretation; however, due to the limited size of
vocabulary used by CLIP during the training, prior
methods such as searching for the nearest words in
the embedding space can not accurately match the
vector to natural language. Expanding the dictio-
nary size for CLIP embedding or developing more
advanced back-mapping techniques can possibly
address the limitation.
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