
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 3204–3214
December 7-11, 2022 ©2022 Association for Computational Linguistics

Rethinking Positional Encoding in Tree Transformer
for Code Representation

Han Peng, Ge Li∗, Yunfei Zhao, Zhi Jin∗

Key Laboratory of High Confidence Software Technologies (Peking University),
Ministry of Education; Institute of Software, EECS, Peking University, Beijing, China

{phan, lige, zhaoyunfei, zhijin}@pku.edu.cn

Abstract

Transformers are now widely used in code rep-
resentation, and several recent works further
develop tree Transformers to capture the syn-
tactic structure in source code. Specifically,
novel tree positional encodings have been pro-
posed to incorporate inductive bias into Trans-
former. In this work, we propose a novel tree
Transformer encoding node positions based
on our new description method for tree struc-
tures. Technically, local and global soft bias
shown in previous works is both introduced
as positional encodings of our Transformer
model. Our model finally outperforms strong
baselines on code summarization and comple-
tion tasks across two languages, demonstrat-
ing our model’s effectiveness. Besides, exten-
sive experiments and ablation study shows that
combining both local and global paradigms is
still helpful in improving model performance.
We release our code at https://github.com/
AwdHanPeng/TreeTransformer.

1 Introduction

Machine learning for source code aims to learn the
semantic embedding of programs. Due to the for-
mat similarity between code and text (Hindle et al.,
2016), Transformers (Vaswani et al., 2017) are now
widely used in code representation (Hellendoorn
et al., 2019; Zügner et al., 2021; Peng et al., 2021).
Unlike natural language, source code is more logi-
cal and has rich structures such as abstract syntax
trees (AST). Therefore, one research topic of code
intelligence is representing the syntax tree of code.
Several recent works proposed novel tree-based
Transformers by defining the position of each node
to handle tree structure (Shiv and Quirk, 2019; Kim
et al., 2020). In this work, we pursue the research
line of tree Transformer for learning code AST.

In Transformer, positional encoding is crucial to
exploit potential structures of data (such as code

∗Corresponding authors

ASTs or graphs) as other components are entirely
position-invariant. Recently, a growing research
trend is adapting Transformer to more complex
structured data than plain text by modifying posi-
tional encoding, not only in language processing
(Wang et al., 2019b; Nguyen et al., 2020) but also
in graph representation learning field (Dwivedi and
Bresson, 2020; Mialon et al., 2021). As for the
structure-aware Transformers, the key step of en-
coding positions is to find a proper description
for input structure, which means abstracting the
physical structure of data into a suitable math-
ematical form. For example, the vanilla Trans-
former (Vaswani et al., 2017) regards the poten-
tial text order in natural languages as the arrange-
ment of natural numbers, while the graph Trans-
formers (Kreuzer et al., 2021; Dwivedi and Bres-
son, 2020) treat the positional relationship between
graph nodes as the adjacent matrix or Laplacian fur-
ther. Intuitively, a good description should be infor-
mation lossless from which the whole structure of
the original data could be precisely reconstructed.

Recently, several tree-based Transformers incor-
porated with advanced positional encoding are pre-
sented to process the code syntax tree. (Shiv and
Quirk, 2019) represented the position of each node
using sibling orders of all nodes that existed in
its path to the root, while (Kim et al., 2020) de-
fined the relative distance between two nodes as
the traversing up and down steps along the shortest
path connecting them. However, some tree struc-
tures are overlooked by these previous approaches:
the first method assumes the regular tree with a
fixed number of node children, and the second ig-
nores the sibling feature in traversing. In this paper,
we present a new description method for node po-
sitions from which the corresponding tree can be
rebuilt without ambiguity. Specifically, the posi-
tion of each node is recursively described as a list
including multiple 2D coordinates. The coordinate
list of each node first inherits from its parent and

3204

https://github.com/AwdHanPeng/TreeTransformer
https://github.com/AwdHanPeng/TreeTransformer


then includes a new 2D coordinate of itself, where
the first dimension indicates its sibling order and
the second is the total child number of its parent.

We incorporate the proposed description method
into Transformer, powering it to capture tree struc-
tures. Technically, a growing popular approach is
to encode structure as soft inductive bias in posi-
tional encodings of Transformer, in which atten-
tion between all nodes is allowed rather than the
strict aspect of message passing. To the best of our
knowledge, the soft bias in previous works is usu-
ally introduced either in local or global. The local
methods integrate the structure relation as one-hop
edges only for two adjacent nodes (Hellendoorn
et al., 2019; Li et al., 2020), so each node knows
its multi-hop subgraph only by stacking model lay-
ers. In global approaches, inductive bias is injected
into the attention between any nodes regardless of
whether adjacent in trees or graphs (Xu et al., 2020;
Wang et al., 2019a), in which structures can perco-
late fully across graphs in a single layer (Shiv and
Quirk, 2019).

The local and global methods show expressive-
ness in previous works, but the relationship be-
tween them is still not completely studied to the
best of our knowledge. In this paper, we propose
a new tree Transformer that integrates our tree de-
scription in local and global, exploring the interac-
tion between local and global bias. Our model fi-
nally outperforms solid baselines and obtains state-
of-the-art in code summarization and completion
tasks across two different language datasets. Be-
sides, the ablation results show that both global and
local methods are powerful, and the combination
improves model performance further. The contri-
butions of this paper are summarized as follows:

1. We propose a novel tree Transformer which
significantly outperforms existing baselines
across different languages and tasks.

2. We present a new description method for tree
node positions from which tree structure can
be reconstructed precisely.

3. We explore the relationship between the local
and global bias proposed in previous works,
shedding light on future work.

2 Related Work

Representation learning for source code The
availability of big code shows opportunities for

representation learning of programs. Tradition-
ally, code intelligence designers have relied pre-
dominantly on structure or context. Early research
works relied on raw text data for code snippets
(Dam et al., 2016; Wang et al., 2016; Allamanis
et al., 2016; Iyer et al., 2016), mainly focusing
on context and struggle to capture code structure.
After that, a growing active research topic is to
represent the syntax tree structure of code. (Mou
et al., 2016) proposed tree-based convolutional neu-
ral networks and (Alon et al., 2018, 2019) treated
codes as weighted combination of pairwise paths
in AST. (Shiv and Quirk, 2019) proposed a custom
positional encoding to extend Transformers to tree-
structured data. (Kim et al., 2020) defines the rela-
tive distance on the tree as the shorted path between
nodes consisting of up and down steps. Our work
pursues the research line to model code trees, pow-
ering Transformer to learning AST by integrating
tree positional encodings. Besides, several works
also explored leveraging different code representa-
tions jointly, including context, AST structure and
other code graphs. (Allamanis et al., 2017) pro-
posed GGNN to represent program graphs consist-
ing of AST with control-flow and data-flow. (Hel-
lendoorn et al., 2019; Zügner et al., 2021; Peng
et al., 2021) proposed to learn structure and context
together by introducing bias in the self-attention of
code context with the underlying tree structure.

Structure-aware Transformers The Trans-
former model (Vaswani et al., 2017) is the most
widely used architecture in language representation
learning. Several works have recently explored
extending Transformer from plain text to structural
data such as graphs and trees. Technically, two
approaches exist to integrate inductive bias in
Transformer: the hard or soft methods. The hard-
coded methods usually use the mask to restrict
the attention only to adjacent nodes in graphs or
trees (Gao et al., 2021; Wu et al., 2020), that is,
the GNN-like message-passing paradigm exists
therein. However, there is a growing recognition
that inherent limitations exist in message passing,
such as over-smoothing and over-squashing
(Hamilton, 2020; Alon and Yahav, 2020; Kreuzer
et al., 2021). More recently, a growing interest
in deep learning is to encode structure as soft
inductive bias toward more flexible architectures,
such as positional encodings in Transformer. For
example, (Mialon et al., 2021) leveraged relative
positional encoding in self-attention based on

3205



(a) (b)

Figure 1: Example of a tree and position description for each node therein. A virtual node is added as the parent of
each tree node for the sake of description. The position of each node is presented recursively as a list containing
multiple 2D coordinates defined in Eq.1.

positive definite kernels on graphs and (Zügner
et al., 2021; Ying et al., 2021) incorporate relations
such as shortest path distance in Transformer. We
follow this research line and explore encoding
code AST by integrating tree positional encoding
in Transformer as soft inductive bias. Besides,
as discussed in the previous section, we further
divide the method of introducing soft bias into
local and global approaches, and integrate these
two paradigms into our proposed model.

Positional encoding for Transformer The ab-
solute positional encoding in vanilla Transformer
is presented to capture the potential orders of se-
quential text. After that, (Shaw et al., 2018) firstly
proposed the relative positional encoding to Trans-
former. Transformer-XL (Dai et al., 2019) then
re-parameterized the relative positional encoding
of self-attention and T5 (Raffel et al., 2019) simpli-
fied the vector representation of relative positions
in (Shaw et al., 2018) to scalars. More recently, (Ke
et al., 2020; He et al., 2020) proposed the disentan-
gled attention mechanism for positional encoding,
showing the irrationality of adding and applying
the same projection for position and word embed-
ding. The mechanism of untied positional encoding
shows effectiveness in the natural language process
(Tsai et al., 2019; Chen et al., 2021a). In this paper,
we adopt the idea of the disentangled attention of
Transformer and apply it in our model, proving
still useful in encoding positions for complex tree
structures.

3 Approach

In this section, we present our tree Transformer in
two parts. We first show the novel two-dimensional
description for trees, by which each node’s position
is converted as a coordinate list. After that, we

embed position from the description for each node
and then integrate position encoding in the self-
attention of Transformer in local and global.

3.1 A 2D recursive description for code AST
Our proposed description for tree structure is
defined from the tree root to leaves recursively.
Specifically, the position for each node is repre-
sented as:

F (x) =

{
F (f(x)) + {(xi, xj)} if x ̸= root
{(1, 1)} if x = root

(1)
In Eq.1, F (x) is the position description for node
x including multiply coordinates and f(x) is spec-
ified as the parent node for it. It is clearly seen
that F (x) for node x is first inherits from its par-
ent F (f(x)). After that, a new 2D coordinate is
pushed behind the list, in which the first dimension
is the sibling order of node x and the second is the
total child number of its parent f(x). The special
case is for the tree root because no parent exists. So
we add a virtual node as the root’s parent, which
is also commonly seen in the classical algorithms
for trees (Cormen et al., 2022). A clear example of
Eq.1 is shown in Fig.1.

Each 2D coordinate is then converted to a vector
by the lookup embedding table. In this process, a
sample way is first to map each 2D coordinate into
a scalar and then retrieve the vector by it. Another
method is embedding each dimension first and then
adding (or concat) two vectors. Since experiments
show no significant difference, we finally pick the
first approach. After that, the vector sequence Hi

for F (i) is represented as:

Hi = [h(i1), h(i2), ..., h(in)], (2)

where n is the depth of node i in the tree and h(in)

3206



is the embedding vector of the nth coordinate in
the list.

3.2 Encoding tree positions in local and global

Feeding the tree into Transformer requires a lin-
earization method to convert it into a node sequence
first. Since the position feature of each node is
already represented as the corresponding vector se-
quence by our tree description, any AST lineariza-
tion method can be picked for our model. After that,
we feed all nodes into Transformer and integrate
the position vectors in self-attention by positional
encoding.

3.2.1 Self-attention and positional encoding

Self-attention is one of the key modules of Trans-
former and can be formulated as querying the
key-value pairs. We omit the index of layer for
simplicity and denote x = (x1, x2 · · · , xn) and
z = (z1, z2 · · · , zn) as the input and output of self-
attention in the same layer respectively, where n is
the sequence length. The self-attention is presented
as:

αij = (xiW
Q)(xjW

K)T ,

zi =
n∑

j=1

exp (αij)∑n
j′=1 exp (αij′)

(xjW
V ),

(3)

where WQ,WK ∈ Rdx×dk , W V ∈ Rdx×dv is the
projection matrices for query, key and value, re-
spectively. We set dk = dv = d. Note that a
scaling factor 1√

d
should be applied for attention

score αij before softmax and we just omit it for the
sake of description.

The self-attention in Eq.3 is oblivious to struc-
tured input because it effectively views it as an
unordered set of vectors. In NLP, a common way
to bias Transformer towards potential text order is
to add positional encodings. The original Trans-
former adds the absolute sinusoidal positional en-
coding to the token embeddings. After that, (Shaw
et al., 2018) proposed the first relative positional
encoding, in which the real-valued vector repre-
sented relative distance is added to the key before
the dot-product between the query and key. More
recently, several works (Ke et al., 2020; He et al.,
2020) proposed that disentangled attention is better
than adding and applying the same projection for
position and word embedding. The untied absolute
positional encoding proposed by (Ke et al., 2020)

is presented as:

αABS
ij =

1√
2
[(aiW

Q
a )(ajW

K
a )T + αij ], (4)

while the disentangled relative positional encoding
presented in (He et al., 2020) is:

αREL
ij =

1√
3
[(xiW

Q)(rijW
K
r )T

+(rjiW
Q
r )(xjW

K)T + αij ],

(5)

where ai, aj are the absolute position embedding
for position i and j, and rij , rji are viewed as the
relative position embedding between two positions.
WQ

a ,WK
a ,WK

r ,WQ
r ∈ Rdx×dk are projection ma-

trices for absolute and relative position encodings,
and scaling factors 1√

2
and 1√

3
are applied to retain

magnitudes. In conclusion, the attention score of
word embedding αij presented in Eq.3 is added
with the absolute and relative positional attention
score in Eq.4-5, respectively. After that, the atten-
tion score knowing sequential orders is used to the
weighted sum for values.

3.2.2 Attention with tree structure
We modify the untied positional encoding in Eq.4-
5 to learn code AST structure. The Eq.4 and Eq.5
can both efficiently capture the global positional
information in natural languages since both abso-
lute positions and relative distances in texts are
tractable, ranging in max length of 512 commonly.
As for trees, the absolute position in the tree for
each node can be easily drawn from our tree de-
scription, shown in the following details. However,
it is not trivial to learn relative global relationships
between tree nodes since all cases of structure re-
lation are intractable in O(n2) where n is the code
length. This sticking point is alleviated by only
modeling relative distances in trees, such as short-
est path distances (Zügner et al., 2021). However,
tree structures can not be entirely exploited by dis-
tance alone (Peng et al., 2021). Another solution
for this crux is only modeling unique relative paths
in ASTs (Peng et al., 2021), but the feature cover-
age is still not guaranteed in theory.

On the other side, previous works (Hellendoorn
et al., 2019; Chen et al., 2021b) have proved that in-
troducing local bias as relative one-hop edges only
between adjacent nodes is still powerful to model
tree structure. The local methods show a different
paradigm compared to global approaches, so the
intuitive idea is to integrate the local and global

3207



methods. For these reasons, we do not pursue cap-
turing the relative global position but only the local
one in this paper. In conclusion, we introduce the
global bias by absolute encoding and local bias by
relative encoding and then integrate them into the
unified Transformer.

The absolute position vector ai ∈ Rdx for node
i is presented as:

ai = LN(Linear(Concat(Hi))), (6)

where we concat vectors in list Hi of node i se-
quentially and feed it into transforming linear and
normalization layers. We pad zero vectors for short
H lists to max tree depth and truncate last for long
lists before concat vectors.

The relative position vector rij ∈ Rdx between
node i and j is:

rij =





LN(Linear(
∑
h

Hi −
∑
h

Hj))

if f(i) = j ∨ f(j) = i

0⃗ if f(i) ̸= j ∧ f(j) ̸= i

(7)

In Eq.7, f(.) is specified as the node’s parent. For
example, given node x and one of its children y, we
sum the vector lists for these two nodes respectively
and subtract two sum vectors. Thus, the subtrac-
tion vector fed into the linear layer actually is the
embedding of coordinate (yi, yj) defined by Eq.1,
and all cases of it are tractable in O(m) where m is
the size of coordinate embedding table. The linear
and normalization layers of relative vectors have
different parameters from the absolute ones in Eq.6.
The relation vector is set as zero if there is no adja-
cency between two nodes, and obviously, only the
local one-hop relationship is actually embedded in
this encoding process.

We first introduce the global absolute position en-
coding into the self-attention of Transformer. The
attention score βij between absolute positions of
node i and j is presented as:

βij = (aiW
Q
a )(ajW

K
a )T , (8)

where WQ
a ,WK

a ∈ Rdx×dk are projection matrices.
After that, the local relative position attention score
γij is presented as:

γij = (xiW
Q)(rijW

K
r )T

+ (rjiW
Q
r )(xjW

K)T
(9)

where WQ
r ,WK

r ∈ Rdx×dk are projection matrices
for the query and key.

We integrate βij and γij into Transformer,
adding to the attention score αij of word embed-
dings:

Aij =
1√
2
(αij + βij + γij),

zi =

n∑

j=1

exp (Aij)∑n
j′=1 exp (Aij′)

(xjW
V ).

(10)

Although four vector dot-product exist in Aij , we
apply the scaling factors as 1√

2
rather than 1√

4
since

the number of non-zero γi_ for node i is only the
number of its adjacent node and far less than the
length of input node sequence.

3.3 Discussion for tree positional encodings
Our absolute global position encoding for each
node extracts structure features from the positional
description F (.). All nodes’ absolute position vec-
tors are scattered in the structural space with vir-
tual nodes as the origin. Comparing F (.) of two
nodes, a path including a series of steps along tree
branches shows clearly. Thus, our model has the po-
tential to capture the pairwise path by dot-products
in Eq.8 of two position vectors. The main dif-
ferences of our absolute positional encoding com-
pared to the approach presented in (Shiv and Quirk,
2019) are two folds: firstly, we describe each node
position by two dimensions, including not only
the sibling orders but the child number of its par-
ent, while (Shiv and Quirk, 2019) only consider
the first; secondly, we embed each coordinate into
vector directly and integrate it into the disentan-
gled attention, while (Shiv and Quirk, 2019) pa-
rameterize the one-hot concat of sibling orders and
add the position vector to word embeddings before
feeding into Transformer. Therefore, our absolute
positional encoding can be seen as the advanced
generalization of (Shiv and Quirk, 2019).

Our proposed relative positional encoding focus
on the local structural relation between adjacent
nodes. The relative position vector presented in
Eq.7 contains many structural features: firstly, the
asymmetric of rij and rji reveals the parent-child
relationship and vice versa; secondly, two dimen-
sions of coordinates are embedded in relative vec-
tors. Note that our method is different from GREAT
proposed in (Hellendoorn et al., 2019). In GREAT,
each parent node knows its children only by two
types of edges: parent and child edges (Chirkova
and Troshin, 2021), which means the parent does
not know the sibling order of its children. Thus,

3208



our proposed local relative positional encoding can
be viewed as the extension of GREAT.

In both GREAT and our local module, each node
learns structure only from its adjacent nodes, and
its receptive field for structure extends only by
stacking model layers. The local method of in-
troducing bias differs from the global approaches
presented in (Shiv and Quirk, 2019) and our abso-
lute position encoding. In this work, we integrate
the global and local methods and further analyze
their relationship. See Fig2 for explanation to our
model.

Figure 2: Example of a simple tree. We assign each
node’s global position by absolute encoding and intro-
duce the local relationship between adjacent nodes as
relative one-hop edges.

4 Experiment setup

We focus on two tasks of code representation learn-
ing: code summarization and completion. Code
summarization is one of the most popular tasks
in which the function name is predicted given a
function body. The method body typically forms
complete logical units, and the function name tends
to be precisely descriptive. Therefore, code sum-
marization is widely used as benchmark by several
previous works (Allamanis et al., 2016; Alon et al.,
2018; Zügner et al., 2021; Peng et al., 2021). The
code completion is another useful benchmark, and
we mainly focus on the completion for each tree
node (Li et al., 2017; Sun et al., 2020; Kim et al.,
2020). In this task, AST is linearized in depth-first
order for all baselines. Each node is then predicted
given the partial tree built on all the previous nodes
in depth-first order.

In both summarization and completion tasks, we
use the Python150k and JavaScript150k datasets1

preprocessed by (Chirkova and Troshin, 2021).
Both datasets consist of program files from Github
2 and are widely used to evaluate code represen-

1https://eth-sri.github.io
2https://github.com

tation models. To avoid biased results, duplicate
files are removed by the duplication list provided
by (Allamanis, 2019), and identical code files and
functions are further filtered out by (Chirkova and
Troshin, 2021). Both datasets are split into train-
ing/validation/testing sets with 60%/6.7%/33.3%
based on GitHub usernames.

In this paper, we mainly compare our model with
tree-based Transformer models. Before feeding
trees into all compared Transformers, we linearize
ASTs in depth-first order and convert them as node
sequences. Note that each node in AST is asso-
ciated with a type, but not all nodes have values
(such as non-leaf nodes in trees). Therefore, a spe-
cial <empty> value is associated with nodes that
do not have values. The type and value embeddings
are added as input node features fed into models.
For all compared models in both tasks, node to-
kens are not split into subtokens for computational
efficiency following (Chirkova and Troshin, 2021).

4.1 Code summarization
In this task, seq2seq models decode function names
according to function ASTs. Sequential positional
embedding is used in Transformer decoder to cap-
ture the order of function names. All top-level func-
tions short than 250 AST nodes are selected from
filtered files. After extracting functions from code
files, we replace function names with the special
<function_name> token and split target function
names based on CamelCase or snake_case. The
final datasets include 523k/56k/264k functions for
python and 186k/23k/93k for javascript to train-
ing/validation/testing. Multiple metrics are used to
comprehensively measure the quality of generated
function names, including Bleu (Papineni et al.,
2002), F1 and Acc. The generated function name
is viewed as a token list for Bleu while seen as an
unordered set for F1 and Acc.

4.2 Code completion
In this task, Transformer decoders with masked
attention are used to predict each node given all
previous nodes in depth-first order. Two linear
layers with softmax are set on top of Transformer
decoder to predict both value and type of the next
node. We use full ASTs of filtered files except
for sequences less than 2. We split larger ASTs
longer than 500 into overlapping chunks with a
shift of 250. The overlap in each chunk provides a
context for models, and we count loss and met-
rics over the intersection between chunks only

3209



once. The details of this part are also presented
in (Chirkova and Troshin, 2021; Kim et al., 2020).
The final datasets include 186k/20k/100k chunks
for python and 270k/32k/220k for javascript to
training/validation/testing. In this task, we mea-
sure MRR(mean reciprocal rank) and Acc for type
and value, respectively. We assign the zero score
for MRR if the correct token is out of the top 10
candidates. Besides, we measure the combined
Acc(all) and assign true only when both value and
type are correct for each node.

4.3 Hyperparameters

Our model and Transformer baselines all have 6
layers, 8 heads, hidden size D = 512 and FFN
dimension DFF = 2048. The vocabulary sizes
for values are 50K/100K for summarization and
completion tasks respectively, and all types are
preserved. We train all Transformers using Adam
(Kingma and Ba, 2014) with a starting learning
rate of 1e−4 and batch size of 32. We train all
models with 20/60 epochs for summarization and
20/20 epochs for completion in python/javascript.
In summarization, we decay the learning rate by 0.9
in python, use a constant learning rate in javascript,
and a gradient clipping of 5 for both languages.
We use the cosine learning rate schedule with 2k
warmup steps with a zero minimal learning rate
in completion. In conclusion, the training settings
mostly follow (Chirkova and Troshin, 2021) but
with slight differences.

In our model, we set the maximum children num-
ber for each tree as 16 for all tasks and languages,
meaning each dimension in 2D coordinates ranges
from 1 to 16. The coordinate beyond the upper limit
is set as the maximum of 16. Therefore, the size of
the coordinate embedding table is 16(16+1)

2 = 136
since the first dimension of 2D coordinates always
less than or equal to the second one. We set the em-
bedding dimension 32/32 for summarization and
32/16 for completion in python/javascript, respec-
tively. Thus, the embedding table for coordinates
has very few parameters. Besides, we set the max
tree depth as 16/16 for summarization and 16/32 for
completion in python/javascript. The hyperparame-
ter setting of maximum children and depth covers
almost all samples. In our implementation, the po-
sitional vectors a and r are shared across different
heads, while the projection matrices in Eq.8-9 are
different for all heads. These matrices are shared
in different layers for efficiency, which means we

calculate the positional attention score only once.
In summary, we introduce only about 1.3M new
parameters, which is insignificant compared to the
full parameters of Transformer architecture.

4.4 Baselines

Four different Transformers are picked as base-
lines of our model, including vanilla Transformer
(Vaswani et al., 2017), Transformer with relative
positional encoding presented in (Shaw et al., 2018)
and the tree-based Transformers propose by (Shiv
and Quirk, 2019) and (Kim et al., 2020). Before
feeding trees into models, ASTs are uniformly lin-
earized into node sequences in depth-first order.
Therefore, although the former two Transformers
are designed initially for natural language, they still
have the potential to capture tree structure from the
depth-first order. The Transformers in (Shiv and
Quirk, 2019) and (Kim et al., 2020) learn tree struc-
ture by different positional encoding for trees rather
than traversal orders, similar to our model. All mod-
els are trained three times to estimate mean±std on
one Tesla V100 GPU, and we set all hyperparame-
ters of baselines following the best practices shown
in (Chirkova and Troshin, 2021).

We do not introduce GREAT shown in (Hellen-
doorn et al., 2019) as one of the baselines following
(Chirkova and Troshin, 2021), also since our model
can be seen as the generalization of it discussed
in section 3.3. The Transformer models jointly
learn from both context and structure (Zügner et al.,
2021; Peng et al., 2021) are also not introduced as
our baselines. Although it is already proven that
combined multiply modality is helpful for represen-
tation learning of code, we firmly believe that it is
still meaningful to explore tree-based Transformer
only for AST structure.

5 Results

5.1 Overall comparison

The overall results of code completion and summa-
rization tasks are shown in Table 1 and 2, respec-
tively. Note that since slight training differences,
the result of baselines are not entirely consistent
with (Chirkova and Troshin, 2021), but the overall
trend is almost identical.

Our model substantially outperforms baselines
almost in all metrics of both tasks. Firstly, our
model outperforms baselines for completion task
of different languages in almost all metrics shown
in Table 1. The only exception is to predict node

3210



Model
Python JavaScript

MRR
(Type)

MRR
(Value)

ACC
(Type)

ACC
(Value)

ACC
(All)

MRR
(Type)

MRR
(Value)

ACC
(Type)

ACC
(Value)

ACC
(All)

Transformer 88.76 54.28 81.91 49.56 59.27 89.51 62.73 82.73 57.40 63.34
±0.09 ±0.02 ±0.13 ±0.06 ±0.11 ±0.01 ±0.02 ±0.01 ±0.02 ±0.03

(Shaw et al., 2018) 89.05 55.11 82.34 50.48 60.07 90.07 64.13 83.60 59.09 64.80
±0.04 ±0.04 ±0.06 ±0.08 ±0.14 ±0.03 ±0.05 ±0.05 ±0.09 ±0.14

(Shiv and Quirk, 2019) 88.74 54.24 81.81 49.40 59.14 89.78 62.90 83.10 57.48 63.64
±0.10 ±0.20 ±0.14 ±0.26 ±0.21 ±0.10 ±0.15 ±0.15 ±0.20 ±0.15

(Kim et al., 2020) 91.26 54.79 85.64 50.04 62.15 91.21 63.49 85.12 58.24 65.42
±0.03 ±0.02 ±0.05 ±0.02 ±0.02 ±0.04 ±0.09 ±0.06 ±0.10 ±0.11

Our model 91.58 55.62 86.15 51.19 63.19 91.63 64.08 85.91 58.99 66.48
±0.08 ±0.06 ±0.12 ±0.13 ±0.13 ±0.03 ±0.08 ±0.06 ±0.13 ±0.14

w/o first dim. 88.81 54.63 81.90 49.86 59.36 89.91 63.25 83.28 57.97 64.02
±0.11 ±0.09 ±0.17 ±0.14 ±0.26 ±0.06 ±0.22 ±0.10 ±0.28 ±0.29

w/o second dim. 90.78 55.10 84.87 50.52 62.04 91.08 63.50 85.02 58.30 65.47
±0.02 ±0.08 ±0.02 ±0.10 ±0.07 ±0.06 ±0.10 ±0.10 ±0.13 ±0.17

w/o Global-Abs. 91.40 55.25 85.88 50.68 62.70 91.57 63.95 85.84 58.84 66.34
±0.09 ±0.15 ±0.13 ±0.21 ±0.23 ±0.03 ±0.09 ±0.04 ±0.13 ±0.11

w/o Local-Rel. 91.35 55.36 85.81 50.81 62.75 91.18 63.51 85.25 58.28 65.67
±0.07 ±0.03 ±0.12 ±0.08 ±0.15 ±0.07 ±0.15 ±0.11 ±0.18 ±0.12

Table 1: All results on code completion

value in javascript, while our model still gains a
comparable performance to (Shaw et al., 2018).
Interestingly, some baselines only perform well in
predicting either type or value. For example, the rel-
ative sequential Transformer in (Shaw et al., 2018)
performs best to predict node value in javascript
but is poor for node type. Thus, we additionally
calculate the Acc(all) to measure whether models
accurately predict both type and value simultane-
ously. The final result highlights the effectiveness
of our model for predicting both type and value.

Secondly, our model shows effectiveness in sum-
marization task for both languages in Table 2. It
is worth noting that although baselines perform
similarly, consisting of observations in (Chirkova
and Troshin, 2021), our model still improves from
them. It may indicate that previous works do not
learn code AST structure well and therefore meet
the performance bottleneck in this task.

5.2 Ablation study
We explore the roles of each part of our approach,
including two dimensions in each coordinate and
global/local modules to introduce structural bias.

Two dimensions of tree description Our ap-
proach describes each node’s position as a 2D co-
ordinate list. To verify the benefit of learning from
both dimensions, we consider removing one di-

mension of each coordinate before feeding it into
Transformer. The ablation results for each dimen-
sion on different tasks are shown in Table 1 and 2.
We find that model’s performance shows noticeable
declines after removing either dimension, proving
that all dimensions are helpful.

Global and local encoding for tree position Our
model introduces global and local soft bias to en-
code tree structures. To explore the roles of each
part, we remove either global or local modules in
self-attention of Transformer, which means only
adding either β or γ to the attention score α of
word embedding in Eq.10. The ablation results
are shown in Table 1 and 2. We find that both en-
coding methods are powerful for each task: only
global or local method already outperforms almost
all baselines. The comparison again proves that 2D
description for trees is beneficial and also shows
that the disentangled attention mechanism shown
in NLP is still helpful in modelling complex tree
positions. We then compare the performance of
each part to the whole model and find that model’s
performance improves further than the single lo-
cal or global component. For this phenomenon,
we speculate that since the local method extracts
the relationship between nodes by strictly stacking
model layers, local features are less likely to be lost.

3211



Model
Python JavaScript

Bleu F1 Acc Bleu F1 Acc

Transformer 56.29±0.06 33.95±0.28 18.29±0.44 56.51±0.13 22.62±0.59 11.66±0.34
(Shaw et al., 2018) 56.86±0.30 35.58±0.48 19.51±0.41 56.75±0.13 23.22±0.73 11.32±1.78
(Shiv and Quirk, 2019) 56.50±0.19 34.54±0.38 18.89±0.48 57.04±0.23 24.01±0.21 11.53±0.53
(Kim et al., 2020) 57.02±0.17 35.55±0.41 19.29±0.35 57.33±0.38 23.47±0.28 12.07±0.74

Our model 57.28±0.16 36.00±0.10 19.97±0.17 57.72±0.19 25.03±0.37 13.21±0.24

w/o first dim. 57.10±0.14 35.94±0.21 19.54±0.20 57.40±0.25 24.22±0.65 12.92±0.27
w/o second dim. 56.89±0.15 35.36±0.10 19.24±0.48 57.27±0.09 24.30±0.29 12.66±0.69

w/o Global-Abs. 56.83±0.14 35.80±0.29 19.47±0.10 57.27±0.32 23.86±0.10 12.30±0.65
w/o Local-Rel. 56.95±0.10 35.36±0.37 19.29±0.66 57.50±0.05 23.74±0.18 13.13±0.09

Table 2: All results on code summarization

On the other hand, although the global method the-
oretically knows the complete relationship between
arbitrary nodes, global bias is relatively soft and
perhaps fragile. As a result, the local way shows
benefits to polishing the global perspective. To the
best of our knowledge, no previous work explored
combining them, while we finally show the benefits
of fusing the local and global paradigms.

6 Conclusion

We propose a new tree Transformer encoding
position for each node based on our novel two-
dimensional description of tree structures. Tech-
nically, our model introduces soft bias as the posi-
tional encoding of Transformer in global and local
ways. Our model finally outperforms strong base-
lines on code summarization and completion tasks
across two different languages, highlighting the
effectiveness of our approach.

7 Acknowledgements

We thank all reviewers for their constructive com-
ments and Kechi Zhang for the discussion on the
manuscript. This research is supported by the Na-
tional Natural Science Foundation of China un-
der Grant No. 62072007, 62192733, 61832009,
62192731, 62192730.

Limitations

In this work, we propose a new tree transformer
and compare it with several baselines in two tasks
of different languages. To comprehensively and
precisely measure the performance of our model
and all baselines, we train all models three times.
We do not entirely rely on the results produced by
previous work, and just choose them as references.

As a result, our experiments may produce a lot of
carbon dioxide and consume electrical power.

In this paper, we mainly focus on the representa-
tion learning for source code on the function level
(or in similar length as functions) and do not dis-
cuss the model scalability to the corpus of extreme
long source code (such as full program files). We
believe that learning from long source code is an in-
teresting and valuable research topic, and perhaps
explore extending our model for it in the future.

We believe our approach should be workable on
most tasks related to code trees in theory. How-
ever, since additional code graph structure, includ-
ing data-flow and control-flow, isn’t considered
in our approach, some related tasks may not be
suitable. Besides, the additional context feature
of code tokens is also not discussed, and recently
Transformer models jointly learn from both context
and tree structure are not mentioned as our base-
lines. To combine context and structure, a starting
point is to map tree nodes to code tokens. After
that, it should be useful for our model to add po-
sitional encoding of code context orders for these
assigned nodes, and we perhaps explore it in the
future.

References
Miltiadis Allamanis. 2019. The adverse effects of code

duplication in machine learning models of code. In
Proceedings of the 2019 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software, pages
143–153.

Miltiadis Allamanis, Marc Brockschmidt, and Mah-
moud Khademi. 2017. Learning to repre-
sent programs with graphs. arXiv preprint
arXiv:1711.00740.

3212



Miltiadis Allamanis, Hao Peng, and Charles Sutton.
2016. A convolutional attention network for ex-
treme summarization of source code. In Interna-
tional conference on machine learning, pages 2091–
2100. PMLR.

Uri Alon, Shaked Brody, Omer Levy, and Eran Ya-
hav. 2018. code2seq: Generating sequences from
structured representations of code. arXiv preprint
arXiv:1808.01400.

Uri Alon and Eran Yahav. 2020. On the bottleneck of
graph neural networks and its practical implications.
arXiv preprint arXiv:2006.05205.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran
Yahav. 2019. code2vec: Learning distributed rep-
resentations of code. Proceedings of the ACM on
Programming Languages, 3(POPL):1–29.

Pu-Chin Chen, Henry Tsai, Srinadh Bhojanapalli,
Hyung Won Chung, Yin-Wen Chang, and Chun-Sung
Ferng. 2021a. A simple and effective positional en-
coding for transformers. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2974–2988.

Zimin Chen, Vincent Josua Hellendoorn, Pascal Lam-
blin, Petros Maniatis, Pierre-Antoine Manzagol,
Daniel Tarlow, and Subhodeep Moitra. 2021b.
PLUR: A unifying, graph-based view of program
learning, understanding, and repair. In Advances in
Neural Information Processing Systems.

Nadezhda Chirkova and Sergey Troshin. 2021. Empir-
ical study of transformers for source code. In Pro-
ceedings of the 29th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, pages 703–
715.

Thomas H Cormen, Charles E Leiserson, Ronald L
Rivest, and Clifford Stein. 2022. Introduction to
algorithms. MIT press.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language mod-
els beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.

Hoa Khanh Dam, Truyen Tran, and Trang Pham. 2016.
A deep language model for software code. arXiv
preprint arXiv:1608.02715.

Vijay Prakash Dwivedi and Xavier Bresson. 2020. A
generalization of transformer networks to graphs.
arXiv preprint arXiv:2012.09699.

Shuzheng Gao, Cuiyun Gao, Yulan He, Jichuan Zeng,
Lun Yiu Nie, and Xin Xia. 2021. Code structure
guided transformer for source code summarization.
arXiv preprint arXiv:2104.09340.

William L Hamilton. 2020. Graph representation learn-
ing. Synthesis Lectures on Artifical Intelligence and
Machine Learning, 14(3):1–159.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Vincent J Hellendoorn, Charles Sutton, Rishabh Singh,
Petros Maniatis, and David Bieber. 2019. Global
relational models of source code. In International
conference on learning representations.

Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su,
and Premkumar Devanbu. 2016. On the naturalness
of software. Communications of the ACM, 59(5):122–
131.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, and
Luke Zettlemoyer. 2016. Summarizing source code
using a neural attention model. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2073–2083.

Guolin Ke, Di He, and Tie-Yan Liu. 2020. Rethink-
ing the positional encoding in language pre-training.
arXiv preprint arXiv:2006.15595.

Seohyun Kim, Jinman Zhao, Yuchi Tian, and Satish
Chandra. 2020. Code prediction by feeding trees to
transformers. arXiv preprint arXiv:2003.13848.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vin-
cent Létourneau, and Prudencio Tossou. 2021. Re-
thinking graph transformers with spectral attention.
Advances in Neural Information Processing Systems,
34.

Jian Li, Yue Wang, Michael R Lyu, and Irwin King.
2017. Code completion with neural attention and
pointer networks. arXiv preprint arXiv:1711.09573.

Zhongli Li, Qingyu Zhou, Chao Li, Ke Xu, and Yunbo
Cao. 2020. Improving bert with syntax-aware local
attention. arXiv preprint arXiv:2012.15150.

Grégoire Mialon, Dexiong Chen, Margot Selosse,
and Julien Mairal. 2021. Graphit: Encoding
graph structure in transformers. arXiv preprint
arXiv:2106.05667.

Lili Mou, Ge Li, Lu Zhang, Tao Wang, and Zhi Jin. 2016.
Convolutional neural networks over tree structures
for programming language processing. In Thirtieth
AAAI Conference on Artificial Intelligence.

Xuan-Phi Nguyen, Shafiq Joty, Steven CH Hoi, and
Richard Socher. 2020. Tree-structured attention
with hierarchical accumulation. arXiv preprint
arXiv:2002.08046.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th annual meeting of the Association for Computa-
tional Linguistics, pages 311–318.

3213

https://openreview.net/forum?id=GEm4o9A6Jfb
https://openreview.net/forum?id=GEm4o9A6Jfb


Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, and Zhi
Jin. 2021. Integrating tree path in transformer for
code representation. Advances in Neural Information
Processing Systems, 34.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
arXiv preprint arXiv:1803.02155.

Vighnesh Shiv and Chris Quirk. 2019. Novel positional
encodings to enable tree-based transformers. Ad-
vances in Neural Information Processing Systems,
32:12081–12091.

Zeyu Sun, Qihao Zhu, Yingfei Xiong, Yican Sun, Lili
Mou, and Lu Zhang. 2020. Treegen: A tree-based
transformer architecture for code generation. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pages 8984–8991.

Yao-Hung Hubert Tsai, Shaojie Bai, Makoto Yamada,
Louis-Philippe Morency, and Ruslan Salakhutdinov.
2019. Transformer dissection: A unified understand-
ing of transformer’s attention via the lens of kernel.
arXiv preprint arXiv:1908.11775.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Song Wang, Devin Chollak, Dana Movshovitz-Attias,
and Lin Tan. 2016. Bugram: bug detection with n-
gram language models. In Proceedings of the 31st
IEEE/ACM International Conference on Automated
Software Engineering, pages 708–719.

Xing Wang, Zhaopeng Tu, Longyue Wang, and Shum-
ing Shi. 2019a. Self-attention with structural position
representations. arXiv preprint arXiv:1909.00383.

Yau-Shian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019b. Tree transformer: Integrating tree structures
into self-attention. arXiv preprint arXiv:1909.06639.

Hongqiu Wu, Hai Zhao, and Min Zhang. 2020. Code
summarization with structure-induced transformer.
arXiv preprint arXiv:2012.14710.

Zenan Xu, Daya Guo, Duyu Tang, Qinliang Su, Linjun
Shou, Ming Gong, Wanjun Zhong, Xiaojun Quan,
Nan Duan, and Daxin Jiang. 2020. Syntax-enhanced
pre-trained model. arXiv preprint arXiv:2012.14116.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-
Yan Liu. 2021. Do transformers really perform badly
for graph representation? Advances in Neural Infor-
mation Processing Systems, 34:28877–28888.

Daniel Zügner, Tobias Kirschstein, Michele Catasta,
Jure Leskovec, and Stephan Günnemann. 2021.
Language-agnostic representation learning of source
code from structure and context. arXiv preprint
arXiv:2103.11318.

3214


