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Abstract

This work proposes a syntax-enhanced gram-
matical error correction (GEC) approach
named SynGEC that effectively incorporates
dependency syntactic information into the en-
coder part of GEC models.1 The key challenge
for this idea is that off-the-shelf parsers are
unreliable when processing ungrammatical sen-
tences. To confront this challenge, we pro-
pose to build a tailored GEC-oriented parser
(GOPar) using parallel GEC training data as a
pivot. First, we design an extended syntax rep-
resentation scheme that allows us to represent
both grammatical errors and syntax in a uni-
fied tree structure. Then, we obtain parse trees
of the source incorrect sentences by projecting
trees of the target correct sentences. Finally,
we train GOPar with such projected trees. For
GEC, we employ the graph convolution net-
work to encode source-side syntactic informa-
tion produced by GOPar, and fuse them with
the outputs of the Transformer encoder. Ex-
periments on mainstream English and Chinese
GEC datasets show that our proposed SynGEC
approach consistently and substantially outper-
forms strong baselines and achieves competi-
tive performance. Our code and data are all pub-
licly available at https://github.com/
HillZhang1999/SynGEC.

1 Introduction

Given an ungrammatical sentence, the grammat-
ical error correction (GEC) task aims to produce
a grammatical target sentence with the intended
meaning (Grundkiewicz et al., 2020; Wang et al.,
2021). Recent mainstream approaches treat GEC
as a monolingual machine translation (MT) task
(Yuan and Briscoe, 2016; Junczys-Dowmunt et al.,
2018). Standard encoder-decoder based MT mod-
els, e.g., Transformer (Vaswani et al., 2017), have

˚ Corresponding author.
1Although this work focuses on the dependency syntax

structure, SynGEC can also be extended to the constituency
syntax structure straightforwardly.

emerged as a dominant paradigm and achieved
state-of-the-art (SOTA) results on various GEC
benchmarks (Rothe et al., 2021; Stahlberg and Ku-
mar, 2021; Sun et al., 2022; Zhang et al., 2022).
Despite their impressive achievements, most work
treats the input sentence as a sequence of tokens,
without explicitly exploiting syntactic or semantic
information.

Compared with MT, GEC has two peculiarities
that directly motivate this work. First, the training
data for GEC models is much less abundant, which
may be alleviated by incorporating linguistic struc-
ture knowledge like syntax. As shown in Table 1
and Table 5, the English and Chinese GEC tasks
only have about 126K and 157K high-quality la-
belled source/target sentence pairs for training, if
not considering the highly noisy crowd-annotated
Lang8 data (Mita et al., 2020). Second, according
to our preliminary observation, many errors in un-
grammatical sentences are intrinsically correlated
with syntactic information. For example, errors like
inconsistency in tense or singular-vs-plural forms
can be better detected and corrected with the help
of long-range syntactic dependencies.

In this paper, we propose SynGEC, an approach
that can effectively inject the syntactic structure of
the input sentence into the encoder part of GEC
models. The critical challenge here is that off-the-
shelf parsers are unreliable when handling ungram-
matical sentences. On the one hand, off-the-shelf
parsers are trained on clean treebanks that only
consist of grammatical sentences. When parsing
ungrammatical sentences, their performance may
sharply degrade due to the input mismatch. On
the other hand, mainstream syntax representation
schemes, adopted by existing treebanks, do not
cover the non-canonical structures arising from
grammatical errors. In consequence, under such
schemes, it is sometimes difficult to find a plausible
syntactic tree to properly parse an ungrammatical
sentence (e.g., the sentence in Figure 1(d)).
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(d) Missing errors.

Figure 1: Illustration of our extended syntax representation scheme. H denotes the missing word.

Indeed, there have been several prior works that
try to improve syntactic parsing for ungrammatical
texts by annotating data (Dickinson and Ragheb,
2009; Berzak et al., 2016; Nagata and Sakaguchi,
2016). However, these works do not extend exist-
ing syntax representation schemes to accommodate
errors, which means that they make little change on
the original syntactic label sets. Besides, manual
annotation is expensive and time-consuming, so
their annotated treebanks for ungrammatical sen-
tences are of a relatively small scale.

To confront the challenge of unreliable perfor-
mance of off-the-shelf parsers on ungrammatical
sentences, we propose to train a tailored GEC-
oriented parser (GOPar). The basic idea is to utilize
parallel source/target sentence pairs in the GEC
training data. First, we parse the target correct sen-
tences using a vanilla off-the-shelf parser. Then, we
construct the tree for the source incorrect sentences
via tree projection. To accommodate grammatical
errors, we propose an extended syntax representa-
tion scheme based on several straightforward rules,
which allows us to represent both grammatical er-
rors and syntax in a unified tree structure. Finally,
we train GOPar directly on the automatically con-
structed trees of the source incorrect sentences in
the GEC training data. During both GEC training
and evaluation procedures, GOPar is used to gener-
ate syntactic information for the input sentences.

To incorporate syntactic information provided
by GOPar, we cascade several label-aware graph
convolutional network (GCN) layers (Kipf and
Welling, 2017; Zhang et al., 2020a) above the
encoder of our baseline Transformer-based GEC
model. We conduct experiments on two widely-
used English GEC evaluation datasets, i.e., CoNLL-
14 (Ng et al., 2014) and BEA-19 (Bryant et al.,
2019), and two Chinese GEC evaluation datasets,
i.e., NLPCC-18 (Zhao et al., 2018) and MuCGEC
(Zhang et al., 2022). Extensive experimental re-
sults and in-depth analyses show that our SynGEC
approach achieves consistent and substantial im-

provement on all datasets, even when the baseline
model is enhanced with large pre-trained language
models (PLMs) like BART (Lewis et al., 2020),
and outperforming previous SOTA systems under
comparable settings.

2 Our GEC-Oriented Parser

This section describes our tailored GOPar, a de-
pendency parser that is more competent in parsing
ungrammatical sentences than off-the-shelf parsers.

2.1 Extended Syntax Representation Scheme

The standard scheme for representing dependency
syntax is originally designed for grammatical sen-
tences, and thus may not cover many non-canonical
structures in grammatically erroneous sentences.
Therefore, to obtain a tailored parser, our first task
is to extend the syntax representation scheme and,
more specifically, to design a complementary set
of rules to handle different grammatical mistakes.
With this scheme, we can directly use a unified tree
structure to represent both grammatical errors and
syntactic information.

As shown in Figure 1, we propose a light-weight
extended scheme based on several straightforward
rules, corresponding to the three types of grammat-
ical errors, i.e., substituted, redundant and missing
(Bryant et al., 2017).2 In this work, we use the
Stanford Dependencies Scheme v3.3.0 (Dozat and
Manning, 2017) as the basic scheme. The rules
are designed in such a way that we make as few
adjustments as possible to the syntactic tree of the
target correct sentence during tree projection. Cor-
respondingly, we add three labels into the original
syntactic label set, i.e., “S”, “R” and “M”, to cap-
ture three kinds of errors. Since such categorization
is also adopted in the grammatical error detection
(GED) task (Yuan et al., 2021), we refer to them as
GED labels.

2We treat word-order errors as the combination of redun-
dant and missing errors in this work.
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Figure 2: The workflow for obtaining our tailored GOPar.

• Substituted errors (S) include spelling errors,
tense errors, singular/plural inconsistency er-
rors, etc. For simplicity, we do not consider
such fine-grained categories, and directly use
a single “S” label to indicate that the word
should be replaced by another one, as shown
in Figure 1(b).

• Redundant errors (R) mean that some words
should be deleted. For each redundant word,
we let it depend on its right-side adjacent
word, with a label “R”,3 as shown in Figure
1(c). When the redundant word is at the end
of the sentence, we instead let it depend on its
left-side adjacent word.

• Missing errors (M) mean that some words
should be inserted. For each missing word,
we assign a label “M” to the incoming arc
of its right-side adjacent word, as shown in
Figure 1(d). When the missing word is at
the end of the sentence, we keep the original
tree unchanged. If several consecutive words
are missing, the structure remains the same
as when a single word is missing. Moreover,
since a missing word may have children in
the tree of the correct sentence, we let them
depend on the head word of the missing word,
without changing their syntactic labels.

Limitation discussion. Our extended scheme
may encounter problems when different types of
errors occur consecutively. Taking “But was no
buyers” as an example, we need to replace “was”
with “were” and then insert “there” before “were”
at the same time. Therefore, according to our rules,
the label of the incoming arc of “was” can be ei-
ther “S” or “M”, leading to a label conflict. To
decide a unique label, we simply define a priority
order: “S”ą“R”ą“M’. Overall, the current version
of our scheme is imperfect, and there are still many

3Even if the right-side adjacent word is redundant.

points that can be improved. For example, when
confronting substituted and redundant errors, some
original labels will be overwritten by the GED label
“S” and “M”, which may cause the loss of some
valuable information. One possible solution is to
combine GED and syntax labels and use joint la-
bels like “S-Root”, “M-Subj”, etc. We leave such
extensions of our scheme as future work.

2.2 Training GOPar

With the extended syntax representation scheme,
we propose to train our tailored GOPar by using
the parallel GEC training data D “ tpxi, yiqu as a
pivot. The major goal is to automatically generate
high-quality parse trees for large-scale sentences
with realistic grammatical errors, and use them to
train a parser suitable for parsing ungrammatical
sentences. Figure 2 illustrates the workflow, con-
sisting of the following four steps.

First, we use an off-the-shelf parser to parse the
target correct sentences (i.e., yi) of the GEC train-
ing data. The off-the-shelf parser can produce reli-
able parse trees for target-side sentences since they
are (ideally) free from grammatical errors.

Second, we employ ERRANT (Bryant et al.,
2017)4 to extract all grammatical errors in the
source incorrect sentence (i.e., xi) according to
the alignments between xi and yi. The errors ex-
tracted by ERRANT mainly contain 3 parts: the
start and end positions of errors in source sentences,
the corresponding corrections, and the error types.

Third, we construct the tree of xi by projecting
the target-side tree of yi to the source side. For
words that are not related to any errors, dependen-
cies and labels are directly copied; for those related
to errors, dependencies and labels are assigned ac-
cording to the rules introduced in Section 2.1.

Fourth, with constructed parse trees for all
source-side sentences in D, we then use them as a

4https://github.com/chrisjbryant/
errant
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Figure 3: Overview of our DepGCN-based GEC model.
The operation ‘ denotes vector concatenation. N1, N2

and N3 denote the number of identical Transformer en-
coder blocks, DepGCN blocks and Transformer decoder
blocks, respectively. We also employ a residual connec-
tion (He et al., 2016) followed by layer normalization
(Ba et al., 2016) around each sub-layer.

treebank to train our tailored GOPar.
An alternative way to build GOPar is directly

utilizing manually labeled treebanks. Since exist-
ing treebanks only contain grammatical sentences,
we can inject synthetic errors based on rules or
back-translation models (Foster et al., 2008; Cahill,
2015). Then, we can produce parse trees for un-
grammatical sentences analogously through the
above second and third steps. However, our prelimi-
nary experiments show that GOPar built in this way
is much inferior and can only slightly improves our
baseline GEC model. We suspect that the reasons
are two-fold. On the one hand, there is a consider-
able gap between synthetic and real grammatical
errors; on the other hand, the generated data is not
enough to train GOPar adequately due to the lim-
ited scale of existing treebanks, as GOPar needs to
learn to accommodate multifarious errors.

3 The DepGCN-based GEC Model

This section describes our DepGCN-based GEC
model, whose architecture is shown in Figure 3.
We adopt GCN (Kipf and Welling, 2017) to encode
the dependency syntax trees of the source sentence.
Then, we feed the encoded syntactic information

into a Transformer-based GEC model.

3.1 Transformer Backbone

We model GEC as a sequence-to-sequence task and
employ the commonly used Transformer model
(Vaswani et al., 2017) as the backbone. The Trans-
former is composed of an encoder and a decoder.
The encoder utilizes the multi-head self-attention
mechanism to get the contextualized representa-
tions of each token in the source sentence. The
decoder has a similar architecture while addition-
ally containing a masked multi-head self-attention
module to model the generated token information.

During training, the objective function is to min-
imize the teacher forcing negative log-likelihood
loss (Williams and Zipser, 1989), formally:

Lpθq “ ´ logpP py | x; θqq

“ ´ log
nÿ

t“1

pP pyt | yăt;x; θqq (1)

where θ is trainable model parameters, x is the
source sentence, y “ ty1, y2, ..., ynu is the ground-
truth target sentence with n tokens, and yăt “
ty1, y2, ..., yt´1u is the tokens visible in t-th train-
ing time step.

During inference, we utilize beam search decod-
ing (Wiseman and Rush, 2016) to find an optimal
sequence y˚ by maximizing the conditional proba-
bility P py˚ | x; θq.

Previous work shows that PLMs, e.g., BART
(Lewis et al., 2020) and T5 (Raffel et al., 2020),
can improve GEC performance over training from
scratch by large margins (Rothe et al., 2021; Sun
et al., 2022). In this work, we further use BART to
build a stronger baseline, since it shares the same
model architecture with our Transformer backbone.
Specifically, we use the BART parameters to initial-
ize our Transformer backbone and then continue
training on GEC training data. More details are
discussed in Section 4.1 and Section 5.

3.2 Dependency GCN (DepGCN)

We employ DepGCN (Zhang et al., 2020b) to
encode dependency syntax information. The
DepGCN module stacks several identical blocks,
and each block is composed of a GCN sub-layer
and a feed-forward sub-layer.

For the GCN sub-layer, we introduce the infor-
mation of the dependency arcs and dependency
labels simultaneously. We compute the output hplq

i
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Dataset #Sentences %Error Usage
CLang8 2,372,119 57.8 Pre-training
FCE 34,490 62.6 Fine-tuning I
NUCLE 57,151 38.2 Fine-tuning I
W&I+LOCNESS 34,308 66.3 Fine-tuning I&II
BEA-19-Dev 4,384 65.2 Validation
CoNLL-14-Test 1,312 72.3 Testing
BEA-19-Test 4,477 - Testing

Table 1: Statistics of English GEC datasets. #Sentences
denotes the number of sentences.%Error refers to the
proportion of erroneous sentences.

of l-th GCN at the i-th token as:

h
plq
i “ ReLUp

nÿ

j“1

AijW
plqphl´1

j ‘ epi,jq ` bplqq
(2)

where A P Rnˆn denotes the adjacency matrix,
epi,jq P Rd is the embedding of the dependency
label between word wi and word wj , W P Rdˆ2d

and b P Rd are model parameters. ReLU (Nair
and Hinton, 2010) is the activation function, and ‘
refers to the vector concatenation.

To reduce the error propagation issue, following
Zhang et al. (2020a), we use the arc probability ma-
trix obtained from GOPar as the adjacency matrix
A, which may provide richer syntactic structures.
For epi,jq, we use the 1-best label of the 1-best head
word wj of wj .

We then feed the outputs of the GCN sub-layer
to the feed-forward (FF) sub-layer that contains
two linear transformations with a ReLU activation
function in between, as shown below:

FFphq “ ReLUpW1h ` b1qW2 ` b2 (3)

3.3 Representation Fusion

In order to balance the contribution of the syntax-
aware representations from DepGCN (hsyn

i ) and
the representations from the basic Transformer
encoder (hbasic

i ), we use their interpolation (i.e.,
weighted-sum) as the final representations, which
are ultimately fed into the Transformer decoder:

hfinal
i “ βhbasic

i ` p1 ´ βqhsyn
i (4)

where β P p0, 1q is a hyper-parameter called the
fusion factor, and hfinal

i represents the final output
vector of the Transformer encoder for the i-th token.
As depicted in Figure 3, this operation is analogous
to the residual connection.

4 Experiments on English GEC

4.1 Settings

Datasets and evaluation. We first pre-train our
model on the cleaned version of the Lang8 dataset
(CLang8) 5 released by Rothe et al. (2021). Then,
we use the FCE dataset (Yannakoudakis et al.,
2011), the NUCLE dataset (Dahlmeier et al., 2013)
and the W&I+LOCNESS train-set (Bryant et al.,
2019) for model fine-tuning following previous
studies. Like Omelianchuk et al. (2020), we de-
compose the fine-tuning procedure into two stages:
1) fine-tuning on FCE+NUCLE+W&I+LOCNESS;
2) further fine-tuning only on the small-scale but
high-quality W&I+LOCNESS.

For evaluation, we report average P/R/F0.5 re-
sults over three runs with different random seeds
on the CoNLL-14 test set6 (Ng et al., 2014) evalu-
ated by M2Scorer (Dahlmeier and Ng, 2012) and
BEA-19 test set (Bryant et al., 2019) evaluated by
ERRANT (Bryant et al., 2017). The BEA-19 dev
set serves as validation data during the whole train-
ing. The statistics of above datasets are shown in
Table 1.

Besides, we also experiment on the small-scale
JFLEG test-set (Napoles et al., 2017) and list the
results in Appendix B.

GEC model details. We adopt Fairseq7 (Ott
et al., 2019) to build our Transformer baseline and
DepGCN-based model. For the DepGCN-based
model, we empirically stack N2 “ 3 DepGCN
blocks and set the fusion factor β “ 0.5 in Equa-
tion 4. We apply BPE (Sennrich et al., 2016) to gen-
erate a 32K shared subword vocabulary. We apply
the Dropout-Src mechanism (Junczys-Dowmunt
et al., 2018) to source-side word embeddings to
alleviate over-fitting. More model details are dis-
cussed in Appendix A.

GOPar details. The training data for GOPar is
generated from the CLang8 dataset (Rothe et al.,
2021) using the procedure described in Section 2.
For all English experiments, GOPar operates at the
word level. In contrast, our GEC models perform
on the subword level. To fill this gap, we transform
word-level syntax trees into subword-level ones by
adding arcs. For example, if wi is the head word
of wj , we will add arcs from all subwords of wi

5CLang8 can be downloaded from https://github.
com/google-research-datasets/clang8

6We use the official-2014.combined.m2 (no-alt) version of
CoNLL-14, which is adopted by most existing works.

7https://github.com/pytorch/fairseq
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Extra Transformer CoNLL-14-test BEA-19-test
System Data Size Layer, Hidden, FFN P R F0.5 P R F0.5

w/o PLM

w/o syntax
Kiyono et al. (2019)˝ 70M 12+12,1024,4096 67.9 44.1 61.3 65.5 59.4 64.2
Lichtarge et al. (2020)△▲ 340M 12+12,1024,4096 69.4 43.9 62.1 67.6 62.5 66.5
Stahlberg and Kumar (2021)△▲□ 540M 12+12,1024,4096 72.8 49.5 66.6 72.1 64.4 70.4
Our Baseline♡ 2.4M 6+6,512,2048 66.9 40.3 59.1 66.8 55.5 64.2
w/ syntax
Wan and Wan (2021)♦ 10M 6+6,512,2048 74.4 39.5 63.2 74.5 48.6 67.3
Li et al. (2022)♠ 30M 12+12,1024,4096 66.7 38.3 58.1 - - -
SynGEC♡ 2.4M 6+6,512,2048 70.0 46.2 63.5 70.9 59.9 68.4

GOParÑOff-the-shelf Parser 2.4M 6+6,512,2048 68.2 40.9 60.2 67.3 55.4 64.5

w/ PLM

w/o syntax
Kaneko et al. (2020)˝ 70M 12+12,1024,4096 69.2 45.6 62.6 67.1 60.1 65.6
Katsumata and Komachi (2020) - 12+12,1024,4096 69.3 45.0 62.6 68.3 57.1 65.6
Omelianchuk et al. (2020)♢ 9M 12+0,768,3072 77.5 40.1 65.3 79.2 53.9 72.4
Rothe et al. (2021)♡ 2.4M 12+12,1024,4096 - - 66.1 - - 72.1
Sun et al. (2021) 300M 12+2,1024,4096 71.0 52.8 66.4 - - 72.9
Our Baseline♡ 2.4M 12+12,1024,4096 73.6 48.6 66.7 74.0 64.9 72.0
w/ syntax
Li et al. (2022)♠ 30M 12+12,1024,4096 68.1 44.1 61.4 - - -
SynGEC♡ 2.4M 12+12,1024,4096 74.7 49.0 67.6 75.1 65.5 72.9

GOParÑOff-the-shelf Parser 2.4M 12+12,1024,4096 74.1 48.3 67.0 74.6 64.1 72.3

Table 2: Single-model results on English GEC test-sets. Our results are averaged over three runs with different
random seeds. Layer, Hidden and FFN denote the depth, hidden size and feed-forward network size of Transformer.
“w/ PLM” means using pre-trained language models. “w/ syntax” means using syntactic knowledge. Besides the
public human-annotated training data, current GEC systems variously use private and/or artificial data, includ-
ing: ˝artificial Gigaword (70M sentences), △Wikipedia revision histories (170M), ▲artificial Wikipedia (170M),
□artificial Colossal Clean Crawled Corpus (200M), ♢artificial one-billion-word (9M), ♦artificial one-billion-word
(10M), ♠artificial one-billion-word (30M) , ♡cleaned version of Lang8 (2.4M).

to all subwords of wj . All added arcs copy the arc
probability of wi Ñ wj . We will explore more
sophisticated ways to handle this mismatch issue.

For both the off-the-shelf parser and GOPar, we
use the biaffine parsing approach (Dozat and Man-
ning, 2017). We directly adopt the implementation
of SuPar8 (Zhang et al., 2020b) and follow their
default hyper-parameter settings. After comparing
several popular PLMs, we choose to use ELEC-
TRA (Clark et al., 2020) to provide the contextual
token representations for parsers. To obtain word-
level representations, we aggregate the subword-
level representations from ELECTRA into word-
level ones via average pooling. The off-the-shelf
parser is trained on PTB (Marcinkiewicz, 1994).
Please kindly notice that all parsers are always
enhanced with ELECTRA, even when the GEC
model does not use PLM.

Incorporating BART. To explore whether the
syntactic knowledge is still useful after introducing
powerful PLMs, we use BART (Lewis et al., 2020)
to initialize the Transformer backbone of our mod-
els. It is noteworthy that we adopt a two-stage train-
ing procedure to keep the training stable. Firstly,
we fine-tune the BART-initialized Transformer

8https://github.com/yzhangcs/parser

backbone until it converges. Secondly, we add
an auxiliary DepGCN module into the converged
Transformer backbone and only tune the DepGCN
parameters on the same training data. The intuition
behind this procedure is that the BART part has
been extensively pre-trained whereas the DepGCN
part is just randomly initialized. In our preliminary
experiments, we frequently encountered training
collapse when training two parts simultaneously,
and observed that the scale of the gradients of the
two parts vary substantially.

4.2 Main Results
The main results are listed in Table 2. In the top
group of results without PLMs, SynGEC achieves
63.5/68.4 F0.5 scores on CoNLL-14 and BEA-19
test-sets, respectively, outperforming all other sys-
tems utilizing syntax. The performance of SynGEC
is only lower than Stahlberg and Kumar (2021)
on both test-sets, probably because they use an
extra huge synthetic corpus with 540M sentence-
pairs. The incorporation of syntactic information
provided by GOPar leads to 4.4/4.2 F0.5 improve-
ments over our baseline, which demonstrates that
the tailored syntactic knowledge from GOPar is
quite helpful for GEC and our DepGCN-based
GEC model can effectively capture it.
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BEA-19-dev CoNLL-14-test
P/R/F0.5 P/R/F0.5

w/o PLM
SynGEC 60.84/39.76/55.01 70.03/46.17/63.47

w/o GED Labels 59.47/38.03/53.44 69.79/43.71/62.35
w/o Syntax Labels 59.31/39.02/53.72 69.31/44.65/62.42
w/o All Labels 61.62/34.21/53.11 71.14/40.02/61.57

Baseline 57.99/35.77/51.58 66.94/40.25/59.10
w/ PLM

SynGEC 64.51/45.73/59.62 74.67/48.98/67.58
w/o GED Labels 63.59/45.23/58.82 74.03/48.65/67.04
w/o Syntax Labels 64.20/45.51/59.33 73.95/48.87/67.05
w/o All Labels 64.90/42.57/58.74 75.11/46.72/66.97

Baseline 63.09/44.80/58.32 73.62/48.58/66.74

Table 3: Effect of different syntactic information. Since
BEA-19-test need online submission, we instead report
results on BEA-19-dev.

In the bottom group of results using PLMs, our
SynGEC approach augmented with BART achieves
67.6/72.9 F0.5 scores, which are comparable or
even better than other cutting-edge PLM-enhanced
models under similar sizes. After removing syn-
tax, the F0.5 scores decline by 0.9 on both datasets,
which reveals that the contribution from adaptive
syntax and PLMs does not fully overlap. It is worth
noting that Rothe et al. (2021) also build another
much larger GEC model based on the T5-11B (Raf-
fel et al., 2020) and achieve 68.9/75.9 F0.5 scores.
For a fair comparison, we do not list this result in
Table 2 as this model is about 24ˆ larger than ours.

4.3 Analysis and Discussion

Effectiveness of GOPar. In Table 2, we present
the results of using an off-the-shelf parser9 to pro-
vide syntactic knowledge (GOPar Ñ Off-the-shelf
Parser). After changing the parser, the impact of
syntax becomes marginal under all settings. This
observation implies that the performance gains con-
tributed from syntax are highly contingent on the
quality of parses. We look further into the parses
and find that GOPar is more robust when facing
grammatical errors and can further identify such er-
rors, while the off-the-shelf parser is vulnerable and
tends to provide incorrect parses. So we can draw
a conclusion that the task adaptation of parsers is
essential when applying syntax to the GEC task.

Decomposition of syntactic information. To
gain more insights on how adaptive syntactic in-
formation works, we decompose it into three parts:
1) the arc information, which means only using
the topological structure of the syntax tree; 2) the

9We use biaffine-dep-roberta-en model provided by SuPar.

BEA-19-dev CoNLL-14-test
P/R/F0.5 P/R/F0.5

w/o PLM
Baseline 57.99/35.77/51.58 66.94/40.25/59.10
Self-training 58.85/36.30/52.35 67.98/40.93/60.04
SynGEC 60.84/39.76/55.01 70.03/46.17/63.47

w/ PLM
Baseline 63.09/44.80/58.32 73.62/48.58/66.74
Self-training 63.49/44.37/58.45 74.15/48.32/66.99
SynGEC 64.51/45.73/59.62 74.67/48.98/67.58

Table 4: Comparison with the self-training method.

GED label information, which refers to the special
labels “S”, “R” and “M” for marking erroneous
tokens; and 3) the syntax label information, such as
“subj” and “iobj” for different syntactic relations.
We conduct an ablation study to explore the effect
of each kind of information for GEC, as shown in
Table 3. Concretely, for “w/o GED Labels”, we
force the parser to skip GED labels and select the
syntax label with the highest probability when pre-
dicting. For “w/o Syntax Labels”, we replace all
syntax labels with “O” in the results. For “w/o
All Labels”, we do not feed the label embeddings
into the DepGCN module and use the dependency
distance information to re-scale the self-attention
weights in the Transformer encoder.

There are several observations. First, remov-
ing GED labels or syntax labels reduces the per-
formance of SynGEC to a similar extent, which
indicates that they are equally important to GEC.
Second, when we only use the arc information,
i.e., removing all labels, the recall drops sharply
while the precision increases notably compared
with the baseline. We speculate that the contribu-
tion from arc information is mainly on preventing
GEC models from being misled by inappropriate
context. Third, the full SynGEC approach utilizing
all three kinds of information achieves the best per-
formance, which implies that they have intrinsic
complementary strengths.

Influence of self-training. Despite the effec-
tiveness of GOPar compared with off-the-shelf
parsers trained on small-scale manually-annotated
treebanks of grammatical sentences, it is still not
clear whether—or to what extent—the improve-
ment comes from our GEC-oriented adaption of
the parser. It is also possible that some or most im-
provement is due to the larger training set and do-
main adaptation via self-training (McClosky et al.,
2006). Self-training is a classical semi-supervised
learning method that enhances models with large-
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Figure 4: Performance on a selection of error types from ERRANT (Bryant et al., 2017) on BEA-19-dev. Numbers
in parentheses represent the percentages of error types. We exclude error types that account for less than 1%.

scale pseudo-labeled in-domain data. To study
this, we directly utilize the pseudo-labeled trees
of target-side sentences in GEC data to train a
parser (Self-training in Table 4). We observe
that SynGEC significantly outperforms only us-
ing self-training without the step of tree projection,
which demonstrates that the effectiveness of GOPar
mainly stems from the GEC-oriented adaptation.

Error type performance. Figure 4 shows more
fine-grained evaluation results on different error
types on BEA-19-dev. The results support that
syntactic information from GOPar is beneficial for
most error types. Specifically, syntactic knowl-
edge significantly improves the GEC model’s abil-
ity to correct context-sensitive errors, such as DET,
PREP, PUCNT, VERB:SVA, and VERB:TENSE.
Correcting such errors requires long-distance infor-
mation, which syntax can effectively provide. The
syntax also helps solve word-ordering (WO) errors,
which need sentence structure information to cor-
rect. Besides, the performance on PRON, OTHER,
VERB is also substantially improved. Meanwhile,
we note that a small subset of types is negatively
affected, like ADJ, MORPH, SPELL, and NOUN.
After more careful observation, we find that their
corrections mainly depend on local information,
where syntactic knowledge may not help much or
even introduce noises.

5 Experiments on Chinese GEC

Datasets and evaluation. For Chinese, we report
P/R/F0.5 values on NLPCC-18-test (Zhao et al.,
2018) and MuCGEC-test (Zhang et al., 2022) using
their official evaluation tools. MuCGEC-dev is
used for hyper-parameter tuning and checkpoint
selection. For training data, we use the Chinese
Lang8 dataset (Zhao et al., 2018) and HSK dataset
(Zhang, 2009). The statistics of above-mentioned
datasets are shown in Table 5.

Dataset #Sentences %Error Usage
Lang8 1,220,906 89.5 Training
HSK 15,6870 60.8 Training
MuCGEC-dev 1,125 95.1 Validation
MuCGEC-test 5,938 92.2 Testing
NLPCC-18-test 2,000 99.2 Testing

Table 5: Statistics of Chinese GEC datasets.

Char-based GOPar. Current Chinese GEC
models usually treat the input sentence as a charac-
ter sequence and do not perform word segmentation
(Zhao and Wang, 2020). In contrast, dependency
parsers typically treat the input sentence as a word
sequence. To handle this mismatch, we follow Yan
et al. (2020) and build a char-based GOPar. The
basic idea is to convert a word-based tree into a
char-based one by letting each character depends
on its right-hand one inside multi-character words.

Use of BART. We employ the recently proposed
Chinese BART (Shao et al., 2021), which is orig-
inally implemented with the HuggingFace Trans-
formers toolkit10 (Wolf et al., 2020). We manage
to wrap their code and use it on our Fairseq im-
plementation. Specifically, we find many common
characters are missing in its vocabulary. Therefore,
we add 3,866 Chinese characters and punctuation
marks from Chinese Gigaword and Wikipedia cor-
pora, leading to a substantial performance boost
according to our preliminary experiments. The em-
beddings of these newly added tokens are randomly
initialized and trained on GEC data.

Results are presented in Table 6. When not using
BART, our SynGEC outperforms the Transformer
baseline by 1.60/2.09 F0.5 score on NLPCC-18-
test and MuCGEC-test, respectively. When using
BART, our baseline already outperforms the previ-
ous SOTA system (Zhang et al., 2022), thanks to

10https://github.com/huggingface/
transformers
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PLM Syntax P R F0.5

NLPCC-18-test
Zhang et al. (2022) ✓ ✗ 42.88 30.19 39.55
Baseline ✗ ✗ 40.10 26.34 36.31
SynGEC ✗ ✓ 41.44 28.28 37.91
Baseline ✓ ✗ 49.07 32.80 44.64
SynGEC ✓ ✓ 49.96 33.04 45.32

MuCGEC-test
Zhang et al. (2022) ✓ ✗ 43.81 28.56 39.58
Baseline ✗ ✗ 43.79 25.93 38.49
SynGEC ✗ ✓ 46.88 27.68 40.58
Baseline ✓ ✗ 54.21 28.51 45.93
SynGEC ✓ ✓ 54.69 29.10 46.51

Table 6: Single-model results on Chinese datasets.

the engineering efforts mentioned in the previous
paragraph. Again, SynGEC further improves the
F0.5 score by 0.68/0.58. These results indicate that
our proposed SynGEC approach can be effective
for different languages. Given that our SynGEC ap-
proach is actually language-independent, we plan
to test it in more languages in the future.

6 Related Works

Grammatical error correction. Recent work
mainly formulates GEC as a monolingual trans-
lation task and handle it with burgeoning encoder-
decoder-based MT models (Yuan and Briscoe,
2016; Junczys-Dowmunt et al., 2018), among
which Transformer (Vaswani et al., 2017) has be-
come a dominant paradigm. With the help of syn-
thetic training data (Lichtarge et al., 2019; Ya-
sunaga et al., 2021) and large PLMs (Kaneko
et al., 2020; Katsumata and Komachi, 2020),
Transformer-based GEC models have achieved
SOTA performance on various benchmark datasets
(Rothe et al., 2021; Stahlberg and Kumar, 2021).

Meanwhile, the sequence-to-edit (Seq2Edit) ap-
proach emerges as a competitive alternative, which
predicts a sequence of edit operations to achieve
correction (Gu et al., 2019; Awasthi et al., 2019;
Omelianchuk et al., 2020). Although this work
adopts the Transformer-based GEC models as the
baseline, our SynGEC approach can also be applied
to Seq2Edit models straightforwardly, which we
leave to future work.

Parsing ungrammatical sentences. Despite
the success of syntactic parsing on clean sentences
(Dozat and Manning, 2017; Zhang et al., 2020b),
parsing noisy sentences is still under-explored, in-
cluding but not limited to learner texts (Foster,
2004; Hashemi and Hwa, 2016), speech disfluen-
cies (Honnibal and Johnson, 2014), and historical
texts (Pettersson et al., 2012). This work focuses

on parsing ungrammatical texts. Previous studies
mainly tackle this problem by annotating small-
scale trees for ungrammatical sentences and re-
training a parser on them (Dickinson and Ragheb,
2009; Petrov and McDonald, 2012; Cahill, 2015;
Berzak et al., 2016). Instead, we propose to train
a tailored parser on automatically generated syn-
tax trees from parallel GEC data, which avoids the
laborious manual annotation. This idea has been
mentioned as future work in Wagner (2012).

Syntax-enhanced GEC. Many previous work
has demonstrated the effectiveness of utilizing syn-
tactic information for various NLP tasks, such as
machine translation (Bastings et al., 2017; Zhang
et al., 2019), opinion role labeling (Zhang et al.,
2020a), and semantic role labeling (Xia et al., 2019;
Sachan et al., 2021). Meanwhile, we have found
two recent works on syntax-enhanced GEC (Wan
and Wan, 2021; Li et al., 2022). Both works di-
rectly produce the dependency tree of the input
sentence using an off-the-shelf parser, without tai-
loring parsers for ungrammatical sentences. They
both use graph attention networks (GAT) for tree
encoding (Velickovic et al., 2018). Besides the
dependency tree, Li et al. (2022) exploits the con-
stituent tree of the input sentence as well.

Compared with the above two works, the major
contribution of our work is directly dealing with
the severe performance drop issue via our tailored
GOPar. We adopt GCN for tree encoding because
our preliminary experiments show that it achieves
similar performance but is faster. Moreover, our
baseline GEC models achieve much higher perfor-
mance than theirs, as shown in Table 2.

7 Conclusions

This paper presents a SynGEC approach that in-
corporates adapted dependency syntax into GEC
models. The key idea is adjusting vanilla parsers to
accommodate ungrammatical sentences. We first
extend the standard syntax representation scheme
to use a unified tree structure to encode both gram-
matical errors and syntactic structure. Then we ob-
tain high-quality parse trees of ungrammatical sen-
tences by projecting target-side trees into source-
side ones in parallel GEC training data, which
are ultimately used for training a tailored parser
named GOPar. We employ GCN to encode syntax
produced by GOPar. Experiments on mainstream
datasets in two languages show that SynGEC is
effective and achieves SOTA results.
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Limitations

First, off-the-shelf parsers may still produce noisy
parse trees for the target-side correct sentences,
which could further lead to noise in our projected
trees for the source-side incorrect sentences. Sec-
ond, we have only employed three coarse-grained
labels to distinguish grammatical errors in our syn-
tax representation scheme, while fine-grained cate-
gories may further benefit GEC (Yuan et al., 2021).
Both limitations may be mitigated by integrating
ideas and resources achieved by previous work on
manually annotating syntactic trees for ungram-
matical sentences (Dickinson and Ragheb, 2009;
Berzak et al., 2016). Besides, all of our efforts
focus on integrating source-side syntactic informa-
tion, while there is also some work trying to incor-
porate target-side syntax and get positive results
(Aharoni and Goldberg, 2017; Wang et al., 2018).
We will further study how to appropriately utilize
such target-side syntax in our future work.
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Appendices

A Hyper-parameters

The main hyper-parameters adopted by SynGEC
are presented in Table 7. When not using PLMs,
the total training time is about 3 hours. When
using PLMs, the training costs about 7 hours. For
fine-tuning BART on GEC data, we directly utilize
the same hyper-parameters described in Katsumata
and Komachi (2020). When confronting sentences
longer than the max input length, we keep them
unchanged during predicting.

B Experiments on JFLEG

JFLEG (Napoles et al., 2017) is an English GEC
evaluation dataset which focuses on fluency and
uses the GLUE score (Napoles et al., 2015) as the
evaluation metric. We evaluate the baseline and
the SynGEC approach in Table 2 on JFLEG. Since
JFLEG’s scale is relatively small (only 747 sen-
tences), we choose to present the results in the
appendix. From Table 8, we can see that the syntac-
tic knowledge still continuously improves the GEC
performance over baselines with/without PLMs.

Configuration Value
Pre-training

Base architecture
Transformer-base (w/o PLM)
Transformer-large (w/ PLM)

Pretrained Language model BART-large (Lewis et al., 2020)
Number of epochs 60
Devices 8 Tesla V100 GPU (32GB)
Batch size per GPU 8096 tokens

Optimizer
Adam (Kingma and Ba, 2014)

(β1 “ 0.9, β2 “ 0.98, ϵ “ 1 ˆ 10´8)
Learning rate 5 ˆ 10´4

Warmup updates 4000
Max source length 64 (English); 128 (Chinese)
Number of DepGCN layers 3
Dual context aggregation β 0.5

Loss function
Label smoothed cross entropy

(label-smoothing=0.1)
(Szegedy et al., 2016)

Dropout 0.1 (w/o PLM); 0.3 (w/ PLM)
Dropout-src 0.2

Fine-tuning
Learning rate 5 ˆ 10´5

Warmup updates 1000
Generation

Beam size 12
Max input length 64 (English); 128 (Chinese)

Table 7: Hyper-parameter values used in our experi-
ments.

PLM Syntax GLUE ∆

Baseline ✗ ✗ 58.15 -
SynGEC ✗ ✓ 60.14 +1.99
Baseline ✓ ✗ 61.53 -
SynGEC ✓ ✓ 62.15 +0.62

Table 8: The GLUE scores of different models on JF-
LEG benchmark.

C The GED ability of GOPar

We evaluate the binary Grammatical Error Detec-
tion (GED) performance of GOPar on two main-
stream GED dataset, i.e., BEA-19-dev (Bryant
et al., 2019) and FCE-test (Yannakoudakis et al.,
2011). We follow Rei and Yannakoudakis (2016)
and report token-level P/R/F values for detecting
incorrect labels. Table 9 shows the performance of
GOPar and other leading GED models. When using
the same training data, GOPar has a superior ability
to detect grammatical errors. This phenomenon is
very interesting and worthy of more in-depth study.

D Download links of PLMs

The download links of PLMs used in our exper-
iments are listed below. We employ ELECTRA
(Clark et al., 2020; Cui et al., 2020) to build GOPar
and BART (Lewis et al., 2020; Shao et al., 2021)
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BEA-19-dev FCE-test
Train-set F0.5 F0.5

Bell et al. (2019) FCE-train 48.50 57.28
Kaneko and Komachi (2019) FCE-train – 61.65
Yuan et al. (2021) FCE-train 65.54 72.93
GOPar FCE-train 66.32 74.10
GOPar CLang8 72.13 71.53

Table 9: Binary GED performance.

to enhance our GEC model.

• ELECTRA-English-Large.

• ELECTRA-Chinese-Large.

• BART-English-Large.

• BART-Chinese-Large.
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https://huggingface.co/google/electra-large-discriminator
https://huggingface.co/hfl/chinese-electra-180g-large-discriminator
https://huggingface.co/facebook/bart-large
https://huggingface.co/fnlp/bart-large-chinese

