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Abstract

Recent years have seen an increasing trend in
the volume of personal media captured by users,
thanks to the advent of smartphones and smart
glasses, resulting in large media collections.
Despite conversation being an intuitive human-
computer interface, current efforts focus mostly
on single-shot natural language based media re-
trieval to aid users query their media and re-live
their memories. This severely limits the search
functionality as users can neither ask follow-
up queries nor obtain information without first
formulating a single-turn query.

In this work, we propose dialogs for connected
memories as a powerful tool to empower users
to search their media collection through a multi-
turn, interactive conversation. Towards this,
we collect a new task-oriented dialog dataset
COMET, which contains 11.5k user↔assistant
dialogs (totalling 103k utterances), grounded
in simulated personal memory graphs. We em-
ploy a resource-efficient, two-phase data collec-
tion pipeline that uses: (1) a novel multimodal
dialog simulator that generates synthetic dia-
log flows grounded in memory graphs, and, (2)
manual paraphrasing to obtain natural language
utterances. We analyze COMET, formulate four
main tasks to benchmark meaningful progress,
and adopt state-of-the-art language models as
strong baselines, in order to highlight the mul-
timodal challenges captured by our dataset1.

1 Introduction

The rise of smartphones and smart glasses has con-
tributed to a surge in the amount of personal media
(photos, videos, montages, etc.) captured by users
on a day-to-day basis in the past decade. For in-
stance, it is estimated that about 1.5 trillion photos
would be clicked in the year 2022 (Pantic, 2021).
As a result, personal media collections typically
grow at an alarming rate, making it cumbersome

∗ Joint first authors
1Our code & data is made available at github.com/

facebookresearch/comet_memory_dialog

Figure 1: Illustration of COMET: COnnected MEmories
with a Task-oriented Dialog. (a) Each dialog turn is fully
annotated with dialog acts and multimodal coreference
labels, accompanied with photos associated with the re-
quest. (b) These media are from the underlying memory
graph, a structured collection of personal media.

for users to manually search, retrieve, and re-live
their captured memories2.

To alleviate this situation, solutions that perform
natural language query-based media retrieval (Tan
et al., 2019; Vo et al., 2019; Tellex and Roy, 2009;
Barbu et al., 2013; Li et al., 2017; Guo et al., 2018a;
Saha et al., 2018) have been proposed. However,
such approaches exhibit two drawbacks. First, they
are single-shot interactions without any context
carry-over, e.g., Show me some photos from the
beach last week.. This limits the functionality and

2Memories and media files are used interchangeably.
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does not let users ask any follow-up queries like
‘Display photos from the first time I was here?’,
since understanding here requires the query history.
Second, users cannot seek information without ac-
tually formulating the query to retrieve the corre-
sponding memory. For instance, there is no easy
query to know the first time a user visited the beach
in the memory they are reviewing.

In order to overcome these limitations, we pro-
pose dialogs for connected memories as a powerful
interface where users can interactively query their
memory collections. By design, a conversational
agent can handle multi-turn interactions enabling
several additional queries that require context car-
ryover, e.g., ‘When was the first time I was at this
beach?’. Though prior efforts have explored the
use of dialogs in media retrieval (Wu et al., 2021;
Guo et al., 2018b) in other domains (e.g., fashion),
there is no existing work focusing on interactive
search and query of personal media collections to
the best of our knowledge.

More concretely, we propose COMET, a new
multimodal task-oriented dialog dataset aimed at
developing conversational assistants that can en-
able users to interactively search and query their
collection of memories. Working with personal me-
dia collections presents two main obstacles: (a)
There are no readily available public datasets that
contain personal media along with associated me-
dia attributes that we could leverage, and, (b) Per-
sonal memories constitute sensitive information,
thus resulting in privacy and safety concerns. To
circumvent these roadblocks, we devise a novel
memory graph simulator that can leverage publicly
available media datasets and help create several
synthetic memory collections. We represent these
collections as memory graphs to capture useful re-
lationships between the constituent memories, e.g.,
memories taken at the same place. We then col-
lect 11.5k user↔assistant task-oriented dialogs (to-
talling 103k utterances), grounded in 1.1k memory
graphs. An example dialog is in Fig. 1.

Our dataset is challenging as it requires rea-
soning through both the dialog history and mul-
timodal context (memory graphs) to resolve coref-
erences, track the dialog state, predict the right
API, and generate a meaningful natural language
assistant response. As an example, consider the
query ‘When was the first time I was here?’. First,
the model needs to resolve here using the dialog
history and previously viewed memories. Next, it
needs to understand that the query is seeking in-

formation about a connected memory, and predict
the right API get_time(resolve(here), first
time). Finally, it should produce a response like

‘The first time you were here was on August 2, 2019
with Jean’, potentially including some chit-chat.

To capture these challenges and benchmark
progress towards assistants that can interactively
handle dialogs for connected memories, we formu-
late four main tasks: Assistant API Call Prediction,
Multimodal Coreference Resolution (MM-Coref),
Multimodel Dialog State Tracking (MM-DST), and
Response Generation. We train baseline models for
these tasks, and discuss future research directions.

2 Related Work

Task-oriented Dialogs aim to understand user
queries and accomplish a pre-defined set of tasks
(e.g. booking hotels), which is a popular setting
in consumer-facing virtual assistants. Our work
addresses similar challenges often found in other
task-oriented dialogs, such as natural language un-
derstanding (NLU), dialog state tracking (DST)
(Henderson et al., 2014), etc. Compared to the con-
ventional task-oriented dialog datasets (e.g. Multi-
WoZ (Budzianowski et al., 2018; Eric et al., 2019;
Rastogi et al., 2019)), however, our work involves
a unique multimodal setting where dialogs are
grounded on a memory graph composed of sev-
eral media files, introducing novel challenges such
as Multimodal DST and Multimodal Coreference
Resolution given personal photo collections.

The most notable modeling approaches for task-
oriented dialog systems include casting the DST
task as a joint causal language modeling problem
(Hosseini-Asl et al., 2020; Peng et al., 2020; Sun
et al., 2021), by fine-tuning a large pre-trained
transformers. We follow this recent trend and pro-
vide baselines by extending it accommodate for the
unique multimodal contexts that our dataset brings.
Multimodal Dialogs have become increasingly
more popular, where dialog models process both
visual and text input to handle queries (Kottur et al.,
2021). Many existing literature (Hori et al., 2018;
Das et al., 2017; Kottur et al., 2019; de Vries et al.,
2017, 2018; Thomason et al., 2019) study multi-
modal Q&A dialogs grounded on a single image
as grounding context, extending the conventional
VQA (Antol et al., 2015) tasks to multi-turn scenar-
ios. Xu et al. (2020) studies conversational recom-
mendation system using personal memories. We
extend this line of work by studying the multimodal
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Figure 2: Two-stage pipeline to collect dialogs for
COMET. See Sec. 3 for more details.

agent that operates on a collection of media (mem-
ory graph), thus requiring reasoning abilities over
multiple grounding contexts. Our focus on task-
oriented dialogs extends the previous literature and
datasets that primarily focus on retrieval tasks (Guo
et al., 2018a; Saha et al., 2018; Firdaus et al., 2020),
capturing structured user intents and fine-grained
attributes for each multimodal query.
Memory QA: Our work is also similar to the Mem-
ory QA tasks (Jiang et al., 2018; Moon et al., 2019),
where the main task is to answer user QA queries
upon a collection of images, extending the Visual
QA task (Antol et al., 2015) which operates on a
single image. However, the existing literature is
limited to a simple single-turn QA interaction, and
focuses on the identification of an evidential im-
age to answer a question. While our dataset does
include QA queries, we extend the problem do-
main to the conversational settings which support
complex scenarios (e.g. searching for related mem-
ories), allowing for rich multimodal interactions.

3 The COMET Dataset

COMET is aimed to enable assistant systems that
can process interactive queries from users and help
navigate their collection of memories through a
natural language conversation. Towards this, we
collect the COMET dataset using a two-phase ap-
proach (shown in Fig. 2): (a) Generating synthetic
dialog flows between a user and an assistant that
are conditioned on memory graphs, using a novel
multimodal dialog simulator (Sec. 3.1), and, (b)
Manually paraphrasing the above flows to obtain
dialogs with natural language utterances (Sec. 3.2),

Figure 3: Memory subgraph with constituent memo-
ries and their hierarchical relationships. Each memory
contains activity (orange), people (green), time, and
place (not shown) attributes. Memories are grouped into
events (purple box), then days (green box), and finally
trips (shown subgraph). Each memory graph contains
multiple trips, though only one is shown here for brevity.

thus moving closer to real-world application. This
approach is resource-efficient as it reduces the an-
notation overheads when compared to collecting
human↔human dialogs, both in terms of cost and
time. In what follows, we describe these two phases
in detail and analyze our COMET dataset. See the
supplementary (Fig. 7) for an example dialog.

3.1 Multimodal Dialog Self-play

We first leverage a multimodal dialog simulator
(Sec. 3.1.2) to generate synthetic dialog flows be-
tween a user and an assistant. Each of these flows
is grounded in a graph connecting the memories of
a user from their collection. The memory graphs in
our work are simulated by a novel graph simulator
(Sec. 3.1.1) and are designed to capture several hi-
erarchical relationships between the user memories.

3.1.1 Memory Graph Simulator

Graphs have been ubiquitously used in various
fields to effectively represent a set of entities and
relationships between them. Following this trend,
we use a graph structure to represent a collection
of memories (see Fig. 3 for an example). As men-
tioned in Sec. 1, to circumvent the lack of read-
ily available datasets for personal photo collec-
tions and surrounding privacy issues, we construct
a novel graph simulator to synthetically generate
memories graphs using public datasets. These mem-
ory graphs are then used as an input to the multi-
modal dialog simulator to generate dialog flows.
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Memories and Attributes. Memories consti-
tute the atomic units of the graph simulator, and
can cover a wide variety of media including pho-
tographs, videos, and user-created montages. We
limit the scope of memories to represent static im-
ages in this work, although most components of our
proposed framework readily extend to the broader
definition. As photo collection of individuals is sen-
sitive information, we use publicly available image
dataset as a proxy to mitigate the risk. Specifically,
we use Creative Commons images from MS COCO
(Lin et al., 2014) that contains objects and people
in everyday contexts as memories.

We then assign four attributes to each of the im-
ages as follows: (a) Activity: Each image in MS
COCO has 5 associated captions. We use sentence-
BERT (Reimers and Gurevych, 2019) to find the
closest activity label from the taxonomy of the Ac-
tivityNet dataset (Heilbron et al., 2015), using aver-
age text-similarity to the captions. To ensure a good
representation, we only keep those with at least 20
memories resulting in about 138 labels covering
wide variety of activities. (b) Place: For each activ-
ity, we first manually map it to a place type, which
then is randomly mapped to an actual place from
a manually curated list. For instance, playing fris-
bee → park → Cal Anderson Park, Seattle, USA.
(c) People: We use the associated bounding box
annotations for MS COCO images and map those
labeled as ‘person’, above a threshold size, to a
random name from a curated list of 200 names.
(d) Time attribute is sampled randomly from a con-
strained time range, depending on the relationship
shared with other memories in the graph.
Hierarchical Relationships. To closely emulate
scenarios in a personal photo collection, we devise
the following hierarchy of relations amongst the
memories: memories → events → days → trips.
Using heuristic rules, we sample and group mem-
ories into events that are then grouped into days,
which are finally grouped into trips. These group-
ings impose constraints on the attributes of the con-
stituent memories, which can be used to generate
interesting conversational flows to query connected
memories. For instance, memories from the same
event need to happen at the same place type, while
those in a day need to happen in the same city. Sim-
ilar restrictions arise for the time attribute as well,
which would be used to sample reasonable times
for the corresponding memories, e.g., memories
from the same event cannot be separated by more
than few hours. These hierarchical relationships en-

able connected queries like ‘What did we do after
this?’, ‘Show other pictures with Jane on this trip’,
or ‘Where did we go the next day?’.
Memory Graphs. Putting everything together, we
construct a memory graph for each collection:
• nodes: memory, event, day, trip, person, activity
• edges: memory attributes, hierarchical relations
Note that each memory graph can contain multiple
trips. Fig. 3 illustrates a memory subgraph, visu-
alizing only one trip for brevity. We synthetically
generate multiple memory graphs which form the
input to the dialog flow simulator.
Applications in the Real-World Setting. While
we use the publicly available image dataset to gen-
erate memory graphs, applying the method above
in the existing real-world photo album products
at large-scale is straightforward as we do not re-
quire any additional information (e.g. captions or
annotations) other than meta data that are readily
associated with the media (e.g. timestamp, loca-
tions). This meta data can be rearranged from ta-
bles to graphs without additional annotations, only
by specifying the relations of interest (e.g., people,
place, time, predicted concepts). Memory graphs
are not only practical but also desired to enable
connected memory search.

3.1.2 Multimodal Dialog Simulator

The multimodal dialog simulator takes the gener-
ated memory graphs along with the meta informa-
tion of each node to create user↔assistant dialog
flows, following the agenda-based dialog simulator
approach (Schatzmann et al., 2007).
Dialog Flow Generation via Self-play. The dia-
log simulator comprises three main components:
the goal generator, the user simulator, and the
assistant simulator. The goal generator randomly
samples an agenda for each dialog, which defines
a sequence of high-level goals for the scenario
(e.g., SEARCH → GET_RELATED_PHOTOS →
GET_INFO). Given a goal, the user simulator
draws an acceptable dialog action based on a prob-
ability distribution, which is defined with NLU in-
tents (e.g., REQUEST:GET, CONFIRM:SHARE),
slots (e.g., location, time), and memory references.
The assistant simulator then takes the output of the
user simulator, retrieves the multimodal contexts
via the simulation API (e.g. obtaining the informa-
tion of a memory node from the graph, retrieving
related memories), and generates natural language
generation (NLG) intents, slots and new memory
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references. The process is repeated until the simu-
lator exhausts every goal in the agenda.
Multimodal Dialog Ontology. Following other
task-oriented dialog datasets (Eric et al., 2019;
Rastogi et al., 2019; Moon et al., 2020), for
COMET we provide the standard dialog anno-
tations such as the intent (NLU & NLG) and
slot labels. To accommodate for the complex
multimodal nature of the scenarios, we extend
the dialog ontology to include memory refer-
ence annotations as their corresponding node IDs,
which seamlessly annotates both multimodal con-
texts and language (e.g. ‘When was our trip to
Whistler?’ → INFORM:GET_INFO.time, mem-
ories: [8]). The same notation can be used to re-
fer the memories that are carried over in the di-
alog context (e.g. ‘Where did we go after that?’
→ INFORM:GET_RELATED.location, mem-
ories: [8]). This proposed fine-grained and unified
ontology will allow a systematic approach to study
diverse referring expressions in multimodal dialogs.

3.2 Manual Paraphrase

We then collect manual paraphrases of the gener-
ated memory-grounded dialog flows. This allows
us to draw utterances from the natural language
distribution, thus moving closer to the application.
We build an interactive tool to aid annotators -
specifically, the interface shows the images cor-
responding to the memories along with the dia-
log flow, and instructs annotators to paraphrase
without losing key information such as objects
and attributes. The COMET dataset thus comprises
many rich visual references, making it an ideal
dataset for studying multimodal language ground-
ing. See appendix for an example dialog. As para-
phrasing utterances is faster, cheaper, and requires
little to no domain knowledge on the annotator‘s
part, our two-phase pipeline is much more resource-
effective, when compared to collecting multimodal
human↔human dialogs and collecting dialog an-
notations on top (Moon et al., 2020).

3.3 COMET Dataset Analysis

COMET contains 11.4k dialogs totalling 103.4k ut-
terances, grounded in 1.1k memory graphs. Tab. 1
presents the overall dataset statistics.
Analyzing Dialogs. Dialogs in COMET use a total
of 1.1k memory graphs with each containing 100
memories. For every dialog, there are about 3.5

Total # dialogs 11.5k
Total # utterances 103.4k
Total # memory graphs 1.1k
Avg # words (user turns) 10.7± 4.4
Avg # words (assistant turns) 15.4± 9.8
Avg # utterances / dialog 8.8
Avg # memories mentioned / dialog 3.5
Avg # memories in graph / dialog 100

Table 1: COMET Dataset Statistics

connected memory mentions with the distribution
given in Fig. 4b. User and assistant turns average
about 10.7 and 15.4 words respectively (distribu-
tion in Fig. 4a). It is interesting to note that the
assistant responses are significantly longer than the
user. As an example, consider the following user
utterance ‘U: Are there any similar photos from
2020?’ and the corresponding assistant response ‘A:
Here‘s one of Laura and Virginia cooking sausages
at home, the afternoon of August 26, 2020. It looks
like a fun time!’. This illustrates that the annota-
tors paraphrasing the dialog flows included: (a)
details about the retrieved memories to give addi-
tional context to the user, thus invoking subsequent
connected memory queries (e.g., ‘What did we do
that evening?’), (b) chitchat about the memories to
make the conversational natural sounding.
Analyzing Dialog Annotations. Our COMET

come with annotations at dialog level for dialog
state tracking (NLU intents and slots), necessary
API calls for assistant, and multimodal coreference
resolution. Following Kottur et al. (2021), our in-
tents follow a hierarchy of dialog acts (4: ASK,
CONFIRM, INFORM, REQUEST) and activities (4:
DISAMBIGUATE, GET, REFINE, SHARE). See
Fig. 4d for a breakdown distribution over dialog
acts and activities. Due to the retrieval nature of our
assistant (either memories or associated attributes),
a major chunk of the activities are GET. Similarly,
there are 5 APIs in our dataset (Fig. 4c):
• SEARCH: Search using input parameters,
• REFINE_SEARCH: Build on top of search car-

rying over existing parameters,
• GET_INFO: Seek information about current or

previouly viewed memories,
• GET_RELATED: Explore other memories simi-

lar to the current/prior memories, and,
• SHARE: Share it to friends or family,
As expected, SEARCH is the most dominant API
call in the dataset. Note that the turns with GET
and REFINE_SEARCH API calls elevate the need
for conversation in retrieving connected memories,
where the user requests for memories similar to
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(a) (b) (c)

(d) (e)
Figure 4: Distribution of (a) utterance lengths with dialog turns, (b) number of memory mentions in each dialog, (c)
API calls across the dialogs, (d) dialog acts and activities, and (e) referent candidates (L) and coreference distance
(R) between memory mentions.

Figure 5: Transition of dialogs acts in COMET for the first 4 turns, for dialog flows generated by our novel multimodal
dialog simulator for connected memories. Each block is of the form ACT:ACTIVITY:[A|U][turn], to denote
dialog act, activity, user or assistant turn, and turn number, respectively. See text for more details.

the ones already viewed or with additional speci-
fications, respectively. Finally, Fig. 4e visualizes
the distribution of number of candidates and utter-
ance difference between the current and the one
with referent memory (coreference distance). For
turns requiring coreference resolution, the average
number of candidates is 2.7 at a distance of 2.9
utterances. Though a majority of referents are natu-
rally 1 utterance away (previous turn), the long tail
(even up to 10+ utterances) indicates the presence
of challenging multimodal coreferences.
Analyzing Dialog Flows. As mentioned earlier,
the multimodal dialog simulator generates the dia-
log flows during the first phase of our data genera-
tion. We visualize these dialogs flows in Fig. 5 for
the first four dialog turns, where each block denotes

an intent at a particular turn and the grey stripes
denote NLU intent transitions in subsequent turns.
The width of the stripe is proportional to the fre-
quency of the transition. For brevity, each block is
label as ACT:ACTIVITY:[A|U][turn]. The
high branch-off factors for these intents capture the
diversity of the dialogs flows in our dataset, which
is desirable in building a robust dialog system.

4 Task Formulation

To benchmark progress of conversational models
towards the goal of assisting users in interactively
querying connected memories in a meaningful way,
we propose four main tasks for COMET. Tab. 2
outlines the tasks and the evaluation metrics.
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Task Name Goal Evaluation

1. Assistant API Call Prediction Given user utterances, predict the right API call necessary to
execute the query.

Classification accuracy

2. Multimodal Coreference
Resolution (MM-Coref)

Given user utterances, resolve referent memories to their
canonical ID(s) as defined by the memory graph.

Coref Precision / Recall / F1

3. Multimodal Dialog State Tracking
(MM-DST)

Given user utterances, track user belief states across multiple
turns.

Slot Precision / Recall / F1

4. Assistant Response Generation Given user utterances, ground-truth APIs and ground-truth
object IDs, generate Assistant responses or retrieve from a
candidate pool.

Generation: BLEU;
Retrieval: Accuracy@k, mean re-
ciprocal rank, mean rank

Table 2: Proposed tasks and descriptions on our COMET dataset. Please see Sec. 4 for more details.

4.1 Assistant API Call Prediction

The first step in executing any query on connected
memories successfully is to understand the user ut-
terance in the context of the dialog history and mul-
timodal information, and predict the right API call.
For instance, a query like ‘When was the last time
I was here?’ should result in a GET_INFO API
prediction. Note that errors in API call prediction
cascade through the model pipeline resulting in an
incorrect or unrelated response from the assistant.
Thus, this task tests the ability of the conversational
agent to predict the right API call. Evaluation is
done per each turn through API call accuracy.

4.2 Multimodal Coreference Resolution

Recall that one of our motivations to use conver-
sations for querying connected memories is the
ability to support multi-turn queries. In such sce-
narios, humans often use short-hands or references
when the underlying referred entity (referent) can
be usually deduced without any ambiguity. As an
example, when looking at a particular memory, a
follow-up ‘When was the last time I was here?’ is
intuitive and natural, whereas ‘When was the last
time I was at Waikiki Beach, Hawaii?’ requires the
user to remember the name and use it in the query,
making it cumbersome.

Therefore, the model must be able to handle mul-
timodal coreferences in order to field such queries
effectively. The input for this task includes the dia-
log history, multimodal context, and all the memo-
ries mentioned so far (as coreference candidates).
The models needs to thus resolve the reference to
one or more of the candidates. We use coreference
precision, recall, and F1 to measure performance.

4.3 Multimodal Dialog State Tracking

Due to the multimodal nature of COMET, we adopt
multimodal dialog state tracking (MM-DST) used
in (Kottur et al., 2021) as one of our tasks. To elab-

orate, slots in our dataset can be grounded in the
multimodal context information and requires rea-
soning through the current or previously viewed
memories. For instance, a query like ‘Where did
we go from here?’ requires the slot value to be the
currently viewing memory. This implies that the
dialog states can contain non-textual tokens (e.g.,
memories), thus making it multimodal. In order to
measure the performance in this task, we use slot
recall, precision, and F1 scores. Note that unlike
(Kottur et al., 2021), we drop evaluating for dia-
log act prediction since GET has an overwhelming
majority due to the nature of the problem.

4.4 Assistant Response Generation

This task evaluates the ability of the model to ei-
ther generate a response or retrieve from a pool of
candidates, given dialog history, ground-truth APIs
& results, belief states, and multimodal contexts.
Though the model has access to API results, pro-
ducing a natural language utterance to describe it
within the flow of the dialog is still a difficult task.

We evaluate this task in two different ways:
(a) Generative, where the model produces the re-
sponse similar to a conditional language model.
We use n-gram overlap based BLEU-4 (Papineni
et al., 2002) and more recent neural evaluation
metric BERTScore (Zhang* et al., 2020) to mea-
sure performance by comparing the generated re-
sponse to the ground truth, and (b) Retrieval, where
the model ranks a list of randomly pooled can-
didate responses (unique to a turn) along with
the ground truth. Retrieval metrics like recall@k
(k = {1, 5, 10}), mean rank, and mean reciprocal
rank are used.

5 Modeling & Empirical Analysis

We now perform preliminary empirical evaluation
and analysis for the proposed tasks by training base-
lines. Detailed modeling work is left as future work.
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Model 1. API 2. Coref 3. DST. 4. Gen.

Acc↑ Coref F1↑ Slot F1↑ Joint Acc.↑ BLEU↑ BERTS.↑
Text 88.6±0.3 78.2±0.4 91.5±0.4 72.9 0.205 0.895

MM-BUTD 89.4±0.4 84.8±0.6 92.6±0.3 77.5 0.251 0.905
MM-CLIP 90.2±0.1 84.9±0.4 92.6±0.2 78.3 0.251 0.905

Table 3: Baseline performances for GPT-2 models: text-
only (text) and multimodal image features (MM). (1)
API Call Prediction (API), via accuracy, (2) Mul-
timodal Coreference Resolution (Coref), via coref
prediction F1, (3) Dialog State Tracking (DST), via
slot F1, (4) Response Generation via BLEU and
BERTScore. ↑: higher is better. Bold: best performance
with statistical significance. BLEU and BERTScores
have 0.004 and 0.001 as stderr values respectively.

Dataset Split. The dataset is randomly divided
into: train (70%), val (15%), and test (15%). For
our experiments, models are trained using train
split and performance is reported on test, while val
is used to pick the model hyper-parameters.
Notations. We follow the notation established
in (Kottur et al., 2021), where each dialog
of length Nr rounds is represented as D =
{(Ui, Ai,Mi, Bi)}Nr

i=1 with:
• Ui: User utterance at turn i
• Ai: Assistant utterance at turn i
• Mi: Multimodal context, i.e., memory graph and

memories retrieved in the previous turns,
• Bi: Multimodal belief state, a semantic parse of
Ui (intent, slot, memory references).

Therefore, given the current user utterance (Ut), di-
alog history Ht = (Ui, Ai)

t−1
i=1, and the multimodal

context (Mt), a COMET agent should predict the
user belief state Bt and the natural language re-
sponse At for every dialog turn t.
Baselines. Causal language models pretrained on
large datasets have shown a lot of promise in multi-
modal and text-only task-oriented dialog modeling,
when finetuned on the downstream task (Hosseini-
Asl et al., 2020; Peng et al., 2020; Kottur et al.,
2021; Moon et al., 2020). Following this popular
approach, we adopt the transformer-based GPT-2
(Radford et al., 2019) model and jointly train it
for API prediction, MM-Coref, DST, and response
generation tasks, as shown in Fig. 6. In particular,
we use the 12-layer GPT-2 (117M ) model and fine-
tune it on dialogs from COMET dataset, using early
stopping based on token perplexity (<3 GPU hrs).
We use two approaches to capture Mi:
(a) text-only (GPT2-text), where previously viewed
memories and their attributes are represented as flat-

Figure 6: Baseline GPT-2 models for COMET. (1) Given
the dialog history, multimodal context, and current user
utterance, the model predicts the API call and belief
state at the current turn, (2) The API call is executed and
(3) the results are fed back into the model, (4) Finally,
model produces a natural language response. As shown,
GPT2-text uses attribute strings to represent memories,
while GPT2-MM use image features.

tened strings. Note that this baseline uses ground-
truth activities from the memory graph.
(b) multimodal (GPT2-MM), where bottom-up and
top-down (BUTD) (Anderson et al., 2018) and CLIP
(Radford et al., 2021) image features are extracted
for previous viewed memories, and fed as ‘visual
tokens’ while finetuning the GPT-2 model.
Analysis. A key observation from Tab. 3 is that
multimodal models outperforms text-only across
all the tasks significantly. This is intuitive, for in-
stance, multimodal coreference resolution requires
understanding the memories beyond the obvious
activity label in order to rightly resolve the ref-
erence. Consider the query: ‘When was the last
time I played with my dog here?’. To resolve to
the right memory, the system needs to understand
which memory is about playing with the dog to-
wards which a mere activity label throwing frisbee
might be insufficient. For a similar reason, addi-
tional multimodal features improve response gener-
ation, especially to include chit-chat. On the other
side, GPT-Text performs competitively on captur-
ing the dialog state.
Conclusion. We present a novel dataset for the
dialogs for connected memories, COMET, with
11.5K user↔assistant dialogs (103K utterances)
grounded on the memory graphs. We present a
novel multimodal dialog simulator, which gener-
ates simulated dialogs grounded on diverse mem-
ory graphs that are automatically configured. Our
empirical analysis demonstrates many new chal-
lenges that our COMET dataset brings, highlighting
new directions of research in this area.
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6 Limitations

The generalizability of COMET is naturally
bounded by the underlying graph simulator, es-
pecially around memory attribute labels of place,
people, and time. However, we justify this as fol-
lows: (a) Recall that the focus of our work is to
enable an assistant that can understand and execute
user queries about connected memories through an
interactive dialog. Even with the simulated dialog
flows, COMET captures several interesting chal-
lenges related to multimodal dialog, for instance,
coreference resolution and dialog state tracking (as
seen in Sec. 3.3 and Sec. 5). This opens the door
to new research directions in multimodal conversa-
tion, especially in the absence of a readily available
large-scale personal photo collection dataset (along
with attributes and metadata). (b) Due to the two-
stage data collection pipeline, COMET is amenable
to data augmentation techniques that can increase
the robustness of the downstream dialog model. For
instance, the dataset can be easily augmented by
replacing named entities in the memory graph and
utterances, without changing the flow.

References

Peter Anderson, Xiaodong He, Chris Buehler, Damien
Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
2018. Bottom-up and top-down attention for image
captioning and visual question answering. In CVPR.

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and
Devi Parikh. 2015. VQA: Visual question answering.
In ICCV.

Andrei Barbu, Siddharth Narayanaswamy, and Jef-
frey Mark Siskind. 2013. Saying what you’re look-
ing for: Linguistics meets video search. CoRR,
abs/1309.5174.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. MultiWOZ - a
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A Supplementary Materials

A.1 Ethical Considerations

All identifiable faces from the COCO images were
blurred using a CV algorithm, mitigating potential
privacy risks. The dataset, when released publicly,
will include those edited images.

Annotators for our task were employed as full-
time and contracted via a leading NLP / linguistics
annotation platform. Annotators were given clear
instructions and disclaimers detailing the escalation
path (“Report Dialog") for an (unlikely) case where
the data may include sensitive topics or images
(shown in Figure 9).

A.2 Dataset Example

Figure 7 illustrates an example dialog from
COMET, along with the set of images as-
sociated with each turn (U: User, A: As-
sistant). API Annotations are formatted as

follows: INTENT [slot = value, ...]
(request_slot) <memory: ID>. When
there is no new image introduced for a given
turn, it is assumed that the images from previous
turns (if any) are left visible to the user, therefore
continuing to serve as the grounding multimodal
context.

A.3 Annotation UI

Figure 8 illustrates the annotation UI used to col-
lect multimodal paraphrases of the dialog. Anno-
tators are shown the pre-generated dialog flows
(templated utterances), along with the text boxes
where the paraphrases can be entered. The top por-
tion of the UI displays the images (assumed to be)
shown to the user for each given turn, which gets
dynamically updated as annotators click on new
text boxes for entering paraphrases. A shortened
list of meta data associated with each image is also
shown for reference.
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Figure 7: Dataset Example. Dialog labels include intent, slots, and multimodal coreferences.
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Figure 8: The annotation tool UI. Annotators are shown the templated utterances, and a set of photos that
dynamically get updated for each turn, based on the pre-generated dialog flows.

Figure 9: Disclaimers shown to the annotators, detailing the escalation path.
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