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Abstract

Recent work has shown that Pre-trained Lan-
guage Models (PLMs) store the relational
knowledge learned from data and utilize it for
performing downstream tasks. However, com-
monsense knowledge across different regions
may vary. For instance, the color of bridal
dress is white in American weddings whereas
it is red in Chinese weddings. In this paper,
we introduce a benchmark dataset, Geo-diverse
Commonsense Multilingual Language Models
Analysis (GEOMLAMA), for probing the di-
versity of the relational knowledge in multi-
lingual PLMs. GEOMLAMA contains 3,125
prompts in English, Chinese, Hindi, Persian,
and Swahili, with a wide coverage of concepts
shared by people from American, Chinese, In-
dian, Iranian and Kenyan cultures. We bench-
mark 11 standard multilingual PLMs on GE-
OMLAMA. Interestingly, we find that 1) larger
multilingual PLMs variants do not necessar-
ily store geo-diverse concepts better than its
smaller variant; 2) multilingual PLMs are not
intrinsically biased towards knowledge from
the Western countries (the United States); 3) the
native language of a country may not be the best
language to probe its knowledge and 4) a lan-
guage may better probe knowledge about a non-
native country than its native country. Code
and data are released at https://github.
com/WadeYin9712/GeoMLAMA.

1 Introduction

Pre-trained Language Models (PLMs) (Peters et al.,
2018; Radford et al., 2019; Devlin et al., 2019;
Brown et al., 2020) are increasingly used in various
Natural Language Processing (NLP) applications.
Pre-trained on large-scale text corpora, they are
shown to store relational knowledge (Petroni et al.,
2019; Jiang et al., 2020b; Kassner et al., 2021), e.g.,
commonsense knowledge (Zhou et al., 2020; Lin
et al., 2020; Nguyen et al., 2021; Zhou et al., 2021).
They have been used to construct knowledge bases
while requiring limited human effort for rule cre-

In traditional [X] weddings, the color of wedding dress is usually [MASK].

पारंप�रक [X] शािदयो ंम� दु�न की पोशाक का रंग आमतौर पर [MASK] होता है।

Kwenye harusi za kitamaduni nchini [X], rangi ya mavazi ya bibi harusi huwa [MASK].

...

[X] (Country name) [MASK]

        American white

         Chinese red

          Indian red

         Iranian white

         Kenyan white

Color of wedding dress

[X] (Country name) [MASK]

          अमे�रकी सफेद (white)

             चीनी लाल (red)

           भारतीय लाल (red)

            फ़ारसी सफेद (white)

            के�ाी सफेद (white)

...

EN

HI

SW

Figure 1: Examples of prompts and gold answers in
GEOMLAMA. For each concept (e.g., color of wedding
dress), there are multiple masked multilingual prompts
(English, Hindi, Swahili, etc.) with specified country in-
formation [X] querying geo-diverse knowledge about
the concept. We test multilingual PLMs by examining
the extent to which masked word predictions align with
the gold answers in [MASK] columns.

ation and validation (Bosselut et al., 2019; Zhou
et al., 2022).

However, do PLMs store geo-diverse common-
sense knowledge? Geo-diverse commonsense (Yin
et al., 2021) is a collection of commonsense lo-
cally shared by people from certain regions but
may not apply in other regions due to cultural and
geographic differences. For instance, the color of
bridal outfit in American wedding is white, while
it is normally red in traditional Chinese and Indian
weddings. PLMs which are unaware of geo-diverse
knowledge may have disparity in performance on
test data associated with different regions. This
may lead to disadvantage of users in certain re-
gions and further amplify bias in AI applications,
such as constructing Western-centric knowledge
bases eventually.

In this paper, we concentrate on evaluating mul-
tilingual PLMs (Devlin et al., 2019; Conneau and
Lample, 2019; Conneau et al., 2020). Studying geo-
diversity naturally involves multilinguality. People
in different regions may speak different languages,

2039

https://github.com/WadeYin9712/GeoMLAMA
https://github.com/WadeYin9712/GeoMLAMA


and it is natural to assume that geo-specific knowl-
edge is better represented in its native language.
Moreover, pre-trained on a collection of multilin-
gual corpora, multilingual PLMs accumulate the
knowledge from various languages. Therefore, we
posit that knowledge in multilingual PLMs is more
diverse than that in models trained on a single lan-
guage.

Centered around multilingual PLMs, we follow
the original knowledge probing task LAnguage
Model Analysis (LAMA) (Petroni et al., 2019)
and introduce a new geo-diverse probing bench-
mark GEOMLAMA. As shown in Figure 1, given
a masked geo-diverse prompt with a particular
country name [X] , such as “In traditional [X]
weddings, the color of wedding dress is usually
[MASK] .”, and a corresponding candidate answer

list, {“red”, “white”, “black”, “blue”, ...}, multilin-
gual PLMs are required to predict the masked word
[MASK] from the candidate list.

The characteristics of GEOMLAMA are sum-
marized as follows. 1) Diverse answers across
countries: Each prompt is designed based on geo-
diverse concept (e.g., color of traditional wedding
dress in Figure 1) and gold answers for masked
word are different across countries. 2) Broad cover-
age of geo-diverse concepts: GEOMLAMA encom-
passes comprehensive geo-diverse topics including
habits and personal choices, cultures and customs,
policies and regulations, and geography. 3) Cov-
erage of multiple countries and languages: GE-
OMLAMA involves knowledge about the United
States, China, India, Iran, and Kenya, and is con-
structed by the native languages of the five coun-
tries, English, Chinese, Hindi, Persian, and Swahili.
Overall, there are 3,125 prompts in our benchmark.

We perform in-depth probing analysis on 11 mul-
tilingual PLMs, including mBERT (Devlin et al.,
2019), XLM (Conneau and Lample, 2019), XLM-
R (Conneau et al., 2020), mT5 (Xue et al., 2021),
and XGLM (Lin et al., 2021b). In general, we ob-
serve that multilingual PLMs significantly outper-
form random guess, suggesting that multilingual
PLMs are capable of storing geo-diverse common-
sense to some extent. We then conduct fine-grained
investigation across three dimensions.

We first study the correlation between model per-
formance and model size. Contrary to our intuition,
we notice that the largest models do not necessarily
have the best performance on our benchmark. We
further study the best language to probe the knowl-

edge about a particular country. Surprisingly, we
find that the best language is not the native lan-
guage of the given country (e.g., English is not
the best language to probe knowledge about the
US). We also explore the knowledge that can be
most accurately probed by a particular language.
Similarly, we find that the most accurately probed
knowledge is not the one about indigenous country
of the language (e.g., the country for which Chi-
nese prompts provide the most accurate predictions
is not always China). Lastly, we find evidence of
reporting bias that might explain such observations.

2 Related Works

Knowledge Probing on PLMs. Petroni et al.
(2019) first explore whether PLMs have capacity of
storing factual knowledge about entities. Based on
this observation, prior works involving knowledge
probing focus primarily on creating more effective
probing methods to elicit factual knowledge (Jiang
et al., 2020b,a; Shin et al., 2020; Zhong et al., 2021)
or analyzing whether other types of knowledge are
stored in PLMs (Talmor et al., 2020; Zhou et al.,
2020; Kassner et al., 2021; Sung et al., 2021). In
the second line of works, there is a great variety
of commonsense knowledge being explored, in-
cluding social (Zhou et al., 2020), numerical (Lin
et al., 2020) and spatial (Zhang et al., 2020; Liu
et al., 2022) commonsense. GEOMLAMA focuses
on probing a new commonsense type, geo-diverse
commonsense, on multilingual PLMs.

Multilingual Knowledge Probing and Multilin-
gual Commonsense. MLAMA (Kassner et al.,
2021) and Prix-LM (Zhou et al., 2022) simply fo-
cus on capturing multilingual factual knowledge
about entities. XCOPA (Ponti et al., 2020) and X-
CSR (Lin et al., 2021a) are two multilingual com-
monsense benchmarks, but both are built by transla-
tion from English commonsense benchmarks, with-
out any consideration of region-specific common-
sense. Different from prior works, we value geo-
diversity and quantify the extent to which multilin-
gual PLMs master such geo-diverse commonsense.

Geo-Diverse Commonsense. Geo-diverse com-
monsense is strongly correlated with cultures and
geographic locations. There have emerged a few
works (Acharya et al., 2020; Yin et al., 2021;
Liu et al., 2021; Shwartz, 2022) studying geo-
diverse commonsense. Specifically, by collecting
responses to questionnaire, Acharya et al. (2020)
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analyze the cultural difference between US and
India about scenarios including wedding and fu-
neral. Yin et al. (2021); Liu et al. (2021) propose
geo-diverse multimodal benchmarks, GD-VCR and
MaRVL. They find that due to lack of geo-diverse
knowledge, large performance disparity appears
when multimodal models are applied on tasks re-
quiring knowledge about Western and non-Western
regions. Shwartz (2022) propose culture-specific
time expression grounding task to acquire specific
temporal commonsense in different countries from
multilingual corpora and models.

Inclusion in NLP. Enhancing inclusivity of lan-
guage processing technology and ensuring it works
for everyone is essential. Several studies have fo-
cused on improving language inclusion (Joshi et al.,
2020; Faisal et al., 2022), gender inclusion (Cao
and Daumé III, 2021; Dev et al., 2021; Lauscher
et al., 2022), and race inclusion (Field et al., 2021).
We hope that GEOMLAMA can enable future de-
velopment in improving the diversity of knowledge
embedded in pre-trained language models.

3 GEOMLAMA Benchmark Construction

To build a geo-diverse commonsense probing
benchmark, we recruit annotators from five differ-
ent countries, the United States, China, India, Iran,
and Kenya to participate in annotation. The anno-
tation process is separated into four stages. 1) We
first ask the annotators to list geo-diverse concepts.
2) Based on the collected concepts, we then require
annotators to design masked geo-diverse prompt
templates in English. 3) After specifying prompts
with country names, we request annotators to pro-
vide correct answers and form answer candidate
list for each prompt. 4) We translate the English
prompts into other languages and paraphrase them.
The overview of the annotation pipeline is illus-
trated in Figure 2.

3.1 Geo-Diverse Concept Collection

Geo-diverse concepts are the foundation of design-
ing geo-diverse prompts. The criteria of selecting
geo-diverse concepts are shown as follows:

Universality and Diversity across Cultures. We
require that the scenarios regarding the collected
concepts to be universal but diverse across the dif-
ferent cultures. “Color of wedding dress” qualifies
our criteria as wedding dress is a universally un-
derstood entity where its color is diverse across

different cultures.

Avoiding Concepts involving Region-Specific
Terms. We avoid probing models about region-
specific factual knowledge, e.g., festival names and
president names of the countries, as these concepts
usually involve uncommonly used tokens in cer-
tain languages and thus introduce another layer of
complexity to make inference.

Finally, we consider topics that cover habits and
personal choices, cultures and customs, policies
and regulations, and geography for subsequent an-
notations. Details are shown in Appendix A.

3.2 Geo-Diverse Prompt Template Design
Centered on the collected geo-diverse concepts,
annotators design English version of geo-diverse
prompt templates that will be later paraphrased
and translated into multilingual prompts. Given
one geo-diverse concept, e.g., “color of wedding
dress”, the corresponding prompt template would
be a masked sentence that inquires the missing
color information, e.g., “The color of wedding dress
is usually [MASK] .” Since we intend to probe
knowledge about different countries using these
prompts, we further insert phrases such as “In [X] ,
”, “In traditional [X] wedding, ” to indicate the
country knowledge to be probed. Here [X] is ei-
ther one of the country names (the United States,
China, India, Iran, and Kenya), or one of the cor-
responding modifiers ( American, Chinese, Indian,
Iranian, and Kenyan).

3.3 Answer and Answer Candidate List
Annotation

For each masked geo-diverse prompt with a spec-
ified country name, we request the annotators to
provide correct answers for the masked words. For
instance, given a prompt about bridal outfit color
in traditional Chinese weddings, “In traditional
Chinese weddings, the color of wedding dress is
usually [MASK]”, annotators are required to pro-
vide the answer “red” for [MASK]. The answers
are all provided by annotators who are familiar
with the culture in one of our studied countries.
Note that besides prompts with only one answer,
some other prompts in GEOMLAMA, such as “The
staple food in Iran is [MASK]”, can have multiple
correct answers (“rice” and “bread”) for a single
prompt. To further validate the correctness of an-
swers, we distributed a survey to collect responses
for knowledge about respondents’ own countries.
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In traditional [X] weddings, the color of wedding dress is usually [MASK].

पारंप�रक [X] शािदयो ंम� दु�न की पोशाक का रंग आमतौर पर [MASK] होता है।

...

Geo-Diverse Concepts

Color of wedding dress
Shower time
Staple food

Driver seat side
Unit of measurement

...

...

  In [X], the color of traditional wedding dress is usually [MASK].

EN

EN

HI

 Katika harusi za jadi za [X], rangi ya mavazi ya bibi harusi kawaida ni [MASK]. SW

[X] (Country name) [MASK]

      American white

       Chinese red

        Indian red

       Iranian white

       Kenyan white

       Kenyan white

आमतौर पर पारंप�रक [X] शािदयो ंम� दु�न की पोशाक का रंग [MASK] होता है। HI

[X] (Country name) [MASK]

      अमे�रकी सफेद

         चीनी लाल

       भारतीय लाल

       फ़ारसी सफेद

        के�ाी सफेद

Answer Candidate List

red, white, yellow, blue,  
orange, green, violet, black

Answer Candidate List

लाल, सफेद, पीला, नीला,  
नारंगी, हरा, ब�गनी, काला

The driver seat of a car is in the [MASK] side in [X]. EN

...

Stage 1: Concept Collection

Stage 2: Prompt Design

Stage 4: Translation and Paraphrase

Stage 3: Answer Annotation

...

Paraphrase

Translate

Paraphrase

TranslateTranslate

Figure 2: Overall annotation pipeline. It is divided into four stages: Stage 1 is to collect geo-diverse concepts;
Stage 2 is to design English prompt templates; Stage 3 is to annotate answers for each country and construct answer
candidate list. Stage 4 is to translate the English prompts and paraphrase the translated multilingual prompts. Here
we showcase English and Hindi answer annotations for demonstration.

We collected 33 responses from the five countries,
and retained the answers with majority support.

In this work, we focus on investigating whether
PLMs are capable of predicting correct answers
among all the possibilities of different countries.
For example, we wonder if PLMs can predict the
dress color at Chinese wedding is “red” over the
other possibility, such as “white”. Therefore, we
pair each prompt with an additional answer candi-
date list composed by the probable choices and mul-
tilingual PLMs are constrained to make predictions
from the list. Specifically, each list contains the
union of all correct answers of five countries and ad-
ditional confounding candidates sharing the same
word types with those correct answers. For the
prompts about color of wedding dress, the union
of correct answers is {“red”, “white”}. Other than
the two colors, as illustrated in Figure 2, we also
append confounders such as, “yellow”, “black”,
“blue” to the list (the orange letters in grids titled
with “Answer Candidate List”). The final answer
candidate list for prompts about color of wedding
dress will be {“red”, “white”, “yellow”, “black”,
“blue”, ...}. Note that the contents and lengths of
answer candidate lists for prompts about different
concepts vary greatly.

3.4 Prompt Translation and Paraphrase

We then obtain multilingual geo-diverse prompts
via translating the annotated English prompts into

four other languages Chinese, Hindi, Persian, and
Swahili. We leverage Google Translation API
to translate English prompts and each translated
prompt is manually checked and corrected by anno-
tators familiar with both English and any of the four
studied languages. Besides, since it is shown that
probing results are sensitive to small perturbation to
the prompts (Jiang et al., 2020b), we further gener-
ate four paraphrases for each prompt to obtain more
robust probing results. Specifically, we paraphrase
English prompts via a round of backtranslation1 in
which we first translate English prompts to German
ones and then translate them back to English. For
prompts in other languages, their paraphrases are
generated by backtranslation that translates texts to
English and translate them back to the original lan-
guages. The paraphrases in a particular language
are validated and modified by native speakers.

In total, we annotate 3125 prompts with answers
and corresponding candidates in GEOMLAMA. All
the prompts are designed based on 16 geo-diverse
concepts listed in Appendix A, and there are 625
prompts for each of the five languages. More de-
tails are described in Appendix B.

4 Probing Methods on GEOMLAMA

Petroni et al. (2019) introduce the LAnaguage
Model Analysis (LAMA) setup to probe knowl-

1Based on Google Translation API.
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edge stored in the pre-trained language models
using masked templates. Without any additional
fine-tuning, given a masked prompt, models are re-
quired to recover masked tokens with entities with
the highest probability for the prompt context. Fol-
lowing LAMA probe, on GEOMLAMA, we study
whether models are capable of seeking the most
appropriate answers to from answer candidate list
according to given geo-diverse prompts.

Kassner et al. (2021) follow LAMA probe to
investigate entity knowledge in multilingual BERT
only. In this work, we probe a diverse set of lan-
guage models on geo-diverse commonsense knowl-
edge by scoring answer candidates and calibrating
the score of each candidate.

4.1 Scoring Answer Candidates

We score answer candidates based on log likelihood
of generating answer candidates given prompts.
Different model families have their individual infer-
ence methods to obtain the scores. In the following,
we introduce the probing methods for masked lan-
guage models. Details of other probing methods
on autoregressive and encoder-decoder language
models are shown in Appendix C.

Masked Language Models (mBERT, XLM,
XLM-R family). Given an answer candidate e
(e.g., “chopsticks”) that is tokenized into subtokens
e1, e2, ..., eL (e.g., “chop”, “stic”, “ks”) such that
ei ∈ V where V is the vocabulary and t is the
prompt (e.g., “In China, people usually eat food
with [MASK1]...[MASKL].”), we assign a score
le based on the log probability of recovering the an-
swer candidate e in the masked prompt. Formally,
le is defined as

1

L

L∑

i=1

log(p([MASKi] = ei|[MASK<i] = e<i, t)). (1)

According to Eq.(1), we perform L for-
ward passes, each of which helps in obtain-
ing conditional probability of generating
one subtoken. To illustrate, ith forward
pass inference would be p([MASKi] =
ei| “In China, people usually eat food with e1 e2
...ei−1 [MASKi]...[MASKL]”).

Here we further normalize the sum of log like-
lihood by the number of subtokens L to help in
reducing the effect of length. The other model
families discussed in Appendix C also adopt the
normalization strategy.

4.2 Calibrating Answer Candidates
The way to score answer candidates e ∈ E (e.g.,
“chopsticks” ∈ {“chopsticks”, “hands”, “spoons”,
“knives”}) given the prompt t for a country C (e.g.,
“In China, people usually eat food with [MASK].”)
is illustrated in §4.1. However, this scoring mecha-
nism is likely to be biased towards statistical cor-
relations learned during pre-training (Zhao et al.,
2021) whilst ignoring the country-specific informa-
tion present in the prompt. For instance, the model
might choose “knives” over “chopsticks” because
“knives” may occur more often than “chopsticks” in
pre-training corpora. Hence, we calibrate models
with the prior probability of answer predictions in
the absence of any country information. The final
score given to each answer in the answers candidate
set is given by:

se = le − l′e, (2)

where l′e is obtained using the same approach as le
but the input prompt for calculating l′e is the one
without country information (e.g., “People usually
eat food with [MASK].” without “In China,”).

4.3 Evaluation Metric
We use the ratio of total number of model’s correct
predictions to the total number of gold answers as
model performance on GEOMLAMA. Specifically,
given a prompt ti with gi gold answers, we count
the number of top-gi model predictions that also
appear in the gold answer list as ci, based on the
final score in Eq.2. For example, since there are
two gold answers for the prompt “The staple food
in Iran is [MASK]”, “rice” and “bread”, gi = 2.
In total, there are eight candidates in the answer
candidate list {“bread”, “noodles”, “rice”, “meat”,
“maize”, ...} for this prompt. Assume one multi-
lingual PLM assigns the highest gi scores to the
candidates “noodles” and “rice”. Then ci = 1,
since only one of “noodles” and “rice” is the gold
answer of the prompt. We then sum up all ci and
gi to calculate the ratio,

∑n
i=1 ci/

∑n
i=1 gi, where

n is the total number of prompts in GEOMLAMA.

5 Analysis on Multilingual PLMs

In this section, we are interested in analyzing fol-
lowing questions: 1) Are bigger multilingual PLMs
more geo-diverse than smaller ones? 2) In the ab-
sence of any particular country information in the
prompts, are multilingual PLMs biased towards
the knowledge towards certain countries? 3) Can

2043



US China India Iran Kenya
0.2

0.3

0.4

0.5
mBERT

XLM

XLMRbase

XLMRlarge

random

(a) mBERT, XLM, XLM-R family.

US China India Iran Kenya
0.2

0.3

0.4

0.5
mT5small

mT5base

mT5large

random

(b) mT5 family.

US China India Iran Kenya
0.2

0.3

0.4

0.5
XGLM564M

XGLM1.7B

XGLM2.9B

XGLM4.5B

random

(c) XGLM family.

Figure 3: Multilingual PLMs’ performance on probing knowledge about the studied countries averaged over all
languages. Complete results are shown in Appendix E.

en zh hi fa sw
0.2

0.3

0.4

0.5
mBERT

XLM

XLMRbase

XLMRlarge

random

(a) mBERT, XLM, XLM-R family.

en zh hi fa sw
0.2

0.3

0.4

0.5
mT5small

mT5base

mT5large

random

(b) mT5 family.

en zh hi fa sw
0.2

0.3

0.4

0.5
XGLM564M

XGLM1.7B

XGLM2.9B

XGLM4.5B

random

(c) XGLM family.

Figure 4: Multilingual PLMs’ performance averaged over countries when using multilingual prompts. “en”, “zh”,
“hi”, “fa”, and “sw” denote English, Chinese, Hindi, Persian, and Swahili. Complete results are shown in Appendix E.

native language probe the knowledge about a par-
ticular country best? 4) Given a particular lan-
guage, can the corresponding country’s knowledge
be most accurately probed by the language?

To this end, we experiment with 11 multilingual
PLMs2 including mBERT (Devlin et al., 2019),
XLM (Conneau and Lample, 2019), XLM-R fam-
ily3 (Conneau et al., 2020), mT5 family4 (Xue et al.,
2021), and XGLM family5 (Lin et al., 2021b). We
freeze pre-trained model parameters provided by
HuggingFace Transformers (Wolf et al., 2020) and
do not fine-tune the models during probing.

5.1 Overview of Model Performance

Results are shown in Figure 3 and 4. Figure 3
focuses on the comparison among performance of
probing the knowledge about a particular country
while Figure 4 compares the performance of using
prompts in different languages.

In Figure 3, we find that the performance of
nearly all the multilingual PLMs lies in the range

2We also experiment with GPT-3 as it is also pre-trained
on multilingual corpora. However, the results are not included
in main paper because GPT-3 probing convention does not
adopt cloze statements as the other 11 multilingual PLMs do.
More setup details and results can be found in Appendix D.

3XLM-R-base, XLM-R-large.
4mT5-small, mT5-base, mT5-large.
5XGLM-564M, XGLM-1.7B, XGLM-2.9B, XGLM-4.5B.

of 30% to 40% on probing each country’s knowl-
edge. Further, these multilingual PLMs signifi-
cantly outperform random guess 2-15%. It implies
that multilingual PLMs can store geo-diverse com-
monsense knowledge and some stored knowledge
can be accurately elicited even if we merely change
the country names in the prompt.

As illustrated in Figure 4, we observe that the
performance of using prompts in different lan-
guages is generally from 30% to 40% and higher
than random guess 2-15% as well. Moreover, we
find that English and Hindi prompts are the most ef-
fective ones to probe geo-diverse knowledge, while
Persian and Swahili prompts cannot achieve com-
parable results. In particular, from Figure 4c, using
Persian prompts to probe XGLM-1.7B leads to
worse performance than random guess.

5.2 Effect of Model Size

According to Petroni et al. (2019); Roberts et al.
(2020), bigger models can generally store more
knowledge and achieve better performance on
downstream NLP tasks such as open-domain
QA (Joshi et al., 2017; Kwiatkowski et al., 2019).
To this end, we investigate whether larger mod-
els indeed perform better than the smaller ones
on GEOMLAMA. For a fair comparison, we
only compare models in the same model families.
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This avoids comparing models with different pre-
training corpora and learning objectives.

The comparison results over the three model fam-
ilies are shown in Figure 3 and 4. We observe that
the larger models only perform marginally better
than their smaller counterparts on GEOMLAMA.
For the three model families, XLM-R, mT5, and
XGLM, the performance gap between the largest
and smallest models on all the prompts in GEOM-
LAMA is merely 2.23%, 2.42%, and 1.46%, respec-
tively. In specific cases (e.g., probing XGLM fam-
ily using Persian prompts), the largest model can
be even worse than its smallest variant. It demon-
strates that even if large models have nearly an
order of magnitude more parameters than small
models, large models cannot store geo-diverse com-
monsense significantly better than small models.
This highlights that GEOMLAMA is a challenging
task and being better on the standard multilingual
NLP tasks does not guarantee good performance.

5.3 Intrinsic Model Bias without Country
Information

Each prompt in GEOMLAMA consists of the coun-
try information. However, it is still not clear as
to what information is probed innately when we
query multilingual PLMs without any country in-
formation. To study this phenomenon, we further
probe multilingual PLMs with the prompts where
the country token is removed. For example, instead
of “In traditional Kenyan weddings, the color of
wedding dress is usually [MASK]”, we implement
a new round of probing with the pruned prompt, “In
traditional weddings, the color of wedding dress is
usually [MASK]”. The new prompts can elicit the
knowledge that multilingual PLMs are intrinsically
inclined towards predicting.

As shown in Figure 5, we find that for most
multilingual PLMs, the knowledge about India is
captured frequently in the absence of any country
information. Whereas, knowledge about the United
States is not well probed. It shows that at least, mul-
tilingual PLMs are not originally biased towards
knowledge about Western countries like US.

We do a quantitative case study to further explain
the phenomenon. We take a geo-diverse concept
“staple food” as an example. Rice and bread are
the staple foods in China and the United States,
respectively. According to Table 2, in English,
Chinese and Swahili Wikipedia, we find that the
co-occurrence of “staple food” and “rice” is com-

Models US China India Iran Kenya

mBERT fa sw en fa zh

XLM fa en en zh zh

XLM-R-base fa zh zh fa/sw en
XLM-R-large fa zh en en zh

mT5-small fa en en sw sw
mT5-base fa en zh hi sw
mT5-large fa sw sw fa hi

XGLM-564M fa en sw fa fa/hi
XGLM-1.7B fa sw en fa fa
XGLM-2.9B fa en en hi fa
XGLM-4.5B fa zh en fa en

Best Languages fa en en fa zh/fa

Table 1: Best languages to probe each country’s knowl-
edge. Each language in the last row “Best Languages”
is the one appearing most in its located column.

Words English Chinese Swahili

rice, staple food 1040 33 7

bread, staple food 33 37 1

Table 2: Word co-occurrence of “rice”, “bread” and
“staple food” in English, Chinese and Swahili Wikipedia,
respectively.

parable or even way higher than “staple food” and
“bread”. It demonstrates that the popularity of West-
ern knowledge across the world does not necessar-
ily mean higher frequency in knowledge sources
like Wikipedia. This may lead the models to pre-
dicting non-Western knowledge more precisely.

5.4 Best Languages to Probe Knowledge
about Countries

In GEOMLAMA, prompts in different languages
are used to probe knowledge about different coun-
tries. It is imperative to ask whether we elicit most
knowledge about a country if we query the PLM
with its native language. From Table 1, contrary
to our intuition, the native language is not the best
language to query its knowledge for most of the
countries. In particular, Iran is the only country
for which its native language Persian can help in
drawing out maximum knowledge about it. For
the United States and Kenya, the best probing lan-
guage is Persian and for China and India, the best
language is English.

We speculate that our observations might be at-
tributed to the reporting bias phenomenon (Grice,
1975; Gordon and Van Durme, 2013). It is catego-
rized by people rarely stating the obvious knowl-
edge that is shared by everyone (commonsense)
explicitly in the text. For instance, the fact that
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Figure 5: Average performance of multilingual PLMs when fed with prompts without any specified country names.
Complete results are shown in Appendix F.

Models en zh hi fa sw

mBERT India India US US China

XLM India Kenya India US Kenya

XLM-R-base India China India US India
XLM-R-large India US US US Kenya

mT5-small India Kenya Kenya US Kenya
mT5-base India India Kenya US Kenya
mT5-large India Kenya Kenya US India

XGLM-564M China US India/Kenya US India
XGLM-1.7B India India India US India
XGLM-2.9B India India US US India
XGLM-4.5B India US/China/India India US India

Best Countries India India India US India

Table 3: Countries best probed with prompts in different
languages. Each country in the last row “Best Coun-
tries” is the one appearing most in its located column.

all the humans can murder is disproportionately
over-reported than humans can breathe in the En-
glish text. This unbalanced frequency would lead
to bias towards acquiring uncommon event knowl-
edge from PLMs, instead of commonsense knowl-
edge (Shwartz and Choi, 2020). In our setting, we
believe that reporting bias is a key ingredient in
explaining our observed trends. For instance, in-
digenous population is less likely to record obvious
facts about their culture in their native language
texts as compared to the facts from other cultures.
For example, when mentioning the driver seat side
in India, compared with people living in other coun-
tries, Indian people will not talk too much about
this because it is too trivial for them.

We seek a quantitative evidence in the context of
staple food as a concept again to support our claim.
Throughout the English and Chinese Wikipedia cor-
pora, we count the co-occurrence of words “China”,
“rice” and “staple food”, and “the United States”,
“bread” and “staple food” in their respective lan-
guages. The counting results are shown in Table 4.
We notice that when China is mentioned, English
words “rice” and “staple food” co-occur 25 times

Words Freq. of Co-occur # Co-occur

rice, staple food, China 3.6x 25
bread, staple food, US 1x 7

米饭(rice),主食(staple food),中国(China) 3.2x 3
面包(bread),主食(staple food),美国(US) 3.2x 3

Table 4: Word co-occurrence and frequency in En-
glish and Chinese Wikipedia. English Wikipedia has
72484142 sentences, 7.6 times more than those of Chi-
nese Wikipedia, 9502859 sentences. ‘nx’ denotes the
frequency rate is n times higher than the lowest one.

whereas it is mentioned merely 3 times in Chinese
Wikipedia. Furthermore, in the context of the US,
English words “bread” and “staple food” appear
7 times simultaneously while Chinese words “面
包(bread)” and “主食(staple food)” co-occur 3
times. Although the number of co-occurrence is
higher in the English Wikipedia, the frequency rate
of the Chinese word co-occurrence is 3.2 times
higher, since the Chinese Wikipedia corpus is 7.6
times smaller than the English corpus. In sum-
mary, it shows that commonsense knowledge about
a country is not mentioned more frequently in its
native language corpus but might have higher oc-
currences in some other languages.

5.5 Countries Best Probed with Prompts in
Different Languages

Apart from the best languages to probe knowledge
about countries, conversely, we can also study the
countries best probed with prompts in different
languages. Specifically, we focus on the following
question: Given one studied language X , is the
country best probed the same as the indigenous
country of language X?

We present our results in Table 3. We observe
that except Hindi, the countries best probed are
distinct to the corresponding countries of language.
For example, Swahili prompts probe Indian knowl-
edge best instead of Kenya, and Persian prompts
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probe US knowledge best instead of Iran. It is also
counter-intuitive because it is natural for people
to imagine that the best probed country should be
the one where a particular language is spoken most
commonly.

We can also ascribe the phenomenon observed
for Q2 to the reporting bias. To analyze this ob-
servation, we compare the occurrence of knowl-
edge about different countries in the same lan-
guage corpus. We find that English words “bread”,
“staple food” and “the United States” co-occur
much less frequently than “rice”, “staple food” and
“China”. Besides, Chinese words “面包(bread)”,
“主食(staple food)” and “美国(the United States)”
co-occur 3 times, which is the same as co-
occurrence of “米饭(rice)”, “主食(staple food)”
and “中国(China)”. The comparison results in-
dicate that given one language, local country’s
knowledge may not appear the most, compared
with knowledge about other countries.

6 Conclusions

We propose a knowledge probing benchmark, GE-
OMLAMA, to evaluate the extent of multilingual
PLMs to store geo-diverse commonsense. Results
show that multilingual PLMs can achieve signifi-
cantly higher performance than random guess, sug-
gesting that they are capable of storing geo-diverse
knowledge. We also find that fed with prompts
without any country cues, multilingual PLMs are
not intrinsically biased towards knowledge about
the United States. We further investigate the best
language to probe the knowledge about a particular
country, and the country best probed with prompts
in a certain language. Surprisingly, we notice that
the best language is not the country’s native lan-
guage, and the best probed country is not the in-
digenous country of the language. We connect this
to reporting bias issue in geo-diverse context: one
country’s commonsense is seldom recorded in the
text by people living in that country as it is too
trivial and not worth mentioning for them.
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Limitations

GEOMLAMA is proposed for evaluating the degree
of potential geographic bias in multilingual PLMs.
However, due to the limited coverage of countries,
languages and geo-diverse concepts, GEOMLAMA

may introduce unwanted bias. In GEOMLAMA,
we only consider five countries and their native
languages, which merely occupy a tiny portion of
all the countries in the world and thousands of lan-
guages. Also, in countries like India, there are mul-
tiple commonly used languages, we limit our study
on Hindi and will extend to more languages to study
the phenomenon. Besides, we design prompts sim-
ply based on 16 general geo-diverse concepts. The
extension on existing GEOMLAMA can help in
obtaining more solid results and mitigating bias
against uncovered countries and languages.

In this work, we mainly focus on evaluating mul-
tilingual PLMs on GEOMLAMA without studying
how multilingual pre-training process affects the
model performance on geo-diverse commonsense
probing. We intend to explore effect of the process
on model’s geo-diversity in future work. Specif-
ically, we aim to examine whether pre-training
on multilingual corpora really brings more geo-
diversity than pre-training on monolingual corpora
does. Besides, we do not cover how to improve
model performance on GEOMLAMA and other re-
lated tasks. We expect to seek approaches to im-
proving model’s geo-diversity while maintaining
multilingual PLMs’ performance on various multi-
lingual benchmarks in future work as well.

Ethical Consideration

As we propose a new benchmark in this paper, we
provide details about compensation rate for anno-
tators. We recruit five countries’ college students
and annotators from Amazon MTurk. We provide
a fair compensation rate with $12 per hour and in
total around $150 to the annotators on both prompt
design, translation and evaluation. Note that part of
annotations are done by the authors of this work.
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Appendix

A Geo-Diverse Concept List

The general geo-diverse concepts are shown in
Table 6. We summarize all the concepts into 16
general ones, covering rules, policies, geography,
customs, personal choices and habits. Multiple
prompts can be designed for each geo-diverse con-
cept. For example, measurement units can involve
units measuring height, weight and temperature,
and thus annotators can create multiple prompts
about various types of measurement units.

B Statistics of GEOMLAMA

Table 5 shows the statistics of GEOMLAMA. In
total, there are 3125 prompts in GEOMLAMA, 625
prompts about each country’s knowledge. We also
manifest the average numbers of gold answers and
corresponding answer candidates for prompts re-
garding each country. Overall, the number of gold
answers is 1.20 per prompt, with answer candi-
date list of average length 4.76. Here note that for
prompts under the same topic (e.g., “In traditional
[X] weddings, the color of wedding dress is usu-

ally [MASK].”), regardless of the exact country
filled in [X] , the answer candidate lists are the
same for all the five countries. Therefore, the aver-
age length of answer candidates is identical to all
the studied countries.

C Details of Evaluation Methods on
Autoregressive and Encoder-Decoder
Language Models

Autoregressive Language Models (XGLM fam-
ily). For autoregressive language models such
as XGLM, we first replace masked token in the
prompt with answer candidate tokens (e.g., “In
China, people usually eat food with [MASK].”-
>“In China, people usually eat food with chop-
sticks.”). The joint probability of generating all the
tokens in the complete sentence is used for scor-
ing answer candidates. Given a prompt template
t filled with an answer candidate e, t is tokenized
into K tokens (e.g., t1, t2, ..., tK). We assign score
le to the answer candidate as:

le =
1

K

i=K∑

i=1

log(p(ti|t<i)). (3)

Here, we perform K forward passes to the
autoregressive language model to obtain log

Countries # Prompts # Avg. Gold Answers # Avg. Answer Candidates

US

625

1.16

4.76
China 1.12
India 1.32
Iran 1.16
Kenya 1.25

Overall 3125 1.20 4.76

Table 5: Detailed statistics of GEOMLAMA.

probability of generating the whole sentence
with the answer candidate e. In this case,
the ith forward pass inference would calculate
p(ti| “In China, ..., ti−2 ti−1”).

Encoder-Decoder Language Models (mT5 fam-
ily). During pre-training of encoder-decoder lan-
guage models mT5, a masked sequence is input
to encoder, and decoder learns to recover the L
masked tokens in autoregressive fashion. There-
fore, we input a masked prompt t into the mod-
els (e.g., “In China, people usually eat food with
[MASK]”) and calculate the score for answer can-
didate e as:

le =
1

L

i=L∑

i=1

log(p(ei|e<i, t)). (4)

Computing Eq.4 requires L forward passes,
since the decoder needs to generate L to-
kens. Here ith forward pass inference would be
p(ei|e1 e2...ei−1, “In China, people usually eat
food with [MASK]”). Note that mT5 can use one
single [MASK] token to represent multiple consec-
utive masked tokens. Thus, different from masked
language models, mT5 models are simply fed with
the prompt with only one [MASK] token instead
of L [MASK] tokens.

D Evaluating GPT-3 on GEOMLAMA

Approach to probing GPT-3 is different from the
methods mentioned in §4. Instead of feeding declar-
ative prompt sentences, we leverage Question An-
swering (QA) API empowered by GPT-3 and input
questions to query the knowledge. For example,
instead of using “In traditional Chinese weddings,
the color of wedding dress is usually [MASK]”, we
first convert it to question form like “What is the
color of wedding dress in an American wedding?”
and query GPT-3 with the converted question. Dur-
ing evaluation stage, rather than scoring answers
from given answer candidate list, GPT-3 can gen-
erate open-ended answers and we evaluate GPT-3
predictions using the same metric in §4.3. Con-
sidering the huge time cost of manually inputting
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Categories Concepts

rules, policies, geography

traffic rules
measurement units

date formats
color of stock price

climate

customs, personal choices, habits

payment
shower time

clothes drying
broom usage

food and drink
family

popular sports
transportation

servant
wedding
funeral

Table 6: Geo-diverse concept list with categorization.

questions by annotators to GPT-3 API, we do not
convert paraphrased prompts to questions and per-
form analysis on them. In other words, the number
of tested questions is only 1/5 out of the total num-
ber of prompts in GEOMLAMA, which is 625.

We probe GPT-3 with the converted questions
in five languages, each of which asks knowledge
about the five studied countries. Final results are
shown in Table 7. One notable result is that using
English prompts can achieve nearly 60% perfor-
mance, while using Swahili prompts cannot solve
any questions correctly. Also for Hindi and Per-
sian prompts, the results are still extremely low,
ranging from 0% to 25%. It exposes strong bias in
terms of language usage. When looking at the per-
formance of probing knowledge about respective
countries, the disparity is not large. The country
that can be best probed is the United States, while
the worst probed country only underperforms the
United States 6.9%.

E Detailed Results of Multilingual PLMs
on GEOMLAMA

Table 8, 9, and 10 show the details of each multi-
lingual PLM’s performance on GEOLAMA. The
performance of random guess depends on the ex-
pectation of correct predictions, which is equivalent
to the ratio of total number of gold answers to the
total number of answers in the answer candidate
lists. Since the number of gold answers and an-
swer candidates is different for knowledge about
different countries, the random guess performance
is not the same across countries. However, prompts

Languages US China India Iran Kenya Average

en 68.97 57.14 54.55 55.17 65.52 50.23
zh 44.83 50.00 39.39 37.93 31.03 40.64
fa 20.69 21.43 24.24 10.34 17.24 18.79
hi 6.90 0.00 12.12 3.45 20.69 8.63
sw 0.00 0.00 0.00 0.00 0.00 0.00

Average 28.28 25.71 26.06 21.38 26.90 25.67

Table 7: GPT-3 performance (%) on GEOMLAMA.

in each of the languages have the same number of
gold answers and candidate answers, so random
guess performance is identical across languages.

F Detailed Results of Multilingual PLMs
Probed with Prompts without Country
Tokens

Table 11, 12, and 13 show the details of each
multilingual PLM’s performance when input with
prompts lacking specified country information. It
can help in determining the intrinsic bias of each
multilingual PLM.
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Languages Countries mBERT XLM XLM-R-base XLM-R-large

en

US 31.03 26.21 30.34 33.10
China 30.00 39.29 34.29 37.14
India 40.61 52.12 37.58 37.58
Iran 21.38 27.59 28.28 37.93

Kenya 30.63 34.38 30.63 32.50

zh

US 35.17 28.28 30.34 46.21
China 30.71 28.57 46.43 40.00
India 38.79 32.12 38.18 35.15
Iran 32.41 36.55 24.14 33.10

Kenya 41.25 35.00 27.50 39.38

fa

US 48.97 57.93 48.28 53.79
China 27.86 20.71 28.57 32.14
India 38.79 27.88 33.33 34.55
Iran 47.59 31.03 35.17 33.79

Kenya 38.75 31.87 27.50 34.38

hi

US 42.07 40.00 33.10 42.07
China 29.29 22.86 18.57 13.57
India 34.55 35.76 36.36 32.73
Iran 33.79 31.03 31.72 27.59

Kenya 28.75 33.75 36.25 33.75

sw

US 27.59 24.83 23.45 29.66
China 34.29 22.86 32.14 29.29
India 27.88 29.70 31.52 29.09
Iran 20.69 27.59 35.17 31.72

Kenya 26.88 31.87 27.50 31.87

Table 8: Results (%) of mBERT, XLM, XLM-R-base, and XLM-R-large on GEOMLAMA.

Languages Countries mT5-small mT5-base mT5-large

en

US 24.14 18.62 30.34
China 40.71 34.29 39.29
India 41.21 34.55 49.09
Iran 19.31 19.31 26.21

Kenya 21.88 23.75 34.38

zh

US 20.00 33.79 28.97
China 26.43 26.43 26.43
India 23.64 46.06 33.33
Iran 33.10 26.90 31.03

Kenya 36.88 34.38 35.00

fa

US 55.86 43.45 48.28
China 31.43 29.29 22.86
India 36.36 34.55 30.30
Iran 28.28 30.34 33.79

Kenya 30.00 30.63 35.00

hi

US 33.79 33.79 44.14
China 28.57 26.43 19.29
India 33.33 33.33 35.15
Iran 33.79 33.10 32.41

Kenya 42.50 36.88 41.88

sw

US 37.93 32.41 28.28
China 17.86 28.57 42.86
India 30.91 30.30 41.21
Iran 36.55 26.21 23.45

Kenya 43.12 38.75 33.75

Table 9: Results (%) of models in mT5 family on GEOMLAMA.
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Languages Countries XGLM-564M XGLM-1.7B XGLM-2.9B XGLM-4.5B

en

US 32.41 37.93 31.72 37.24
China 37.86 32.14 39.29 35.71
India 30.91 40.00 43.03 42.42
Iran 23.45 28.28 20.00 31.03

Kenya 21.88 25.00 26.25 35.00

zh

US 34.48 36.55 40.00 35.86
China 25.71 33.57 30.00 37.14
India 27.27 32.73 36.36 31.52
Iran 18.62 22.07 25.52 13.79

Kenya 24.38 19.38 16.88 20.00

fa

US 49.66 49.66 46.90 49.66
China 26.43 27.86 25.71 35.00
India 32.73 31.52 28.48 32.73
Iran 37.24 35.86 31.72 36.55

Kenya 34.38 30.00 33.75 27.50

hi

US 35.86 28.97 33.79 28.97
China 18.57 10.00 20.71 21.43
India 33.33 29.70 29.09 33.94
Iran 34.48 22.76 32.41 23.45

Kenya 34.38 26.88 30.00 26.25

sw

US 25.52 28.28 27.59 24.14
China 33.57 38.57 30.71 30.71
India 34.55 34.55 37.58 33.33
Iran 31.72 22.07 21.38 33.10

Kenya 26.88 29.38 30.63 33.75

Table 10: Results (%) of models in XGLM family on GEOMLAMA.

Languages Countries mBERT XLM XLM-R-base XLM-R-large

en

US 31.03 26.21 30.34 33.10
China 30.00 39.29 34.29 37.14
India 40.61 52.12 37.58 37.58
Iran 21.38 27.59 28.28 37.93

Kenya 30.63 34.38 30.63 32.50

zh

US 35.17 28.28 30.34 46.21
China 30.71 28.57 46.43 40.00
India 38.79 32.12 38.18 35.15
Iran 32.41 36.55 24.14 33.10

Kenya 41.25 35.00 27.50 39.38

fa

US 48.97 57.93 48.28 53.79
China 27.86 20.71 28.57 32.14
India 38.79 27.88 33.33 34.55
Iran 47.59 31.03 35.17 33.79

Kenya 38.75 31.87 27.50 34.38

hi

US 42.07 40.00 33.10 42.07
China 29.29 22.86 18.57 13.57
India 34.55 35.76 36.36 32.73
Iran 33.79 31.03 31.72 27.59

Kenya 28.75 33.75 36.25 33.75

sw

US 27.59 24.83 23.45 29.66
China 34.29 22.86 32.14 29.29
India 27.88 29.70 31.52 29.09
Iran 20.69 27.59 35.17 31.72

Kenya 26.88 31.87 27.50 31.87

Table 11: Results (%) of mBERT, XLM, XLM-R-base, XLM-R-large probed with prompts without country tokens
on GEOMLAMA.
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Languages Countries mT5-small mT5-base mT5-large

en

US 38.62 49.66 40.69
China 45.00 47.14 42.86
India 46.06 51.52 60.61
Iran 38.62 46.90 43.45

Kenya 43.12 44.38 57.50

zh

US 24.14 24.83 30.34
China 32.86 30.71 33.57
India 35.15 28.48 31.52
Iran 36.55 40.69 40.00

Kenya 39.38 43.12 36.88

fa

US 46.21 41.38 47.59
China 39.29 33.57 41.43
India 34.55 41.82 35.76
Iran 35.86 37.24 42.76

Kenya 37.50 41.88 42.50

hi

US 31.72 25.52 29.66
China 39.29 38.57 32.86
India 44.24 46.67 41.21
Iran 30.34 33.79 31.03

Kenya 40.00 40.00 41.25

sw

US 22.76 28.28 25.52
China 23.57 35.71 42.86
India 30.91 35.76 37.58
Iran 14.48 20.69 22.07

Kenya 16.88 23.75 26.25

Table 12: Results (%) of models in mT5 family probed with prompts without country tokens on GEOMLAMA.

Languages Countries XGLM-564M XGLM-1.7B XGLM-2.9B XGLM-4.5B

en

US 28.97 38.62 34.48 40.00
China 57.14 43.57 50.00 46.43
India 51.52 47.88 53.94 46.67
Iran 35.86 35.17 34.48 36.55

Kenya 40.62 49.38 43.75 46.88

zh

US 34.48 42.76 38.62 47.59
China 49.29 55.00 51.43 50.71
India 44.24 52.73 54.55 46.67
Iran 54.48 52.41 46.21 63.45

Kenya 55.62 58.13 62.50 61.25

fa

US 27.59 28.97 35.17 34.48
China 34.29 37.86 35.00 40.00
India 38.18 34.55 40.00 36.97
Iran 17.93 22.07 24.83 24.14

Kenya 21.88 28.12 30.63 33.12

hi

US 24.14 32.41 20.69 31.72
China 52.86 52.86 48.57 55.71
India 39.39 41.21 40.61 40.61
Iran 37.93 39.31 28.28 42.07

Kenya 36.25 41.25 41.88 43.12

sw

US 42.07 40.00 41.38 35.17
China 42.14 39.29 36.43 27.86
India 40.00 42.42 50.30 46.06
Iran 33.10 24.83 37.24 31.72

Kenya 42.50 41.25 46.25 32.50

Table 13: Results (%) of models in XGLM family probed with prompts without country tokens on GEOMLAMA.
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