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Preface: General Chair

In my welcome to participants in this year’s conference handbook, I especially welcomed those for
which it was their first ACL. I expressed the hope that the conference fulfilled their expectations and
remained in their memory as a great start. Trying to imagine the first experience of a present-day ACL,
the magnitude of the whole event may be a bit overwhelming - our field is on an expanding trajectory,
and even a selection of the best work fills a great number of parallel sessions over a number of days;
plus, there are the workshops and tutorials to quench many topical thirsts. This ACL again promises to
be a next peak in a progressive development.

ACL Conferences are the product of many people working together, kindly offering their services to the
community at large. ACL-2016 is no exception to this. I would like to thank each and every person
who has volunteered their time to make the event possible. I am deeply impressed with the sense of
community that organizing an ACL brings about.

Priscilla Rasmussen, the ACL Business Manager, and the 2015 ACL Executive Committee (Chris
Manning, Pushpak Bhattacharyya, Joakim Nivre, Graeme Hirst, Dragomir Radev, Gertjan van Nood,
Min-Yen Kan, Herman Ney, and Yejin Choi) have been instrumental in setting ACL-2016 in motion and
in guiding the ACL-2016 team along the path from concept to execution. Without the collective memory
and hands-on guidance of the committee, an ACL conference will never happen.

The ACL-2016 team was formidable in building all the components of the conference and connecting
them together in an impressive programme: Katrin Erk and Noah Smith (Programme Committee
Chairs); Valia Kordoni, Markus Egg (Local Arrangements Chairs) who brought together a fantastic local
organization team; Sabine Schulte im Walde and Jun Zhao (Workshop Chairs), Alexandra Birch and
Willem Zuidema (Tutorial Chairs); Hai Zhao, Yusuke Miyao, and Yannick Versley (Publication Chairs);
Tao Lei, He He, and Will Roberts (Student Research Workshop Chairs), Yang Liu, Chris Biemann, and
Gosse Bouma (Faculty Advisors for the Student Research Workshop), Marianna Apidianaki and Sameer
Pradhan (Demonstration Chairs), Barbara Plank (Publicity Chair), Florian Kunneman and Matt Post
(Conference Handbook Team), and Yulia Grishina (Student Volunteer Coordinator).

The Program Chairs selected outstanding invited speakers: Mark Steedman (University of Edinburgh)
and Amber Boydstun (University of California, Davis).

I am deeply grateful to our sponsors for their generous contributions, allowing the conference not to
become prohibitively expensive: Google, Baidu, Amazon (Platinum Sponsors); Bloomberg, Facebook,
eBay, Elsevier, Microsoft Research, and Maluuba (Gold Sponsors); Huawei Technologies, Zalando SE
(Silver Sponsors); Nuance, Grammarly, Voicebox, Yandex, and Textkernel (Bronze Sponsors).

Finally, I would like to express my deep appreciation for the hard work carried out by all area chairs,
workshop organizers, tutorial presenters, and the massive army of reviewers. Kudos to all.

Welcome to ACL-2016!

Antal van den Bosch
General Chair






Preface: Program Committee Co-Chairs

Welcome to the 54th Annual Meeting of the Association for Computational Linguistics! This year, ACL
received 825 long paper submissions (a new record) and 463 short paper submissions.! Of the long papers,
231 were accepted for presentation at ACL—116 as oral presentations and 115 as poster presentations.
97 short papers were accepted—49 as oral and 48 as poster presentations. In addition, ACL also features
25 presentations of papers accepted in the Transactions of the Association for Computational Linguistics
(TACL). With 353 paper presentations at the main conference, this is the largest ACL program to date.

In keeping with the tremendous growth of our field, we introduced some changes to the conference. Oral
presentations were shortened to fifteen (twelve) minutes for long (short) papers, plus time for questions.
While this places a greater demand on speakers to be concise, we believe it is worth the effort, allowing
far more work to be presented orally. We also took advantage of the many halls available at Humboldt
University and expanded the number of parallel talks during some conference sessions.

We introduced a category of outstanding papers to help recognize the highest quality work in the community
this year. The 11 outstanding papers (9 long, 2 short, 0.85% of submissions) represent a broad spectrum of
exciting contributions; they are recognized by especially prominent placement in the program. From these,
a best paper and an IBM-sponsored best student paper have been selected; those will be announced in the
awards session on Wednesday afternoon.

Following other recent ACL conferences, submissions were reviewed under different categories and using
different review forms for empirical/data-driven, theoretical, applications/tools, resources/evaluation, and
survey papers. We introduced special fields in the paper submission form for authors to explicitly note
the release of open-source implementations to enable reproducibility, and to note freely available datasets.
We also allowed authors to submit appendices of arbitrary length for details that would enable replication;
reviewers were not expected to read this material.

Another innovation we explored during the review period was the scheduling of short paper review before
long paper review. While this was planned to make the entire review period more compact (fitting between
the constraints of NAACL 2016 and EMNLP 2016 at either end), we found that reviewing short papers first
eliminated many of the surprises for the long paper review process.

We sought to follow recently-evolved best practices in planning the poster sessions, so that the many high-
quality works presented in that format will be visible and authors and attendees benefit from the interactions
during the two poster sessions.

ACL 2016 will have two distinguished invited speakers: Amber Boydstun (Associate Professor of Political
Science at the University of California, Davis) and Mark Steedman (Professor of Cognitive Science at the
University of Edinburgh). We are grateful that they accepted our invitations and look forward to their
presentations.

There are many individuals we wish to thank for their contributions to ACL 2016, some multiple times:

'These numbers exclude papers that were not reviewed due to formatting, anonymity, or double submission violations (9 short
and 21 long papers) or that were withdrawn prior to review (approximately 59 short and 52 long papers).
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e The 38 area chairs who recruited reviewers, led the discussion about each paper, carefully assessed
each submission, and authored meta-reviews to guide final decisions: Miguel Ballesteros, David Bam-
man, Steven Bethard, Jonathan Berant, Gemma Boleda, Ming-Wei Chang, Wanxiang Che, Chris Dyer,
Ed Grefenstette, Hannaneh Hajishirzi, Minlie Huang, Mans Hulden, Heng Ji, Jing Jiang, Zornitsa
Kozareva, Marco Kuhlmann, Yang Liu, Annie Louis, Wei Lu, Marie-Catherine de Marneffe, Gerard
de Melo, David Mimno, Meg Mitchell, Daichi Mochihashi, Graham Neubig, Naoaki Okazaki, Simone
Ponzetto, Matthew Purver, David Reitter, Nathan Schneider, Hinrich Schuetze, Thamar Solorio, Lucia
Specia, Partha Talukdar, Ivan Titov, Lu Wang, Nianwen Xue, and Grace Yang.

e Our full program committee of 884 hard-working individuals who reviewed the conference’s 1,288
submissions (including secondary reviewers).

e The ACL coordinating committee members, especially Yejin Choi, Graeme Hirst, Chris Manning,
and Shiqi Zhao, who answered many questions as they arose during the year.

e TACL editors-in-chief Mark Johnson, Lillian Lee, and Kristina Toutanova, for coordinating with us
on TACL presentations at ACL.

e Ani Nenkova and Owen Rambow, program co-chairs of NAACL 2016, and Michael Strube, program
co-chair of ACL 2015, who were generous with advice.

e Yusuke Miyao, Yannick Versley, and Hai Zhao, our well-organized publication chairs, and the respon-
sive team at Softconf led by Rich Gerber.

e Valia Kordoni and the local organization team, especially webmaster Kostadin Cholakov.

e Antal van den Bosch, our general chair, who kept us coordinated with the rest of the ACL 2016 team
and offered guidance whenever we needed it.

e Antal van den Bosch, Claire Cardie, Pascale Fung, Ray Mooney, and Joakim Nivre, who carefully
reviewed papers under consideration for outstanding and best paper recognition.

e Priscilla Rasmussen, who knows everything about how to make ACL a success.

We hope that you enjoy ACL 2016 in Berlin!
ACL 2016 program co-chairs

Katrin Erk, University of Texas
Noah A. Smith, University of Washington
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Invited Talk I: Same Policy Issue, Different Portrayal:
The Importance of Tone and Framing in Language
Amber E. Boydstun, University of California at Davis

Many policy issues at the center of politics are relatively fixed; they tend to involve the same basic questions
that do not vary over time (e.g., should abortion be legal? should we execute people convicted of horrific
crimes?). Political candidates, too, are (like the rest of us) the same people year after year (e.g., Hillary
Clinton in 2016 is just an older version of Hillary Clinton in 2015). Yet when citizens consider a given
political item (be it a policy issue, a candidate, or something else), they tend not to perceive that item
in a fixed way over time. Rather, peoples perceptions of the item tend to depend on how that item is
portrayed at that moment. Policy issues and political candidates alike can be portrayed differently through
the use of different visual imagery but even more pervasively through variance in the text used to describe
them. In this talk, I give a general overview of the importance of issue and candidate portrayals in political
communication. I outline the extensive research that has already been done trying to identify different
portrayals in text. And I discuss the many opportunities available today to researchers interested in tracking
issue and candidate portrayals in text and in examining the effects of issue and candidate portrayals on public
attitudes and voting behavior.

Bio: Amber Boydstun is an Associate Professor of Political Science at the University of California, Davis.
Her work bridges multiple disciplines, including psychology, journalism, and computer science. Her core
research examines the interaction between media and politics, with a focus on how different media portray-
als of the same policy issue can prompt citizens and policymakers to respond to that issue in different ways.
She uses lab experiments, large-scale media studies, and manual and computational text analysis to study
how issues make the news; how issues are “framed” in the news; the dynamics of “media storms”; and how
media coverage can shape public opinion and public policy on issues like immigration, gun control, same-
sex marriage, and capital punishment. She is author of Making the News (Chicago) and co-author of The
Decline of the Death Penalty and the Discovery of Innocence (Cambridge), as well as many journal articles.
Boydstun works with scholars across the globe as a member of the Comparative Agendas Project,' a collab-
orative enterprise by political science and policy scholars to measure international government outputs. She
serves on the editorial boards for the journal Political Communication, the Text as Data Association, and
the Women Also Know Stuff? initiative. Most recently, she co-chaired the 2016 Visions in Methodology
Conference. 3

"http://www.comparativeagendas.info/
http://womenalsoknowstuff.com/
3http ://visionsinmethodology.org/conferences/2016-conference/
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Invited Talk II: On Distributional Semantics
Mark Steedman, University of Edinburgh

The central problem in open domain-question answering from text is the problem of entailment. Given
enough text, the answer is almost certain to be there, but is likely to be expressed differently than in the
question—either in a paraphrase, or in a sentence that entails or implies the answer. We cannot afford to
bridge this gap by open-ended theorem-proving search. Instead we need a semantics for natural language
that directly supports common-sense inference, such as that arriving somewhere implies subsequently being
there, and invading a country implies attacking it. We would like this semantics to be compatible with
traditional logical operator semantics including quantification, negation and tense, so that not being there
implies not having arrived, and not attacking implies not invading.

There have been many attempts to build such a semantics of content words by hand, from the generative
semantics of the *60s to WordNet and other resources of the present. The *60s saw attempts based on gen-
erative semantics, while more recently, they have exploited WordNet and other computational resources.
However, such systems have been incomplete and language-specific in comparison to the vastness of human
common-sense reasoning. One consequence has been renewed interest in the idea of treating the seman-
tics as “hidden”, to be discovered through machine learning, an idea that has its origins in the ”semantic
differential” of Osgood, Suci, and Tannenbaum in the *50s.

There are two distinct modern approaches to the problem of data-driven or “distributional” semantics. The
first, which I will call “collocational”, is the direct descendant of the semantic differential. In its most basic
form, the meaning of a word is taken to be a vector in a space whose dimensions are defined by the lexicon
of the language, and whose magnitude is defined by counts of those lexical items within a fixed window
on the string (although in practice the dimensionality is reduced and the relation to frequency less direct).
Crucially, semantic composition is defined in terms of linear algebraic operations such as vector addition.

The second approach, which I will call “denotational”, defines the meaning of a word in terms of the entities
(or rather their designators) that it is predicated over and the ensembles of predications over entities of the
same types, obtained by machine-reading with wide coverage parsers. Semantic composition is can then be
defined as an applicative system, as in traditional formal semantics.

The talk reviews recent work in both collocation- and denotation- based distributional semantics, includ-
ing some hybrid approaches that interpolate grammatical features with collocational representations, or use
probabilistic logics over relations whose arguments denote vectors, and asks for each what dimensions of
meaning are actually being represented. It argues that the two approaches are largely orthogonal on these di-
mensions. Collocational representations are good for representing ambiguity, with linear algebraic composi-
tion most effective at disambiguation and representing distributional similarity. Denotational representations
represent something more like a traditional compositional semantics, but one in which the primitive rela-
tions correspond to those of a hidden language of logical form representing paraphrase and common-sense
entailment directly.

To make this point, I will discuss recent work in which collocational distributional representations such
as embeddings have been used as proxies for semantic features in models such as LSTM, to guide disam-
biguation during parsing, while a lexicalized denotation-based distributional semantics is used to support
inference of entailment. I will show that this hybrid approach can be applied with a number of parsing mod-
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els, including transition-based and supertagging, to support entailment-based QA with denotation-based
distributional representations. I will discuss work at Edinburgh and elsewhere in which the semantics of
paraphrases is represented by a single cluster identifier and common-sense inference (derived from a learned
entailment graph) is built into the lexicon and projected by syntactic derivation, rather than delegated to a
later stage of inference. The method can be applied cross-linguistically, in support of machine translation.
Ongoing work extends the method to extract multi-word items, light-verb constructions, and an aspect-based
semantics for temporal/causal entailment, and to the creation and interrogation of Knowledge Graphs and
Semantic Nets via natural language.

Bio: Mark Steedman is Professor of Cognitive Science in the School of Informatics at the University of
Edinburgh. Previously, he taught as Professor in the Department of Computer and Information Science at the
University of Pennsylvania, which he joined as Associate Professor in 1988, after teaching at the Universities
of Warwick and Edinburgh. His PhD is in Artificial Intelligence from the University of Edinburgh. He was
a Alfred P. Sloan Fellow at the University of Texas at Austin in 1980/81, and a Visiting Professor at Penn
in 1986/87. He is a Fellow of the American Association for Artificial Intelligence, the British Academy,
the Royal Society of Edinburgh, the Association for Computational Linguistics, and the Cognitive Science
Society, and a Member of the European Academy.

His research interests cover issues in computational linguistics, artificial intelligence, computer science and
cognitive science, including syntax and semantics of natural language, wide-coverage parsing and question-
answering, comprehension of natural language discourse by humans and by machine, grammar-based lan-
guage modeling, natural language generation, and the semantics of intonation in spoken discourse. Much of
his current NLP research is addressed to probabilistic parsing and robust semantics for question-answering
using the CCG grammar formalism, including the acquisition of language from paired sentences and mean-
ings by child and machine. He sometimes works with colleagues in computer animation using these theories
to guide the graphical animation of speaking virtual or simulated autonomous human agents. Some of his
research concerns the analysis of music by humans and machines.
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Abstract

Semantic parsers map natural language
statements into meaning representations,
and must abstract over syntactic phenom-
ena, resolve anaphora, and identify word
senses to eliminate ambiguous interpre-
tations. Abstract meaning representation
(AMR) is a recent example of one such
semantic formalism which, similar to a de-
pendency parse, utilizes a graph to repre-
sent relationships between concepts (Ba-
narescu et al., 2013). As with dependency
parsing, transition-based approaches are a
common approach to this problem. How-
ever, when trained in the traditional man-
ner these systems are susceptible to the ac-
cumulation of errors when they find un-
desirable states during greedy decoding.
Imitation learning algorithms have been
shown to help these systems recover from
such errors. To effectively use these meth-
ods for AMR parsing we find it highly
beneficial to introduce two novel exten-
sions: noise reduction and targeted explo-
ration. The former mitigates the noise in
the feature representation, a result of the
complexity of the task. The latter targets
the exploration steps of imitation learning
towards areas which are likely to provide
the most information in the context of a
large action-space. We achieve state-of-
the art results, and improve upon standard
transition-based parsing by 4.7 F points.

1 Introduction

Meaning representation languages and systems
have been devised for specific domains, such as
ATIS for air-travel bookings (Dahl et al., 1994)
and database queries (Zelle and Mooney, 1996;
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Figure 1: Dependency (left) and AMR graph (right) for: “The
center will bolster NATO’s defenses against cyber-attacks.’

Liang et al., 2013). Such machine-interpretable
representations enable many applications relying
on natural language understanding. The ambi-
tion of Abstract Meaning Representation (AMR)
is that it is domain-independent and useful in a va-
riety of applications (Banarescu et al., 2013).

The first AMR parser by Flanigan et al. (2014)
used graph-based inference to find a highest-
scoring maximum spanning connected acyclic
graph. Later work by Wang et al. (2015b) was in-
spired by the similarity between the dependency
parse of a sentence and its semantic AMR graph
(Figure 1). Wang et al. (2015b) start from the de-
pendency parse and learn a transition-based parser
that converts it incrementally into an AMR graph
using greedy decoding. An advantage of this ap-
proach is that the initial stage of dependency pars-
ing is well-studied and trained using larger corpora
than that for which AMR annotations exist.

Greedy decoding, where the parser builds the
parse while maintaining only the best hypothesis
at each step, has a well-documented disadvantage:
error propagation (McDonald and Nivre, 2007).
When the parser encounters states during parsing
that are unlike those found during training, it is
more likely to make mistakes, leading to states
which are increasingly more foreign and causing
errors to accumulate.
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One way to ameliorate this problem is to
employ imitation learning algorithms for struc-
tured prediction. Algorithms such as SEARN
(Daumé III et al., 2009), DAGGER (Ross et al.,
2011), and LOLS (Chang et al., 2015) address
the problem of error propagation by iteratively ad-
justing the training data to increasingly expose the
model to training instances it is likely to encounter
during test. Such algorithms have been shown to
improve performance in a variety of tasks includ-
ing information extraction(Vlachos and Craven,
2011), dependency parsing (Goldberg and Nivre,
2013), and feature selection (He et al., 2013). In
this work we build on the transition-based pars-
ing approach of Wang et al. (2015b) and explore
the applicability of different imitation algorithms
to AMR parsing, which has a more complex out-
put space than those considered previously.

The complexity of AMR parsing affects
transition-based methods that rely on features to
represent structure, since these often cannot cap-
ture the information necessary to predict the cor-
rect transition according to the gold standard. In
other words, the features defined are not suffi-
cient to “explain” why different actions should
preferred by the model. Such instances become
noise during training, resulting in lower accuracy.
To address this issue, we show that the a-bound
Khardon and Wachman (2007), which drops con-
sistently misclassified training instances, provides
a simple and effective way of reducing noise and
raising performance in perceptron-style classifica-
tion training, and does so reliably across a range of
parameter settings. This noise reduction is essen-
tial for imitation learning to gain traction in this
task, and we gain 1.8 points of F-Score using the
DAGGER imitation learning algorithm.

DAGGER relies on an externally specified ex-
pert (oracle) to define the correct action in each
state; this defines a simple 0-1 loss function for
each action. Other imitation learning algorithms
(such as LOLS, SEARN) and the variant of
DAGGER proposed by Vlachos and Clark (2014)
(henceforth V-DAGGER) can leverage a task level
loss function that does not decompose over the ac-
tions taken to construct the AMR graph. However
these require extra computations to roll-out to an
end-state AMR graph for each possible action not
taken. The large action-space of our transition sys-
tem makes these algorithms computationally in-
feasible, and roll-outs to an end-state for many of

the possible actions will provide little additional
information. Hence we modify the algorithms to
target this exploration to actions where the clas-
sifier being trained is uncertain of the correct re-
sponse, or disagrees with the expert. This provides
a further gain of 2.7 F points.

This paper extends imitation learning to struc-
tured prediction tasks more complex than previ-
ously attempted. In the process, we review and
compare recently proposed algorithms and show
how their components can be recombined and ad-
justed to construct a variant appropriate to the task
in hand. Hence we invest some effort reviewing
these algorithms and their common elements.

Overall, we obtain a final F-Score of 0.70 on the
newswire corpus of LDC2013E117 (Knight et al.,
2014). This is identical to the score obtained by
Wang et al. (2015a), the highest so far published.
Our gain of 4.5 I points from imitation learning
over standard transition-based parsing is orthogo-
nal to that of Wang et al. (2015a) from additional
trained analysers, including co-reference and se-
mantic role labellers, incorporated in the feature
set. We further test on five other corpora of AMR
graphs, including weblog domains, and show a
consistent improvement in all cases with the ap-
plication of imitation learning using DAGGER and
the targeted V-DAGGER we propose here.

2 Transition-based AMR parsing

AMR parsing is an example of the wider family of
structured prediction problems, in which we seek
a mapping from an input x € X' to a structured
output y € ). Here x is the dependency tree,
and y the AMR graph; both are graphs and we no-
tationally replace x with s; and y with sy, with
s1.T € S. s; are the intermediate graph configu-
rations (states) that the system transitions through.

A transition-based parser starts with an input sy,
and selects an action a; € A, using a classifier. a;
converts s; into 841, i.e. $;41 = a;(s;). We term
the set of states and actions (s1, a1, ...apr—1,s7)
a trajectory of length 7T'. The classifier 7 is trained
to predict a; from s;, with 7(s) = arg max,c 4 Wa -
®(s), assuming a linear classifier and a feature
function ®(s).

We require an expert, 7*, that can indicate what
actions should be taken on each s; to reach the
target (gold) end state. In problems like POS-
tagging these are directly inferable from gold, as
the number of actions (7') equals the number of



Action Name | Param. | Pre-conditions Outcome of action

NextEdge lr [ non-empty Set label of edge (00, Bo) to I. Pop So.

NextNode le [ empty Set concept of node o¢ to I.. Pop oo, and initialise 3.

Swap (3 non-empty Make [y parent of oo (reverse edge) and its sub-graph. Pop [y and
insert 3y as o1.

ReplaceHead [ non-empty Pop o¢ and delete it from the graph. Parents of oo become parents of
Bo. Other children of o become children of Gy. Insert 3y at the head
of o and re-initialise 3.

Reattach K [ non-empty Pop (o and delete edge (0o, Bo). Attach [y as a child of . If x has
already been popped from o then re-insert it as oy .

DeleteNode [ empty; leaf o¢ Pop o and delete it from the graph.

Insert le Insert a new node § with AMR concept [, as the parent of o, and insert
d into o.

InsertBelow Insert a new node 6 with AMR concept [ as a child of 0.

Table 1: Action Space for the transition-based graph parsing algorithm

Algorithm 1: Greedy transition-based parsing

Data: policy m, start state s;
Result: terminal state s

1 Scurrent < S1,

2 while s.y;rent not terminal do
3 L Anext < ﬂ'(scurrent)

Scurrent € Qnext (Scurrent)

4 ST <= Scurrent

tokens with a 1:1 correspondence between them.
In dependency parsing and AMR parsing this is
not straightforward and dedicated transition sys-
tems are devised.

Given a labeled training dataset D, algorithm 1
is first used to generate a trajectory for each of the
inputs (d € D) with m = 7*, the expert from which
we wish to generalise. The data produced from
all expert trajectories (i.e. (s;q,a;q) forall i €
1...Tand alld € 1...D), are used to train the
classifier 7, the learned classifier, using standard
supervised learning techniques. Algorithm 1 is re-
used to apply 7 to unseen data. Our transition
system (defining .4, S), and feature sets are based
on Wang et al. (2015b), and are not the main focus
of this paper. We introduce the key concepts here,
with more details in the supplemental material.

We initialise the state with the stack of the nodes
in the dependency tree, root node at the bottom.
This stack is termed o. A second stack, (3 is ini-
tialised with all children of the top node in o. The
state at any time is described by o, 3, and the cur-
rent graph (which starts as the dependency tree
with one node per token). At any stage before ter-
mination some of the nodes will be labelled with
words from the sentence, and others with AMR
concepts. Each action manipulates the top nodes

in each stack, oy and 3. We reach a terminal
state when o is empty. The objective function to
maximise is the Smatch score (Cai and Knight,
2013), which calculates an F{-Score between the
predicted and gold-target AMR graphs.

Table 1 summarises the actions in 4. NextNode
and NextEdge form the core action set, labelling
nodes and edges respectively without changing the
graph structure. Swap, Reattach and ReplaceHead
change graph structure, keeping it a tree. We per-
mit a Reattach action to use parameter « equal to
any node within six edges from oy, excluding any
that would disconnect the graph or create a cycle.

The Insert/InsertBelow actions insert a new
node as a parent/child of oy. These actions are
not used in Wang et al. (2015b), but Insert is very
similar to the Infer action of Wang et al. (2015a).
We do not use the Reentrance action of Wang et
al. (2015b), as we found it not to add any benefit.
This means that the output AMR is always a tree.

Our transition system has two characteristics
which provide a particular challenge: given a sen-
tence, the trajectory length 7' is theoretically un-
bounded; and |.A| can be of the order 103 to 10%.
Commonly used transition-based systems have a
fixed trajectory length 7', which often arises nat-
urally from the nature of the problem. In PoS-
tagging each token requires a single action, and
in syntactic parsing the total size of the graph is
limited to the number of tokens in the input. The
lack of a bound in T here is due to Insert actions
that can grow the the graph, potentially ad infini-
tum, and actions like Reattach, which can move
a sub-graph repeatedly back-and-forth. The ac-
tion space size is due to the size of the AMR vo-
cabulary, which for relations (edge-labels) is re-
stricted to about 100 possible values, but for con-
cepts (node-labels) is almost as broad as an En-



Algorithm 2: Generic Imitation Learning

Data: data D, expert 7, Loss function F'(s)
Result: learned classifier C, trained policy 7
Initialise Cy; for n = 1 to N do

1
2 Initialise F,, = ¢;
3 T Rollin = RollInPolicy(m*,Cy. pn—1,n);
4 T Rollout —
RollOutPolicy(r*,Co..n—1,n);
5 ford € D do
6 Predict trajectory S1.7 with TRoin:
7 for s; € §;.0 do
8 foreach
ai € Explore($, 7™, TRoitin) do
9 O] = ®(d,al, 31.4);
10 Predict 5 ;.7 With T Roliouts
1 L] = F(8});
12 foreach j do
13 L ActionCost] = L] —miny L¥
14 | Add (P, ActionCost) to Ey;
15 | 7y, Cp = Train(Ci. p—1,E1 ... Ey);

glish dictionary. The large action space and un-
bounded T' also make beam search difficult to ap-
ply since it relies on a fixed length 7" with com-
mensurability of actions at the same index on dif-
ferent search trajectories.

3 Imitation Learning for Structured
Prediction

Imitation learning originated in robotics, training
a robot to follow the actions of a human expert
(Schaal, 1999; Silver et al., 2008). The robot
moves from state to state via actions, generating
a trajectory in the same manner as the transition-
based parser of Algorithm 1.

In the imitation learning literature, the learning
of a policy 7 from just the expert generated trajec-
tories is termed “exact imitation”.As discussed, it
is prone to error propagation, which arises because
the implicit assumption of i.i.d. inputs (s;) during
training does not hold. The states in any trajec-
tory are dependent on previous states, and on the
policy used. A number of imitation learning algo-
rithms have been proposed to mitigate error prop-
agation, and share a common structure shown in
Algorithm 2. Table 2 highlights some key differ-
ences between them.

The general algorithm firstly applies a policy

TRroilIn (usually the expert, 7*, to start) to the
data instances to generate a set of ‘Rollln’ tra-
jectories in line 6 (we adopt the terminology of
‘Rollln’ and ‘RollOut’ trajectories from Chang et
al. (2015)). Secondly a number of ‘what if” sce-
narios are considered, in which a different action
ag is taken from a given s; instead of the ac-
tual a; in the Rollln trajectory (line 8). Each of
these exploratory actions generates a RollOut tra-
jectory (line 10) to a terminal state, for which a
loss (L) is calculated using a loss function, F'(s%.),
defined on the terminal states. For a number of
different exploratory actions taken from a state s;
on a Rollln trajectory, the action cost (or relative
loss) of each is calculated (line 13). Finally the
generated (s, al, ActionCost]) data are used to
train a classifier, using any cost-sensitive classifi-
cation (CSC) method (line 15). New 7R and
TRollOut are generated, and the process repeated
over a number of iterations. In general the starting
expert policy is progressively removed in each it-
eration, so that the training data moves closer and
closer to the distribution encountered by just the
trained classifier. This is required to reduce error
propagation. For a general imitation learning al-
gorithm we need to specify:

e the policy to generate the Rollln trajectory
(the RollInPolicy)

e the policy to generate RollOut trajectories,
including rules for interpolation of learned
and expert policies (the RollOutPolicy)

e which one-step deviations to explore with a
RollOut (the Explore function)

e how RollOut data are used in the classi-
fication learning algorithm to generate ;.
(within the Train function)

Exact Imitation can be considered a single iter-
ation of this algorithm, with g1, equal to the
expert policy, and a 0-1 binary loss for F' (0 loss
for 7 (s;), the expert action, and a loss of 1 for
any other action); all one-step deviations from the
expert trajectory are considered without explicit
RollOut to a terminal state.

In SEARN (Daumé III et al., 2009), one of the
first imitation learning algorithms in this frame-
work, the TR 7, and TR0 policies are identi-
cal within each iteration, and are a stochastic blend
of the expert and all classifiers trained in previous
iterations. The Explore function considers every
possible one-step deviation from the Rollln trajec-
tories, with a full RollOut to a terminal state. The



Algorithm s Rollln RollOut Explore Train
Exact Imitation | Deterministic | Expert only None. 0/1 expert loss All 1-step E only
SEARN Stochastic Mixture Mixture, step-level stochastic All 1-step E, only
LOLS Deterministic | Learned only | Mixture, trajectory-level stoch. All 1-step Ey.. E,
SCB-LOLS Deterministic | Learned only | Mixture, trajectory-level stoch. Random Ei...E,
SMILE Stochastic Mixture None. 0/1 expert loss All 1-step by E,
DAGGER Deterministic | Mixture None. 0/1 expert loss All 1-step By . E,
V-DAGGER Deterministic | Mixture Mixture, step-level stochastic All 1-step Ey.. E,
AGGREVATE Deterministic | Learned only | Expert only Random By E,

Table 2: Comparison of selected aspects of Imitation Learning algorithms.

Train function uses only the training data from
the most recent iteration (E,,) to train C),.

LOLS extends this work to provide a deter-
ministic learned policy (Chang et al., 2015), with
7w, = C,. At each iteration 7, is trained on all
previously gathered data Ey._ ,,; TRrour, uses the
latest classifier 7,,_1, and each RollOut uses the
same policy for all actions in the trajectory; either
m* with probability (3, or 7,_1 otherwise. Both
LOLS and SEARN use an exhaustive search of
alternative actions as an Explore function. Chang
et al. (2015) consider Structured Contextual Ban-
dits (SCB) as a partial information case, the SCB
modification of LOLS permits only one cost func-
tion call per Rollln (received from the external en-
vironment), so exhaustive RollOut exploration at
each step is not possible. SCB-LOLS Ezplore
picks a single step t € {1...T} at random at
which to make a random single-step deviation.

Another strand of work uses only the expert pol-
icy when calculating the action cost. Ross and
Bagnell (2010) introduce SMILE, and later DAG-
GER (Ross et al., 2011). These do not RollOut as
such, but as in exact imitation consider all one-step
deviations from the Rollln trajectory and obtain a
0/1 action cost for each by asking the expert what
it would do in that state. At the nth iteration the
training trajectories are generated from an inter-
polation of 7* and 7,1, with the latter progres-
sively increasing in importance; 7* is used with
probability (1-9)"~! for some decay rate 6. 7,, is
trained using all £ ,,. Ross et al. (2011) discuss
and reject calculating an action cost by complet-
ing a RollOut from each one-step deviation to a
terminal state. Three reasons given are:

1. Lack of real-world applicability, for example

in robotic control.

2. Lack of knowledge of the final loss function,

if we just have the expert’s actions.

3. Time spent calculating RollOuts and calling

the expert.
Ross and Bagnell (2014) do incorporate RollOuts

to calculate an action cost in their AGGREVATE
algorithm. These RollOuts use the expert policy
only, and allow a cost-sensitive classifier to be
trained that can learn that some mistakes are more
serious than others. As with DAGGER, the trained
policy cannot become better than the expert.

V-DAGGER is the variant proposed by Vlachos
and Clark (2014) in a semantic parsing task. It is
the same as DAGGER, but with RollOuts using the
same policy as Rollln. For both V-DAGGER and
SEARN, the stochasticity of the RollOut means
that a number of independent samples are taken
for each one-step deviation to reduce the variance
of the action cost, and noise in the training data.
This noise reduction comes at the expense of the
time needed to compute additional RollOuts.

4 Adapting imitation learning to AMR

Algorithms with full RollOuts have particular
value in the absence of an optimal (or near-
optimal) expert able to pick the best action from
any state. If we have a suitable loss function, then
the benefit of RollOuts may become worth the
computation expended on them. For AMR pars-
ing we have both a loss function in Smatch, and
the ability to generate arbitrary RollOuts.

We therefore use a heuristic expert. This re-
duces the computational cost at the expense of not
always predicting the best action. An expert needs
an alignment between gold AMR nodes and to-
kens in the parse-tree or sentence to determine the
actions to convert to one from the other. These
alignments are not provided in the gold AMR, and
our expert uses the AMR node to token alignments
of JAMR (Flanigan et al., 2014). These align-
ments are not trained, but generated using regex
and string matching rules. However, trajectories
are in the range 50-200 actions for most training
sentences, which combined with the size of |.A]
makes an exhaustive search of all one-step devia-
tions expensive. Compare this to unlabeled shift-



reduce parsers with 4 actions, or POS tagging with
|A| ~ 30.

4.1 Targeted exploration

To reduce this cost we note that exploring Roll-
Outs for all possible alternative actions can be un-
informative when the learned and expert policies
agree on an action and none of the other actions
score highly with the learned policy. Extending
this insight we modify the Explore function in
Algorithm 2 to only consider the expert action,
plus all actions scored by the current learned pol-
icy that are within a threshold 7 of the score for
the best rated action. In the first iteration, when
there is no current learned policy, we pick a num-
ber of actions (usually 10) at random for explo-
ration. Both SCB-LOLS and AGGREVATE use
partial exploration, but select the stept € 1...7T,
and the action a; at random. Here we optimise
computational resources by directing the search to
areas for which the trained policy is least sure of
the optimal action, or disagrees with the expert.

Using imitation learning to address error prop-
agation of transition-based parsing provides the-
oretical benefit from ensuring the distribution of
S¢, a; in the training data is consistent with the dis-
tribution on unseen test data. Using RollOuts that
mix expert and learned policies additionally per-
mits the learned policy to exceed the performance
of a poor expert. Incorporating targeted explo-
ration strategies in the Fxplore function makes
this computationally feasible.

4.2 Noise Reduction

Different samples for a RollOut trajectory using
V-DAGGER or SEARN can give very different
terminal states s (the final AMR graph) from
the same starting s; and a; due to the step-level
stochasticity. The resultant high variance in the re-
ward signal hinders effective learning. Daumé III
et al. (2009) have a similar problem, and note that
an approximate cost function outperforms single
Monte Carlo sampling, “likely due to the noise in-
duced following a single sample”.

To control noise we use the a-bound discussed
by Khardon and Wachman (2007). This excludes
a training example (i.e. an individual tuple s;, a;)
from future training once it has been misclassified
« times in training. We find that this simple idea
avoids the need for multiple RollOut samples.

An attraction of LOLS is that it randomly se-
lects either expert or learned policy for each Roll-

Out, and then applies this consistently to the whole
trajectory. Using LOLS should reduce noise with-
out increasing the sample size. Unfortunately the
unbounded 7' of our transition system leads to
problems if we drop the expert from the Rollln or
RollOut policy mix too quickly, with many trajec-
tories never terminating. Ultimately 7 learns to
stop doing this, but even with targeted exploration
training time is prohibitive and our LOLS exper-
iments failed to provide results. We find that V-
DAGGER with an a-bound works as a good com-
promise, keeping the expert involved in Rollln,
and speeding up learning overall.

Another approach we try is a form of focused
costing (Vlachos and Craven, 2011). Instead of
using the learned policy for 8% of steps in the
RollOut, we use it for the first b steps, and then
revert to the expert. This has several potential ad-
vantages: the heuristic expert is faster than scoring
all possible actions; it focuses the impact of the ex-
ploratory step on immediate actions/effects so that
mistakes T makes on a distant part of the graph
do not affect the action cost; it reduces noise for
the same reason. We increase b in each iteration
so that the expert is asymptotically removed from
RollOuts, a function otherwise supported by the
decay parameter, 9.

4.3 Transition System adaptations

Applying imitation learning to a transition system
with unbounded 7' can and does cause problems
in early iterations, with Rollln or RollOut trajec-
tories failing to complete while the learned pol-
icy, 7, is still relatively poor. To ensure every tra-
jectory completes we add action constraints to the
system. These avoid the most pathological scenar-
10s, such as disallowing a Reattach of a previously
Reattached sub-graph. These constraints are only
needed in the first few iterations until 7 learns, via
the action costs, to avoid these scenarios. They are
listed in the Supplemental Material. As a final fail-
safe we insert a hard-stop on any trajectory once
T > 300.

To address the size of |A|, we only consider a
subset of AMR concepts when labelling a node.
Wang et al. (2015b) use all concepts that occur
in the training data in the same sentence as the
lemma of the node, leading to hundreds or thou-
sands of possible actions from some states. We
use the smaller set of concepts that were assigned
by the expert to the lemma of the current node any-



Exact Imitation Imitation Learning
Experiment Noa | a=1 | a-Gain | Noa | a=1 | IL Gain («) | IL Gain (No «) | Total Gain
AROW, C=10 65.5 | 66.8 1.3 65.5 | 67.4 0.6 0.0 1.9
AROW, C=100 66.4 | 66.6 0.2 66.4 | 67.7 1.1 0.0 1.3
AROW, C=1000 66.4 | 67.0 0.6 66.5 | 68.2 1.2 0.1 1.8
PA, C=100 66.7 | 66.5 -0.2 67.2 | 68.7 2.2 0.5 2.0
Perceptron 65.5 | 65.3 -0.2 66.6 | 68.6 33 1.1 3.1

Table 3: DAGGER with a-bound. All figures are F-Scores on the validation set. 5 iterations of classifier training take place
after each DAgger iteration. A decay rate () for 7* of 0.3 was used.

where in the training data. We obtain these assign-
ments from an initial application of the expert to
the full training data.

We add actions to use the actual word or lemma
of the current node to increase generalisation, plus
an action to append ‘-01° to ‘verbify’ an unseen
word. This is similar to the work of Werling et al.
(2015) in word to AMR concept mapping, and is
useful since 38% of the test AMR concepts do not
exist in the training data (Flanigan et al., 2014).

Full details of the heuristics of the expert
policy, features used and pre-processing are in
Supplemental Material. All code is available
at https://github.com/hopshackle/
dagger—AMR.

4.4 Naive Smatch as Loss Function

Smatch (Cai and Knight, 2013) uses heuristics to
control the combinatorial explosion of possible
mappings between the input and output graphs,
but is still too computationally expensive to be
calculated for every RollOut during training. We
retain Smatch for reporting all final results, but
use ‘Naive Smatch’ as an approximation during
training. This skips the combinatorial mapping of
nodes between predicted and target AMR graphs.
Instead, for each graph we compile a list of:

e Node labels, e.g. name

e Node-Edge-Node label concatenations, e.g.

leave—-01:ARGO:room

e Node-Edge label concatenations, e.g.

leave—-01:ARGO, ARGO: room
The loss is the number of entries that appear in
only one of the lists. We do not convert to an
F; score, as retaining the absolute number of mis-
takes is proportional to the size of the graph.

The flexibility of the transition system means
multiple different actions from a given state s;
can lead, via different RollOut trajectories, to the
same target s7. This can result in many actions
having the best action cost, reducing the signal
in the training data and giving poor learning. To

encourage short trajectories we break these ties
with a penalty of 7'/5 to Naive Smatch. Multiple
routes of the same length still exist, and are pre-
ferred equally. Note that the ordering of the stack
of dependency tree nodes in the transition system
means we start at leaf nodes and move up the tree.
This prevents sub-components of the output AMR
graph being produced in an arbitrary order.

5 Experiments

The main dataset used is the newswire (proxy) sec-
tion of LDC2014T12 (Knight et al., 2014). The
data from years 1995-2006 form the training data,
with 2007 as the validation set and 2008 as the
test set. The data split is the same as that used by
Flanigan et al. (2014) and Wang et al. (2015b). 1
We first assess the impact of noise reduction
using the alpha bound, and report these experi-
ments without Rollouts (i.e. using DAGGER) to
isolate the effect of noise reduction. Table 3 sum-
marises results using exact imitation and DAGGER
with the a-bound set to discard a training instance
after one misclassification. This is the most ex-
treme setting, and the one that gave best results.
We try AROW (Crammer et al., 2013), Passive-
Aggressive (PA) (Crammer et al., 2006), and per-
ceptron (Collins, 2002) classifiers, with averaging
in all cases. We see a benefit from the a-bound for
exact imitation only with AROW, which is more
noise-sensitive than PA or the simple perceptron.
With DAGGER there is a benefit for all classifiers.
In all cases the a-bound and DAGGER are syn-
ergistic; without the a-bound imitation learning
works less well, if at all. a=1 was the optimal set-
ting, with lesser benefit observed for larger values.
We now turn our attention to targeted explo-
ration and focused costing, for which we use V-
DAGGER as explained in section 4. For all v-

"Formally Flanigan et al. (2014; Wang et al. (2015b) use
the pre-release version of this dataset (LDC2013E117). Wer-
ling et al. (2015) conducted comparative tests on the two ver-
sions, and found only a very minor changes of 0.1 to 0.2
points of F-score when using the final release.



Authors Algorithmic Approach

R P F

Flanigan et al. (2014)

Concept identification with semi-markov model followed by | 0.52 | 0.66 | 0.58
optimisation of constrained graph that contains all of these.

Werling et al. (2015)

As Flanigan et al. (2014), with enhanced concept identification | 0.59 | 0.66 | 0.62

Wang et al. (2015b)

Single stage using transition-based parsing algorithm 0.62 | 0.64 | 0.63

Pust et al. (2015)

Single stage System-Based Machine Translation

0.66

Peng et al. (2015)

Hyperedge replacement grammar

0.57 | 0.59 | 0.58

Artzi et al. (2015) Combinatory Categorial Grammar induction 0.66 | 0.67 | 0.66
Wang et al. (2015a) Extensions to action space and features in Wang et al. (2015b) 0.69 | 0.71 | 0.70
This work Imitation Learning with transition-based parsing 0.68 | 0.73 | 0.70

Table 4: Comparison of previous work on the AMR task. R, P and F are Recall, Precision and F-Score.

DAGGER experiments we use AROW with regu-
larisation parameter C=1000, and 6=0.3.

Figure 2 shows results by iteration of reducing
the number of RollOuts explored. Only the expert
action, plus actions that score close to the best-
scoring action (defined by the threshold) are used
for RollOuts. Using the action cost information
from RollOuts does surpass simple DAGGER, and
unsurprisingly more exploration is better.

Figure 3 shows the same data, but by total com-
putational time spent?. This adjusts the picture, as
small amounts of exploration give a faster bene-
fit, albeit not always reaching the same peak per-
formance. As a baseline, three iterations of V-
DAGGER without targeted exploration (threshold
= 00) takes 9600 minutes on the same hardware to
give an F-Score of 0.652 on the validation set.

Figure 4 shows the improvement using focused
costing. The ‘n/m’ setting sets b, the number of
initial actions taken by 7 in a RollOut to n, and
then increases this by m at each iteration. We gain
an increase of 2.9 points from 0.682 to 0.711. In
all the settings tried, focused costing improves the
results, and requires progressive removal of the ex-
pert to achieve the best score.

We use the classifier from the Focused Costing
5/5 run to achieve an F-Score on the held-out test
set of 0.70, equal to the best published result so far
(Wang et al., 2015a). Our gain of 4.7 points from
imitation learning over standard transition-based
parsing is orthogonal to that of Wang et al. (2015a)
using exact imitation with additional trained anal-
ysers; they experience a gain of 2 points from
using a Charniak parser (Charniak and Johnson,
2005) trained on the full OntoNotes corpus instead
of the Stanford parser used here and in Wang et al.
(2015b), and a further gain of 2 points from a se-
mantic role labeller. Table 4 lists previous AMR
work on the same dataset.

Zexperiments were run on 8-core Google Cloud nl-
highmem-8 machines.

Validation F-Score Test F-Score
Dataset EI D V-D V-D | Raoetal
proxy 0.670 | 0.686 | 0.704 | 0.70 0.61
dfa 0.495 | 0.532 | 0.546 | 0.50 0.44
bolt 0.456 | 0.468 | 0.524 | 0.52 0.46
xinhua | 0.598 | 0.623 | 0.683 | 0.62 0.52
Ipp 0.540 | 0.546 | 0.564 | 0.55 0.52

Table 5: Comparison of Exact Imitation (EI), DAGGER (D),
V-DAGGER (V-D) on all components of the LDC2014T12
corpus.

Using DAGGER with this system we obtained
an F-Score of 0.60 in the Semeval 2016 task on
AMR parsing, one standard deviation above the
mean of all entries. (Goodman et al., 2016)

Finally we test on all components of the
LDC2014T12 corpus as shown in Table 5, which
include both newswire and weblog data, as well as
the freely available AMRs for The Little Prince,
(Ipp)>. For each we use exact imitation, DAG-
GER, and V-DAGGER on the train/validation/splits
specified in the corpus. In all cases, imitation
learning without RollOuts (DAGGER) improves
on exact imitation, and incorporating RollOuts (V-
DAGGER) provides an additional benefit. Rao et
al. (2015) use SEARN on the same datasets, but
with a very different transition system. We show
their results for comparison.

Our expert achieves a Smatch F-Score of 0.94
on the training data. This explains why DAG-
GER, which assumes a good expert, is effective.
Introducing RollOuts provides additional theoret-
ical benefits from a non-decomposable loss func-
tion that can take into account longer-term impacts
of an action. This provides much more informa-
tion than the 0/1 binary action cost in DAGGER,
and we can use Naive Smatch as an approximation
to our actual objective function during training.
This informational benefit comes at the cost of in-
creased noise and computational expense, which
we control with targeted exploration and focused

*http://amr.isi.edu/download.html
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costing. We gain 2.7 points in F-Score, at the cost
of 80-100x more computation. In problems with a
less good expert, the gain from exploration could
be much greater. Similarly, if designing an expert
for a task is time-consuming, then it may be a bet-
ter investment to rely on exploration with a poor
expert to achieve the same result.

6 Related Work

Other strategies have been used to mitigate the er-
ror propagation problem in transition-based pars-
ing. A common approach is to use beam search
through state-space for each action choice to find
a better approximation of the long-term score of
the action, e.g. Zhang and Clark (2008). Goldberg
and Elhadad (2010) remove the determinism of
the sequence of actions to create easy-first parsers,
which postpone uncertain, error-prone decisions
until more information is available. This contrasts
with working inflexibly left-to-right along a sen-
tence, or bottom-to-top up a tree.

Goldberg and Nivre (2012) introduce dynamic
experts that are complete in that they will respond
from any state, not just those on the perfect trajec-
tory assuming no earlier mistakes; any expert used
with an imitation learning algorithm needs to be
complete in this sense. Their algorithm takes ex-
ploratory steps off the expert trajectory to augment
the training data collected in a fashion very similar
to DAGGER.

Honnibal et al. (2013) use a non-monotonic
parser that allows actions that are inconsistent with
previous actions. When such an action is taken
it amends the results of previous actions to en-
sure post-hoc consistency. Our parser is non-
monotonic, and we have the same problem en-
countered by Honnibal et al. (2013) with many
different actions from a state s; able to reach the
target s, following different “paths up the moun-
tain”. This leads to poor learning. To resolve

Time (Minutes)

,4 ~—° Threshold = 0.02 { /' , 7 -=- Focused Costing 10/10
——- Exact Imitation 1, ——- Exact Imitation
-—-— DAgger 8 i -—-— DAgger
; : st LT
6000 8000 1000 2000 3000 4000 5000 6000

Time (Minutes)

Focused costing with V-
DAGGER. All runs use threshold of 0.10.

this with fixed 7' they break ties with a monotonic
parser, so that actions that do not require later cor-
rection are scored higher in the training data. In
our variable T' environment, adding a penalty to
the size of T' is sufficient (section 4.4).

Vlachos and Clark (2014) use V-DAGGER to
give a benefit of 4.8 points of F-Score in a
domain-specific semantic parsing problem similar
to AMR. Their expert is sub-optimal, with no in-
formation on alignment between words in the in-
put sentence, and nodes in the target graph. The
parser learns to link words in the input to one of
the 35 node types, with the ‘expert’ policy align-
ing completely at random. This is infeasible with
AMR parsing due to the much larger vocabulary.

7 Conclusions

Imitation learning provides a total benefit of 4.5
points with our AMR transition-based parser over
exact imitation. This is a more complex task than
many previous applications of imitation learning,
and we found that noise reduction was an essen-
tial pre-requisite. Using a simple 0/1 binary action
cost using a heuristic expert provided a benefit of
1.8, with the remaining 2.7 points coming from
RollOuts with targeted exploration, focused cost-
ing and a non-decomposable loss function that was
a better approximation to our objective.

We have considered imitation learning algo-
rithms as a toolbox that can be tailored to fit the
characteristics of the task. An unbounded 7' meant
that the LOLS Rollln was not ideal, but this could
be modified to slow the loss of influence of the
expert policy. We anticipate the approaches that
we have found useful in the case of AMR to re-
duce the impact of noise, efficiently support large
action spaces with targeted exploration, and cope
with unbounded trajectories in the transition sys-
tem will be of relevance to other structured pre-
diction tasks.
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Data Recombination for Neural Semantic Parsing
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Abstract

Modeling crisp logical regularities is cru-
cial in semantic parsing, making it difficult
for neural models with no task-specific
prior knowledge to achieve good results.
In this paper, we introduce data recom-
bination, a novel framework for inject-
ing such prior knowledge into a model.
From the training data, we induce a high-
precision synchronous context-free gram-
mar, which captures important conditional
independence properties commonly found
in semantic parsing. We then train a
sequence-to-sequence recurrent network
(RNN) model with a novel attention-based
copying mechanism on datapoints sam-
pled from this grammar, thereby teaching
the model about these structural proper-
ties. Data recombination improves the ac-
curacy of our RNN model on three se-
mantic parsing datasets, leading to new
state-of-the-art performance on the stan-
dard GeoQuery dataset for models with
comparable supervision.

1 Introduction

Semantic parsing—the precise translation of nat-
ural language utterances into logical forms—has
many applications, including question answer-
ing (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005; Zettlemoyer and Collins, 2007;
Liang et al., 2011; Berant et al., 2013), instruc-
tion following (Artzi and Zettlemoyer, 2013b),
and regular expression generation (Kushman and
Barzilay, 2013). Modern semantic parsers (Artzi
and Zettlemoyer, 2013a; Berant et al., 2013)
are complex pieces of software, requiring hand-
crafted features, lexicons, and grammars.
Meanwhile, recurrent neural networks (RNNs)
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Original Examples
what are the major cities in utah ?
what states border maine ?

¢ Induce Grammar

Synchronous CFG

¢ Sample New Examples

Recombinant Examples
what are the major cities in [states border [maine]] ?
what are the major cities in [states border [utah]] ?
what states border [states border [maine]] ?
what states border [states border [utah]] ?

¢ Train Model

| Sequence-to-sequence RNN |

Figure 1: An overview of our system. Given a
dataset, we induce a high-precision synchronous
context-free grammar. We then sample from this
grammar to generate new ‘‘recombinant” exam-
ples, which we use to train a sequence-to-sequence
RNN.

have made swift inroads into many structured pre-
diction tasks in NLP, including machine trans-
lation (Sutskever et al., 2014; Bahdanau et al.,
2014) and syntactic parsing (Vinyals et al., 2015b;
Dyer et al., 2015). Because RNNs make very few
domain-specific assumptions, they have the poten-
tial to succeed at a wide variety of tasks with min-
imal feature engineering. However, this flexibil-
ity also puts RNNs at a disadvantage compared
to standard semantic parsers, which can generalize
naturally by leveraging their built-in awareness of
logical compositionality.

In this paper, we introduce data recombina-
tion, a generic framework for declaratively inject-

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 12-22,
Berlin, Germany, August 7-12, 2016. (©2016 Association for Computational Linguistics



GEO
x: “what is the population of iowa ?”
y: _answer ( NV , (
_population ( NV , V1 ) , _const (
V0 , _stateid ( iowa ) ) ) )
ATIS

x: “can you list all flights from chicago to milwaukee”

y: ( _lambda $0 e ( _and
( _flight $0 )
( _from $0 chicago : _ci )
( _to $0 milwaukee : _ci ) ) )
Overnight
x: “when is the weekly standup”
y: ( call listvValue ( call

getProperty meeting.weekly_standup
( string start_time ) ) )

Figure 2: One example from each of our domains.
We tokenize logical forms as shown, thereby cast-
ing semantic parsing as a sequence-to-sequence
task.

ing prior knowledge into a domain-general struc-
tured prediction model. In data recombination,
prior knowledge about a task is used to build a
high-precision generative model that expands the
empirical distribution by allowing fragments of
different examples to be combined in particular
ways. Samples from this generative model are
then used to train a domain-general model. In the
case of semantic parsing, we construct a genera-
tive model by inducing a synchronous context-free
grammar (SCFG), creating new examples such
as those shown in Figure 1; our domain-general
model is a sequence-to-sequence RNN with a
novel attention-based copying mechanism. Data
recombination boosts the accuracy of our RNN
model on three semantic parsing datasets. On the
GEO dataset, data recombination improves test ac-
curacy by 4.3 percentage points over our baseline
RNN, leading to new state-of-the-art results for
models that do not use a seed lexicon for predi-
cates.

2 Problem statement

We cast semantic parsing as a sequence-to-
sequence task. The input utterance x is a sequence
of words z1, . . ., Z,,, € VY, the input vocabulary;
similarly, the output logical form y is a sequence
of tokens y1,...,y, € VW, the output vocab-
ulary. A linear sequence of tokens might appear
to lose the hierarchical structure of a logical form,
but there is precedent for this choice: Vinyals et al.
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(2015b) showed that an RNN can reliably predict
tree-structured outputs in a linear fashion.

We evaluate our system on three existing se-
mantic parsing datasets. Figure 2 shows sample
input-output pairs from each of these datasets.

e GeoQuery (GEO) contains natural language
questions about US geography paired with
corresponding Prolog database queries. We
use the standard split of 600 training exam-
ples and 280 test examples introduced by
Zettlemoyer and Collins (2005). We prepro-
cess the logical forms to De Brujin index no-
tation to standardize variable naming.

ATIS (ATIS) contains natural language
queries for a flights database paired with
corresponding database queries written in
lambda calculus. We train on 4473 examples
and evaluate on the 448 test examples used
by Zettlemoyer and Collins (2007).

Overnight (OVERNIGHT) contains logical
forms paired with natural language para-
phrases across eight varied subdomains.
Wang et al. (2015) constructed the dataset by
generating all possible logical forms up to
some depth threshold, then getting multiple
natural language paraphrases for each logi-
cal form from workers on Amazon Mechan-
ical Turk. We evaluate on the same train/test
splits as Wang et al. (2015).

In this paper, we only explore learning from log-
ical forms. In the last few years, there has an
emergence of semantic parsers learned from de-
notations (Clarke et al., 2010; Liang et al., 2011;
Berant et al., 2013; Artzi and Zettlemoyer, 2013b).
While our system cannot directly learn from deno-
tations, it could be used to rerank candidate deriva-
tions generated by one of these other systems.

3 Sequence-to-sequence RNN Model

Our sequence-to-sequence RNN model is based
on existing attention-based neural machine trans-
lation models (Bahdanau et al., 2014; Luong et al.,
2015a), but also includes a novel attention-based
copying mechanism. Similar copying mechanisms
have been explored in parallel by Gu et al. (2016)
and Gulcehre et al. (2016).

3.1 Basic Model

Encoder. The encoder converts the input se-
quence zi,...,T,, into a sequence of context-



sensitive embeddings by, ..., b, using a bidirec-
tional RNN (Bahdanau et al., 2014). First, a word
embedding function ¢ maps each word z; to a
fixed-dimensional vector. These vectors are fed as
input to two RNNs: a forward RNN and a back-
ward RNN. The forward RNN starts with an initial
hidden state hjj, and generates a sequence of hid-
den states A, ..., hE by repeatedly applying the
recurrence

BE = LSTM(6™ (), hE ). (1)
The recurrence takes the form of an LSTM
(Hochreiter and Schmidhuber, 1997). The back-
ward RNN similarly generates hidden states
hB ... hB by processing the input sequence in
reverse order. Finally, for each input position i,
we define the context-sensitive embedding b; to be
the concatenation of Al and hB

Decoder. The decoder is an attention-based
model (Bahdanau et al., 2014; Luong et al., 2015a)
that generates the output sequence vy, . ..,y one
token at a time. At each time step j, it writes
y; based on the current hidden state s;, then up-
dates the hidden state to s;11 based on s; and y;.
Formally, the decoder is defined by the following
equations:

s1 = tanh(WE[RF  hB). 2)
eji = s, Wb, 3)
exp(eji)
aji = e, 4)
T i exp(eji)

m
Cj = Z ajibi- (5)

i=1
P(yj = w | z,y1:5-1) o exp(Unlsj, ¢j]).  (6)
sj+1 = LSTM([6°" (), ¢;1, 5)- ()
When not specified, 7 ranges over {1,...,m} and
j ranges over {1, ..., n}. Intuitively, the c;’s de-

fine a probability distribution over the input words,
describing what words in the input the decoder is
focusing on at time j. They are computed from
the unnormalized attention scores ej;. The matri-
ces W(s), W@ and U, as well as the embedding
function ¢, are parameters of the model.

3.2 Attention-based Copying

In the basic model of the previous section, the next
output word y; is chosen via a simple softmax over
all words in the output vocabulary. However, this
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model has difficulty generalizing to the long tail of
entity names commonly found in semantic parsing
datasets. Conveniently, entity names in the input
often correspond directly to tokens in the output
(e.g., “iowa” becomes iowa in Figure 2).!

To capture this intuition, we introduce a new
attention-based copying mechanism. At each time
step j, the decoder generates one of two types of
actions. As before, it can write any word in the
output vocabulary. In addition, it can copy any in-
put word z; directly to the output, where the prob-
ability with which we copy z; is determined by
the attention score on z;. Formally, we define a
latent action a; that is either Write[w] for some
w € VW or Copyli] for some i € {1,...,m}.
We then have

P(aj =write[w] | z,y1;j-1) o< exp(Uy[sj, ¢j]),
(8)

P(aj = Copyli] | #,y1:j-1) < exp(eji).  (9)

The decoder chooses a; with a softmax over all
these possible actions; y; is then a deterministic
function of a; and z. During training, we maxi-
mize the log-likelihood of y, marginalizing out a.

Attention-based copying can be seen as a com-
bination of a standard softmax output layer of an
attention-based model (Bahdanau et al., 2014) and
a Pointer Network (Vinyals et al., 2015a); in a
Pointer Network, the only way to generate output
is to copy a symbol from the input.

4 Data Recombination

4.1 Motivation

The main contribution of this paper is a novel data
recombination framework that injects important
prior knowledge into our oblivious sequence-to-
sequence RNN. In this framework, we induce a
high-precision generative model from the training
data, then sample from it to generate new training
examples. The process of inducing this generative
model can leverage any available prior knowledge,
which is transmitted through the generated exam-
ples to the RNN model. A key advantage of our
two-stage approach is that it allows us to declare
desired properties of the task which might be hard
to capture in the model architecture.

'On GEO and ATIS, we make a point not to rely on or-
thography for non-entities such as “state” to _state, since
this leverages information not available to previous models
(Zettlemoyer and Collins, 2005) and is much less language-
independent.



Examples
(“what states border texas ?”,

STATEID — (“ohio”, ohio)
Rules created by ABSWHOLEPHRASES

RooOT — < “what is the highest mountain in STATE ?”,
answer (NV, highest (VO,

Rules created by CONCAT-2
ROOT — (SENT; </s> SENTz, SENT; </s> SENT3)
SENT — ( “what states border texas ?”,

answer (NV,
SENT — ( “what is the highest mountain in ohio ?”,
answer (NV, highest (VO,

ROOT — ( “what states border STATE ?”, answer (NV,
STATE — ( “states border texas”, state (V0), next_to(V0, NV), const(V0, stateid(texas)))

answer (NV, (state(V0), next_to(V0O, NV), const (V0O, stateid(texas)))))
(“what is the highest mountain in ohio ?”,
answer (NV, highest (VO, (mountain(V0), loc(V0O, NV), const (V0O, stateid(ohio))))))
Rules created by ABSENTITIES
ROOT — ( “what states border STATEID ?”,

answer (NV, (state(V0), next_to(V0, NV), const (V0O, stateid(STATEID))) ))
STATEID — ( “texas”, texas )
ROOT — ( “what is the highest mountain in STATEID ?”,

answer (NV, highest (VO, (mountain(V0), loc(V0, NV),

const (V0, stateid(STATEID))))))

(state (V0), next_to(V0, NV), STATE)))

(mountain (V0), loc(V0O, NV), STATE))))

(state (V0), next_to(V0, NV), const (V0O, stateid(texas)))) )

(mountain (V0), loc(V0O, NV), const (V0O, stateid(ohio))))) )

Figure 3: Various grammar induction strategies illustrated on GEO. Each strategy converts the rules of
an input grammar into rules of an output grammar. This figure shows the base case where the input
grammar has rules ROOT — (z, y) for each (z, y) pair in the training dataset.

Our approach generalizes data augmentation,
which is commonly employed to inject prior
knowledge into a model. Data augmenta-
tion techniques focus on modeling invariances—
transformations like translating an image or
adding noise that alter the inputs z, but do not
change the output y. These techniques have
proven effective in areas like computer vision
(Krizhevsky et al., 2012) and speech recognition
(Jaitly and Hinton, 2013).

In semantic parsing, however, we would like to
capture more than just invariance properties. Con-
sider an example with the utterance “what states
border texas ?”. Given this example, it should be
easy to generalize to questions where “fexas” is
replaced by the name of any other state: simply
replace the mention of Texas in the logical form
with the name of the new state. Underlying this
phenomenon is a strong conditional independence
principle: the meaning of the rest of the sentence
is independent of the name of the state in ques-
tion. Standard data augmentation is not sufficient
to model such phenomena: instead of holding y
fixed, we would like to apply simultaneous trans-
formations to x and y such that the new x still
maps to the new y. Data recombination addresses
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this need.

4.2 General Setting

In the general setting of data recombination, we
start with a training set D of (z,y) pairs, which
defines the empirical distribution p(z, y). We then
fit a generative model p(x,y) to p which gener-
alizes beyond the support of p, for example by
splicing together fragments of different examples.
We refer to examples in the support of p as re-
combinant examples. Finally, to train our actual
model pg(y | =), we maximize the expected value
of log po(y | x), where (z,y) is drawn from p.

4.3 SCFGs for Semantic Parsing

For semantic parsing, we induce a synchronous
context-free grammar (SCFG) to serve as the
backbone of our generative model p. An SCFG
consists of a set of production rules X — (a, (3),
where X is a category (non-terminal), and « and 3
are sequences of terminal and non-terminal sym-
bols. Any non-terminal symbols in o must be
aligned to the same non-terminal symbol in 3, and
vice versa. Therefore, an SCFG defines a set of
joint derivations of aligned pairs of strings. In our
case, we use an SCFG to represent joint deriva-



tions of utterances = and logical forms y (which
for us is just a sequence of tokens). After we
induce an SCFG G from D, the corresponding
generative model p(z,y) is the distribution over
pairs (x,y) defined by sampling from G, where
we choose production rules to apply uniformly at
random.

It is instructive to compare our SCFG-based
data recombination with WASP (Wong and
Mooney, 2006; Wong and Mooney, 2007), which
uses an SCFG as the actual semantic parsing
model. The grammar induced by WASP must have
good coverage in order to generalize to new in-
puts at test time. WASP also requires the imple-
mentation of an efficient algorithm for computing
the conditional probability p(y | x). In contrast,
our SCFG is only used to convey prior knowl-
edge about conditional independence structure, so
it only needs to have high precision; our RNN
model is responsible for boosting recall over the
entire input space. We also only need to forward
sample from the SCFG, which is considerably eas-
ier to implement than conditional inference.

Below, we examine various strategies for induc-
ing a grammar G from a dataset D. We first en-
code D as an initial grammar with rules ROOT
— (z,y) for each (z,y) € D. Next, we will
define each grammar induction strategy as a map-
ping from an input grammar Gj, to a new gram-
mar Goy. This formulation allows us to compose
grammar induction strategies (Section 4.3.4).

4.3.1 Abstracting Entities

Our first grammar induction strategy, ABSENTI-
TIES, simply abstracts entities with their types.
We assume that each entity e (e.g., texas) has
a corresponding type e.t (e.g., state), which we
infer based on the presence of certain predicates
in the logical form (e.g. stateid). For each
grammar rule X — («, ) in Gj,, where o con-
tains a token (e.g., “fexas”) that string matches
an entity (e.g., texas) in 8, we add two rules
to Gour: (1) a rule where both occurrences are re-
placed with the type of the entity (e.g., state),
and (ii) a new rule that maps the type to the en-
tity (e.g., STATEID — (“fexas”, texas); we re-
serve the category name STATE for the next sec-
tion). Thus, Gy generates recombinant examples
that fuse most of one example with an entity found
in a second example. A concrete example from the
GEO domain is given in Figure 3.
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4.3.2 Abstracting Whole Phrases

Our second grammar induction strategy, ABSW-
HOLEPHRASES, abstracts both entities and whole
phrases with their types. For each grammar rule
X — (a,f) in Gip, we add up to two rules to
Goue. First, if o contains tokens that string match
to an entity in (3, we replace both occurrences with
the type of the entity, similarly to rule (i) from AB-
SENTITIES. Second, if we can infer that the entire
expression 3 evaluates to a set of a particular type
(e.g. state) we create a rule that maps the type
to (a, 3). In practice, we also use some simple
rules to strip question identifiers from «, so that
the resulting examples are more natural. Again,
refer to Figure 3 for a concrete example.

This strategy works because of a more general
conditional independence property: the meaning
of any semantically coherent phrase is condition-
ally independent of the rest of the sentence, the
cornerstone of compositional semantics. Note that
this assumption is not always correct in general:
for example, phenomena like anaphora that in-
volve long-range context dependence violate this
assumption. However, this property holds in most
existing semantic parsing datasets.

4.3.3 Concatenation

The final grammar induction strategy is a surpris-
ingly simple approach we tried that turns out to
work. For any k£ > 2, we define the CONCAT-k
strategy, which creates two types of rules. First,
we create a single rule that has ROOT going to
a sequence of k£ SENT’s. Then, for each root-
level rule ROOT — (a, 3) in Gj,, we add the rule
SENT — (a, 3) to Gou. See Figure 3 for an ex-
ample.

Unlike ABSENTITIES and ABSWHOLE-
PHRASES, concatenation is very general, and can
be applied to any sequence transduction problem.
Of course, it also does not introduce additional
information about compositionality or indepen-
dence properties present in semantic parsing.
However, it does generate harder examples for the
attention-based RNN, since the model must learn
to attend to the correct parts of the now-longer
input sequence. Related work has shown that
training a model on more difficult examples can
improve generalization, the most canonical case
being dropout (Hinton et al., 2012; Wager et al.,
2013).



function TRAIN(dataset D, number of epochs 7',
number of examples to sample n)
Induce grammar G from D
Initialize RNN parameters 6 randomly
for each iterationt = 1,...,7 do
Compute current learning rate 7
Initialize current dataset D; to D
fori=1,...,ndo
Sample new example (z',y’) from G
Add (2',y") to Dy
end for
Shuffle D;
for each example (z,y) in D; do
0 0 +mn:Vlogpo(y | x)
end for
end for
end function

Figure 4: The training procedure with data recom-
bination. We first induce an SCFG, then sample
new recombinant examples from it at each epoch.

4.3.4 Composition

We note that grammar induction strategies can
be composed, yielding more complex grammars.
Given any two grammar induction strategies f;
and fo, the composition f; o fo is the grammar
induction strategy that takes in Gj, and returns
f1(f2(Gin)). For the strategies we have defined,
we can perform this operation symbolically on the
grammar rules, without having to sample from the
intermediate grammar fa(Gjy ).

5 Experiments

We evaluate our system on three domains: GEO,
ATIS, and OVERNIGHT. For ATIS, we report
logical form exact match accuracy. For GEO and
OVERNIGHT, we determine correctness based on
denotation match, as in Liang et al. (2011) and
Wang et al. (2015), respectively.

5.1 Choice of Grammar Induction Strategy

We note that not all grammar induction strate-
gies make sense for all domains. In particular,
we only apply ABSWHOLEPHRASES to GEO and
OVERNIGHT. We do not apply ABSWHOLE-
PHRASES to ATIS, as the dataset has little nesting
structure.

5.2 Implementation Details

We tokenize logical forms in a domain-specific
manner, based on the syntax of the formal lan-
guage being used. On GEO and ATIS, we dis-
allow copying of predicate names to ensure a fair
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comparison to previous work, as string matching
between input words and predicate names is not
commonly used. We prevent copying by prepend-
ing underscores to predicate tokens; see Figure 2
for examples.

On ATIS alone, when doing attention-based
copying and data recombination, we leverage
an external lexicon that maps natural language
phrases (e.g., “kennedy airport”) to entities (e.g.,
jfk:ap). When we copy a word that is part of
a phrase in the lexicon, we write the entity asso-
ciated with that lexicon entry. When performing
data recombination, we identify entity alignments
based on matching phrases and entities from the
lexicon.

We run all experiments with 200 hidden units
and 100-dimensional word vectors. We initial-
ize all parameters uniformly at random within
the interval [—0.1,0.1]. We maximize the log-
likelihood of the correct logical form using
stochastic gradient descent. We train the model
for a total of 30 epochs with an initial learning rate
of 0.1, and halve the learning rate every 5 epochs,
starting after epoch 15. We replace word vectors
for words that occur only once in the training set
with a universal <unk> word vector. Our model
is implemented in Theano (Bergstra et al., 2010).

When performing data recombination, we sam-
ple a new round of recombinant examples from
our grammar at each epoch. We add these ex-
amples to the original training dataset, randomly
shuffle all examples, and train the model for the
epoch. Figure 4 gives pseudocode for this training
procedure. One important hyperparameter is how
many examples to sample at each epoch: we found
that a good rule of thumb is to sample as many re-
combinant examples as there are examples in the
training dataset, so that half of the examples the
model sees at each epoch are recombinant.

At test time, we use beam search with beam size
5. We automatically balance missing right paren-
theses by adding them at the end. On GEO and
OVERNIGHT, we then pick the highest-scoring
logical form that does not yield an executor error
when the corresponding denotation is computed.
On ATIS, we just pick the top prediction on the
beam.

5.3 Impact of the Copying Mechanism

First, we measure the contribution of the attention-
based copying mechanism to the model’s overall



GEO | ATIS | OVERNIGHT
No Copying 74.6 | 69.9 76.7
With Copying | 85.0 | 76.3 75.8
Table 1: Test accuracy on GEO, ATIS, and

OVERNIGHT, both with and without copying. On
OVERNIGHT, we average across all eight domains.

GEO | ATIS
Previous Work
Zettlemoyer and Collins (2007) 84.6
Kwiatkowski et al. (2010) 88.9
Liang et al. (2011)? 91.1
Kwiatkowski et al. (2011) 88.6 82.8
Poon (2013) 83.5
Zhao and Huang (2015) 88.9 84.2
Our Model
No Recombination 85.0 76.3
ABSENTITIES 85.4 79.9
ABSWHOLEPHRASES 87.5
CONCAT-2 84.6 79.0
CONCAT-3 77.5
AWP + AE 88.9
AE + C2 78.8
AWP + AE + C2 89.3
AE + C3 83.3

Table 2: Test accuracy using different data recom-
bination strategies on GEO and ATIS. AE is AB-
SENTITIES, AWP is ABSWHOLEPHRASES, C2 is
CONCAT-2, and C3 is CONCAT-3.

performance. On each task, we train and evalu-
ate two models: one with the copying mechanism,
and one without. Training is done without data re-
combination. The results are shown in Table 1.

On GEO and ATIS, the copying mechanism
helps significantly: it improves test accuracy by
10.4 percentage points on GEO and 6.4 points
on ATIS. However, on OVERNIGHT, adding the
copying mechanism actually makes our model
perform slightly worse. This result is somewhat
expected, as the OVERNIGHT dataset contains a
very small number of distinct entities. It is also
notable that both systems surpass the previous best
system on OVERNIGHT by a wide margin.

We choose to use the copying mechanism in all
subsequent experiments, as it has a large advan-
tage in realistic settings where there are many dis-
tinct entities in the world. The concurrent work of
Gu et al. (2016) and Gulcehre et al. (2016), both of
whom propose similar copying mechanisms, pro-
vides additional evidence for the utility of copying
on a wide range of NLP tasks.

5.4 Main Results

The method of Liang et al. (2011) is not comparable to
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For our main results, we train our model with a va-
riety of data recombination strategies on all three
datasets. These results are summarized in Tables 2
and 3. We compare our system to the baseline of
not using any data recombination, as well as to
state-of-the-art systems on all three datasets.

We find that data recombination consistently
improves accuracy across the three domains we
evaluated on, and that the strongest results come
from composing multiple strategies. Combin-
ing ABSWHOLEPHRASES, ABSENTITIES, and
CONCAT-2 yields a 4.3 percentage point improve-
ment over the baseline without data recombina-
tion on GEO, and an average of 1.7 percentage
points on OVERNIGHT. In fact, on GEO, we
achieve test accuracy of 89.3%, which surpasses
the previous state-of-the-art, excluding Liang et al.
(2011), which used a seed lexicon for predicates.
On ATIS, we experiment with concatenating more
than 2 examples, to make up for the fact that we
cannot apply ABSWHOLEPHRASES, which gen-
erates longer examples. We obtain a test accu-
racy of 83.3 with ABSENTITIES composed with
CONCAT-3, which beats the baseline by 7 percent-
age points and is competitive with the state-of-the-
art.

Data recombination without copying. For
completeness, we also investigated the effects
of data recombination on the model without
attention-based copying. We found that recom-
bination helped significantly on GEO and ATIS,
but hurt the model slightly on OVERNIGHT. On
GEO, the best data recombination strategy yielded
test accuracy of 82.9%, for a gain of 8.3 percent-
age points over the baseline with no copying and
no recombination; on ATIS, data recombination
gives test accuracies as high as 74.6%, a 4.7 point
gain over the same baseline. However, no data re-
combination strategy improved average test accu-
racy on OVERNIGHT; the best one resulted in a
0.3 percentage point decrease in test accuracy. We
hypothesize that data recombination helps less on
OVERNIGHT in general because the space of pos-
sible logical forms is very limited, making it more
like a large multiclass classification task. There-
fore, it is less important for the model to learn
good compositional representations that general-
ize to new logical forms at test time.

ours, as they as they used a seed lexicon mapping words to
predicates. We explicitly avoid using such prior knowledge
in our system.



BASKETBALL BLOCKS CALENDAR HOUSING PUBLICATIONS RECIPES RESTAURANTS SOCIAL | Avg.
Previous Work
Wang et al. (2015) 46.3 41.9 4.4 54.0 59.0 70.8 75.9 48.2 58.8
Our Model
No Recombination 85.2 58.1 78.0 71.4 76.4 79.6 76.2 81.4 75.8
ABSENTITIES 86.7 60.2 78.0 65.6 73.9 7.3 79.5 81.3 75.3
ABSWHOLEPHRASES 86.7 55.9 79.2 69.8 76.4 77.8 80.7 80.9 75.9
CONCAT-2 84.7 60.7 75.6 69.8 4.5 80.1 79.5 80.8 75.7
AWP + AE 85.2 54.1 78.6 67.2 73.9 79.6 81.9 82.1 75.3
AWP + AE + C2 87.5 60.2 81.0 72.5 78.3 81.0 79.5 79.6 77.5

Table 3: Test accuracy using different data recombination strategies on the OVERNIGHT tasks.

Depth-2 (same length)

x: “rel:12 of rel:17 of ent: 14”

y: ( _rel:12 ( _rel:17 _ent:14 ) )
Depth-4 (longer)

x: “rel:23 of rel:36 of rel:38 of rel:10 of ent:05”

y: ( _rel:23 ( _rel:36 ( _rel:38
( _rel:10 _ent:05 ) ) ) )
Figure 5: A sample of our artificial data.
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Figure 6: The results of our artificial data exper-
iments. We see that the model learns more from
longer examples than from same-length examples.

5.5 Effect of Longer Examples

Interestingly,  strategies like ABSWHOLE-
PHRASES and CONCAT-2 help the model even
though the resulting recombinant examples are
generally not in the support of the test distribution.
In particular, these recombinant examples are on
average longer than those in the actual dataset,
which makes them harder for the attention-based
model. Indeed, for every domain, our best
accuracy numbers involved some form of concate-
nation, and often involved ABSWHOLEPHRASES
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as well. In comparison, applying ABSENTITIES
alone, which generates examples of the same
length as those in the original dataset, was
generally less effective.

We conducted additional experiments on artifi-
cial data to investigate the importance of adding
longer, harder examples. We experimented with
adding new examples via data recombination, as
well as adding new independent examples (e.g. to
simulate the acquisition of more training data). We
constructed a simple world containing a set of enti-
ties and a set of binary relations. For any n, we can
generate a set of depth-n examples, which involve
the composition of n relations applied to a single
entity. Example data points are shown in Figure 5.
We train our model on various datasets, then test
it on a set of 500 randomly chosen depth-2 exam-
ples. The model always has access to a small seed
training set of 100 depth-2 examples. We then add
one of four types of examples to the training set:

e Same length, independent: New randomly

chosen depth-2 examples.>

Longer, independent:
depth-4 examples.

Randomly chosen

Same length, recombinant: Depth-2 exam-
ples sampled from the grammar induced by
applying ABSENTITIES to the seed dataset.

Longer, recombinant: Depth-4 examples
sampled from the grammar induced by apply-
ing ABSWHOLEPHRASES followed by AB-
SENTITIES to the seed dataset.

To maintain consistency between the independent
and recombinant experiments, we fix the recombi-
nant examples across all epochs, instead of resam-
pling at every epoch. In Figure 6, we plot accu-
racy on the test set versus the number of additional
examples added of each of these four types. As

3Technically, these are not completely independent, as we

sample these new examples without replacement. The same
applies to the longer “independent” examples.



expected, independent examples are more help-
ful than the recombinant ones, but both help the
model improve considerably. In addition, we see
that even though the test dataset only has short ex-
amples, adding longer examples helps the model
more than adding shorter ones, in both the inde-
pendent and recombinant cases. These results un-
derscore the importance training on longer, harder
examples.

6 Discussion

In this paper, we have presented a novel frame-
work we term data recombination, in which we
generate new training examples from a high-
precision generative model induced from the orig-
inal training dataset. = We have demonstrated
its effectiveness in improving the accuracy of a
sequence-to-sequence RNN model on three se-
mantic parsing datasets, using a synchronous
context-free grammar as our generative model.

There has been growing interest in applying
neural networks to semantic parsing and related
tasks. Dong and Lapata (2016) concurrently de-
veloped an attention-based RNN model for se-
mantic parsing, although they did not use data re-
combination. Grefenstette et al. (2014) proposed
a non-recurrent neural model for semantic pars-
ing, though they did not run experiments. Mei et
al. (2016) use an RNN model to perform a related
task of instruction following.

Our proposed attention-based copying mech-
anism bears a strong resemblance to two mod-
els that were developed independently by other
groups. Gu et al. (2016) apply a very similar copy-
ing mechanism to text summarization and single-
turn dialogue generation. Gulcehre et al. (2016)
propose a model that decides at each step whether
to write from a “shortlist” vocabulary or copy from
the input, and report improvements on machine
translation and text summarization. Another piece
of related work is Luong et al. (2015b), who train
a neural machine translation system to copy rare
words, relying on an external system to generate
alignments.

Prior work has explored using paraphrasing for
data augmentation on NLP tasks. Zhang et al.
(2015) augment their data by swapping out words
for synonyms from WordNet. Wang and Yang
(2015) use a similar strategy, but identify similar
words and phrases based on cosine distance be-
tween vector space embeddings. Unlike our data
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recombination strategies, these techniques only
change inputs z, while keeping the labels y fixed.
Additionally, these paraphrasing-based transfor-
mations can be described in terms of grammar
induction, so they can be incorporated into our
framework.

In data recombination, data generated by a high-
precision generative model is used to train a sec-
ond, domain-general model. Generative oversam-
pling (Liu et al., 2007) learns a generative model
in a multiclass classification setting, then uses it
to generate additional examples from rare classes
in order to combat label imbalance. Uptraining
(Petrov et al., 2010) uses data labeled by an ac-
curate but slow model to train a computationally
cheaper second model. Vinyals et al. (2015b) gen-
erate a large dataset of constituency parse trees
by taking sentences that multiple existing systems
parse in the same way, and train a neural model on
this dataset.

Some of our induced grammars generate ex-
amples that are not in the test distribution, but
nonetheless aid in generalization. Related work
has also explored the idea of training on altered
or out-of-domain data, often interpreting it as a
form of regularization. Dropout training has been
shown to be a form of adaptive regularization
(Hinton et al., 2012; Wager et al., 2013). Guu et al.
(2015) showed that encouraging a knowledge base
completion model to handle longer path queries
acts as a form of structural regularization.

Language is a blend of crisp regularities and
soft relationships. Our work takes RNNs, which
excel at modeling soft phenomena, and uses a
highly structured tool—synchronous context free
grammars—to infuse them with an understanding
of crisp structure. We believe this paradigm for si-
multaneously modeling the soft and hard aspects
of language should have broader applicability be-
yond semantic parsing.
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Abstract

A core problem in learning semantic
parsers from denotations is picking out
consistent logical forms—those that yield
the correct denotation—from a combina-
torially large space. To control the search
space, previous work relied on restricted
set of rules, which limits expressivity. In
this paper, we consider a much more ex-
pressive class of logical forms, and show
how to use dynamic programming to effi-
ciently represent the complete set of con-
sistent logical forms. Expressivity also
introduces many more spurious logical
forms which are consistent with the cor-
rect denotation but do not represent the
meaning of the utterance. To address
this, we generate fictitious worlds and use
crowdsourced denotations on these worlds
to filter out spurious logical forms. On
the WIKITABLEQUESTIONS dataset, we
increase the coverage of answerable ques-
tions from 53.5% to 76%, and the ad-
ditional crowdsourced supervision lets us
rule out 92.1% of spurious logical forms.

1 Introduction

Consider the task of learning to answer com-
plex natural language questions (e.g., “Where did
the last Ist place finish occur?”) using only
question-answer pairs as supervision (Clarke et
al., 2010; Liang et al., 2011; Berant et al,
2013; Artzi and Zettlemoyer, 2013). Seman-
tic parsers map the question into a logical form
(e.g., R[Venue|.argmax(Position.1st, Index))
that can be executed on a knowledge source to ob-
tain the answer (denotation). Logical forms are
very expressive since they can be recursively com-
posed, but this very expressivity makes it more
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difficult to search over the space of logical forms.
Previous work sidesteps this obstacle by restrict-
ing the set of possible logical form compositions,
but this is limiting. For instance, for the system
in Pasupat and Liang (2015), in only 53.5% of the
examples was the correct logical form even in the
set of generated logical forms.

The goal of this paper is to solve two main chal-
lenges that prevent us from generating more ex-
pressive logical forms. The first challenge is com-
putational: the number of logical forms grows ex-
ponentially as their size increases. Directly enu-
merating over all logical forms becomes infeasi-
ble, and pruning techniques such as beam search
can inadvertently prune out correct logical forms.

The second challenge is the large increase in
spurious logical forms—those that do not reflect
the semantics of the question but coincidentally
execute to the correct denotation. For example,
while logical forms z1, ..., z5 in Figure 1 are all
consistent (they execute to the correct answer y),
the logical forms 24 and z5 are spurious and would
give incorrect answers if the table were to change.

We address these two challenges by solving two
interconnected tasks. The first task, which ad-
dresses the computational challenge, is to enumer-
ate the set Z of all consistent logical forms given
a question z, a knowledge source w (“world”),
and the target denotation y (Section 4). Observ-
ing that the space of possible denotations grows
much more slowly than the space of logical forms,
we perform dynamic programming on denotations
(DPD) to make search feasible. Our method is
guaranteed to find all consistent logical forms up
to some bounded size.

Given the set Z of consistent logical forms, the
second task is to filter out spurious logical forms
from Z (Section 5). Using the property that spuri-
ous logical forms ultimately give a wrong answer
when the data in the world w changes, we create
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Time
47.12
46.69
46.62
182.05
180.32

Event
400m
400m
400m
relay
relay

Position
2nd
1st
11th
1st
7th

Venue
Hungary
Finland
Germany
Thailand
China

Year
2001
2003
2005
2007
2008

“Where did the last 1st place finish occur?”
Thailand

Consistent

Correct
z1: R[Venue].argmax(Position.1st, Index)
Among rows with Position = 1st, pick the one with
maximum index, then return the Venue of that row.
R|[Venue|.Index.max(R[Index|.Position.1st)

Find the maximum index of rows with Position =
1st, then return the Venue of the row with that index.

z92.

R[Venue|.argmax(Position.Number./,
R[\z.R[Date].R[Year].z])

Among rows with Position number 1, pick one with
latest date in the Year column and return the Venue.

z3.

Spurious
R|[Venue].argmax(Position.Number./,

R[Az.R[Number].R[Time].z])
Among rows with Position number 1, pick the one
with maximum Time number. Return the Venue.

Z4:

z5: R[Venue].Year.Number.(
R[Number|.R[Year].argmax(Type.Row, Index)— /)

Subtract 1 from the Year in the last row, then return
the Venue of the row with that Year.

Inconsistent
Z: R[Venue].argmin(Position.1st, Index)
Among rows with Position = 1st, pick the one with
minimum index, then return the Venue. (= Finland)

Figure 1: Six logical forms generated from the
question z. The first five are consistent: they ex-
ecute to the correct answer y. Of those, correct
logical forms z1, 22, and z3 are different ways to
represent the semantics of x, while spurious logi-
cal forms z4 and z5 get the right answer y for the
wrong reasons.

fictitious worlds to test the denotations of the logi-
cal forms in Z. We use crowdsourcing to annotate
the correct denotations on a subset of the gener-
ated worlds. To reduce the amount of annotation
needed, we choose the subset that maximizes the
expected information gain. The pruned set of log-
ical forms would provide a stronger supervision
signal for training a semantic parser.

We test our methods on the WIKITABLEQUES-
TIONS dataset of complex questions on Wikipedia
tables. We define a simple, general set of deduc-
tion rules (Section 3), and use DPD to confirm
that the rules generate a correct logical form in
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Figure 2: The table in Figure 1 is converted into a
graph. The recursive execution of logical form z;
is shown via the different colors and styles.

76% of the examples, up from the 53.5% in Pa-
supat and Liang (2015). Moreover, unlike beam
search, DPD is guaranteed to find all consistent
logical forms up to a bounded size. Finally, by us-
ing annotated data on fictitious worlds, we are able
to prune out 92.1% of the spurious logical forms.

2  Setup

The overarching motivation of this work is allow-
ing people to ask questions involving computa-
tion on semi-structured knowledge sources such
as tables from the Web. This section introduces
how the knowledge source is represented, how the
computation is carried out using logical forms, and
our task of inferring correct logical forms.

Worlds. We use the term world to refer to a col-
lection of entities and relations between entities.
One way to represent a world w is as a directed
graph with nodes for entities and directed edges
for relations. (For example, a world about geog-
raphy would contain a node Europe with an edge
Contains to another node Germany.)

In this paper, we use data tables from the Web
as knowledge sources, such as the one in Figure 1.
We follow the construction in Pasupat and Liang
(2015) for converting a table into a directed graph
(see Figure 2). Rows and cells become nodes (e.g.,
ro = first row and Finland) while columns be-
come labeled directed edges between them (e.g.,
Venue maps 71 to Finland). The graph is aug-
mented with additional edges Next (from each



row to the next) and Index (from each row to its
index number). In addition, we add normaliza-
tion edges to cell nodes, including Number (from
the cell to the first number in the cell), Num2 (the
second number), Date (interpretation as a date),
and Part (each list item if the cell represents a
list). For example, a cell with content “3-4” has
a Number edge to the integer 3, a Num2 edge to 4,
and a Date edge to XX-03-04.

Logical forms. We can perform computation on
a world w using a logical form z, a small program
that can be executed on the world, resulting in a
denotation [z],.

We use lambda DCS (Liang, 2013) as the lan-
guage of logical forms. As a demonstration, we
will use z; in Figure 2 as an example. The small-
est units of lambda DCS are entities (e.g., 1st) and
relations (e.g., Position). Larger logical forms
can be constructed using logical operations, and
the denotation of the new logical form can be com-
puted from denotations of its constituents. For ex-
ample, applying the join operation on Position
and 1st gives Position.1st, whose denotation
is the set of entities with relation Position point-
ing to 1st. With the world in Figure 2, the denota-
tion is [Position.1st], = {r1,rs}, which cor-
responds to the 2nd and 4th rows in the table. The
partial logical form Position.1st is then used
to construct argmax(Position.1st, Index), the
denotation of which can be computed by mapping
the entities in [Position.1st],, = {r1,73} us-
ing the relation Index ({r¢ : 0,71 : I,...}), and
then picking the one with the largest mapped value
(r3, which is mapped to 3). The resulting logical
form is finally combined with R[Venue] with an-
other join operation. The relation R[Venue] is the
reverse of Venue, which corresponds to traversing
Venue edges in the reverse direction.

Semantic parsing. A semantic parser maps a
natural language utterance x (e.g., “Where did the
last st place finish occur?”’) into a logical form z.
With denotations as supervision, a semantic parser
is trained to put high probability on z’s that are
consistent—Ilogical forms that execute to the cor-
rect denotation y (e.g., Thailand). When the space
of logical forms is large, searching for consistent
logical forms z can become a challenge.

As illustrated in Figure 1, consistent logical
forms can be divided into two groups: correct log-
ical forms represent valid ways for computing the

25

answer, while spurious logical forms accidentally
get the right answer for the wrong reasons (e.g., z4
picks the row with the maximum time but gets the
correct answer anyway).

Tasks. Denote by Z and Z. the sets of all con-
sistent and correct logical forms, respectively. The
first task is to efficiently compute Z given an ut-
terance x, a world w, and the correct denotation y
(Section 4). With the set Z, the second task is to
infer Z. by pruning spurious logical forms from Z
(Section 5).

3 Deduction rules

The space of logical forms given an utterance x
and a world w is defined recursively by a set of de-
duction rules (Table 1). In this setting, each con-
structed logical form belongs to a category (Set,
Rel, or Map). These categories are used for type
checking in a similar fashion to categories in syn-
tactic parsing. Each deduction rule specifies the
categories of the arguments, category of the re-
sulting logical form, and how the logical form is
constructed from the arguments.

Deduction rules are divided into base rules and
compositional rules. A base rule follows one of
the following templates:

TokenSpan|span] — c[f (span)] (1)
0 —clf0)] 2

A rule of Template 1 is triggered by a span of
tokens from x (e.g., to construct z; in Figure 2
from z in Figure 1, Rule B1 from Table 1 con-
structs 1st of category Set from the phrase “1s1”).
Meanwhile, a rule of Template 2 generates a log-
ical form without any trigger (e.g., Rule B5 gen-
erates Position of category Rel from the graph
edge Position without a specific trigger in x).

Compositional rules then construct larger logi-
cal forms from smaller ones:

cg(z1, 22)] 3)
clg(z1)] “4)

A rule of Template 3 combines partial logical
forms z; and 2o of categories c¢; and cy into
g(z1, z2) of category ¢ (e.g., Rule C1 uses 1st of
category Set and Position of category Rel to con-
struct Position.1st of category Set). Template 4
works similarly.

Most rules construct logical forms without re-
quiring a trigger from the utterance x. This is

c1 [z1] + c2 [22]

N
C1 [21] —



Rule Semantics
Base Rules
B1 TokenSpan — Set fuzzymatch(span)

(entity fuzzily matching the text: “chinese” — China)
B2 TokenSpan — Set  val(span)
(interpreted value: “march 2015” — 2015-03-XX)

B3 ) — Set  Type.Row
(the set of all rows)
B4 0 — Set ¢ € ClosedClass

(any entity from a column with few unique entities)
(e.g., 400m or relay from the Event column)

B5 ) — Rel  r € GraphEdges
(any relation in the graph: Venue, Next, Num2, ...)
B6 0 —Rel '=|<|<=]|>]|>=
Compositional Rules
Cl1 Set + Rel — Set 22.21 | R[z2].21

(R[z] is the reverse of z; i.e., flip the arrow direction)

C2 Set — Set  a(z1)
(a € {count,max,min, sum, avg})

C3 Set + Set — Set z1Mze |z1U 22 | 21 — 22
(subtraction is only allowed on numbers)
Compositional Rules with Maps
Initialization
Ml Set — Map  (z1,x) (identity map)

Operations on Map
M2 Map + Rel — Map  (u1,22.b1) | (u1,R[z2].b1)
M3 Map — Map  (u1,a(by))
(a € {count,max,min, sum, avg})
M4 Map + Set — Map ~ (u1,b1 Mz2) | ...
M5 Map + Map — Map  (u1,biMba) | ...
(Allowed only when w1 = u2)
(Rules M4 and M5 are repeated for LJ and —)
Finalization
M6 Map — Set  argmin(ui, R[Az.b1])

| argmax(u1, R[Az.b1])

Table 1: Deduction rules define the space of logi-
cal forms by specifying how partial logical forms
are constructed. The logical form of the i-th argu-
ment is denoted by z; (or (u;, b;) if the argument
is a Map). The set of final logical forms contains
any logical form with category Set.

crucial for generating implicit relations (e.g., gen-
erating Year from “what’s the venue in 20007
without a trigger “year”), and generating opera-
tions without a lexicon (e.g., generating argmax
from “where’s the longest competition”). How-
ever, the downside is that the space of possible
logical forms becomes very large.

The Map category. The technique in this paper
requires execution of partial logical forms. This
poses a challenge for argmin and argmax oper-
ations, which take a set and a binary relation as
arguments. The binary could be a complex func-
tion (e.g., in z3 from Figure 1). While it is possible
to build the binary independently from the set, ex-
ecuting a complex binary is sometimes impossible
(e.g., the denotation of \z.count(x) is impossible
to write explicitly without knowledge of z).
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We address this challenge with the Map cat-
egory. A Map is a pair (u,b) of a finite set
u (unary) and a binary relation b. The deno-
tation of (u,b) is ([u]w, [b],,) where the binary
[b]%, is [b]w with the domain restricted to the set
[u]lw. For example, consider the construction of
argmax(Position.1st, Index). After construct-
ing Position.1st with denotation {ry, 73}, Rule
M1 initializes (Position.1st, z) with denotation
({ri,rs},{r1 : {r1},rs : {r3}}). Rule M2 is then
applied to generate (Position.1st, R[Index|.x)
with denotation ({r1,7r3},{r1 : {1},r3 : {3}}).
Finally, Rule M6 converts the Map into the desired
argmax logical form with denotation {rs}.

Generality of deduction rules. Using domain
knowledge, previous work restricted the space of
logical forms by manually defining the categories
c or the semantic functions f and g to fit the do-
main. For example, the category Ser might be di-
vided into Records, Values, and Atomic when the
knowledge source is a table (Pasupat and Liang,
2015). Another example is when a compositional
rule g (e.g., sum(z1)) must be triggered by some
phrase in a lexicon (e.g., words like “fotal” that
align to sum in the training data). Such restrictions
make search more tractable but greatly limit the
scope of questions that can be answered.

Here, we have increased the coverage of logi-
cal forms by making the deduction rules simple
and general, essentially following the syntax of
lambda DCS. The base rules only generates en-
tities that approximately match the utterance, but
all possible relations, and all possible further com-
binations.

Beam search. Given the deduction rules, an ut-
terance x and a world w, we would like to generate
all derived logical forms Z. We first present the
floating parser (Pasupat and Liang, 2015), which
uses beam search to generate Z, C Z, a usually
incomplete subset. Intuitively, the algorithm first
constructs base logical forms based on spans of
the utterance, and then builds larger logical forms
of increasing size in a “floating” fashion—without
requiring a trigger from the utterance.

Formally, partial logical forms with category c
and size s are stored in a cell (¢, s). The algorithm
first generates base logical forms from base deduc-
tion rules and store them in cells (c,0) (e.g., the
cell (Set,0) contains 1st, Type.Row, and so on).
Then for each size s = 1,..., Smax, We populate



(Set, 7,
{Thailand})
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{Finland})

Figure 3: The first pass of DPD constructs cells
(c,s,d) (square nodes) using denotationally in-
variant semantic functions (circle nodes). The sec-
ond pass enumerates all logical forms along paths
that lead to the correct denotation y (solid lines).

the cells (¢, s) by applying compositional rules on
partial logical forms with size less than s. For in-
stance, when s 2, we can apply Rule C1 on
logical forms Number./ from cell (Set,s; = 1)
and Position from cell (Rel,sy = 0) to create
Position.Number./ incell (Set, so+s1+1 = 2).
After populating each cell (¢, s), the list of logi-
cal forms in the cell is pruned based on the model
scores to a fixed beam size in order to control the
search space. Finally, the set Zy, is formed by
collecting logical forms from all cells (Set, s) for

s=1,...,Smax-

Due to the generality of our deduction rules, the
number of logical forms grows quickly as the size
s increases. As such, partial logical forms that
are essential for building the desired logical forms
might fall off the beam early on. In the next sec-
tion, we present a new search method that com-
presses the search space using denotations.

4 Dynamic programming on denotations

Our first step toward finding all correct logical
forms is to represent all consistent logical forms
(those that execute to the correct denotation). For-
mally, given z, w, and y, we wish to generate the
set Z of all logical forms z such that [z],, = .
As mentioned in the previous section, beam
search does not recover the full set Z due to prun-
ing. Our key observation is that while the number
of logical forms explodes, the number of distinct
denotations of those logical forms is much more
controlled, as multiple logical forms can share the
same denotation. So instead of directly enumerat-
ing logical forms, we use dynamic programming
on denotations (DPD), which is inspired by sim-
ilar methods from program induction (Lau et al.,
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2003; Liang et al., 2010; Gulwani, 2011).

The main idea of DPD is to collapse logical
forms with the same denotation together. Instead
of using cells (¢, s) as in beam search, we per-
form dynamic programming using cells (c, s, d)
where d is a denotation. For instance, the logi-
cal form Position.Number./ will now be stored
in cell (Set, 2, {r1,r3}).

For DPD to work, each deduction rule must
have a denotationally invariant semantic function
g, meaning that the denotation of the resulting log-
ical form g(z1, 22) only depends on the denota-
tions of z1 and z9:

[21]w = Hzi]]w A [z]w = Hzé]]w
= [9(z1,22)]w = [9(21, 25)]w

All of our deduction rules in Table 1 are de-
notationally invariant, but a rule that, for in-
stance, returns the argument with the larger log-
ical form size would not be. Applying a de-
notationally invariant deduction rule on any pair
of logical forms from (¢, s1,d;) and (c2, $2,d2)
always results in a logical form with the same
denotation d in the same cell (¢,s1 + s2 +
1,d).! (For example, the cell (Set,4,{rs3}) con-
tains z; := argmax(Position.1st,Index) and
21 := argmin(Event.Relay, Index). Combin-
ing each of these with Venue using Rule C1 gives
R|[Venue|.z; and R[Venue].z], which belong to
the same cell (Set, 5, {Thailand})).

Algorithm. DPD proceeds in two forward
passes. The first pass finds the possible combi-
nations of cells (¢, s, d) that lead to the correct de-
notation y, while the second pass enumerates the
logical forms in the cells found in the first pass.
Figure 3 illustrates the DPD algorithm.

In the first pass, we are only concerned about
finding relevant cell combinations and not the ac-
tual logical forms. Therefore, any logical form
that belongs to a cell could be used as an argu-
ment of a deduction rule to generate further logical
forms. Thus, we keep at most one logical form per
cell; subsequent logical forms that are generated
for that cell are discarded.

After populating all cells up to size spyax, We
list all cells (Set, s, y) with the correct denotation
y, and then note all possible rule combinations
(celly, rule) or (celly, celly, rule) that lead to those

!Semantic functions f with one argument work similarly.



final cells, including the combinations that yielded
discarded logical forms.

The second pass retrieves the actual logical
forms that yield the correct denotation. To do this,
we simply populate the cells (c, s, d) with all log-
ical forms, using only rule combinations that lead
to final cells. This elimination of irrelevant rule
combinations effectively reduces the search space.
(In Section 6.2, we empirically show that the num-
ber of cells considered is reduced by 98.7%.)

The parsing chart is represented as a hyper-
graph as in Figure 3. After eliminating unused
rule combinations, each of the remaining hyper-
paths from base predicates to the target denotation
corresponds to a single logical form. making the
remaining parsing chart a compact implicit repre-
sentation of all consistent logical forms. This rep-
resentation is guaranteed to cover all possible log-
ical forms under the size limit s, that can be
constructed by the deduction rules.

In our experiments, we apply DPD on the de-
duction rules in Table 1 and explicitly enumerate
the logical forms produced by the second pass. For
efficiency, we prune logical forms that are clearly
redundant (e.g., applying max on a set of size 1).
We also restrict a few rules that might otherwise
create too many denotations. For example, we re-
stricted the union operation (LI) except unions of
two entities (e.g., we allow Germany L| Finland
but not Venue.Hungary LI ...), subtraction when
building a Map, and count on a set of size 1.2

5 Fictitious worlds

After finding the set Z of all consistent logical
forms, we want to filter out spurious logical forms.
To do so, we observe that semantically correct log-
ical forms should also give the correct denotation
in worlds w’ other than than w. In contrast, spu-
rious logical forms will fail to produce the correct
denotation on some other world.

Generating fictitious worlds. With the ob-
servation above, we generate fictitious worlds
wi, Wy, . . ., where each world w; is a slight alter-
ation of w. As we will be executing logical forms
z € Z on w;, we should ensure that all entities and
relations in z € Z appear in the fictitious world w;
(e.g., z1 in Figure 1 would be meaningless if the
entity 1st does not appear in w;). To this end, we

2While we technically can apply count on sets of size 1,
the number of spurious logical forms explodes as there are
too many sets of size 1 generated.
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Year Venue Position | Event | Time
2001 | Finland 7th relay 46.62
2003 | Germany 1st 400m | 180.32
2005 China Ist relay 47.12
2007 | Hungary 7th relay | 182.05

Figure 4: From the example in Figure 1, we gen-
erate a table for the fictitious world w;.

w w1 w9
21 | Thailand China Finland
29 | Thailand China Finland q1
23 | Thailand China Finland
24 | Thailand | Germany | China } qo
25 | Thailand China China .-
26 | Thailand China China . } e

Figure 5: We execute consistent logical forms
z; € Z on fictitious worlds to get denotation tu-
ples. Logical forms with the same denotation tuple
are grouped into the same equivalence class g;.

impose that all predicates present in the original
world w should also be present in w; as well.

In our case where the world w comes from a
data table ¢, we construct w; from a new table ¢; as
follows: we go through each column of ¢ and re-
sample the cells in that column. The cells are sam-
pled using random draws without replacement if
the original cells are all distinct, and with replace-
ment otherwise. Sorted columns are kept sorted.
To ensure that predicates in w exist in w;, we use
the same set of table columns and enforce that any
entity fuzzily matching a span in the question z
must be present in ¢; (e.g., for the example in Fig-
ure 1, the generated ¢; must contain “1st”). Fig-
ure 4 shows an example fictitious table generated
from the table in Figure 1.

Fictitious worlds are similar to test suites for
computer programs. However, unlike manually
designed test suites, we do not yet know the cor-
rect answer for each fictitious world or whether a
world is helpful for filtering out spurious logical
forms. The next subsections introduce our method
for choosing a subset of useful fictitious worlds to
be annotated.

Equivalence classes. Let W = (wq,...,wy) be
the list of all possible fictitious worlds. For each
z € Z, we define the denotation tuple [z]w
([z]wys - - -5 [2]w,). We observe that some logi-
cal forms produce the same denotation across all



fictitious worlds. This may be due to an algebraic
equivalence in logical forms (e.g., z; and 25 in Fig-
ure 1) or due to the constraints in the construction
of fictitious worlds (e.g., z1 and 23 in Figure 1 are
equivalent as long as the Year column is sorted).
We group logical forms into equivalence classes
based on their denotation tuples, as illustrated in
Figure 5. When the question is unambiguous, we
expect at most one equivalence class to contain
correct logical forms.

Annotation. To pin down the correct equiva-
lence class, we acquire the correct answers to the
question x on some subset W' = (wf,...,wy) C
W of £ fictitious worlds, as it is impractical to ob-
tain annotations on all fictitious worlds in W. We
compile equivalence classes that agree with the an-
notations into a set Z of correct logical forms.

We want to choose W' that gives us the most
information about the correct equivalence class as
possible. This is analogous to standard practices
in active learning (Settles, 2010).3 Let Q be the
set of all equivalence classes ¢, and let [¢]w- be
the denotation tuple computed by executing an ar-
bitrary z € ¢ on W’. The subset W’ divides Q
into partitions F; = {¢ € Q : [¢]w’ = t} based
on the denotation tuples ¢ (e.g., from Figure 5, if
W’ contains just ws, then g2 and g3 will be in the
same partition F{cpina))- The annotation ¢*, which
is also a denotation tuple, will mark one of these
partitions Fi« as correct. Thus, to prune out many
spurious equivalence classes, the partitions should
be as numerous and as small as possible.

More formally, we choose a subset W’ that
maximizes the expected information gain (or
equivalently, the reduction in entropy) about
the correct equivalence class given the annota-
tion. With random variables ) € Q represent-
ing the correct equivalence class and 77;, for
the annotation on worlds W', we seek to find
argminy, H(Q | T};,,). Assuming a uniform
prior on @ (p(q) = 1/|Q|) and accurate annota-
tion (p(t* | ) = Tlg € Fy-]):

p(t)

H(Q | T;V’) p(q t)

> (g, t)log
q,t
1
] Z |Fiflog |[Fy. (%)
t

3The difference is that we are obtaining partial informa-
tion about an individual example rather than partial informa-
tion about the parameters.
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We exhaustively search for W’ that minimizes
(*). The objective value follows our intuition since
> ¢ |Fi|log | Fy| is small when the terms |F;| are
small and numerous.

In our experiments, we approximate the full
set W of fictitious worlds by generating & =
30 worlds to compute equivalence classes. We
choose a subset of ¢ = 5 worlds to be annotated.

6 Experiments

For the experiments, we use the training portion
of the WIKITABLEQUESTIONS dataset (Pasupat
and Liang, 2015), which consists of 14,152 ques-
tions on 1,679 Wikipedia tables gathered by crowd
workers. Answering these complex questions re-
quires different types of operations. The same
operation can be phrased in different ways (e.g.,
“best”, “top ranking”, or “lowest ranking num-
ber”) and the interpretation of some phrases de-
pend on the context (e.g., “number of”” could be
a table lookup or a count operation). The lexical
content of the questions is also quite diverse: even
excluding numbers and symbols, the 14,152 train-
ing examples contain 9,671 unique words, only
10% of which appear more than 10 times.

We attempted to manually annotate the first 300
examples with lambda DCS logical forms. We
successfully constructed correct logical forms for
84% of these examples, which is a good number
considering the questions were created by humans
who could use the table however they wanted. The
remaining 16% reflect limitations in our setup—
for example, non-canonical table layouts, answers
appearing in running text or images, and com-
mon sense reasoning (e.g., knowing that “Quarter-
final” is better than “Round of 16”).

6.1 Generality of deduction rules

We compare our set of deduction rules with the
one given in Pasupat and Liang (2015) (hence-
forth PL15). PL15 reported generating the anno-
tated logical form in 53.5% of the first 200 exam-
ples. With our more general deduction rules, we
use DPD to verify that the rules are able to gener-
ate the annotated logical form in 76% of the first
300 examples, within the logical form size limit
Smax Of 7. This is 90.5% of the examples that were
successfully annotated. Figure 6 shows some ex-
amples of logical forms we cover that PL15 could
not. Since DPD is guaranteed to find all consis-
tent logical forms, we can be sure that the logical



“which opponent has the most wins”
z = argmax(R[Opponent|.Type.Row,
R[Az.count(Opponent.x N Result.Lost])
“how long did ian armstrong serve?”
z = R[Num2].R[Term].Member.IanArmstrong
— R[Number].R[Term].Member.IanArmstrong

“which players came in a place before lukas bauer?”
z = R[Name|.Index.<.R[Index|.Name.LukasBauer
“which players played the same position as ardo kreek?”

z = R[Player].Position.R[Position|.Player.Ardo
M !'=.Ardo

Figure 6: Several example logical forms our sys-
tem can generated that are not covered by the de-
duction rules from the previous work PL15.

forms not covered are due to limitations of the de-
duction rules. Indeed, the remaining examples ei-
ther have logical forms with size larger than 7 or
require other operations such as addition, union of
arbitrary sets, etc.

6.2 Dynamic programming on denotations

Search space. To demonstrate the savings
gained by collapsing logical forms with the same
denotation, we track the growth of the number of
unique logical forms and denotations as the log-
ical form size increases. The plot in Figure 7
shows that the space of logical forms explodes
much more quickly than the space of denotations.

The use of denotations also saves us from con-
sidering a significant amount of irrelevant partial
logical forms. On average over 14,152 training
examples, DPD generates approximately 25,000
consistent logical forms. The first pass of DPD
generates ~ 153,000 cells (c, s, d), while the sec-
ond pass generates only ~ 2,000 cells resulting
from ~ 8,000 rule combinations, resulting in a
98.7% reduction in the number of cells that have
to be considered.

Comparison with beam search. We compare
DPD to beam search on the ability to generate (but
not rank) the annotated logical forms. We consider
two settings: when the beam search parameters
are uninitialized (i.e., the beams are pruned ran-
domly), and when the parameters are trained using
the system from PL15 (i.e., the beams are pruned
based on model scores). The plot in Figure 8
shows that DPD generates more annotated logical
forms (76%) compared to beam search (53.7%),
even when beam search is guided heuristically by
learned parameters. Note that DPD is an exact al-
gorithm and does not require a heuristic.
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Figure 7: The median of the number of logical
forms (dashed) and denotations (solid) as the for-
mula size increases. The space of logical forms
grows much faster than the space of denotations.
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Figure 8: The number of annotated logical forms
that can be generated by beam search, both unini-
tialized (dashed) and initialized (solid), increases
with the number of candidates generated (con-
trolled by beam size), but lacks behind DPD (star).

6.3 Fictitious worlds

We now explore how fictitious worlds divide the
set of logical forms into equivalence classes, and
how the annotated denotations on the chosen
worlds help us prune spurious logical forms.

Equivalence classes. Using 30 fictitious worlds
per example, we produce an average of 1,237
equivalence classes. One possible concern with
using a limited number of fictitious worlds is that
we may fail to distinguish some pairs of non-
equivalent logical forms. We verify the equiva-
lence classes against the ones computed using 300
fictitious worlds. We found that only 5% of the
logical forms are split from the original equiva-
lence classes.

Ideal Annotation. After computing equivalence
classes, we choose a subset W’ of 5 fictitious
worlds to be annotated based on the information-
theoretic objective. For each of the 252 exam-
ples with an annotated logical form z*, we use
the denotation tuple t* = [z*]y- as the annotated
answers on the chosen fictitious worlds. We are
able to rule out 98.7% of the spurious equivalence
classes and 98.3% of spurious logical forms. Fur-
thermore, we are able to filter down to just one
equivalence class in 32.7% of the examples, and



at most three equivalence classes in 51.3% of the
examples. If we choose 5 fictitious worlds ran-
domly instead of maximizing information gain,
then the above statistics are 22.6% and 36.5%,
respectively. When more than one equivalence
classes remain, usually only one class is a dom-
inant class with many equivalent logical forms,
while other classes are small and contain logical
forms with unusual patterns (e.g., z5 in Figure 1).

The average size of the correct equivalence
class is =~ 3,000 with the standard deviation of
~ 8,000. Because we have an expressive logical
language, there are fundamentally many equiva-
lent ways of computing the same quantity.

Crowdsourced Annotation. Data from crowd-
sourcing is more susceptible to errors. From the
252 annotated examples, we use 177 examples
where at least two crowd workers agree on the an-
swer of the original world w. When the crowd-
sourced data is used to rule out spurious logical
forms, the entire set Z of consistent logical forms
is pruned out in 11.3% of the examples, and the
correct equivalent class is removed in 9% of the
examples. These issues are due to annotation er-
rors, inconsistent data (e.g., having date of death
before birth date), and different interpretations of
the question on the fictitious worlds. For the re-
maining examples, we are able to prune out 92.1%
of spurious logical forms (or 92.6% of spurious
equivalence classes).

To prevent the entire Z from being pruned, we
can relax our assumption and keep logical forms
z that disagree with the annotation in at most 1
fictitious world. The number of times Z is pruned
out is reduced to 3%, but the number of spurious
logical forms pruned also decreases to 78%.

7 Related Work and Discussion

This work evolved from a long tradition of learn-
ing executable semantic parsers, initially from an-
notated logical forms (Zelle and Mooney, 1996;
Kate et al., 2005; Zettlemoyer and Collins, 2005;
Zettlemoyer and Collins, 2007; Kwiatkowski et
al., 2010), but more recently from denotations
(Clarke et al., 2010; Liang et al., 2011; Berant
et al., 2013; Kwiatkowski et al., 2013; Pasupat
and Liang, 2015). A central challenge in learn-
ing from denotations is finding consistent logical
forms (those that execute to a given denotation).
As Kwiatkowski et al. (2013) and Berant
and Liang (2014) both noted, a chief difficulty
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with executable semantic parsing is the “schema
mismatch”—words in the utterance do not map
cleanly onto the predicates in the logical form.
This mismatch is especially pronounced in the
WIKITABLEQUESTIONS of Pasupat and Liang
(2015). In the second example of Figure 6, “how
long” is realized by a logical form that computes
a difference between two dates. The ramification
of this mismatch is that finding consistent logi-
cal forms cannot solely proceed from the language
side. This paper is about using annotated denota-
tions to drive the search over logical forms.

This takes us into the realm of program in-
duction, where the goal is to infer a program
(logical form) from input-output pairs (for us,
world-denotation pairs). Here, previous work
has also leveraged the idea of dynamic program-
ming on denotations (Lau et al., 2003; Liang et
al., 2010; Gulwani, 2011), though for more con-
strained spaces of programs. Continuing the pro-
gram analogy, generating fictitious worlds is simi-
lar in spirit to fuzz testing for generating new test
cases (Miller et al., 1990), but the goal there is
coverage in a single program rather than identi-
fying the correct (equivalence class of) programs.
This connection can potentially improve the flow
of ideas between the two fields.

Finally, the effectiveness of dynamic program-
ming on denotations relies on having a manage-
able set of denotations. For more complex logi-
cal forms and larger knowledge graphs, there are
many possible angles worth exploring: performing
abstract interpretation to collapse denotations into
equivalence classes (Cousot and Cousot, 1977),
relaxing the notion of getting the correct denota-
tion (Steinhardt and Liang, 2015), or working in a
continuous space and relying on gradient descent
(Guu et al., 2015; Neelakantan et al., 2016; Yin et
al., 2016; Reed and de Freitas, 2016). This paper,
by virtue of exact dynamic programming, sets the
standard.
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Abstract

Semantic parsing aims at mapping nat-
ural language to machine interpretable
meaning representations. Traditional ap-
proaches rely on high-quality lexicons,
manually-built templates, and linguis-
tic features which are either domain-
or representation-specific. In this pa-
per we present a general method based
on an attention-enhanced encoder-decoder
model. We encode input utterances into
vector representations, and generate their
logical forms by conditioning the output
sequences or trees on the encoding vec-
tors. Experimental results on four datasets
show that our approach performs compet-
itively without using hand-engineered fea-
tures and is easy to adapt across domains
and meaning representations.

1 Introduction

Semantic parsing is the task of translating text
to a formal meaning representation such as log-
ical forms or structured queries. There has re-
cently been a surge of interest in developing ma-
chine learning methods for semantic parsing (see
the references in Section 2), due in part to the
existence of corpora containing utterances anno-
tated with formal meaning representations. Fig-
ure 1 shows an example of a question (left hand-
side) and its annotated logical form (right hand-
side), taken from JOBS (Tang and Mooney, 2001),
a well-known semantic parsing benchmark. In or-
der to predict the correct logical form for a given
utterance, most previous systems rely on prede-
fined templates and manually designed features,
which often render the parsing model domain- or
representation-specific. In this work, we aim to
use a simple yet effective method to bridge the gap
between natural language and logical form with
minimal domain knowledge.
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Figure 1: Input utterances and their logical forms
are encoded and decoded with neural networks.
An attention layer is used to learn soft alignments.

Encoder-decoder architectures based on recur-
rent neural networks have been successfully ap-
plied to a variety of NLP tasks ranging from syn-
tactic parsing (Vinyals et al., 2015a), to machine
translation (Kalchbrenner and Blunsom, 2013;
Cho et al., 2014; Sutskever et al., 2014), and
image description generation (Karpathy and Fei-
Fei, 2015; Vinyals et al., 2015b). As shown in
Figure 1, we adapt the general encoder-decoder
paradigm to the semantic parsing task. Our
model learns from natural language descriptions
paired with meaning representations; it encodes
sentences and decodes logical forms using recur-
rent neural networks with long short-term memory
(LSTM) units. We present two model variants,
the first one treats semantic parsing as a vanilla
sequence transduction task, whereas our second
model is equipped with a hierarchical tree decoder
which explicitly captures the compositional struc-
ture of logical forms. We also introduce an atten-
tion mechanism (Bahdanau et al., 2015; Luong et
al., 2015b) allowing the model to learn soft align-
ments between natural language and logical forms
and present an argument identification step to han-
dle rare mentions of entities and numbers.

Evaluation results demonstrate that compared to
previous methods our model achieves similar or
better performance across datasets and meaning
representations, despite using no hand-engineered
domain- or representation-specific features.

Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 33—43,
Berlin, Germany, August 7-12, 2016. (©2016 Association for Computational Linguistics



2 Related Work

Our work synthesizes two strands of research,
namely semantic parsing and the encoder-decoder
architecture with neural networks.

The problem of learning semantic parsers has
received significant attention, dating back to
Woods (1973). Many approaches learn from sen-
tences paired with logical forms following vari-
ous modeling strategies. Examples include the
use of parsing models (Miller et al., 1996; Ge and
Mooney, 2005; Lu et al., 2008; Zhao and Huang,
2015), inductive logic programming (Zelle and
Mooney, 1996; Tang and Mooney, 2000; Thom-
spon and Mooney, 2003), probabilistic automata
(He and Young, 2006), string/tree-to-tree transfor-
mation rules (Kate et al., 2005), classifiers based
on string kernels (Kate and Mooney, 2006), ma-
chine translation (Wong and Mooney, 2006; Wong
and Mooney, 2007; Andreas et al., 2013), and
combinatory categorial grammar induction tech-
niques (Zettlemoyer and Collins, 2005; Zettle-
moyer and Collins, 2007; Kwiatkowski et al.,
2010; Kwiatkowski et al.,, 2011). Other work
learns semantic parsers without relying on logical-
from annotations, e.g., from sentences paired with
conversational logs (Artzi and Zettlemoyer, 2011),
system demonstrations (Chen and Mooney, 2011;
Goldwasser and Roth, 2011; Artzi and Zettle-
moyer, 2013), question-answer pairs (Clarke et
al., 2010; Liang et al., 2013), and distant supervi-
sion (Krishnamurthy and Mitchell, 2012; Cai and
Yates, 2013; Reddy et al., 2014).

Our model learns from natural language de-
scriptions paired with meaning representations.
Most previous systems rely on high-quality lex-
icons, manually-built templates, and features
which are either domain- or representation-
specific. We instead present a general method that
can be easily adapted to different domains and
meaning representations. We adopt the general
encoder-decoder framework based on neural net-
works which has been recently repurposed for var-
ious NLP tasks such as syntactic parsing (Vinyals
et al., 2015a), machine translation (Kalchbrenner
and Blunsom, 2013; Cho et al., 2014; Sutskever et
al., 2014), image description generation (Karpathy
and Fei-Fei, 2015; Vinyals et al., 2015b), ques-
tion answering (Hermann et al., 2015), and sum-
marization (Rush et al., 2015).

Mei et al. (2016) use a sequence-to-sequence
model to map navigational instructions to actions.
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Our model works on more well-defined meaning
representations (such as Prolog and lambda cal-
culus) and is conceptually simpler; it does not
employ bidirectionality or multi-level alignments.
Grefenstette et al. (2014) propose a different ar-
chitecture for semantic parsing based on the com-
bination of two neural network models. The first
model learns shared representations from pairs of
questions and their translations into knowledge
base queries, whereas the second model generates
the queries conditioned on the learned representa-
tions. However, they do not report empirical eval-
uation results.

3 Problem Formulation

Our aim is to learn a model which maps natural
language input ¢ = x1---x, to a logical form
representation of its meaning a = yi - - - y|o- The
conditional probability p (a|q) is decomposed as:

|a|

p(alg) = [ » (wly<t. @) (1)
t=1

where y<¢ = y1 -+ yr—1.

Our method consists of an encoder which en-
codes natural language input ¢ into a vector repre-
sentation and a decoder which learns to generate
Y1, ,Y|q conditioned on the encoding vector.
In the following we describe two models varying
in the way in which p (a|q) is computed.

3.1 Sequence-to-Sequence Model

This model regards both input ¢ and output a as
sequences. As shown in Figure 2, the encoder and
decoder are two different L-layer recurrent neural
networks with long short-term memory (LSTM)
units which recursively process tokens one by one.
The first |g| time steps belong to the encoder, while
the following |a| time steps belong to the decoder.
Let h, € R™ denote the hidden vector at time
step ¢ and layer /. h! is then computed by:

h! = LSTM (hi,l, hf;l) )
where LSTM refers to the LSTM function being
used. In our experiments we follow the architec-
ture described in Zaremba et al. (2015), however
other types of gated activation functions are pos-
sible (e.g., Cho et al. (2014)). For the encoder,
hY = W e(z) is the word vector of the current
input token, with W, € R™* Val being a parame-
ter matrix, and e(-) the index of the corresponding
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Figure 2: Sequence-to-sequence (SEQ2SEQ)
model with two-layer recurrent neural networks.

token. For the decoder, hY = W e(y;_1) is the
word vector of the previous predicted word, where
W, € R™*IVal | Notice that the encoder and de-
coder have different LSTM parameters.

Once the tokens of the input sequence
x1,- -, 2| are encoded into vectors, they are
used to initialize the hidden states of the first time
step in the decoder. Next, the hidden vector of the
topmost LSTM h/ in the decoder is used to pre-
dict the ¢-th output token as:

P (yely<t, q) = softmax (W,hf) e (y;)  (3)

where W, € RIValxn jg o parameter matrix, and
e (y) € {0, 1}Vl a one-hot vector for computing
1y;’s probability from the predicted distribution.

We augment every sequence with a “start-of-
sequence” <s> and “end-of-sequence” </s> to-
ken. The generation process terminates once </s>
is predicted. The conditional probability of gener-
ating the whole sequence p (a|q) is then obtained
using Equation (1).

3.2 Sequence-to-Tree Model

The SEQ2SEQ model has a potential drawback in
that it ignores the hierarchical structure of logical
forms. As a result, it needs to memorize various
pieces of auxiliary information (e.g., bracket pairs)
to generate well-formed output. In the following
we present a hierarchical tree decoder which is
more faithful to the compositional nature of mean-
ing representations. A schematic description of
the model is shown in Figure 3.

The present model shares the same encoder with
the sequence-to-sequence model described in Sec-
tion 3.1 (essentially it learns to encode input g as
vectors). However, its decoder is fundamentally
different as it generates logical forms in a top-
down manner. In order to represent tree structure,
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Figure 3: Sequence-to-tree (SEQ2TREE) model
with a hierarchical tree decoder.

we define a “nonterminal” <n> token which in-
dicates subtrees. As shown in Figure 3, we pre-
process the logical form “lambda $0 e (and (>(de-
parture_time $0) 1600:ti) (from $0 dallas:ci))” to a
tree by replacing tokens between pairs of brackets
with nonterminals. Special tokens <s> and <(>
denote the beginning of a sequence and nontermi-
nal sequence, respectively (omitted from Figure 3
due to lack of space). Token </s> represents the
end of sequence.

After encoding input g, the hierarchical tree de-
coder uses recurrent neural networks to generate
tokens at depth 1 of the subtree corresponding to
parts of logical form a. If the predicted token
is <n>, we decode the sequence by conditioning
on the nonterminal’s hidden vector. This process
terminates when no more nonterminals are emit-
ted. In other words, a sequence decoder is used to
hierarchically generate the tree structure.

In contrast to the sequence decoder described
in Section 3.1, the current hidden state does not
only depend on its previous time step. In order to
better utilize the parent nonterminal’s information,
we introduce a parent-feeding connection where
the hidden vector of the parent nonterminal is con-
catenated with the inputs and fed into LSTM.

As an example, Figure 4 shows the decoding
tree corresponding to the logical form “A B (C)”,
where y; - - - yg are predicted tokens, and t; - - - tg
denote different time steps. Span “(C)” corre-
sponds to a subtree. Decoding in this example has
two steps: once input ¢ has been encoded, we first
generate ¥ - - - y4 at depth 1 until token </s> is

$0 dallas:ci </s>



yi=A y=B y=<n>y,~</s>

Figure 4: A SEQ2TREE decoding example for the
logical form “A B (C)”.

predicted; next, we generate ys, yg by condition-
ing on nonterminal ¢3’s hidden vectors. The prob-
ability p (a|q) is the product of these two sequence
decoding steps:

p(alg) = p (Y1y2y3yala) p (Ysyely<3, @)  (4)

where Equation (3) is used for the prediction of
each output token.

3.3 Attention Mechanism

As shown in Equation (3), the hidden vectors of
the input sequence are not directly used in the
decoding process. However, it makes intuitively
sense to consider relevant information from the in-
put to better predict the current token. Following
this idea, various techniques have been proposed
to integrate encoder-side information (in the form
of a context vector) at each time step of the de-
coder (Bahdanau et al., 2015; Luong et al., 2015b;
Xu et al., 2015).

As shown in Figure 5, in order to find rele-
vant encoder-side context for the current hidden
state hl of decoder, we compute its attention score
with the k-th hidden state in the encoder as:

exp{hy - hf}

14 exp{h? - hl}

)

s =

where hf S ,h|Lq | are the top-layer hidden vec-
tors of the encoder. Then, the context vector is the
weighted sum of the hidden vectors in the encoder:

lal
¢ = g sthl
k=1

In lieu of Equation (3), we further use this con-
text vector which acts as a summary of the encoder
to compute the probability of generating vy, as:

(6)

h{"" = tanh (W h{ + Wc') (7)
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Figure 5: Attention scores are computed by the
current hidden vector and all the hidden vectors of
encoder. Then, the encoder-side context vector c?
is obtained in the form of a weighted sum, which
is further used to predict y;.

P (Yely<t, q) = softmax (W,hi™)Te (y)  (8)

where W, € RIValxn and W, Wy € R"*" are
three parameter matrices, and e (y;) is a one-hot
vector used to obtain y;’s probability.

3.4 Model Training

Our goal is to maximize the likelihood of the gen-
erated logical forms given natural language utter-
ances as input. So the objective function is:

minimize — Z log p (alq) )
(g,0)€D

where D is the set of all natural language-logical
form training pairs, and p (a|q) is computed as
shown in Equation (1).

The RMSProp algorithm (Tieleman and Hin-
ton, 2012) is employed to solve this non-convex
optimization problem. Moreover, dropout is used
for regularizing the model (Zaremba et al., 2015).
Specifically, dropout operators are used between
different LSTM layers and for the hidden lay-
ers before the softmax classifiers. This technique
can substantially reduce overfitting, especially on
datasets of small size.

3.5 Inference

At test time, we predict the logical form for an in-
put utterance g by:

4 = argmaxp (a’\q) (10)

o
where o’ represents a candidate output. How-
ever, it is impractical to iterate over all possible
results to obtain the optimal prediction. Accord-
ing to Equation (1), we decompose the probabil-
ity p (alg) so that we can use greedy search (or
beam search) to generate tokens one by one.



Algorithm 1 Decoding for SEQ2TREE
Input: ¢: Natural language utterance
Output: a: Decoding result
: > Push the encoding result to a queue
Q.init({hid : SeqEnc(q)})
> Decode until no more nonterminals
while (¢ < Q.pop()) # @ do

> Call sequence decoder

c.child «— SeqDec(c.hid)

> Push new nonterminals to queue

for n < nonterminal in c.child do

Q.push({hid : HidVec(n)})

: a «— convert decoding tree to output sequence

R I o

—_
(=]

Algorithm 1 describes the decoding process for
SEQ2TREE. The time complexity of both de-
coders is O(|a|), where |a| is the length of out-
put. The extra computation of SEQ2TREE com-
pared with SEQ2SEQ is to maintain the nonter-
minal queue, which can be ignored because most
of time is spent on matrix operations. We imple-
ment the hierarchical tree decoder in a batch mode,
so that it can fully utilize GPUs. Specifically, as
shown in Algorithm 1, every time we pop multi-
ple nonterminals from the queue and decode these
nonterminals in one batch.

3.6 Argument Identification

The majority of semantic parsing datasets have
been developed with question-answering in mind.
In the typical application setting, natural language
questions are mapped into logical forms and ex-
ecuted on a knowledge base to obtain an answer.
Due to the nature of the question-answering task,
many natural language utterances contain entities
or numbers that are often parsed as arguments in
the logical form. Some of them are unavoidably
rare or do not appear in the training set at all (this
is especially true for small-scale datasets). Con-
ventional sequence encoders simply replace rare
words with a special unknown word symbol (Lu-
ong et al., 2015a; Jean et al., 2015), which would
be detrimental for semantic parsing.

We have developed a simple procedure for ar-
gument identification. Specifically, we identify
entities and numbers in input questions and re-
place them with their type names and unique
IDs. For instance, we pre-process the training
example “jobs with a salary of 40000 and its
logical form “job(ANS), salary_greater_than(ANS,
40000, year)” as “jobs with a salary of numy”
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and “job(ANS), salary_greater_than(ANS, num,
year)’. We use the pre-processed examples as
training data. At inference time, we also mask en-
tities and numbers with their types and IDs. Once
we obtain the decoding result, a post-processing
step recovers all the markers ¢ ype; to their corre-
sponding logical constants.

4 Experiments

We compare our method against multiple previ-
ous systems on four datasets. We describe these
datasets below, and present our experimental set-
tings and results. Finally, we conduct model anal-
ysis in order to understand what the model learns.
The code is available at https://github.
com/donglixp/lang2logic.

4.1 Datasets

Our model was trained on the following datasets,
covering different domains and using different
meaning representations. Examples for each do-
main are shown in Table 1.

JoBs This benchmark dataset contains 640
queries to a database of job listings. Specifically,
questions are paired with Prolog-style queries. We
used the same training-test split as Zettlemoyer
and Collins (2005) which contains 500 training
and 140 test instances. Values for the variables
company, degree, language, platform, location,
job area, and number are identified.

GEO This is a standard semantic parsing bench-
mark which contains 880 queries to a database of
U.S. geography. GEO has 880 instances split into
a training set of 680 training examples and 200
test examples (Zettlemoyer and Collins, 2005).
We used the same meaning representation based
on lambda-calculus as Kwiatkowski et al. (2011).
Values for the variables city, state, country, river,
and number are identified.

ATIS This dataset has 5,410 queries to a flight
booking system. The standard split has 4,480
training instances, 480 development instances, and
450 test instances. Sentences are paired with
lambda-calculus expressions. Values for the vari-
ables date, time, city, aircraft code, airport, airline,
and number are identified.

IFTTT Quirk et al. (2015) created this dataset
by extracting a large number of if-this-then-that



Dataset Length Example
JOBS 9.80  what microsoft jobs do not require a bscs?
22.90 answer(company(J,’ microsoft’),job(J),not((req-deg(J, bscs’))))
GEO 7.60 what is the population of the state with the largest area?
19.10 (population:i (argmax $0 (state:t $0) (area:i $0)))
ATIS 11.10  dallas to san francisco leaving after 4 in the afternoon please
28.10  (lambda $0 e (and (>(departure_time $0) 1600:ti) (from $0 dallas:ci) (to $0 san_francisco:ci)))
6.95 Turn on heater when temperature drops below 58 degree
IFTTT 21:80 TRIGGER: Weather - Current_temperature_drops_below - ((Temperature (58)) (Degrees_in (f)))

ACTION: WeMo_Insight_Switch - Turn_on - ((Which_switch? ("))

Table 1: Examples of natural language descriptions and their meaning representations from four datasets.
The average length of input and output sequences is shown in the second column.

recipes from the IFTTT website!. Recipes are sim-
ple programs with exactly one trigger and one ac-
tion which users specify on the site. Whenever the
conditions of the trigger are satisfied, the action
is performed. Actions typically revolve around
home security (e.g., “turn on my lights when I ar-
rive home’), automation (e.g., “text me if the door
opens”), well-being (e.g., “remind me to drink
water if I've been at a bar for more than two
hours”), and so on. Triggers and actions are se-
lected from different channels (160 in total) rep-
resenting various types of services, devices (e.g.,
Android), and knowledge sources (such as ESPN
or Gmail). In the dataset, there are 552 trigger
functions from 128 channels, and 229 action func-
tions from 99 channels. We used Quirk et al.’s
(2015) original split which contains 77,495 train-
ing, 5, 171 development, and 4, 294 test examples.
The IFTTT programs are represented as abstract
syntax trees and are paired with natural language
descriptions provided by users (see Table 1). Here,
numbers and URLSs are identified.

4.2 Settings

Natural language sentences were lowercased; mis-
spellings were corrected using a dictionary based
on the Wikipedia list of common misspellings.
Words were stemmed using NLTK (Bird et al.,
2009). For IFTTT, we filtered tokens, channels
and functions which appeared less than five times
in the training set. For the other datasets, we fil-
tered input words which did not occur at least two
times in the training set, but kept all tokens in
the logical forms. Plain string matching was em-
ployed to identify augments as described in Sec-
tion 3.6. More sophisticated approaches could be
used, however we leave this future work.

Model hyper-parameters were cross-validated

"http://www.ifttt.com
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Method Accuracy
COCKTAIL (Tang and Mooney, 2001) 79.4
PRECISE (Popescu et al., 2003) 88.0
ZCO05 (Zettlemoyer and Collins, 2005) 79.3
DCS+L (Liang et al., 2013) 90.7
TISP (Zhao and Huang, 2015) 85.0
SEQ2SEQ 87.1
— attention 77.9
— argument 70.7
SEQ2TREE 90.0
— attention 83.6

Table 2: Evaluation results on JOBS.

on the training set for JOBS and GEO. We used
the standard development sets for ATIS and [FTTT.
We used the RMSProp algorithm (with batch size
set to 20) to update the parameters. The smoothing
constant of RMSProp was 0.95. Gradients were
clipped at 5 to alleviate the exploding gradient
problem (Pascanu et al., 2013). Parameters were
randomly initialized from a uniform distribution
U (—0.08,0.08). A two-layer LSTM was used for
IFTTT, while a one-layer LSTM was employed
for the other domains. The dropout rate was se-
lected from {0.2,0.3,0.4,0.5}. Dimensions of
hidden vector and word embedding were selected
from {150,200,250}. Early stopping was used
to determine the number of epochs. Input sen-
tences were reversed before feeding into the en-
coder (Sutskever et al., 2014). We use greedy
search to generate logical forms during inference.
Notice that two decoders with shared word em-
beddings were used to predict triggers and actions
for IFTTT, and two softmax classifiers are used to
classify channels and functions.

4.3 Results

We first discuss the performance of our model on
JoBs, GEO, and ATIS, and then examine our re-
sults on IFTTT. Tables 2—4 present comparisons
against a variety of systems previously described



Method Accuracy
SCISSOR (Ge and Mooney, 2005) 72.3
KRISP (Kate and Mooney, 2006) 71.7
WASP (Wong and Mooney, 2006) 74.8
A-WASP (Wong and Mooney, 2007) 86.6
LNLZ08 (Lu et al., 2008) 81.8
ZCO05 (Zettlemoyer and Collins, 2005) 79.3
ZC07 (Zettlemoyer and Collins, 2007) 86.1
UBL (Kwiatkowski et al., 2010) 87.9
FUBL (Kwiatkowski et al., 2011) 88.6
KCAZ13 (Kwiatkowski et al., 2013) 89.0
DCS+L (Liang et al., 2013) 87.9
TISP (Zhao and Huang, 2015) 88.9
SEQ2SEQ 84.6
— attention 72.9
— argument 68.6
SEQ2TREE 87.1
— attention 76.8

Table 3: Evaluation results on GEO. 10-fold cross-
validation is used for the systems shown in the top
half of the table. The standard split of ZCO05 is
used for all other systems.

Method Accuracy
ZCO07 (Zettlemoyer and Collins, 2007) 84.6
UBL (Kwiatkowski et al., 2010) 71.4
FUBL (Kwiatkowski et al., 2011) 82.8
GUSP-FULL (Poon, 2013) 74.8
GUSP++ (Poon, 2013) 83.5
TISP (Zhao and Huang, 2015) 84.2
SEQ2SEQ 84.2
— attention 75.7
— argument 72.3
SEQ2TREE 84.6
— attention 77.5

Table 4: Evaluation results on ATIS.

in the literature. We report results with the full
models (SEQ2SEQ, SEQ2TREE) and two abla-
tion variants, i.e., without an attention mechanism
(—attention) and without argument identification
(—argument). We report accuracy which is de-
fined as the proportion of the input sentences that
are correctly parsed to their gold standard logical
forms. Notice that DCS+L, KCAZ13 and GUSP
output answers directly, so accuracy in this setting
is defined as the percentage of correct answers.

Overall, SEQ2TREE is superior to SEQ2SEQ.
This is to be expected since SEQ2TREE ex-
plicitly models compositional structure. On the
JOBS and GEO datasets which contain logical
forms with nested structures, SEQ2TREE out-
performs SEQ2SEQ by 2.9% and 2.5%, respec-
tively. SEQ2TREE achieves better accuracy over
SEQ2SEQ on ATIS too, however, the difference is
smaller, since ATIS is a simpler domain without
complex nested structures. We find that adding at-
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Method Channel +Func F1
retrieval 28.9 20.2 41.7
phrasal 19.3 11.3 35.3
sync 18.1 10.6 35.1
classifier 48.8 35.2 48.4
posclass 50.0 36.9 49.3
SEQ2SEQ 54.3 39.2 50.1
— attention 54.0 37.9 49.8
— argument 53.9 38.6 49.7
SEQ2TREE 55.2 40.1 50.4
— attention 54.3 38.2 50.0
(a) Omit non-English.
Method Channel +Func F1
retrieval 36.8 25.4 49.0
phrasal 27.8 16.4 39.9
sync 26.7 15.5 37.6
classifier 64.8 47.2 56.5
posclass 67.2 50.4 57.7
SEQ2SEQ 68.8 50.5 60.3
— attention 68.7 48.9 59.5
— argument 68.8 50.4 59.7
SEQ2TREE 69.6 514 60.4
— attention 68.7 49.5 60.2
(b) Omit non-English & unintelligible.
Method Channel +Func F1
retrieval 433 32.3 56.2
phrasal 37.2 23.5 45.5
sync 36.5 24.1 42.8
classifier 79.3 66.2 65.0
posclass 81.4 71.0 66.5
SEQ2SEQ 87.8 75.2 73.7
— attention 88.3 73.8 72.9
— argument 86.8 74.9 70.8
SEQ2TREE 89.7 78.4 74.2
— attention 87.6 74.9 73.5

(c) > 3 turkers agree with gold.

Table 5: Evaluation results on IFTTT.

tention substantially improves performance on all
three datasets. This underlines the importance of
utilizing soft alignments between inputs and out-
puts. We further analyze what the attention layer
learns in Figure 6. Moreover, our results show
that argument identification is critical for small-
scale datasets. For example, about 92% of city
names appear less than 4 times in the GEO train-
ing set, so it is difficult to learn reliable parame-
ters for these words. In relation to previous work,
the proposed models achieve comparable or better
performance. Importantly, we use the same frame-
work (SEQ2SEQ or SEQ2TREE) across datasets
and meaning representations (Prolog-style logi-
cal forms in JOBS and lambda calculus in the
other two datasets) without modif