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Introduction

Welcome to the ACL 2023 Student Research Workshop!

The ACL 2023 Student Research Workshop (SRW) is a forum for student researchers in computational
linguistics and natural language processing. The workshop provides a great opportunity for student par-
ticipants to take part in a mentorship program, present their work and receive valuable feedback from the
international research community.

Following the tradition of the previous student research workshops, we accept three kinds of submis-
sions: long and short research papers as well as thesis proposals. The research paper track is a venue for
students to describe completed work or work-in-progress along with preliminary results. The thesis pro-
posal track is offered for Ph.D. students who have decided on a thesis topic and are interested in getting
feedback on their proposal and ideas about future directions for their work.

Mentoring is at the heart of the SRW. In keeping with previous years, we had a pre-submission mento-
ring program before the submission deadline. A total of 58 papers participated in the pre-submission
mentoring program. This program offered students the opportunity to receive feedback from a mentor to
improve the writing style and presentation of their submissions.

The Student Research Workshop again attracted a very large number of submissions this year. We recei-
ved 145 submissions including 135 research papers (81 long papers and 54 short papers) and 10 thesis
proposals. Out of these, 5 were ACL Findings papers whose authors wished to present their work at the
SRW. A further 9 submissions were desk rejected and 2 submissions were withdrawn by the authors prior
to the completion of the review process. A total of 50 submissions (5 Findings, 2 Thesis Proposals, 28
long papers and 15 short papers) were accepted. 46 of the accepted papers will be presented in person
and/or virtually in the poster sessions of the main conference and 4 will be presented as oral presentations.

We are deeply grateful to our sponsors for providing funds for the travel grants that we make available to
paper authors. We thank our program committee members for their careful reviews of each paper and all
of our mentors for donating their time to provide feedback to our student authors. We are deeply thankful
to our faculty advisors, Ivan Vulic and Lu Wang, and to the ACL 2023 organizing committee for their
advice and support throughout the process. Finally, we thank each and every one of the authors for their
enthusiastic participation!
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Abstract

Large-scale language models, like ChatGPT,
have garnered significant media attention and
stunned the public with their remarkable ca-
pacity for generating coherent text from short
natural language prompts. In this paper, we
aim to conduct a systematic inspection of Chat-
GPT’s performance in two controllable gener-
ation tasks, with respect to ChatGPT’s ability
to adapt its output to different target audiences
(expert vs. layman) and writing styles (formal
vs. informal). Additionally, we evaluate the
faithfulness of the generated text, and compare
the model’s performance with human-authored
texts. Our findings indicate that the stylistic
variations produced by humans are consider-
ably larger than those demonstrated by Chat-
GPT, and the generated texts diverge from hu-
man samples in several characteristics, such as
the distribution of word types. Moreover, we
observe that ChatGPT sometimes incorporates
factual errors or hallucinations when adapting
the text to suit a specific style.1

1 Introduction

Generative Pre-trained Transformer (GPT; e.g.,
ChatGPT) models, which produce results from
given conditional input prompts, have exhibited
exceptional performance on various natural lan-
guage understanding (NLU) and generation (NLG)
tasks (Jiao et al., 2023; Wang et al., 2023a; Bang
et al., 2023b; Zhou et al., 2023; Dai et al., 2023).
For instance, in NLU tasks, Qin et al. (2023) have
proved that ChatGPT is comparable to state-of-
the-art fine-tuning models in language reasoning.
In NLG tasks, Yang et al. (2023a) assessed four
widely used benchmark datasets, such as QMSum,
and confirmed ChatGPT’s comparability to tradi-
tional fine-tuning methods. Peng et al. (2023) fur-
ther investigated effective strategies for machine
translation using ChatGPT and highlight its strong

1The project information of our study can be accessed at
https://dongqi.me/projects/ChatGPT_vs_Human.

translation ability. Additionally, ChatGPT can even
facilitate multi-modal tasks (Yang et al., 2023b;
Shen et al., 2023), as well as the application of data
augmentation (Dai et al., 2023). Although the stud-
ies mentioned above have demonstrated notable
performance of ChatGPT across different domains,
there remains a dearth of qualitative and quantita-
tive evaluation of the texts generated by ChatGPT.
Such an evaluation is vital to uncover the behav-
ioral differences, potential limitations, and chal-
lenges associated with ChatGPT-generated texts,
especially when compared with human-authored
texts.

Controllable text generation seems to be a task
in which ChatGPT-like models could potentially
excel. This task is driven by the desire to tailor
text for a diverse array of target users (e.g., experts
and laypersons) (Kumar et al., 2022; Cao et al.,
2020; Luo et al., 2022), and thereby enhancing
the accessibility of textual information. In con-
trollable text generation, one delineates a partic-
ular set of parameters or provides a prompt that
defines the intended target style. This area has re-
cently received growing interest from researchers
in the field (Hu and Li, 2021; Li et al., 2022; Zhang
et al., 2022; Dathathri et al., 2019a; August et al.,
2022; Carlsson et al., 2022; Gu et al., 2022; Li
et al., 2022; Keskar et al., 2019; Dathathri et al.,
2019b). The traditional natural language genera-
tion task (Pu and Sima’an, 2022), which focuses
solely on adequately responding with respect to a
given input, can be regarded as a special case of
controllable natural language generation, wherein
the control setting remains unconditioned. Consid-
ering ChatGPT as the most recent language gen-
eration capability, the assessment of its language
generation proficiency, specifically in the realm of
controllable language generation, remains largely
uncharted. Therefore, our study delves into two
distinct applications of ChatGPT, namely control-
lable summary generation and sentence style trans-

1
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fer. In the former, we examine ChatGPT’s ability
to generate summaries that cater to two distinct
readerships, namely experts and non-experts, for
a given academic literature. Concerning sentence
style transfer, we investigate ChatGPT’s capability
to generate both formal and informal sentences for
the task of sentence formality.

The objective of this study is to tackle the
research question: In relation to the human-
produced text, to what extent does ChatGPT-
generated content demonstrate significant diver-
gence from human behavior and the potential
susceptibility to inaccuracies? Our primary con-
tributions are enumerated below:

• To the best of our knowledge, we are the first
to utilize ChatGPT to evaluate its effective-
ness in controllable text generation.

• Our findings indicate that there are substan-
tial performance disparities between the text
generated by ChatGPT and that generated by
humans.

• Our study exposes and quantifies the existence
of numerous hard-to-spot errors in the text
generated by ChatGPT, which have a tendency
to amplify with successive transformations of
the text.

2 Related Work

2.1 Controllable Text Summarization
Controllable text summarization is a rapidly evolv-
ing field that aims to produce summaries with spe-
cific characteristics, such as length, style, or con-
tent (Shen et al., 2022b; Chan et al., 2021; Sarkhel
et al., 2020; Shen et al., 2022a; Goldsack et al.,
2022; Keskar et al., 2019; Dathathri et al., 2019b;
He et al., 2022; Earle et al., 2021; Liu et al., 2022b).
A range of approaches has been proposed for this
task, including the use of sequence-to-sequence
models such as the Transformer model (Vaswani
et al., 2017). These models have demonstrated
promising progress in producing high-quality sum-
maries that can be modulated according to specific
requirements (Fan et al., 2018; Wu et al., 2021;
Amplayo et al., 2021). Additionally, other tech-
niques also have been proposed to enhance the
controllability of the summaries, such as condi-
tional generation (He et al., 2022; Luo et al., 2022),
prompt-based summarization (Yang et al., 2022;
Liu et al., 2022a; Zhang and Song, 2022), and
multi-task learning (Cui and Hu, 2021; Gu et al.,
2022).

2.2 Text Style Transfer

Text style transfer is a task that involves trans-
forming an input sentence into a desired style
while retaining its style-independent semantics (Jin
et al., 2022; Zhu et al., 2021; Dai et al., 2019; Li
et al., 2020; Babakov et al., 2022; Mir et al., 2019;
Ramesh Kashyap et al., 2022; Tokpo and Calders,
2022). To achieve this, prior research has exam-
ined sequence-to-sequence learning strategies that
utilize parallel corpora with paired source/target
sentences in different styles (Cheng et al., 2020;
Hu et al., 2021; Nouri, 2022). Owing to the consid-
erable demand for human resources and material
investments in data labeling, parallel data across
diverse styles are scarce. This has led to an in-
creased interest in exploring more pragmatic situa-
tions where only non-parallel stylized corpora are
accessible (Malmi et al., 2020; Reif et al., 2022).

2.3 ChatGPT

ChatGPT2 is a large language model (LLM), which
is built upon the innovations and improvements
of its predecessors, such as GPT-33. In terms of
training strategies, ChatGPT employs instruction
learning and reinforcement learning from human
feedback (RLHF; Ouyang et al., 2022) to enhance
its overall performance and adaptability.

Upon its emergence, ChatGPT has garnered con-
siderable attention from researchers, who have un-
dertaken initial studies into the model. Scholars
such as Baidoo-Anu and Owusu Ansah (2023);
Rudolph et al. (2023); West (2023); Sobania et al.
(2023); Gilson et al. (2023); Lai et al. (2023); Wang
et al. (2023b) have explored the notable strengths
of ChatGPT from the fields of education, science,
programming, healthcare, and text generation, re-
spectively. However, Bang et al. (2023a) discov-
ered that ChatGPT suffers from hallucination is-
sues in the context of logical reasoning. Due to its
immense and inaccessible training corpus and pa-
rameters, and the inability to access external knowl-
edge for reliable sources of support, it is imperative
to question whether ChatGPT demonstrates the
same hallucination issue as other LLMs when per-
forming sentence generation. Based on these clues,
we firmly assert that in-depth analysis of the text
generated by ChatGPT and its behavioral patterns
are both significant and valuable, and can provide
meaningful insights to the readers of this paper.

2https://openai.com/blog/chatgpt
3https://openai.com/research/instruction-following
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3 Study on Controllable Summarization

3.1 Prompt Formulation

In this section, our main objective is to test the
zero-shot performance of ChatGPT on controllable
summarization, with the goal to generate sum-
maries for laymen vs. experts. To this end, we
constructed several prompts as natural language
instructions for ChatGPT. The prompts we tested
include for the layman style: Please give me a
layman / simple / simplified and understandable
/ easy-to-comprehend / straightforward / general
audience summary of X, where X was replaced by
the source text that should be summarized. Sim-
ilarly, for the expert summary, we experimented
with the prompts: Please give me an expert / a
technical / comprehensive and detailed / difficult-
to-comprehend / in-depth / complicated summary
of X.

3.2 Experimental Setup

For all experiments, we used ChatGPT gpt-3.5-
turbo, which was, at the time of experimentation,
the best-performing publicly accessible version pro-
vided by OpenAI. For the hyper-parameter setting,
we set temperature = 0, top p = 1, frequency penalty
= 0.2, and presence penalty = 0.2. For summary
generation, we configured the maximum number
of generated tokens to 512. The remaining hyper-
parameters were set to their default values as recom-
mended by OpenAI. It is noteworthy that ChatGPT
has the potential to generate empty responses (i.e.,
empty strings) as the result of network transmis-
sion timeouts or API request overloads. Should
this arise, we adhere to the established practice of
resubmitting the request until ChatGPT provides
non-empty responses.

All of our experiments were conducted on the
version of ChatGPT between 15 Feb 2023 and 30
Apr 2023 by using the OpenAI’s ChatGPT API.4

We should emphasize that to prevent any potential
interference from the prior responses, we cleared
the conversation history each time we submit a new
query to ChatGPT. Unless otherwise specified, we
refrained from engaging in any further conversation
with ChatGPT to modify its responses.

3.3 Dataset

We selected ELIFE (Goldsack et al., 2022) dataset
for our experiments. It contains summaries of aca-

4https://platform.openai.com/overview

demic literature that exhibit varying levels of read-
ability, tailored to suit either expert or non-expert
audiences. By means of this dataset, we can exam-
ine to what extent ChatGPT can regulate the sum-
mary generation process in accordance with the
intended target users, and compare its summaries
to human summaries.

3.4 Metrics

In order to assess automatically whether ChatGPT
summaries substantially differ in terms of their au-
dience design based on the given prompt, we opted
for a set of three automatic readability metrics:
Flesch Reading Ease (FRE; Kincaid et al., 1975),
Coleman-Liau Index (CLI; Coleman and Liau,
1975), and Dale-Chall Readability Score (DCR;
Chall and Dale, 1995).

The Flesch Reading Ease (Kincaid et al., 1975)
is a metric that gauges the comprehensibility of a
given text. This index relies on the average num-
ber of syllables per word and the average num-
ber of words per sentence. A higher score signi-
fies an easier-to-understand text. Additionally, the
Coleman-Liau Index (Coleman and Liau, 1975)
is a measure of the text’s difficulty level, which
considers the average number of characters per sen-
tence and the average number of sentences per 100
words. A higher score indicates a more challenging
text. The Dale-Chall Readability Score (Chall and
Dale, 1995) is computed by comparing the number
of complex words in the text with a list of common
words. A higher score denotes a more challenging
text.

We also employed Rouge scores (Lin, 2004) to
evaluate the performance of ChatGPT in the task of
text summarization, with the aim of comparing its
efficacy against the state-of-the-art model. In order
to assess the extent to which the summaries re-use
word sequences from the original text, we further-
more evaluated N-gram novelty (See et al., 2017;
Gehrmann et al., 2019; Pu et al., 2022). Finally,
we quantified inconsistency based on factual con-
sistency checking metric SummaC (Laban et al.,
2022), as well as hallucination checking metric
(Cao et al., 2022; Fischer et al., 2021). SummaC
(Laban et al., 2022) uses sentence compression
and summarization techniques to extract important
information and improve the detection of inconsis-
tencies in NLI models by segmenting documents
and aggregating scores. Named entity hallucination
(Fischer et al., 2021) flags potential hallucinations
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in named entities if they do not match the original
sources. We here used BERT semantic similarity,
rather than exact matching, when computing the
named entities matching.

3.5 Results on Controllable Summarization

3.5.1 Effect of Prompt Formulation
Table 1 illustrates that different prompt versions are
somewhat consistent regarding whether the instruc-
tions asking for layman summaries actually lead
to more readable texts than those asking for expert
summaries, with FRE ranging between scores of
31 and 38 for automatically generated layman sum-
maries, and between 28 and 37 for automatically
generated expert summaries. Conversely, human-
written summaries exhibit very large differences
according to the automatic metrics, with FRE of
53.1 for layman summaries and 22.5 for expert
summaries. Similar effects are observed for the
CLI and DCR measures. This preliminary test was
conducted on a subset of the ELIFE dataset, con-
taining merely 500 random samples; for the rest of
the tests, we proceeded to the entire dataset, select-
ing the prompts asking for “layman” and “expert”
summaries, as responses for these prompts seemed
to align with the right direction wrt. the readability
measures.

Prompt version FRE CLI DCR
layman 37.26† 14.82† 11.21†

simple 31.92† 15.70† 11.54†

simplified and understand. 35.48† 15.17† 11.21†

easy-to-comprehend 36.59† 14.93† 11.32†

straightforward 31.74† 15.58† 11.42†

general audience 35.86† 14.98† 10.96†

human answer (for layman) 53.06 12.36 8.90
expert 29.89† 15.91† 11.88†

technical 36.65† 13.76† 12.20†

comprehensive and detailed 31.62† 15.47† 11.15†

difficult-to-comprehend 28.95† 16.14† 11.71†

in-depth 34.37† 14.93† 10.82†

complicated 29.05† 15.76† 11.40†

human answer (for expert) 22.54 17.65 11.79

Table 1: Reading difficulty on different prompts, tested
on a set of 500 randomly selected items from the dataset.
† indicates statistical significance (p<0.05) against cor-
responding human answers via paired t-test.

3.5.2 Reading Difficulty Control
Table 2 corroborates that the results of the whole
dataset are consistent with the findings from the
smaller sample. We conclude that ChatGPT can

produce summaries with different levels of reading
difficulty to a certain extent based on the provided
prompts. Notably, ChatGPT-generated sentences
for expert-style summaries show greater complex-
ity than those for layman-style summaries. How-
ever, the magnitude of the difference in the reading
difficulty scores between the two types of sum-
maries is considerably smaller than that observed
in human-written summaries.

Candidate FRE CLI DCR
Human Layman 52.42 12.46 8.93
Human Expert 23.20 17.62 11.78

ChatGPT Layman 37.38†‡ 14.78†‡ 11.17†‡

ChatGPT Expert 30.38†‡ 15.82†‡ 11.85†‡

Table 2: Reading difficulty scores by automatic metrics;
† and ‡ indicate statistical significance (p<0.05) against
same-style human answers, and opposite-style ChatGPT
answers via paired t-test, respectively.

3.5.3 Comparison to Previous SOTA Model
We also compared summaries generated by Chat-
GPT to a previous state-of-the-art (SOTA) neural
fine-tuned summarization model (Pu et al., 2023).
On the same test split, the summaries produced by
ChatGPT reached Rouge-1=25.53, Rouge-2=5.48,
Rouge-L=13.30 under unsupervised learning, and
Rouge-1=47.88, Rouge-2=13.75, Rouge-L=42.44
in few-shot learning use the training samples from
the same subset of Section 3.5.1, while the model
by Pu et al. (2023) reached Rouge-1=48.70, Rouge-
2=14.84, and Rouge-L=46.13.

3.5.4 Disparities in Summarization Behavior
We next examined whether ChatGPT and Humans
are consistent with each other regarding the read-
ability of summarization with respect to different
items – it could be possible, that some texts simply
lead to less readable summaries than others. How-
ever, we discovered that Pearson correlations of
FRE scores for summaries by humans and Chat-
GPT were only 0.31 for expert summaries, and 0.2
for layman summaries. (Scores were similarly low
for the CLI and DCR metrics.) In addition, the sta-
tistical significance test elucidates the noteworthy
divergence between the distinctive response styles
produced by ChatGPT and the analogous styles of
human-generated answers.

Following this, we contrasted the n-gram novelty
of human vs. ChatGPT summaries wrt. the original
texts. Figure 1 reveals that a significantly higher
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number of novel 4-grams are present in human-
written summaries, particularly those aimed at lay-
men. This suggests that ChatGPT summaries are
slightly more extractive compared to human sum-
maries.

Human Layman Human Expert ChatGPT Layman ChatGPT Expert
Candidate
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Figure 1: Comparison of abstractiveness between Chat-
GPT and human-generated summaries

3.5.5 Inconsistencies and Hallucinations
Given that ChatGPT has previously been reported
to generate misinformation, we sought to evalu-
ate its risk of hallucinating on our specific task.
Figure 2 demonstrates that the SummaC consis-
tency scores are lower for ChatGPT-generated sum-
maries than for human-written summaries. A cor-
responding phenomenon is verified in the halluci-
nation assessment. Precision scores provided in
Table 3 demonstrates the extent to which ChatGPT-
generated text contains named entities that are ab-
sent in the source text. A lower precision score
suggests that the generated text has more named
entities that lack support in the source text. The re-
call scores reflect the ability of ChatGPT to capture
named entities from the source text. A lower recall
score implies that ChatGPT has missed a consid-
erable number of named entities from the source
text. F1 score represents the harmonic mean of the
precision and recall scores. By examining Table
3, our findings demonstrate that ChatGPT gener-
ates a greater number of named entities that are not
present in the source text after undergoing multiple
iterations of text conversions and modification. For
example, in an expert summary, ChatGPT misin-
terpreted the meaning of “Geocode” as “regional
regulations”.

3.6 Intermediary Discussion

Our experiments show that ChatGPT-generated
summaries do not adapt as strongly to the target
audience as human-authored summaries. One pos-

Human Layman
Human Expert

ChatGPT Layman

ChatGPT Expert

ChatGPT L2E2L

ChatGPT E2L2E

Candidate
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Figure 2: Summary consistency detection. L stands for
layman, E for expert.

Candidate Precision Recall F1
Human Layman 0.78 0.63 0.70
Human Expert 0.92 0.61 0.73

ChatGPT Layman 0.75‡ 0.47† 0.58†

ChatGPT Expert 0.90‡ 0.49† 0.63†

ChatGPT L2E2L 0.74‡ 0.39†‡ 0.51†‡

ChatGPT E2L2E 0.88‡ 0.47†‡ 0.62†‡

Table 3: Named entity hallucination on Elife dataset. †

and ‡ indicate statistical significance (p<0.05) against
same-style human answers, and opposite-style ChatGPT
answers via paired t-test, respectively. L stands for
layman, E for expert.

sible reason could be that ChatGPT, given the zero-
shot setting, had no way to “know” how strongly
the texts should be adapted to the target style. Fur-
thermore, we identified evidence for potential hal-
lucinations generated during summarization. We,
therefore, carried out two post-hoc experiments:
(1) We modified the prompt to include an example
from the dataset, so ChatGPT would have a chance
to know the expected level of text adaptation. (2)
We subjected the resulting summaries to several
re-writing steps and test whether this further inten-
sifies the occurrence of hallucinations.

3.6.1 Follow-up Experiment: Example
Inclusion in Prompt

We experimented with prompts that also include
a human summary example. Unlike the previous
few-shot learning experiment, we do not adjust the
parameters of the ChatGPT, but just let the model
perform unsupervised reasoning through the con-
tents of the prompt. We observe (see Appendix
Table 7) that when guided by a human example
from the dataset, the summaries generated by Chat-
GPT indeed tend to be more aligned with human
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performance, particularly on the Flesch Reading
Ease metric (49.23 for layman, 28.88 for expert
summaries). However, no significant changes are
detected in other metrics. The degree of control
over the summarization style has increased, yet it
remains inferior to human capabilities.

3.6.2 Follow-up Experiment: Repeated
Re-writing

Summaries are further re-written based on the
prompt Please give me a layman/expert style
version of X , where X was the previously gen-
erated summary. Figure 2 and Table 3 display the
performance of ChatGPT after re-writing in the
entries “ChatGPT L2E2L" and “ChatGPT E2L2E”
which stand for the order in which instructions
were given (L stands for layman, and E for expert).
The examinations point out that misinformation
and hallucinations may be further increased during
subsequent rewriting (lower SummaC scores, lower
values in the named entity hallucination metric).

4 Study on Text Formality Transfer

4.1 Prompt Formulation and Experimental
Setup

Our subsequent set of experiments investigates
ChatGPT’s capacity for style transfer concerning
language formality. Our prompt for this task was
formulated as Please give me a formal / an infor-
mal version of X . We utilized the same experimen-
tal setup as for the summarization task; however,
we restricted the maximum number of generated
tokens to 32. We again experimented with vari-
ous prompts, as shown in Table 4 below. Unless
otherwise specified, all experiments used the same
configuration.

4.2 Dataset
We investigated whether ChatGPT can proficiently
execute style transfer on sentences using data from
the GYAFC (Rao and Tetreault, 2018) dataset. The
dataset has two branches, Entertainment & Music
(EM) and Family & Relationships (FR). With the
aid of this dataset, we aim to evaluate ChatGPT’s
ability for sentence style transfer, examine the dif-
ferences in vocabulary selection and syntactic struc-
tures between ChatGPT and human performance,
and identify the limitations of ChatGPT.

4.3 Metrics
To evaluate the level of formality in the generated
text, we utilized Text Formality Score (Heylighen

and Dewaele, 1999) and MTLD Lexical Diversity
(McCarthy and Jarvis, 2010) metric. The Text For-
mality Score (Heylighen and Dewaele, 1999) is a
metric that quantifies the degree of formality in lan-
guage usage within a text, based on the adherence
to formal linguistic norms. Another measure that
evaluates language formality is the MTLD Lexi-
cal Diversity metric (McCarthy and Jarvis, 2010).
This index measures the diversity and richness of
the vocabulary used in the text, based on the fre-
quency and number of unique words. A higher
MTLD score indicates a greater variety of vocabu-
lary, which typically corresponds to a more formal
language style. We also utilized BLEU (Papineni
et al., 2002) score to draw a comparison between
ChatGPT and SOTA approach. We additionally as-
sessed the distribution of POS tags in the generated
different styles, as well as the distribution of depen-
dency labels5. For quantifying misinformation and
hallucinations, we used DAE and named entity hal-
lucination checking. The DAE algorithm (Goyal
and Durrett, 2020) utilizes dependency arcs to iden-
tify entailment relationships between propositions
and identify inconsistencies in factual information
based on syntactic and semantic structures.

4.4 Results on Formality Control

4.4.1 Effect of Prompt Formulation
Table 4 presents the results for a set of 500 random
samples from the GYAFC dataset. We observe that
the Formality scores are very similar for ChatGPT
formal vs. informal texts. We note however that
the difference in ratings for human-written texts is
also small for this metric. The MTLD metric on
the other hand shows higher values for ChatGPT-
generated formal texts; in fact, the scores are sub-
stantially larger than those of human-written texts,
but differ not much from each other. We therefore
proceed with the prompts using the formulation
formal/informal for the rest of the experiments on
the whole dataset.

4.4.2 Sentence Formality Control
Table 5 offers supplementary evidence from the
full dataset supporting ChatGPT’s capacity to mod-
ify the formality level of sentences. By employing
the Formality indicator (Heylighen and Dewaele,
1999), it is apparent that the generated text tends
to manifest a higher level of formality overall. A
primary factor contributing to this result is the pre-

5https://spacy.io/
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Prompt version Formality MTLD
informal 51.09 13.22†

unprofessional 51.20 16.23†

spoken version 51.30† 14.47†

easygoing 51.43† 14.11†

casual 51.00 16.30†

laid-back 51.27 13.94†

human answer (for informal) 50.76 11.42
formal 52.22† 31.23†

professional 51.96† 31.98†

written 51.62† 29.69†

stately 51.30† 34.43†

grandiose 52.85† 30.71†

majestic 52.23† 33.49†

human answer (for formal) 53.92 14.99

Table 4: Text formality on different prompts, tested on
a set of 500 randomly selected items from the dataset. †

indicates statistical significance (p<0.05) against corre-
sponding human answers via paired t-test.

disposition of ChatGPT’s training corpus towards
written sources, encompassing materials such as
books and news articles, as opposed to spoken lan-
guage corpora (OpenAI, 2023). This perspective is
further corroborated by an examination of the gen-
erated sentence samples. The MTLD metric under-
scores that ChatGPT’s lexical diversity is consider-
ably lower when generating informal sentences, but
shows a marked increase when generating formal
sentences.

Dataset Candidate Formality MTLD

G
YA

FC
-F

R Human Informal 49.87 15.20
Human Formal 53.57 18.70

ChatGPT Informal 50.77†‡ 14.60‡

ChatGPT Formal 52.06†‡ 31.68†‡

G
YA

FC
-E

M Human Informal 50.11 12.11
Human Formal 53.76 15.82

ChatGPT Informal 51.02†‡ 12.01‡

ChatGPT Formal 51.98†‡ 29.80†‡

Table 5: Text formality scores by automatic metrics; †

and ‡ indicate statistical significance (p<0.05) against
same-style human answers, and opposite-style ChatGPT
answers via paired t-test, respectively.

4.4.3 Comparison to Previous SOTA Model
We also find that ChatGPT outperforms the previ-
ous supervised SOTA model (Nouri, 2022) by train-
ing on the same subset at Section 4.4.1 for few-shot
learning, as evident from the higher BLEU score.
Specifically, ChatGPT yields superior scores of

0.711 and 0.697 in the EM and FR branches, as
compared to the SOTA model’s scores of 0.671 and
0.652. However, ChatGPT achieved only 0.07 and
0.06 BLEU scores on the EM and FR branches,
respectively, in the unsupervised setting.

4.4.4 Effect of Example Inclusion in Prompt
We again examined the impact of including an ex-
ample of the dataset into the prompt and find that
this again helps ChatGPT slightly with matching
the dataset style (with details provided in Table 8).
Specifically, the formality score for the informal
style is 50.67, while it climbs to 52.13 for the for-
mal style, with the MTLD score also displaying an
increase from 14.81 for informal texts to 19.22 for
formal texts.

4.4.5 Disparities in Style Transfer Behavior
In terms of controlling the formality of sentence
style, ChatGPT’s performance still exhibits sig-
nificant differences compared to human behavior.
While the by-item correlation is slightly higher
for this dataset than for the summary task (Pear-
son correlation of around 0.4 for formal style and
0.5 for informal style on the Formality metric; 0.3
for MTLD measure), there are interesting dispari-
ties between the distributions of POS tags between
ChatGPT and humans. The examination of statisti-
cal significance further substantiates our antecedent
observation, indicating a substantial disparity be-
tween the different response styles engendered by
the model, as well as between the answers conform-
ing to the same styles exhibited by humans.

Figure 3 illustrates the absolute differences in the
distribution of Part-of-Speech (POS) tags. Based
on this figure, it is evident that ChatGPT employs
a higher frequency of adjectives, adpositions, de-
terminers, and nouns in the generation of formal
sentences when compared to those produced by
human writers. Conversely, in the generation of
informal sentences, ChatGPT tends to utilize more
auxiliary words and punctuation marks. These vari-
ances in word choice between formal and informal
styles, as exemplified by ChatGPT, are indicative
of differences in its selected vocabulary for distinct
stylistic modes compare with humans.

By analyzing the distribution of dependency la-
bels (Appendix Figures 5, 6, 7, 8), it is also clear
that, in comparison to human-authored sentences,
ChatGPT utilizes a greater frequency of adjectival
modifiers, auxiliaries, determiners, objects of the
preposition, and prepositional modifiers for formal
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sentences. Contrarily, compounds and dependents
are infrequently employed in the generation of in-
formal sentences by ChatGPT.
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Figure 3: Absolute differences in POS tags distribution
of ChatGPT and human-generated sentences: GYAFC -
EM

4.4.6 Inconsistencies and Hallucinations
In order to assess the risk of introducing erroneous
information when ChatGPT performs sentence
style transformation, we employed DAE (Goyal
and Durrett, 2020) at the sentence level to exam-
ine the factuality after text style transformation,
and compare again the effect of multiple re-writes.
Similar to before, F denotes formal style, I signifies
informal style, and X2X2X (X ∈ {F, I}) represents
multiple rewriting transformations of the text. The
outcomes of our inquiry are depicted in Figure 4,
and Appendix Figure 14. We also again scrutinized
the potential incorporation of hallucinatory infor-
mation regarding named entities in the ChatGPT-
generated text, and the findings are presented in
Appendix Table 9.

Human Informal
Human Formal

ChatGPT Informal
ChatGPT Formal

ChatGPT I2F2I
ChatGPT F2I2F

Candidate

0.00
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0.75

1.00
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Figure 4: Dependency arc entailment: GYAFC - EM.
Data points>0.95≈Accurate. To clarify discrepancies,
cutoff point=0.95.

Upon conducting factuality checking (see Fig-
ure 4, and Appendix Figure 14), it is discovered
that ChatGPT’s performance is inferior to that of
humans in sentence-style rewriting. Interestingly,
with the increase in the number of text conversions
and rewritings, ChatGPT’s tendency to commit fac-
tual errors escalates while the output increasingly
deviates from the original text, compromising the
fidelity of the final result. In a particular instance,
the human-generated formal expression states “She

is a poor vocalist", whereas the formal rendition
provided by ChatGPT articulates “She does not
possess the ability to sing". This discrepancy rep-
resents a significant semantic alteration. The de-
gree of dependency arc entailment is low in this
case. Similarly, Appendix Table 9 reveals that re-
call scores on the named entity hallucination metric
are lower in ChatGPT sentences than in human sen-
tences.

4.4.7 Qualitative Examples

To explore whether ChatGPT-generated sentences
significantly alter the original semantics of the in-
put text, we conducted a case study by randomly se-
lecting 15 samples from each branch of the GYAFC
dataset. Our findings indicate that ChatGPT poses
a relatively severe risk of modifying the original se-
mantics during sentence style transformation, with
approximately 18% of the samples exhibiting no-
ticeable semantic inconsistencies. The examples
in Table 6 reveal that during the process of sen-
tence style transfer, ChatGPT erroneously modifies
the content words, resulting in significant semantic
alterations.

Formal to Informal

It is such a waste of TV space. (Reference)
Yes, because it’s such a waste of TV space! (Human)
What a total waste of TV time! (ChatGPT)

The other boy isn’t that great. (Reference)
The other boy is not that good. (Human)
The other kid’s not so hot. (ChatGPT)

I really enjoy how the composition has the tec... (Reference)
I really like how they do like the whole techn... (Human)
I’m diggin’ how the techno beat slows down in ... (ChatGPT)

Informal to Formal
Fatboy Slim - Right Here, Right Now Or any oth... (Reference)
Fatboy Slim is right here and now. He Rocks! (Human)
Fatboy Slim’s "Right Here, Right Now" is an ex... (ChatGPT)

loved them since their first album. (Reference)
I have loved them since their first album. (Human)
I have held a fondness for them since the rele... (ChatGPT)

if u occasionally doing it then u alrady r add... (Reference)
If you occasionally do it, then you are already... (Human)
If you are engaging in the activity on a regul... (ChatGPT)

Table 6: Case study of ChatGPT generated output

Furthermore, our examination of the visualized
dependency tree (see Appendix Figures 11, 12, and
13), which relies primarily on the dependency arc
entailment (DAE) algorithm for fact-checking, re-
veals that the text generated by ChatGPT contains a
higher number of dependency arcs lacking support
from the original text, when compared to human
responses.
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5 Conclusion

This paper presents a broad assessment of Chat-
GPT’s proficiency in generating controllable text.
We conducted quantitative and qualitative exami-
nations at the document level (summarization task)
and sentence level (text style transfer). The em-
pirical findings show that ChatGPT outperforms
the previous state-of-the-art models on automatic
metrics, but that there are substantial disparities be-
tween its generated texts and human-written texts.
These disparities are reduced by providing a target
example of the human writing style. Furthermore,
our investigations also confirm the previously re-
ported problems of hallucinations and inaccuracies
in text generated by ChatGPT.

6 Limitations

The primary limitations of the current study pertain
to the selection of prompts and evaluation metrics.
The experimental cost of requesting API responses
from OpenAI to assess ChatGPT’s text genera-
tion abilities imposes significant constraints on our
choice of datasets. Therefore, we have to limit our
experimentation to only two related controllable
text generation datasets. While we have evaluated
ChatGPT’s performance at both the document and
sentence levels, we cannot extrapolate that Chat-
GPT has similar performance for other text genera-
tion datasets. Additionally, the experimental cost
prohibits us from conducting traversal experiments
on the selection of hyperparameters. We relied on
the default configuration recommended by OpenAI,
and we maintain consistency in all hyperparameters
to ensure the fairness of the experiments.

Secondly, although we have studied the impact
of prompt engineering on ChatGPT, the selection of
prompts is mainly affected by human understand-
ing, and the number of potential prompts is infinite.
Hence, we cannot guarantee whether other prompts
that we did not select will yield the same conclu-
sions as our experiment. Furthermore, ChatGPT is
subject to continuous updates and iterations, which
may lead to improved performance, making it diffi-
cult to predict if future versions of ChatGPT will
have similar results to our experiments.

Finally, to select appropriate evaluation metrics,
we have included both domain-related evaluation
metrics (such as reading difficulty and text formal-
ity) and domain-independent evaluation indicators
(such as fact-checking and hallucination detection).
However, we acknowledge that the automatic met-

rics may sometimes not capture all aspects of the
intended construct correctly.

7 Ethics Considerations

All datasets utilized in this study are publicly avail-
able, and we have adhered to ethical considerations
by not introducing any additional information into
ChatGPT’s inputs.
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Candidate FRE CLI DCR
Document: {Original Document}, Layman Summary: {Human Layman Summary}.
Please learn the way of summarization from the previous example, and give me a layman-style summary of X 49.23† 13.26† 10.45†

Human Answer 52.42 12.46 8.93
Document: {Original Document}, Expert Summary: {Human Expert Summary}.
Please learn the way of summarization from the previous example, and give me an expert-style summary of X 28.88† 15.92† 11.82
Human Answer 23.20 17.62 11.78

Table 7: Reading difficulty of one-shot guidance. † indicates statistical significance (p<0.05) against corresponding
human answers via paired t-test.

Candidate Formality MTLD
Formal: {Formal Sentence}, Informal: {Informal Sentence}.
Please learn the way of formality conversion from the previous example, and give me an informal version of X 50.67† 14.81
Human Answer 49.87 15.20
Informal: {Informal Sentence}, Formal: {Formal Sentence}.
Please learn the way of formality conversion from the previous example, and give me a formal version of X 52.13† 19.22
Human Answer 53.57 18.70

Table 8: Text formality of one-shot guidance on GYAFC-FR branch. † indicates statistical significance (p<0.05)
against corresponding human answers via paired t-test.

RO
OT ac

l

ac
om

p

ad
vc

l

ad
vm

od

ag
en

t

am
od

ap
po

s

at
tr

au
x

au
xp

as
s

ca
se cc

cc
om

p

co
m

po
un

d

co
nj

cs
ub

j

cs
ub

jpa
ss

da
tiv

e

de
p

de
t

do
bj

ex
pl int
j

m
ar

k

m
et

a

ne
g

nm
od

np
ad

vm
od

ns
ub

j

ns
ub

jpa
ss

nu
m

m
od

op
rd

pa
ra

ta
xis

pc
om

p

po
bj

po
ss

pr
ec

on
j

pr
ed

et

pr
ep pr

t

pu
nc

t

qu
an

tm
od re
lcl

xc
om

p

Dependency Labels

0.03

0.02

0.01

0.00

0.01

0.02

Ab
so

lut
e D

iff
er

en
ce

s

Figure 5: Absolute differences in dependency labels distribution of ChatGPT and human-generated formal style
sentences: GYAFC - EM
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Figure 6: Absolute differences in dependency labels distribution of ChatGPT and human-generated informal style
sentences: GYAFC - EM
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Figure 7: Absolute differences in dependency labels distribution of ChatGPT and human-generated formal sentences:
GYAFC - FR
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Figure 8: Absolute differences in dependency labels distribution of ChatGPT and human-generated informal
sentences: GYAFC - FR

15



AD
J

AD
P

ADV AUX CCO
NJ DET INT

J
NO

UN NU
M

PAR
T

PRO
N

PRO
PN

PUN
CT

SCO
NJ

SPA
CE SYM VER
B X

POS Tags

0.03

0.02

0.01

0.00

0.01

0.02

0.03
Abs

olu
te D

iffe
ren

ces
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of ChatGPT and human-generated formal sentences:
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C Appendix: Dependency Arc Entailment
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Figure 11: Case study of dependency tree visualization (Reference)

Figure 12: Case study of dependency tree visualization (Human)

Figure 13: Case study of dependency tree visualization (ChatGPT)
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Human Informal
Human Formal

ChatGPT Informal
ChatGPT Formal
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Figure 14: Dependency arc entailment: GYAFC - FR.
Data points>0.95≈Accurate. To clarify discrepancies,
cutoff point=0.95.

D Appendix: Named Entity Hallucination

Dataset Candidate Precision Recall F1

G
YA

FC
-F

R

Human Informal 0.989 0.988 0.988
Human Formal 0.988 0.989 0.988

ChatGPT Informal 0.986 0.985 0.986
ChatGPT Formal 0.974 0.974 0.974
ChatGPT I2F2I 0.982 0.982 0.982
ChatGPT F2I2F 0.974 0.973 0.973

G
YA

FC
-E

M

Human Informal 0.979 0.987 0.983
Human Formal 0.977 0.989 0.982

ChatGPT Informal 0.975 0.974 0.974
ChatGPT Formal 0.950 0.952 0.951
ChatGPT I2F2I 0.970 0.969 0.970
ChatGPT F2I2F 0.945 0.946 0.945

Table 9: Named entity hallucination - GYAFC
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Abstract

Machine learning techniques have shown their
competence for representing and reasoning in
symbolic systems such as language and phonol-
ogy. In Sinitic Historical Phonology, notable
tasks that could benefit from machine learning
include the comparison of dialects and recon-
struction of proto-languages systems. Moti-
vated by this, this paper provides an approach
for obtaining multi-dialectal representations of
Sinitic syllables, by constructing a knowledge
graph from structured phonological data, then
applying the BoxE technique from knowledge
base learning. We applied unsupervised clus-
tering techniques to the obtained representa-
tions to observe that the representations cap-
ture phonemic contrast from the input dialects.
Furthermore, we trained classifiers to perform
inference of unobserved Middle Chinese labels,
showing the representations’ potential for indi-
cating archaic, proto-language features. The
representations can be used for performing
completion of fragmented Sinitic phonological
knowledge bases, estimating divergences be-
tween different characters, or aiding the explo-
ration and reconstruction of archaic features.

1 Introduction

The evolution of languages in the Sinitic family
created intricate correspondences and divergences
in its dense dialect clusters. Investigating the dy-
namics of this evolution, through comparison and
proto-language reconstruction, is an essential task
to Sinitic Historical phonology. However, it may
be costly for researchers to manually probe through
the groups in search of phonological hints. Hence,
it is desirable to accelerate the process with modern
algorithms, specifically, representation learning.

Graph-based machine learning (Makarov et al.,
2021) have gained increasing attention in recent
years, due to their versatility with data with flexible
structures. Especially, missing link prediction al-
gorithms for knowledge graphs (Wang et al., 2021)

(Zhu et al., 2022) can uncover a latent structure in
noisy and incomplete knowledge. In the case for
learning phonological representations, using graph-
based learning can allow for more comprehensive
integration of multi-dialectal evidence. Thus, we
propose applying graph-based techniques for multi-
dialectal representation learning.

We construct a knowledge graph from the multi-
dialectal phonological data, by abstracting unique
phonetic components and individual characters into
two kinds of nodes. Then, we connect them with
edges specific to the dialect type wherein the char-
acter is associated with the given component. On
the constructed knowledge graph, we train the
BoxE algorithm (Abboud et al., 2020), a Box Em-
bedding Model for knowledge base completion. Fi-
nally, we evaluate the obtained representations with
unsupervised and supervised clustering, as well as
MLP probes based on Middle-Chinese-derived la-
bels, to show this tool’s value for Sinitic phonolog-
ical investigation.

2 Background on Sinitic Languages

The analysis of Sinitic languages face a few specific
challenges due to unique phonological characteris-
tics. These characteristics define crucial details of
our design.

In Sinitic languages, morphemes are primarily
monosyllabic. Hence, Chinese writing binds one
syllable to each of its glyphs, known as characters.
A syllable in Sinitic can be decomposed into an
initial, a final and a tone. (Shen, 2020) Initials refer
to the consonant-like sounds at the beginning of a
syllable, which include both stops (e.g. /p-/, /b-/)
and fricatives (e.g. /s-/, /S-/). These initials could
be combined with various finals to form syllables.
Finals refer to the vowel-like sounds at the end of a
syllable, which included both simple vowels (e.g. /-
a/, /-i/, /-u/), complex vowels (e.g. /-ai/, /-ao/, /-ei/),
and vowels combined with consonant codas (/-m/,/-
n/,/-N/,/-p/,/-t/,/-k/). Tones refer to the pitch patterns
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associated with syllables in Chinese. Tones could
distinguish between words that were otherwise ho-
mophonous, and they were an important part of the
Chinese phonological system.

Due to the early conception of the Chinese writ-
ing system, syllables from different Sinitic lan-
guages can usually be aligned to each other through
a written form. As this alignment is typically im-
plemented in databases of raw Sinitic data, the
difficulty of cognate identification is drastically
reduced, facilitating analysis. However, the sim-
ple syllable structure introduces large amounts of
homophones, words sharing same pronunciations,
into Sinitic languages. This hinders the use of
the comparative method in reconstructing a Sinitic
proto-language. The existence of a supersegmental
tone feature also complicates a historical analysis
of Sinitic languages.

Figure 1: Highlighting key characteristics of Sinitic rele-
vant to our approach. Characters are the central identity
in the multi-dialectal representations. The orthographic
alignment of sub-syllable components form the struc-
ture of data used in this study.

Two factors that motivate the use of a graph-
based method include the uniform structure of
Sinitic syllables and their intimate relationship with
characters. The intuitive syllable decomposition
and the glyph-based alignment inspire viewing the
components contextualized in various dialects as
different "observations" of a single character. Theo-
retically, these observations are derivable from the
reading of the character in the proto-language.

3 Related Work

The practice of computationally-aided proto-
language construction, often associated with cog-
nate identification, has been extensively considered
in the past two decades (Nerbonne et al., 2007). Ex-
amples include (Steiner et al., 2011) which draws
insights from bio-informatics and the classical com-
parative workflow, and (List et al., 2017), which

compared many methods for cognate identifica-
tion. An relevant insight from the latter paper is
that language-specific methods often outperform
language-general ones, especially for languages
like Sinitic. An epitome of neural methods for
proto-language reconstruction would be (Meloni
et al., 2021), in which Latin is reconstructed from
Romance descendent languages with a encoder-
decoder structure. Though, our approach differs
from their study in many crucial aspects. In Mel-
oni et al. 2021, the reconstruction is supervised,
with the proto-language Latin provided at training
time. But our method targets not only documented
proto-languages like Middle Chinese, but also un-
known, intermediate varieties in the development
from ancient Sinitic to modern dialects, which re-
quires an unsupervised approach. Additionally, in
term of techniques, their use of GRU and attention-
based transducers contrasts with our emphasis on a
graph-based method.

Considering the representation learning of
Sinitic, we found abundant literature on the topic of
speech recognition (Ma et al., 2022), segmentation
and synthesis, which often yield representations
of certain phonological relevance as by-product.
Though, these studies devote heavily to a few ma-
jor languages, specifically Mandarin or Cantonese,
and, since they are rarely claim motivation from
historical phonology, seldom take a multi-lingual
or multi-dialectal approach.

While speech representation learning often serve
the aformentioned purposes, the proposals of using
neural networks to model phonetics and phonology
from either symbolic abstractions or acoustic data
in order to examine theories in these fields are rele-
vant to this study. Unsupervised binary stochastic
autoencoders were explored in (Shain and Elsner,
2019). GAN (Generative Adversarial Networks)
was used in (Begus, 2020). These proposals mod-
eled perception and categorization, in relation to
language acquisation. Most interestingly, repre-
sentation learning has been applied for discover-
ing phonemic tone contours in tonal languages(Li
et al., 2020), of which a great portion are Sinitic
Languages. However, these proposals again rarely
address issues from historical phonology.

Finally, it should be noted that the concept of
transforming porous data in a regular, matrix-like
form to a loose, graph-like form for flexibility in
processing, while essential to the designs of this
paper, is not novel in the literature. Rather, it orig-
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inates with the GRAPE framework in (You et al.,
2020). Notably, when the data in question con-
cerns Chinese historical phonology, it coincides
with Johann-Mattis List’s proposals for introduc-
ing network methods into computational linguistics
and Chinese historical phonology. Generally, this
line of work should be considered most relevant to
our study (List, 2018; List et al., 2014; List, 2015).
List (2018) approaches issues spanning character
formation, Middle Chinese annotation, as well as
Old Chinese reconstruction with network methods.
List et al. (2014); List (2015) examines dialect evo-
lution with display graphs, with a focus on the
complex word-borrowing dynamics between the
dialect families. He calls for colleagues to lend
more attention to data-driven, quantitative meth-
ods. Our proposal answers List’s call by bringing
together knowledge graphs with Chinese historical
phonology. Furthermore, the utilization of SOTA
representation learning extends beyond the scope
of the aforementioned work.

4 Method

The graph-based method for representing dialect
data has the benefit of making the model more
flexible, robust, and efficient at using porous, in-
complete data. This is particularly important since
investigations into dialects are often uncoordinated,
resulting in a large amount of partial character en-
tries, where only some columns have pronuncia-
tions while others are missing. It could be argued
that we can use missing data imputation to alleviate
the issue, and continue processing the dialect data
in a matrix form, perhaps with feed-forward neural
networks or denoising autoencoders(Vincent et al.,
2008). However, traditional missing-data imputa-
tion techniques may create fictitious syllables that
violate the phonotactics of that dialect when imput-
ing initials or finals according to the mode of a type.
Conditioning the initials or finals on each other will
cause higher-order dependencies that are hard to
solve. Therefore, by keeping the spaces untouched
and using paired comparisons, the graph formalism
circumnavigates the problem. This formulation
may also allow for auxiliary input features, such as
basic phonological knowledge about the nature of
phonemic contrast, to be injected into the model.
On this graph, we learn the embeddings with the
BoxE algorithm, to be discussed below.

4.1 Construction of a Multi-Dialectal
Knowledge Graph

Figure 2: Partial Illustration of the Phonology Knowl-
edge Graph. The numerals represent the indices repre-
senting the Chinese characters and the glyphs for what
they represent. /33/ is a tone in Chao’s notation. The
other nodes are segments represented in the Interna-
tional Phonetic Alphabet. The text labels for the edges
demonstrate the how edges are categorized according
to both dialect and phone type. Note that it is bi-partite
by nature, as edges can only occur between “phonemic”
nodes and “character” nodes, colored blue and black in
the figure.(This is not provided explicitly)

We expressed the data with a knowledge graph
and trained the representations through an auxiliary
task of completing the multi-dialectal knowledge
graph. With a graph-based technique, the represen-
tations can be more robust to noisy and porous data.
Additionally, the method will be more flexible, al-
lowing for auxiliary input features to be injected.

We construct a graph by leveraging the charac-
ters, as well as individual initials, finals and tones
from various dialects as nodes. (See Figure 2) .For
instance, the fact of character C having an initial I
in dialect D is modeled with an edge from C to I.
The edge has type specific to the dialect D and the
category of the component, which is an initial. This
edge type can be denoted as “D-initial”. Demon-
strated in Fig. 2, C could be character No. 1, when
I is /t/ and the edge is "Changsha_initial".

After constructing the graph, character-level and
component-level representations are trained simul-
taneously. The knowledge graph algorithm at-
tempts to model the nodes features as well as a
prediction function so that, when given a character
node and a type of link, the corresponding pronun-
ciation node can be predicted with maximum like-
lihood. In this process, the model implicitly gen-
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erates hypotheses about character pronunciations
missing or unseen in training, as well as historical
relationships between the syllables.

If there are M characters with readings from
N dialects involved in an experiment, the upper
bound for the number of edge types will be 3N .
Assuming that F1 + F2 + F3 unique initials, finals
and tones could be found within the aggregated
phonological systems of the N dialects, the upper
bound for number of nodes is M + F1 + F2 + F3.
The graph size scales sub-linearly with the number
of dialects, since as more dialects are considered,
their phonemic inventories will start to overlap and
exhaust.

Following convention in knowledge base re-
search, the graph is presented in Triples of Head-
Relation-Tail format.

4.2 The Box Embedding Model

In pilot tests, We considered various algorithms
from the field of graph representation learning and
knowledge base completion for application. In the
process, it is revealed that few algorithms are in-
herently suitable, as there are many subtle require-
ments in this context:

1. Models designed for knowledge graphs are
more suited to this application than general
graph learning algorithms, since the graph to
be processed is heterogeneous, besides carry-
ing edge type as information.

2. The model must have strong capacity for mod-
eling multiple unique relations between the
same two nodes. It is very common for one
character to have the same initial across differ-
ent dialects. This rules out many translation-
based models, that, when given different re-
lations, always predict different tail nodes.
Prominent examples of such models include
TransE (Bordes et al., 2013) and RotatE (Sun
et al., 2019).

3. If the model uses inverse triples as an aug-
mentation technique, then the model should
also be expressive in many-to-one and one-
to-many relations, because one initial or final
will be mapped to numerous characters.

4. Of the applicable algorithms, interpretability
should be prioritized, since we hope to extract
interpretable phonological knowledge from
the obtained representations. This casts doubt

on a another large family of knowledge graph
models, namely the bi-linear models, epito-
mized by RESCAL(Nickel et al.) and Dist-
Mult(Yang et al., 2015).

After consideration, we chose BoxE for its ex-
pressiveness and tolerance to many-to-one relation-
ships, due to its Box embedding designs. Empir-
ically, we also demonstrate that the BoxE is rela-
tively optimal for the phonological task through
comparison with RotatE (Sun et al., 2019) and
ComplEx (Trouillon et al., 2016) in Table 4.

Here is a brief description of the BoxE algorithm.
It is a translational model that embeds each node
with two vectors: ei, which represents the position
vector, and bi ∈ Rd, which represents the trans-
lational bump. These vectors are obtained after
incorporating triples into the model. Additionally,
each edge type is defined with two hyper-rectangles
r(1) and r(2) ∈ Rd. To satisfy the relation R be-
tween entity E1 and E2, there is e1+ b2 ∈ r(1) and
e2 + b1 ∈ r(2). Intuitively, this means that E1 and
E2 "bump" each other in hyperspace Rd by some
distance. If the new vectors fall within the bounds
of the associated boxes, then the proposition is con-
sidered probable. To facilitate gradient descent, the
boxes have relaxed borders. It is worth noting that
BoxE is also capable of hyper-graph learning as it
accepts higher arity relations as input, though we
did not exploit this feature for this study.

Our training objective was to maximize the score
or probability of given relations. To elaborate,
this means maximizing the chance of predicting
masked initials/finals/tones of some character in
some dialect with the unmasked components as-
sociated with that character, from both within and
without the dialect. This is analog to the compara-
tive method in Historical Phonology, as the model
implicitly reconstructs a latent "proto-language",
from which the descendent languages can be de-
duced (or, "decoded") with maximum likelihood.

5 Data and Experimental Setup

We use pronunciation data from four varieties of
Xiang Chinese Changsha長沙, Shuangfeng雙峰,
Guanyang Wenshi 灌陽文市, and Quanzhou Xi-
ancheng 全州縣城., spoken primarily in Hunan
Province, provided by CCR(Huang et al., 2011),
and retrived with Comparative analysis toolset for
Chinese dialects(Huang, 2021). We also obtain
labels of Middle Chinese readings from the same
source. In this work, Middle Chinese refers to
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the phonological system recorded in the dictio-
nary Qieyun, from the year 601 AD. It was sup-
plemented in the Song Dynasty into the dictionary
Guangyun, from which this study draws data. Mid-
dle Chinese is literary and may not reflect the col-
loquial speech of China in any time or place. How-
ever, most phonological systems of modern Sinitic
languages (with the notable exception of the Min
Languages) can be derived from the Qieyun system.
Thus we treat it as a useful protolanguge model for
most Sinitic Languages.

We operate on symbolic abstractions instead of
raw acoustic data, as all the data have been tran-
scribed into IPA in the database. One row of data
corresponds to readings of one Chinese character.
Internally, each character is mapped to a unique
identifier, which is the character’s serial number
in Guangyun. For every variety of Chinese, there
are four columns, corresponding to initial value,
final value, tonal value and tonal type of a given
character’s pronuciation. The tone type argument
is actually redundant, and it is assigned manually
by investigators. In each dialect, there is a one-to-
one correspondence between one tone value with
one tone type. Between two dialects, tones aris-
ing from the same Middle Chinese tone are given
same names. Hence, the tone type feature intro-
duces prior expert knowledge about the historical
origin of tones. However, we expect the model to
derive the historical tones without any diachronic
expert knowledge. Hence, we discard the tone type
feature, and use only the three values for this study.

5.1 Processing of Duplicate Data

Characters in Sinitic can be polyphonic, that is,
sometimes a character will be mapped to multiple
readings in one dialect. This results in duplicate
data in the dataset. For convenience, we drop the
extra pronunciations and keep only the first line
for every entry. Though, there can be ambiguity
surrounding the correspondence of readings for
polyphonic characters. For instance, the first read-
ing entry for a polyphonic character in dialect A
might be cognate with the second reading entry
for the character in dialect B. However, our naïve
approach will match all the first entries to each
other. Additionally, two dialects may inherit only
partial readings of a polyphonic character in the
proto-language. Hence, this procedure potentially
introduces erroneous alignment into the model.

5.2 Split of Training, Testing and Validating
Datasets

The model was not trained with all the data, so as
to examine the robustness of the model. Instead,
some triples are diverted to form testing and vali-
dating datasets. Unfortunately, assignment in this
context is slightly more complicated than simple
stochastic choice. There is the scenario where all
initial (final/tonal) information about one character
is diverted from training. In this case, the model
will not be able to correctly embed this character.
To circumvent this issue, we mandate that at least
one feature from any of the three compositional
types is retained in the training set for any charac-
ter. In the four Xiangyu in this case, the result is
empirically a split of 80.50%:12.52%:6.98%.

5.3 Data Statistics
The initials, finals and tones count for the four
dialects are listed in Table 1. A total of 2805 char-
acters is included, but not every character has the
corresponding phonological data documented in
every dialect. In the training set, there are 22300
entries.

5.4 Model Setup
For the parametric size of the model, see Table 2.
We employ the BoxE algorithm implemented in the
Python library PyKeen (Ali et al., 2021b,a). We did
not fine-tune the model or any model parameters,
so as to demonstrate the capability of the model in
even in a highly suboptimal setting.

Initials Finals Tones
Changsha 21 38 11
Shuangfeng 28 35 11
Guanyang 28 42 5
Quanzhou 26 43 4

Table 1: Data Statistics

Parameter Value

Vector and hyperbox dimension 64
Number of nodes 2946
Number of edge types 12
Cumulative parameter size 378624
Optimization algorithm Adam
Number of epochs 2000

Table 2: Model Parameters
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6 Experimental Evaluation

Figure 3: Preliminary Visualization of Training Dynam-
ics and Trained Embeddings.

Figure 4: UMAP(McInnes et al., 2018, McInnes et al.,
2018,Uniform Manifold Approximation and Projection)
decomposed visualizations of the translational bumps
(a) and position embeddings (b). The coloring reflects a
point’s index in the Guangyun, which is sorted accord-
ing to rhyme.

6.1 Canonical Evaluation of Model
The convergence of the model, and a preview of
the spatial distribution of embeddings can be seen
in Figure 3. The model quickly converges. The
entity plot decomposed with PCA reveals a mass
of character readings “ejecting” two groups of en-
tities, respectively the combination of all initials
and tones, and all finals, which is in accordance
with the bi-partite and heterogeneous nature of this
graph.

Canonically, BoxE is evaluated with the hit@n
metric and MRR (mean reciprocal rank) for link
prediction. On the validation set, our model
achieved hit@1:51.25%, hit@5: 87.19%, hit@10:
93.76% on the “tail” batches. The head batches are
not relevant because they involve “predicting char-
acters from initials/finals”, of which there is many
to one. In Table 4, we demonstrate empirically the
superiority of the BoxE algorithm over other com-
mon knowledge graph algorithms on this phonolog-
ical task. A clearer visualization of the embedded
points can be seen in Figure 4. Guangyun ensures
that rhyming characters (having the same final)
have similar coloring on the map. The coloring is
only a reflection of the point’s serial in the dataset

and does not have any quantitative interpretation.
Presumably, the translational bump for characters
will contain more relevant information to histori-
cal phonology, as they designate which component
types to "bump into the box." Without mention, all
experiments are carried out on the bump embed-
dings and not positions. However, empirically we
find that the two kinds of embeddings are inter-
changeable.

6.2 Examining Contrastive Information

In this section, unsupervised clustering is used to
evaluate contrastive information in the embeddings.
Based on the hypothesis that the phonological struc-
tures of the dialects are co-embedded in the latent
structure of embeddings, we determined if the high-
dimensional embeddings retain information asso-
ciated with the theoretic categories of the input
dialects, a similar task to Tilsen et al. 2021. After
applying a clustering algorithm to the embedded
characters, the information yield 1 of the found cat-
egories against input categories of initials, finals
and tones is computed. A higher information yield
indicates that the clusters found by unsupervised
clustering were more interpretable with respect to
the input phonemic categories. 2 3

The clustering algorithms used for dissecting
the cloud of embedded characters include HDB-
SCAN (McInnes and Healy, 2017,A density based
method), Affinity Propagation, K-means and Ag-
glomerated Clustering.4 The results can be seen in
Figure 5.

Affinity propagation and HDBSCAN achieved
best effects on finding interpretable clusters from
the datasets. Though, we find that HDBSCAN
is very sensitive to the two parameters: its effect
degrades when we allow for smaller clusters but
demands greater confidence on the classification.
Notably, HDBSCAN achieved an effect similar to
affinity propogation with just 29 clusters, while the
latter used 130.

The large information yields reflect that the unsu-
1Entropy subtracted by conditional entropy, or an empirical

estimate of mutual information.
2HDBSCAN sometimes refuses to classify points it is not

sure of. These points are combined into one category for the
aforementioned purpose.

3Before using HDBSCAN, UMAP was first used to reduce
the 64 embedding dimensions to 8 dimensions, with the neigh-
bour parameter set to 50. This is an advised practice from the
HDBSCAN documentation.

4The numerous methods were tried sequentially as we do
not know which algorithm best recovers the latent structure of
representations in accordance with theoretic categories.
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Figure 5: Information yield in percentage averaged across four dialects. For HDBSCAN, the min samples and
min cluster size parameters were set to 2 and 200, 5 and 75, 20 and 20 respectively. The other three methods were
employed on the original embeddings. For K-means and agglomerative clustering, the number of clusters was
specified to be 30 and 10.

pervised algorithms do tend to dissect the character
set along latent lines corresponding to phonologi-
cal opposition in the input dialects, as shown in a
partial observation in Table 3. It appears that the
distribution of finals in dialects had more influence
on the latent structure than initials or tones. Simply
put, the characters within each unsupervised clus-
ter are more likely to rhyme than alliterate, though
both cases occur in observation of the HDBSCAN
Clusters.

There are limitations to this experiment though,
which will be discussed below.

6.3 Inference of Proto-language Features

In this section, we investigate the quality of our
embeddings with respect to proto-language recon-
struction tasks, as an important potential applica-
tion of this method lies with such work. Hence, we
trained classifiers in attempt to infer labels from
Middle Chinese, which likely predates proto-Xiang,
therefore an accessible surrogate for that proto-
language.

The features to infer are Grades (等地), Voice(清
濁), Tones(聲調), She (攝, a coarse division of
finals), Initials (字母), and Mu(韻目,a fine division
of finals).

Grades are believed to be associated with me-
dials, a component in the front of the final (amal-
gamated with final in Xiangyu data). Voice is a
division based on properties of the initial, in which

voiced consonants, voiceless unaspirated conso-
nants, voiceless aspirated consonants and nasal
consonants are distinguished. For tones, in Middle
Chinese, there were four: level, rising, departing,
and entering. Of these categorical labels, there are
respectively 4, 4, 4, 16, 36 and 206 unique classes.
5

For this experiment, a train-test split of 0.67-
0.33 was instated. Since phonological evolution is
quite regular and systematic, we should expect de-
cent results without a great proportion of data used
for training. Accuracies below are for the test set.
These values are consistently higher than a naïve
baseline of guessing the mode of each distribution,
proving that proto-language related features were
preserved in the retrived embeddings. (See Table
5.)

The MLP generally outperforms Ridge Classi-
fication on inference for these characters, with
the sole exception of tones, where RC outper-
forms MLP by 1.1%. The best results are attained
for tones and voice, showing these features to be
phonologically well preserved from Middle Chi-
nese to Xiang languages.

Interesting observations can be drawn from the
confusion matrices generated with such classifica-
tion. Presumably, these matrices can offer insight

5Canonically so, but there are a few erroneous entries in
the data we used, resulting in sometimes one or two extra
categories containing a few characters. They were kept.
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ID Changsha Shuangfeng Guanyang Quanzhou
0 Initial:/m/ Initial:/m/ Initial:/m/ Initial:/m/
1 Initial:/ph/ Initial:/ph/ Initial:/ph/ Initial:/ph/
2 Final:/ĩn/ Final:/ĩ/ Final:/ iẼ/ Final:/ ieN/
7 Final:/(u)ei/ Final:/ui/ Final:/ uEi/ Final:/uei/

Table 3: Analysis of Selected HDBSCAN Clusters. In these clusters, characters are predominantly, but not
exclusively associated with the listed features.

Alg. (Metric %) Hit@1 Hit@5 Hit@10
BoxE 51.25 87.19 93.76
RotatE 33.11 57.47 66.18
ComplEx 9.40 24.65 35.37

Table 4: An empirical demonstration of the superiority
of the BoxE algorithm for the phonological investigation
task among common missing link prediction methods.
The models were set to the same embedding dimension.
None of the models were fine-tuned or ran for more
than a single time, hence all readings should be seen as
sub-optimal.

into what categories were blended, which opposi-
tions were lost during the development of some lan-
guage family. One such example is demonstrated
in Figure 6. It could be seen that there is large
confusion between the Xian咸, Dang宕 and Shan
山 Shes, and also between Xie蟹 and Zhi止 Shes.
6 This could indicate that in Proto-Xiang, there
is confusion between these categories relative to
Middle Chinese.

Figure 6: Confusion matrix for She.

6In Baxter’s transcription,咸 = -eam,宕 = -ang,山 = -ean;
蟹 = -ea,止 = -i (Baxter and Sagart, 2014). There are only
hypothetical IPA values available for these archaic categories.

7 Discussions

Our current setting only operates on pre-abstracted
symbols and lacks incorporation of acoustic or
articulatory evidence. Incorporating multi-modal
data into a knowledge graph framework could en-
hance the quality of embeddings and enable more
accurate representations of phonological features.
Alsp, the proposed method uses shared embed-
dings for symbolic components across different
dialects, which cannot fully capture dialect-specific
variations. Investigating contextualized or dialect-
specific component embeddings could improve the
model’s ability to capture finer-grained phonologi-
cal distinctions. Finally, phonetically similar com-
ponents are currently treated as independent items,
which is too absolute an assumption. However, it
is also possible for phonetic cues to override the
correct phonological alignment in the model. In
many cases, phonetic similarity does not imply
diachronic homology. Two phonetically equiva-
lent syllables from two different dialects may have
different origins. Conversely, two phonetically dis-
tinct syllables from two different dialects may be
cognate. The subtle balance between "phonetic"
and "phonological" proximity requires further dis-
cussion.

Several lines of research may benefit from ro-
bust multi-dialectal representations. In dialectol-
ogy, there is need for estimating divergence be-
tween phonological systems. That includes the
divergences between its constituents, such as indi-
vidual characters, phonemes and syllables. With
multi-dialectal representations, this divergence can
be estimated quantitatively. In historical phonology,
the reconstruction of a proto-language demands
deep scrutiny of dialect systems whose efficiency
can be improved with manipulating the representa-
tions. Also, they can be used for completion of the
phonological knowledge base. Often knowledge
bases for Sinitic phonology are fragmented, due to
imperfect surveys and heterogeneity of sources, etc.
The representations can be used to infer missing
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Algorithm(Acc %) Grades Voice Tones She Initials Mu
Ridge Classification 65.3 76.4 84.1 54.6 49.4 18.6
MLP 70.5 81.1 83.0 61.4 53.2 26.9
Naïve Baseline 48.4 35.4 35.6 15.3 8.1 1.8

Table 5: Comparison of Ridge and MLP probes for proto-language Feature Inference. The baseline is the accuracy
obtained by uniformly guessing the most frequent class for each character.

pronunciations in different dialects to improve the
quality of observations.

The graph-based method proposed in this pa-
per benefits from phonological characteristics spe-
cific to Sinitic languages, but is also limited by
these characteristics. Specifically, the process of
constructing a phonological graph from words, as
proposed in this study, is less natural in languages
where words typically have many syllables, and
vary in the number of syllables contained. In these
languages, the temporal interaction of syllables
within a word is a new phenomena that the graph-
based method needs to adapt to. Additionally, in
these languages, it will be less straightforward to to-
kenize the words into expressive sub-words to use
as nodes in the graph. Presumably, in non-Sinitic
languages, the proposed method will be most per-
formant in other languages of the Southeast Asian
Sprachbund, such as those in the Hmong-Mien
or Austroasiatic families. These languages share
phonological features with Sinitic languages that
enable our method. On the other hand, this method
will likely meet more complications outside of the
local sprachbund.

8 Conclusion

This paper demonstrated the potential of graph-
based representation learning in Chinese Historical
Phonology. The representations are potent in many
ways, i.e. facilitating the reconstruction of minor
proto-languages.

In the future, more sophisticated techniques such
as deep learning models could be explored to fur-
ther improve the quality of the obtained represen-
tations. Furthermore, the proposed method can be
integrated with other linguistic resources, such as
recordings, articulatory time series, or orthographic
corpora, to enrich the knowledge base and improve
the accuracy of reconstructions. With the develop-
ment of modern, massive linguistic datasets such
as Nk2028(nk2028, 2020), CogNet(Batsuren et al.,
2022) or MorphyNet(Batsuren et al., 2021) as well
as improvements in large pre-trained models, we

can expect foundational models that possess emer-
gent and meta-generalizing capabilities to arise in
historical phonology or morphology. This avenue
of research holds great promise for advancing our
understanding of the phonology and evolution of
Sinitic languages, and potentially other language
families as well.

Limitations

This study stems from a novel idea for Chinese
Historical Phonology Studies. As few direct pre-
decessors could offer hindsight, there are quite a
few limitations to this study that may be addressed
with further work.

1. While the initial-final-tone decomposition is
convenient in this context, it also limits the
transferrability of the proposed tool to lan-
guages outside of the Sinosphere. This calls
for further exploration of more generalize-
able approaches to phonological representa-
tion learning.

2. Polyphonic characters were not fully uti-
lized in the study, and their alignment per-
reading and tokenization into separate identi-
fiers should be considered in future work.

3. Finally, making full use of the dataset is cru-
cial, and the stochastic train-test split used
in this study may leave out important hints.
Alternative sampling strategies, such as cross-
validation or bootstrapping, could enhance the
robustness of the results.
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Abstract
In recent years, pre-trained language models
have garnered significant attention due to their
effectiveness, which stems from the rich knowl-
edge acquired during pre-training. To mitigate
the inconsistency issues between pre-training
tasks and downstream tasks and to facilitate the
resolution of language-related issues, prompt-
based approaches have been introduced, which
are particularly useful in low-resource scenar-
ios. However, existing approaches mostly rely
on verbalizers to translate the predicted vocab-
ulary to task-specific labels. The major limi-
tations of this approach are the ignorance of
potentially relevant domain-specific words and
being biased by the pre-training data. To ad-
dress these limitations, we propose a frame-
work that incorporates conceptual knowledge
for text classification in the extreme zero-shot
setting. The framework includes prompt-based
keyword extraction, weight assignment to each
prompt keyword, and final representation es-
timation in the knowledge graph embedding
space. We evaluated the method on four widely-
used datasets for sentiment analysis and topic
detection, demonstrating that it consistently
outperforms recently-developed prompt-based
approaches in the same experimental settings.

1 Introduction

Numerous studies have achieved great success in
applying supervised natural language processing
(NLP) techniques to address a plethora of NLP
applications, including text classification (Dong
et al., 2019), natural language inference (Wang
et al., 2020) and neural machine translation (Mi
et al., 2016). However, achieving high accuracy
with deep learning models for textual data analysis
necessarily requires a large amount of manually
annotated samples, which is both time-consuming
and labour-intensive.

To address the issues in low-resource settings,
considerable attention has been paid to the pre-
trained language models (PLMs), such as GPT-3

<mask>No apparent joy.

MLM
head

It was

bad
terrible
…
good
awful

Pos
Neg

Vocab

Labels

…

Figure 1: An example of prompt-based text classifica-
tion for the binary sentiment analysis task.

(Brown et al., 2020), BERT (Devlin et al., 2019),
and Roberta (Liu et al., 2019), due to their superior
performances on knowledge transfer. The model
pre-training stage typically involves language mod-
elling tasks, i.e., word prediction based on the con-
text of the input. Extensive investigations, e.g.,
knowledge probing, on PLMs show that they have
a certain capacity to store both linguistic and rela-
tional knowledge from large-scale corpora of gen-
eral domain data (Petroni et al., 2019).

In recent years, the paradigm of NLP has been
shifted from “pre-train and fine-tune” to “pre-train
and prompt” (Liu et al., 2023), to fully exploit these
PLMs in a gradient-free manner and effectively mit-
igate the gap between pre-training tasks and down-
stream tasks for the extreme zero-shot scenario
(Yin et al., 2019). Specifically, in the prompt-based
approaches (Schick and Schütze, 2021; Min et al.,
2022; Gao et al., 2021a), each sample in NLP tasks
can be wrapped into cloze-style questions with their
corresponding templates, prompting the PLMs to
generate the targeted output to solve the problem.
For example, in a binary sentiment analysis task
(shown in Figure 1), the text “no apparent joy” is
transformed to the prompt-augmented input “no ap-
parent joy. It was <mask>.”, where the <mask> is
a special token to be predicted by the PLMs. This
text will then be labelled as positive or negative
according to the predicted words. Most existing
works utilize a verbalizer to provide the translations
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from the predicted vocabulary to the label space in
a specific task (Schick and Schütze, 2021). How-
ever, these approaches are subject to two significant
limitations: (i) by only considering a limited set
of pre-defined label words filled in the masked po-
sition, some potentially relevant or useful words
in the certain domain could be ignored, hindering
the model’s capacity to generalize; and (ii) the pre-
training data of PLMs may contain biases that are
reflected in the model’s predictions on downstream
tasks (Zhao et al., 2021). Some works propose
calibration strategies to adjust the distribution of
prior probabilities (Hu et al., 2022), which requires
access to a large amount of data in specific datasets
for true estimation.

In this work, we propose a framework to perform
prompt-based zero-shot text classification with con-
ceptual knowledge and overcome the above limita-
tions. The proposed framework includes prompt-
based keyword extraction, weight assignment to
each keyword in the meaningful semantic space,
and final representation estimation. Specifically, in
the weight assignment component, by leveraging
the contextual relationships captured by SimCSE
(Gao et al., 2021b), a powerful contrastive learning
model, we refine the probabilities of each keyword
being filled in the masked position from the lan-
guage prompt to mitigate the bias. Additionally, in
the final representation, we integrate structured fac-
tual data provided by the knowledge graphs (KGs)
to include a wider range of semantic relationships
between entities in a given domain. By combining
their strengths, the proposed framework enables
more informed predictions and a richer understand-
ing of the underlying domain. In the experiment,
we strictly follow the “label-fully-unseen” setting
proposed by Yin et al. (2019) for evaluation. We
employ four widely-used text classification datasets
and compare the proposed framework with sev-
eral recently-developed prompt-based approaches
under the same experimental settings. The result
indicates that our proposed framework brings sig-
nificant improvement to the model performance.

2 Related Works

Language prompt has been introduced to elicit
knowledge from PLMs to solve different NLP
tasks, which was inspired by a series of works re-
lated to prompt-based approaches, including GPT-3
(Brown et al., 2020) and PET (Schick and Schütze,
2021). However, one issue under the zero-shot set-

ting identified by Chen et al. (2022) is the lack of
domain adaptation. They performed prompt-aware
continual pre-training based on adaptively retrieved
data for better performance on text classification
tasks. To widen the coverage of label words, Hu
et al. (2022) incorporated external knowledge bases
for the verbalizer construction, which greatly im-
proved the stability.

The above-mentioned works used hand-crafted
prompt templates, particularly designed by humans
for various NLP tasks. While they are carefully
constructed, the process requires a considerable
amount of human effort. Several automatic prompt-
ing techniques were introduced to automatically
select a prompt based on the input provided to
the PLMs. Gao et al. (2021a) suggested to em-
ploy a pre-trained text-to-text transformer, T5 (Raf-
fel et al., 2020), for candidate template genera-
tion. The best language prompt can be derived
after the evaluation of each candidate template.
Shin et al. (2020) proposed a gradient-based ap-
proach to search for a set of impactful tokens as
the prompts that can cause significant changes in
the model’s output. Nevertheless, the quality of
the automatically generated prompt usually cannot
be guaranteed, and this approach lacks sufficient
interpretability. Besides discrete prompts, research
such as (Li and Liang, 2021) and (Gu et al., 2022)
presented continuous prompts as prefixes to the
input, which are continuous vectors that can be
learned based on patterns and structures from the
data. This approach avoids the hassle of explicit
prompt design while it introduces a large number
of new parameters to be optimized.

3 Methodology

We propose a prompt-based approach to tackle the
zero-shot text classification problem. The overall
framework is shown in Figure 2. We first extract
the keywords to summarize the input text with the
prompt-based approach. Then, we assign weights
to these keywords based on their semantic rele-
vance to the overall meaning of the text. The
weighted embeddings of all extracted keywords
in the knowledge graph (KG) embedding space are
aggregated to produce the final representation of
the input text. Finally, we determine if the text
is related to a label in the KG according to their
cosine similarity. In the following subsections, we
describe the task definition in the extreme zero-shot
setting, prompt-based keyword extraction, weight
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assignment and final representation estimation in
the constructed KG embedding space.

3.1 Task Definition

Given n textual inputs X = {x1, x2, ..., xn}, the
aim of the text classification task is to assign each
input x a label y from a fixed label set containing
m labels, i.e., Y = {y1, y2, ..., ym}. Unlike the
label-partially-unseen zero-shot text classification,
where a part of labelled data is available for model
training or fine-tuning on a specific domain, in this
work, all samples are unseen, and only the label
names from the label set Y can be accessed in ad-
vance. In order to achieve this goal, it is essential to
ensure that the aspect being described in the input
text and the meanings of the labels are comprehen-
sible to the framework (Yin et al., 2019).

3.2 Prompt-based Keyword Extraction

To remove noise and preserve the most relevant
information, keyword extraction from the input
text can summarize its main content and identify
the most important concepts. The meaning of an
expression, particularly its implicit meaning, can
often be inferred from the context in which it is
used. Therefore, we first employ a contextualized
pre-trained masked language model, denoted as
M, for prompt-based keyword extraction. This
model has an MLM head on top of the transformer-
based architecture, and consequently, it reduces the
text classification to the MLM problem with a task-
specific template t, which is either added at the
beginning or the end of the original input to form
a prompt-augmented input. The template includes
a mask token <mask>, and the probability of each
word v from vocabulary V being filled in this posi-
tion can be predicted byM. The most likely words
generated in this manner are somewhat relevant
to the input context, as the model integrates con-
textual information to make predictions. We then
construct a keyword set for x, namely, Vx, i.e.,

Vx = topK
v∈V

[PM (<mask> = v|[x; t])] (1)

where [x; t] is the prompt-augmented input for x.
PM(|·) is the conditional probability generated by
the MLM head ofM. According to the observa-
tions by Meng et al. (2020), the top 50 probable
words usually well represent the mask. Hence, we
set the parameter K to 50.

3.3 Weight Assignment
To estimate the text representation for the input,
each word in the Vx should be associated with a
weight, indicating relevance and importance to the
original textual input. Directly using the probability
output by the MLM head could be one possible
solution. However, the masked language model
may produce a biased probability distribution over
the keyword set.

To address this issue, we utilize SimCSE (Gao
et al., 2021b), a Siamese network for simple con-
trastive learning, to assign weights to each word.
SimCSE employs entailments and contractions
from natural language inference (NLI) datasets
as supervised signals. In contrastive loss, the
premise and entailment hypothesis are consid-
ered positive pairs, while in-batch negatives and
contradiction hypothesis are treated as negative
pairs. This approach helps align semantically simi-
lar sentence embeddings while separating contra-
dicted/unrelated sentence embeddings.

We use the encoding function for SimCSE fθ(·),
parametrized by θ, to transform both the original
input x and a template in which the mask token
has been replaced by the k-th word in Vx, denoted
as t̃k, into a meaningful semantic space. We then
assign the weight wi to the i-th word in Vx based
on the similarity between t̃i and x, i.e.

wi =
esim(fθ(x),fθ(t̃i))

∑K
k=1 e

sim(fθ(x),fθ(t̃k))
(2)

where sim(·) is the cosine similarity function.

3.4 Final Representation in Knowledge Graph
Embedding Space

As for the extreme zero-shot scenario in our work,
ideally, each label y in the label set Y should be
equipped with auxiliary information, e.g., a textual
description and hand-engineered attributes. Never-
theless, such information available for a particular
task is usually limited and may not provide a pre-
cise description of the label. Fortunately, there is a
source of external knowledge that can be applied
with little human effort – KGs. ConceptNet (Speer
et al., 2017) is a type of KG that organizes and
represents linked open data regarding real-world
entities and their relations, offering rich structured
knowledge at the conceptual level for the labels.

To leverage the knowledge from the ConceptNet,
a process called retrofitting (Faruqui et al., 2015)
is used to refine the pre-trained distributional word
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Figure 2: Overall framework of our proposed method

embeddings. The idea is to bring the embeddings
of connected entities in the KG closer while main-
taining the original distributional ontology (Speer
et al., 2017).

The following objective function is minimized
to construct the KG embedding space based on the
entity set, denoted as Vent:

∑

vi∈Vent


 ∑

(vi,r,vj)∈E
λr (vi − vj)

2 + ηi (vi − v̂i)
2




(3)
where E is the triplet set of the KG, consisting of
two entities vi and vj linked by their relation r, i.e.,
(vi, r, vj), and λr is the corresponding weight for
r. vi is the updated KG graph embedding for the
entity vi. v̂i stands for the original word embed-
ding of vi and ηi controls the associative strength
between v̂i and vi. For simplicity, we applied the
alignment by the name to align the entity in Vent

with a word in V .
To estimate the final representation in the KG

embedding space for input text x, we integrate the
conceptual representation of each keyword vi in Vx
based on semantic relevance between vi and x. Our
assumption for the multi-class classification task is
that the content of input text should remain within
its desired label and not be relevant to any other
labels in the label set. Therefore, the label with the

highest similarity to this representation, among all
labels in Y , is then selected as the predicted label,
denoted by ŷ, i.e.

ŷ = argmax
y∈Y


sim


vy,

∑

vi∈Vx
wivi




 (4)

where vy is the label embedding for y in the KG
embedding space.

4 Preliminary Results

4.1 Datasets
We conducted experiments on four commonly used
text classification datasets, including two sentiment
analysis datasets (SST-2 (Socher et al., 2013) and
Yelp-polarity (Zhang et al., 2015)) and two topic
detection datasets (AG’s News (Zhang et al., 2015)
and DBPedia (Lehmann et al., 2015)). We adopted
the prompt templates from (Chen et al., 2022) for
better comparison. For each dataset, we evaluated
our method on different templates and reported
their average accuracy along with standard devia-
tion. The statistics and example prompt templates
of these datasets are listed in Table 1.

4.2 Setup
For the prompt-based keywords extraction and
weight assignment, we made use of roberta-large
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Datasets #Samples #Classes Type Example Prompt
SST-2 1,821 2 Sentiment All in all, it was <mask>
Yelp-polarity 38,000 2 Sentiment All in all, it was <mask>
AG’s News 7,600 4 Topic This topic is about <mask>
DBPedia 70,000 14 Topic Introduction to the <mask>

Table 1: Statistics of datasets and example prompt templates used in our work.

models with transformers1 and simcse2 libraries.
We used the latest version of ConceptNet (5.7) 3

for KG embedding space construction.
We implemented our method with PyTorch 1.5.0

and Python 3.6 on IBM Power 9 architecture. The
inference process was accelerated on an NVIDIA
Tesla V100 Volta GPU card with 32GB of graphics
RAM.

4.3 Main Results
We compared the results with those produced by
several prompt-based methods for text classifica-
tion introduced recently, which share the same ex-
treme zero-shot setting. The main results on the
four datasets are shown in Table 2. Channel is
the noisy channel approach based on GPT-2 pro-
posed by Min et al. (2022). GPT-3 refers to the
work of Zhao et al. (2021) that calibrated the prob-
ability distribution with a content-free input. The
results of applying Roberta for prompt-based text
classification were reported by Chen et al. (2022).
AdaPrompt (Chen et al., 2022) refers to the method
that adaptively retrieves data from large-scale cor-
pora for continual pre-training, and iAdaPrompt is
the process of iterative adaption.

It is clear that the proposed method outper-
formed the baselines on all datasets, providing a
performance gain of 13.88% and 5.31% on Yelp-
polarity and AG’s News datasets, respectively. An-
other notable observation from the main results is
that our method has significantly lower standard
deviations in comparison with Roberta, AdaPrompt
and iAdaPrompt, suggesting that it is more stable
when using different prompt templates for text clas-
sification.

4.4 Ablation Study
We also carried out ablation experiments to ex-
plore the effectiveness of weight assignment and
KG embedding space construction in the proposed

1https://huggingface.co/transformers
2https://pypi.org/project/simcse/
3https://github.com/commonsense/conceptnet-

numberbatch

framework. The result of the study is shown in
Table 3.

Instead of assigning weights to each keyword
based on their importance and relevance as ex-
plained in Section 3.3, we directly utilized proba-
bilities of masked token output by the MLM head.
This resulted in a slight decrease in performance,
with an average accuracy drop of 0.87%. Then, we
replaced the KG embeddings for text representation
estimation with another semantically consistent em-
bedding, GloVe (Pennington et al., 2014), which is
solely based on the word co-occurrence in the pre-
training corpus. We observe significant decreases
in accuracy on AG’s News and DBPedia datasets
by 19.3% and 14.4%, respectively. This indicates
that, compared with distributional semantic embed-
ding space, incorporating knowledge to construct
KG embedding space can greatly enhance the per-
formance of text classification, especially on topic
detection datasets.

4.5 Visualization

To further understand the weight assignment, we
provided the visualization (shown in Figure 3) of
each extracted keyword from examples in topic
detection datasets. We arranged these words in
descending order of probabilities output by the
MLM head. The colour depth denotes the impor-
tance of each word according to the given context.
As can be seen, many of the most significant key-
words (indicated as dark colours) were correctly
highlighted. For example, “rocket”, “space” and
“launch” in AG’s News example; “store”, “com-
pany” and “business” in DBPedia example. We
also observed that some less related or wrongly-
predicted words could be detected by the model.
For example, the DBPedia example mainly de-
scribes a game company, even though the words
like “author” and “blog” predicted by the MLM
head are at the top of the list, they were assigned
with low weights (indicated as light colours) in the
weight assignment process, which makes reason-
able amendments to the prompt-based keywords
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Models SST-2 Yelp-polarity AG’s News DBPedia
Channel (Min et al., 2022) 77.10 (N/A) – 61.80 (N/A) 51.40 (N/A)
GPT-3 (Zhao et al., 2021) 75.80 (0.00) – 73.90 (0.00) 59.70 (0.00)
Roberta (Chen et al., 2022) 64.56 (16.77) 72.63 (6.34) 69.52 (6.96) 56.32 (0.49)
AdaPrompt (Chen et al., 2022) 75.92 (17.36) 75.09 (17.57) 76.55 (7.28) 70.95 (8.80)
iAdaPrompt (Chen et al., 2022) 77.18 (17.96) 75.81 (18.05) 74.28 (9.00) 73.01 (6.70)
Ours 80.62 (10.08) 89.69 (2.81) 81.86 (0.75) 73.77 (2.55)

Table 2: Main results on four commonly-used datasets. We report the average accuracy on different templates and
the corresponding standard deviation, which is indicated in brackets.

SST-2 Yelp-polarity AG’s News DBPedia
Ours 80.62 (10.08) 89.69 (2.81) 81.86 (0.75) 73.77 (2.55)

-WA 79.42 (10.91) 88.82 (3.08) 81.65 (0.79) 72.59 (2.86)
4 -1.20 -0.87 -0.21 -1.18

-KG 77.58 (10.27) 86.61(4.03) 62.35 (16.16) 58.19 (6.49)
4 -1.84 -2.21 -19.3 -14.4

Table 3: Ablation study. “-WA” means that we directly use the output probability from the MLM head, and “-KG”
means that, for final representation estimation, we employ the distributional semantic embedding space rather than
KG embedding space.

extraction.
We also demonstrated an example of KG embed-

dings to show how knowledge integration can help
language understanding in Figure 4. We randomly
selected a number of generated keywords from sam-
ples labelled as “sport”,“politics”, “business” and
“technology”, and utilized the visualization tool,
t-SNE4, to visualize their corresponding entity em-
beddings in the two-dimensional space. The colour
of each point in the figure indicates the label of the
sample from which the keywords were generated.
It is observable that entity embeddings assigned to
different labels are well distributed across the KG
embedding space, indicating that knowledge inte-
gration can help capture diverse conceptual aspects
of the entities. On the contrary, the embeddings as-
signed to the same label are well clustered, suggest-
ing that entities with similar properties are mapped
closely together in the KG embedding space.

5 Conclusion

We proposed a prompt-based framework to tackle
the text classification problem in the extreme zero-
shot setting. We exploited the PLM to extract key-
words from input, assigned their weights in the
meaningful semantic space and incorporated con-
ceptual knowledge from ConceptNet to estimate
the final representation. Evaluation results showed

4https://lvdmaaten.github.io/tsne/

that the method reduced the biases of the MLM
head and generalized well on two topic detection
and two sentiment analysis datasets, outperform-
ing several recently-developed prompt-based ap-
proaches.

Limitations

The current work has several limitations that war-
rant further investigation. Firstly, due to time con-
straints, we did not conduct experiments using the
proposed framework on few-shot settings or a more
challenging multi-label classification task. Sec-
ondly, our ablation study in Section 4.4 showed that
the framework with the weight assignment resulted
in only a marginal improvement in performance,
suggesting that SimCSE may not be the most effec-
tive method for addressing prediction bias. There-
fore, future work will explore alternative modeling
approaches for bias reduction. Thirdly, in Sec-
tion 4.5, we noticed that several irrelevant words
are also generated as keywords with the language
prompt, which may negatively impact the final rep-
resentation. To address this issue, a better solution,
such as keyword filtering, should be considered to
improve the current framework. Lastly, we treated
each word as a single atomic entity in the KG em-
bedding space, regardless of its possible different
senses or meanings. A more careful treatment of
word meanings is necessary to handle the problem
of polysemy.
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space news science rocket space launch nasa space commercial aerospace
technology featured news human exploration competition military innovation entertainment international
business earth events engineering news personal education progress miscellaneous sports
mars aviation enterprise discovery challenges research games transportation news robotics
tech bold planetary humans lunar rockets astro physics ideas flight

The Race is On: Second Private Team Sets Launch Date for Human Spaceflight (SPACE.com) SPACE.com - TORONTO, Canada -- A 
second\\team of rocketeers competing for the  #36;10 million Ansari X Prize, a contest for\\privately funded suborbital space flight, has 
officially announced the first\\launch date for its manned rocket.

(a) AG’s News example

company website sponsor site company site game business store publisher
show website author team sponsor community blog podcast business group
store brand shop competition label games owner manufacturer series players

publication franchise club game campaign goods blog team industry firm
vendor league corporation partnership scene contest app organization promotion developer

The GOAT Store (Games Of All Type Store) LLC is one of the largest retro gaming online stores and an Independent Video Game Publishing 
Label. Additionally, they are one of the primary sponsors for Midwest Gaming Classic.

(b) DBPedia example

Figure 3: Weight visualization examples from two topic detection datasets. The Byte-Pair Encoding (BPE) algorithm
for the Roberta model may generate words that have their first letters capitalized or a special symbol added as the
prefix. After the generation, we replace them with the names of the entities that they actually refer to in the KG.
Therefore, there are several duplicates in the keyword set.
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Figure 4: KG embedding visualization. We randomly select several generated keywords from samples labelled
as “sport”, “politics”, “business” and “technology”, and utilize the visualization tool, t-SNE, to visualize their
corresponding entity embeddings in the two-dimensional space. The colour of each point indicates the label of the
sample from which the keyword was generated.
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Abstract

This paper investigates the effect of tokenizers
on the downstream performance of pretrained
language models (PLMs) in scriptio continua
languages where no explicit spaces exist be-
tween words, using Japanese as a case study.
The tokenizer for such languages often consists
of a morphological analyzer and a subword tok-
enizer, requiring us to conduct a comprehensive
study of all possible pairs. However, previous
studies lack this comprehensiveness. We there-
fore train extensive sets of tokenizers, build a
PLM using each, and measure the downstream
performance on a wide range of tasks. Our re-
sults demonstrate that each downstream task
has a different optimal morphological analyzer,
and that it is better to use Byte-Pair-Encoding
or Unigram rather than WordPiece as a sub-
word tokenizer, regardless of the type of task.

1 Introduction

Tokenization is the first key procedure in current
natural language processing when inputting a tar-
get sentence to a pretrained language model (PLM).
It generally splits an input sequence into subword
units, where a subword is a fraction of a word.
Previous efforts have proposed several subword-
tokenization algorithms (hereafter, subword tok-
enizers), such as Byte-Pair-Encoding (BPE) (Sen-
nrich et al., 2016), WordPiece (Schuster and Naka-
jima, 2012), and Unigram (Kudo, 2018), and dif-
ferent PLMs use different subword tokenizers.1

It is widely acknowledged that tokenization af-
fects the downstrem performance of PLMs (Rust
et al., 2021; Gow-Smith et al., 2022; Bostrom and
Durrett, 2020; Park et al., 2020; Toraman et al.,
2022). The majority of the previous studies have fo-
cused on languages with explicit word boundaries,
such as English, while research on scriptio con-

* Work done while interning at Hitachi, Ltd.
1For example, BERT (Devlin et al., 2019) uses WordPiece,

and GPT-3 (Brown et al., 2020) uses byte-level BPE.

English:

Original text

Step 1: Morphological analysis (Splitting into “word-level” semantic units)

私は形態素解析器の研究をしています。

I_am_doing_research_on_morphological_analyzers.

I morphological

私 / は / 形態 / ##素 / 解析 / 器 / の / 研究 / を / し / て / い / ます / 。
I / am / doing / research / on / morphological / analyze / ##rs / .

私_は_形態素_解析_器_の_研究_を_し_て_い_ます_。

analyzers on research am doing

Step 2: Subword tokenization

Scriptio continua languages (Japanese):
“_” and “/” denote a space and a subword boundary, respectively.

Figure 1: Typical tokenization procedures in both scrip-
tio continua languages and English

tinua languages, or languages without word bound-
aries (like Japanese, Chinese, and Thai), is still
understudied. The tokenization process in scriptio
continua languages traditionally involves morpho-
logical analysis, which splits the input text into
morphemes (semantic units similar to words in
English) using the dictionary designed by human
experts (see Step 1 in Figure 1 for an example). In
this case, a tokenizer for a PLM consists of a mor-
phological analyzer and a subword tokenizer. To in-
vestigate the impact of tokenization in this scenario,
we need to perform a comprehensive study on sev-
eral sets of the available pairs, which is lacking
in the previous work (Bostrom and Durrett, 2020;
Inoue et al., 2022; Lowphansirikul et al., 2021).

In this paper, we investigate the effect of tokeniz-
ers on the downstream performance of PLMs in
scriptio continua languages, focusing on Japanese
as a case study. We train an extensive collection
of tokenizers consisting of known morphological
analyzer and subword tokenizer pairs, use them to
pretrain and fine-tune BERT models, and measure
their performance on a variety of downstream tasks.
On the basis of the experimental results, we address
the following three research questions. We first try
to answer if we should use a morphological ana-
lyzer2 in a scriptio continua language (Japanese)

2Not using a morphological analyzer means that we apply
subword tokenization directly, the same as in cross-lingual
PLMs such as XLM-R (Conneau et al., 2020).
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(RQ1). RQ2 and RQ3 each examine whether dif-
ferent morphological analyzers/subword tokenizers
perform differently on a downstream task.

Contributions 1) We test a comprehensive set of
known morphological analyzer and subword tok-
enizer pairs and use various downstream tasks to
clarify the effect of tokenizers on the downstream
performance of Japanese PLMs. 2) Accordingly,
we find the followings:

• We should use a morphological analyzer for
Japanese.

• Each task seems to have its own optimal mor-
phological analyzer(s).

• It is better to use either BPE or Unigram as a
subword tokenizer rather than WordPiece.

3) We publicly release the code and PLMs.3

2 Japanese Tokenizer

In this section, we explain the morphological ana-
lyzers and subword tokenizers used in this paper.

2.1 Japanese Morphological Analyzers

Japanese morphological analyzers are based on ei-
ther a pointwise or sequence prediction method.
The former tokenizes a sentence by extracting fea-
tures from the characters within a pre-defined win-
dow and then predicting if a boundary exists be-
tween each character using a classifier. The latter
first constructs a lattice from an input sentence on
the basis of a pre-defined dictionary, where each
path in the lattice represents a candidate token se-
quence and has a cost, and then selects the path
with the lowest cumulative cost as the analysis
result.4 We obtain a cost for each path using a
statistical model(s) or a hand-crafted dictionary.

We test the following four widely used morpho-
logical analyzers: MeCab M⃝ (Kudo et al., 2004),
Juman++ J⃝ (Tolmachev et al., 2018), Sudachi

S⃝ (Takaoka et al., 2018), and Vaporetto V⃝ (Akabe
et al., 2022). The first three adopt sequence predic-
tion while the last uses pointwise prediction.5

2.2 Subword Tokenizers

We compare the following three tokenizers: BPE
(B), WordPiece (W), and Unigram (U), each of

3Available at https://github.com/hitachi-nlp/
compare-ja-tokenizer.

4Since it is intractable to compute costs for all candi-
date paths, previous studies have used either the Viterbi algo-
rithm (Viterbi, 1967) or beam search to select a path.

5For more details, refer to Appendix A.

which differs in either vocabulary construction, tok-
enization algorithms, or both. These tokenizers are
empirically known to produce different subword
boundaries (Bostrom and Durrett, 2020).

Vocabulary Construction BPE constructs the
vocabulary by merging and adding a pair of existing
tokens with the highest score in the dictionary until
the total number of tokens in the dictionary reaches
a pre-defined size. The score is calculated based on
the frequency of the existing tokens. WordPiece is
similar to BPE but calculates the score based on the
frequency of a symbol pair and the individual fre-
quencies. Unigram heuristically builds a large seed
vocabulary from a training corpus (e.g., by taking
the most frequent substrings) and then iteratively
removes the least important symbols from the vo-
cabulary. Specifically, it first fits a unigram LM for
the current vocabulary and then computes (i) the
log likelihood of the training corpus with the LM
and (ii) that of the training corpus with the LM after
removing a particular symbol. It then sets (i)− (ii)
as the cost, which shows the degradation of the log
likelihood when the symbol is removed. Finally, it
removes the symbol with the lowest degradation.

Tokenization BPE splits a word into characters
and iteratively merges those with the most frequent
pair into larger known symbols in the vocabulary.
WordPiece6 splits a word by the longest subword
starting at the beginning of the word in the dictio-
nary and continues splitting until its end. Unigram
tokenizes a word by performing Viterbi inference to
select the maximum likelihood segmentation based
on its vocabulary and unigram LM.

3 Experimental Setup7

Tokenizers We compared a total of 12 tokenizers
(four morphological analyzers and three subword
tokenizers), as introduced in §2. We also consid-
ered three additional tokenizers not using morpho-
logical analyzers. We trained all tokenizers with
the vocabulary size of 30k utilizing 10M sentences
randomly extracted from Japanese Wikipedia.

Models We used the base configuration of BERT
(total parameters: 125M). For each tokenizer, we
pretrained BERT for 500k steps with masked
language modeling (Devlin et al., 2019) on the
Japanese Wikipedia and CC-100 (Conneau et al.,

6We follow the longest-match-first strategy used in BERT.
7For implementation details, refer to Appendix C.
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Tokenizer MARC-ja JSTS JNLI JSQuAD JCQA NER UD Avg.
Subword Morphological Accuracy Spearman Accuracy F1 Acc F1 LAS

bert-base-japanese 95.5±0.1 85.3±0.3 86.8±0.6 86.4±0.2 76.6±0.8 85.6±0.2 93.3±0.1 87.1

M⃝ MeCab 95.4±0.2 84.2±0.1 88.0±0.4 90.1±0.3 74.1±0.7 83.7±0.8 93.6±0.1 87.0
J⃝ Juman++ 95.5±0.1 84.6±0.4 87.6±0.4 90.1±0.2 73.8±0.3 85.1±0.6 93.6±0.1 87.2

BPE S⃝ Sudachi 95.5±0.1 84.2±0.2 88.2±0.3 90.2±0.2 74.2±0.6 83.5±0.6 93.8±0.1 87.1
(B) V⃝ Vaporetto 95.6±0.1 84.8±0.2 87.5±0.3 89.9±0.2 74.2±1.1 84.1±0.9 93.7±0.1 87.1

Nothing 95.4±0.2 82.8±0.2 87.2±0.2 88.7±0.3 72.8±0.8 62.9±1.1 93.4±0.1 83.3

MeCab 95.5±0.1 82.4±0.5 87.5±0.3 89.2±0.3 69.8±0.7 84.0±0.9 93.6±0.1 86.0
Juman++ 95.3±0.3 83.3±0.3 87.7±0.2 89.8±0.3 71.1±0.6 84.7±0.5 93.6±0.1 86.5

WordPiece Sudachi 95.3±0.2 83.7±0.3 87.2±0.4 89.6±0.1 70.0±0.9 82.4±0.6 94.0±0.1 86.0
(W) Vaporetto 95.3±0.2 83.6±0.1 88.0±0.4 89.7±0.2 71.0±0.4 84.0±0.8 93.8±0.1 86.5

Nothing 85.5±0.0 N/A 55.3±0.0 10.1±0.1 20.0±0.8 0.0±0.0 63.8±0.9 33.5

MeCab 95.4±0.3 84.6±0.4 88.3±0.4 89.5±0.3 74.5±0.8 83.1±1.0 93.4±0.2 87.0
Juman++ 95.4±0.2 84.3±0.3 87.8±0.3 89.9±0.2 74.9±1.2 84.1±0.4 93.4±0.1 87.1

Unigram Sudachi 95.6±0.2 84.8±0.5 88.4±0.3 89.9±0.1 74.5±0.6 83.0±1.3 93.7±0.1 87.1
(U) Vaporetto 95.5±0.3 84.6±0.2 87.9±0.3 89.9±0.1 74.3±0.8 84.1±0.4 93.7±0.1 87.1

Nothing 95.4±0.4 83.9±0.3 87.7±0.8 89.3±0.1 74.6±0.4 76.9±1.0 93.2±0.2 85.9

Statistical test results: Kruskal-Wallis test (Kruskal and Wallis, 1952). ✓ if p < .05 otherwise ✗.
RQ2: (B, W , U) (✗, ✗, ✗) (✓, ✓, ✗) (✓, ✗, ✗) (✗, ✗, ✗) (✗, ✓, ✗) (✓, ✓, ✗) (✓, ✓, ✓)
RQ3: ( M⃝, J⃝, S⃝, V⃝) (✗, ✗, ✗, ✗) (✓, ✓, ✓, ✓) (✗, ✗, ✓, ✗) (✓, ✗, ✓, ✗) (✓, ✓, ✓, ✓) (✗, ✗, ✗, ✗) (✗, ✗, ✓, ✗)

Table 1: Results from seven tasks with standard deviations over five runs. JCQA stands for JCommonsenseQA.
Values with a wavy line denote the worst results among morphological analyzers with the same subword tokenizer.
✓ indicates that there is statistical significance among (RQ2) morphological analyzers with the same subword
tokenizer or (RQ3) subword tokenizers with the same morphological analyzer, while ✗ denotes that there is no
statistical significance. For example, (✓, ✗, ✗) in RQ2 indicates that there is statistical significance between different
morphological analyzers with BPE, while no statistical significance is observed for WordPiece or Unigram.

2020) datasets, consisting of 2.2 and 1.1M samples
each with the maximum length set to 512.

Benchmarks We used the following benchmarks:
JGLUE (Kurihara et al., 2022), NER8, and Univer-
sal Dependencies (UD) Japanese-GSD (Asahara
et al., 2018).9 Since the test set for JGLUE is
not publicly available, we fine-tuned all models
on the training set using five-fold cross-validation
and evaluated their performance on the develop-
ment set. Since the development and test sets are
not available for NER, we split the training set
into 9:1. We fine-tuned the models with five-fold
cross-validation by the former and measured the
performance using the latter.

4 Results and Analysis

This section addresses the three RQs raised in §1.

RQ1: Should we use a morphological analyzer?
Table 1 lists the results on the seven downstream
tasks grouped by subword tokenizer. The average
scores across tasks (“Avg.”) show that tokenizers

8Dataset: stockmarkteam/ner-wikipedia-dataset
9We provide the description of each task in Appendix

B. For reference, we also measured the performance of
bert-base-japanese, which uses MeCab and WordPiece.

without a morphological analyzer (“Nothing”) ex-
hibited the worst results among tokenizers with the
same subword tokenizer. This trend also generally
holds for task-specific results. These results make
intuitive sense because a morphological analyzer
can provide explicit semantic boundaries of an in-
put text, making the input units for subword tok-
enization similar to English words (Figure 1). This
should help a model to capture the semantic and
syntactic information more easily and consequently
outperform those that do not use a morphological
analyzer. We therefore conclude that we should use
a morphological analyzer for Japanese.

In addition to the above, we observe that Word-
Piece + Nothing produced by far the worst results
in all tasks due to the poor tokenization. WordPiece
processes a sequence word by word and treats a
sequence without a blank as a single word. If it
fails to tokenize a particular word, it tokenizes the
“whole” as a single [UNK] token. Without a mor-
phological analyzer, the length of a word becomes
abnormally long, making WordPiece more likely
to produce an [UNK] token. This means that the
majority of an input text will be converted into
[UNK] tokens, thus losing almost all of the content
in the text. In fact, the average sequence length
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JSTS JNLI JCQA NER UD

BPE ( V⃝ > M⃝)
( V⃝ > S⃝) – – ( J⃝ > S⃝) ( S⃝ > M⃝)

( S⃝ > J⃝)

WordPiece ( S⃝ > M⃝)
( V⃝ > M⃝) – – ( J⃝ > S⃝)

( S⃝ > M⃝)
( S⃝ > J⃝)
( V⃝ > M⃝)
( V⃝ > J⃝)

Unigram – – – – –

Table 2: Combinations of morphological analyzers with
statistical significance (p < .05, Steel-Dwass test). “–”
indicates no statistical significance observed. “ A⃝ > B⃝”
indicates that morphological analyzer A⃝ is significantly
better than morphological analyzer B⃝.

and ratio of [UNK] per sample in pretraining were
1.15± 3.28 and 99.8± 4.9%, respectively. These
caused unstable pretraining (see Appendix D).

Compared with other tasks, Nothing in NER
showed a considerable performance degradation
with a maximum difference of 22.2 (Juman++ vs.
Nothing in BPE). In NER, annotations are word-
level and tend to align well with morphemes. Since
tokenizers with morphological analyzers split a
morpheme into subword tokens, they can produce
more linguistically motivated subword segmenta-
tion than Nothing, thus giving them an advantage.

RQ2: Do different morphological analyzers per-
form differently on downstream tasks? Look-
ing at the statistical test results for RQ2 in Table 110,
we can see that there were significant performance
differences between different morphological ana-
lyzers with the same subword tokenizers in some
tasks, e.g., JSTS, NER, and UD. In other words,
different morphological analyzers could perform
differently on different downstream tasks.

For tasks with statistical significance, we further
ran the Steel-Dwass test (Douglas and Michael,
1991) to see which morphological analyzer had a
significant performance difference from the oth-
ers (Table 2). We can observe task-specific trends
for an effective morphological analyzer(s). Specif-
ically, for JSTS, Vaporetto performed well. For
NER, Juman++ was effective. For UD, Sudachi
performed well. Therefore, each task seems to have
its own optimal morphological analyzer(s).

RQ3: Do different subword tokenizers perform
differently on downstream tasks? From the sta-
tistical test results for RQ3 in Table 1, we ob-
serve significant performance differences between
subword tokenizers with the same morphologi-

10Note that we omit Nothing from the following analyses.
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Figure 2: Relationship between vocabulary similarity
of subword tokenizers and their performance difference.
Samples with the same subword tokenizer are excluded.

cal analyzers in some tasks, such as JSTS and
JCQA. “Avg.” in Table 1 indicates that Word-
Piece performed poorly, while BPE and Unigram
achieved similar results. The results of the Steel-
Dwass test (Table 3) also confirmed that WordPiece
showed significant performance degradation com-
pared with either BPE, Unigram, or both in some
tasks. We did not observe a significant difference
between BPE and Unigram across all tasks. There-
fore, different subword tokenizers could perform
on downstream tasks differently, and it is better to
use either BPE or Unigram.

We next analyze and discuss which differences
in subword tokenizers produced downstream per-
formance differences. First, we look at the differ-
ence in the vocabulary of subword tokenizers. We
plot the relationship between vocabulary similarity
and performance difference between two different
subword tokenizers in Figure 2. The vocabulary
similarity of two different subword tokenizers is
computed as |V1∩V2|

|V | , where |V | is the vocabulary
size and V1 and V2 are the vocabularies of two
subword tokenizers (T1 and T2). For each task,
we computed the performance difference between
the two as 1

5 |
∑

i s1i −
∑

j s2j |, where s1i and s2j
are the i-th and j-th observed scores of T1 and
T2, respectively. We observe that symbols related
to WordPiece ( and ▲) are plotted in the upper-
left corner, while others (■) are in the lower-right
corner, indicating that WordPiece has a different vo-
cabulary composition than BPE and Unigram, and
its performance difference is far larger than that
between BPE and Unigram. These results are con-
sistent with our finding that WordPiece performed
poorly with statistical significance, and both BPE
and Unigram showed similar results. Therefore, it
is possible that the vocabulary of a subword tok-
enizer has something to do with the downstream
performance.

Further, while WordPiece uses a greedy longest-
match-first strategy in tokenizing a word, both BPE
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MARC-ja JSTS JNLI JSQuAD JCQA NER UD

MeCab – (B > W)
(U > W) – (B > W) (B > W)

(U > W) – –

Juman++ – (B > W)
(U > W) – – (B > W)

(U > W) – –

Sudachi – (U > W) (U > W) (B > W)
(U > W)

(B > W)
(U > W) – (U > W)

Vaporetto – (B > W)
(U > W) – – (B > W)

(U > W) – –

Table 3: Combinations of subword tokenizers with statistical significance (p < .05, Steel-Dwass test). “–” indicates
no statistical significance observed. “X > Y” indicates that subword tokenizer X is significantly better than subword
tokenizer Y .

and Unigram use a more sophisticated approach
(as explained in §2.2). This algorithmic difference
might also contribute to the performance difference
between different subword tokenizers.

5 Conclusion

To investigate the effect of tokenizers on the down-
stream performance of PLMs in a scriptio continua
language (Japanese), we compared extensive sets
of tokenizers by evaluating them on a wide range of
downstream tasks and addressed the three RQs in
§1. Future work will examine how to automatically
select the optimal tokenizer pair for a given task.

Limitations

This study has the following limitations:
• We fixed the vocabulary size of each subword

tokenizer to 30k. Using a different size might
yield different results than those in our paper,
though the effect of varying the vocabulary
size for a subword tokenizer seemed to be
small if the size is sufficiently large (e.g., over
16k or more) (Toraman et al., 2022).

• We have used the BERT architecture for our
comparison, while there are other commonly
used model architectures such as T5 (Raffel
et al., 2020) and GPT-3. The investigation
with these architectures is our future work.

• To investigate the impact of tokenizers on the
downstream performance of PLMs in scriptio
continua languages, we have taken Japanese
as a case study. Other scriptio continua lan-
guages will be addressed in the future.

Ethics Statement

This study did not involve any sensitive data
but only used publicly available data, including

Wikipedia, CC-100, JGLUE, Japanese NER, and
UD as explained in the paper. Although we plan
to release the resulting models, they might perform
unfairly in some circumstances, as reported in Bal-
dini et al. (2022). We highly recommend users to
refer to studies on debiasing PLMs, such as Guo
et al. (2022).
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Appendices

A Japanese Morphological Analyzers

MeCab (Kudo et al., 2004) MeCab tokenizes a
sentence by first constructing a lattice on the basis
of its dictionary and then selecting the combination
with the lowest cumulative cost using the Viterbi
algorithm (Viterbi, 1967). The cost is calculated
using a pre-defined feature function in sequence
labeling.

Juman++ (Tolmachev et al., 2018) Juman++ tok-
enizes a sentence by constructing a lattice in accor-
dance with the dictionary and subsequently select-
ing the path with the highest score by beam search.
The score is calculated using both a RNN-based
language model and a feature-based linear model.

Sudachi (Takaoka et al., 2018) Sudachi puts an
emphasis on offering a tokenizer and dictionary
for business use, enabling us to select tokens of
different granularity for each application. We use
the “Middle” unit of granularity, which is similar
to words in general sense.

Vaporetto (Akabe et al., 2022) Vaporetto tok-
enizes a sentence by extracting features from the
characters within a pre-defined window and sub-
sequently classifying if a boundary exists between
each character with a linear classification model.

B Downstream Tasks

We briefly describe the seven downstream tasks
used in this paper. The statistics for each task
dataset are presented in Table 4.

MARC-ja A binary classification task to predict
whether a product review is positive or negative.
The dataset is based on the Japanese part of the Mul-
tilingual Amazon Reviews Corpus (MARC) (Ke-
ung et al., 2020).

JSTS A regression task to predict a semantic sim-
ilarity score between two sentences. The score
ranges from 0 (least similar) to 5 (most similar).
The data were sourced from the Japanese version
of the MS COCO Caption Dataset (Chen et al.,
2015) and the YJ Captions Dataset (Miyazaki and
Shimizu, 2016).

JNLI A three-way classification task to predict
an inference relation between two sentences. The
relation includes “contradiction,” “neutral,” and
“entailment,” the same as in SNLI (Bowman et al.,

2015). The data source was the same as that for
JSTS.

JSQuAD A question answering task to predict
a corresponding answer span given a question and
context. The data were sourced from Japanese
articles in Wikipedia and its construction process
is based on SQuAD v1.1 (Rajpurkar et al., 2016).

JCommonsenseQA A multiple-choice question
answering task to select the best choice from five
choices given a question. JCommonsenseQA is
a Japanese version of CommonsenseQA (Talmor
et al., 2019), and it was constructed in the same
manner as in CommonsenseQA, which used the
multilingual knowledge base: ConceptNet (Speer
et al., 2017) as seeds.

NER A task to identify and categorize named
entities in a given sentence. The data were sourced
from Japanese articles in Wikipedia and anno-
tated by Stockmark Inc. The dataset is avail-
able at https://github.com/stockmarkteam/
ner-wikipedia-dataset.

UD A dependency parsing task to predict the syn-
tactic dependency structure of a given sentence (Ze-
man et al., 2017, 2018). The output is a directed
tree originating out of a root node. Each edge in
the tree has a label that defines a grammatical rela-
tionship between two words.

C Implementation Details

We implemented our tokenizers with the Tokeniz-
ers library11 and our models using the PyTorch
(Paszke et al., 2019) and Transformers (Wolf et al.,
2020) libraries. We trained our models with four
NVIDIA V100 (32GB) GPUs for pretraining and
one for fine-tuning. We used automatic mixed pre-
cision (FP16) provided by PyTorch as default. The
code is available on the GitHub: https://github.
com/hitachi-nlp/compare-ja-tokenizer, and
the models are available on the Hugging Face Hub:
https://huggingface.co/hitachi-nlp.

C.1 Data
We downloaded Wikipedia data from
https://www.tensorflow.org/datasets/
catalog/wikipedia#wikipedia20201201ja.
As its preprocessing step, we excluded sentences
with less than 30 characters and those containing
“Category” or table symbols.

11https://github.com/huggingface/tokenizers
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Dataset License Task Type Number of samples
Train Dev Test

JGLUE

MARC-ja

CC BY-SA 4.0

Text classification 187,528 5,654 -
JSTS Sentence pair classification 12,451 1,457 -
JNLI Sentence pair classification 20,073 2,434 -
JSQuAD Question answering 62,859 4,442 -
JCommonsenseQA Question answering 8,939 1,119 -

Japanese NER CC-BY-SA 3.0 Named entity recognition 5,343 - -
UD-Japanese-GSD CC BY-SA 4.0 Dependency parsing 7,050 507 543

Table 4: Statistics for each dataset used in this paper. Note that the test sets are not currently publicly available for
JGLUE. Japanese NER does not have the corresponding development and test sets.

Hyperparameter Value

Batch size 128
Total training steps 500,000
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 512
Learning rate 1e-4
Learning rate schedule Linear warmup
Warmup steps 10,000
Weight decay 0.01
Attention dropout 0.1
Dropout 0.1

Table 5: Hyperparameters for pretraining

C.2 Model
We used the base configuration of BERT (12 hid-
den layers and attention heads, Dimhidden = 768,
Dimintermediate = 3072, Total parameters = 125M).

C.3 Pretraining
We pretrained all models for 500k steps and opti-
mized them with AdamW (Loshchilov and Hutter,
2019). We mostly followed the configurations of
Devlin et al. (2019). Table 5 lists the hyperparame-
ter settings used in pretraining.

C.4 Fine-tuning
Table 6 lists the hyperparameters for fine-tuning
models on the JGLUE, NER, and UD datasets. For
UD, we trained a deep biaffine attention parser
(Dozat and Manning, 2017) built on top of the
PLMs. We computed an average for each token
over the top four layers of the BERT hidden rep-
resentations and used it as an input to a biaffine
attention parser (BAP). The dimensionalities of arc
and relation features given to each biaffine module
are 500 and 100, respectively. We used the SuPar
library12 to implement the parser and followed its

12https://github.com/yzhangcs/parser

Hyperparameter Value

Batch size 32
Epochs 5 for JGLUE tasks & NER

10 for UD
Adam ϵ 1e-8
Adam β1 0.9
Adam β2 0.999
Sequence length 512 for MARC-ja & UD

348 for JSQuAD
128 for JSTS, JNLI & NER

64 for JCQA
Learning rate 3e-5 for JGLUE tasks & NER

5e-5 for BERT in UD
1e-3 for BAP in UD

Learning rate schedule Linear warmup
Warmup steps 10% of steps
Weight decay 0.01
Attention dropout 0.1
Dropout 0.1

Table 6: Hyperparameters for fine-tuning

default hyperparameter configurations.

D Pretraining Loss

Figure 3 shows the pretraining loss curves for our
models grouped by morphological analyzer. We
can see that WordPiece + Nothing was unstable in
pretraining.
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Figure 3: Pretraining loss curves
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Abstract

Event-Level Video Question Answer-
ing (EVQA) requires complex reasoning
across video events to obtain the visual
information needed to provide optimal answers.
However, despite significant progress in
model performance, few studies have focused
on using the explicit semantic connections
between the question and visual information
especially at the event level. There is need for
using such semantic connections to facilitate
complex reasoning across video frames.
Therefore, we propose a semantic-aware
dynamic retrospective-prospective reasoning
approach for video-based question answering.
Specifically, we explicitly use the Semantic
Role Labeling (SRL) structure of the question
in the dynamic reasoning process where
we decide to move to the next frame based
on which part of the SRL structure (agent,
verb, patient, etc.) of the question is being
focused on. We conduct experiments on
a benchmark EVQA dataset - TrafficQA.
Results show that our proposed approach
achieves superior performance compared to
previous state-of-the-art models. Our code is
publicly available at https://github.com/
lyuchenyang/Semantic-aware-VideoQA.

1 Introduction

This paper focuses on one specific variant of Video
Question Answering (VQA) (Xu et al., 2016; Yu
et al., 2018; Zhong et al., 2022), namely Event-
level VQA (EVQA) (Xu et al., 2021). In gen-
eral, the objective of the VQA task is to provide
an answer to a visual-related question according
to the content of an accompanying video. De-
spite significant recent progress in VQA, EVQA
still remains one of the most challenging VQA-
based tasks since it requires complex reasoning
over the events across video frames (Sadhu et al.,
2021; Zhong et al., 2022; Liu et al., 2022). To

∗*corresponding author

tackle the challenges in EVQA, a number of ap-
proaches have been proposed (Xu et al., 2021).
Luo et al. (2022) propose a temporal-aware bidi-
rectional attention mechanism for improving event
reasoning in videos, while Zhang et al. (2022) pro-
pose a novel model named Energy-based Refined-
attention Mechanism (ERM), which obtains bet-
ter performance compared to previous approaches
with a smaller model size. Liu et al. (2022), on
the other hand, incorporate visual-linguistic causal
dependencies based on Graph Convolutional Net-
works (Kipf and Welling, 2017) for enhancing
cross-modal event reasoning for EVQA.

Despite recent advances, conventional EVQA ap-
proaches generally fail to take into account the ex-
plicit semantic connection between questions and
the corresponding visual information at the event
level. Therefore, we propose a new approach that
takes advantage of such semantic connections, us-
ing the Semantic Role Labeling (SRL) (Màrquez
et al., 2008; Palmer et al., 2010; He et al., 2017)
structure of questions. The model uses SRL in-
formation to learn an explicit semantic connection
between the text-based questions and visual infor-
mation in videos. Additionally, we carry out a
multi-step reasoning mechanism over video frames
to avoid adapting to spurious correlation and short-
cuts by explicitly learning the reasoning process
itself (Yi et al., 2018; Zhang et al., 2021; Picco
et al., 2021; Hamilton et al., 2022; Zhu, 2022).

Specifically, in each reasoning step, the model
should explicitly decide which frame should be fo-
cused on by predicting the reasoning direction (ret-
rospective or prospective). In terms of the ques-
tion, in each reasoning step, we focus on one or
more specific SRL arguments with high attention
weights, and model its connection with the visual
information (i.e., video frames) contained within
the corresponding video. For example, for a ques-
tion such as [ARG1: How many cars] were [Verb:
involved] [ARG2: in the accident?], the model con-
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Figure 1: Overview of our approach for multi-step visual reasoning. In each reasoning step, the model predicts the
reasoning direction (either retrospective or prospective) and focuses on a specific SRL argument with high attention
weights. A coverage mechanism is employed to improve the coverage of SRL arguments in the question.

centrates on the ARG2 when locating the accident,
before determining how many cars were involved in
the accident (ARG1). In a specific reasoning step, t,
we inject the relevant visual information based on
the semantic connection between the question and
video frames by updating a hidden vector. This vec-
tor is ultimately expected to contain the necessary
information for predicting the correct answer. In
the reasoning process, we employ a coverage mech-
anism (Tu et al., 2016) to improve the coverage of
the SRL arguments of question. Namely, instead of
simply focusing on a small number of specific ar-
guments, the model is capable of including a large
range of arguments.

To investigate the effectiveness of the proposed
approach, we conduct experiments on a bench-
mark EVQA dataset: TrafficQA. Results reveal the
model to achieve performance superior to that of ex-
isting baselines for a range of reasoning types (e.g.,
counterfactual, prospective).

2 Methodology

An overview of our approach is shown in Figure 1.
Suppose the input of our model consists of a video
V composed of n image frames sampled from
it: V = {f0, f1, ......, fn−1}, and a correspond-
ing question Q = {w0, w1, ......, wm−1} with asso-
ciated SRL arguments S = {S0, S1, ......, SN−1}

where Si = {wi, wi+1, ......, wk}. All frames
V = {f0, f1, ......, fn−1} are fed into an IMAGE

ENCODER followed by temporal attention model-
ing to produce temporal-aware frame representa-
tions V

′
= {f ′

0, f
′
1, ......, f

′
n−1} ∈ Rn×d. Mean-

while, we use a TEXT ENCODER to obtain the
representations of the question with its correspond-
ing SRL arguments: Q

′ ∈ R1×d and S
′ ∈ RN×d.

We then perform multi-step reasoning in which we
iteratively update the hidden state vector h with
the visual information from frame representations
based on the attention weights between them and
the SRL arguments of the question. h is updated
from the initial step h0 to the final step hT−1 where
T is the total number of reasoning steps. Finally,
we predict the most probable answer a based on
hT−1.

2.1 Multi-step Reasoning
Before the first reasoning step, we initialize:

h0 = Attn(Q
′
, V

′
, V

′
) (1)

j = argmax(AttnWeights(Q
′
, V

′
, V

′
)) (2)

where Attn serves as the q, k, v attention1 mod-
eling (Vaswani et al., 2017) and j represents the

1In this work, we use a low temperature τ in the softmax
to encourage the model to assign more attention weights to
the most relevant frame.
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index of the frame with the highest attention weight.
In each specific reasoning step t, we firstly use ht−1

as the attention key to obtain the relevant SRL ar-
gument: S

′
t = Attn(ht−1, S

′
, S

′
). Subsequently,

we infer the next focused frame by:

V focus = Attn(rt, V
′
, V

′
) (3)

where rt = g(ht−1, S
′
t). Finally, we update the

hidden state vector ht−1 based on the currently
focused frame (the frame with the largest attention
weight):

ht = δ(ht−1, V
focus) (4)

2.2 Retrospective-Prospective Reasoning
We propose a Retrospective-Prospective Reason-
ing mechanism for Eq.3 in order to explicitly de-
cide whether the model should move to future
frames (prospective reasoning) or move back to
previous frames (retrospective reasoning). We ob-
tain the retrospective frame V retro and prospective
frame V prosp by:

V retro = ψ(g(ht−1, S
′
t), V

′
, RetroMask(j)) (5)

V prosp = ϕ(g(ht−1, S
′
t), V

′
, P rospMask(j)) (6)

where ψ and ϕ are MASKED ATTENTION that
are used to obtain retrospective and prospective
frames, g(ht−1, S

′
t) and V

′
serve as query and

key, value respectively. RetroMask(j) means
all frames after j (fi>j) will be masked whereas
ProspMask(j) means that all frames before
j (fi<j) will be masked. After obtaining V retro

and V prosp we generate a probability:

p = σ(λ(V retro, V prosp)) (7)

If p is larger than a pre-defined threshold α, we
update ht = δ(ht−1, V

retro) ,otherwise we update
ht = δ(ht−1, V

prosp) as in Eq. 4. The index for the
next-focused frame j is also updated accordingly.
The reasoning process is shown in Algorithm 1.

2.3 Coverage Mechanism
We additionally propose to employ a coverage
mechanism (Tu et al., 2016) to encourage the model
to include as many SRL arguments as possible in
the reasoning process. Specifically, we track the
attention distribution Ct ∈ R1×N of ht−1 on all
SRL arguments S

Ct = Ct−1 +
AttnWeights([ht−1;Ct−1], S

′
, S

′
)

χ
(8)

Algorithm 1: Multi-step dynamic
retrospective-prospective reasoning with
coverage mechanism
V

′
= {f0, f1, ......, fn−1}: representations of video

frames
Q

′
: question

S
′
: SRL representations of Q

T : reasoning steps
χ : normalization factor
α: threshold of the probability for using retrospective

frame
h0 = Attn(Q

′
, V

′
, V

′
)

j = argmax(AttnWeights(Q
′
, V

′
, V

′
))

C0 = 0
for i in T do

S
′
i = Attn(hi−1, S

′
, S

′
, Ci−1)

Ci = Ci−1 +
AttnWeights(hi−1,S

′
,S

′
,Ci−1)

χ

V retro = ψ(g(ht−1, S
′
t), V

′
, RetroMask(j))

V prosp = ϕ(g(hi−1, S
′
i), V

′
, P rospMask(j))

p = σ(f(V retro, V prosp))
if p > α then

hi = δ(hi−1, V
retro)

j = argmax(ψ(g(ht−1, S
′
t), V

′
, RetroMask(j)))

else
hi = δ(hi−1, V

prosp)
j = argmax(ϕ(g(hi−1, S

′
i), V

′
, P rospMask(j)))

where χ represents the normalization fac-
tor.2 We obtain the weighted S

′
t by S

′
t =

Attn([ht−1;Ct−1], S
′
, S

′
) where we concatenate

Ct−1 to ht−1 as an additional input to the Attn
function for the purpose of informing the model to
assign more attention weights to previously less-
focused SRL arguments, in order to improve the
coverage for all SRL arguments.

2.4 Training Objective

For the answer prediction, we encode all answer
options A = {a0, ......, aM−1} separately and then
select the one with the highest similarity with hT−1.
We optimize our model parameters θ using Cross
Entropy loss:

J(θ) = −
∑

i

∑

k

log
e𭟋(ak,hT−1)

∑M−1
j=0 e𭟋(aj ,hT−1)

yi,k

(9)
where 𭟋 is the function measuring the similar-

ity between answer candidate and hT−1, and yi,k
represents the answer label for the i−th example
- if the correct answer for the i−th example is the
k−th answer then yi,k is 1 otherwise it is 0.

2In this work, we use the number of SRL arguments of the
corresponding question as the normalization factor.
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Models Setting-1/4 Setting-1/2

Q-type (random) (Xu et al., 2021) 25.00 50.00
QE-LSTM (Xu et al., 2021) 25.21 50.45
QA-LSTM (Xu et al., 2021) 26.65 51.02
Avgpooling (Xu et al., 2021) 30.45 57.50
CNN+LSTM (Xu et al., 2021) 30.78 57.64
I3D+LSTM (Xu et al., 2021) 33.21 54.67
VIS+LSTM (Ren et al., 2015) 29.91 54.25
BERT-VQA (Yang et al., 2020) 33.68 63.50
TVQA (Lei et al., 2018) 35.16 63.15
HCRN (Le et al., 2020a) 36.49 63.79
Eclipse (Xu et al., 2021) 37.05 64.77
ERM (Zhang et al., 2022) 37.11 65.14
TMBC (Luo et al., 2022) 37.17 65.14
CMCIR (Liu et al., 2022) 38.58 N/A
Ours 43.19 71.63

Table 1: Evaluation results on TrafficQA dataset.

3 Experiments

3.1 Dataset
We employ a benchmark dataset for EVQA - Traf-
ficQA (Xu et al., 2021) which contains 62,535 QA
pairs and 10,080 videos. We follow the standard
split of TrafficQA – 56,460 pairs for training and
6,075 pairs for evaluation. We further sample 5,000
examples from training data as the dev set.

3.2 Experimental Setup
We use CLIP ViT-B/16 (Radford et al., 2021) 3

to initialize our image encoder and text encoder.
We evenly sample 10 frames from each video
in the TrafficQA dataset. The SRL parser em-
ployed in the experiments is from AllenNLP (Gard-
ner et al., 2018; Shi and Lin, 2019). We train
our model over 10 epochs with a learning rate of
1 × 10−6 and a batch size of 8. The optimizer is
AdamW (Loshchilov and Hutter, 2019). We set
the maximum reasoning step T to 3 and we use a
temperature τ of 0.2 in Attention modeling. The
hyper-parameters are empirically selected based on
the performance on dev set. There are two experi-
mental settings for TrafficQA (Xu et al., 2021): 1)
Setting-1/2, this task is to predict whether an an-
swer is correct for a given question based on videos;
2) Setting-1/4: this task follows the standard setup
of multiple-choice task in which the model is ex-
pected to predict the correct the answer from the
four candidate options.

3.3 Results
The experimental results on the test set of Traf-
ficQA are shown in Table 1, where we also in-

3https://openai.com/blog/clip/

clude the previous baseline models for EVQA.4

The results show that our proposed approach ob-
tains accuracy of 43.19 under the multiple-choice
setting, which surpasses previous state-of-the-art
approaches including Eclipse (Xu et al., 2021),
ERM (Zhang et al., 2022), TMBC (Luo et al., 2022)
and CMCIR (Liu et al., 2022) by at least 4.5 points.
Furthermore, our approach achieves an accuracy
of 71.63 under Setting 1/2, outperforming previous
strong baselines by at least 6 points. The results
show the effectiveness of our proposed multi-step
reasoning approach for event-level VideoQA.

Ablation Study We conduct experiments on the
dev set of TrafficQA, investigating the contribution
of both the retrospective-prospective reasoning and
coverage mechanism on the performance of our
proposed EVQA approach. The results are shown
in Table 3, which reveals that multi-step reasoning
is critical in terms of model performance while the
coverage mechanism can provide additional, albeit
less substantial, improvements.

Results by Question Type We take a closer look
at model performance on different question types,
e.g. reverse reasoning, counterfactual reasoning,
etc. The results are shown in Table 2. They reveal
that our proposed approach outperforms previous
state-of-the-art models on all individual question
types by a large margin with large improvements
seen for introspection, reverse and counterfactual
questions.

Effect of Reasoning Steps We study the effect
of varying reasoning steps. The results are shown
in Table 4. Increasing reasoning steps improves
performance, especially from 1 step to 3 steps. Ad-
ditionally, the performance (both Setting 1/4 and
1/2) is stable with reasoning steps exceeding three.

4 Conclusion and Future Work

In this paper, we propose a multi-step dynamic
retrospective-prospective approach for EVQA. Our
approach employs a multi-step reasoning model
that explicitly learns reasoning based on the seman-
tic connection of the SRL structure of a question
and corresponding video frames. We additionally
proposed a coverage mechanism to improve the
coverage of SRL arguments in the reasoning pro-
cess. Experimental results show that the proposed

4Some of the baseline results are taken from Xu et al.
(2021).
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Method
Question Type

Basic Attribution Introspection Counterfactual Forecasting Reverse All

HCRN (Le et al., 2020b) 34.17 50.29 33.40 40.73 44.58 50.09 36.26
VQAC (Kim et al., 2021) 34.02 49.43 34.44 39.74 38.55 49.73 36.00
MASN(Seo et al., 2021) 33.83 50.86 34.23 41.06 41.57 50.80 36.03
DualVGR (Wang et al., 2021) 33.91 50.57 33.40 41.39 41.57 50.62 36.07
CMCIR (Liu et al., 2022) 36.10 52.59 38.38 46.03 48.80 52.21 38.58
Ours 37.05 52.68 43.91 50.81 54.26 55.52 43.19

Table 2: Results by various question type on the dev set of TrafficQA. The highest performance are in bold.

Models Setting-1/4 Setting-1/2

Model w/o MR and CM 42.53 69.61
Model w/o CM 46.15 74.97
Model 47.38 75.83

Table 3: Ablation study results on TrafficQA dev set,
where MR represents Multi-step Reasoning and CM rep-
resents Coverage Mechanism. MR and CM are coupled
in our approach.

Reasoning Steps Setting-1/4 Setting-1/2

Model w/ 1 step 41.57 71.46
Model w/ 2 steps 44.21 74.95
Model w/ 3 steps 47.38 75.83
Model w/ 4 steps 47.23 75.96
Model w/ 5 steps 47.15 75.87

Table 4: The effect of various reasoning steps.

approach obtains superior performance compared
to that of state-of-the-art EVQA models.
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Limitations

This papers focuses on a variety of VideoQA -
event-level VideoQA, we only incorporate event
information from the question (textual) side as
we think that parsing video frames is inaccurate
and could introduce unexpected errors, we should
also explore how to inject event-level information
from visual side in the future with more compet-
itive visual parsing models. Our experiments are
only conducted on one dataset due to resource con-
straint, we should also conduct experiments on

more datasets to verify the effectiveness of our ap-
proach.
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Abstract

Natural Language Inference (NLI) tasks in-
volving temporal inference remain challenging
for pre-trained language models (LMs). Al-
though various datasets have been created for
this task, they primarily focus on English and
do not address the need for resources in other
languages. It is unclear whether current LMs
realize the generalization capacity for tempo-
ral inference across languages. In this paper,
we present JAMP, a Japanese NLI benchmark
focused on temporal inference. Our dataset in-
cludes a range of temporal inference patterns,
which enables us to conduct fine-grained anal-
ysis. To begin the data annotation process, we
create diverse inference templates based on the
formal semantics test suites. We then auto-
matically generate diverse NLI examples by
using the Japanese case frame dictionary and
well-designed templates while controlling the
distribution of inference patterns and gold la-
bels. We evaluate the generalization capacities
of monolingual/multilingual LMs by splitting
our dataset based on tense fragments (i.e., tem-
poral inference patterns). Our findings demon-
strate that LMs struggle with specific linguistic
phenomena, such as habituality, indicating that
there is potential for the development of more
effective NLI models across languages.

1 Introduction

Natural Language Inference (NLI) is the task of
determining whether a set of premises entail a hy-
pothesis. NLI involving temporal inference is a
challenging task and remains a significant problem
for pre-trained language models (LMs). One line
of research has investigated the temporal inference
abilities of LMs (Kober et al., 2019; Vashishtha
et al., 2020; Thukral et al., 2021; Chen and Gao,
2022). However, existing datasets and analyses
primarily focus on English, and more analysis and
datasets are required for other languages, includ-
ing Japanese. Therefore, it is still unclear to what
extent current LMs can perform various types of

Figure 1: An illustration of our data annotation process.
INT in the templates means interval. 99K means that
the gold label is undetermined,→ means that the gold
label is Entailment and ↛ means that the gold label is
Contradiction.
temporal inference across languages. In this pa-
per, we construct JAMP1, which is a Japanese NLI
dataset for temporal inference, and evaluate the gen-
eralization capacity of several LMs on our dataset.

Our goal is to construct a temporal inference
dataset that precisely assesses the generalization
capacities of LMs. Manual annotation is a vi-
able option for achieving this goal, but it does
not fully meet our needs based on several limi-
tations described below. Although using crowd-
sourcing to increase the size of datasets may be
cost-effective (Bowman et al., 2015; Williams et al.,
2018), managing biases and artifacts in the result-
ing data can be challenging (Poliak et al., 2018b;
Gururangan et al., 2018). In contrast, datasets man-
ually constructed by experts (Cooper et al., 1996;
Kawazoe et al., 2015) may have high quality but
are potentially expensive to scale. Additionally,
manual dataset construction makes it difficult to
control the distribution of vocabulary and infer-
ence patterns in a dataset because it heavily relies
on the prior knowledge of each annotator (e.g.,
word choice). To address the issues associated with

1Our dataset is available on https://github.com/
tomo-ut/temporalNLI_dataset
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Main Tense Fragment Sub-tense Fragment Example Problem

Temporal anaphora
Reference resolution
of昨日 (yesterday)

P

昨日、 APCOMは契約書に署名した。
yesterday , APCOM wa contract ni sign .
(APCOM signed the contract yesterday.)
今日は 7月 14日土曜日だ。
today wa 7 month 14 day Saturday da .
(Today is Saturday, July 14.)

H
APCOMは 13日の金曜日に契約書に署名した。
APCOM wa 13 day no Friday ni contract ni sign .
(APCOM signed the contract on Friday the 13th.)

G Entailment

Interval Completion of eventuality

P
スミスはバーミンガムに 2年住んだ。
Smith wa Birmingham ni 2 year live .
(Smith lived in Birmingham for two years.)

H
スミスはバーミンガムに住んだ。
Smith wa Birmingham ni live .
(Smith lived in Birmingham.)

G Entailment

Table 1: Examples of tense fragments and corresponding problems. P, H, and G indicate a set of premises, a
hypothesis, and a gold label, respectively.

manual annotation, prior work uses template-based
approaches that automatically assign diverse vo-
cabulary to templates that are manually created by
experts to construct scalable datasets (Richardson
et al., 2020; Yanaka and Mineshima, 2021). By
using this method, we can strictly manage the vo-
cabulary and inference patterns in a dataset, thus it
is a suitable approach for probing LMs.

Figure 1 presents our data annotation process,
which consists of two stages: template creation
and problem generation. We first collect Japanese
temporal inference examples from JSeM (Kawazoe
et al., 2015), which is the Japanese version of Fra-
CaS (Cooper et al., 1996), and manually transform
them into templates by masking content words (e.g.,
nouns and verbs) and temporal expressions (e.g.,
date and time), producing 46 tense fragments (i.e.,
temporal inference patterns) based on formal se-
mantics. We then generate examples by assigning
content words sampled from a Japanese case frame
dictionary (Kawahara and Kurohashi, 2006) and
randomly generating temporal expressions to those
templates. These techniques ensure that the sen-
tences in JAMP are diverse and cover a wide range
of temporal inference patterns. It is important to
note that our temporal NLI examples are derived
from a diverse set of templates that are classified
with tense fragments, allowing us to create different
test splits depending on the goal of evaluation, such
as generalization across different tense fragments.

We evaluate two Japanese models and one multi-
lingual model on our dataset. We analyze whether
they can solve our dataset in a zero-shot setting
(trained on existing Japanese NLI datasets) and a
fine-tuning setting (trained on a small subset of
our dataset). The experimental results demonstrate
that the LMs can generalize across different tem-

poral expressions but fail to generalize some tense
fragments such as habituality.

2 Background

2.1 Frame

Frame is one of the basic knowledge for language
understanding. There are several English resources
for frame knowledge, including VerbNet (Schuler,
2005), FrameNet (Baker et al., 1998), and Prop-
Bank (Palmer et al., 2005), and previous studies
have used these resources to construct datasets (Po-
liak et al., 2018a; Mitra et al., 2020).

In Japanese, case particles (e.g.,が–pronounced
ga) are attached to verbal arguments (e.g., subject)
and determine the case frame. A Japanese case
frame dictionary (Kawahara and Kurohashi, 2006)
is the largest resource that reflects these charac-
teristics of Japanese language. This case frame
dictionary is a set of 110,000 predicates and asso-
ciated nouns extracted from 10 billion sentences,
that are annotated for each predicate usage. Table 2
shows an example of a case frame in the Japanese
case frame dictionary.

As shown in Table 2, the case frame dictionary
contains information regarding the frequencies of
case frames and nouns. In this paper, we use these
case frames to generate a dataset containing diverse
sentence patterns without grammatical errors.

2.2 Fragments

Some existing datasets (Cooper et al., 1996; McCoy
et al., 2019; Yanaka and Mineshima, 2021), includ-
ing JSeM (Kawazoe et al., 2015), define problem
categories for each problem for further analysis.
In this study, we systematically defined tense frag-
ments (i.e., temporal inference patterns) based on
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Figure 2: Overview of our data construction pipeline. 1) We first create temporal inference templates from existing
examples. 2) We then assign content words using the Japanese case frame dictionary. 3) After isolating train and
test examples, we assign temporal expressions to the candidate sentences. Additionally, we manually filter unusable
sentences from the test examples.

到着する (arrive): verb, freq=118520
ga 選手 (athlete)freq=205,大統領 (president)freq=114, · · ·
ni 空港 (airport)freq=24705,ホテル (hotel)freq=9639, · · ·
... · · ·
de 飛行機 (airplane)freq=347,バス (bus)freq=293, · · ·

Table 2: An example of a case frame in the Japanese
case frame dictionary.
the categories of temporal inference patterns in
JSeM.

Table 1 shows some examples of tense fragments
(see Appendix A for additional tense fragments). In
Table 1, “Main Tense Fragment” represent higher-
level classifications, and “Sub-tense Fragment” rep-
resent sub-classifications that are subdivided from
the main tense fragments. Tense fragments enable
a more detailed analysis of LMs’ understanding of
temporal inference.

3 JAMP

In this paper, we present JAMP, which is a Japanese
NLI dataset for temporal inference, and propose a
method for automatic construction from templates
based on tense fragments. Figure 2 shows the
pipeline of our method. First, we create a template
by masking content words and temporal expres-
sions in existing temporal NLI problems (§3.1).
A template consists of the following triplet: (i) a
set of premises in which content words and tem-
poral expressions are masked, (ii) a hypothesis in
which content words and temporal expressions are
masked, and (iii) a condition for determining a gold
label. Here, a gold label can take on three values:
Entailment, Contradiction, and Neutral. Next, we
generate training and test sentences by assigning
content words selected from the vocabulary list to
the template (§3.2). We create a vocabulary list by
using the Japanese case frame dictionary to make

Template

P: agent_1が interval_1以内に np_1を vp_1_past。
H: agent_1は interval_2以内に np_1を vp_1_past。

G: if interval_1 ≤ interval_2 then Entailment
else Neutral

Generated
Problem

P:
エレンが 6年間以内にゴールを達成した。
Ellen ga 6 years within ni goal o achieved .
(Ellen has achieved her goal within six years.)

H:
エレンは 5年間以内にゴールを達成した。
Ellen wa 5 years within ni goal o achieved .
(Ellen has achieved her goal within five years.)

G: Neutral

Table 3: An example of a template and a problem gen-
erated by our method.

sentences more coherent.2

We manually inspect all sentences in the test
examples and eliminate any sentences that are un-
natural or harmful. We then generate train and
test problems by assigning temporal expressions to
train and test sentences. Finally, we split the train-
ing problems along three axes (e.g., tense fragment,
time format, and time span) to create training data
for various experimental settings (§3.4). In this
section, we describe each of these steps in detail.

3.1 Template Creation
In the first step, we construct templates consisting
of a set of premises, a hypothesis, and a gold label.
We create templates for temporal problems based
on problems in the temporal inference section of
JSeM by masking content words such as nouns and
verbs (e.g.,スミス (Smith),住んだ (lived)), and
temporal expressions (e.g., 7 月 14 日 (July 14),
2 年 (2 years)). Additionally, because the gold
label depends on the temporal expression in the
sentence, we convert the original gold label into a
condition in which the gold label is determined by
specifying a temporal expression. Table 3 shows

2We considered a generation method using masked LMs or
generative models but did not adopt them in this study because
the generation time was too long, and it was difficult to control
the vocabulary and not change inference patterns and syntactic
structures.
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an example of the template. In the example in
Table 3, the condition is “if interval_1 ≤ interval_2
then Entailment else Neutral” and the gold label is
determined according to temporal expressions in
interval_1 and interval_2.

There can be strong correlations between spe-
cific words and labels in examples generated from
templates based on certain JSeM problems. Be-
cause such correlations could introduce undesired
biases into our dataset, we removed these correla-
tions by constructing new challenging templates
for some JSeM problems (see Appendix B for ex-
amples).

3.2 Problem Generation

We generate problems by filling the masks in tem-
plates with various nouns, verbs, and temporal ex-
pressions and determining the gold label from these
temporal expressions. We use the Japanese case
frame dictionary as a vocabulary for selecting verbs
and nouns (§2.1). In this study, we manually filter
about 30 offensive words from verbs whose fre-
quency in the dictionary is greater than 1000 and
nouns whose frequency in the dictionary is greater
than 100 extracted from the case frame dictionary
and use filtered words.

We target two types of temporal expressions
in this study: time points (e.g., 8 月 16 日 7 時
(August 16, 7:00)) and intervals (e.g., 3 ヶ月 (3
months)). For time points, we use 10 formats com-
bining year/month/day/hour units: Year (Y), Month
(M), Day (D), Hour (H), YM, MD, DH, YMD,
MDH, and YMDH. For intervals, we use four for-
mats: Year, Month, Day, and Hour.

We assign content words and temporal expres-
sions to templates as follows. First, we randomly
select a verb with the case in the template from the
case frame dictionary. Next, we randomly select
nouns that the selected verb can take as its case in
the template. Here, we select a noun for a subjec-
tive case from a manually created list of common
first names (e.g., Alice and Bob).

Then, if a temporal expression exists in the orig-
inal problem corresponding to the template, we
generate a new temporal expression as follows and
assign it to templates. If the original temporal ex-
pression is an interval, we generate an interval by
concatenating an integer randomly selected from
one to nine according to one of the four formats
described above. If the original temporal expres-
sion is a time point, we first randomly select a time
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Figure 3: The artifact statistics of (a) JAMP and (b)
Temporal NLI (Vashishtha et al., 2020) training sets.
The majority of words in JAMP, with the exception of
“いた,” are located below the green line, implying that
they do not exhibit spurious correlations with the gold
labels. A substantial number of words in Temporal NLI
correlate with the gold labels.

point within the range of January 1, 2000, at 0:00 to
December 31, 2020, at 24:00. Then, one of the ten
formats described above is applied to the selected
time point. For example, if the MD format is ap-
plied to 0:00 on January 1, 2010, then the generated
temporal expression will be “January 1.”

Finally, we assign a gold label by evaluating the
condition for the gold label in the template. Table
3 shows an example of a template and the problem
generated from that template. In Table 3, the condi-
tion is “if interval_1 ≤ interval_2 then Entailment
else Neutral.” Because the generated temporal ex-
pressions for interval_1 and interval_2 are 6年間
(six years) and 5年間 (five years), respectively, its
gold label is Neutral. To ensure that the distribu-
tion of gold labels is approximately uniform, we
generate the same number of problems from each
pair of a template and a gold label.

60



Unnatural Sentence Cause

チャーリーがインクを吸った。
Charlie ga ink o sucked .
(Charlie sucked ink.)

Semantically unnatural

ウォルターは性格に変わった。
Walter wa characteristic ni changed .
(Walter changed in character.)

Incomplete sentence

キャロルは速度に生ずるていた。
Carroll wa speed ni arise .
(Carroll arose to speed.)

Semantically unnatural
Grammatically unnatural

Table 4: Examples of unnatural sentences we filtered.

3.3 Quality Control

3.3.1 Dataset Artifacts
Previous works have demonstrated that existing
datasets are often affected by dataset artifacts and
spurious correlations between surface features and
gold labels (Jia and Liang, 2017; Gururangan et al.,
2018; Poliak et al., 2018b). We conduct statisti-
cal analysis on our dataset following the method
outlined by Gardner et al. (2021) to identify token-
level artifacts. Our analysis reveals the extent to
which certain words are highly correlated with one
of three labels (see Appendix D for details).

Our automatic data annotation approach enables
us to effectively manage the examples that we gen-
erate. We conduct this statistical analysis during
the data generation phase and modify vocabulary
words and templates to eliminate shortcuts and spu-
rious correlations between certain words and gold
labels. As depicted in Figure 3, the majority of
words in JAMP do not exhibit spurious correlations
with the gold labels, whereas a significant number
of words in Temporal NLI (Vashishtha et al., 2020)
correlate with the gold labels.3 In JAMP, the word
“いた”4 stands out as an exception, but its impact
is relatively low because its score is close to the
green line.

3.3.2 Dataset Quality
Naturalness We manually check the naturalness
of all test examples and filter out disqualified sen-
tences (approx. 40% of all sentences).5 Table 4
shows examples of sentences we remove from the
test set and the reasons for their removal.

Semantically unnatural (e.g., the examples at the
top and bottom of Table4) refers to sentences that
are grammatically correct but may not be plausible.
One reason for the generation of such sentences is

3We sample 100k training examples for this statistical
analysis.

4This Japanese word has multiple grammatical roles. One
is a past stative verb, and another is a past continuous form of
a verb.

5We ask 3 graduate students studying NLP/linguistics to
judge sentence quality.

that the Japanese case frame dictionary does not
describe the correspondence between cases (e.g.,
ヲ格 (accusative) andニ格 (dative)). The second
case, an incomplete sentence, could be generated
since the Japanese case frame dictionary does not
describe the essential case for predicates. Other ex-
amples, such as the third, show verbs conjugated in
the wrong form. This is probably because the verb
is not included in the dictionary used to conjugate
the verb.

Correctness We randomly sample 100 cases
from the constructed test data and manually judge
their entailment labels. We check whether the
judgement is the same as their gold labels. We
confirm that the gold labels in all cases were an-
notated as intended. However, the gold labels for
some problems were debatable. For example, in the
sentence I read a book for three hours, the mean-
ing of for three hours can be interpreted as "just
three hours," "about three hours," and "at least three
hours". The interpretation depends on the speaker
and the context. In such cases, their gold labels
depend on the reading, but we confirmed that they
are correct in at least one of the possible readings.

3.4 Split Problems

Our controlled data generation method enables us
to split problems into seen problems (i.e., problems
included in both test and training data) and unseen
problems (i.e., problems included only in test data)
systematically, which is suitable for investigating
the generalization capacity of LMs. In this study,
we split our training data to analyze whether LMs
can generalize various temporal inference patterns
learned from training data. We split the training
data based on three axes: tense fragment, time
format, and time span. Table 5, 6, and 7 show an
example of a seen/unseen problem in each split.

3.4.1 Tense Fragment-Based Split
Tense fragment refers to the categorization of the
problems described in Section 2.2. We define
two splits based on the tense fragments: FRAG-
MENT_EASY and FRAGMENT_HARD. These splits
aim to test whether LMs can learn temporal in-
ference from basic problems and generalize the
acquired inference patterns to more challenging
problems. Therefore, both FRAGMENT_EASY and
FRAGMENT_HARD include only basic problems in
the training data and challenging problems in the
test data. FRAGMENT_HARD contains a higher pro-
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Seen problem Unseen problem
TF: Order relation - Transitive, Gold label: Entailment TF: Order relation - Transitive + Before/After, Gold label: Entailment

P

マレットはイブが出掛ける前に出掛けた。
Mallett wa Eve ga leave before ni leave .
(Mullet left before Eve left.)
イブはチャーリーが出掛ける前に出掛けた。
Eve wa Charlie ga leave before ni left .
(Eve left before Charlie left.)

マーヴィンはペギーが留学する前に留学した。
Marvin wa Peggy ga study abroad before ni study abroad .
(Marvin studied abroad before Peggy studied abroad.)
マーヴィンはキャロルが留学した後に留学した。
Marvin wa Carol ga studied abroad after ni studied abroad .
(Marvin studied abroad after Carol studied abroad.)

H
マレットはチャーリーが出掛ける前に出掛けた。
Mallett wa Charlie ga leave before ni leave .
(Mullet left before Charlie left.)

ペギーはキャロルが留学した後に留学した。
Peggy wa Carol ga study abroad after ni study abroad .
(Peggy studied abroad after Carol studied abroad.)

TF: Usage of現在 (now) - Present tense, Gold label: Entailment TF: Usage of現在 (now) - Past tense, Gold label: Neutral

P
マレットは皆さんに考え方を述べている。
Mallett wa everyone ni thinking o state .
(Mallett is stating his thinking to everyone.)

アイザックは見学にバーを訪れていた。
Isaac wa tour ni bar o visit .
(Isaac was visiting the bar for a tour.)

H
マレットは現在皆さんに考え方を述べている。
Mallett wa now everyone ni thinking o state .
(Mallett is now stating his thinking to everyone.)

アイザックは現在見学にバーを訪れている。
Isaac wa now tour ni bar o visit .
(Isaac is now visiting the bar for a tour.)

Table 5: Examples of problems that are in the training data (seen problems) and corresponding problems that are
not in the training data (unseen problems) in a tense fragment-based split setting. TF means the tense fragment.

portion of challenging problems and fewer tense
fragments in the training data, which is a more
difficult setting for models.

We define basic and challenging problems based
on the sub-tense fragments in the tense fragment
classification. For example, as in the first example
in Table 5, suppose a certain tense fragment has
sub-tense fragments that are finer than that tense
fragment. In this case, the original tense fragment
(Order relation – Transitive) is considered as basic,
and the subcategories (Order relation – Transitive
+ Before/After) are considered as challenging. In
contrast, as in the second example in Table 5, if
there is no such sub-tense fragment, but there are
sub-tense fragments with the same granularity as
that of the classification, one (Usage of現在 (now)
– Present tense) is considered as basic, and the other
(Usage of現在 (now) – Past tense) is considered
as challenging.

3.4.2 Time Format-Based Split
Time format represents the format of the temporal
expression inserted in a problem. In this study, we
define ten time formats by combining multiple time
units (year, month, day, and hour) for time points
and define two splits based on the time formats.
This split aims to test whether LMs can learn the
size relationships between time units (year > month
> day > hour) from a minimal number of combina-
tions of units and generalize the acquired inference
patterns to apply them to complex combinations.

The first split is FORMAT_HARD, which contains
only a single time unit pattern (i.e., patterns involv-
ing only year, only month, only day, or only hour)
in a training set and evaluates models on combined
patterns of multiple time units.

The other split is FORMAT_EASY, which in-

cludes a minimum number of combinations (i.e.,
year-month pattern, month-day pattern, and day-
hour pattern) that allow the models to understand
the size relationships between time units, as shown
in the second example in Table 6. By comparing the
accuracy of FORMAT_EASY and FORMAT_HARD,
we can determine whether LMs can learn and gen-
eralize the size relationships between time units.

3.4.3 Time Span-Based Split
Time span represents the closeness of temporal
expressions when multiple temporal expressions
appear in a problem. In this study, we define two
time spans: SHORT and RANDOM. In SHORT time
span problems, the temporal expressions are gen-
erated such that the time points included in the
problem are close to each other (see Appendix C),
as shown in the unseen problem in Table 7. On
the other hand, in RANDOM time span problems,
the distance between the time points included in
the problem is not predetermined, and the temporal
expressions are generated in the same manner as
described in Section 3.2. Therefore, the distances
between the time points included in a problem are
often far apart, as shown in the seen problem in
Table 7.

When a model determines the order of two time
points, the model must compare the two time points
in order, starting with the largest unit. If two time
points are far apart, then the model can determine
their order by comparing only the larger units, but
if two time points are close, then the model must
compare additional units to determine their order.
For example, the order of January 1, 2010, at 1:00
and October 10, 2020, at 10:00 can be determined
by looking only at the year, but the order of Jan-
uary 1, 2010, at 1:00 and January 1, 2010, at 10:00
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Seen problem Unseen problem
Format: Year, Gold label: Neutral Format: Year-Month-Day-Hour, Gold label: Entailment

P

パットが 6年間以内に代価を支払った。
Pat ga 6 year within ni price o paid .
(Pat paid the price within 6 years.)
パットは 2009年にその代価を支払い始めた。
Pat wa 2009 year ni its price o pay began .
(Pat began paying the price in 2009.)

エレンが 2年間以内に考えを変えた。
Ellen ga 2 years within ni mind o changed .
(Ellen changed her mind within 2 years. )
エレンは 2016年 11月 18日 15時にその考えを変え始めた。
Ellen wa 2016 year 11 month 18 day 15 hour ni its mind o change began .
(Ellen began to change her mind at 15:00 on November 18, 2016.)

H
パットは 2011年までにその代価を支払い終えた。
Pat wa 2011 year until ni its price o pay finished .
(Pat finished paying the price by 2011.)

エレンは 2020年 10月 15日 21時までにその考えを変え終えた。
Ellen wa 2020 year 10 month 15 day 21 hour until ni its mind wo change finished .
(Ellen finished changing her mind by 21:00 on October 15, 2020.)

Format: Year-Month, Gold label: Entailment Format: Year-Month-Day-Hour, Gold label: Entailment

P

2018年 8月以来、 ウォルターは閣僚に指示している。
2018 year 8 month since , Walter wa cabinet ni instruct .
(Since August 2018, Walter has instructed cabinet members.)
現在、 2018年 11月である。
now , 2018 year 11 month dearu .
(It is now November 2018.)

2008年 2月 27日 0時以来、 ビクターはソフトバンクに移籍している。
2008 year 2 month 27 day 0 hour since , Victor wa Softbank ni transfer .
(Since 0:00 on February 27, 2008, Victor has been transferred to Softbank.)
現在、 2008年 2月 27日 4時である。
now , 2008 year 2 month 27 day 4 hour dearu .
(It is now 4:00 on February 27, 2008.)

H
ウォルターは 2018年 9月には閣僚に指示していた。
Walter wa 2018 year 9 month niwa cabinet ni instruct .
(Walter had instructed the cabinet ministers in September 2018.)

ビクターは 2008年 2月 27日 1時にはソフトバンクに移籍していた。
Victor wa 2008 year 2 month 27 day 1 hour niwa Softbank ni transfer .
(Victor was transferred to Softbank at 1:00 on February 27, 2008.)

Table 6: Examples of problems that are in the training data (seen problems) and corresponding problems that are
not in the training data (unseen problems) in a time format-based split setting.

Seen problem Unseen problem
Span: Random, Gold label: Neutral Span: Short, Gold label: Contradiction

P

2002年 8月 16日 7時以来、 ウォルターは実家に泊まっている。
2018 year 8 month 16 day 7 hour since , Walter wa parents’ house ni stay .
(Walter has been staying at his parents’ house since 7:00 on August 16, 2002.)
現在、 2013年 5月 26日 3時である。
now , 2013 year 5 month 26 day 3 hour dearu .
(It is now 3:00 on May 26, 2013.)

2015年 9月 11日 7時以来、 フランクは細工に挑戦している。
2015 year 9 month 11 day 7 hour since , Frank wa craft ni try .
(Frank has been trying to craft since 7:00 on September 11, 2015.)
現在、 2015年 9月 11日 10時である。
now , 2015 year 9 month 11 day 10 hour dearu .
(It is now 10:00 on September 11, 2015.)

H
ウォルターは 2018年 5月 15日 12時には実家に泊まっていた。
Walter wa 2018 year 5 month 15 day 12 hour niwa parents’ house ni stay .
(Walter was staying at his parents’ house at 12:00 on May 15, 2018.)

フランクは 2015年 9月 11日 5時には細工に挑戦していた。
Frank wa 2015 year 9 month 11 day 5 hour niwa craft ni try .
(Frank was trying to craft at 5:00 on September 11, 2015.)

Table 7: Examples of problems that are in the training data (seen problems) and corresponding problems that are
not in the training data (unseen problems) in a time span-based split setting.

requires comparing the year, month, day, and hour
in order. Therefore, we consider that determining
the order relationships between close time points is
more difficult than determining the order relation-
ships between distant time points.

We define a time span-based split that contains
only RANDOM in the training data. This split aims
to test whether LMs can learn the order relation-
ships of temporal expressions and generalize the
acquired inference patterns to apply them to combi-
nations of temporal expressions that require more
difficult evaluation.

4 Experiments

We evaluate several NLI models on our dataset.
We consider six pre-trained LMs (Japanese BERT-
base/large, Japanese RoBERTa-base/large, multi-
lingual XLM-RoBERTa-base/large)6 available on
huggingface/transformers7 in our experiments. We
conduct experiments in three settings: zero-shot
(monolingual), zero-shot (cross-lingual), and fine-
tuning. Here, zero-shot means that we do not use

6We did not evaluate the prompt-tuning models such as
GPT-3 because accurate comparisons with other models in the
fine-tuning setting are difficult.

7https://huggingface.co/transformers/

our training data but use existing Japanese NLI
datasets for training data. The statistics of the
datasets used in our experiments are provided in
Appendix E.

Zero-shot setting (monolingual) We train the
LMs on three concatenated NLI datasets: the stan-
dard Japanese NLI datasets JSNLI (automatic trans-
lation of the English SNLI dataset (Bowman et al.,
2015)) (Yoshikoshi et al., 2020) and JSICK (man-
ual translation of the English SICK dataset (Marelli
et al., 2014)) (Yanaka and Mineshima, 2022), and
the Japanese NLI dataset PLMUTE_ja (Sugimoto
and Yanaka, 2022), which involves temporal order.
We then evaluate the models on our test data.

Zero-shot setting (cross-lingual) We train the
LMs on three concatenated NLI datasets: the stan-
dard English NLI dataset SNLI, SICK, and the En-
glish NLI dataset PLMUTE (Thukral et al., 2021),
which involves temporal order and duration. We
then evaluate the models on our test data.

Fine-tuning setting We train and evaluate the
LMs on our training data and test data.

Additionally, in the fine-tuning setting, we train
the LMs on the split training data described in Sec-
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Model seen/
unseen

Zero-shot Fine-tuning
Mono
lingual

Cross-
lingual

IID
Split

Tense Fragment Time Format Time
SpanEasy Hard Easy Hard ∆

BERT

base
seen - - .891±0.02 .879±0.01 .812±0.05 .839±0.02 .800±0.02 .039±0.03 .757±0.03

unseen .428±0.02 - - .405±0.04 .379±0.02 .897±0.03 .761±0.04 .136±0.05 .662±0.05
∆ - - - .474±0.04 .433±0.05 - - - .095±0.06

large
seen - - .955±0.01 .969±0.01 .968±0.02 .920±0.02 .922±0.01 -.002±0.02 .912±0.01

unseen .440±0.03 - - .457±0.03 .419±0.01 .970±0.02 .893±0.02 .077±0.03 .876±0.04
∆ - - - .512±0.03 .549±0.02 - - - .036±0.04

RoBERTa

base
seen - - .914±0.02 .898±0.03 .851±0.07 .832±0.03 .754±0.08 .078±0.09 .749±0.06

unseen .468±0.03 - - .388±0.02 .318±0.02 .846±0.04 .677±0.12 .169±0.13 .669±0.05
∆ - - - .510±0.04 .533±0.07 - - - .080±0.08

large
seen - - .937±0.03 .970±0.01 .984±0.01 .914±0.03 .907±0.01 .007±0.03 .819±0.13

unseen .460±0.02 - - .445±0.03 .399±0.04 .967±0.02 .884±0.01 .083±0.02 .799±0.11
∆ - - - .525±0.03 .585±0.04 - - - .020±0.17

XLM-
RoBERTa

base
seen - - .768±0.05 .683±0.01 .649±0.02 .690±0.09 .607±0.02 .083±0.09 .553±0.06

unseen - .411±0.03 - .238±0.01 .309±0.02 .678±0.06 .541±0.01 .137±0.06 .553±0.06
∆ - - - .445±0.01 .340±0.03 - - - .000±0.08

large
seen - - .941±0.01 .952±0.02 .955±0.03 .883±0.05 .862±0.06 .021±0.08 .761±0.08

unseen - .488±0.03 - .455±0.04 .383±0.02 .935±0.06 .783±0.08 .152±0.10 .735±0.09
∆ - - - .497±0.04 .572±0.04 - - - .026±0.12

Table 8: Results on our test data (average accuracy and standard deviation of five runs).

tion 3.4, as well as on all of the training data.
In all experiments, we conduct five trials and

calculate the averages and standard deviations of
the accuracy of the models. Training details are
provided in Appendix F.

5 Results and Discussion

Table 8 shows the results of all our experiments.
Overall, monolingual models with larger model
sizes tend to perform better. In this section, we
describe the results for each setting in detail.

5.1 Zero-shot setting
The two left columns in Table 8 show the results
on the zero-shot setting. As Table 8 shows, the
accuracy of both the monolingual and cross-lingual
models is approximately 40%, and there is no sig-
nificant difference between them. One possible
reason is that SNLI, SICK, and their Japanese ver-
sions (JSNLI and JSICK) do not contain temporal
inference, and the temporal inference patterns ob-
tained from PLMUTE are only a fraction of the
inference patterns required to solve our test set.

5.2 Fine-tuning setting
The right side of Table 8 shows the results on the
fine-tuning setting. As expected, all models are
highly accurate on the IID split setting (i.e., the
setting in which all training data were used). We
then discuss the results of the experiments using
the splits described in Section 3.4.

Tense Fragment-based Split In the tense
fragment-based split, the difference in accuracy
between seen and unseen problems was nearly
50% for all models on both FRAGMENT_EASY and
FRAGMENT_HARD. This suggests that the models
cannot generalize the temporal inferences obtained
from the training data.

Table 9 shows an example of unseen problems
that RoBERTa-large could not solve on FRAG-
MENT_EASY and the corresponding seen problems
in the training data. Because all models obtained
similar results in relation to the generalization abil-
ity of LMs for temporal inference, we focus on the
RoBERTa-large model, which achieved the best
performance on our dataset. For this example, the
model gave the same prediction for the both un-
seen and seen problems. The other tense fragment
problems that the model could not solve on FRAG-
MENT_EASY have the same characteristics. Specif-
ically, the model tended to predict incorrect labels
for problems in which the premises and hypotheses
of seen and unseen problems were very similar (dif-
ferences are highlighted in bold), but the gold labels
were different, as shown in Table 9. This suggests
that this model does not capture the essential mean-
ing of a sentence but determines the entailment
relations based only on superficial information (i.e.,
the model does not generalize temporal inference
patterns).

Time Format-based Split As shown in Table
8 shows, all models except XLM-RoBERTa-base
achieved 80% accuracies on both unseen problems
and seen problems of FORMAT_EASY. Further-
more, detailed analysis revealed that the XLM-
RoBERTa-base did not solve problems that re-
quired inference of the size relationships between
time units. This indicates that XLM-RoBERTa-
base only fails to generalize the size relation be-
tween time units. One potential reason for this is
that this model is cross-lingual and not large. In
contrast, on FORMAT_HARD, all models exhibited
reduced accuracy for the unseen problems com-
pared to the seen problems. This indicates that the
models do not have a priori knowledge regarding
the size relationships between time units. There-
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Seen problem Unseen problem
TF: Habituality - Unmentioned TP + Always
Gold label: Neutral

TF: Habituality + Negation - Unmentioned TP + Always
Gold label: Contradiction, Pred label: Neutral

P

イヴァンはいつも図面を遅れて出す。
Ivan wa always drawing o late submit .
(Ivan always submits his drawing late. )
2011年 11月 28日 16時にイヴァンは図面を出した。
2011 year 11 month 28 day 16 hour ni Ivan wa drawing o submit .
(Ivan submitted his drawing at 16:00 on November 28, 2011.)

デイヴはいつもマンションを遅れて訪れる。
Dave wa always apartment o late visit .
(Dave always visits the apartment late.)
2002年 5月 11日 14時にデイヴはマンションを訪れた。
2002 year 5 month 11 day 14 hour ni Dave wa apartment o visit .
(Dave visited the apartment on May 11, 2002 at 14:00.)

H
イヴァンは 2011年 11月 28日 22時に図面を遅れて出した。
Ivan wa 2011 year 11 month 28 day 22 hour ni drawing o late submit .
(Ivan submitted his drawing late at 22:00 on November 28, 2011.)

デイヴは 2012年 2月 1日 0時にマンションを遅れずに訪れた。
Dave wa 2012 year 2 month 1 day 0 hour ni apartment o late not ni visit .
(Dave visited the apartment on February 1, 2012 at 0:00 without delay.)

Table 9: An example of unseen problem that RoBERTa-large could not solve in FRAGMENT_EASY and the
corresponding seen problem in the training data. TF means the tense fragment.

fore, we consider that on FORMAT_EASY, BERT
and RoBERTa succeeded in generalizing the infer-
ence patterns of the size relationships between time
units based on minimal combinations of time units
in the training data.

Time Span-based Split On the time span-based
split, the large models achieved comparable ac-
curacy on both the seen and unseen problems,
whereas the base models tended to exhibit lower
accuracy on the unseen problems. This suggests
that the large models can generalize methods for
determining the order relationships between time
points, but the base models cannot generalize.

6 Conclusion

In this study, we constructed JAMP, a temporal
Japanese NLI dataset, using a template-based ap-
proach. Our dataset is controllable in terms of diffi-
culty, vocabulary, and size based on this approach.
We conducted experiments using our dataset to
probe the generalization ability of pre-trained lan-
guage models for temporal inference. The experi-
mental results indicated that current LMs can gen-
eralize for time format splits and time span splits
but fail to generalize for tense fragment splits. Our
dataset demonstrates that there is room for improve-
ment in the generalization ability of current stan-
dard LMs for temporal inference. Because our
method is applicable to the construction of datasets
for other linguistic phenomena (e.g., modality, com-
parative), we plan to investigate the generalization
ability of language models for other phenomena
using the template-based approach in the future.

7 Limitations

In this section, we discuss two limitations of this
study. The first limitation is that aspect and tem-
poral commonsense are outside the scope of our
dataset. Here, temporal commonsense refers to
knowledge regarding events and the appropriate

duration of those events. For example, the event
“I washed my face for three years” is unnatural in
terms of temporal commonsense, but this study did
not consider such unnaturalness.

The second limitation is that the proposed
method is currently applicable only to Japanese.
In this study, we used a Japanese case frame dictio-
nary to generate natural sentences. However, other
languages such as English do not have resources
equivalent to such a dictionary. Therefore, to apply
our method to additional languages, we must first
prepare a case frame dictionary for each language.
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A Tense Fragment

Table 10 shows the tense fragments we defined.

Tense Fragment Sub-tense Fragment
Temporal commonsense Usage of現在 (now)

Temporal ordering Continuity of state
Ordering relation

Time point Mentioned time point
Unmentioned time point

Temporal anaphora
Reference resolution
of昨日 (yesterday)

Interval Comparison of two intervals
Completion of eventuality

Habituality

Mentioned time point
Unmentioned time point
Negation
Existential quantification

Table 10: Tense fragments we introduced in this study.

B Problem Creation for Some JSeM
Problems

Table 11 shows examples of created problems
and corresponding original problems in JSeM. As
shown in Table 11, original and new problems are
similar but have different gold labels. We also cre-
ate templates for these created problems.

C Temporal Expression Generation in
SHORT Time Span

The temporal expressions in SHORT are generated
as follows. In the case of generating intervals, they
are generated as described in Section 3.2, except
that the integer selection range is one to three in-
stead of one to nine. In the case of generating time
points, we first identify the next largest unit after
the smallest unit of the time format in the current
problem and then calculate the duration of one-
third of that unit. We then determine a selection
range from a randomly selected time point to a time
point that is advanced by the calculated duration.
For example, if the smallest unit is “hour,” then the
next smallest unit is “day,” so the selection range
is between a specific time point and another time
point one-third of a day (eight hours) in the future.

D Details for Dataset Artifacts Analysis

As mentioned in Section ??, dataset artifacts
analysis reveals correlations between labels and
specific words. Formally, this analysis is
a one-side binomial hypothesis test with the
null hypothesis p(y|xi) = 1/3, where y ∈
{Entailment,Neutral,Contradiction}, and xi is a
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Original problem New problem
Gold label: Entailment Gold label: Contradiction

P

スミスはジョーンズが去る前に去った。
Smith wa Jones ga leave before ni leave .
(Smith left before Jones left.)
ジョーンズはアンダーソンが去る前に去った。
Jones wa Anderson ga leave before ni leave .
(Jones left before Anderson left.)

スミスはジョーンズが去る前に去った。
Smith wa Jones ga leave before ni leave .
(Smith left before Jones left.)
ジョーンズはアンダーソンが去る前に去った。
Jones wa Anderson ga leave before ni leave .
(Jones left before Anderson left.)

H
スミスはアンダーソンが去る前に去った。
Smith wa Anderson ga leave before ni leave .
(Smith left before Anderson left.)

スミスはアンダーソンが去った後に去った。
Smith wa Anderson ga leave after ni leave .
(Smith left after Anderson left.)

Gold label: Neutral Gold label: Entailment

P
スミスが 2時間以内に報告書を書いた。
Smith ga 2 hour within ni report o write .
(Smith wrote a report within two hours.)

スミスが 2時間で報告書を書いた。
Smith ga 2 hour de report o write .
(Smith wrote a report in two hours.)

H
スミスはその報告書を書くのに 2時間を費やした。
Smith wa that report o write no ni 2 hour o spent .
(Smith spent two hours writing that report.)

スミスはその報告書を書くのに 2時間を費やした。
Smith wa that report o write no ni 2 hour o spent .
(Smith spent two hours writing that report.)

Table 11: Examples of created problems and corresponding original problems in JSeM.

Section Size

Train 9,750
(3,050/3,340/3,360)

Test 344
(114/112/118)

Table 12: JAMP dataset statistics. The lower row in
parentheses shows the number of entailment, contradic-
tion, and neutral examples, respectively.

Dataset Name Size
SNLI (Bowman et al., 2015) 550,152
SICK (Marelli et al., 2014) 9,840
PLMUTE (Thukral et al., 2021) 72,720
JSNLI (Yoshikoshi et al., 2020) 533,005
JSICK (Yanaka and Mineshima, 2022) 5,000
PLMUTE_ja (Sugimoto and Yanaka, 2022) 11,220

Table 13: Statistics of dataset used in our experiments

word included in the vocabulary. For this anal-
ysis, we first split the hypothesis and premise
sentences into individual words/tokens using Ju-
man++ (Morita et al., 2015). We then count the
number of occurrences of the gold label y in the ni
examples for every word xi present in those exam-
ples. p(y|xi) is estimated based on the fraction of
the count of the gold label y over ni. According
to the protocol described in Gardner et al. (2021),
the null hypothesis is either accepted or rejected
with a significance level of α = 0.01 based on the
Bonferroni correction.

E Data Statistics

Table 12 shows JAMP dataset statistics. Table 13
shows sizes of datasets used in our experiments.

F Training Details

We select the best learning rate among [6e-6,8e-
6,1e-5,1.2e-5,2e-5] based on the development set.

We use a batch size of 16 for training and eight for
test.

G Data Licensing

Japanese case frame dictionary is distributed by
Gengo-Shigen-Kyokai. JSeM is licensed under
by BSD-3-Clause license. Our use of these two
datasets is consistent with the terms of the license.
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Abstract
Code search is a task to find programming
codes that semantically match the given nat-
ural language queries. Even though some of
the existing datasets for this task are multilin-
gual on the programming language side, their
query data are only in English. In this research,
we create a multilingual code search dataset in
four natural and four programming languages
using a neural machine translation model. Us-
ing our dataset, we pre-train and fine-tune the
Transformer-based models and then evaluate
them on multiple code search test sets. Our
results show that the model pre-trained with
all natural and programming language data has
performed best in most cases. By applying
back-translation data filtering to our dataset, we
demonstrate that the translation quality affects
the model’s performance to a certain extent, but
the data size matters more.

1 Introduction

Code search is the task of finding a semantically
corresponding programming language code given
a natural language query by calculating their simi-
larity. With the spread of large-scale code-sharing
repositories and the rise of advanced search en-
gines, high-performance code search is an impor-
tant technology to assist software developers. Since
software developers worldwide search for codes in
their native language, we expect code search mod-
els to be multilingual. Although many previous
studies focus on multilingual code tasks other than
code search (e.g., code generation, code explana-
tion) (Wang et al., 2021; Ahmad et al., 2021; Fried
et al., 2023; Zheng et al., 2023), the existing code
search datasets (Husain et al., 2020; Huang et al.,
2021; Shuai et al., 2021) contain only monolingual
data for search queries.

In this research, we construct a new multilin-
gual code search dataset by translating natural
language data of the existing large-scale dataset
using a neural machine translation model. We

also use our dataset to pre-train and fine-tune the
Transformer (Vaswani et al., 2017)-based model
and evaluate it on multilingual code search test
sets we create. We show that the model pre-
trained with all natural and programming language
data performs best under almost all settings. We
also analyze the relationship between the dataset’s
translation quality and the model’s performance
by filtering the fine-tuning dataset using back-
translation. Our model and dataset will be pub-
licly available at https://github.com/ynklab/
XCodeSearchNet. The contributions of this re-
search are as follows:

1. Constructing the large code search dataset
consisting of multilingual natural language
queries and codes using machine translation.

2. Constructing the multilingual code search
model and evaluating it on a code search task
using our dataset.

3. Analyzing the correlation between translation
quality and the model performance on a code
search task.

2 Background

2.1 Code Search Dataset

CodeSearchNet Corpus1 (CSN; Husain et al., 2020)
is a set of code data (code) in six programming
languages: Go, Python, Java, PHP, Ruby, and
Javascript, and natural language data describing
them (docstring). CSN is created by automatically
collecting pairs of function code and its documen-
tation that are publicly available on GitHub and
permitted for redistribution. This corpus contains
approximately 2.3 million data pairs and 4 million
code-only data. The natural language data in CSN
is function documentation, which is pseudo data of
the texts humans use to search for codes.

1https://github.com/github/CodeSearchNet
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Pre-training (MLM) Fine-tuning

PHP 662,907 1,047,406
Java 500,754 908,886
Python 458,219 824,342
Go 319,256 635,652
JavaScript 143,252 247,773
Ruby 52,905 97,580

Table 1: Training data size of CSN for each program-
ming language used for pre-training CodeBERT with
MLM and fine-tuning on the code search task.

In contrast, several datasets are created based
on natural language queries used for code search
by humans. CodeXGLUE (Shuai et al., 2021), a
benchmark for various code understanding tasks,
includes two code search datasets: WebQueryTest
(WQT) and CoSQA (Huang et al., 2021). The
query data of these datasets are collected from the
users’ search logs of Microsoft Bing and the code
from CSN. Given these separately collected data,
annotators who have programming knowledge man-
ually map the corresponding query and code to con-
struct the dataset. The common feature of these
datasets is that all natural language data, such as
docstrings and queries, are limited to English and
do not support multiple languages.

2.2 CodeBERT

CodeBERT (Feng et al., 2020) is a model pre-
trained and fine-tuned with CSN and is based on the
RoBERTa (Liu et al., 2019)’s architecture. Code-
BERT uses Masked Language Modeling (MLM;
Devlin et al., 2019; Lample and Conneau, 2019)
and Replaced Token Detection (RTD; Clark et al.,
2020) as pre-training tasks. Both docstring and
code data in CSN are used in MLM, while only
code data are used in RTD. CodeBERT is trained
only with English data, thus not available for a code
search task with multilingual queries.

3 Dataset Construction Using Machine
Translation

A possible way to construct a code search dataset
for multiple languages is to translate an existing
monolingual dataset. However, CSN’s large data
size makes manually translating all of its docstrings
difficult. Table 1 shows the number of CSN data
pairs used for pre-training (MLM) and fine-tuning
the CodeBERT.

Therefore, we use a machine translation model
to translate the English-only data to generate mul-

Pre-training Fine-tuning Test
Train Valid Test Train Valid

Go 316,058 3,198 28,533 635,652 28,482 14,277
Python 453,623 4,596 45,283 824,341 46,212 22,092
Java 495,768 4,986 42,237 908,885 30,654 26,646
PHP 656,277 6,630 54,406 1,047,403 52,028 28,189

Table 2: The sizes of CSN data for training and evaluat-
ing the models in our baseline experiments.

tilingual data efficiently. By translating CSN doc-
strings, we create a multilingual dataset consist-
ing of four natural languages (English, French,
Japanese, and Chinese) and four programming lan-
guages (Go, Python, Java, and PHP). We also trans-
late the queries in the datasets Feng et al. (2020)
used for fine-tuning and evaluating CodeBERT for
our experiments in Section 4.1 and Section 4.2.
In their fine-tuning data, the numbers of positive
and negative labels are balanced. Note that we
do not use JavaScript and Ruby data, whose sizes
are much smaller than those of other programming
languages.

As a translation model, we use M2M-100 (Fan
et al., 2022), which supports translations in 100
languages.2 M2M-100 achieved high accuracy in
translations of low-resource languages by classify-
ing 100 languages into 14 word families and cre-
ating bilingual training data within those families.
We use m2m_100_1.2B model, which is provided
by EasyNMT3, a public framework of machine
translation models. We set the model’s beam size
to 3.

We manually annotate the labels to some data
of our fine-tuning dataset to check the correlation
with the original labels, which is found to be 0.911
(see Appendix B for the details).

4 Baseline Experiments

We conduct baseline experiments, where we train
the Transformer-based model with our multilingual
dataset under various settings of the data sizes and
evaluate it on multiple code search test sets.

4.1 Training

We perform pre-training and fine-tuning on a model
initialized with the XLM-R (Conneau et al., 2019)
architecture and parameters. XLM-R is a model

2We compared the translation results of some docstrings by
several translation models, including Opus-MT and mBART,
and chose M2M-100, which achieved the best performance.

3https://github.com/UKPLab/EasyNMT
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CSN CoSQA WQT

Go Python Java PHP Python Python

No-pre-training

EN .813 .801 .737 .759 .526 .334
FR .780 .708 .681 .691 .463 .302
JA .792 .686 .641 .657 .372 .311
ZH .772 .660 .633 .670 .337 .297

All-to-One

EN .824 .851 .763 .790 .494 .360
FR .798 .796 .733 .734 .432 .363
JA .805 .781 .700 .711 .460 .348
ZH .788 .759 .712 .731 .427 .359

All-to-All

EN .835 .848 .786 .809 .473 .351
FR .808 .788 .731 .759 .420 .346
JA .816 .778 .719 .730 .436 .364
ZH .804 .759 .750 .745 .418 .359

Table 3: MRR scores of models pre-trained with all natural language data with either one programming language
data or all programming language data.

Go Python Java PHP

RoBERTa .820 .809 .666 .658
CODEONLY, INIT=S .793 .786 .657 .617
CODEONLY, INIT=R .819 .844 .721 .671

MLM, INIT=S .830 .826 .714 .656
MLM, INIT=R .838 .865 .748 .689
RTD, INIT=R .829 .826 .715 .677
MLM+RTD, INIT=R .840 .869 .748 .706

Table 4: MRR scores of CodeBERT from Feng et al.
(2020) for Go, Python, Java, and PHP. CODEONLY is
RoBERTa pre-trained only with code data. INIT refers
to how the parameters of the model are initialized. S is
for training from scratch, and R is for the initialization
with those of RoBERTa (Liu et al., 2019).

pre-trained by MLM with the Wikipedia and Com-
mon Crawl corpora for 100 languages using Trans-
former (Vaswani et al., 2017) and achieved high
performance on multilingual tasks, such as ques-
tion answering. Note that we use the term “pre-
training” to refer to further training of XLM-R
with our dataset. In this paper, we use MLM as
the learning objective to pre-train XLM-R and then
fine-tune it using data pairs whose query and code
languages are monolingual. We use monolingual
data pairs for fine-tuning instead of a multilingual
combination, given that Feng et al. (2020) clari-
fies that fine-tuning CodeBERT with six program-
ming languages altogether “performs worse than
fine-tuning a language-specific model for each pro-
gramming language.” Query and code data are con-
catenated to be input to the model, and it predicts
their similarity based on the vector representation
of the output [CLS] tokens. See Appendix C for
more details on training settings, including hyper-

parameters.

4.2 Evaluation
As with Feng et al. (2020), we use Mean Recipro-
cal Rank (MRR) as an evaluation metric.

MRR =
1

|Q|

|Q|∑

i=1

1

ranki

|Q| refers to the total number of queries. When a
test set has 1,000 data pairs, given a natural lan-
guage queryi, the model calculates the similarity
with the corresponding codei and the 999 distractor
codes. If the similarity score given for codei is
the 2nd highest among 1,000 codes, ranki equals 2.
Then, the average of the inverse of ranki over all
queries and codes is calculated as MRR.

Table 2 shows the sizes of CSN we use in our
experiments. Each test set of CSN for MRR evalu-
ation contains 1,000 data pairs randomly sampled
from the original test sets. We use CoSQA and
WQT as test sets in addition to CSN. As well as
CSN, we create CoSQA test sets from the origi-
nal 20,604 data pairs. We compute the average of
MRR scores over three different test sets for CSN
and CoSQA. The original WQT test set has 422
data pairs, so we use it as-is without sampling data
like CoSQA.

We translate natural language queries in these
test sets using the same machine translation model
and parameter settings as the translation of the train-
ing data.

4.3 Model Settings
We prepare three model settings that differ in the
amount and pattern of training data.
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No-pre-training An XLM-R model with no fur-
ther training applied and its initial parameters used.

All-to-One A model that uses data pairs of mul-
tilingual queries and monolingual codes for pre-
training. The size of pre-training data ranges from
1.2 million to 2.7 million, depending on program-
ming languages.

All-to-All A model that uses data pairs of mul-
tilingual queries and multilingual codes for pre-
training. The size of pre-training data is over 7.6
million.

4.4 Results

Table 3 shows the scores of the MRR evaluation
under all settings. The scores with CSN showed
that All-to-All performed best in Go, Java, and
PHP in almost all natural languages. On the other
hand, All-to-One showed better scores than All-to-
All on the Python test set. It is possible that the
performance reached the top at All-to-One on the
Python test set, given that the difference in scores
between All-to-One and All-to-All was relatively
small (<0.1). On CoSQA and WQT, there were
also cases where model settings other than All-to-
All performed better.

The performance of the original CodeBERT on a
code search task is shown in Table 4. Overall, All-
to-All is on par with the performance of CodeBERT
in English data. Especially, All-to-All marks better
scores in Java and PHP than CodeBERT. Note that
our experiments and those of CodeBERT differ
in the number of test sets used. Thus, it is diffi-
cult to compare these scores directly to discuss the
model’s superiority.

We observed a gradual trend that the scores de-
creased in English and French and increased in
Japanese and Chinese as we increased the size of
the pre-training data. This phenomenon might be
due to the difference in knowledge of these lan-
guages acquired during pre-training XLM-R. The
XLM-R pre-training data contain approximately
350 GiB for English and French and approximately
69 GiB and 46 GiB for Japanese and Chinese, re-
spectively. As parameters of XLM-R were updated
during our pre-training, the knowledge of English
and French the model originally had was lost. On
the other hand, the scores of Japanese and Chinese,
in which the model owned a small amount of data,
were improved by increasing the data size.

Train

0.2 0.3 0.4 0.5 0.6 0.7

FR 621,167 613,893 597,092 570,891 530,485 391,897
JA 612,422 594,477 552,979 480,567 388,189 250,028
ZH 607,468 588,808 557,748 500,622 410,369 265,986

Valid

0.2 0.3 0.4 0.5 0.6 0.7

FR 27,881 27,535 26,799 25,621 24,000 20,231
JA 27,433 26,524 24,901 21,981 16,327 10,304
ZH 27,115 26,178 24,971 22,280 18,445 10,792

Table 5: The sizes of our dataset for fine-tuning after
back-translation filtering applied.

0 0.2 0.3 0.4 0.5 0.6 0.7

EN .835 N/A N/A N/A N/A N/A N/A
FR .808 .810 .808 .805 .811 .809 .807
JA .816 .805 .803 .817 .813 .813 .802
ZH .804 .818 .818 .807 .798 .802 .802

Table 6: MRR scores with back translation filtering for
fine-tuning data. 0 means no filtering applied.

5 Analysis on Translation Quality

5.1 Back-translation Filtering

The translation quality of our dataset must affect
the model’s task performance. Therefore, we in-
vestigate whether there is a difference in the scores
of the code search task when we filter out the low-
quality data from the fine-tuning dataset.

We apply a back-translation filtering method
based on previous studies that used machine trans-
lation to automatically build a high-quality mul-
tilingual dataset from the English one (Sobre-
villa Cabezudo et al., 2019; Dou et al., 2020;
Yoshikoshi et al., 2020). We first apply back-
translation to French, Japanese, and Chinese doc-
strings. Then we calculate the uni-gram BLEU (Pa-
pineni et al., 2002) score between the back-
translated docstrings and the original English ones
and collect only data with scores higher than cer-
tain thresholds. In our experiments, we conduct
filtering to the fine-tuning dataset of Go. Table 5
shows the data sizes after back-translation filter-
ing. We set thresholds to 0.2 to 0.7 in increments
of 0.1 and compare the model’s performance with
each threshold. We choose these values because the
sizes of the datasets change relatively hugely when
filtered with the threshold 0.3 to 0.6 (Appendix D).
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5.2 Results

Table 6 shows the MRR scores of the models whose
fine-tuning data are filtered with different thresh-
olds. In every language, the scores peak when
we set the threshold between 0.2 to 0.5 and then
drop with larger thresholds up to 0.7. This result
implies that the filtering successfully removes the
low-quality data while maintaining the number of
training data and leads to better MRR scores. We
assume that the change in size from the original
dataset becomes more prominent with thresholds
from 0.5 to 0.7 (around 100K-400K), thus eventu-
ally resulting in lowering the overall scores.

However, the score changes seem insignificant
(±0.02) among these thresholds. One possible rea-
son is that the data size remains over 250K even
after filtering, which should already be enough for
fine-tuning in general.

In summary, the results show that filtering out
some low-quality data improves the model’s perfor-
mance on the code search task, but removing over
150K data worsens the test scores.

6 Conclusion

We created a large multilingual code search dataset
by a neural machine translation model. We then
constructed a multilingual code search model us-
ing our dataset. We found out that the models
pre-trained with all of the multilingual natural lan-
guage and programming language data achieved
the best performance on a code search task almost
all the time. We also investigated the relationship
between the translation quality of our dataset and
the model’s performance. The results indicated
that the data size contributed more to the model’s
code search performance than the data translation
quality.

Overall, this research introduced that using a
publicly available machine translation model helps
to translate texts in the programming domain. We
can apply our method to extend datasets for lan-
guages other than French, Japanese, and Chinese
to construct models for various natural languages.

Limitations

We used XLM-R for the baseline model to train
with our dataset in our experiments because we
wanted to make experimental settings as close as
the previous study of CodeBERT but for multilin-
gual data. Since CodeBERT is based on RoBERTa,

we chose XLM-R, which is also RoBERTa-based
and already trained with multilingual data.
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A CodeSearchNet

Table 1 shows the size of CSN for each program-
ming language used for pre-training CodeBERT
with MLM and fine-tuning on the code search task.
The number of data for fine-tuning in Go is listed
as 635,635 in Feng et al. (2020), but the dataset
publicly provided contains 635,652 data.

B Dataset Translation

We manually evaluate the translation quality of our
dataset. Table 7 shows examples of translation of
query data from English to Japanese using M2M-
100. Since queries of CSN are based on source code
descriptions, some of them contain strings that do
not necessarily need to be translated, such as vari-
able names, function names, and technical terms
(e.g., SetStatus, retrieveCoinSupply). M2M-
100 successfully translates the entire sentence, leav-
ing such domain-specific strings as needed.

On the other hand, we observe some errors, such
as translating to unknown words (e.g., “alphanu-
meric” to “アルファナウマリ”) or omitting some
texts from the translation.

We also manually annotate the labels of 45 sam-
pled data pairs from the fine-tuning dataset of
Japanese queries and Go codes and calculate how
much they match the original labels. These 45 data
pairs do not contain queries that were not success-
fully translated and remain in English. Among
45 data pairs, 28 of them have “1” as their labels
and 17 for “0”. We calculate the correlation with
accuracy, and the score is 0.911.

C Training Settings

As hyperparameters for pre-training the model, we
set the batch size to 64, the maximum input length
to 256, and the learning rate to 2e-4. As hyperpa-
rameters for the fine-tuning of the model, we set
the batch size to 16, the learning rate to 1e-5, and
the number of max training epochs to 3. In both
cases, we use Adam as the optimizer.

D Back-translation Filtering

Table 8 shows an example of the removed data
by filtering. Table 9 shows the data size of each
filtering threshold.
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Original (EN) Translated (JA) Quality

SetStatus sets the Status field s value . SetStatusは、Statusフィールドの値を設定します。 ✓

retrieveCoinSupply fetches the coin supply
data from the vins table .

retrieveCoinSupplyは、vinsテーブルから
コイン供給データを取得します。

✓

stateIdent scans an alphanumeric or field . stateIdentは、アルファナウマリまたは
フィールドをスキャンします。

✗
Unknown word

VisitFrom calls the do function starting
from the first neighbor w for which w ≥ a
with c equal to the cost of the edge
from v to w . The neighbors are then
visited in increasing numerical order .
If do returns true VisitFrom returns
immediately skipping any remaining
neighbors and returns true .

VisitFromは、最初の隣人 wから始まる do関数を
呼び出し、その w ≥ aと cは vから wまでの
エッジのコストに等しい。
If do returns true VisitFrom returns immediately
skipping any remaining neighbors and returns true.
もしそうであれば、VisitFromは直ちに
残りの隣人を無視して trueを返します。

✗
Wrong translation / Omission

Table 7: Examples of query data from the dataset (Japanese, Go, threshold=0.4). These data are sampled from the
top 10 entries of the dataset.

Original (EN) Translated (JA) Back-translated (EN)

NoError asserts that a function returned
no error ( i . e . nil ) .
actualObj err : = SomeFunction ()
if a . NoError ( err ) { assert .
Equal ( t actualObj expectedObj ) }
Returns whether the assertion
was successful ( true ) or not ( false ) .

NoErrorは、関数がエラーを返しません
( i. e. nil )を主張します。
まあ、あれ?まあ、あれ?まあ、あれ?
まあ、あれ?まあ、あれ?まあ、あれ?
真実(真実)か否かを返す。

NoError claims that the function
does not return an error (i.e. nil).
Oh well that? Oh well that? Oh well that?
Oh well that? Oh well that?
It is the truth or the truth.

The original query contains a code-like sequence (bold texts), so the model could not successfully translate it (underline texts).

Table 8: An example of filtered-out query data (Japanese, Go, threshold=0.4).

Train

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FR 626,130 621,167 613,893 597,092 570,891 530,485 391,897 224,928 78,989
JA 621,857 612,422 594,477 552,979 480,567 388,189 250,028 76,965 27,670
ZH 618,904 607,468 588,808 557,748 500,622 410,369 265,986 71,625 20,173

Valid

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FR 28,123 27,881 27,535 26,799 25,621 24,000 20,231 11,646 4,647
JA 27,837 27,433 26,524 24,901 21,981 16,327 10,304 5,422 1,806
ZH 27,693 27,115 26,178 24,971 22,280 18,445 10,792 4228 1,002

Table 9: The sizes of our fine-tuning dataset after back-translation filtering with thresholds in increment of 0.1.

75



Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics - Student Research Workshop, pages 76–82

July 10-12, 2023 ©2023 Association for Computational Linguistics

Multimodal Neural Machine Translation Using Synthetic Images
Transformed by Latent Diffusion Model

Ryoya Yuasa1 Akihiro Tamura1 Tomoyuki Kajiwara2

Takashi Ninomiya2 Tsuneo Kato1

1Doshisha University 2Ehime University
{ctwh0190@mail4, aktamura@mail, tsukato@mail}.doshisha.ac.jp

{kajiwara, ninomiya}@cs.ehime-u.ac.jp

Abstract

This study proposes a new multimodal neural
machine translation (MNMT) model using syn-
thetic images transformed by a latent diffusion
model. MNMT translates a source language
sentence based on its related image, but the
image usually contains noisy information that
are not relevant to the source language sen-
tence. Our proposed method first generates a
synthetic image corresponding to the content of
the source language sentence by using a latent
diffusion model and then performs translation
based on the synthetic image. The experiments
on the English-German translation tasks using
the Multi30k dataset demonstrate the effective-
ness of the proposed method.

1 Introduction

Recently, multimodal neural machine translation
(MNMT) (Specia et al., 2016), which uses images
in addition to source language sentences for transla-
tion, has attracted attention in the field of machine
translation (MT). Images related to source language
sentences are considered to improve translation per-
formance by resolving ambiguity during translation
and complementing information that is difficult to
capture with source language sentences. However,
a source language sentence often only describes
one aspect of the contents included in its related
image.

Figure 1 shows an example from a standard
dataset in MNMT, the Multi30k dataset (Elliott
et al., 2016). As shown in Figure 1, multiple source
language sentences with differing content are as-
sociated with a single image in the Multi30k. For
example, Source Language Sentence 2 does not
mention the house in the related image. There-
fore, related images are not necessarily optimal as
auxiliary information for MT.

Therefore, in this study, we propose a new
MNMT model using a synthetic image generated

by image conversion with a latent diffusion model.
Specifically, an original related image is converted
with a latent diffusion model based on its source
language sentence; content unrelated to the source
language sentence is eliminated from the original
image, and an image conforming with the source
language sentence is generated. Subsequently,
translation is performed by using the converted syn-
thetic image instead of the original related image.
Our aim is to improve translation performance by
using related images that better reflect the content
of source language sentences as auxiliary informa-
tion for translation.

We verified the effectiveness of our proposed
method on the English-German translation tasks
using the Multi30k dataset (Elliott et al., 2016)
and the Ambiguous COCO dataset (Elliott et al.,
2017). The results confirmed that, compared with
a conventional MNMT using the original related
images in the Multi30k, our method improved the
BLEU score by 0.14 on both the Multi30k Test
2016 and Test 2017, and by 0.39 on the Ambigu-
ous COCO. Additionally, CLIPScore (Hessel et al.,
2021), which was used to calculate the similarity
between a source language sentence and an image,
confirmed that the synthetic images used in our
method more closely match the source language
sentences than the original related images.

2 Conventional MNMT Models

MNMT models based on Transformer (Vaswani
et al., 2017) have recently become mainstream in
the field of MNMT. Various attempts have been
made to improve their translation performance, in-
cluding the introduction of visual attention mech-
anisms (Nishihara et al., 2020), as well as the
method of simultaneously learning feature repre-
sentations of text and images using a shared en-
coder (Elliott and Kádár, 2017). Li et al. (2022)
have proposed a Transformer MNMT model incor-
porating Selective Attention, an attention mecha-
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Original Related 
Image

Transformed 
Image 2

A girl going 
into a wooden 

building .

A child in a pink 
dress is climbing 
up a set of stairs 
in an entry way .

Image 
Transformation

Multimodal Neural Machine Translation Using Transformed Images with Latent Diffusion Model

MNMT Model
Ein kleines Mädchen klettert
in ein Holzhäuschen, das als

Stall dient.

Source Language 
Sentence 1

Source Language 
Sentence 2

Transformed 
Image 1

Target Language Sentece 1

Image 
Transformation

Figure 1: Overview of the Proposed Method

nism that captures relationships between words in a
source language sentence and patches of its related
image. We outline the Selective Attention MNMT
model, which is used as the base MNMT model in
this study, below.

The Selective Attention MNMT model first en-
codes the source language sentence X text and the
related image X img into feature expressions H text

and H img by Eqs. (1) and (2), respectively.

H text = TextEncoder(X text), (1)

H img =W ImageEncoder(X img), (2)

where W , TextEncoder, and ImageEncoder are the
parameter matrix, Transformer Encoder, and Vi-
sion Transformer (Dosovitskiy et al., 2021), respec-
tively.

Then, Selective Attention captures relationships
between image patches and source words using an
attention mechanism as follows:

H
img
attn = Softmax

(
QKT

√
dk

)
V, (3)

where Q, K, and V are H text, H img, and H img,
respectively, and dk is the dimension of H text.

Subsequently, the gated fusion mecha-
nism (Zhang et al., 2020) generates a feature
expression Hout that represents the source lan-
guage sentence and the image while controlling
the influence of the image by Eqs. (4) and (5).

λ = Sigmoid(UH text + V H
img
attn), (4)

Hout = (1− λ) ·H text + λ ·H img
attn, (5)

where U and V are learnable parameter matrices.
Finally, Hout is input to the Transformer Decoder
to generate a translated sentence.

two men are at 
the stove 

preparing food .

Text 
Enc.

Text

Input Image

𝒛 𝒛𝑻

Diffusion 
Process

VAE
Enc.

Output Image

𝒛 𝒛𝑻

VAE
Dec.

U-Net

Latent SpacePixel Space Conditioning

× 𝑻

Figure 2: Training Process of a Latent Diffusion Model

3 Proposed Method

In this section, we propose an MNMT model that
uses synthetic images transformed from related
images based on source language sentences. Figure
1 shows an overview of the proposed method.

The MNMT dataset consists of the triplets of a
source language sentence, a target language sen-
tence, and a related image. In typical MNMT
datasets, each source language sentence usually
only represents one aspect of the content included
in the related images; there are many cases where
content unrelated to the source language sentence
exists in the related image. For example, the image
in Figure 1 shows a scene where a girl in a pink
dress climbs the stairs to enter a wooden house,
but Source Language Sentence 1 does not mention
the climbing of stairs. Further, Source Language
Sentence 2 does not refer to a house. Therefore,
related images are not necessarily the best aids to
translation.

Accordingly, our proposed method first uses a la-
tent diffusion model to eliminate content unrelated
to the source language sentence from the related
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image and generate a synthetic image that corre-
sponds to the source language sentence (see Section
3.1). Then, translation is performed with a conven-
tional MNMT model (e.g., the Selective Attention
MNMT model in our experiments) using the gen-
erated synthetic image and the source language
sentence. Because this makes it easier to capture
the relationship between the input image and text
during translation, we expect the improvement of
translation performance.

3.1 Image Transformation: Latent Diffusion
Model

This section explains the latent diffusion
model (Rombach et al., 2022) used in the image
transformation step of our proposed method.
The latent diffusion model applies the diffusion
model (Sohl-Dickstein et al., 2015) to the latent
space of VAE (Kingma and Welling, 2014) and
consists mainly of the VAE, U-Net (Ronneberger
et al., 2015), and a text encoder (see Figure 2).
In the latent diffusion model, an input image is
projected from pixel space into a low-dimensional
latent space using a VAE Encoder to obtain its
latent representation. Then Gaussian noise is
continuously added to the latent expression by
a diffusion process. Next, in a reverse diffusion
process, U-Net is used multiple times to gradually
remove noise from the latent expression that
contained noise. At this time, the U-Net is
conditioned by the feature representation generated
from a text by the text encoder. This conditioning
is realized by a cross attention mechanism. Finally,
the VAE decoder projects the denoised latent
representation from latent space to pixel space to
obtain the output image.

The loss function for the latent diffusion model
is given as follows:

LLDM := Eε(x),y,ϵ∼N (0,1),t[∥ϵ− ϵθ(zt, t, τθ(y))∥22],

where ε, ϵθ, and τθ represent a VAE encoder, an
U-Net, and a text encoder, respectively, and x, y,
ϵ, t, and zt are an input image, a text, a Gaussian
noise, time, and the latent representation of time t,
respectively.

In our proposed method, a source language sen-
tence and its related image are input to the text
encoder and the VAE encoder, respectively, to con-
vert the related image into a synthetic image that
conforms to the source language sentence.

4 Experiments

4.1 Experimental Setup

We verified the effectiveness of the proposed
method on the English-German translation tasks
using the Multi30k and the Ambiguous COCO. We
used the Multi30k training data (29,000 triplets)
and the Multi30k validation data (1,014 triplets)
as our training and validation data, and used the
Multi30k Test 2016 (1,000 triplets), the Multi30k
Test 2017 (1,000 triplets), and the Ambiguous
COCO (461 triplets) as our test data.

We compared the translation performance of our
proposed method (MNMT(conv.)) with the transla-
tion performance of 1) an NMT model that does
not use related images (NMT); 2) an MNMT model
that uses original images from the dataset as related
images (MNMT(orig.)); 3) and an MNMT model
that uses images generated only from source lan-
guage sentences as related images (MNMT(gen.)).

Transformer-Tiny1 was used as the NMT model.
This model, with a reduced number of layers, size
of hidden layers, number of attention mechanism
heads, etc., as compared to typical Transformer
models, is suitable for small-scale datasets.2 Ac-
cording to Wu et al. (2021), we set the number of
encoder and decoder layers, the size of the hidden
layer, the input size of the feed-forward layer, the
number of attention mechanism heads, the dropout,
and the label smoothing weight to 4, 128, 256, 5,
0.3, and 0.1, respectively. Adam (Kingma and Ba,
2015) was used as the optimization method, with
β1 = 0.9 and β2 = 0.98. The learning rate was
linearly warmed up from 1e−7 to 5e−3 over the
first 2,000 steps, and then it was decreased propor-
tionally to the number of updates. The vocabulary
dictionary was shared between the source language
and the target language, and created by Byte Pair
Encoding (Sennrich et al., 2016) with 10,000 merge
operations.

The Selective Attention MNMT3 was used as
the MNMT model. As for Vision Transformer,
vit_base_patch16_3844 was used for image feature
extraction. Stable Diffusion,5 based on a latent

1https://github.com/LividWo/
Revisit-MMT

2Wu et al. (2021) reported that Transformer-Tiny outper-
forms Transformer Base/Small on the Multi30k dataset.

3https://github.com/libeineu/fairseq_
mmt

4https://github.com/rwightman/
pytorch-image-models

5https://github.com/CompVis/
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Model
Test Test Ambiguous
2016 2017 COCO

NMT 40.50 31.31 27.81
MNMT(orig.) 41.06 32.06 27.91
MNMT(gen.) 40.81 31.81 28.54
MNMT(conv.) 41.20 32.20 28.30

Table 1: Translation Performance (BLEU [%])

Model
Test Test Ambiguous
2016 2017 COCO

MNMT(orig.) 79.59 78.32 78.17
MNMT(conv.) 79.74 79.35 80.08

Table 2: CLIPScore: Similarity between Source Lan-
guage Sentences and Related Images

diffusion model, was adopted for the generation
of related images in MNMT(gen.) and the image
transformation in MNMT(conv.); the specific model
used was stable-diffusion-v1-5.6 StableDiffu-
sionPipeline and StableDiffusionImg2ImgPipeline
from diffusers,7 were used for implementation.
For image generation in MNMT(conv.) and
MNMT(gen.), we used the default parameters. We
set guidance_scale and num_inference_steps to 7.5
and 50 for MNMT(gen.), and guidance_scale and
strength to 7.5 and 0.8 for MNMT(conv.). The hy-
perparameters, optimization methods, and vocab-
ulary dictionary creation methods during training
were the same as the settings used for the NMT
model.

In decoding for all models, we averaged check-
points at the last 10 epochs before the end of train-
ing, and used beam search with a beam width of 5.
BLEU (Papineni et al., 2002) was used as the eval-
uation measure. We trained the models with five
different random seeds, and evaluated the model
with the highest BLEU on the validation data.

4.2 Results

Table 1 shows the experimental results. As Table
1 shows, the three MNMT models using image
information have higher BLEU scores across all
datasets than the NMT model that does not use
image information. This confirms that image infor-
mation helped improve translation performance on

stable-diffusion
6https://huggingface.co/runwayml/

stable-diffusion-v1-5
7https://github.com/huggingface/

diffusers

the datasets used in our experiments.
Further, a comparison of the three MNMT

models shows that our proposed MNMT(conv.)
achieved the highest translation performance on
Test 2016 and Test 2017. MNMT(gen.) had a
higher translation performance than MNMT (conv.)
on Ambiguous COCO, but overall, MNMT (conv.)
had better results, confirming the effectiveness of
the proposed method.

5 Discussion

This section analyzes the synthetic images used in
the proposed method. Examples of transformed
images are shown in Appendix A. In order to in-
vestigate how much of the image corresponds to
the source language sentence, we computed Clip-
Score (Hessel et al., 2021), which measures the
similarity between the image used and the source
language sentence by using CLIPScore(c,v) =
w ·max(cos(c,v), 0), where c and v are the fea-
ture vectors from the text encoder and the image
encoder of the CLIP (Radford et al., 2021), re-
spectively. w is used to rescale the output, and
following Hessel et al. (2021), we set it to 2.5.

The evaluation results are shown in Table 2. The
table shows that the synthetic images converted
by our proposed method have a higher similarity
to the source language sentences than the original
related images across all datasets. In particular, the
largest improvement (+1.91 CLIPScore) has been
observed on Ambiguous COCO, which includes
more ambiguity than the other two test datasets.
These results confirm that related images which
better reflect the source languages can be used as
aids to translation via our proposed method.

6 Conclusion

In this study, we proposed a new MNMT model that
uses a latent diffusion model to transform related
images into synthetic images that more closely con-
form to source language sentences and uses the
transformed images as auxiliary information for
MT. The experiments on the English-German trans-
lation tasks using the Multi30k dataset showed that
the proposed method can achieve higher translation
performance than conventional methods, demon-
strating the effectiveness of our proposed method.
The evaluation using CLIPScore confirms that the
images used in our method possess more similari-
ties to the source language sentences than the origi-
nal images.
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Limitations

In this work, we confirm the effectiveness of the
proposed method only on the English-German
translation tasks using the Multi30k dataset, the
most commonly used dataset in the MNMT re-
serach area. It is not clear whether the proposed
method is effective for translation for language
pairs other than English and German or translation
when a larger training dataset is used (e.g., when
using an existing data augmentation method for
MNMT). We will leave these verification experi-
ments for future work.

The proposed method has improved translation
performance of MT, but the performance is not per-
fect and translation results could include translation
errors. Accordingly, there still remains a possibil-
ity that translation results by the proposed method
could convey incorrect information.

The proposed method requires an additional pro-
cess for transforming images, compared with con-
ventional MNMT models. The experiment, in-
cluding model training and testing, on the pro-
posed model MNMT(conv.) took about 20 hours
longer than that on the baseline MNMT model
MNMT(orig.) when using RTX3090 GPU × 1.
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A Appendix

a man grilling meat on an outdoor grilling pit .

a young girl in a red dress is wearing a black 
cowboy hat .

one man holds another man's head down and 
prepares to punch him in the face .

a man wearing black and white stripes is trying to stop a horse .

Successful Examples Unsuccessful Examples 

Source Language Sentence

Source Language Sentence

Source Language Sentence

Source Language Sentence

Original Related Image

Original Related Image

Original Related Image Transformed ImageTransformed Image

Transformed ImageTransformed Image Original Related Image

Figure 3: Successful (Left) and Unsuccessful (Right) Examples of our Image Transformation
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Abstract

Despite the rapid development of neural-based
models, syntax still plays a crucial role in mod-
ern natural language processing. However, few
studies have incorporated syntactic informa-
tion into ancient Chinese understanding tasks
due to the lack of syntactic annotation. This
paper explores the role of syntax in ancient Chi-
nese understanding based on the noisy syntax
trees from unsupervised derivation and mod-
ern Chinese syntax parsers. On top of that,
we propose a novel syntax encoding compo-
nent – confidence-based syntax encoding net-
work (cSEN) to alleviate the side effects from
the existing noise caused by unsupervised syn-
tax derivation and the incompatibility between
ancient and modern Chinese. Experiments
on two typical ancient Chinese understanding
tasks, ancient poetry theme classification and
ancient-modern Chinese translation, demon-
strate that syntactic information can effectively
enhance the understanding of ancient Chinese
over strong baselines, and that the proposed
cSEN plays an important role in noisy scenar-
ios.

1 Introduction

Ancient Chinese literature, such as classical po-
etry, books, and records, is a highly representative
and distinctive cultural heritage that is receiving
increasing attention from the NLP academia. How-
ever, directly applying modern Chinese processing
methods to ancient texts is not appropriate due to
the differences in syntax and semantics between
ancient and modern Chinese. Chinese is one of the
oldest written languages in the world, with a his-
tory of at least 6,000 years (Norman, 1988). Over
time, the language has undergone many changes,
such as the transition from literary to vernacular
Chinese in the early 20th century (Weiping, 2017),
resulting in a significant gap between ancient and
modern Chinese.

∗ Corresponding authors.

<ROOT>

<ROOT>

Supervised  Parser  (BiAF):

Unsupervised  Derived  (Anchi-BERT)

Gold  (Human)

<ROOT>

Figure 1: Unlabeled dependency parses from different
parsers, where red arcs indicate prediction noises.

Syntactic features has been utilized in a wide
range of NLP tasks, including coreference resolu-
tion (Fang and Fu, 2019; Trieu et al., 2019; Jiang
and Cohn, 2022), machine reading comprehension
(Zhang et al., 2020; Guo et al., 2020), and machine
translation (Currey and Heafield, 2019; Zhang et al.,
2019a; Bugliarello and Okazaki, 2020). Despite
the effectiveness of syntax in modern Chinese un-
derstanding (Li et al., 2018; Xia et al., 2019; Zhang
et al., 2020), few studies have incorporated syn-
tactic information into ancient Chinese processing.
Most works only take into account explicit features,
such as era (Chang et al., 2021) and imagery (Shen
et al., 2019), ignoring implicit syntactic features.
The main reason for this lies in two aspects: (1) the
linguistic gap between ancient and modern Chinese
makes it difficult for supervised modern Chinese
syntax parsers to correctly parse ancient Chinese
expressions; (2) training a supervised ancient Chi-
nese syntax parser from scratch can be highly costly
due to the lack of annotated data.

Unsupervised syntax parsing or directly employ-
ing modern Chinese parsers will inevitably cause
noise and performance degradation. A unlabeled
example and corresponding human annotation on
ancient Chinese sentence "可怜人似月中孀(It is

83



pitiful like Chang’e in the moon)" are shown in
Figure 1. To address this challenge, we propose
a novel syntax encoding structure – confidence-
based syntax encoding network (cSEN), which al-
leviates the negative effect of noise by measuring
confidence of arcs in syntax graphs. Specifically,
confidence is calculated by performing Biaffine
transformation over the sequence representation
and the derived syntactic graph adjacency matrix.
With this obtained confidence, our model is capa-
ble of distinguishing useful syntactic features from
noise.

Moreover, compared with modern Chinese, an-
cient Chinese has more concise expressions and
thus more compact structures, each token is highly
relative to the preceding and following one. Consid-
ering such linguistic characteristic, we incorporate
another graph feature – left-right branch (LRB),
which captures local features to further improve
ancient Chinese understanding. Experiments are
conducted on two typical ancient Chinese under-
standing tasks, thematic classification of ancient
poetry and ancient-modern Chinese translation. Re-
sults show that our model achieves significant im-
provements over powerful baselines, and our pro-
posed cSEN can effectively handle the noise in the
derived syntax trees. To our best knowledge, our
proposed cSEN is the first solution that makes the
syntax practical in ancient Chinese processing. The
proposed cSEB can serve as a backbone for enrich-
ing our understanding of ancient texts, offering a
scalable and consistent solution for education, re-
search, and broadening the public’s access to these
significant cultural treasures.

Overall, the contributions of this paper can be
concluded in four folds:

• This study fills the research gap of exploring
the role of syntax in ancient Chinese under-
standing. Our work demonstrates that syntac-
tic information, even noisy parses from unsu-
pervised derivation, can benefit ancient Chi-
nese understanding substantially.

• We propose a novel architecture – confidence-
based syntax encoding network (cSEN),
which alleviates the negative effect of noise in
syntax parses, thus making it practical to uti-
lize derived syntactic information to enhance
ancient Chinese understanding.

• The effectiveness of cSEN is evaluated on
two typical ancient Chinese understanding

tasks, ancient poetry thematic classification
and ancient-modern Chinese translation. Re-
sults show that our model yields significantly
better performance in noisy scenarios over
powerful baselines.

• We create a new dataset for the thematic
classification of ancient Chinese poetry, with
22,360 poems divided into 10 theme cate-
gories. This dataset offers a data foundation
for related research and helps to eliminate the
lack of available ancient Chinese annotated
corpora.

2 Related Work

2.1 Syntax Role in Modern Chinese
Understanding

As syntax is highly correlated with semantics, syn-
tactic features, including constituent and depen-
dency structures, have been utilized in many mod-
ern Chinese understanding tasks and have been
shown to be helpful clues. Li et al. (2018) explored
the effect of syntax on semantic role labeling (SRL)
and confirmed that high-quality syntactic pars-
ing can effectively enhance syntactically-driven
SRL. Xia et al. (2019) designed a syntax-aware
multi-task learning framework for Chinese SRL
by extracting implicit syntactic representations as
external inputs for the SRL model. Jiang et al.
(2018) incorporated syntactic features to expand
identified triplets for improving Chinese entity re-
lation extraction. Zhang et al. (2020) proposed a
syntax-aware approach for solving machine read-
ing comprehension, which incorporates explicit
syntactic constraints into the attention mechanism
for better linguistically motivated word representa-
tions. Sun et al. (2022) utilized syntactic features,
which capture depth-level structure information, in-
cluding non-consecutive words and their relations,
to enhance recognition of Chinese implicit inter-
sentence relations. Zhu et al. (2022) incorporated
syntactic dependency information to determine en-
tity boundaries for improving Chinese named entity
recognition. Despite the increasing attention that
syntax is receiving in modern Chinese understand-
ing, few studies have attempted to utilize syntactic
features for ancient Chinese understanding.

2.2 Ancient-Modern Chinese Translation

Unlike bilingual translation tasks, such as Chinese-
English, ancient and modern Chinese are written
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using the same characters. Despite that, translat-
ing between ancient and modern Chinese can still
be challenging for native speakers. This is due
to two factors: (1) the syntactical structure and
grammatical order of ancient Chinese are differ-
ent from those of modern Chinese, making ancient
Chinese expressions more concise yet also more
confusing; (2) ancient Chinese frequently employs
allusion, metaphor, and symbolic imagery to im-
plicitly evoke sensory and emotional experiences,
which increases the complexity of disambiguating
the intended message.

In recent years, advancements in deep learning
have led to significant progress in neural machine
translation. For example, Zhang et al. (2019b) pro-
posed an unsupervised algorithm that constructs
sentence-aligned ancient-modern pairs, and an end-
to-end neural model with copying mechanism and
local attention to translate between ancient and
modern Chinese. Liu et al. (2019) applied RNN-
based (Bahdanau et al., 2014) and Transformer-
based (Vaswani et al., 2017) machine translation
models to this task. Considering the monolingual
nature of this task, Yang et al. (2021) utilized pre-
trained model UNILM (Dong et al., 2019) and an
ancient Chinese pre-trained model Guwen-BERT
to enhance performance. Over time, the Chinese
language has evolved a lot, resulting in different
characteristics of ancient Chinese in different eras.
To address this, Chang et al. (2021) proposed a
time-aware translation method, where the model
predicts both the translation results and its particu-
lar era, and uses the predicted chronological feature
as auxiliary information to bridge the linguistic gap
between Chinese language in different eras.

2.3 Classification of Ancient Chinese Poetry

Classification of ancient Chinese poetry provides
a basis for higher-level tasks, such as sentiment or
style controllable poetry generation (Yang et al.,
2018; Chen et al., 2019; Shao et al., 2021). In the
past, statistical features and machine learning al-
gorithms were commonly used. For example, Hou
and Frank (2015) proposed a weakly supervised
sentiment classification approach, which created a
sentiment lexicon based on Weighted Personalized
PageRank (WPPR). Shen et al. (2019) incorpo-
rated imagery features for analyzing the sentiment
of Tang Poetry. In recent years, neural classifiers
have been introduced to the task and made remark-
able progress in performance. For instance, Xuan

et al. (2018) designed a poetry style recognition
model by stacking a genetic algorithm with CNN,
and Tang et al. (2020) combined CNN with a gated
GRU for solving poetry sentiment classification.

3 Model

In this section, we describe architecture of the pro-
posed cSEN. We first present a basic GAT encoder,
then introduce our cSEN. The overview of cSEN
is shown in Figure 2.

3.1 Vanilla GAT

GAT is often applied over a sentence encoder to ex-
tract graph-based representations of the input text.
Given input token sequence T = {t1, t2, . . . , tl},
l denotes the sequence length. The output of the
sentence encoder is denoted as matrix H ∈ Rl×n,
where each row hi ∈ Rn is the representation of
token ti.

With dependency structure of the input sequence
from a syntax parser, we construct a dependency
graph G = (V, E), where V is the set of tokens
and E is the set of arcs. In the graph encoding, we
employ the form of adjacency matrix to describe
the graph, in which the positions with arcs and
diagonal are assigned to ones, denoted as M(dep).
Linear transformation is performed by multiplying
the sentence representation H with a matrix W ∈
Rn×n′

for feature extraction, where n′ denotes the
transformed feature dimension:

Z = HW.

Then, a pair-wise attention operation is performed.
For every pair ti, tj ∈ V , it concatenates corre-
sponding representations zi and zj , then takes the
dot product with vector a ∈ R2n′

and applies a
LeakyReLU activation function:

S(raw)[i, j] = LeakyReLU([zi ⊕ zj ]
T a),

where ⊕ represents the concatenation operation,
and S(raw) is a score matrix with the size of (l × l)
that captures inter-node relations. To integrate the
graph structure, the adjacency matrix M(dep) is
used to constrain the function scope before a regu-
lar Softmax operation is performed. By doing this,
each token can only attend to its head tokens and
itself. The obtained attention weights matrix then
is used for scaling the transformed sentence rep-
resentation Z and calculating the final attentional
output:

W(attn) = Softmax(S(raw) ×M(dep)).

H(attn) = W(attn)Z.
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Figure 2: Architecture of the proposed cSEN. ⊕ and G© represents the concatenation operation and the gated
mechanism, respectively. We present M(dep) in the form of graph where arcs are pointing from heads to dependencies.
The cells in M(lrb) are colored to highlight the local dependencies, and darker color indicates higher correlation.

3.2 Confidence-based GAT

As discussed above, GAT guides the encoding pro-
cess by constraining the scope of the attention com-
putation. Therefore, the presence of noise in the
graph will inevitably impact the encoding output.
To alleviate the negative effects of noise on the
model’s performance, we propose a confidence-
based GAT, which measures the confidence of the
graph adjacency matrix, helping the model distin-
guish reliable syntactic information from noise.

Similar to vanilla GAT, we first model the pair-
wise relationships. Two separate linear transfor-
mations are performed over the sentence represen-
tation H to obtain the role-aware representations.
The outputs are denoted as H(d) and H(h) respec-
tively, both of which have the size of (l × n′):

H(d) = HW(d);H(h) = HW(h).

Then, Biaffine attention (Dozat and Manning,
2016) are calculated on the role-aware represen-
tations for pair-wise relationship scoring:

S(bi) = H(d)UH(h)T ,

where U is an intermediate matrix with the size
of (n′ × n′). Confidence scores are calculated by
concatenating the pair-wise relationship scores and
the adjacency matrix and passing them through
processing as follows,

S(fuse) = ReLU(FFNN(fuse)(
[
S(bi) ⊕M(dep)

]
)),

S(conf) = Sigmoid(FFNN(proj)(S(fuse))).

where FFNN(fuse) performs a linear transformation

to fuse the two feature spaces along with an ReLU
activation, and FFNN(proj) is used to reduce the
dimension from 2l to l, so that Sigmoid can be
applied to project the confidence features to the
same magnitude as the attention scores. With this
obtained confidence scores S(conf), we can remedy
the original attention restrain process:

W(conf) = Softmax(W(attn) + S(conf)),

H(conf) = W(conf)Z.

In summary, cSEN alleviates the negative effect
of noise in graphs through a two-fold process. First,
cSEN measures the confidence of the derived syn-
tax parses. This confidence score is then used to
soft-mask noisy arcs and highlight previously un-
detected ones. Second, considering the linguistic
characteristics of ancient Chinese, the Left-Right
Branch feature is incorporated to broaden the scope
of syntax graph encoding and smooth out noise
and incompatibility. The combined effect of these
aspects helps alleviate performance degradation
caused by noise.

3.3 Left-Right Branch Feature

Inspired by the ubiquity of local dependencies in
ancient Chinese, we introduce a novel straightfor-
ward and effective feature, left-right branch, to fur-
ther improve the GAT encoding. To model local
inter-token relations, we populate a matrix M(lrb)

of the same size as M(dep) following

M(lrb)[i, j] =

{
1, if j ∈ {i− 1, i+ 1}
0, otherwise.
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This indicates that there exist arcs in the graph con-
necting the node and its close left and right neigh-
bors. The left-right branch features are encoded
using another GAT component, yielding a sequence
representation Z(lrb) and a positional-information-
introduced attention weight matrix W(lrb). The out-
puts from M(dep) and M(lrb) are combined with a
gated mechanism to produce the final output:

H(lrb) = W(lrb)Z(lrb).

g = Sigmoid(FFNN(gate)(
[
H(conf) ⊕H(lrb)

]
)),

H(output) = g ×H(conf) + (1− g)×H(lrb).

4 Experiments

We evaluate the effectiveness of cSEN module
using two typical ancient Chinese understanding
tasks: Thematic classification of ancient poetry and
ancient-modern Chinese translation. We build our
model by incorporating the cSEN module into exist-
ing solid baselines. For the classification task, we
follow the work of (Vaibhav et al., 2019) which has
a BERT-GAT-BiLSTM backbone architecture. And
for the translation task, our model is based on (Jin
et al., 2020) where dependency graphs are incor-
porated into neural sequence-to-sequence models
with a pointer network.

4.1 Data

To address the scarcity of annotated data for
thematic classification, we constructed a novel
dataset1. Two graduate students specializing in
Chinese literature study annotated 22,360 poems,
categorizing them into one of ten distinct themes
under the guidance of an experienced ancient Chi-
nese linguist. This meticulous process ensured
high-quality, reliable annotations. Any conflicted
labelling between the two annotators was resolved
through consultation with the supervisor, guarantee-
ing a consistent annotation standard. The dataset is
then randomly divided into a training set (20,360),
a development set (800), and a test set (1,200). The
distribution of themes in the dataset is detailed in
Table 1.

For the ancient-modern Chinese translation, we
adopt the ancient-modern Chinese parallel corpus
contributed by the open source NiuTrans project2.
The corpus contains 967,255 sentence pairs ex-
tracted from ancient Chinese books. We divided

1Upon publication of this paper, this dataset will be made
available for research purposes.

2https://github.com/NiuTrans/Classical-Modern

Train Dev Test

#Object-chanting 1129 47 66
#Landscape 1097 44 47

#Persons 2403 91 129
#History 1087 40 76

#Homesickness 9013 357 522
#Mourning 503 18 31

#War 1746 62 115
#Pastoral 1219 47 84
#Farewell 1460 60 83

#Boudoir-plaint 703 34 47

Total 20360 800 1200

Table 1: Data statistics of the ancient Chinese poetry
thematic classification dataset

the corpus into training, validation, and test sets
with corresponding sizes of 900,000, 60,000, and
7,255.

4.2 Syntax Parsing

We experiment with two settings – modern su-
pervised parsers and ancient unsupervised syntax
derivation. For modern supervised parsing, we
adopt the Biaffine dependency parse (Dozat and
Manning, 2016) and train it on CTB7 (Xue et al.,
2010). For unsupervised syntax derivation, we fol-
low the work of Wu et al. (2020), which utilizes
linguistic knowledge gained from pre-trained lan-
guage model BERT to infer syntactic dependency
structure without direct supervison. We attempt
two variants of BERT for syntax derivation and
backbone sentence encoder, BERT-wwm-ext (Cui
et al., 2021) and Anchi-BERT (Tian et al., 2021).
BERT-wwm-ext is trained on the modern Chinese
corpus containing 5.4B words, while Anchi-BERT
is trained upon a ancient Chinese corpus with the
size of 39.5M tokens. In addition, we treat the
left-right branch as a special kind of syntax parses.
Anchi-BERT is trained on a smaller ancient Chi-
nese corpus (39.5M tokens), while BERT-wwm-ext
is trained on a larger modern Chinese corpus (5.4B
tokens). We also treat left-right branch features as
a distinct class of syntax parses.

For clarity, the syntactic parses from the Biaffine
parser, BERT-wwm derivation, and Anchi-BERT
derivation are denoted as BiAF, WWMD, ANCD
respectively, in the following part.

4.3 Implementation and Hyper-parameters

For the thematic classification, our model is built by
stacking BERT, a graph encoder, and a single-layer
LSTM. For the baseline, we do not incorporate syn-
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BERT-wwm Anchi-BERT

Methods Parses Micro F1 Macro F1 Micro F1 Macro F1

Baseline None 91.7 89.2 92.4 90.4

LRB 91.5 88.9 93.3 91.4
BiAF 92.3 89.7 93.3 91.2

WWMD 91.4 88.8 92.7 90.8
GAT ANCD 91.8 89.2 93.2 91.0

BiAF+LRB 92.7 90.4 93.3 91.2
WWMD+LRB 91.7 89.6 93.2 91.2
ANCD+LRB 90.8 88.2 92.8 90.7

BiAF+ANCD+LRB 91.7 88.8 92.6 90.6

BiAF+LRB 91.4 89.2 93.3 91.6
WWMD+LRB 92.8 90.7 93.6 91.9

cSEN ANCD+LRB 91.3 89.1 93.2 91.3
BiAF+ANCD+LRB 91.0 89.1 93.8 91.9

Table 2: Comparison with baseline model and syntax-aware methods on the thematic classification task.

Methods Parses BLEU RG-1 F-score RG-2 F-score RG-L F-score

Baseline None 37.14 69.71 46.24 67.62

LRB 37.42 69.86 46.36 67.72
BiAF 37.45 70.23 46.93 68.21

WWMD 37.46 70.20 46.89 68.14
GAT ANCD 37.55 69.90 46.53 67.85

BiAF+ANCD+LRB 34.62 69.20 45.15 67.15

cSEN BiAF+ANDC+LRB 37.73 70.27 47.09 68.23

Table 3: Experimental Results of the ancient and modern Chinese translation task.

tax parses, rendering the graph encoder ineffective
in shaping the attention scope. The graph encoder’s
node embedding dimension is set to 128, and the
hidden size in LSTM is set to 100. We adopt the
Adam optimizer with ρ = 5e− 5 and ε = 1e− 8,
using a batch size of 32. All classifiers are trained
for 10 epochs on the train set by default.

We mostly follow the parameter settings from
(Jin et al., 2020) for the ancient-modern Chinese
translation. The Adam optimizer is configured with
ρ = 1e − 4 and ε = 1e − 8. And all models are
trained for 50 epochs with a batch size of 108.

4.4 Results

4.4.1 Ancient Poetry Thematic Classification
Table 2 presents the results of ancient poetry the-
matic classification. We report the results in Micro-
F1 and Macro-F1 scores. The table is divided into
three blocks, showing the results of the baseline
model, vanilla GAT, and the proposed cSEN. The
baseline model achieves 92.4 in Micro F1 and 90.4
in Macro F1, showing strong performance.

From the results in the first two blocks, it can be
found that incorporating syntactic trees with GAT
encoder brings substantial improvement, proving

the value of syntactic information for enhancing an-
cient Chinese understanding. Through comparing
the results of employing Anchi-Bert as the sentence
encoder and those obtained employing Bert-wwm,
we can see that Anchi-Bert outperforms BERT-
wwm with a significant lead in all cases. Recall
that Anchi-Bert was pre-trained on a much smaller
corpus. Also, the performance of syntactic trees
derived by BERT-wwm is inferior to the other three.
This once more indicates the linguistic gap and syn-
tactic incompatibility between ancient and modern
Chinese.

Unsupervised syntax trees derived by Anchi-
BERT performs roughly the same as those pro-
duced by the Biaffine parser. Additionally, LRB
is the best-performing syntax parse among all, im-
proving the performance by 0.9 in Micro F1 and
1.0 in Macro F1. It can be partially explained by
the fact that ancient poems are comprised by a few
brief sentences, which are highly concise and struc-
turally compact. This results in fewer long-range
dependencies, and each token is closely dependent
on the immediate preceding or succeeding token.

From the third block, it can be seen that when us-
ing Anchi-BERT as sentence encoder, cSEN brings
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Variants Micro F1 Macro F1

cSEN 93.8 91.9
w/o Confidence 92.8 91.1
w/o Gate 93.0 91.0

Table 4: Ablation study results.

Syntax Trees Micro F1 Macro F1

[ANCD] + (LRB) 93.2 91.3
[BiAF] + (LRB) 93.3 91.6

[BiAF + LRB] + (ANCD) 92.8 90.9
[ANCD + LRB] + (BiAF) 92.8 90.5
[BiAF + ANCD] + (LRB) 93.8 91.9

Table 5: Comparison of different combination config-
urations on syntactic parses. Parses in square brackets
are merged onto a single adjacency matrix and parses in
parentheses are incorporated by the gated mechanism

performance gains across all syntax trees setups,
raising the top Micro and Macro F1 scores to 93.8
and 91.9, respectively. This demonstrates that: (1)
cSEN’s denoising capability is effective for utiliz-
ing noisy syntactic information to improve ancient
Chinese understanding; (2) cSEN can handle noise
introduced by different parses, whether it is from a
supervised modern Chinese parser or unsupervised
derivation.

4.4.2 Ancient-Modern Chinese Translation

Results of the ancient-modern Chinese translation
are shown in Table 3. We use BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) scores for
performance evaluation. The baseline model with-
out syntax parses achieves 37.14 in BLEU score
and F-scores of 69.71, 46.24, 67.62 in ROUGE-
1, ROUGE-2, and ROUGE-L respectively. With
single syntactic parses incorporated, all models
achieve better performance in all metrics, prov-
ing that syntax can effectively improve ancient-
modern Chinese translation. LRB is relatively the
weakest one, slightly increasing BLEU score by
0.28, and ROUGE f-scores by 0.15, 0.12, 0.10.
This might be caused by that sentences from the
ancient books have more long-distance dependen-
cies and more complicated syntactic structures that
left right branch can not recover. Anchi-BERT de-
rived syntax parses have better performance with
an improvement of 0.41 in BLEU score, and 0.19,
0.29, and 0.23 in ROUGE scores. BERT-wwm de-
rived syntax trees and trees generated by Biaffine
parser have similar results. In contrast to Anchi-
BERT derived trees, their performance are inferior

in BLEU scores but better in ROUGE F-scores.
Feeding multiple syntactic parses into the GAT-
based model simultaneously leads to a significant
performance drop. While replacing GAT with the
proposed cSEN increases performance in all met-
rices, with 37.73 in BLEU score and 70.27, 47.09,
68.23 in ROUGE F-scores. From the above results,
we conclude that syntax parses from unsupervised
derivation or modern Chinese syntax parsers intro-
duce noise and degrade model performance. With
our confidence learning, model is able to distin-
guish and separate informative syntactic informa-
tion from noise, thus alleviating its negative effect.

Table 6 shows three ancient-to-modern Chinese
translation examples produced by different models.
From generations for Sent 1, we can see a common
error: due to the lack of contextual information, all
three models assume the surname of "the father"
useing the most common Chinese surnames, such
as "Li" and "Zhang". For Sent 2, the generations
from the baseline model and vanilla GAT differ
significantly from the human-annotated reference.
They fail to recognize the relationship between the
characters,such as who "其娣" refers to, thus gen-
erating tranlations that did not correspond to the
facts. In contrast, with stronger denoising capa-
bility, cSEN is able to correctly encodes the infor-
mation in ancient Chinese texts, thus producing
higher-quality translations.

5 Exploration

In this section, we investigate the impact of differ-
ent cSEN components and analyze the nature of
different syntax parses.

First, we conduct ablation studies on cSEN. Re-
sults are reported in Table 4. Both the removal
of the confidence (equivalent to vanilla GAT) and
the removal of the gated mechanism lead to signifi-
cant performance degradation. This indicates that
both modules are crucial for effectively utilizing
syntactic information from noisy parses.

Second, we experiment with different syntax
tree combination setups. Table 5 lists the findings.
Combining two syntax parsers onto a single depen-
dency graph can provide richer syntactic informa-
tion and produce higher performance than using
alone syntax parses, no matter it is from unsuper-
vised derivation or a supervised parser. We also
explore the incorporation position of LRB features.
It can be observed that the model performance suf-
fers significantly if LRB features and graph parses
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Sent Ancient Chinese

src: 父岘，少骁勇，事章大宝为帐内部曲。
1 ref: 父亲陈岘，年轻时骁勇，侍奉章大宝，任帐内部曲。

trl: His father, Chen Xian, was brave when he was young. He served Zhang Dabao, as an in-tent soldier.
src: 晋伐骊戎，骊戎男女以骊姬。归生奚齐。其娣生卓子。

2 ref: 晋国攻打骊戎，骊戎男把骊姬献给晋献公，回国后生了奚齐，她的妹妹生了卓子。
trl: Jin state attacked Li Rong. Li Rong’s men presented Li Ji to Jin Xian Gong. After returning the state, Li Ji gave birth to Xi Qi, and her sister
gave birth to Zhuo Zi.
src: 及竣事，又曰：杨存中之罢，朕不安寝者三夕。

3 ref: 等到事毕后，又说：杨存中被罢免，我有三天不得安寝。
trl: After the matter was over, he said: "The dismissal of Yang Cunzhong, made me unable to sleep for three days."

Baseline

1 父亲张岘，少年时骁勇善战，在章大宝帐下当兵,任章大宝的部曲。
His father, Zhang Xian, was brave and good at fighting when he was young. He served as a soldier under the command of Zhang Dabao, and was
Zhang Dabao’s soldier.

2 晋国讨伐骊戎，骊戎男女献上骊姬，回国后生了奚齐，骊戎的妹妹生了卓子。
Jin state attacked Li Rong, and Li Rong’s men and women presented Li Ji, and after returning the state, they gave birth to Xi Qi, and Li Rong’s
sister gave birth to Zhuo Zi.

3 等到完成任务，又说：杨存中被罢免，朕三夜不安寝。
After completing the task, he said: "The dismissal of Yang Cunzhong, made me unable to sleep for three nights."

Vanilla GAT

1 父亲李岘，少年时骁勇善战，在章大宝手下做事。
His father, Li Xian, was brave and good at fighting when he was young, and worked under Zhang Dabao.

2 晋国讨伐骊戎，骊戎男娶了骊姬，嫁给了奚齐，奚齐的妹妹生了卓子。
Jin state attacked Li Rong. Li Rong’s men married Li Ji, married Xi Qi, and Xi Qi’s sister gave birth to Zhuo Zi.

3 等到完工，又说：杨存中被罢免的事，我感到不安宁的有三个晚上。
After the work was finished, he said: I felt uneasy about Yang Cunzhong’s dismissal for three nights.

cSEN

1 父亲陈岘，年轻时骁勇，事奉章大宝任帐内部曲。
trl: His father, Chen Xian, was brave when he was young. He served Zhang Dabao as an in-tent soldier.

2 晋国攻打骊戎，骊戎男把骊姬送给晋国，回国后生了奚齐，她的妹妹生了卓子。
Jin state attacked Li Rong. Li Rong’s men presented Li Ji to Jin State. After returning the state, Li Ji gave birth to Xi Qi, and her sister gave birth
to Zhuo Zi.

3 等到事情完毕，又说：杨存中被罢免，我三天不安寝。
trl: After the matter was over, he said: "The dismissal of Yang Cunzhong, made me unable to sleep for three days."

Table 6: Ancient-to-modern Chinese translation examples generated by the baseline model, vanilla GAT, and cSEN.
The first block shows the original ancient Chinese sentence (src), human-annotated modern Chinese reference (ref),
and corresponding English translations (trl).

are directly merged together. This again indicates
the necessity of our gated method for LRB feature
integration.

Third, as illustrated in Figure Figure 3, we com-
pare our model and baselines over different input
lengths. cSEN performs better in relative longer
sentences, according to the results. This supports
the hypothesis that syntax helps guide longer sen-
tence understanding as dependency reduces the dis-
tance. Because of the incompatibility between mod-
ern and ancient Chinese, unsupervised derivation is
more effective than supervised parsing when com-
pared to other syntax parsers. In most cases, cSEN
yeilding better performance due to its stronger de-
noising capabilities.

6 Conclusions
In this paper, we investigate the role of syntax in
improving ancient Chinese understanding. Due to
lack of syntax annotation, syntax trees are obtained
by unsupervised derivation and supervised modern
Chinese parser. To alleviate the negative effect of
noise, we propose a confidence-based syntax en-
coding network (cSEN). Experimental results on
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Figure 3: BLEU scores for different input sentence
lengths.

two typical ancient Chinese understanding tasks
show that our model can effectively distinguish
informative syntactic information from noise and
achieve better performance. The application of our
proposed cSEN can enhance the accessibility of
ancient Chinese resources by offering a scalable
and consistent solution for mining semantic infor-
mation of ancient Chinese texts.
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Limitations

The main limitation of our study comes from the
extra parameters caused by confidence calculation,
in which two separate self-attention operations and
Biaffine transformation are performed. Incremen-
tal parameters results in a more time-consuming
training process, and a higher hardware demand for
storage. To address this issue, we plan to combine
parameters from different attentional transforma-
tions into shared weight matrices in our future work
to reduce the model size.
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Abstract

In this paper, we investigate the potential of
using large pre-trained language models to gen-
erate non-playable character (NPC) scripts in
video games. We introduce a novel pipeline
that automatically constructs believable NPC
scripts for various game genres and specifica-
tions using Transformer-based models. More-
over, we develop a self-diagnosis method, in-
spired by prior research, that is tailored to es-
sential NPC characteristics such as coherence,
believability, and variety in dialogue. To evalu-
ate our approach, we propose a new benchmark,
The Turing Quest, which demonstrates that our
pipeline, when applied to GPT-3, generates
NPC scripts across diverse game genres and
contexts that can successfully deceive judges
into believing they were written by humans.
Our findings hold significant implications for
the gaming industry and its global community,
as the current reliance on manually-curated
scripts is resource-intensive and can limit the
immersiveness and enjoyment of players.

1 Introduction

Over the past decade, there has been a growing in-
terest in applying deep learning models to Natural
Language Generation (NLG) for open-domain dia-
logue systems and conversational agents. In paral-
lel, the gaming industry has been striving to create
more immersive experiences for players by enhanc-
ing their interactions with non-playable characters
(NPCs). However, the potential of utilizing state-of-
the-art deep learning models, such as Transformer-
based models, to create NPC scripts remains largely
unexplored.

Pre-trained Transformer-based language mod-
els (PLMs) like OpenAI’s GPT-3 (Brown et al.,
2020) and ChatGPT (Schulman et al., 2022) have
demonstrated impressive conversational abilities
(Milne-Ives et al., 2020). In certain contexts, the
text generated by these models can be nearly indis-
tinguishable from human-written text (M Alshater,

2022) without the aid of external tools or water-
marks (Gambini et al., 2022). The use of these
models in real-world applications has been expand-
ing in areas such as customer service automation
(Xu et al., 2017) (Zou et al., 2021), educational
conversational agents (Molnár and Szüts, 2018),
and mental health dialogue systems (Abd-Alrazaq
et al., 2019).

Despite their growing prevalence, the effective-
ness and generalization capabilities of PLMs in
various contexts remain uncertain. One such un-
charted domain is the creation of “non-playable
characters” or NPCs in video games.

When comparing chatbots to NPCs, the latter
can be considered as a narrative-driven variant of
goal-oriented chatbots. However, NPCs and chat-
bots serve different purposes and operate in distinct
environments. Generating NPC scripts presents
unique challenges, as the dialogue must be consis-
tent with the game’s plot, genre, and the NPC’s
character to maintain player immersion and suspen-
sion of disbelief (Kerr and Szafron, 2009). Accord-
ing to Lee and Heeter (2015), NPC believability
hinges on “the size and nature of the cognitive
gap between the [NPC that] players experience
and the [NPC] they expect”. Players anticipate
NPCs with individualized and possibly dynamic
traits, which should be reflected in their dialogue.
While incorporating personality into dialogue sys-
tems is well-studied (Qian et al., 2017) (Smestad
and Volden, 2019) (de Haan et al., 2018), the chal-
lenge of generating goal-oriented, believable NPC
scripts that align with a game’s narrative and the-
matic elements, while preserving player immersion,
remains substantial.

The ability to automatically generate contextu-
ally appropriate dialogue for a specified character
could have an effect on the design paradigms of
future video games. While manually scripted nar-
ratives and plot points will continue to hold their
value, developers could augment player immersion
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Figure 1: A sample output of our NPC construction pipeline.

by allowing an array of NPCs to dynamically re-
spond to a player’s in-game progression.

Traditionally, game design involves scripted di-
alogues only for NPCs that contribute directly to
a quest or story line, thereby limiting the extent
of player interaction. It is not often possible for a
player to initiate a conversation with a companion
about an ongoing quest or solicit their views, creat-
ing an impression that, from an NPC’s perspective,
the player’s existence is confined to the quests they
undertake.

Simply implementing an interactive compan-
ion system necessitates writing dialogues for ev-
ery quest for all possible companions—a labor-
intensive task. Expanding this system to encom-
pass a majority of a game’s NPCs would fur-
ther compound these challenges, increasing the
amount of labour to an unreasonable degree. The
vast amount of dialogue required for each narra-
tive stage would significantly exceed typical time
and resource constraints of most developers. De-
spite the potential enrichment of the player ex-
perience, the practicality of creating such an im-
mersive, dialogue-rich environment using solely
human-authored dialogue in game development re-
mains questionable.

In this study, we investigate the application
of Transformer-based models like GPT-3 to the
task of creating NPCs and generating believable
scripts. To this end, we develop an NPC construc-
tion pipeline capable of generating dialogue based
on the NPC’s attributes alone. Our pipeline com-

prises three key modules: a) a Feature Charac-
terization Schema that classifies NPCs based on
personality traits and world descriptions, b) an Au-
tomatic Prompt Creation process that employs the
schema to generate tailored prompts for condition-
ing language models, and c) a Dialogue Generation
phase that uses the customized prompts to generate
scripts with Transformer-based PLMs. Figure 1
provides an example of dialogue generated through
this pipeline. We also devise and automate an eval-
uation metric for NPC dialogue quality, drawing
inspiration from related literature (Brown et al.,
2020). Lastly, we propose the Turing Quest: a test
using human judges to assess the believability and
quality of generated NPC scripts.

2 Related Work

In recent years, there has been a growing inter-
est in dialogue systems and conversational agents.
However, the exploration of dialogue generation
for NPCs in video games, despite their similarities
to chatbots, remains limited. Although most video
games in the past decade include NPC dialogue,
research on automating its creation using Artificial
Intelligence (AI) is still in its infancy.

NPC Dialogue generation. In the early 2000s,
efforts in NLP to create better NPC dialogue re-
lied on hand-crafted algorithms and manually au-
thored grammars (Schlünder and Klabunde, 2013)
(Ryan et al., 2016). Schlünder and Klabunde (2013)
succeeded in generating greetings that players per-
ceived as more polite and appropriate than in-game
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greetings. However, their rule-based method re-
lied on labor-intensive, discrete human-defined
steps that were difficult to scale into full branching
conversations. With recent advancements in goal-
oriented chatbots utilizing machine learning tech-
niques such as reinforcement learning (Liu et al.,
2020) and dialogue generation through deep re-
inforcement learning (Li et al., 2016) (Li, 2020),
automating NPC dialogue generation becomes in-
creasingly feasible.

The introduction of AI into games has led to
the application of various AI techniques and algo-
rithms to enhance gameplay experiences through
improved bots (Nareyek, 2004) and adaptive ex-
periences (Raifer et al., 2022). There has been
significant research into using machine learning to
create bots that provide challenging and entertain-
ing opponents for players (Håkansson and Fröberg,
2021). However, this trend of applying machine
learning to different game design tasks does not
extend to dialogue generation for NPCs.

Although pre-trained language models such as
GPT-3 continue to expand their applicability, gen-
eralization remains an unsolved problem. While
PLMs like GPT-3 have shown natural language gen-
eration capabilities (Topal et al., 2021), research
into NLG with Transformer-based models trained
on NPC dialogue has revealed that the generated di-
alogue “compared rather poorly to human-written
[dialogue]” in terms of purpose and coherence
(Kalbiyev, 2022). Nevertheless, generalization dif-
ficulty for LMs is not unique to NPC dialogue (Ye
et al., 2021). We hypothesize that NPC dialogue
is not merely another generalization problem but a
distinct task. This hypothesis is supported by the
inadequacy of chatbot evaluation metrics (Peras,
2018) when applied to NPC dialogue.

NPC Dialogue Metrics. Metrics proposed for
chatbots do not directly translate to suitable metrics
for NPC dialogue. While chatbot success is often
determined by how “human” they sound and their
ability to maintain a conversation with a human
(Turing, 1950), NPC dialogue is always directed
and goal-oriented. Generating dialogue for NPCs
presents unique challenges compared to text gener-
ation in fictional settings. The generated dialogue
must be consistent with the game world and the
NPC’s specific traits and personality, and it should
ensure coherence and contextual relevance in re-
lation to the player’s input. No test equivalent to
the Turing test or its alternatives, such as the Wino-

grad schema (WSC) (Winograd, 1972; Levesque
et al., 2011) exists specifically for NPC dialogue.
To our knowledge, there is no standard metric to
evaluate the quality of generated NPC dialogue.
One suggested metric for NPC dialogue is “coher-
ence, relevance, human-likeness, and fittingness”
(Kalbiyev, 2022). While coherence, relevance, and
human-likeness can be applied to chatbots, fitting-
ness—defined by Kalbiyev (2022) as how well the
response fits the game world—is unique to NPCs.

3 NPC Construction Pipeline

The objective of the NPC construction pipeline
is to automatically generate coherent, contextu-
ally appropriate, and engaging utterances for an
NPC, given the dialogue history between the NPC
and a player, as well as the contextual informa-
tion about the NPC and the game. The pipeline
consists of three modules, which serve to a) char-
acterize the NPC according to a generalized rep-
resentation schema that captures crucial informa-
tion about the NPC’s role, personality, and game
context, b) generate short prompts based on the
characterization, providing contextually relevant
pretexts for the language model (LM), and c) gen-
erate utterances based on these prompts using an
LM optimized for NPC dialogue generation.

3.1 Module 1: Feature Characterization
Schema

The first module in the pipeline involves develop-
ing a schema that characterizes a given NPC ac-
cording to a number of game- and NPC-relevant
features. Identifying the most concise set of fea-
tures needed to define any NPC is a challenging
task, as NPCs not only exhibit vastly different per-
sonalities but can also serve different purposes for
the player and the game world. For example, in
the action role-playing game, “The Elder Scrolls
V: Skyrim” (Bethesda Game Studios, 2011), the
NPC Balgruuf the Greater is a Jarl, i.e., a king or
ruler who assigns quests to the player to maintain
peace. In contrast, a character like KL-E-0 from
“Fallout 4” (Bethesda Game Studios, 2015), a robot
arms dealer in a post-nuclear apocalyptic world,
has little concern for peace. Based on (Warpefelt,
2016), NPCs should possess both a ludic function
and a narrative framing for their actions to be coher-
ent and believable. That is, an NPC should fulfill
a gameplay or mechanical purpose—i.e., a ludic
function—while advancing the narrative through
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their actions.
To develop a characterization of NPCs that cap-

tures their differences across various games and
genres, we should consider several important fea-
tures, such as their relationship and role with re-
spect to the player (e.g., buying and selling, pro-
viding quests, etc.) and their individual personality
and values. Taking into account narrative purpose,
ludic purposes, and the personality and character-
istic differences of NPCs, we propose five game-
specific features to characterize and distinguish
NPCs:

Narrative Ludic
function

World Desc. D
NPC Role D
NPC Personality D
Game State D D
NPC Objective D D

Table 1: The features and their purpose(s).

Each of these five features either fulfills a ludic
function or contributes to the game’s narrative, and
in some cases, a feature serves both purposes. This
schema enables us to classify NPCs based on their
in-game mechanics (Hunicke et al., 2004) while
also capturing their role in the game’s story. By
incorporating these features into the NPC construc-
tion pipeline, we can create NPCs that not only
adhere to the context and constraints of the game
world but also exhibit distinct and engaging per-
sonalities, which can significantly enhance players’
immersion and overall gaming experience.

World Description. A world description pro-
vides a summary of the story thus far, including
information about the game world and its unique
characteristics. Without this information, actions,
thoughts, and utterances may be incoherent or unfit-
ting, as they lack awareness of the setting and genre.
This may result in dialogue or actions that con-
flict with the player’s expectations. For instance,
if Balgruuf from the previous example, originat-
ing from a fantasy adventure game, were placed
in a sci-fi horror set in space, his actions, appear-
ance, and dialogue would clash with the rest of
the game. NPCs become “essentially incompre-
hensible if they are not framed according to the
narrative” (Warpefelt, 2016). Ignoring information
related to the setting, genre, and themes present
in the NPC’s world may affect the believability

and fittingness of the NPC. More importantly, the
narrative dissonance generated could shatter the
willful suspension of disbelief —coined by Samuel
Taylor Coleridge (1971)—and break the player’s
immersion in the game’s world and story.

Role. Each unique NPC is created to fulfill
a purpose. Continuing from the previous ex-
ample, Balgruuf primarily functions as a quest-
giver—facilitating the player’s progression through
the main quest line and occasionally offering side
quests to enrich the narrative experience. Omitting
his role would fail to represent a critical function of
his character. Defining the role of an NPC, whether
as a vendor, quest giver, or storyteller, etc., is thus
crucial. We selected these roles based on the ty-
pology of NPCs and the NPC model proposed in
(Warpefelt, 2016). We adapted the types of NPCs
from (Warpefelt, 2016) and simplified the set of
NPC types to those that would feasibly have a con-
versation with the player while also merging entries
that were similar in their roles. This resulted in
eight types of NPCs, six neutral or friendly roles,
and two non-friendly roles, as shown below, in
Table 2.

Metatype Role

Functional
Vendor

Service Provider
Questgiver

Providers Story teller

Friendly
Ally

Companion

Adversaries
Enemy
Villain

Table 2: Adapted NPC types.

The role an NPC occupies influences their ex-
pected dialogue. Although these roles are not mu-
tually exclusive within a single NPC (e.g., some
NPCs can be vendors at times while providing a
quest at another time), at any given point during a
dialogue with a player, the NPC occupies only one
of these roles.

Personality. To describe any given NPC, it is nec-
essary to elaborate on their personality and unique
characteristics that distinguish them from other
characters. These characteristics include physical
attributes and appearances, psychological and per-
sonality traits such as the strength of the OCEAN
personality traits proposed in (Digman, 1990), likes
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and dislikes, etc. This feature focuses on the details
of the NPC’s character, such as their occupation,
beliefs, and other related details. NPCs are charac-
ters at their core, making it essential to incorporate
these details into their depiction.

Game State. This describes the progression of
the game and changes to the NPC’s location. The
NPC’s dialogue may change based on the objec-
tives completed by the player and the current state
of the in-game world. The addition of this feature
allows us to focus on the NPC during any single
time frame during the course of the game. This
enables better classification of dynamic NPCs that
change over the course of the game and react to the
player’s actions. This feature also allows specify-
ing details such as the current location of the NPCs
and the scope of information the NPC possesses.
Game state serves both a narrative and ludic pur-
pose; for example, a shopkeeper may offer more
goods depending on the player’s actions, and the
NPC’s location also aids in framing their actions
and dialogue, as a vendor may only offer certain
goods in specific towns.

Objective. The NPC Objective is the purpose of
the NPC apart from the player. According to Den-
nett Daniel (1981), personhood consists of six dif-
ferent themes: Rationality, Intentionality, Stance,
Reciprocity, Communication, and Consciousness.
Providing an NPC with a role satisfies intention-
ality, as each action should be motivated by what
the NPC was designed to achieve. However, giving
them goals and aspirations allows the NPC to have
a stance and perhaps even consciousness (Kalbiyev,
2022). If a blacksmith’s objective is to raise enough
money for their family, they should act and speak
accordingly. Their actions and dialogue should not
solely reflect their personality but also their objec-
tive. This feature allows the schema to capture
complex and dynamic NPCs with intricate values
and goals not fully represented by their role or per-
sonality. The addition of this feature enables the
NPC to have a greater purpose than merely serving
as an outlet for exposition or facilitating a game
function.

With these features, we propose that each unique
NPC can be encapsulated and represented wholly,
as shown in figure 2. Each one of these features
is independent of one another, allowing for mod-
ularity when designing NPCs. However, clashing
combinations may still exist regardless of the mod-

World A fantasy world of Dragons and
magic; Skyrim

Role Questgiver
Personality Nord, Jarl of Whiterun, Loyal,

Noble, Blonde, reasonable
State Sitting on throne in dragonsreach.

Contemplating the war and re-
cent reports of dragons

Goal The safety and prosperity of the
people of whiterun and a solution
to the looming dragon threat.

Figure 2: Completed features for “Balgruuf the
Greater”.

ular nature of this schema.

3.2 Module 2: Prompt Creation
Prompt creation was designed with the feature rep-
resentation schema in mind. Providing the LM
with sufficient information about an NPC is cru-
cial to ensure that the generated dialogue remains
consistent with the character’s identity. These re-
quirements are akin to the challenges faced by the
feature representation schema. Consequently, the
prompt creation module integrates the various fea-
tures present in the schema and uses them as a
prompt. The first line of each prompt begins with
the sentence “You are an NPC in a game”, followed
by optional details such as a name, some details
about the world that the NPC inhabits, the role of
the NPC, basic personal characteristics, their cur-
rent state (e.g., sitting outside thinking about their
daughter), and finally their goal(s). Most of these
categories are optional, except for the NPC type
(i.e., their role), which must always be present. By
incorporating these features, the prompt creation
module empowers users to guide the LM in generat-
ing diverse NPCs with individualized personalities,
allowing for greater customization without the need
for prior fine-tuning or training.

NPC Header. Utilizing this prompt creation
method, we created the NPC header, a represen-
tative example is depicted in figure 3. This header
plays a pivotal role in dialogue generation by pro-
viding essential information about the character.
For our needs, we also created a player header us-
ing the same information used in the NPC header,
guiding the LM to mimic a player’s behavior and
facilitate automated dialogue generation. The gen-
erated player dialogue is less creative and more
prone to repetition compared to human-written dia-
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Figure 3: Example of an NPC header.

logue. This issue is beyond the scope of this paper,
as our focus lies on NPC dialogue generation.

3.3 Module 3: Dialogue Generation

Dialogue generation was executed automatically
and iteratively. The prompt was structured as a
combination of the header and the current dialogue
history. The header section is continually swapped
depending on which agent’s dialogue—NPC or
player—is currently being generated. By placing
the header at the top of the prompt and swapping it
for the active agent, PLMs can generate dialogue
that is coherent with the current speaker and their
traits.

First Sentences. In early development-stage re-
sults, GPT-3 demonstrated difficulty in generating
effective first sentences. Combined with the inher-
ent challenge of generating human-like responses,
this led to a significant drop in the overall quality of
dialogue—often resulting in both NPC and player
generating blank lines or constantly repeating the
same responses. A workaround was developed by
employing a small set of hand-written first sen-
tences based on the genre and NPC type. This
workaround allowed the conversation to avoid im-
mediate repetition while minimizing interference
with dialogue generation.

Repetition. In our preliminary testing, we found
that PLMs struggle to avoid repetition when the
player dialogue is similar to a past query or sen-
tence. This often caused the NPC’s response to be
similar or even identical to its previous response.
To circumvent this issue, we implemented a dy-
namic frequency penalty. The dynamic frequency
penalty incrementally increases when the NPC or
player generates a response that already exists in
the conversation. After detecting a repetition and
incrementing the frequency penalty, the LM at-

tempts to regenerate with the same prompt, exclud-
ing the repeated sentence. This process occurs up
to three times or until a new sentence is generated
before resetting the frequency penalty to the orig-
inal value before any increments. This technique
significantly reduced overall repetitions and drasti-
cally decreased the occurrence of loops appearing
early in the conversation.

4 Evaluation

To assess the performance of the NPC construction
pipeline and the resulting generated dialogue, we
designed a comprehensive evaluation metric that
examines dialogue quality based on coherency, be-
lievability, degree of repetition, alignment of the
NPC’s dialogue with their role, and fittingness of
the NPC’s dialogue within their world. These cat-
egories draw from and adapt Kalbiyev (2022)’s
metric for evaluating video game dialogue. Each
metric is assigned a score between one and five,
with the sum of these scores indicating the overall
quality of the dialogue.

Self-diagnosis harnesses the capacity of
Transformer-based language models to detect
patterns within text and their few-shot learning
performance to enable rapid, automated evaluation
of dialogue without prior fine-tuning. We con-
ducted a human evaluation of 66 different NPC
scripts to assess the accuracy and reliability of our
self-diagnosis approach. After each conversation
was evaluated and scored, we found a correlation
between parameters and their average score. By
including our full NPC header, we were able to
generate dialogue of higher quality. We then
conducted a single-blind test where human judges
were asked to determine whether an NPC script
was generated by AI or written manually by a
human.

4.1 Self-Diagnosis

We investigated the ability of pretrained language
models, such as GPT-3, to understand, evaluate,
and diagnose dialogue when given a specific non-
trivial query (e.g., “whether an NPC behaved co-
herently”). Schick et al. (2021) demonstrate that
PLMs can identify socially undesirable attributes in
text, such as racism and violence. We propose that
this self-diagnosis capability is not only applicable
to socially undesirable attributes but also enables
PLMs to self-diagnose a broader and more general
set of attributes, themes, and behaviors without fur-
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ther fine-tuning. For simple questions, such as if a
genre was clearly distinguishable in text, PLMs per-
form accurately in a zero-shot environment without
examples and further guidance. This behavior is
supported by Sanh et al. (2022). However, this per-
formance does not hold when dealing with more
complicated and potentially subjective questions.

Figure 4: Prompt structure of self-diagnosis.

Our self-diagnosis approach consists of provid-
ing examples of different scoring dialogue for each
metric that needed further clarification. By scoring
dialogue”, we mean, for example, giving the LM
a prompt like “What a perfect score looks like” or
“What a 3 should look like”. In preliminary tests,
we found that simply inputting a script and posing
a question led to relatively reliable results; however,
the output occasionally did not align with human
responses or logic. By formulating the question
more precisely and asking for a numeric response
rather than a free-form sentence response, we were
able to obtain a numeric answer more accurately.
To account for potential variability in the responses,
we set the temperature to 0 for each test, yielding a
deterministic model devoid of stochastic behavior.
We leveraged the PLM’s few-shot learning abili-
ties by adding three examples of different scoring
sample dialogue before the prompt. This approach
aligns scores obtained through self-diagnosis more
closely with human scores on queries that a PLM
would otherwise have difficulties with.

4.2 The Turing Quest
To evaluate the performance of our NPC Construc-
tion pipeline and the degree to which the resulting
generated dialogue appears human-written, we pro-
pose a test tailored to NPC dialogue—the Turing
Quest. Inspired by the Turing test (Turing, 1950),
the goal of this test is to determine whether a gener-
ated NPC script can be distinguished from human-
written dialogue by human judges. A script passes
the Turing Quest if the judge deems it human-

written, and fails if perceived as AI-generated.
Conducting this test on multiple NPC script sam-
ples helps assess the proficiency of state-of-the-art
PLMs in generating convincing NPC dialogue.

The Turing Quest is a self-administered question-
naire. For each script, it asks the judge to determine
if the NPC’s dialogue is written by a human or an
AI. Since the scope of this test is to determine the
believability of an NPC’s dialogue, the player’s
dialogue can be manually written by a human.

For our test, six NPC scripts were evaluated by
12 individual judges. Four of the six scripts were
generated by GPT-3, one was manually written, and
the final script was sampled from the game Skyrim.
Our test group comprised twelve people familiar
with video games and NPCs. From the responses
of our judges, we determined the average passing
rate was 64.58% for all AI-generated scripts. The
best performing generated script had a pass rate of
75%. Interestingly, 75% of judges believed that the
dialogue sampled from Skyrim was AI-generated
and 50% thought the same for the manually written
script. This could highlight the expectations of
players regarding the current state and abilities of
LMs and conversational agents. These findings
provide strong empirical evidence that our pipeline,
when applied to PLMs, is capable of producing
NPC scripts that resemble and perhaps even surpass
human-written NPC dialogue.

5 Experiments and Results

5.1 Parameter Search and Model Selection

We conducted a comprehensive random grid pa-
rameter search to identify the optimal model and
parameters for generating high-quality NPC dia-
logue. Three key parameters influenced the quality
and score of the generated dialogue: the language
model, temperature setting, and the integration of
our NPC construction pipeline prompt.

Utilizing different versions of GPT-3 (OpenAI’s
text-davinci-002, text-curie-001, and text-babbage-
001 models) and a range of temperatures (0 to 1,
incremented by 0.1), we compared the quality of
dialogue generated with our full prompt and a min-
imal version without the world description, NPC
Personality, game state, and NPC objective sec-
tions. We repeated the experiment with another
NPC role to ensure generalizability1.

1The code to reproduce all of our experimental results
are available at https://github.com/FieryAced/-NPC-Dialogue-
Generation.
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Figure 5: Evaluation Scores of varying models and
temperatures.

Our analysis revealed a significant decline in
quality from the text-davinci-002 to text-curie-001
models, and an even more pronounced decrease
between text-curie-001 and text-babbage-001. This
is consistent with recent research which has shown
that larger and more complex models, such as GPT-
3’s text-davinci-002 model, have the ability to learn
and generalize more complex patterns from larger
and more diverse datasets, resulting in better per-
formance across a wide range of natural language
processing tasks (Brown et al., 2020).

Furthermore, the recently proposed InstructGPT
framework by Ouyang et al. (2022) allows for tar-
geted fine-tuning of pre-trained language models
to better suit the task at hand. This approach in-
volves providing additional instructions during fine-
tuning, such as providing task-specific prompts or
data augmentation techniques, which results in im-
proved performance for downstream tasks. With
the success of InstructGPT, it is becoming increas-
ingly clear that language models can be further
optimized for specific use-cases by adjusting their
architecture or fine-tuning process. Thus, it is rea-
sonable to assume that newer and more advanced
models, such as text-davinci-003, should gener-
ally perform better than their predecessors. Finally,
our analysis shows that full-prompt models outper-
formed minimal prompt ones, with an average 4.06
point higher score, demonstrating the effectiveness
of our prompting method.

A Pearson correlation test (excluding the atyp-
ical data point with a temperature of 0) showed a
positive correlation between temperature and score,
r(8) = .7055, p = .022646. Higher temperature
values yielded better results, with the highest aver-

age scores at temperatures of 0.9 and 0.8.
Based on these findings, we recommend using

advanced Transformer-based LMs like OpenAI’s
GPT-3 “text-davinci-002” at a temperature around
0.9, along with our NPC construction pipeline, for
optimal NPC script generation.

5.2 Results
Self-Diagnosis: To assess the reliability of the
self-diagnosis module, we manually evaluated 66
NPC scripts using the same metrics applied in self-
diagnosis. A Pearson correlation test showed a
strong positive correlation between self-diagnosed
and human-evaluated scores, r(64) = .8092, p <
.00001. This demonstrates the module’s con-
sistency and correlation with human evaluation
scores.

Turing Quest Results: Our NPC construction
pipeline, when using the recommended parameters,
generates dialogue that not only passes as human-
written but also scores highly on the evaluation
metric. On average, our generated dialogue was
thought to be hand-written 64.58% of the time with
the best performing script passing as human writ-
ten 75% of the time. The generated NPC scripts
exhibit goal-oriented behavior and adherence to the
in-game world and genre, maintaining player im-
mersion. The Turing Quest results further confirm
the high quality of the generated dialogue.

6 Conclusion

We developed a novel pipeline capable of auto-
matically generating NPC scripts comparable or of
superior quality to human-written NPC dialogue
using Transformer-based PLMs. We then created a
self-diagnosis module which provides a method to
evaluate and compare the quality of NPC dialogue
quantitatively. Finally, our proposal of the Turing
Quest allows us to determine the capabilities of a
language model when applied to the task of NPC
dialogue generation and whether a script passes
as human-written. While the NPC construction
pipeline allows for modularity even in between re-
sponses, that aspect was not explored in depth in
this paper. We will explore dialogue generation for
dynamic NPCs with evolving roles or attributes in
future research.

Limitations

The dialogue generated for the player exhibits a
higher degree of repetition and has a tendency to-

100



wards looping. This limitation exists as we did
not focus on generating player dialogue as that is
a different problem of its own. To account for this
limitation, both the self-diagnosis and the Turing
Quest only evaluate the NPC’s dialogue.

Currently, the maximum context window for the
dialogue history portion is limited by the max to-
kens of a given model minus the tokens required for
the NPC header. Despite being a rare occurrence,
it is possible that the dialogue history becomes so
long that the model may not be able to generate
any responses as there is no more remaining space.
We did not experience this problem; however, a
workaround would be to discard the oldest dialogue
history entry as needed. This approach however
may cause the NPC to lose out on information that
it would otherwise be able to leverage in dialogue.

Ethics Statement

The presence of bias within NPC models/systems
poses a significant risk particularly as the demo-
graphic of young individuals, still in the age of
development, who enjoy playing video games con-
tinues to expand. In 2006, 92% of children in
the ages of 2-17 had played video games (Doğan,
2006). 97% of players under the age of of 18 play
more that an hour of games daily (Granic et al.,
2014). According to recent statistics, the global
demographic of active video game players is pro-
jected to increase over 5% year-over-year (Doğan,
2006), reaching over 3 billion active players world-
wide in 20232. This means, in the future, video
games will reach more young children and adoles-
cents. If the presence of bias is not addressed, it
could subconsciously normalize problematic be-
haviours seen in games in children as humans are a
product of both nature and nurture (Plomin and As-
bury, 2005). This in turn may lead to more biases
being overlooked or ignored by the next generation
of researchers, creating a vicious cycle.
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Abstract

Recent advances in large language models have
led to renewed interest in natural language pro-
cessing in healthcare using the free text of clin-
ical notes. One distinguishing characteristic
of clinical notes is their long time span over
multiple long documents. The unique structure
of clinical notes creates a new design choice:
when the context length for a language model
predictor is limited, which part of clinical notes
should we choose as the input? Existing studies
either choose the inputs with domain knowl-
edge or simply truncate them. We propose a
framework to analyze the sections with high
predictive power. Using MIMIC-III, we show
that: 1) predictive power distribution is differ-
ent between nursing notes and discharge notes
and 2) combining different types of notes could
improve performance when the context length
is large. Our findings suggest that a carefully
selected sampling function could enable more
efficient information extraction from clinical
notes.

1 Introduction

Electronic Health Records (EHR) enable the devel-
opment of language model based clinical predictor,
which takes in clinical notes to predict patient out-
comes. Clinical notes in EHR exhibit two unique
characteristics. 1) Clinical notes cover a long time
span (from a few weeks to over a year), which re-
sults in their sparsity of information-rich sections.
2) Clinical notes also tend to be long: many dis-
charge notes could take up to 10, 000 tokens, which
makes using the entire note as model input com-
putationally expensive. 3) The strong noise level
in the medical notes (usually due to the domain-
specific abbreviations and typos) also poses a chal-
lenge to extract information effectively.

These distinguishing characteristics of clinical
notes lead to a new design choice: when the context
length is limited due to the constrained compute
or model architecture, what parts of clinical notes

should we sample to maximize the model’s perfor-
mance? We propose a framework to subsample text
sections with high predictive power.

Empirically, we explore the distribution of pre-
dictive power over clinical note types and sections
by searching over these variables. We found that
1) the predictive power distribution is different be-
tween nursing notes and discharge notes: the pre-
dictive power is stronger at the beginning and end
of discharge notes, while uniform within nursing
notes. 2) The effect of combining sections from
different types of notes improves the performance
when the context size is large, but harms the perfor-
mance when the context size is small. More details
of task formulation can be found at section 3. Our
code is publicly available on GitHub1.

2 Related Work

Existing methods for subsampling clinical notes
for the BERT-based model are mostly based on do-
main knowledge. For instance, Yang et al. (2022)
and Darabi et al. (2020) choose discharge notes as
they summarize patients’ visits. Thapa et al. (2022)
chooses the notes within three days before a cutoff
time in consideration of timeliness. While these
assumptions are based on domain knowledge, they
require human input and may not generalize. Thus,
we are interested in exploring a data-driven sam-
pling choice without assumptions of expert inputs.

Another related, but orthogonal approach to the
limited context length problem is note aggregation.
Instead of subsampling notes, Huang et al. (2019)
propose to feed everything to the model, one max-
imum context length at a time, and aggregate the
outputs for the final prediction. In their work, notes
of one patient are split into a partition of subse-
quences, and the patient’s re-admission risk is ob-
tained by taking a weighted average of probabilities
computed from each subsequence. This method’s

1https://github.com/nyuolab/
EfficientTransformer
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compute cost scales with the aggregated sequence
length, which can be expensive for records with
long clinical notes. In contrast, our method aims to
find one single information-rich segment as input.

3 Method

We formalize our prediction task as follows: given
a set of clinical notes x associated with an admis-
sion record, we want to predict the class label y
which is our patient outcome of interest. Ideally,
we want to train a classifier fw∗ to approximate
p(y | x). The optimal parameter is

w∗ = argmax
w

m(fw(x), y),

where m is a metric function of interest. Never-
theless, due to the computational constraint, we
need to reduce the input size via a sampling func-
tion sθ so that sθ(x) fits the input length limit and
preserves information. Empirically, the optimal
parameters are

w∗, θ∗ = argmax
w,θ

m(fw(sθ(x), y)).

We say a sample function sθ has a higher predic-
tive power if m(fw∗(sθ(x), y)) is larger.

While current works chose sθ based on prior
medical knowledge or simply fix it as a truncation
function, we propose to explore different sampling
functions sθ to make the most out of the limited
context length with the highest predictive power.
Notice that in our work, s and θ are searched man-
ually, instead of using learning algorithms.

4 Experimental Setup

We hypothesize that for 30-day all-cause readmis-
sion prediction, there exists an alternative sam-
pling function that enables similar or better per-
formance than the commonly used “truncated dis-
charge notes". More formally, we focus on a pa-
rameterized sampling function with 2 variables: 1)
which section of tokens to include, 2) what type(s)
of clinical notes to use.

Model We finetuned two clinical language mod-
els in our experiments. The first is Clinical-BERT
(Alsentzer et al., 2019), which continued to pretrain
BERT using approximately 2 million notes from
MIMIC-III and has a maximum sequence length
of 512. The second is the ClinicalLongformer (Li
et al., 2022), which continued to pretrain Long-
former (Beltagy et al., 2020) with MIMIC-III notes

and enables input of up to 4096 tokens. Both mod-
els are finetuned to predict the probability of 30-day
all-cause readmission: that is, whether the patient
will be re-admitted to the hospital within 30 days
of their discharge dates.

Dataset We use the discharge notes and nursing
notes in the noteevent table of the MIMIC-III
database (Johnson et al., 2016). There are 40, 000
de-identified admission records available to use
after filtering out all admission records without
nursing notes and discharge notes. The admission
records are split into 75% train, 12.5% validation,
and 12.5% test sets. Other types of medical notes
such as physician notes are excluded from consider-
ation in our experiments due to their scarcity in the
database. See Appendix A for data preprocessing.

Sliding Window To extract different sections of
the clinical notes, we use a sliding window tech-
nique. Let n be the window’s width. Let l be the
total number of tokens of the text. The window is
placed based on an input parameter p ∈ [0, 1] indi-
cating the location of the midpoint of the window,
where the window interval is

[lp− n/2, lp+ n/2].

In case where lp−n/2 < 0, we shifted the window
backward so that the front of the window aligns
with the beginning of the input tokens. In the case
where lp+n/2 > l we shifted the window forward
to let the back of the window match the end of the
tokens. Also, when l < n, we ignore the input p
and pad the tokens to maximum input length n.

We try 11 different values of p (0.0, 0.1, · · · 1.0)
for ClinicalBERT and 2 values of p (0.0 and 1.0)
for ClincialLongformer along with an additional
fragmented window trial p = both which looks
into the first n/2 and last n/2 tokens of the input
text. Similarly, when l < n, we simply pad the
sequence to the window’s length.

Mixing Notes To control different types of clin-
ical notes, we experimented with the following
options: 1) first nursing note, 2) last nursing note,
3) discharge note, 4) first nursing notes + discharge
note, 5) last nursing notes + discharge notes. For
options with two types of notes, n/2 tokens are al-
located to each type, and three values for p1 and p2
each (0.0, 1.0 and both) are used to select n/2 to-
kens from each type of note, resulting in 9 possible
input parameter combinations.
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Figure 1: Performance of ClinicalBERT on Different Text Sections and Different Types of Notes,
Error Bars Represent 95% Confidence Intervals

5 Results

5.1 Different Sections in Nursing Notes and
Discharge Notes

We finetune ClinicalBERT and ClinicalLongformer
on different sections of nursing and discharge notes.
We used sliding windows to extract a sequence of
tokens that meets the model’s maximum sequence
length. We have three key observations.

Different Types of Clinical Notes Show Dis-
parate Predictive Power Distributions Over
Text Sections. As shown in Figure 1, the discharge
notes (blue line) show quite uneven predictive
power distribution, where the beginning (p = 0.0)
and end (p = 1.0) sections of the text provide
strong predictive power while the middle sector
(0.2 ≤ p ≤ 0.5) shows a significant dip in
predictive power. In contrast, the predictive power
of the nursing notes (orange and green line) turns
out to be uniformly distributed: using different
sections of the nursing notes (0.0 ≤ p ≤ 1.0) does
not make a significant difference. We speculate
that this discrepancy may stem from the domain
knowledge that discharge notes are more structured
than nursing notes: they often start with basic
descriptions of the patient information and ends
with suggestions for the patients, whereas nursing
notes often have multiple types of information
mixed together throughout the text.

Nursing Notes Provide Modest Predictive Power.
Nursing notes produce decent re-admission predic-

tion results: according to Figure 1 and Figure 2,
although their predictive power is not as strong as
discharge notes (which are typically written right
before patients leave the hospital), they consistently
achieve AUC ROC scores of over 0.7 which in-
dicates modest predictability (Schneeweiss et al.,
2001). Moreover, the first nursing notes (orange
line in Figure 1, second group of bars in Figure 2)
of each admission provide similar predictive power
as compared to the last nursing notes (green line in
Figure 1, third group of bars in Figure 2), indicat-
ing the possibility of re-admission risk evaluation
at the early stage of the admission. This finding is
especially valuable from the perspective of inter-
vention, as it is more practical to decide whether the
patient should be discharged at the time before the
discharge note is written. Also, the abundance of
nursing notes makes them a suitable alternative for
re-admission risk evaluation tasks when discharge
notes are unavailable.

Figure 2: Performance of ClinicalLongformer on
Different Text Sections and Different Types of Notes,

Error Bars Represent 95% Confidence Intervals
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Figure 3: Performance of ClinicalBERT and ClinicalLongformer on Clinical Note Combinations,
Error Bars Represent 95% Confidence Intervals

Preserving the Beginning Tokens Is Not the Only
Option. It is generally assumed that when the avail-
able input tokens are limited, the leading tokens
of each clinical note should be used. Neverthe-
less, our experiments show that for discharge notes,
spending half of the available tokens on the begin-
ning section and spending the remaining half on
the end section (p = both) achieves slightly bet-
ter performance (AUC ROC of 0.849 versus 0.845
for ClinicalBERT, 0.869 versus 0.864 for Clini-
calLongformer) as compared to using the leading
token only (p = 0.0). We speculate that this helps
as it avoids the weakly predictive middle sector of
the clinical notes.

5.2 Combining Sections from Different Types

We combine text sections from two different
types of clinical notes and finetune ClinicalBERT
and ClinicalLongformer. This experiment helps
us investigate the question: when the amount
of available tokens is fixed, does combining
information from different clinical notes work
better than using discharge notes only? Since
discharge notes are shown to provide strong
predictive power in our prior experiments, we only
investigate the note type combinations that include
discharge notes (first nursing + discharge, last
nursing + discharge).

The Effect of Allocating Tokens to Different
Types of Clinical Notes Depends on the Con-
text Size. When the context size is relatively large
(ClinicalLongformer, as shown in the right side of
figure 3), allocating the available tokens to differ-

ent types of clinical notes (blue, orange, and green
bars) leads to improvements in performance. The
baseline (dashed red line) uses discharge notes only
and has a lower AUC ROC (0.013 to 0.019) than
models finetuned with combined notes. However,
when the context is small (Clinical BERT, as shown
in the left side of figure 3), distributing the already
limited number of tokens to different clinical notes
hurts the performance: the AUC ROC of Clinical-
BERT finetuned with mixed notes falls below the
baseline performance by −0.009 to −0.001. We
speculate that this may be related to the uneven
predictive power distribution in discharge notes:
if there are already a sufficient number of tokens
covering the most informative sections of the dis-
charge notes, the rest of the discharge notes might
not be as informative as the prior nursing notes.

6 Discussion and Future Works

Our findings suggest that when the input size is
constrained, a carefully selected sampling function
that chooses the text with high predictive power
could benefit model performance. Specifically on
the task of readmission prediction from MIMIC-III
notes, we show that the predictive power varies
across note types and note sections. This insight
enables more efficient information extraction from
long and noisy clinical notes, which is beneficial
when the computing resource is limited and the
context length needs to be controlled.

Our findings call for two future directions. First,
the performance disparities between ClinicalBERT
and ClinicalLongformer (subsection 5.2) indicate
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that the best strategy to allocate the input context
is related to the maximum sequence length, and
more work should be done to determine their exact
relationship. Another direction is investigating the
predictive power pattern based on the authorship of
the clinical note. We showed (subsection 5.1) that
discharge notes (written by doctors) have a more
uneven predictive power pattern as compared to
nursing notes (written by nurses). How the domain
knowledge of the author would affect the clinical
note quality is worth investigating.

Limitations

We acknowledge three limitations in our experi-
ments. First, in our second experiment, we fixed
the window size for each type of note to be n/2.
A more comprehensive investigation could also
search for the optimal window size for each note
type. Second, although we explored one frag-
mented window configuration p = both, we did
not explore other fragmented window configura-
tions due to resource constraints. Lastly, we did not
investigate more types of clinical notes (e.g., physi-
cian notes and ECG notes) because MIMIC-III has
limited examples for other note types. We expect
it to be resolved in future works with MIMIC-IV’s
publication (Johnson et al., 2023).
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Appendices

A Preprocessing

We preprocessed the dataset with the following ap-
proach: First of all, admission records with missing
discharge notes or missing nursing notes are elimi-
nated. Then, for each remaining admission record,
the nursing notes associated with that record are
sorted according to their timestamp. The first and
last created nursing notes for each admission are se-
lected and concatenated with the discharge notes of
the same admission record to produce the clinical
note set for every admission. Lastly, we clean the
datasets by removing the de-identification patterns
(’[** de-identified info **]’) in the clinical notes,
which usually occupy a lot of tokens.
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Abstract

The Ninth Revision of the International Classi-
fication of Diseases (ICD-9) is a standardized
coding system used to classify health condi-
tions. It is used for billing, tracking individ-
ual patient conditions, and for epidemiology.
The highly detailed and technical nature of
the codes and their associated medical condi-
tions make it difficult for humans to accurately
record them. Researchers have explored the
use of neural networks, particularly language
models, for automated ICD-9 code assignment.
However, the imbalanced distribution of ICD-9
codes leads to poor performance. One solu-
tion is to use domain knowledge to incorpo-
rate a useful prior. This paper evaluates the
usefulness of the correlation bias: we hypoth-
esize that correlations between ICD-9 codes
and other medical codes could help improve
language models’ performance. We showed
that while the correlation bias worsens the over-
all performance, the effect on individual class
can be negative or positive.1 Performance on
classes that are more imbalanced and less corre-
lated with other codes is more sensitive to incor-
porating the correlation bias. This suggests that
while the correlation bias has potential to im-
prove ICD-9 code assignment in certain cases,
the applicability criteria need to be more care-
fully studied.

1 Introduction

Electronic Health Records (EHRs) contain patient
information in the form of clinical notes, struc-
tured data tables, and biomedical imaging and time

1The implementation code is available on github: https:
//github.com/nyuolab/text2table

series. For easy tracking and analysis of health
data across different healthcare systems, and criti-
cally for billing purposes, hospitals and insurance
companies assign codes of a standardized coding
system to characterize the clinical conditions of
patients. Wrong code assignments may result in
billing issues that increase patients’ expenses sub-
stantially, misdiagnosis, and poor tracking of popu-
lation level health conditions nationally. The Ninth
Revision of the International Classification of Dis-
eases (ICD-9) is a system used worldwide to clas-
sify and code diseases, injuries, and other health
conditions. There were extensive efforts studying
the automated assignment of ICD-9 codes to health
records and relevant documents (Yan et al., 2022).

With recent developments in NLP, there has
been a focus on the use of neural networks (Yu
et al., 2019; Mullenbach et al., 2018; Teng et al.,
2020). One particularly recent direction is in the
use of language models. Originally introduced
in BERT (Devlin et al., 2019), the recipe of pre-
training and finetuning of language models has
shown promising performance in many tasks. Re-
searchers have applied BERT for assigning ICD-9
codes from medical documents (Huang et al., 2022;
Pascual et al., 2021; Zhang et al., 2020). However,
BERT and other encoder-based language models
perform poorly on ICD-9 code assignment (Yan
et al., 2022).

One challenge is the extremely imbalanced distri-
bution of ICD-9 codes. Following the distribution
of medical conditions in the real world, some codes
occur frequently while other codes may appear only
once (Yan et al., 2022). It is difficult for models
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to correctly predict minority codes because few
samples exist in the dataset (Sun et al., 2009). A
proposed solution is to incorporate domain knowl-
edge that provides useful priors for the minority
codes (Bai and Vucetic, 2019; Wang et al., 2020;
Zeng et al., 2019).

We hypothesize that one useful prior for ICD-9
code assignment is the correlation between ICD-
9 codes and other relevant coding systems. We
term other relevant coding systems auxiliary tasks
because language models in our experiments pre-
dict codes from these systems in addition to ICD-
9 codes. The auxiliary tasks are Current Proce-
dural Terminology (CPT) codes and Diagnosis-
Related Group (DRG) codes. This correlation prior
stems from the domain knowledge that labels from
other coding systems give information about ICD-9
codes. For example, patients who underwent artery
bypass surgeries (CPT code 33533) are likely to
have heart failures (ICD-9 code 428.0). To test our
hypothesis, we investigate the effect of multitask-
ing on correlated auxiliary tasks and encouraging
similar label correlations between training labels
and model predictions through regularization. We
showed that 1) on average, utilizing correlations
hurts language models’ performance on predict-
ing ICD-9 codes from discharge summaries, 2) for
each ICD-9 code, utilizing correlations might hurt
or help, 3) ICD-9 codes that are more imbalanced
and less correlated with auxiliary tasks experience
larger performance changes (both positive and neg-
ative) from incorporating the correlation prior. Our
findings suggest that the correlation prior has the
potential to improve predictions of certain ICD-9
codes, but this method suffers from instability when
the main task has an imbalanced label distribution
and a weak correlation with auxiliary tasks.

2 Related Work

Domain knowledge One useful prior for ICD-
9 codes is its hierarchical structure. For exam-
ple, a high-level code (e.g., 428.0 heart failure) en-
compasses its corresponding low-level codes (e.g.,
428.1 left heart failure, 428.2 systolic heart fail-
ure). Tsai et al. (2019) incorporated this hierarchi-
cal prior and improved models’ performance on
predicting imbalanced ICD-9 codes.

CorrLoss CorrLoss is a regularization technique
(Rieger et al., 2022) that encourages consistent la-
bel correlations between ground truth and predic-
tions. Rieger et al. (2022) uses CorrLoss on the

facial affect recognition task to integrate the cor-
relation priors for facial movements. Corrloss can
be used in any domain where correlation between
prediction targets provides a useful signal. Thus,
we adopt Corrloss to integrate information of the
correlations between different kinds of diagnosis
and procedure codes.

3 Methods

Task overview We formulate the task of code
assignment into a multilabel text classification task
because each patient has multiple codes corre-
sponding to their discharge summaries. Each bi-
nary label in the task corresponds to a specific code.
Formally, our classifier aims to approximate the
probability p(y1, . . . , yn|x), where each yi is an
ICD-9 code and x is a discharge summary.

The Correlation Prior We hypothesize that cor-
relations between ICD-9 and other coding systems
are a useful prior for ICD-9 code assignment and
choose to incorporate the prior in two ways.

First, we added the auxiliary tasks of predicting
other medical codes (e.g., CPT). Formally, we train
a classifier to approximate

p(y, z|x) = p(y|x) p(z|x, y), (1)

where y is a sequence of ICD-9 codes (the main
task), z is a sequence of other medical codes (the
auxiliary task), and x is a discharge summary. Our
domain knowledge assumes that the absolute corre-
lation abs(ρ(y, z)|x) > 0, so y, z are not condition-
ally independent given x and p(z|x, y) ̸= p(z|x).
This is desirable because otherwise, we are strictly
increasing the difficulty of the task from learning
p(y|x) to learning p(y|x) p(z|x).

There are benefits and concerns associated with
Equation 1, and their trade-off is unclear a priori.
One benefit is that extra dependency information
from p(z|x, y) could potentially simplify learning
p(y, z|x). One drawback is that the additional pre-
diction targets z could worsen the curse of dimen-
sionality. Whether the benefit would outweigh the
drawback is difficult to determine without running
a controlled experiment.

Second, we used CorrLoss to encourage similar
label correlation patterns between training and pre-
dictions. Formally, we added a regularization term
c =

∑
i ̸=j c(di, dj). Each summation term scales

with a correlation difference:

c(di, dj) ∝ |ρ(di, dj)ytrain − ρ(di, dj)ŷ|, (2)
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PROC PROC+CPT PROC+DRG PROC+DIAG

ClinicalBERT original 0.4528 0.397 0.3939 0.408
CorrLoss 0.4037 0.3594 0.3272 0.363

RoBERTa original 0.4421 0.4009 0.3884 0.4116
CorrLoss 0.3736 0.3236 0.2816 0.3692

Longformer original 0.4712 0.4227 0.3886 0.4219
CorrLoss 0.4139 0.335 0.212 0.3549

Table 1: Macro F1 scores of experiments, in which procedure ICD-9 is the main task, on MIMIC-III-50 test set.
For each model, the best F1 score is in bold. PROC means procedure ICD-9. DIAG means diagnosis ICD-9.
PROC+CPT means that procedure ICD-9 is the main task and CPT is the auxiliary task.

where di, dj are different classes, ρ(di, dj)v is
the correlation between class di and dj in a vector
v, ytrain is the training labels, ŷ is the predicted
labels, and ρ is the Pearson correlation function.

Dataset We built two datasets from the Medical
Information Mart for Intensive Care III (MIMIC-
III) (Johnson et al., 2016), a database of EHRs. Our
first dataset, subsequently referred to as “MIMIC-
III", contains examples of each patient’s discharge
summary, and associated diagnosis and procedure
codes (diagnosis ICD-9, procedure ICD-9, CPT,
and DRG). Because this dataset is extremely imbal-
anced, we further select the top 50 most frequently
used codes for each kind of coding system to con-
struct a second dataset that represents a more ideal
scenario. Following the convention of related litera-
ture, we call this dataset “MIMIC-III-50" (Vu et al.,
2020; Luo et al., 2021; Li and Yu, 2020). Statistics
of the MIMIC-III dataset are in Appendix A.

Models and Evaluation We use ClinicalBERT
(Alsentzer et al., 2019), RoBERTa (Liu et al., 2019),
Longformer (Beltagy et al., 2020) (justification in
Appendix C). We use the macro F1 as our metric
for comparison because this metric treats all classes
equally, which means minority codes are as impor-
tant as majority codes in evaluation (Branco et al.,
2016; Sun et al., 2009; Ferri et al., 2009). Because
it is an imbalanced classification, the default thresh-
old of 0.5 is not suitable (Zhou and Liu, 2006; Zou
et al., 2016). Instead, we tune the threshold accord-
ing to the precision-recall curve to maximize the
F1 score for each individual label.

4 Experiments

To test whether the correlation prior is useful for
ICD code assignment, we incorporate multitask-
ing (Equation 1) and CorrLoss (Equation 2) into
our model and check if they improve performance.
Specifically, we studied two main tasks (diagno-

sis ICD-9 codes and procedure ICD-9 codes). For
each main task, we added one of the three auxil-
iary tasks: DRG codes, CPT codes, and the other
ICD-9 codes (for diagnosis ICD-9 code, the aux-
iliary task can be procedure ICD-9 code, and vice
versa). We trained both main-task-only models and
multitasking models with and without CorrLoss.

5 Results

Multitasking and CorrLoss hurt performance
on MIMIC-III-50 and do not significantly im-
pact performance on MIMIC-III. Table 1 shows
the macro-F1 score on procedure ICD-9 of the
MIMIC-III-50 dataset. We observe two patterns for
each language model. First, adding auxiliary tasks
always decreases the performance of models in
comparison to predicting main tasks only. Second,
regularizing with CorrLoss always decreases the
performance of models in comparison to not using
CorrLoss. The same pattern exists for predicting
diagnosis ICD-9 of the MIMIC-III-50 dataset (Ap-
pendix Table 6). However, on the full MIMIC-III
dataset, multitasking and CorrLoss do not impact
models’ performance significantly (Appendix B).

6 Analysis

Since the macro F1 score does not show significant
changes from multitasking and CorrLoss on the
full MIMIC-III dataset, we investigate whether the
performance changes for individual labels. Specifi-
cally, we analyzed how label imbalance (measured
by Shannon entropy, defined in Appendix D.1) and
label correlation (measured by the average absolute
Pearson correlation coefficient between each main
task label and all auxiliary task labels, as defined
in Appendix D.1) affect the model’s performance.

For individual ICD-9 code, incorporating the
correlation prior may hurt or help. Figure 1
shows that there exist labels with both negative and
positive performance changes.
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Figure 1: The plot of ClinicalBERT’s performance changes (Y axis) on labels of procedure ICD-9, when DRG is
added as the auxiliary task, versus the balances (X axis) of the labels, and versus the correlations (sizes and colors
of the units) between each label with the whole auxiliary DRG task. CorrLoss is not included.

Labels that are more imbalanced and less
correlated to auxiliary labels experience larger
changes. Figure 1 shows two relationships: (1)
more balanced labels (closer to the right) have less
performance changes (spread of dots on the y axis),
(2) labels that are more correlated with the auxiliary
task (darker dots) have less performance changes
(spread along the y axis). All the other plots of
different tasks and setups show similar patterns
(Appendix D.1).

top50 bottom50

ClinicalBERT +CPT 0.333 0.273
+DRG 0.28 0.413
+DIAG 0.3 0.387

RoBERTa +CPT 0.4 0.3
+DRG 0.393 0.353
+DIAG 0.313 0.287

Longformer +CPT 0.34 0.427
+DRG 0.34 0.28
+DIAG 0.347 0.307

Table 2: The percentages of positive macro F1 score
changes on the top 50 most balanced procedure ICD-9
labels and on the bottom 50 least balanced procedure
ICD-9 labels, with different auxiliary tasks and models.
CorrLoss is not included.

In both extreme scenarios (imbalanced label,
small correlation with auxiliary labels) and ideal
scenarios (balanced labels, high correlation with
auxiliary labels), incorporating correlation is
more likely to hurt than help. Table 2 shows that
for the top 50 most balanced labels and the bottom
50 least balanced labels, if we utilize correlations

top50 bottom50

ClinicalBERT +CPT 0.333 0.327
+DRG 0.32 0.327
+DIAG 0.293 0.247

RoBERTa +CPT 0.487 0.333
+DRG 0.373 0.387
+DIAG 0.267 0.293

Longformer +CPT 0.433 0.327
+DRG 0.28 0.273
+DIAG 0.333 0.24

Table 3: The percentages of positive macro F1 score
changes on the top 50 procedure ICD-9 labels that are
most correlated with the auxiliary task and on the bottom
50 procedure ICD-9 labels that are least correlated with
the auxiliary task, with different auxiliary tasks and
models. CorrLoss is included.

(with multitasking and CorrLoss), the percentage
of positive F1 score changes is always less than
50%. Table 3 shows that for the top 50 labels that
are most correlated with the auxiliary tasks and the
bottom 50 labels that are least correlated with the
auxiliary tasks, utilizing correlations also leads to
< 50% positive F1 score change.

7 Discussion

Since multitasking and CorrLoss worsen language
models’ overall performance, it contradicts our hy-
pothesis that the correlations between ICD-9 codes
and other medical codes would be a useful prior.
Nevertheless, the performance changes on individ-
ual labels are more nuanced and show potential for
improving prediction of certain ICD-9 codes. We
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wonder what characterizes the labels that benefit
from incorporating the correlation prior (dots with
positive changes in Figure 1). Perhaps for those la-
bels, the additional dependency information gained
from the auxiliary tasks outweigh the increased
learning complexity from a larger output space. A
prerequisite for a rigorous investigation would be
quantifying the trade-off between the dependency
information and the learning complexity.

We recognize three limitations that may influ-
ence the interpretation of our results and call for
future works. First, we did not conduct a hyper-
parameter search for the regularization strength of
CorrLoss. Second, since F1 score decreases are
substantial and universal across all experiments on
MIMIC-III-50, we did not run experiments multi-
ple times with different seeds. Third, we did not
provide a rigorous explanation of what caused our
empirical findings. Future works can investigate
the plausible hypothesis that the trade-off between
the dependency information and the learning com-
plexity causes these findings. Besides these limita-
tions, future works can also investigate more sce-
narios and methods of incorporating the correlation
prior.
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A Dataset Statistics

Figure 2: The distribution of lengths of tokenized discharge summaries in MIMIC-III dataset.

Figure 3: The distribution of diagnosis ICD-9. There are 6918 diagnosis ICD-9 codes. 6062 Codes occur less than
or equal to 100 times in MIMIC-III dataset. They are not included for clarity.

Figure 4: The distribution of procedure ICD-9. There are 2011 procedure ICD-9 codes. 1767 Codes occur less than
or equal to 100 times in MIMIC-III dataset. They are not included for clarity.
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B Results

PROC PROC+CPT PROC+DRG PROC+DIAG

ClinicalBERT original 0.0098 0.0094 0.0091 0.0097
CorrLoss 0.0102 0.0099 0.0088 0.0087

RoBERTa original 0.0097 0.0089 0.0087 0.0088
CorrLoss 0.0095 0.0095 0.0098 0.0089

Longformer original 0.0088 0.0088 0.0095 0.0085
CorrLoss 0.0094 0.0085 0.0091 0.0078

Table 4: Macro F1 scores of experiments, in which procedure ICD-9 is the main task, on full MIMIC-III test set.

DIAG DIAG+CPT DIAG+DRG DIAG+PROC

ClinicalBERT original 0.0068 0.0066 0.0066 0.0067
CorrLoss 0.0066 0.0069 0.0069 0.0068

RoBERTa original 0.0069 0.0065 0.0062 0.0065
CorrLoss 0.0071 0.0071 0.0066 0.0065

Longformer original 0.0072 0.0069 0.007 0.0071
CorrLoss 0.007 0.0068 0.0076 0.0071

Table 5: Macro F1 scores of experiments, in which diagnosis ICD-9 is the main task, on full MIMIC-III test set.

DIAG DIAG+CPT DIAG+DRG DIAG+PROC

ClinicalBERT original 0.3755 0.3296 0.3351 0.3351
CorrLoss 0.3235 0.2966 0.2947 0.2992

RoBERTa original 0.3851 0.3255 0.3307 0.3341
CorrLoss 0.3143 0.2822 0.2713 0.2939

Longformer original 0.4408 0.349 0.3544 0.3552
CorrLoss 0.3364 0.2963 0.2906 0.3027

Table 6: Macro F1 scores of experiments, in which diagnosis ICD-9 is the main task, on MIMIC-III-50 test set.

116



C Justifcation of Models

The variant of ClinicalBERT we use is
Bio+Discharge Summary BERT model because it
was further trained on discharge summaries from
MIMIC-III after initialized from BioBERT (Lee
et al., 2020).

We use RoBERTa because it is a variant of
vanilla BERT that was trained differently to im-
prove its performance on a range of NLP tasks.

We use Longformer because it can handle long
text sequences. BERT and many BERT-based mod-
els cannnot handle text sequences longer than 512
tokens. Many tokenized discharge summaries are
text sequences longer than 512 tokens and Long-
former can benefit from more complete understand-
ings of discharge summaries.

Each model represents a different improvement
on top of vanilla BERT: ClinicalBERT improves
through domain-specific pretraining; RoBERTa im-
proves through tuning training setup; and Long-
former improves through incorporating more in-
formation from the input. With these models, we
cover a significant part of the improvement spec-
trum, which shows that the pattern we present is
generalizable to different models.

D Analysis

D.1 Performance on Each Label

Other figures Since there are 72 experiments
that have auxiliary tasks, there are 72 correspond-
ing plots. Thus, it is unreasonable to include all
of them in the appendix. You can find all plots
in our github repository: https://github.com/
nyuolab/text2table/tree/main/notebooks.

Shannon Entropy

H(X) = −
n∑

i=1

p(xi) log2 p(xi) (3)

In this equation, H(X) represents the entropy
of a label X with possible outcomes x1, x2, ..., xn.
In our context, n = 2 because a label only has
two possible outcomes: 1 (positive) or 0 (negative).
The term p(xi) represents the probability of the i-th
outcome, and the logarithm is taken with base 2 to
give the result in units of bits. The sum is taken
over all possible outcomes of X . With only two
possible outcomes, a label’s Shannon entropy will
be close to 1 if it is balanced, and will be close to 0
if it is imblanced.

Representation of Correlations

C(a,B) =

∑
b∈B |P (a, b)|
card(B)

(4)

In this equation, C(a,B) represents the correla-
tions between a label of the main task a and a set
containing labels of the auxiliary task. For each la-
bel of the auxiliary task b ∈ B, |P (a, b)| represents
the absolute value of the Pearson correlation coeffi-
cient bettwen a and b. card(B) is the cardinality
of B (i.e. the number of labels in B).

D.2 Performance in Different Scenarios

top50 bottom50

ClinicalBERT +CPT 0.453 0.32
+DRG 0.54 0.293
+PROC 0.48 0.38

RoBERTa +CPT 0.48 0.313
+DRG 0.507 0.307
+PROC 0.48 0.333

Longformer +CPT 0.5 0.32
+DRG 0.48 0.393
+PROC 0.433 0.287

Table 7: The percentages of positive macro F1 score
changes on the top 50 most balanced diagnosis ICD-9
labels and on the bottom 50 least balanced diagnosis
ICD-9 labels, with different auxiliary tasks and models.
CorrLoss is not included in all experiments we examine
in this table.

top50 bottom50

ClinicalBERT +CPT 0.347 0.36
+DRG 0.327 0.313
+DIAG 0.273 0.28

RoBERTa +CPT 0.32 0.32
+DRG 0.353 0.36
+DIAG 0.273 0.22

Longformer +CPT 0.353 0.367
+DRG 0.28 0.293
+DIAG 0.307 0.26

Table 8: The percentages of positive macro F1 score
changes on the top 50 most balanced procedure ICD-9
labels and on the bottom 50 least balanced procedure
ICD-9 labels, with different auxiliary tasks and models.
CorrLoss is included in all experiments we examine in
this table.

117

https://github.com/nyuolab/text2table/tree/main/notebooks
https://github.com/nyuolab/text2table/tree/main/notebooks


top50 bottom50

ClinicalBERT +CPT 0.413 0.307
+DRG 0.533 0.28
+PROC 0.487 0.293

RoBERTa +CPT 0.46 0.3
+DRG 0.493 0.373
+PROC 0.473 0.34

Longformer +CPT 0.453 0.293
+DRG 0.487 0.34
+PROC 0.5 0.307

Table 9: The percentages of positive macro F1 score
changes on the top 50 most balanced diagnosis ICD-9
labels and on the bottom 50 least balanced diagnosis
ICD-9 labels, with different auxiliary tasks and models.
CorrLoss is included in all experiments we examine in
this table.

top50 bottom50

ClinicalBERT +CPT 0.467 0.32
+DRG 0.307 0.373
+DIAG 0.367 0.287

RoBERTa +CPT 0.387 0.267
+DRG 0.413 0.407
+DIAG 0.32 0.307

Longformer +CPT 0.427 0.367
+DRG 0.34 0.307
+DIAG 0.42 0.307

Table 10: The percentages of positive macro F1 score
changes on the top 50 procedure ICD-9 labels that are
most correlated with the auxiliary task and on the bottom
50 procedure ICD-9 labels that are least correlated with
the auxiliary task, with different auxiliary tasks and
models. CorrLoss is not included in all experiments we
examine in this table.

top50 bottom50

ClinicalBERT +CPT 0.507 0.333
+DRG 0.493 0.287
+PROC 0.473 0.347

RoBERTa +CPT 0.48 0.247
+DRG 0.513 0.36
+PROC 0.46 0.347

Longformer +CPT 0.487 0.313
+DRG 0.493 0.34
+PROC 0.427 0.313

Table 11: The percentages of positive macro F1 score
changes on the top 50 diagnosis ICD-9 labels that are
most correlated with the auxiliary task and on the bottom
50 diagnosis ICD-9 labels that are least correlated with
the auxiliary task, with different auxiliary tasks and
models. CorrLoss is not included in all experiments we
examine in this table.

top50 bottom50

ClinicalBERT +CPT 0.467 0.373
+DRG 0.52 0.3
+PROC 0.46 0.333

RoBERTa +CPT 0.493 0.32
+DRG 0.52 0.433
+PROC 0.473 0.253

Longformer +CPT 0.46 0.32
+DRG 0.513 0.467
+PROC 0.453 0.34

Table 12: The percentages of positive macro F1 score
changes on the top 50 diagnosis ICD-9 labels that are
most correlated with the auxiliary task and on the bottom
50 diagnosis ICD-9 labels that are least correlated with
the auxiliary task, with different auxiliary tasks and
models. CorrLoss is included in all experiments we
examine in this table.
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Abstract

State-of-the-art models can perform well in
controlled environments, but they often strug-
gle when presented with out-of-distribution
(OOD) examples, making OOD detection a crit-
ical component of NLP systems. In this paper,
we focus on highlighting the limitations of ex-
isting approaches to OOD detection in NLP.
Specifically, we evaluated eight OOD detection
methods that are easily integrable into existing
NLP systems and require no additional OOD
data or model modifications. One of our contri-
butions is providing a well-structured research
environment that allows for full reproducibility
of the results. Additionally, our analysis shows
that existing OOD detection methods for NLP
tasks are not yet sufficiently sensitive to capture
all samples characterized by various types of
distributional shifts. Particularly challenging
testing scenarios arise in cases of background
shift and randomly shuffled word order within
in domain texts. This highlights the need for
future work to develop more effective OOD de-
tection approaches for the NLP problems, and
our work provides a well-defined foundation
for further research in this area.

1 Introduction

Systems based on artificial intelligence (AI) have
to be safe and trustworthy (Amodei et al., 2016).
Ensuring user reliance on these systems requires
a cautious approach in making predictions. AI
tools should avoid decisions on examples that sig-
nificantly deviate from the training data. This is
especially risky when the classifier shows excessive
confidence in its incorrect decisions, leading to the
propagation of errors in the system pipeline (Com-
mission et al., 2019). However, current models
are often trained under the closed-world assump-
tion, limited to specific domains (Park et al., 2022).
Test sets drawn from the same domain for eval-
uation may not reflect real-world scenarios accu-
rately (Teney et al., 2020). This poses challenges

when deploying such models in production envi-
ronments (Schrouff et al., 2022).

Figure 1: Trustworthy mechanism in document pro-
cessing platform. Classification models need additional
method to detect OOD samples and provide them to
human review.

Real-world data is often completely different
from training one. The change in data distribution
can be caused by several factors such as user be-
havior, legal regulations, market trends or seasonal
changes. In an open-world scenario, the AI-based
system can be even exposed to inputs that deviate
from the trained task. A significant risk that may
arise is the possibility of model overconfidence
while predicting data of this nature. As a result,
there is a business need for detecting examples out-
side the domain (Hendrycks and Gimpel, 2017).
Out-of-distribution (OOD) detection techniques
can be well applied in a production system with
human-in-the-loop technology (Wu et al., 2022),
where it is important to quickly identify whether
an input sample is characterized by a distributional
shift. Such an example should be handled then by a
human expert in order to avoid potential misclassi-
fication by the model. The essence of such systems
is to find a trade-off between the accuracy and au-
tomation (Mosqueira-Rey et al., 2022) (Figure 1).
This way, the model can achieve the highest pos-
sible performance on in-distribution (ID) data and
difficult shifted data can be given to human verifi-
cation, thus increasing the credibility of the overall
system. The bottleneck here is a well-designed
OOD detection method, which must be sensitive
enough to capture all examples outside the domain.
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The problem of OOD identification is mainly
investigated for vision classification tasks (Yang
et al., 2022a; Kuan and Mueller, 2022), whereas in
the field of NLP, studies on this topic are limited.
We fill the missing gap by proposing a compre-
hensive analysis of existing OOD approaches for
text classification tasks. In this work, we focus on
the post-hoc techniques which are most suitable
for business applications i.e. they have to fulfil the
requirement of smooth integration into existing sys-
tems, without the need for additional OOD training
data or any changes in model architecture. Ulti-
mately, we evaluated eight methods in two differ-
ent scenarios. The first one includes grouping test
data into three splits according to the similarity to
the in-distribution set: Near-OOD, Far-OOD and
Distinct-OOD (Yang et al., 2021). The AI system is
evaluated based on the degree of domain difference
between training and test samples. The second sce-
nario considers the division of datasets according to
the shift of distribution (Arora et al., 2021). There
are many categories of distribution shift (Hupkes
et al., 2022), but in this study, we consider two
types – semantic and background. Semantic shift
occurs when new labels appear, which may be due
to the lack of a sufficient number of classes repre-
senting the training data or the emergence of new
classes over time. In distinction, the background
shift is class independent. It appears when the char-
acteristic features of text change (e.g. source origin,
writing style), which can happen even within the
same class. The reason may be language evolution,
regional conditions, etc. – such factors are difficult
to predict and adequately address in the training set.
By preparing data separated into different kinds of
shift, we gain an in-depth insight into the origin
of the data, on which a particular OOD detection
method performs better or worse.

We also provide a well-structured research envi-
ronment that allows the full reproducibility of the
achieved outcomes and evaluation of another NLP
models. The source code is available on GitHub1.
To summarize, our contribution is as follows:

• we adjust the existing OOD detection tech-
niques to the text classification problems,

• we comprehensively evaluate the revised
methods using two different scenarios tailored
to the NLP domain,

• we deliver the complete experimental frame-
work for evaluating the OOD methods.

1https://github.com/mateuszbaransanok/TrustworthyAI

2 Related Work

In recent years, there has been a growing interest
in developing robust methods that can detect out-
of-distribution examples. The work of Hendrycks
and Gimpel (2017) has played a significant role
in advancing this field. Their Maximum Softmax
Probability (MSP) method, which relies on the soft-
max output of a neural network, has become a ref-
erence for subsequent research and still remains as
the solid baseline approach (Zhang et al., 2023).
The benefit of the MSP was its independence from
the specific task domain. Since then, many re-
searchers have extended this method or proposed
novel techniques to address the challenge of detect-
ing OOD data.

The first to popularize the interest in the OOD
topic were computer vision (CV) researchers (Ben-
gio et al., 2011). The emerged techniques in this
field were summarized in a survey by Yang et al.
(2021). The authors proposed a unified framework
that groups OOD detection methods into categories
based on their common underlying mechanisms.
Among them, the following ones can be distin-
guished: (1) output-based (Liu et al., 2020; Liang
et al., 2018) techniques which detect OOD samples
based on output vector obtained by classification
model for given input; (2) gradient-based (Huang
et al., 2021) focus on analyzing the fluctuation of
the gradient flow through the model layers to verify
that the input is OOD; (3) density-based (Zong
et al., 2018) methods involve modeling a density
function from the training set and then determin-
ing whether a new example belongs to the same
distribution; (4) distance-based (Sun et al., 2022;
Ren et al., 2021) measure the dissimilarity between
a new input and the training data by computing stan-
dard metrics such as cosine similarity, Euclidean or
Mahalanobis distance. Another work of Yang et al.
(2022a) provides a comprehensive evaluation of 13
methods for OOD detection in CV. Notably, the ex-
perimental results show that simple preprocessing
techniques can be highly effective, outperforming
even more sophisticated methods in identifying
OOD examples. In addition, post-hoc methods
have demonstrated considerable effectiveness in
OOD detection and have made significant impact
in this task. The NLP community is also more and
more interested in addressing the challenge of OOD
detection data, especially after the appearance of
text processing automation systems. Despite the ex-
pectation that pre-trained language models (PLMs)
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would generalize well to unseen data, many exist-
ing transformer-based architectures perform poorly
in an open-world assumption setup. This was
proven by the work (Yang et al., 2022b) where
the authors created the GLUE-X benchmark to reli-
ably test the robustness of PLMs against OOD sam-
ples exposure, without using any of the previously
mentioned techniques dedicated to OOD. Their
achieved results confirm the necessity of further de-
velopment of OOD detection methods. Currently,
researchers are continuously proposing techniques
tailored for the NLP tasks (Rawat et al., 2021; Zhou
et al., 2021), revisiting existing ones (Podolskiy
et al., 2021) or designing completely novel ap-
proaches that can address specific shifts in data
distribution (Arora et al., 2021; Chen et al., 2023).
The latter two publications particularly highlight
the importance of dividing datasets into semantic
and background shift sets, as they provide valu-
able findings and a better understanding of how the
model works on different data types.

Evidently, there have been several NLP articles
addressing OOD detection, but their comparison to
existing methods has been limited. A comprehen-
sive study which evaluates various OOD detection
approaches on a larger scale and addressing the
specific needs of businesses is still lacking. To fill
this gap, we have developed a benchmark that pro-
vides a fair comparison of these techniques while
testing their performance across different distribu-
tional shift scenarios. All the selected methods
have been inspired by CV achievements, and we
have specifically chosen those that can be easily
integrated into an existing AI system with minimal
complexity.

3 Benchmark Outline

This section provides an overview of the datasets
and the model architecture, with a detailed descrip-
tion of the techniques reimplemented in our bench-
mark for detecting out-of-domain examples. The
metrics used for evaluating the effectiveness of the
detection methods are also presented.

3.1 Datasets

News Category Dataset (Misra, 2022) is one of
the biggest news dataset. It contains around 210k
news headlines from HuffPost published between
2012 and 2022. The dataset comprises of 42 classes
that are heavily imbalanced. Therefore, the most
similar classes were combined to avoid confusion

between similar classes. Ultimately, we obtained
17 representative classes.

Twitter Topic Classification (Antypas et al., 2022)
is a topic classification dataset collected from Twit-
ter posts. It consists of 3184 high-quality tweets
that have been assigned to one of six classes.

SST-2 (The Stanford Sentiment Treebank) (Socher
et al., 2013) is a corpus with fully labeled parse
trees that allows for an analysis of the composi-
tional effects in language sentiment. The corpus in-
cludes almost 70k sentences extracted from movie
reviews. Sentences were annotated with regard to
their polarization (positive or negative).

IMDB (Maas et al., 2011) is a large collection of
movie reviews from the Internet Movie Database
created for the binary sentiment classification task.
According to the original 10-point movie rating
scale from the website, the dataset samples were
filtered to include only highly polarized texts anno-
tated as positive (≥ 7) or negative (≤ 4).

Yelp Polarity Review (Zhang et al., 2015) dataset
includes almost 600k customer reviews which are
labeled as positive or negative based on the number
of stars given by the reviewer. Specifically, texts
with ≤ 2 stars are labeled as negative, while those
with ≥ 3 are labeled as positive. Due to the large
size of the dataset, we created a smaller version by
randomly selecting a subset of 75k reviews.

Language Detection Dataset (Saji, 2021) is
a small dataset for language detection task. It con-
tains texts in 17 different languages. For bench-
mark purposes, we filter out languages that do not
use Latin alphabet. We’ve also excluded English
texts to create a clear out-of-distribution dataset.
Finally, dataset consist around 6k samples and all
of them are used for OOD evaluation.

20 Newsgroups (McGraw Hill, 1995) consists of
around 18k newsgroups posts on 20 topics. It is di-
vided in two sets for training and evaluation. More-
over, we allocated an additional subset from the
training set for validation purposes.

3.2 Model

In all experiments, we used transformer-
based (Vaswani et al., 2017) RoBERTabase (Liu
et al., 2019) model as a backbone with a fully
connected layer as a classification head. The model
was pretrained on English corpora, but it supports
multiple languages.
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3.3 Methods

We decided to compare post-hoc methods that
are suitable to apply to trained models. They
mainly use information based on model statistics
such as intermediate layer values, gradients or non-
deterministic properties of dropout regularization,
etc. Their implementation is technically straightfor-
ward and independent of the type of model used.

Transformer-based 
Language Model

Label Confidence

OOD Detection 
Method

Text

Embedding

Fully Connected 
Classification Layer

Figure 2: Benchmark schema – fine-tuned PLM-based
classifier followed by OOD detection method.

An overview of our benchmark methodology is
outlined in Figure 2. In addition to label predic-
tion, we obtain a real-valued confidence score that
indicates the level of confidence that the model
has in whether the given sample belongs to the ID
data. We reimplemented eight OOD detection tech-
niques and adapted them to the NLP classification
pipeline.

(1) Maximum Softmax Probability
(MSP) (Hendrycks and Gimpel, 2017) em-
ploys the softmax score to check the certainty of
whether an example belongs to a domain – we
refer to it as the baseline method in our work.

(2) Energy-based (Liu et al., 2020) uses an energy
score function to indicate model confidence.

(3) Rectified Activations (ReAct) (Sun et al.,
2021) is a simple technique for reducing model
overconfidence on OOD examples by truncating
the high activations during evaluation.

(4) KL-Matching (KLM) (Hendrycks et al.,
2022) calculates the minimum KL-divergence be-
tween the softmax probabilities and the mean class-
conditional distributions.

(5) GradNorm (Huang et al., 2021) utilizes infor-
mation obtained from the gradient space of model’s
classification layer. This approach uses the vector
norm of gradients to distinguish between ID and
OOD samples, with the assumption that higher
norm values correspond to in-distribution data.

(6) Directed Sparisification (DICE) (Sun and
Li, 2022) selectively chooses a subset of weights
through sparsification, which helps to eliminate
irrelevant information from the output.

(7) Virtual-logit Matching (ViM) (Wang et al.,
2022a) combines information from feature space
(PLM embedding) and output logits, providing
both class-agnostic and class-dependent knowledge
simultaneously for better separation of OOD data.

(8) K-nearest neighbors (KNN) (Sun et al., 2022)
computes the distance between the embedding of
an input example and the embeddings of the train-
ing set, and uses it to determine whether the exam-
ple belongs to the ID or not.

The first four methods use signals originating
from the output layer of the model. GradNorm
focuses solely on the gradients that flow through
the classification head, while methods from 6 to
8 operate on the embedding of a PLM. Most tech-
niques (specifically no. 3-4, 6-8) need an initial
configuration on the training or validation set to
estimate the required statistics for ID data. To en-
sure consistency in the benchmarking process, the
hyperparameters for the above methods were set to
the values recommended in their original papers.

3.4 Metrics
To compare the chosen methods, we used three the
most common metrics for OOD detection.
AUROC calculates the area under the Receiver
Operating Characteristic (ROC) curve. The ROC
curve plots the true positive rate against the false
positive rate, and a larger area under the curve
indicates better performance. This was used as our
primary evaluation metric.
AUPR-IN measures the area under the Precision-
Recall (PR) curve. The PR curve displays how
well the method can identify true positives with
high precision, and AUPR provides a measure of
overall performance. The "IN" suffix indicates that
this metric pertains to in-distribution data.
FPR@95 is the false positive rate when the true
positive rate is set to 95%. Lower scores indicate
better performance.
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Table 1: Datasets setup for experiments.

Dataset #Classes Train / Val / Test Avg. words

NC/I 7 66223 / 26475 / 39688 9.95
NC/O 10 - / - / 48522 9.77
Twitter 6 - / - / 3184 29.80
IMDB 2 25000 / 5000 / 20000 231.15
SST-2 2 43221 / 5000 / 20000 9.53
Yelp 2 50000 / 5000 / 20000 133.11
Language 9 - / - / 5864 19.08
NCR/I 7 - / - / 39688 9.95
NCR/O 10 - / - / 48522 9.77
Computer 5 2965 / 456 / 1460 218.63
Politics 4 1959 / 315 / 979 406.53
Sports 4 2363 / 432 / 1182 224.43

4 Data Preparation

In our study, we have paid particular attention to
provide a complete and unbiased comparison of
OOD detection methods. To achieve this goal, we
adopted two diverse perspectives: one inspired by
the field of computer vision (Yang et al., 2022a) and
the other drawn from works dedicated to the NLP
domain (Rawat et al., 2021; Arora et al., 2021).

4.1 Scenario 1
The first perspective intends to provide a detailed
analysis of considered techniques based on the sim-
ilarity between OOD examples and the training
set. The degree of similarity is defined here in
a human-intuitive way, taking into account such
factors as thematic proximity, task dissimilarity or
the sentence correctness.

As a base in-distribution data, we chose News
Category dataset using the seven most popular
classes (NC/I). The remaining classes were con-
sidered as out-of-distribution split (NC/O) which
represents data in close semantic shift. The Twit-
ter Topic Classification dataset has categories that
are similar to those in the News Category dataset,
but the sentence construction is significantly dif-
ferent. Both sets create the Near-OOD data setup.
Another prepared collection, Far-OOD includes
datasets with reviews of movies, hotels and restau-
rants that are vastly different from NC/I data – it is a
connection of SST-2, Yelp and IMDB. Additionally,
we prepared one more group named Distinct-OOD
containing Language Detection dataset. With the
inclusion of non-English texts there, we obtain
a distinct set of tokens that the RoBERTa model
has not encountered before, creating a completely
separate dataset from the in-distribution data.

Finally, we also designed two collections derived
from the News Category dataset by randomly shuf-

fling words from all those available within each
category. The new dataset, called News Category
Random, retained the original number of examples
and the number of words in each sample. These
sets aimed to examine the classification system be-
havior when presented with input sentences that are
completely disrupted from their original context.
The previous partition into ID (NCR/I) and OOD
(NCR/O) subsets was maintained.

4.2 Scenario 2

This scenario investigated the performance of de-
tection methods for OOD examples under seman-
tic and background shift. For semantic shift, we
utilized the 20 Newsgroups dataset that is a hierar-
chical collection of documents. Among the four
top-level categories, we selected three - Computer,
Sports, and Politics - as training sets for the model,
while excluding the "misc" category due to poten-
tial data leakage issues. Subsequently, we gen-
erated various combinations of these categories,
treating each one in turn as an in-distribution set,
while considering the others as a OOD data. For ex-
ample, the model could be trained on the samples
from Computer class (ID dataset) and evaluated
later on Sports and Politics (OOD).

In order to test the impact of background shift,
we took three sentiment classification datasets –
IMDB, SST-2 and Yelp, which are based on user
reviews and represent different domains. Although
these datasets have similar linguistic properties, the
topics they address are distinct. Again, we con-
structed various combinations of these collections
by treating each one as the ID set and the others as
OOD sets.

5 Experiments

In this section, we describe the details of a train-
ing procedure and present the outcomes from the
experiments.

5.1 Training Setup

The PLM fine-tuning duration took maximally 100
epochs with an early stopping mechanism (Raskutti
et al., 2011) applied (patience = 10 epochs). By
using this technique, we were able to conserve
computational resources while still obtaining high-
performing models. The learning rate hyperparam-
eter was always set to 2e−5. To prevent overfitting
and enhance the model’s generalization capabil-
ities, we used a weight decay wd = 0.01 with
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Table 2: AUROC (%) and standard deviations for methods evaluated on datasets from first scenario.

Near-OOD Far-OOD Distinct-OOD

Method NC/O Twitter IMDB SST-2 Yelp Language NCR/I NCR/O

MSP 74.2±0.3 74.8±2.4 96.6±3.1 84.2±3.3 95.3±1.5 95.1±1.9 59.0±0.8 80.5±0.6
Energy 77.6±0.4 84.8±1.9 99.6±0.5 92.6±2.6 98.6±0.7 98.7±0.6 60.1±1.0 84.9±0.7
GradNorm 77.2±0.5 81.8±2.7 99.0±1.1 90.8±2.2 97.8±0.8 97.8±0.7 60.5±1.4 85.0±0.8
KLM 62.9±0.4 54.0±3.8 92.5±6.2 67.7±4.6 88.9±3.7 86.7±3.9 50.6±0.1 68.5±0.6
ReAct 77.5±0.4 84.5±2.0 99.6±0.5 92.4±2.8 98.6±0.7 98.7±0.6 60.0±1.0 84.7±0.7
DICE 58.2±0.6 60.9±3.2 76.6±5.8 60.9±1.4 84.4±2.2 69.3±2.8 51.2±0.9 60.4±1.4
KNN 80.1±0.2 92.9±1.2 99.8±0.1 96.4±1.1 99.5±0.1 99.6±0.1 67.6±1.3 88.7±0.5
ViM 79.9±0.2 89.2±1.5 90.6±3.1 96.0±0.9 92.9±1.6 98.1±0.8 60.7±0.8 86.1±0.4

Adam optimizer (Zhang, 2018). The best perform-
ing model was selected based on F1-score achieved
on the validation set, and the final results were
reported on the test set (see Appendix A). To mini-
mize the influence of randomness on the outcomes,
we trained PLM five times for each task using dif-
ferent initial seeds.

During each experiment, the PLM was fine-
tuned on ID data, which consisted of training and
validation splits. The evaluation of the OOD de-
tection methods themselves was performed on pre-
defined test data. A complete overview of the split
sizes along with the number of classes in all data
collections is presented in Table 1.

5.2 Results

The outcomes from experiments on data prepared
in the first scenario (Section 4.1) are shown in Ta-
ble 2. The KNN clearly outperformed the other
OOD detection techniques on all three data groups.
Energy-based method also stands out with its good
results as well as ViM, except with its results on
IMDB and Yelp dataset (worse than baseline MSP).
As expected, the values of evaluation metrics on the
NC/O dataset were the lowest among Near-OOD
and Far-OOD divisions. This dataset was sepa-
rated from the original dataset used in the training,
making it the most difficult to properly identify
as OOD due to the distributional closeness. The
most challenging among the Far-OOD collections
appeared to be SST-2, probably because of a small
average number of words per example. The Lan-
guage turned out to be the easiest dataset to detect
OOD samples, and almost all methods performed
well on it. The two worst performing approaches
on the presented NLP tasks can be distinguished,
i.e. DICE and KLM. Their measures were always

worse than MSP, sometimes even nearly random
(a little above 50%) – DICE on NC/O and KLM on
Twitter.

Interesting results can be seen in the last part
of Table 2. Randomization of words in case
of NC/O dataset (which created NCR/O) signif-
icantly increased the model confidence in detecting
OOD examples comparing with initial NC/O sam-
ples. However, the OOD methods could not cope
well with shuffled in-domain News category data
(NCR/I), which a human would recognize as the
OOD.
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Figure 3: The performance of the methods is presented
in AUROC depending on the type of distribution shift.
The baseline method and its asymptotes are highlighted
in pink color to facilitate comparison with other meth-
ods.

Table 3 presents AUROC scores obtained from
the second scenario (Section 4.2) evaluation. The
results demonstrate that the ViM method is more
effective in detecting OOD samples with semantic
shift to ID data. However, for background shift
data, ViM is not always the best and is outper-
formed by KNN on IMDB and Yelp datasets. The
SST-2 dataset proved to be problematic again, but
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Table 3: AUROC (%) and standard deviations for methods evaluated on datasets from second scenario. The first
part of the table refers to semantic shift, where the second part refers to background shift.

ID OOD MSP Energy GradNorm KLM ReAct DICE KNN ViM

Computer
Politics 91.5±1.9 96.3±1.1 95.5±0.9 78.0±7.3 96.2±1.2 34.6±13.2 97.0±0.5 98.6±0.3
Sports 89.8±2.7 94.9±1.6 94.1±1.6 74.5±4.6 94.6±1.7 51.9±6.9 95.7±0.9 97.7±0.6

Politics
Computer 94.4±0.8 96.0±0.6 95.5±0.7 82.8±4.6 95.9±0.6 63.9±3.2 96.9±0.2 98.3±0.2
Sports 91.4±1.1 93.4±0.9 92.9±1.0 72.3±5.6 93.3±0.9 58.6±2.4 95.3±0.4 97.3±0.3

Sports
Computer 95.7±0.6 97.0±0.9 96.8±0.5 81.6±3.9 96.9±0.9 58.1±7.6 97.6±0.4 98.5±0.2
Politics 95.3±0.2 96.5±0.6 96.4±0.5 79.9±2.5 96.5±0.7 52.4±11.5 97.2±0.3 98.0±0.1

IMDB
SST-2 85.3±0.8 84.3±1.8 77.8±3.0 61.2±1.7 84.5±1.9 84.6±3.3 97.8±1.2 97.3±0.7
Yelp 76.0±3.3 74.9±4.1 66.2±3.6 32.0±1.0 75.3±4.3 49.6±8.6 97.5±1.1 98.4±0.8

SST-2
IMDB 83.2±1.4 82.7±2.2 70.3±2.3 55.0±2.7 83.3±2.4 34.5±10.7 87.2±1.7 83.9±3.3
Yelp 75.7±2.2 75.0±3.1 61.3±2.7 51.3±3.0 75.7±3.4 35.4±8.4 87.8±0.4 80.1±2.8

Yelp
IMDB 79.5±0.5 79.2±1.6 71.7±1.9 38.6±1.3 79.5±1.6 26.8±5.1 84.7±0.8 88.6±0.7
SST-2 91.6±0.5 91.5±0.9 86.1±1.0 59.9±2.5 91.7±0.9 55.8±8.5 98.5±0.3 99.0±0.1

only when used as a training set. It is worth noting
that the average length of texts per SST-2 is consid-
erably different from IMDB and Yelp collections,
which mainly contain longer texts. These obser-
vations suggest that KNN is more stable in terms
of different data characteristics. To further empha-
size the importance of comparing methods based
on the type of shift, we created a visualization in
Figure 3. The ReAct, Energy, and GradNorm tech-
niques turned out to be better than the baseline, but
only for the semantic shift case.

To summarize, either KNN or ViM is the pre-
ferred choice among all the analyzed OOD de-
tection approaches. Other reported metric values
(AUPR-IN and FPR@95) from all experiments are
attached in Appendix B.

5.3 Computational Resources

All experiments were conducted on a worksta-
tion equipped with a mid-range Nvidia RTX 3060
GPU with 12GB of memory, a high-end Intel(R)
Core(TM) i9-10900X CPU with 20 cores and 40
threads, and 256 GB RAM. These resources pro-
vided sufficient capacity for running the experi-
ments and training the models used in this work,
including analysis and processing of large datasets.
In total, we trained 35 models, taking 222 GPU-
hours while evaluation alone lasted 124 GPU-
hours.

6 Conclusions

The latest advancements in OOD detection tech-
niques have surpassed the conventional MSP base-
line. In this work, we applied some of them to the

NLP classification problems, selecting only post-
hoc approaches because of their easy integration
to already trained PLM model. Most of the ex-
amined techniques achieved better results than the
MSP, but their performance varied when subjected
to different types of data distributional shift. Back-
ground shift was particularly challenging for the
majority of methods to properly distinguish OOD
examples. The KNN and ViM methods were found
to be the most effective, and their performance was
also stable. Hence, they are better alternatives to
MSP for out-of-distribution detection. However, it
should be kept in mind that it is likely that the ViM
method is sensitive to cases where the language
model was trained on short texts and later exposed
to a long text from outside the domain.

The proposed by us the unique analysis of
Distinct-OOD scenario, allowed to draw interesting
findings. The tested methods were able to identify
texts in different languages very easily as a OOD
examples, but they had problems detecting OOD
on the News Category Random with shuffled data.
This means that PLM models, despite their abil-
ity to detect contextual nuances in text, still tends
to behave like Bag-of-Words (Zhang et al., 2010)
in text classification tasks. Business-wise, such
structurally disturbed examples should not be fur-
ther processed by AI systems. Therefore, OOD
methods employed in NLP should better address
semantic disorders in input sentences.

In conclusion, the overall performance of cur-
rent OOD detection techniques is still low and un-
satisfactory, particularly when presented with the
Near-OOD samples. Further research is necessary
for the development of OOD detection methods, es-
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pecially in the field of NLP, where more and more
document processing automation systems are being
developed, where ensuring reliability is important
for users. Our work addresses the need for a com-
prehensive framework to evaluate the quality of
OOD detection and provides easy extensibility to
emerging methods.

7 Limitations

While our study provides valuable insights, it is
important to keep in mind its limitations. Firstly,
it was confined to text classification and did not
include other NLP problems such as Named Entity
Recognition (NER) (Wang et al., 2022b), Ques-
tion Answering (QA) (Pandya and Bhatt, 2021),
etc. Expanding this research to a wider range of
tasks would provide a better understanding of the
methods’ performance in diverse data scenarios.
Additionally, the inclusion of a task shift can be
valuable, where the model is trained on a single
task but OOD data come from a totally different
prediction problems.

Secondly, we conducted our experiments using
only RoBERTa model. We chose a widely used
language model for text classification, but there are
several other architectures worth testing, especially
large language models (LLMs) (Zhao et al., 2023)
that now becoming extremely popular. A more
comprehensive evaluation of the models and meth-
ods could provide more insights into whether the
development of transformer-based methods con-
tributes to better detection of OOD data.

Finally, due to restricted computational time, we
did not perform a hyperparameter search for either
model or methods. We just used recommend val-
ues from the original publications. This may have
affected the obtained results, and it is certainly an
aspect worth investigating in the future.
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A Training Details

Each model was trained on five different seeds from
range [2021, 2025]. Table 4 includes averaged clas-
sification metrics with standard deviation.

Table 4: Training metrics on test set.

Dataset Accuracy F1 Score Precision Recall

NC/I 82.4±0.1 81.8±0.1 81.7±0.2 82.0±0.2
Computer 89.2±0.3 89.3±0.4 89.3±0.4 89.3±0.3
Politics 94.7±0.3 94.6±0.3 94.6±0.4 94.7±0.3
Sports 97.5±0.2 97.5±0.2 97.5±0.2 97.5±0.2
IMDB 94.7±0.1 94.7±0.1 94.7±0.1 94.7±0.1
SST-2 93.9±0.1 93.8±0.1 93.7±0.1 93.8±0.1
Yelp 96.9±0.0 96.9±0.0 96.9±0.0 96.9±0.0

B Evaluation Details

The values for all metrics that were considered in
our experiments are listed below. Tables 5 and 6
refer to the Scenario 1 of OOD data preparation; Ta-
bles 7 and 8 report the results from the Scenario 2.
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Table 5: AUPR-IN (%) and standard deviations for methods evaluated on datasets from first scenario.

Method NC/O Twitter IMDB SST-2 Yelp Language NCR/I NCR/O

MSP 71.7±0.4 97.3±0.3 98.4±1.5 91.9±1.8 97.4±0.8 99.2±0.3 59.2±1.1 80.4±0.7
Energy 74.5±0.6 98.5±0.2 99.8±0.2 96.3±1.3 99.2±0.4 99.8±0.1 58.8±1.3 84.0±0.9
GradNorm 73.9±0.7 98.2±0.3 99.5±0.6 95.4±1.1 98.8±0.4 99.7±0.1 58.5±1.9 83.8±1.0
KL-Matching 51.0±0.4 90.9±0.7 94.1±5.1 72.0±2.8 87.7±3.6 96.6±1.3 48.3±0.2 54.8±0.5
ReAct 74.3±0.5 98.4±0.2 99.8±0.2 96.1±1.4 99.2±0.4 99.8±0.1 58.9±1.4 83.7±0.9
DICE 51.8±0.7 96.0±0.4 91.0±2.6 82.6±0.9 94.1±0.9 95.0±0.5 51.0±1.0 56.7±1.5
KNN 78.5±0.1 99.3±0.1 99.9±0.0 98.3±0.5 99.8±0.1 99.9±0.0 68.9±1.3 88.6±0.6
VIM 77.1±0.1 99.0±0.2 96.5±1.1 98.1±0.5 97.1±0.6 99.7±0.1 58.9±0.9 85.5±0.4

Table 6: FPR@95 (%) and standard deviations for methods evaluated on datasets from first scenario. Lower scores
indicate better performance.

Method NC/O Twitter IMDB SST-2 Yelp Language NCR/I NCR/O

MSP 82.3±0.8 77.3±4.8 19.6±18.8 61.3±7.8 21.5±6.7 29.3±10.7 91.3±0.5 75.2±1.4
Energy 75.2±1.0 55.7±7.3 2.4±2.7 35.8±10.5 7.1±3.5 7.6±3.5 89.0±0.6 63.8±1.9
GradNorm 75.9±0.8 65.1±6.9 5.7±6.3 44.0±7.9 11.2±4.0 12.9±5.0 88.8±0.7 63.7±2.1
KL-Matching 85.8±0.5 85.4±3.5 33.8±29.7 76.4±4.6 30.2±8.7 55.7±9.2 92.3±0.3 80.2±0.8
ReAct 75.3±1.1 55.3±7.2 2.2±2.5 35.6±10.6 7.0±3.4 7.6±3.6 89.2±0.6 64.2±1.9
DICE 95.2±0.3 99.9±0.0 100.0±0.0 99.9±0.1 99.4±0.9 100.0±0.0 96.3±0.3 97.1±0.5
KNN 73.9±0.6 34.4±5.4 0.2±0.1 22.1±8.6 2.2±0.7 1.4±0.5 85.7±0.7 56.1±1.6
VIM 71.5±0.5 57.8±4.7 86.5±12.4 23.7±5.2 63.3±10.7 13.2±8.0 88.9±0.5 63.4±1.1

Table 7: AUPR-IN (%) and standard deviations for methods evaluated on datasets from second scenario. The first
part of the table refers to semantic shift, where the second part refers to background shift.

ID OOD MSP Energy GradNorm KLM ReAct DICE KNN VIM

Computer
Politics 95.2±1.1 97.7±0.7 97.4±0.5 77.7±8.2 97.6±0.7 56.1±11.4 98.2±0.3 99.1±0.2
Sports 93.3±1.9 96.4±1.1 96.0±1.0 71.3±5.5 96.2±1.2 64.3±9.0 97.1±0.6 98.3±0.4

Politics
Computer 93.8±0.7 94.8±0.7 94.6±0.7 67.3±9.0 94.7±0.7 68.9±2.2 96.7±0.2 97.9±0.2
Sports 91.6±1.2 92.8±1.0 92.4±1.2 60.8±9.6 92.6±1.1 67.5±1.9 95.8±0.3 97.1±0.3

Sports
Computer 96.3±0.7 96.9±1.1 97.1±0.5 70.1±7.4 96.8±1.1 67.2±6.4 98.0±0.3 98.7±0.2
Politics 96.6±0.4 97.1±0.9 97.4±0.5 75.3±1.7 97.1±0.9 66.0±9.7 98.2±0.2 98.6±0.1

IMDB
SST-2 86.2±1.4 84.8±1.8 73.7±6.6 52.2±1.2 85.0±1.8 85.5±3.6 98.1±1.0 97.6±0.6
Yelp 82.1±2.8 80.8±3.6 71.5±3.3 38.8±0.6 81.2±3.9 51.4±8.0 97.9±0.8 98.6±0.6

SST-2
IMDB 85.7±1.5 85.1±2.0 69.4±3.0 48.6±1.4 85.7±2.2 41.1±5.0 91.4±0.8 86.5±2.5
Yelp 76.3±2.8 75.4±3.5 60.5±3.5 47.4±1.5 76.3±3.8 40.6±3.6 91.4±0.4 82.5±2.6

Yelp
IMDB 83.5±0.5 82.7±2.5 76.1±2.3 41.1±0.5 83.0±2.4 36.8±1.6 88.2±0.6 91.2±0.5
SST-2 93.8±0.4 93.7±0.7 88.8±0.8 50.2±1.6 93.9±0.7 63.3±8.2 98.9±0.2 99.3±0.1

Table 8: FPR@95 (%) and standard deviations for methods evaluated on datasets from second scenario. The first
part of the table refers to semantic shift, where the second part refers to background shift. Lower scores indicate
better performance.

ID OOD MSP Energy GradNorm KLM ReAct DICE KNN VIM

Computer
Politics 55.9±11.7 20.9±7.4 31.0±8.4 61.6±12.6 21.3±7.5 99.9±0.1 17.3±4.6 7.2±1.8
Sports 61.4±9.3 30.8±8.8 39.7±8.7 66.7±9.6 31.4±8.6 99.1±0.9 29.6±6.3 14.1±5.6

Politics
Computer 38.4±8.9 22.0±4.0 28.1±8.9 42.1±9.8 22.7±4.1 98.8±0.9 22.8±4.6 9.4±1.6
Sports 55.8±7.4 35.6±4.7 42.5±9.4 59.4±7.8 36.5±4.7 99.4±0.5 35.8±5.0 16.2±3.1

Sports
Computer 27.9±6.6 18.1±5.7 18.2±5.1 32.2±5.1 18.8±6.0 96.0±2.3 11.8±4.2 6.0±1.6
Politics 30.5±3.6 21.0±2.8 21.0±2.9 33.9±2.3 21.7±3.3 95.5±7.4 17.7±2.6 9.1±1.2

IMDB
SST-2 65.6±0.9 68.5±9.4 67.3±1.6 65.6±0.9 69.1±10.7 54.4±9.6 12.5±8.2 14.0±3.9
Yelp 92.3±1.3 92.8±2.8 93.3±1.0 92.3±1.3 92.6±2.9 93.8±7.2 15.1±9.1 8.2±6.5

SST-2
IMDB 77.7±2.3 79.6±7.3 81.8±1.5 78.0±2.3 79.1±8.9 100.0±0.0 88.3±10.9 79.0±17.8
Yelp 84.5±2.4 85.8±6.2 87.6±1.2 84.8±2.3 85.2±7.0 99.7±0.2 81.0±9.0 82.2±13.1

Yelp
IMDB 83.7±0.6 83.5±1.4 87.1±0.7 83.6±0.6 83.2±1.4 99.7±0.1 74.9±3.8 62.4±2.5
SST-2 58.4±2.4 58.6±4.0 66.7±2.5 58.4±2.4 57.9±4.2 96.1±4.7 3.8±1.5 2.4±0.8
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Abstract
It has been suggested that pretrained language
models can be viewed as knowledge bases. One
of the prerequisites for using language mod-
els as knowledge bases is how accurately they
can store and retrieve world knowledge. It
is already revealed that language models can
store much 1-to-1 relational knowledge, such
as “country and its capital,” with high mem-
orization accuracy. On the other hand, world
knowledge includes not only 1-to-1 but also 1-
to-N relational knowledge, such as “parent and
children.” However, it is not clear how accu-
rately language models can handle 1-to-N rela-
tional knowledge. To investigate language mod-
els’ abilities toward 1-to-N relational knowl-
edge, we start by designing the problem set-
tings. Specifically, we organize the character of
1-to-N relational knowledge and define two es-
sential skills: (i) memorizing multiple objects
individually and (ii) retrieving multiple stored
objects without excesses or deficiencies at once.
We inspect LMs’ ability to handle 1-to-N rela-
tional knowledge on the controlled synthesized
data. As a result, we report that it is possible to
memorize multiple objects with high accuracy,
but generalizing the retrieval ability (expressly,
enumeration) is challenging.

1 Introduction

As a result of their pretraining on large amounts of
text, language models (LMs) store certain world
knowledge facts, such as “Paris is the capital of
France”, in their parameters and can retrieve that
knowledge when given a suitable prompt. Since the
ability to store and retrieve knowledge is also a key
functionality of knowledge bases (KBs; Weikum
et al., 2021), prior work has proposed to view lan-
guage models as knowledge bases (Petroni et al.,
2019). Quantitative evaluation of world knowledge
in LMs has focused on 1-to-1 relational knowledge
involving two entities, such as a country and its
capital (Petroni et al., 2019; Heinzerling and Inui,
2021; Safavi and Koutra, 2021; Razniewski et al.,
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Inputs Outputs

Inference

The capital of Canada is <mask>.
…

The capital of France is <mask>.
memorize

…

The capital of Canada is <mask>.

The capital of Egypt is <mask>.
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1-to-1 relational knowledge

1-to-N relational knowledge (Our study)
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Inputs Outputs
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Tom has a child named <mask>.

…

Bob has a child named <mask>. memorize

…
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線やめる
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Queryはやめて
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Input

Output

Input

Output

Figure 1: Memorize and enumerate relational knowl-
edge. We are considering a synthetic setting in which
the LM is made to memorize a specific set of individual
relations and then needs to aggregate those relations
into 1-to-N relations.

2021). However, the question if and how well LMs
can handle 1-to-N relations, such as relations be-
tween parents and their children, is underexplored
so far.

Here, we conduct a study to assess the capabil-
ity of LMs to store and retrieve 1-to-N relations
in a manner similar to knowledge bases. We con-
sider a setting in which the model first is trained
to memorize individual relation instances, such as
“Tom has a child named Emma”, “Bob has a child
named Ava”, “Tom has a child named Lucas”, and
“Tom has a child named Olivia”. During inference
the model then has to retrieve 1-to-N relation, e.g.,
“Tom has children named Emma, Lucas, Olivia”
(Figure 1).

To investigate the possibility of viewing LMs
as KBs more precisely, it is necessary to clarify
the basic abilities of LMs, such as how accurately
they can store 1-to-N relational knowledge and how
flexibly they can retrieve multiple entities they have
stored.
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Our study represents the first comprehensive in-
vestigation of 1-to-N relational knowledge. Our
contributions are summarized as follows: (1) We
identified the capabilities necessary for LMs to
handle 1-to-N relational knowledge, taking into ac-
count its unique properties. Specifically, LMs must
be able to accurately memorize any object appear-
ing discretely and enumerate multiple objects with-
out over- or under-recall based on memory. (§ 3) (2)
Based on the identified capabilities, we formulated
two training schemes: element-valued supervision
for “memorization” and set-valued supervision for
“enumerating.” (§ 4) (3) We conducted a quantita-
tive evaluation of LMs’ “memorization” abilities
from both subject-oriented and object-oriented per-
spectives and categorized the errors encountered
during “enumerating.” Our results suggest that
LMs are able to store 1-to-N relational knowledge
with reasonable accuracy, but generalizing the abil-
ity to enumerate proves to be challenging. (§ 6)

2 Related Work

Factual knowledge probing Petroni et al.
(2019) investigated how much knowledge LMs had
acquired from large corpora by having models such
as pretrained BERT (Devlin et al., 2019) solve
problems in the “fill-in-the-blank” format. They
also pointed out three critical advantages of treating
LMs as KBs: “LMs require no schema engineer-
ing, do not need human annotations, and support
an open set of queries.”

Jiang et al. (2020) and Brown et al. (2020) also
worked on creating optimal prompts for extract-
ing correct answers from pretrained LMs. These
investigations aim to extract knowledge that LMs
have acquired implicitly during pretraining. On the
other hand, we are interested in the degree to which
knowledge can be handled accurately when LMs
explicitly learn it. Thus, investigating what and
how well pretrained LMs acquire 1-to-N relational
knowledge from corpora is beyond our scope.

Storing 1-to-1 relational knowledge Heinzer-
ling and Inui (2021) established two basic require-
ments for treating LMs as KBs: “(i) the ability to
store a lot of facts involving a large number of enti-
ties and (ii) the ability to query stored facts.” Based
on these requirements, they elaborately examined
how much and how accurately LMs can store 1-to-
1 relational knowledge by comparing various entity
representations. However, the behavior of LMs
concerning 1-to-N relational knowledge remains

unclear.

Set handling This study explores handling mul-
tiple objects, which can be achieved by handling a
set of objects. Previous works such as Deep Sets
(Zaheer et al., 2017) and Set Transformer (Lee
et al., 2019) are representative ones that address
set handling in neural networks or transformers
(Vaswani et al., 2017).

Both focus on sets as inputs, being permutation-
invariant and treating sets of arbitrary size. While
this study focuses on sets as outputs rather than
inputs, the properties such as permutation-invariant
are considered to be essential aspects in common.

3 Designing an approach to 1-to-N
relational knowledge

In this section, we describe the unique properties
of 1-to-N relational knowledge and what capabili-
ties of LMs are needed to handle 1-to-N relational
knowledge.

To begin with, we define three significant unique
factors that make 1-to-N relational knowledge chal-
lenging to deal with: First, when the subject or
relation under consideration changes, the number
of objects associated with it changes. For example,
consider answering the question, “{Subject} has
children named <mask>.” The difficulty is that the
number of correct objects changes depending on
the input. Second, considering existing corpora,
multiple objects are likely to occur discretely. For
example, Barack Obama has two children, Malia
and Sasha, but only Malia may appear in some
specific contexts, and only Sasha may appear in
other contexts.. Finally, third, when we assume a
situation where an LM is used practically as a KB,
it is necessary to output these discretely appearing
objects together to avoid generating an inadequate
response to the input query.

Therefore, given the above properties, the two
essential LMs’ competencies considered necessary
to manage 1-to-N relational knowledge are as fol-
lows. (i) “the ability to accurately memorize any
objects appearing discretely.” (ii) “the ability to
retrieve multiple objects without over- or under-
recall based on memory.” In order to consider an
end-to-end approach to 1-to-N relational knowl-
edge, this study tackles it as a generative task using
the sequence-to-sequence model (Sutskever et al.,
2014), which allows for flexible responses based
on input.
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(ii) Set-valued supervision

(i) Element-valued supervision

Bob has children named <mask>.…
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… …
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enumerating N objects

Tom has children named <mask>.
Input
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LM LM

Tom has a child named <mask>. Olivia
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Tom has a child named <mask>.
Mia has a child named <mask>.
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Tom has a child named <mask>.
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Noel
Carl
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Figure 2: (i) Element-valued supervision and (ii) set-valued supervision. Element-valued supervision is intended
to have the LM memorize all objects of a 1-to-N relation individually. For a given subject, there are as N relation
instances. We train the model to output a single object entity when given an input query about a subject entity.
During the evaluation, N sequences are generated using a beam search of size N to verify if all N object entities are
stored and retrieved. Set-valued supervision is used to train the model to enumerate all objects for a given entity
and predicate in one prediction step.

4 Method

4.1 Terminology

In this work, we make use of the following terms:

Relation triple: A triple consisting of a subject
and an object entity, as well as a predicate that
describes the relation that holds between the subject
and the object, e.g., (Tom, hasChild, Emma).

1-to-N relation: A set of relation triples with the
same subject and predicate, but different objects,
e.g., (Tom, hasChild, Emma) and (Tom, hasChild,
Lucas).

Individual relation instance: A relation triple
expressed in text, for example “Tom has a child
named Emma.”

Element: Viewing a 1-to-N relation as a set, we
refer to individual relation instances as elements of
that set, e.g., “Tom has a child named Emma.” is an

element of the 1-to-N relation that holds between
Tom and his children.

Element-valued supervision: One of the two su-
pervised training schemes we employ. A model
is trained on elements, i.e., individual relation in-
stances, of 1-to-N relations. Concretely, the model
is given a relation instance with the object masked
out, e.g., “Tom has a child named <mask>.” and
has to predict the masked out object, e.g., “Emma”.
The goal of this training scheme is to have the
model memorize individual objects based on their
corresponding subjects.

Set-valued supervision: In the second of our
supervised training schemes the model is trained
to predict the set of all objects for a given sub-
ject and predicate, e.g., given “Tom has children
named <mask>.”, the model has to generate the
text “Emma, Lucas, Olivia”.
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Table 1: Templates: We used different templates for each model to fit each pretraining setting.

Parent-children Director-titles

BART
Element-valued
supervision {Sbj} has a child named <mask>. {Sbj} directed a film titled <mask>.

Set-valued
supervision {Sbj} has children named <mask>. {Sbj} directed following movies: <mask>.

T5
Element-valued
supervision What is the name of {Sbj}’s child? What movie did {Sbj} direct?

Set-valued
supervision What are the names of {Sbj}’s children? What are the titles of movies {Sbj} directed?

4.2 Handling of 1-to-N Relational Knowledge

We investigate the behavior of LMs for 1-to-N rela-
tional knowledge when explicitly trained. Specif-
ically, we use the sequence-to-sequence model to
generate variable-length responses to inputs.

As described in § 3, the two abilities necessary
for LMs to handle 1-to-N relational knowledge are
(i)memorizing multiple discretely appearing ob-
jects and (ii)enumerating memorized objects with-
out excess or deficiency. In this section, we conduct
two experiments, each corresponding to the essen-
tial abilities.

(i) Memorization The first experiment is aimed
at “memorization” through element-valued supervi-
sion. Here, 1-to-N relational knowledge is decom-
posed into a one-to-one form, and we train LMs
to memorize multiple objects individually. In the
learning process, one object is output in response
to an input for a particular subject, and then all ob-
jects will be memorized in this fashion. Therefore,
the state in which the LMs memorize all N objects
can also be paraphrased as the state in which the
LMs can output all N objects.

Therefore, the evaluation of whether LMs mem-
orized multiple objects is checked by generating
multiple sequences using beam-search. Specifi-
cally, N sequences are generated for a subject using
the same query as the training data. By checking
how many correct objects are included in the se-
quences, we evaluate how many objects the LMs
memorized.

(ii) Enumeration The second experiment at-
tempts to acquire “the ability to enumerate memo-
rized objects.” Here, training by set-valued super-
vision is performed in conjunction with memoriza-
tion by element-valued supervision. The reason
for using the two supervisory methods together is
the premise that to enumerate multiple objects, it
is necessary to memorize them in the first place.
Although it is possible to perform element-valued

supervision and then shift to set-valued supervision,
catastrophic forgetting of memorized objects may
occur during the training of set-valued supervision.
Indeed, we have confirmed that catastrophic forget-
ting of memorized objects occurs during set-valued
supervision, so in this paper, the two supervisory
methods are used together. For some subjects in
the training data, LMs explicitly learn the behavior
of enumerating the objects in response to queries
that explicitly ask for multiple objects. We then
test whether set-valued supervision allows LMs to
enumerate objects for other subjects as well, i.e.,
whether they can generalize the ability to enumer-
ate.

5 Experimental setup

5.1 Synthetic Data
In the following experiments, we uniquely prepared
the 1-to-N dataset to measure how well LMs can
accurately store plenty of facts. Specifically, we
randomly obtained canonical names of parents and
their two to four children from Wikidata (Vrandečić
and Krötzsch, 2014). We also randomly obtained
the canonical names of directors and their two
to four representative films from IMDb Datasets1.
Therefore, by preparing 1-to-2, 1-to-3, and 1-to-4
relational knowledge, we will observe how LMs
performance changes as the number of objects in-
creases. We only collected data that meets the
following conditions.

• To ensure that all entities are distinguishable,
there is no data with the same canonical name
across both subjects and objects.

• Only entities consisting of four or fewer words
separated by spaces or hyphens are used to
adjust for storing difficulty due to word length.

We only consider memorizing and enumerating
entities which appear in the training data.

1https://www.imdb.com/interfaces/
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(a) Parent-children dataset
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(b) Director-titles dataset

Figure 3: Object-oriented memorization accuracy: showing how many objects LMs memorized
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Figure 4: Subjects-oriented memorization accuracy: showing how many subjects are there that LMs memorized
their corresponding N objects.

5.2 Models and Training settings

We used the pretrained BART-base (Lewis et al.,
2020) and T5-base (Raffel et al., 2019) as the
sequence-to-sequence model in the experiments.
The training in the two experiments described be-
low (§ 6.1 and § 6.2) was continued until the mod-
els strongly overfit the training data. Precisely, we
continued training until the accuracy of the training
data no longer improved by more than 30 epochs.

The accuracy was calculated as follows: for
element-valued supervision, the accuracy was de-
termined by whether the model could generate the
correct object for each subject in the input. If the
model generated one of the correct N objects for
each subject, it was considered correct; otherwise,
incorrect. For set-valued supervision, the accuracy
was determined by whether the model generated a
set of multiple correct objects with no omissions
or additions. If the model generated a complete
set of correct objects, it was considered correct;
otherwise, incorrect.

As detailed training settings, the learning rate
was started at 5e-5 in common with BART and T5,
and it was reduced by half if the accuracy did not

improve by more than three epochs. The batch
size was varied according to the model and training
data size/domain. AdamW (Loshchilov and Hutter,
2019) was commonly used as the optimizer. In
addition, a different template was used for each
model so that the input sentence templates were
similar to the pretraining settings for each (BART
uses <mask> token in pretraining, but T5 does not.)
The templates used are listed in Table 1.

6 Experiments

6.1 Element-valued supervision

In the first experiment, we investigated the ability
to memorize multiple objects using element-valued
supervision. Here, we tested whether the LMs
could correctly store N objects associated with a
single subject. Specifically, as shown in Figure 2,
the learning process of having one object generated
for each input sentence, such as “{Subject} has a
child named <mask>.” or “{Subject} directed a
film titled <mask>.” was performed for all objects.
Thus, the learning setup is such that there are as
many target sentences as objects for each input
sentence.
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Table 2: Accuracy of enumerate operation

Model BART-base T5-base
Set-valued supervision ratio 30% 60% 90% 30% 60% 90%

Parent-children
1-to-2 46.7 45.8 49.3 27.0 40.7 49.5
1-to-3 8.33 9.33 9.67 10.7 16.8 20.7
1-to-4 1.00 1.33 2.17 0.500 2.33 2.67

Director-titles
1-to-2 42.0 43.3 44.17 19.8 24.2 28.7
1-to-3 22.5 24.2 26.3 14.8 15.8 23.7
1-to-4 6.17 10.7 11.3 2.33 3.83 7.00

We then checked the degree to which LMs
trained with element-valued supervision could re-
call multiple objects through the generation of N
sequences using beam search. To be precise, N
was for the number of objects associated with the
input subject, and we analyzed the count of correct
objects within those sequences.

In this experiment, we also tested whether the
LMs’ memorization accuracy changed when the
training data size, i.e., the number of entities, was
varied. Here, we evaluated this memorization accu-
racy from two perspectives.

Object-oriented memorization accuracy The
first perspective is object-oriented memorization
accuracy, shown in Figure 3, which evaluates the
degree of recall of objects in the training data. Fig-
ure 3a and 3b correspond to the parent-children
and director-titles datasets, respectively. The solid
blue line corresponds to T5, and the dashed yellow
line to BART, with darker colors corresponding
to 1toN relational knowledge with more objects.
The results show that T5 has better memorization
accuracy than BART, although no significant dif-
ferences by data domain were observed. Also, the
larger N, i.e., the greater the number of objects as-
sociated with one subject, the more likely N entities
could not be memorized.

Subject-oriented memorization accuracy The
second perspective, subject-oriented memorization
accuracy, evaluated how many subjects were mem-
orized with all related N objects. Specifically, in
generating multiple objects by beam search, we
show how many subjects existed for which all N
objects were generated.

The results are shown in Figure 4, where 4a
and 4b correspond to the parent-children and
director-title datasets, respectively, as in Figure 3.
The results confirmed that, overall, T5 has higher
memorization accuracy. Looking at performance

by the number of objects, it is clear that, in com-
mon with the two data domains and two models,
the greater the number of objects, the more difficult
it was to remember all of them in conjunction with
the subject.

Interestingly, both memorization accuracies in
the two perspectives show roughly independent be-
havior concerning data size. One possible reason
for the higher overall memory accuracy of T5 is
that the parameter size of the T5-base is about 1.5
times larger than that of BART-base. This may con-
tribute to higher memory accuracy. The fact that
100% memorization accuracy was not achieved
for either data size may suggest that memorizing
1-to-N relational knowledge is not easy for LMs.
Examples of LMs’ predictions are shown in Table
3.

6.2 Element-valued and Set-valued
supervision

In this subsequent experiment, the model was
trained with element-valued and set-valued super-
vision to acquire the ability to enumerate all associ-
ated objects. More expressly, compared to the first
experiment, we additionally employed set-valued
supervision, which involved using “{Subject} has
children named <mask>.” as the input sentence
and “{Object1}, {Object2}, ...” as the correspond-
ing target sentence, as an example. This approach
aimed to generalize the model’s ability to enumer-
ate all accurately memorized objects in response to
queries requesting multiple objects.

We conducted both element-valued and set-
valued supervision during training. Specifically,
we trained LMs using element-valued supervision
on all subjects to memorize all associated objects.
We fixed the training data size at 3000 subjects for
each. Simultaneously, we randomly selected 20%
of the subjects, i.e, 600 subjects, as a test set for
set-valued supervision. For the remaining 80% of
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Table 3: Examples of generated N sequences for element-valued supervision. Showing 1-to-3 relational knowledge,
which includes leakage of memorization. Objects with green background color are correct and those with red are
incorrect.

Data Domain 1-to-N Subject Gold objects Top-N sequences

Parent-children 1-to-3 Dr. Dre
Hood Surgeon
La Tanya Danielle Young
Truice Young

BART
1: Hood Surgeon

2: Truice Young

3: Young Hood Surgeon
T5
1: Hood Surgeon

2: Truice Young

3: La Tanya Danielle Young

Director-titles 1-to-3 Jack Holton
A Dream for Christmas
Escape to Witch Mountain
The Wild Country

BART
1: Escape to Witch Mountain

2: A Dream for Christmas
3: The Wild Country
T5
1: Escape to Witch Mountain

2: A Dream for Christmas
3: Adventures in Dinosaur City

the subjects, we varied the proportion of subjects
for which set-valued supervision was applied (i.e.,
30%, 60%, or 90%) to examine whether the gen-
eralization ability would change depending on the
number of instances that the LMs learned how to
enumerate their corresponding objects.

The goal was to investigate how well the model
could generalize to subjects in the test set when
using set-valued supervision and to determine the
impact of varying the proportion of subjects with
set-valued supervision on model performance.

The results (Table 2) show that the enumerating
accuracy is highest when the supervision ratio is
90% for all, indicating that it is important to have
many training instances to generalize the enumer-
ating capability.

Although there are differences in the enumerat-
ing accuracy scores across data domains and mod-
els, we found a tendency for the enumeration per-
formance to decrease significantly as the number
of target words increases.

Error analysis Quantitative error distributions
are shown in Table 4, and specific examples of
incorrect answers are shown in Table 5. Table 4
shows that for small numbers of objects (e.g., 1-
to-2), BART tended to generate incorrect objects
(labeled “Incorrect”), while T5 often duplicated the
same object (labeled “Duplication”), highlighting
a noticeable difference between the two models.
As the number of objects increased (e.g., 1-to-3, 1-

to-4), both models were more likely to produce
wrong answers due to missing objects (labeled
“Missing”). The distribution of errors across differ-
ent datasets was generally similar, but both models
were more prone to missing objects in the parent-
children dataset, suggesting that the type of entity
names might have an impact on the error patterns.

7 Conclusion

We addressed handling 1-to-N relational knowl-
edge by a generative approach using the sequence-
to-sequence model. Since little work has been done
on 1-to-N relational knowledge in previous studies,
we started by organizing the properties of 1-to-N
relational knowledge and setting up the capabili-
ties considered necessary for LMs based on these
properties.

Specifically, we defined two essential capabili-
ties: “memory of discretely appearing multiple ob-
jects” and “enumeration of objects based on mem-
ory.” Then, we developed training schemes based
on these perspectives. We used element-valued su-
pervision and beam search for the former to memo-
rize and evaluate multiple objects. We found that
nearly 90% of the objects could be memorized, al-
though we observed a tendency for memory omis-
sions to occur as the number of objects increased.
However, we also confirmed that it is challenging
to achieve 100% perfect memory.

For the latter, we attempted to generalize “enu-
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Table 4: Quantitative error analysis on 90% set-valued supervision: showing the number of incorrect responses
generated by the model, categorized into three types of errors. "Incorrect" denotes model-generated sequences that
contain one or more incorrect objects. Responses that lack objects are classified as "Missing" (omission of objects),
while those with duplicate instances of the same object are labeled as "Duplication."

Model BART-base T5-base
Error Type Incorrect Missing Duplication Incorrect Missing Duplication

Parent-children
1-to-2 280 0 18 154 2 147
1-to-3 229 306 7 93 287 96
1-to-4 175 406 6 105 380 99

Director-titles
1-to-2 298 0 37 156 1 271
1-to-3 70 352 20 41 287 130
1-to-4 25 481 25 37 441 80

Table 5: Examples of enumerating error for the parent-children dataset. The error part is colored in red. These errors
are for 1-to-3 relational knowledge and were generated by the T5, which is trained with 90% set-valued supervision.

Error Subject Gold and Prediction

Missing Jeb Bush
Gold: George P. Bush, Noelle Bush, John Bush Jr.
Pred: John Bush Jr., Noelle Bush (missing)

Incorrect Shimon Peres
Gold: Tsvia Walden, Hemi Peres, Yoni Peres
Pred: Tsvia Walden, Yoni Peres, Leo Peres

Duplication Alice Meynell
Gold: Viola Meynell, Everard Meynell, Madeline Lucas
Pred: Viola Meynell , Madeline Lucas, Viola Meynell

Excess(Incorrect) Alan Alda
Gold: Beatrice Alda, Elizabeth Alda, Eve Alda
Pred: Elizabeth Alda, Beatrice Alda, Eve Alda, Nanna Alda

meration ability” by set-valued supervision in con-
junction with memorization by element-valued su-
pervision. The results showed that learning more
data improved the generalization performance for
acquiring enumeration ability. However, we also
observed the LM’s behavior, which aligns with hu-
man intuition: the more objects increase, the more
difficult it becomes to enumerate all of them cor-
rectly. Notably, the generalization performance for
1-to-2 relational knowledge was only about 50%
for the test set, and for 1-to-4 relational knowl-
edge, only about 10% generalization performance
at most.

For our next steps, we are considering the fol-
lowing approach. The training setup of the cur-
rent element-valued supervision is characterized
by multiple target sentences for one input sentence,
which is incompatible with the model’s learning
algorithm. Therefore, we would like to test a mem-
orizing method using ordinal numerals such as first
and second to distinguish each template for N ob-
jects. We would also like to investigate this memo-
rization method’s effect on the generalization per-
formance of enumeration.

As for enumeration, which has been difficult
to generalize, we would like to examine effective
means of improving performance for a small num-
ber of objects. Specifically, we are considering

adjusting the hyperparameters for text generation
and verifying whether errors in enumerating will
be reduced. After that, we would like to explore
learning methods to enumerate N objects without
needing hyperparameters adjustment in stages.

Introducing our 1-to-N problem setting into the
LMs-as-KBs paradigm opens up many more in-
triguing challenges. While we investigated this
setting under a controlled condition with a uniform
frequency of object appearance, the frequency of
each of the N objects in a corpus is likely to vary
in reality. Furthermore, there may be multiple para-
phrases expressing the same relation.

For example, in our study, we only considered
the phrase “{Subject} has a child named {Object}.”
but there are other phrases such as “{Subject}’s
child is {Object}.” or “{Object} is a daughter of
{Subject}.” As a primary avenue for future research,
we will explore whether LMs can handle 1-to-N
relational knowledge effectively under these more
complex conditions.
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Abstract

While embedding-based methods have been
dominant in language clustering for multilin-
gual tasks, clustering based on linguistic fea-
tures has not yet been explored much, as it
remains baselines (Tan et al., 2019; Shaffer,
2021). This study investigates whether and how
theoretical linguistics improves language clus-
tering for multilingual named entity recogni-
tion (NER). We propose two types of language
groupings: one based on morpho-syntactic fea-
tures in a nominal domain and one based on a
head parameter. Our NER experiments show
that the proposed methods largely outperform
a state-of-the-art embedding-based model, sug-
gesting that theoretical linguistics plays a sig-
nificant role in multilingual learning tasks.

1 Introduction

Language clustering has been used to facilitate an
effective cross-lingual transfer for low-resource lan-
guages in various tasks, such as machine transla-
tion (Tan et al., 2019). While the majority of recent
clustering approaches depend on embeddings from
language models, linguistic knowledge has not
yet been exploited enough. Previous studies have
merely used descriptive typological features (On-
cevay et al., 2020) and a coarse language family
classification as baselines (Shaffer, 2021). We ar-
gue that there is large room for improvement in
language clustering using linguistics knowledge.

This study examines two language classifications
based on theoretical linguistics and tests their effec-
tiveness in multilingual NER. Multilingual NER is
selected because comparison models are available
from Shaffer (2021), namely an embedding-based
classification and a language family classification.
Although there are datasets available for NER in
various languages (Tedeschi et al., 2021; Adelani
et al., 2021; Rahimi et al., 2019), our study focuses
on Indo-European languages because there is a rich
body of research in theoretical linguistics.

Our classification approaches draw on morpho-
syntactic parameters proposed primarily in theoret-
ical syntax. The first classification is based on a
language tree created by Ceolin et al. (2021), which
reflects various morpho-syntactic parameters in a
nominal domain. The second classification uses the
head parameter (Chomsky, 1981), which indicates
the “head” of a phrase in relation to its comple-
ments. We select these parameters because NER is
a task that identifies mentions and types of named
entities that are mostly nouns.

We show that clustering languages based on
such parameters results in more effective language
groupings beyond the state-of-the-art embedding-
based method. Moreover, our clustering ap-
proaches demonstrate comparable or better perfor-
mance than a model trained with all Indo-European
languages (hence regardless of a substantial differ-
ence in the data size). These results suggest that
theoretical linguistics has a promising potential in
multilingual NLP tasks.

2 Related Work

In the current age of globalization, collecting infor-
mation using various languages is getting more
important than ever. Multilingual models have
gained increasing attention for this purpose. Re-
cently, pre-trained large-scale multilingual mod-
els using neural networks, such as Multilingual
BERT (mBERT) (Devlin et al., 2019) and XLM-
RoBERTa (Conneau et al., 2020), have provided
competitive results. However, the amount of la-
beled data available for fine-tuning these multi-
lingual models is highly skewed toward “major”
languages. In fact, there are more than 2,000
low-resource languages with little or no labeled
data (Joshi et al., 2020).

To alleviate the problem with low-resource lan-
guages, cross-lingual transfer learning has been
proposed (Artetxe and Schwenk, 2019). The aim
of this method is to adapt a language model trained
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with high-resource languages to low-resource lan-
guages. Various transfer learning methods have
been proposed. For example, Patil et al. (2022) pro-
posed a technique using subword units (byte pair
encoding (Sennrich et al., 2016)). Ri and Tsuruoka
(2022) investigated which conditions make cross-
lingual transfer learning possible by conducting
artificial language experiments.

Language clustering is another kind of transfer
learning method mainly used in machine transla-
tion. Tan et al. (2019) compared clustering by lan-
guage family and by embeddings and reported that
the embedding-based clustering better improved
translation accuracy. Oncevay et al. (2020) pro-
posed a language clustering method that integrates
syntactic features of WALS (Dryer and Haspel-
math, 2013) and embeddings from machine transla-
tion models. As for NER, Shaffer (2021) compared
clustering by language family and by embeddings
and reported that the embedding-based clustering
outperformed language family clustering. In sum,
clustering by linguistic prior was used as baselines,
and these baselines did not attain better results than
the ones with embeddings.

Other than language clustering, linguistic knowl-
edge has been widely used in various NLP
tasks (O’Horan et al., 2016; Gerz et al., 2018; Ponti
et al., 2019). For example, some approaches use ty-
pological or phylogenetic features in multilingual
fine-tuning for cross-lingual transfer (Lin et al.,
2019; Pires et al., 2019; Dhamecha et al., 2021;
de Vries et al., 2022). Likewise, language family
information or typological features, such as word
order, have been used in various kinds of multilin-
gual tasks, such as machine translation (Saleh et al.,
2021; Chronopoulou et al., 2022), dependency pars-
ing (Ammar et al., 2016), and pre-training (Fu-
jinuma et al., 2022).

Crucially, however, the linguistic information
used in all these studies is limited to the extent of
language family and typological features which are
directly observable. No studies using more pro-
found linguistic knowledge have been conducted.
Therefore, it remains to be seen whether and to
what extent linguistic knowledge other than lin-
guistic family and typological features could help
improve clustering for multilingual tasks.

3 Language Clustering using Parameters
of Theoretical Linguistics

3.1 Linguistic Parameters

As shown in Section 2, multiple studies have at-
tempted to use linguistic priors for multilingual
NLP tasks. However, the knowledge used in these
studies remains descriptive and unable to represent
the internal nature of language.

Thus, we use “linguistic parameters” proposed
by Chomsky (1981) in theoretical linguistics for
our clustering to capture the characteristics of lan-
guage that cannot be seen superficially and cannot
be captured by phylogenetic comparison of lan-
guages. As seen in Sections 3.3 and 3.4, linguistic
parameters are morpho-syntactically more detailed
and abstract than typological features in WALS
that have been used in the previous studies. We
apply these parameters to our clustering methods
and conduct experiments on multilingual NER.

3.2 Selection of Tasks and Languages

This study selects NER as the target task for com-
parison with Shaffer’s (2021) study, which tried
to improve the performance of multilingual NER
by clustering languages based on embeddings and
language family.

We use 25 languages that belong to the Indo-
European language family because there is a suffi-
cient amount of annotated data available for NER,
and there is a rich body of literature in theoretical
linguistics.

Table 1 lists the languages used in this study.
Each language is represented by its ISO 639-1 lan-
guage code1, which is summarized in Appendix
(Table 10). In the previous study (Shaffer, 2021),
sub-families such as Celtic were not used, despite
that their NER data are available. To conduct more
comprehensive experiments, we select languages
from a broader range of sub-families.

3.3 Clustering based on Nominal Parameters

NER is a task that identifies and classifies entities
in texts. Since the named entities are mostly rep-
resented as noun phrases, clustering languages by
features related to a noun phrase would be effective
for training. Thus, we focus on morpho-syntactic
parameters that capture cross-linguistic similarities
and differences in a nominal domain.

1http://www.infoterm.info/standardization/iso_
639_1_2002.php
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Sub-family Languages Shaffer (2021)

Romance ro, fr, es, pt, it, scn fr, es, it
Germanic af, nl, de, is, en, da, no, fo de, en, da

Greek el -
Slavic bg, pl, ru, sl, hr ru

Indo-Iranian ps, mr, hi hi
Celtic cy, ga -

Table 1: The languages used in this study and Shaffer
(2021).

Figure 1: Language tree by Ceolin et al. (2021).

To cluster languages by nominal parameters, we
use a language tree proposed by Ceolin et al. (2021).
They classified Indo-European languages based on
94 morpho-syntactic parameters in a nominal do-
main. An example of nominal parameters, “gram-
maticalized gender” is shown in (1).
(1) a. il

the.MASC
libro
book.MASC

b. la
the.FEM

macchina
car.FEM

In languages such as Italian, the gender of definite
articles varies depending on the gender of nouns as
seen in (1a, 1b).

This parameter is just one example and many
other types of parameters are considered in (Ce-
olin et al., 2021): e.g., the presence/absence of the
definite article added to the relative clause and the
presence/absence of genitive markings using an
adposition. These parameters have often been dis-
cussed in theoretical syntax, but many of them are
not included in descriptive studies, such as WALS.
The relevant language tree is shown in Figure 1,
which was created by Ceolin et al. (2021) based on
the inter-lingual distances.2

To make clusters, we incrementally combine sub-
families close to each other in the language tree.
For example, to create 3 clusters, we first combine

2https://github.com/AndreaCeolin/Boundaries

# Sub-family

1 Germanic, Slavic, Hellenic, Romance
2 Indo-Iranian
3 Celtic

Table 2: Clustering by Figure 1 (number of clusters: 3).

Figure 2: Head-initial (left) and head-final (right) of
pre/postpositional phrase (PP).

Germanic and Slavic because they are close to each
other in the tree (Figure 1). Hellenic and then Ro-
mance are merged into the German-Slavic group.
Celtic and Indo-Iranian remain as independent clus-
ters. Table 2 summarizes these 3 clusters. For our
experiments, the number of clusters is determined
by the elbow method described in Section 4.2.

3.4 Clustering based on the Head Parameter
To identify named entities in text, a language model
may use contextual information surrounding the
noun phrases. Since a noun phrase is often a part
of a verb phrase as an object or a part of an adposi-
tional phrase (i.e., a pre/postpositional phrase) that
represents location, clustering languages by this
kind of structural information may lead to a more
effective clustering.

Based on this hypothesis, the same 25 Indo-
European languages are clustered by the head pa-
rameter. The head parameter determines where the
head (the “core” element) of a phrase is placed in
the phrase structure. For example, in the case of a
pre/postpositional phrase (PP), if it is head-initial,
the head, i.e., the preposition (P), precedes the noun
phrase (NP), and vice versa (see Figure 2).

The crucial difference from previous descriptive
work such as WALS is that the word order of mod-
ifiers (e.g., adverbs for verbs and adjectives for
nouns) is irrelevant, but the order of the head (e.g.,
V in VP) and its complement (e.g., NP for V in VP)
is crucial under the head parameter. This is differ-
ent from the word order classifications in WALS,
where the order of the head is no more or less sig-
nificant than that of modifiers and the notion of
head is much less clear. Thus, the head parameter
offers a simpler and more abstract framing of word
order in a phrase, which crucially focuses on the
position of the head and its complement in a phrase.
Table 3 shows the classification based on the head
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Head Parameter Sub-Family

Mainly Head-Initial Romance, Slavic, Germanic,
Greek, Celtic

Mainly Head-Final Indo-Iranian

Table 3: Clustering based on the head parameter (num-
ber of clusters: 2).

parameter.

4 NER Experiments

We conduct experiments on NER using the two
clustering methods described in Section 3.

4.1 Experimental Setup

There are several datasets available for NER exper-
iments, such as WikiNEuRal (Tedeschi et al., 2021)
and MasakhaNER (Adelani et al., 2021). Among
them, we select the WikiAnn dataset3 (Rahimi
et al., 2019) because it has an extensive coverage of
Indo-European languages, where these languages
have been well-documented in theoretical linguis-
tics. The WikiAnn dataset consists of Wikipedia
articles for 176 languages that are automatically
annotated with three types of named entities: LOC
(location), PER (person), and ORG (organization).

An overview of our experiments is shown in
Figure 3. First, the training sets of all languages
in a cluster are concatenated and fed into a pre-
trained language model for fine-tuning. We use
XLM-RoBERTa-base4 (Conneau et al., 2020) as
the pre-trained language model. This model has
270M parameters and was trained on 2.5TB of
CommonCrawl data in 100 languages. Then, the
evaluation set of each language in the cluster is
used to evaluate and calculate an F1 score. We
perform this evaluation for each cluster using the
seqeval framework (Nakayama, 2018) three times
and calculate the mean F1 score and standard de-
viation. For all experiments, we set the batch size
to 32, the maximum length of the input to 512, and
the learning rate to 5e-5 and conduct three epochs
of fine-tuning. We use NVIDIA V100 SXM2 on
ABCI5 as our computing resource, and the average
time cost for fine-tuning is approximately one hour.

In our experiments, we select three classifica-
tions as baselines. The first is monolingual in
which each language is taken as a single cluster.

3https://huggingface.co/datasets/wikiann
4https://huggingface.co/xlm-roberta-base
5https://abci.ai/

The second is a clustering based on embeddings,
and the last is Indo-European all languages (IE-all).
Since all the target languages shown in Table 1 are
phylogenetically classified into the Indo-European
family, using “language family” for clustering cor-
responds to using a single cluster consisting of all
languages in this study.

4.2 Clustering based on Embeddings

We use the embedding-based clustering method
proposed by Shaffer (2021) for comparison. An
overview of embedding-based clustering is shown
in Figure 4.

First, a pre-trained language model is fine-
tuned with a language identification task using the
WikiAnn training sets. We trained XLM-RoBERTa-
base for 3 epochs, setting the batch size to 32, the
random seed to 42, and the learning rate to 5e-5.
Following Shaffer (2021), we tried a single seed
for this preliminary experiment. Language identifi-
cation is the task of predicting which language the
input text is written. We use all 25 languages in
Table 1.

Next, each sentence in the WikiAnn validation
sets is given to the fine-tuned XLM-RoBERTa
model to obtain embeddings from the [CLS] tokens.
Based on the obtained embeddings, clustering is
performed recursively by agglomerative clustering.
We then label the cluster for each input sentence
and choose the most frequent cluster for each lan-
guage among its sentences.

Table 4 shows the resulting clusters using 1,000
and 10,000 samples from the validation set for each
language in the WikiAnn dataset. 1,000 and 10,000
are the maximum number of inputs from the vali-
dation sets, respectively. For languages that have
the validation samples for less than the limits, all
samples are used to obtain embeddings.

The optimal number of clusters is determined
to be 3 by the elbow method (Thorndike, 1953)
when comparing with the clustering method using
the nominal parameters described in Section 3 (see
Section 5.1 for the experimental results with other
numbers of clusters {2, 4, 5}). The elbow method
is used to align our embedding-based method with
Shaffer’s (2021) study, to make a comparison with
the clusterings by the nominal parameters. The
number of clusters is aligned to 2 to generate clus-
ters when compared with the clustering method
using the head parameter.
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Figure 3: Outline of our experiments on named entity recognition.

Figure 4: Overview of embedding-based clustering a la Shaffer (2021): The details of this method are described in
Section 4.2.

Languages
# 1,000 samples 10,000 samples

1 cy, ga, ps, mr, hi, ro, fr, bg,
pl, ru, sl, hr, af, nl, de, is, en,
da, no, fo

ga, ro, fr, es, pt, it, scn, pl,
sl, hr, de, en

2 es, pt, it, scn mr, hi, ru, af, nl, is, da, no,
fo

3 el cy, ps, el, bg

Table 4: Embedding-based clustering results when us-
ing 1,000 and 10,000 samples from validation sets from
the WikiAnn dataset (number of clusters: 3).

4.3 Results

Table 5 shows the comparisons in the NER eval-
uations of monolinguals and the clusterings us-
ing the nominal parameters, embeddings (1,000
and 10,000 samples), and all languages in Indo-
European family (IE-all). Table 6 shows the results
with the head parameter.

We first compare the NER evaluations of the
clusterings based on the morpho-syntactic parame-
ters and embeddings. The NER evaluations using
the nominal parameters (Table 5) show that the

clustering by the nominal parameters is superior
to that of by embeddings. More than 70% of all
the target languages attained the better scores. The
clustering based on the head parameter (Table 6)
outperformed the embedding-based clusterings as
well, achieving the best scores in 80% of the target
languages.

We then compare our methods using morpho-
syntactic parameters with a model using all the
Indo-European languages (IE-all). As for the num-
ber of languages that achieved the best score, 11
languages attained better scores with the clustering
by the nominal parameters. This is slightly lower
than the scores with the IE-all, which was 14 lan-
guages (Table 5). The clustering based on the head
parameter scored the best in that approximately
70% of all the target languages outperformed the
model with the IE-all (Table 6).

5 Analysis

5.1 Quantitative Analysis
Our parameter-based methods significantly outper-
formed the embedding-based method as in Section
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3 clusters
lang #train mono noun #1000 #10000 IE-all

cy 10,000 91.09 91.57 91.73 92.42 92.95
ga 1,000 76.51 85.72 84.11 84.43 84.90
ps 100 0.00 55.92 54.68 53.32 52.22
mr 5,000 85.50 86.96 87.93 88.58 88.34
hi 5,000 86.06 86.89 89.18 89.90 89.47
ro 20,000 92.64 94.32 94.04 93.98 94.18
fr 20,000 88.99 91.04 90.74 90.53 91.05
es 20,000 89.19 91.51 91.34 90.52 91.63
pt 20,000 90.24 92.11 91.79 91.43 92.15
it 20,000 90.79 92.22 91.93 91.52 92.06

scn 100 1.18 80.08 75.58 77.12 81.04
el 20,000 90.07 91.21 90.40 90.07 91.04
bg 20,000 92.48 93.25 92.64 93.34 93.42
pl 20,000 89.86 91.34 91.12 91.22 91.43
ru 20,000 88.52 89.96 89.32 90.02 89.88
sl 15,000 93.02 93.89 93.65 93.88 93.86
hr 20,000 90.90 92.05 91.88 92.06 92.02
af 5,000 89.06 91.19 91.51 90.75 91.80
nl 20,000 90.64 92.59 91.74 92.17 92.49
de 20,000 87.47 88.59 88.13 88.31 88.70
is 1,000 73.98 87.54 86.75 87.44 88.29
en 20,000 82.27 84.12 84.22 83.97 84.01
da 20,000 91.73 93.15 92.59 93.03 93.04
no 20,000 91.98 93.32 93.14 93.24 93.49
fo 100 0.00 86.61 86.35 87.44 87.69

Table 5: Nominal parameters clustering evaluations
(F1). Each score is the mean over 3 training runs. The
highest score for each language is indicated in bold.

4.3. This suggests that the parameters in theoretical
linguistics have a yet-to-be-explored potential in
multilingual NLP. This section provides some more
detailed analysis that supports this claim.

Clustering results First, we observe some un-
stable results in the embedding-based clustering.
Table 4 shows that the resulting clusters greatly
differ depending on the number of samples used
to obtain embeddings. Thus, the embedding-based
clustering could lead to inconsistent results and
may not always be the most effective method.

The elbow method Moreover, we found that the
optimal number of clusters determined by the el-
bow method did not result in the best performance
in the embedding-based approach. For example,
while the elbow method identified 3 clusters as op-
timal, the best scores were obtained when the num-
ber of clusters was 5 with 10,000 samples. This in-
dicates that the optimal number of clusters obtained
by the elbow method may not always be the most ef-
fective one, at least in NER.6 Thus, we examine the
results with different numbers of clusters. In partic-

6Shaffer (2021) also used the elbow method to determine
the number of clusters (which was 4) but their experiments
did not test other numbers of clusters.

2 clusters
lang #train mono head #1000 #10000 IE-all

cy 10,000 91.09 93.15 92.22 91.88 92.95
ga 1,000 76.51 85.37 84.11 84.38 84.90
ps 100 0.00 55.92 55.31 55.02 52.22
mr 5,000 85.50 86.96 88.71 88.29 88.34
hi 5,000 86.06 86.89 89.48 89.42 89.47
ro 20,000 92.64 94.43 94.04 94.17 94.18
fr 20,000 88.99 91.10 90.74 90.56 91.05
es 20,000 89.19 91.66 91.34 90.52 91.63
pt 20,000 90.24 92.00 91.79 91.43 92.15
it 20,000 90.79 92.03 91.93 91.52 92.06

scn 100 1.18 77.04 75.58 77.12 81.04
el 20,000 90.07 91.49 90.91 91.28 91.04
bg 20,000 92.48 93.60 93.22 93.34 93.42
pl 20,000 89.86 91.38 91.12 91.33 91.43
ru 20,000 88.52 89.86 89.77 89.98 89.88
sl 15,000 93.02 93.97 93.65 93.95 93.86
hr 20,000 90.90 92.27 91.88 92.07 92.02
af 5,000 89.06 91.70 91.30 91.73 91.80
nl 20,000 90.64 92.56 91.90 92.23 92.49
de 20,000 87.47 89.06 88.13 88.61 88.70
is 1,000 73.98 88.04 87.28 87.63 88.29
en 20,000 82.27 84.37 84.22 84.02 84.01
da 20,000 91.73 93.39 92.76 92.91 93.04
no 20,000 91.98 93.46 93.05 93.34 93.49
fo 100 0.00 88.21 87.58 88.70 87.69

Table 6: Head parameter clustering evaluations (F1).
Each score is the mean over 3 training runs. The highest
score for each language is indicated in bold.

ular, we compare clustering by embeddings and by
the nominal parameters.7 Tables 7 and 8 show the
resulting clusters obtained by the embedding-based
clustering when k = 2, 3, 4, 5 and Table 9 shows
the NER results using these clusters and the results
using the nominal parameters.

Sample size In the results of embedding-based
clustering, the clustering with 10,000 samples al-
ways outperforms the clustering with 1,000 sam-
ples, regardless of the number of clusters. Thus, the
following compares clustering by the nominal pa-
rameters and by the embeddings with 10,000 sam-
ples. Overall, clustering by the nominal parameters
achieved better scores than by embeddings, except
in the case of 5 clusters. When the number of the
clusters is 5, 11 languages achieved better scores in
the nominal parameters while 13 languages did so
in the embedding-based clustering. We think this
difference is due to the biased distribution in Clus-
ter #1 of the embedding-based clustering (Table 8),
i.e., 18 languages out of 25 languages are clustered
together, while the clusters obtained by the nom-

7While there are only 2 clusters available in the head-
parameter classification (i.e., either head-initial or head-final),
we could test different numbers of clusters using the nominal
parameters.
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The number of clusters
# 2 3 4 5

1 cy, ps, mr, hi, el, bg, ru, af, nl,
is, da, no, fo

cy, ps, el, bg cy, ps, el, bg cy, ps, bg

2 ga, ro, fr, es, pt, it, scn, pl, sl,
hr, de, en

ga, ro, fr, es, pt, it, scn, pl, sl,
hr, de, en

ga, ro, fr, es, pt, it, scn, pl, sl,
hr, de, en

ga, ro, fr, es, pt, it, scn, pl, sl,
hr, de, en

3 - mr, hi, ru, af, nl, is, da, no, fo mr, hi, af, nl mr, hi, af, nl
4 - - ru, is, da, no, fo ru, is, da, no, fo
5 - - - el

Table 7: Embedding-based clustering with different cluster numbers (using 1,000 samples).

The number of clusters
# 2 3 4 5

1 cy, ga, ps, mr, hi, ro, fr, el, bg,
pl, ru, sl, hr, af, nl, de, is, en,
da, no, fo

cy, ga, ps, mr, hi, ro, fr, bg, pl,
ru, sl, hr, af, nl, de, is, en, da,
no, fo

cy, ga, ps, mr, hi, ro, fr, pl, ru,
sl, hr, af, nl, de, is, en, da, no,
fo

cy, ga, ps, mr, hi, ro, fr, pl, sl,
hr, af, nl, de, is, en, da, no, fo

2 es, pt, it, scn es, pt, it, scn es, pt, it, scn es, pt, it, scn
3 - el el el
4 - - bg bg
5 - - - ru

Table 8: Embedding-based clustering with different cluster numbers (using 10,000 samples).

inal parameters distribute relatively evenly (Clus-
ter #1{Germanic, Slavic}, #2{Hellenic}, #3{Ro-
mance}, #4{Indo-Iranian}, #5{Celtic}). Despite
of this difference in the training data, clustering by
nominal parameters achieved comparable results.

NER results with IE-all We have also run the
NER experiments using all the Indo-European lan-
guages (see IE-all in Tables 5 and 6). Since this
contains the largest training samples in our exper-
iments, the performance would have been better
than the other methods using clusters that normally
contain the smaller training data. However, the
nominal parameters showed comparable results,
and the head parameter outperformed better than
the IE-all. Together with the comparison results
from the embedding-based method above, we ar-
gue that the parameters from theoretical linguistics
have a potential to mitigate the data sparsity prob-
lem that has been present in the multilingual NLP
tasks.

Methodological compatibility Another point to
note is that some languages seem to be more com-
patible with a particular method than others. For
example, one of low-resource languages, Pashto
(ps) and some high-resource languages, such as
Romanian (ro) and Danish (da), showed the best
scores when using the clusters obtained by our
parameter-based approach. On the other hand,
Siciliano (scn) with the IE-all and relatively low-
resource languages such as Marathi (mr) and Hindi

(hi) with the embedding-based clustering demon-
strated the best scores. These results indicate that
different methods might have captured different as-
pects of languages regardless of the amount of data
and that linguistic properties effective in clustering
may differ depending on language.

5.2 Qualitative Analysis

This section attempts to provide some qualitative
analysis based on the predictions obtained in the
NER evaluations. We use the prediction data in
English from our results of the head parameter
clustering (Table 3) and the embedding-based clus-
tering with 10,000 samples (Table 4). In the fol-
lowing examples, h indicates a prediction result
from the head parameter clustering, which is cor-
rect. The notation e indicates a prediction from the
embedding-based clustering, which is incorrect.

In (2h), the named entity representing an organi-
zation (ORG) “Allen Fieldhouse” appears after the
preposition “at”. It is clearly predictable to English
speakers that words representing location (LOC)
or ORG appear after “at”, while it is less likely
with words describing person (PER). However, the
type of entity was not correctly predicted with the
embedding-based clustering (2e). The correct pre-
diction in (2h) seems reasonable if identification of
the head along with its complement could facilitate
inferring the contexts where a named entity occurs.
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2 clusters 3 clusters 4 clusters 5 clusters
lang #train noun #1000 #10000 noun #1000 #10000 noun #1000 #10000 noun #1000 #10000

cy 10,000 91.57 92.22 91.88 91.57 91.73 92.42 91.57 91.73 91.98 91.57 91.27 92.64
ga 1,000 85.72 84.11 84.38 85.72 84.11 84.43 85.72 84.11 84.53 85.72 84.11 85.13
ps 100 53.97 55.31 55.02 55.92 54.68 53.32 55.92 54.68 55.37 55.92 52.97 53.54
mr 5,000 88.34 88.71 88.29 86.96 87.93 88.58 86.96 87.38 88.09 86.96 87.38 88.13
hi 5,000 90.09 89.48 89.42 86.89 89.18 89.90 86.89 88.66 89.70 86.89 88.66 88.98
ro 20,000 94.32 94.04 94.17 94.32 94.04 93.98 93.69 94.04 94.02 93.69 94.04 94.06
fr 20,000 91.01 90.74 90.56 91.04 90.74 90.53 90.39 90.74 90.52 90.39 90.74 90.32
es 20,000 91.38 91.34 90.52 91.51 91.34 90.52 90.96 91.34 90.52 90.96 91.34 90.52
pt 20,000 92.14 91.79 91.43 92.11 91.79 91.43 91.57 91.79 91.43 91.57 91.79 91.43
it 20,000 92.16 91.93 91.52 92.22 91.93 91.52 91.54 91.93 91.52 91.54 91.93 91.52

scn 100 76.54 75.58 77.12 80.08 75.58 77.12 76.77 75.58 77.12 76.77 75.58 77.12
el 20,000 91.18 90.91 91.28 91.21 90.40 90.07 91.18 90.40 90.07 90.07 90.07 90.07
bg 20,000 93.44 93.22 93.34 93.25 92.64 93.34 93.18 92.64 92.48 93.19 92.58 92.48
pl 20,000 91.45 91.12 91.33 91.34 91.12 91.22 91.19 91.12 91.23 91.18 91.12 91.24
ru 20,000 90.01 89.77 89.98 89.96 89.32 90.02 89.97 89.18 89.66 89.81 89.18 88.52
sl 15,000 93.79 93.65 93.95 93.89 93.65 93.88 93.93 93.65 93.61 93.78 93.65 93.81
hr 20,000 92.12 91.88 92.07 92.05 91.88 92.06 91.91 91.88 92.14 91.97 91.88 91.91
af 5,000 91.16 91.30 91.73 91.19 91.51 90.75 91.46 90.73 91.18 91.37 90.73 91.14
nl 20,000 92.62 91.90 92.23 92.59 91.74 92.17 92.26 90.86 92.14 92.14 90.86 92.20
de 20,000 88.51 88.13 88.61 88.59 88.13 88.31 88.25 88.13 88.33 88.25 88.13 88.38
is 1,000 87.65 87.28 87.63 87.54 86.75 87.44 87.92 86.51 87.77 87.51 86.51 87.71
en 20,000 84.11 84.22 84.02 84.12 84.22 83.97 83.75 84.22 83.89 83.83 84.22 83.89
da 20,000 93.10 92.76 92.91 93.15 92.59 93.03 93.00 92.43 92.78 92.92 92.43 92.99
no 20,000 93.48 93.05 93.34 93.32 93.14 93.24 93.31 92.79 93.27 93.24 92.79 93.17
fo 100 87.01 87.58 88.70 86.61 86.35 87.44 88.70 87.72 87.76 86.78 87.72 88.33

Table 9: Nominal parameter clustering evaluations for the number of clusters {2, 3, 4, 5} (F1). Each score is the
mean over 3 training runs. In each number of clusters, the highest score for each language is indicated in bold.

(2) h. His 46 points tied the record for
most points scored by an opponent at
Allen Fieldhouse.
ORG

e. ... an opponent at Allen Fieldhouse.
PER

In (3e), a named entity consisted of three words
“Arlington National Cemetery” was wrongly pre-
dicted to be split into ORG and LOC. This indicates
that the named entity is not correctly identified as
the complement of “in.” Given this, we conjec-
ture that clustering by the head parameter can be
helpful in correctly predicting the position of the
head in the phrase. Specifically, learning from the
sequences of a P-head followed by its NP comple-
ment may have facilitated identifying the span of
the named entity.

(3) h. He died in 1887 and was buried in
Arlington National Cemetery.
ORG

e. ... in Arlington
ORG

National Cemetery.
LOC

5.3 Annotation Errors in the WikiAnn
Dataset

When examining the incorrect predictions in En-
glish data, we found that the WikiAnn dataset con-
tains some non-negligible annotation errors. From
our sampling-based examination, we estimate that
approximately 1% of annotation errors could be
included in the WikiAnn dataset. Examples of the
annotation errors found in the WikiAnn dataset are
shown in (4) and (5). In (4), Cleveland, Ohio is not
an organization name. In (5), although Sanremo
is a named entity indicating location, the unneces-
sary brackets “[[” could have caused an error in its
annotation.

(4) He was born in Cleveland , Ohio.
ORG

(5) Washhouse in [[Sanremo, Italy,
LOC

...

Since the annotations of the WikiAnn dataset
were machine-generated, some errors could have
occurred in its process. However, these annotation
errors need to be revised to improve the reliability
of NER evaluations.
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6 Conclusion

We have proposed two language clustering meth-
ods based on the morpho-syntactic parameters
proposed in theoretical linguistics. We showed
that these clustering methods outperformed the
embedding-based clustering in multilingual NER
with Indo-European languages. We have also com-
pared the model using all the Indo-European lan-
guages as the training data. Despite the large differ-
ence in the data size, our approach outperformed
this model as well. These results suggest that pa-
rameters in theoretical linguistics have a potential
utility in multilingual NLP tasks and that this direc-
tion is worth exploring.

Future work will extend this approach to other
language families as well as different multilingual
tasks, such as machine translation. Another direc-
tion would be to probe the clusters derived from the
embedding-based method to explore features that
might not have been captured by our approach or
any approaches that make use of explicit linguistic
features.

Limitations

The morpho-syntactic parameters used in this study
are just a fraction of various other linguistic param-
eters that have been proposed in theoretical syntax
(e.g., Roberts 2019). A set of optimal language
parameters for language clustering may vary de-
pending on the target task. It remains to be seen
whether and how various parameters in theoretical
linguistics could improve different NLP tasks. For
example, cross-lingual transfer learning may be
performed more effectively by carefully tailoring
the linguistic parameters to a particular task, like
what we have done for NER.

Related to the above point, one limitation of
our approach would be the fact that some lan-
guages have not yet been investigated well in the-
oretical linguistics, particularly some underdocu-
mented or endangered languages. Even as for well-
documented languages in theoretical linguistics,
some parameters still remain controversial, such
as the so-called NP/DP parameter (e.g., Bošković
2012). Thus, our approach proceeds in tandem
with the advancement of theoretical linguistics.

Ethics Statement

We used a freely available dataset and a pre-trained
model from the Hugging Face Hub for our exper-
iments. We selected a pre-trained model with an

appropriate size (XLM-RoBERTa-base) given our
purpose of use. We needed to perform many rounds
of clustering and fine-tuning for the pre-trained
model. Therefore, we set preliminary experiments
beforehand with a smaller sample size for each step
to ensure that the experiments could be performed
effectively.
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Ivan Vulić, Roi Reichart, Thierry Poibeau, Ekate-
rina Shutova, and Anna Korhonen. 2019. Modeling
language variation and universals: A survey on ty-
pological linguistics for natural language processing.
Computational Linguistics, 45(3):559–601.

Afshin Rahimi, Yuan Li, and Trevor Cohn. 2019. Mas-
sively multilingual transfer for NER. In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 151–164, Florence,
Italy. Association for Computational Linguistics.

148

https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2022.acl-long.529
https://doi.org/10.18653/v1/2022.acl-long.529
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.emnlp-main.675
https://doi.org/10.18653/v1/2021.emnlp-main.675
https://doi.org/10.18653/v1/2021.emnlp-main.675
https://wals.info/
https://doi.org/10.18653/v1/2022.acl-long.106
https://doi.org/10.18653/v1/2022.acl-long.106
https://doi.org/10.18653/v1/2022.acl-long.106
https://doi.org/10.18653/v1/D18-1029
https://doi.org/10.18653/v1/D18-1029
https://doi.org/10.18653/v1/D18-1029
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/2020.acl-main.560
https://doi.org/10.18653/v1/P19-1301
https://doi.org/10.18653/v1/P19-1301
https://github.com/chakki-works/seqeval
https://github.com/chakki-works/seqeval
https://aclanthology.org/C16-1123
https://aclanthology.org/C16-1123
https://aclanthology.org/C16-1123
https://doi.org/10.18653/v1/2020.emnlp-main.187
https://doi.org/10.18653/v1/2020.emnlp-main.187
https://doi.org/10.18653/v1/2020.emnlp-main.187
https://doi.org/10.18653/v1/2022.acl-long.18
https://doi.org/10.18653/v1/2022.acl-long.18
https://doi.org/10.18653/v1/2022.acl-long.18
https://doi.org/10.18653/v1/P19-1493
https://doi.org/10.1162/coli_a_00357
https://doi.org/10.1162/coli_a_00357
https://doi.org/10.1162/coli_a_00357
https://doi.org/10.18653/v1/P19-1015
https://doi.org/10.18653/v1/P19-1015


Ryokan Ri and Yoshimasa Tsuruoka. 2022. Pretraining
with artificial language: Studying transferable knowl-
edge in language models. In Proceedings of the 60th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 7302–
7315, Dublin, Ireland. Association for Computational
Linguistics.

Ian Roberts. 2019. Parameter Hierarchies and Univer-
sal Grammar. Oxford University Press.

Fahimeh Saleh, Wray Buntine, Gholamreza Haffari, and
Lan Du. 2021. Multilingual neural machine trans-
lation: Can linguistic hierarchies help? In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2021, pages 1313–1330, Punta Cana,
Dominican Republic. Association for Computational
Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1715–1725,
Berlin, Germany. Association for Computational Lin-
guistics.

Kyle Shaffer. 2021. Language clustering for multilin-
gual named entity recognition. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 40–45, Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Xu Tan, Jiale Chen, Di He, Yingce Xia, Tao Qin, and
Tie-Yan Liu. 2019. Multilingual neural machine
translation with language clustering. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 963–973, Hong
Kong, China. Association for Computational Lin-
guistics.

Simone Tedeschi, Valentino Maiorca, Niccolò Campol-
ungo, Francesco Cecconi, and Roberto Navigli. 2021.
WikiNEuRal: Combined neural and knowledge-
based silver data creation for multilingual NER. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2021, pages 2521–2533, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Robert L. Thorndike. 1953. Who belongs in the family?
Psychometrika, 18:267–276.

A Appendix

The summary of the languages used in our experi-
ments is shown in Table 10.

Table 11 shows the NER evaluations of head
parameter-based clustering with standard deviation
scores in parentheses.

Tables 12 and 13 represent the NER evaluations
when we set the number of clusters to {2, 3} and

{4, 5}, respectively, with standard deviations in
parentheses (see Section 5.1 for the details).
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ISO 639-1 Code Language Sub-family

cy Welsh Celticga Irish

ps Pashto
Indo-Iranianmr Marathi

hi Hindi

ro Romanian

Romance

fr French
es Spanish
pt Portuguese
it Italian

scn Siciliano

el Greek Hellenic

bg Bulgarian

Slavic
pl Polish
ru Russian
sl Slovenian
hr Serbo-Croatian

af Afrikaans

Germanic

nl Dutch
de German
is Icelandic
en English
da Danish
no Norwegian
fo Faroese

Table 10: The summary of language codes mentioned in this paper, along with the sub-families they belong to.

2 clusters
lang #train mono head #1000 #10000 family

cy 10,000 91.09 (0.30) 93.15 (0.03) 92.22 (0.37) 91.88 (0.37) 92.95 (0.45)
ga 1,000 76.51 (1.18) 85.37 (0.54) 84.11 (0.61) 84.38 (0.21) 84.90 (0.45)
ps 100 0.00 (0.00) 55.92 (2.84) 55.31 (1.40) 55.02 (0.76) 52.22 (1.31)
mr 5,000 85.5 (0.03) 86.96 (0.39) 88.71 (0.66) 88.29 (0.40) 88.34 (0.37)
hi 5,000 86.06 (0.54) 86.89 (0.30) 89.48 (0.42) 89.42 (0.80) 89.47 (0.45)
ro 20,000 92.64 (0.11) 94.43 (0.27) 94.04 (0.12) 94.17 (0.11) 94.18 (0.03)
fr 20,000 88.99 (0.14) 91.10 (0.09) 90.74 (0.09) 90.56 (0.13) 91.05 (0.15)
es 20,000 89.19 (0.12) 91.66 (0.31) 91.34 (0.10) 90.52 (0.19) 91.63 (0.02)
pt 20,000 90.24 (0.06) 92.00 (0.22) 91.79 (0.07) 91.43 (0.06) 92.15 (0.06)
it 20,000 90.79 (0.21) 92.03 (0.12) 91.93 (0.11) 91.52 (0.07) 92.06 (0.10)

scn 100 1.18 (1.67) 77.04 (1.46) 75.58 (1.20) 77.12 (1.63) 81.04 (2.88)
el 20,000 90.07 (0.15) 91.49 (0.05) 90.91 (0.08) 91.28 (0.17) 91.04 (0.09)
bg 20,000 92.48 (0.07) 93.60 (0.17) 93.22 (0.11) 93.34 (0.03) 93.42 (0.11)
pl 20,000 89.86 (0.08) 91.38 (0.11) 91.12 (0.04) 91.33 (0.10) 91.43 (0.17)
ru 20,000 88.52 (0.14) 89.86 (0.16) 89.77 (0.07) 89.98 (0.12) 89.88 (0.02)
sl 15,000 93.02 (0.04) 93.97 (0.27) 93.65 (0.19) 93.95 (0.10) 93.86 (0.16)
hr 20,000 90.90 (0.22) 92.27 (0.03) 91.88 (0.12) 92.07 (0.13) 92.02 (0.04)
af 5,000 89.06 (0.09) 91.70 (0.31) 91.30 (0.57) 91.73 (0.31) 91.80 (0.20)
nl 20,000 90.64 (0.15) 92.56 (0.23) 91.90 (0.10) 92.23 (0.07) 92.49 (0.07)
de 20,000 87.47 (0.10) 89.06 (0.32) 88.13 (0.05) 88.61 (0.06) 88.70 (0.01)
is 1,000 73.98 (2.36) 88.04 (0.40) 87.28 (0.39) 87.63 (0.56) 88.29 (0.77)
en 20,000 82.27 (0.14) 84.37 (0.15) 84.22 (0.23) 84.02 (0.06) 84.01 (0.09)
da 20,000 91.73 (0.11) 93.39 (0.27) 92.76 (0.09) 92.91 (0.15) 93.04 (0.03)
no 20,000 91.98 (0.13) 93.46 (0.16) 93.05 (0.07) 93.34 (0.20) 93.49 (0.09)
fo 100 0.00 (0.00) 88.21 (1.52) 87.58 (1.09) 88.70 (1.22) 87.69 (0.75)

Table 11: Head parameter clustering evaluations (F1): Each score is the mean over 3 training runs, with a standard
deviation in parentheses. The highest score for each language is indicated in bold.
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2 clusters 3 clusters
lang #train noun #1000 #10000 noun #1000 #10000

cy 10,000 91.57 (0.12) 92.22 (0.37) 91.88 (0.37) 91.57 (0.12) 91.73 (0.03) 92.42 (0.59)
ga 1,000 85.72 (0.04) 84.11 (0.61) 84.38 (0.21) 85.72 (0.04) 84.11 (0.61) 84.43 (0.60)
ps 100 53.97 (3.36) 55.31 (1.40) 55.02 (0.76) 55.92 (2.84) 54.68 (1.07) 53.32 (2.06)
mr 5,000 88.34 (0.35) 88.71 (0.66) 88.29 (0.40) 86.96 (0.39) 87.93 (0.31) 88.58 (0.44)
hi 5,000 90.09 (0.29) 89.48 (0.42) 89.42 (0.80) 86.89 (0.30) 89.18 (0.54) 89.90 (0.29)
ro 20,000 94.32 (0.10) 94.04 (0.12) 94.17 (0.11) 94.32 (0.05) 94.04 (0.12) 93.98 (0.12)
fr 20,000 91.01 (0.04) 90.74 (0.09) 90.56 (0.13) 91.04 (0.03) 90.74 (0.09) 90.53 (0.02)
es 20,000 91.38 (0.18) 91.34 (0.10) 90.52 (0.19) 91.51 (0.08) 91.34 (0.10) 90.52 (0.19)
pt 20,000 92.14 (0.12) 91.79 (0.07) 91.43 (0.06) 92.11 (0.10) 91.79 (0.07) 91.43 (0.06)
it 20,000 92.16 (0.15) 91.93 (0.11) 91.52 (0.07) 92.22 (0.12) 91.93 (0.11) 91.52 (0.07)

scn 100 76.54 (0.92) 75.58 (1.20) 77.12 (1.63) 80.08 (2.69) 75.58 (1.20) 77.12 (1.63)
el 20,000 91.18 (0.21) 90.91 (0.08) 91.28 (0.17) 91.21 (0.01) 90.40 (0.11) 90.07 (0.15)
bg 20,000 93.44 (0.07) 93.22 (0.11) 93.34 (0.03) 93.25 (0.02) 92.64 (0.07) 93.34 (0.15)
pl 20,000 91.45 (0.09) 91.12 (0.04) 91.33 (0.10) 91.34 (0.02) 91.12 (0.04) 91.22 (0.05)
ru 20,000 90.01 (0.08) 89.77 (0.07) 89.98 (0.12) 89.96 (0.18) 89.32 (0.06) 90.02 (0.04)
sl 15,000 93.79 (0.10) 93.65 (0.19) 93.95 (0.10) 93.89 (0.22) 93.65 (0.19) 93.88 (0.09)
hr 20,000 92.12 (0.11) 91.88 (0.12) 92.07 (0.13) 92.05 (0.07) 91.88 (0.12) 92.06 (0.11)
af 5,000 91.16 (0.16) 91.30 (0.57) 91.73 (0.31) 91.19 (0.37) 91.51 (0.40) 90.75 (0.17)
nl 20,000 92.62 (0.02) 91.90 (0.10) 92.23 (0.07) 92.59 (0.17) 91.74 (0.12) 92.17 (0.16)
de 20,000 88.51 (0.04) 88.13 (0.05) 88.61 (0.06) 88.59 (0.13) 88.13 (0.05) 88.31 (0.13)
is 1,000 87.65 (0.23) 87.28 (0.39) 87.63 (0.56) 87.54 (0.24) 86.75 (0.39) 87.44 (0.16)
en 20,000 84.11 (0.29) 84.22 (0.23) 84.02 (0.06) 84.12 (0.09) 84.22 (0.23) 83.97 (0.05)
da 20,000 93.10 (0.11) 92.76 (0.09) 92.91 (0.15) 93.15 (0.18) 92.59 (0.15) 93.03 (0.10)
no 20,000 93.48 (0.06) 93.05 (0.07) 93.34 (0.20) 93.32 (0.13) 93.14 (0.02) 93.24 (0.06)
fo 100 87.01 (0.90) 87.58 (1.09) 88.70 (1.22) 86.61 (0.59) 86.35 (1.26) 87.44 (0.66)

Table 12: Nominal parameter clustering evaluations with the number of clusters {2, 3} (F1): Each score is the mean
over 3 training runs, with a standard deviation in parentheses. The highest score for each language is indicated in
bold.

4 clusters 5 clusters
lang #train noun #1000 #10000 noun #1000 #10000

cy 10,000 91.57 (0.12) 91.73 (0.03) 91.98 (0.42) 91.57 (0.12) 91.27 (0.34) 92.64 (0.13)
ga 1,000 85.72 (0.04) 84.11 (0.61) 84.53 (0.27) 85.72 (0.04) 84.11 (0.61) 85.13 (0.81)
ps 100 55.92 (2.84) 54.68 (1.07) 55.37 (0.69) 55.92 (2.84) 52.97 (2.53) 53.54 (2.79)
mr 5,000 86.96 (0.39) 87.38 (0.86) 88.09 (0.19) 86.96 (0.39) 87.38 (0.86) 88.13 (0.52)
hi 5,000 86.89 (0.30) 88.66 (0.37) 89.70 (0.09) 86.89 (0.30) 88.66 (0.37) 88.98 (0.38)
ro 20,000 93.69 (0.04) 94.04 (0.12) 94.02 (0.08) 93.69 (0.04) 94.04 (0.12) 94.06 (0.13)
fr 20,000 90.39 (0.03) 90.74 (0.09) 90.52 (0.21) 90.39 (0.03) 90.74 (0.09) 90.32 (0.14)
es 20,000 90.96 (0.13) 91.34 (0.10) 90.52 (0.19) 90.96 (0.13) 91.34 (0.10) 90.52 (0.19)
pt 20,000 91.57 (0.06) 91.79 (0.07) 91.43 (0.06) 91.57 (0.06) 91.79 (0.07) 91.43 (0.06)
it 20,000 91.54 (0.06) 91.93 (0.11) 91.52 (0.07) 91.54 (0.06) 91.93 (0.11) 91.52 (0.07)

scn 100 76.77 (1.32) 75.58 (1.20) 77.12 (1.63) 76.77 (1.32) 75.58 (1.20) 77.12 (1.63)
el 20,000 91.18 (0.13) 90.4 (0.11) 90.07 (0.15) 90.07 (0.15) 90.07 (0.15) 90.07 (0.15)
bg 20,000 93.18 (0.10) 92.64 (0.07) 92.48 (0.07) 93.19 (0.10) 92.58 (0.03) 92.48 (0.07)
pl 20,000 91.19 (0.02) 91.12 (0.04) 91.23 (0.09) 91.18 (0.10) 91.12 (0.04) 91.24 (0.05)
ru 20,000 89.97 (0.15) 89.18 (0.18) 89.66 (0.02) 89.81 (0.20) 89.18 (0.18) 88.52 (0.14)
sl 15,000 93.93 (0.18) 93.65 (0.19) 93.61 (0.02) 93.78 (0.06) 93.65 (0.19) 93.81 (0.06)
hr 20,000 91.91 (0.06) 91.88 (0.12) 92.14 (0.10) 91.97 (0.09) 91.88 (0.12) 91.91 (0.17)
af 5,000 91.46 (0.70) 90.73 (0.05) 91.18 (0.12) 91.37 (0.31) 90.73 (0.05) 91.14 (0.34)
nl 20,000 92.26 (0.11) 90.86 (0.17) 92.14 (0.04) 92.14 (0.14) 90.86 (0.17) 92.20 (0.15)
de 20,000 88.25 (0.09) 88.13 (0.05) 88.33 (0.07) 88.25 (0.21) 88.13 (0.05) 88.38 (0.06)
is 1,000 87.92 (0.83) 86.51 (0.09) 87.77 (0.40) 87.51 (0.37) 86.51 (0.09) 87.71 (0.25)
en 20,000 83.75 (0.19) 84.22 (0.23) 83.89 (0.14) 83.83 (0.03) 84.22 (0.23) 83.89 (0.03)
da 20,000 93.00 (0.05) 92.43 (0.08) 92.78 (0.09) 92.92 (0.10) 92.43 (0.08) 92.99 (0.04)
no 20,000 93.31 (0.11) 92.79 (0.00) 93.27 (0.06) 93.24 (0.07) 92.79 (0.00) 93.17 (0.13)
fo 100 88.70 (1.58) 87.72 (0.82) 87.76 (1.06) 86.78 (2.33) 87.72 (0.82) 88.33 (0.28)

Table 13: Nominal parameter clustering evaluations for the number of clusters {4, 5} (F1): Each score is the mean
over 3 training runs, with a standard deviation in parentheses. The highest score for each language is indicated in
bold.
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Abstract

Numerous studies found that the linguistic
properties of a person’s native language affect
the cognitive processing of other languages.
However, only one study has shown that it was
possible to identify the native language based
on eye-tracking records of natural L2 reading
using machine learning. A new corpus allows
us to replicate these results on a more interre-
lated and larger set of native languages. Our
results show that comparable classification per-
formance is maintained despite using less data.
However, analysis shows that the correlation be-
tween L2 eye movements and native language
similarity may be more complex than the origi-
nal study found.

1 Introduction

Research has shown that a speaker’s native lan-
guage can affect their learning and performance
in a foreign language (Berkes and Flynn, 2012;
Alonso, 2016; Cop et al., 2017). The eye move-
ments of a reader, namely fixations and saccades,
are a window to the online cognitive processing of
text with milliseconds accurateness (Rayner, 1998).
Native speakers of different languages may exhibit
different eye movement patterns when reading a
foreign language, with those reading in their na-
tive language making shorter and more frequent
fixations while making longer fixations due to the
increased cognitive load when reading in other lan-
guages (Hopp, 2010; Rayner et al., 2012; Berzak
et al., 2022).

Several researchers have examined eye-
movement patterns across different nationalities,
exploring various aspects such as sentence reading
times, fixation count, and saccade duration (Cop
et al., 2015). Roberts and Siyanova-Chanturia
(2013) showed that gaze data could be used
for examining, e.g., reading processes, second
language acquisition, and discourse processing,
as well as give relevant insights into fields of

second language acquisition and processing. Early
research in Native Language Identification (Tsur
and Rappoport, 2007) focused on the relationship
between a person’s native language and their
writing in a second language, while Berzak et al.
(2017) for the first time predicted a reader’s native
language using machine learning across four
languages (Chinese, Japanese, Portuguese, and
Spanish) using only eye-tracking features from
natural reading in their second language (L2),
English. The study leveraged the knowledge that
different languages have unique features, such as
word order, grammatical rules, and phonological
features, that affect language processing in other
languages.

Despite a general interest in eye-tracking cor-
pora for L2 reading, e.g., (Cop et al., 2017), un-
til recently, there has not been a publicly avail-
able dataset with enough languages to reproduce
the results of Berzak et al. (2017). Berzak et al.
(2017) used a subset of the licensed CELER dataset
(Berzak et al., 2022) which is the largest eye-
tracking corpus by the number of L2 readers en-
compassing five different native language back-
grounds. The Multilingual Eye-movement COrpus
(MECO) L2 dataset (Kuperman et al., 2022)1 com-
prises English L2 reading by 12 different language
backgrounds and allows replication of the findings
by Berzak et al. (2017) on a different and larger set
of languages which is why we employ the MECO
dataset for this study.

In this study, we replicate the study by Berzak
et al. (2017) and classify the native language of the
reader from eye-tracking records of them reading
English from another corpus.2 We include readers
from seven different language backgrounds that
are more interrelated than the original study; the

1Publicly available at https://osf.io/q9h43/
2The code and data used in the project is publicly avail-

able at https://github.com/linaskerath/ANLP_
project
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LANGUAGE ISO n PARTICIPANTS

Estonian et 23
English en 21
Finnish fi 23
German de 23
Hebrew he 18
Italian it 20
Spanish es 21

Table 1: Number of participants by native language and
language ISO code in the data set.

linguistic similarity of the languages used in this
study is in the range of 0.64–0.893. The original
study did not explore languages in this range but
only less similar languages (linguistic similarity
<.5) plus one very similar language pair (linguistic
similarity >.95).

2 Data

The MECO data was collected in 12 eye-tracking
laboratories around the world. Participants were
young adults ranging from 18 to 39 years old with
high levels of L2 proficiency, which was ensured
through English instruction in higher education.
For more comprehensive information about the
dataset, we refer to the authors’ paper (Kuperman
et al., 2022).

The MECO data set includes eye-tracking in-
put gathered from native speakers of 12 languages
recorded during reading an English encyclopedic
text. Due to an insufficient number of participants
in some of the cohorts, we used the subset of seven
languages with the most participants. To avoid
overfitting, we randomly undersampled 23 partic-
ipants for the two largest cohorts, equivalent in
size to the third largest group within the dataset as
shown in Table 1. Berzak et al. (2017) used 36 to
37 readers for each language.

We only use the texts read by all the partici-
pants (also named “shared regime” in Berzak et al.
(2017)). The total amount of words read per partic-
ipant is 595 words, while the original study used
900 words. The feature set employed comprises
three word-based measurements: First Fixation du-
ration (FF), First Pass duration (FP) which is the
sum of all fixations during the first pass reading of
the word, and Total fixation duration (TF).

3The calculation is explained in §3.3.1

3 Methods

In this section, we describe the methods employed
to replicate Berzak et al. (2017), giving a detailed
description of the steps deviating from the setup of
the original study.

3.1 Features
All data gaps encountered in the MECO dataset
related to words marked as skipped by participants
during reading, so it is legitimized to replace such
shortages with zeros. Additionally, following the
approach of the original research, we normalize all
fixation times with the reading time of the entire
sentence. The final data set consists of three fixa-
tion measures columns per word or cluster, where
each row represents data collected from one person.

Words in Fixed Context (WFC) The WFC fea-
ture set considers the fixation times for specific
words, and no aggregation is performed on the un-
igram level. The bigrams and trigrams fixation
times are then obtained by simply summing val-
ues of unigrams that are a part of the interest area.
Columns of the dataset consist of the 3 features for
every n-gram in the corpus - 5364 features in total.

Syntactic Clusters (SC) In Berzak et al. (2017),
syntactic features were obtained from the original
Penn Treebank. As no manually annotated syn-
tactic features are available for our data we use
predicted syntactic information instead (described
in detail in Appendix B). Following Berzak et al.
(2017) we use the average FF, FP and TF over n-
grams (n=1-3) of the UPOS labels, PTB POS tags,
and UD dependency labels as features. For exam-
ple: the average fixation time of a participant on
the UPOS sequence ADV ADJ is a single feature.

Information Clusters (IC) Next to grouping the
features by syntactic labels, the average fixation
times were calculated for clusters created by the
length of the words, measured as a number of char-
acters. For bi- and trigrams, lengths of words were
summed and thus clusters were created based on
this sum.

3.2 Model
For interpretation, we compare to a majority class
baseline. Following the original paper, we use a log-
linear model to obtain the Native Language Identi-
fication from Reading (NLIR) performance as well
as the model-based language similarity (3.3.2). We
implement the model using scikit-learn (Pedregosa
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Shared regime
Majority Class 15.44

unigrams +bigrams +trigrams
IC 47.52 48.19 48.86
SC 57.62 73.29 76.57
SC+IC 52.29 73.29 77.95
WFC 81.29 79.29 77.95

Table 2: NLIR results for log-linear model and majority
class baseline.

et al., 2011) and use the ‘lbfgs’ solver in accor-
dance with the original paper. A reader’s native
language encoded as a categorical variable is used
as the model’s target variable. We report our results
based on 10-fold cross-validation. To preserve a
similar distribution of languages in train and test
data, we employ a stratified K-Folds split. We train
the same model on the three feature sets described
in the previous section and an additional combina-
tion of SC and IC feature sets.

To ensure comparability with the original paper
despite the different amounts of languages, we an-
alyze model performance with different amounts
of languages. We train the model on each possible
combination of languages and group them by the
number of languages. We take the mean accuracy
score of each group size and plot the results (figure
1). We note that our classes are slightly imbalanced,
so arguably F1 could be a better metric but to com-
pare to previous work and because the classes are
almost balanced, we choose to use accuracy.

3.3 Similarity metrics
Berzak et al. (2014, 2017) suggest a link between
English as a second language (ESL) production
and linguistic similarities. To recreate the language
similarity plots from the original study, we derive
the same model-based metric and a cosine similar-
ity based on syntactic and geographical features of
a language.

3.3.1 Linguistic-based similarity
We use the same procedure and data as the original
study to derive this similarity metric.The data is ob-
tained from URIEL Typological Compendium (Lit-
tell et al., 2017a). Information selected is data de-
rived from the World Atlas of Language Structures,
features from Syntactic Structures of the World’s
Languages, and data from parsing the prose topo-
logical descriptions in Ethnologue. This informa-
tion is supplemented by data on the languages be-
longing to different families, retrieved from Glot-

tolog’s world language tree. We use lang2vec (Lit-
tell et al., 2017b) for obtaining the complete fea-
ture vectors (with KNN completion). After trun-
cating features with the same values among all
languages,4 we get a total of 189 features. The
similarity scores between languages are then calcu-
lated as a cosine similarity of their feature vectors.

3.3.2 Model-based similarity
The model-based similarity captures native lan-
guage similarities paralleled in reading patterns.
In the same way as Berzak et al. (2017), we define
“the classification uncertainty for a pair of native
languages y and y

′
in our data collection D, as

the average probability assigned by the NLIR clas-
sifier to one language given the other being the
true native language.” It is called English Reading
Similarity (ERS) and is defined as:

ERSy,y
′ =

∑
(x,y)∈Dy

p(y
′ |x; θ) + ∑

(x,y
′
)∈D

′
y

p(y|x; θ)

|Dy|+ |D′
y|

The model, trained on all seven languages to
perform NLIR, is used to extract language similar-
ity. We separately feed test data sets for a single
language y at a time and extract prediction proba-
bilities for each other language y

′
. Then a mean of

the two language probabilities is calculated.
It is suggested that a higher classification un-

certainty indicates greater language similarity. In
figure 2 we plot the similarity metrics against each
other to test this in the original study implied link.

4 Results

Table 2 presents the results for the baseline and
the log-linear model when using 10-fold cross-
validation. The model is trained and evaluated on
all seven languages.

All variants of the model perform substantially
better than the majority class baseline. Similarly
to the results by Berzak et al. (2017), the model
trained on the WFC feature set achieves the high-
est cross-validation accuracy (81.29%). While the
model trained on syntactic and information cluster
features improves with additional bi- and tri-grams,
the words in the fixed context feature set do not
follow this trend which differs from the original
paper’s results.

4Note that this can be considered non-standard, as the
features of a language might impact the similarity between
two other languages. We mainly used this strategy to follow
the previous setup

154



Figure 1: Mean performance of all combinations of
languages using uni+bi+trigram features.

Figure 2: Linguistic similarities from URIEL against
mean NLIR classification uncertainty of the unigram
SC+IC model.

Since the original study was done with a dif-
ferent number of languages, we investigate how
the performance changes depending on the number
of target classes. Figure 1 shows the changes in
model performance depending on how many target
classes it has. E.g., 3 on the x axis corresponds
to a group of all combinations (C3

7 ) of any three
languages in the train set. The y-axis shows the
mean performance of all classifiers in that group.
The results of each classifier in a group vary, thus,
we plot the mean performance. As expected, we
see that for all feature sets the performance drops
when the number of language increase.

5 Discussion

As evident from Table 2, our model seems to per-
form similarly to the original paper’s results (Table
3, Appendix A). We can not compare these results
directly due to the difference in languages, yet, for
all combinations of four languages in our data set,

(a) Linguistic similarities (b) Class uncertainty

Figure 3: Ward hierarchical clustering. Based on the
unigrams SC+IC model.

we observe in Figure 1) that the average perfor-
mance is 81 % (compared to 71% in Berzak et al.
(2017). However, since we train our model with
3 more languages than the original study and still
get similar results, we can confirm that machine
learning models can pick up the differences in read-
ing patterns of different native language readers.
Contrary to the original paper, we do not see large
improvements in performance with additional bi-
gram and trigram features.

We also explore language similarity by look-
ing at the suggested positive correlation between
classification uncertainty and linguistic similarities.
Results from Berzak et al. (2017) are included in
Figure 5, Appendix A for convenience. The plot
reproduced in Figure 2 does not seem to confirm
this hypothesis as no clear trend is visible. We
observe that the uncertainty when classifying na-
tive speakers vs. L2 reading is substantially lower
(mean 0.01) than when distinguishing two groups
of L2 readers from those of different native lan-
guages (mean 0.11). We also compute a correlation
coefficient of 0.06 which does not indicate a signif-
icant correlation found by Berzak et al. Similarly,
Ward hierarchical clustering for linguistic similar-
ities and classification uncertainty, presented in
Figure 3, does not present a closeness between
grouping using either of these metrics. The plots
have little overlaps on the set of languages we used,
contrary to the original finding, see Figure 4, and
share a little similarity both in terms of languages
in each cluster and the general shape of the tree.
This suggests that the relation between the English
reading patterns and language similarities of the
native language found by Berzak et al. (2017) may
be more nuanced than the original plot (Figure 4,
Appendix A) initially suggests.
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6 Conclusion

We replicate the finding of Berzak et al. (2017) and
are the first to confirm their finding that a reader’s
native language can be predicted from gaze pat-
terns when reading English text. Having a larger
set of more interrelated languages than the orig-
inal study, we achieve comparable classification
results supporting the suggested cross-linguistic in-
fluence from the native language to L2. Despite
the satisfactory performance of the NLIR model,
the results of investigating the relationship between
reading patterns and linguistic similarity are not
as straightforward. We believe the relation to be
more nuanced than suggested as we are not able to
replicate the same outcomes.
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A Results by Berzak et al. (2017)

Shared regime
Majority Class 25.52
Random Clusters 22.76

unigrams +bigrams +trigrams
Information Clusters (IC) 41.38 44.14 46.21
Syntactic Clusters (SC) 45.52 57.24 58.62
Information Clusters (IC) 51.72 57.24 60.0
Words in Fixed Context (WFC) 64.14 68.28 71.03

Table 3: Native Language Identification from Reading results by Berzak et al. (2017)

Figure 4: Ward hierarchical clustering of linguistic similarities between languages and NLIR average pairwise
classification uncertainties by Berzak et al. (2017)

Figure 5: Linguistic similarities against mean NLIR classification uncertainty from Berzak et al. (2017)

B Obtaining Syntactic Annotations

We trained a multi-task MaChAmp model (van der Goot et al., 2021), including UPOS, PTB POS,
lemmatization, morphological tagging, and dependency parsing. We used MaChAmp v0.4 with default
settings, trained on the English Web Treebank v2.11 (because it has PTB tags and is English). It uses the
combined (summed cross-entropy) loss of all tasks. We do not use the morphological tags and lemmas but
include them for future work. All default hyperparameters are used and the default dev-split is used for
model picking. We first ran the parser on the untokenized input but noticed that it quite commonly outputs
the PUNCT label and corresponding relations to (end-of-sentence) words that have punctuation attached.
So we pre-split using the BasicTokenizer from huggingface (which only separates punctuations) and use
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the labels of the words for the combined string. We compared mBERT (Devlin et al., 2019) with XLM-R
Large (Conneau et al., 2020) and MLUKE (Ri et al., 2022). We compared their outputs on the MECO
dataset manually and found the best performance with the XLM-R Large model (although MLUKE gets
higher accuracies on EWT-dev).

C Limitations

The MECO dataset (Kuperman et al., 2022) is recorded at different labs following the same strict protocol.
Nevertheless, location and experimenter effects may be confounding factors for the NLIR task. The
CELER data (Berzak et al., 2022), used by (Berzak et al., 2017), seems to all be recorded at the same
lab. Since we confirm their hypothesis, we do not see this as a fatal flaw in our study. There is no other
available dataset that would allow us to replicate their finding.
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Abstract

Discharge summaries are comprehensive med-
ical records that encompass vital information
about a patient’s hospital stay. A crucial aspect
of discharge summaries is the temporal infor-
mation of treatments administered throughout
the patient’s illness. With an extensive vol-
ume of clinical documents, manually extract-
ing and compiling a patient’s medication list
can be laborious, time-consuming, and suscep-
tible to errors. The objective of this paper
is to build upon the recent development on
clinical NLP by temporally classifying treat-
ments in clinical texts, specifically determining
whether a treatment was administered between
the time of admission and discharge from the
hospital. State-of-the-art NLP methods includ-
ing prompt-based learning on Generative Pre-
trained Transformers (GPTs) models and fine-
tuning on pre-trained language models (PLMs)
such as BERT were used to classify temporal re-
lations between treatments and hospitalisation
periods in discharge summaries. Fine-tuning
with the BERT model achieved an F1 score of
92.45% and a balanced accuracy of 77.56%,
while prompt learning using the T5 model and
mixed templates resulted in an F1 score of
90.89% and a balanced accuracy of 72.07%.
Our codes and data are available at https:
//github.com/HECTA-UoM/MedTem.

1 Introduction

Clinical texts contain important temporal informa-
tion, such as medication start and end dates, ap-
pointment dates, and diagnosis dates. Extracting
this information can provide insights into a pa-
tient’s medical history and allow doctors to make
more informed decisions about their treatment.
However, this process requires a significant amount
of time and effort. To help healthcare professionals
make informed decisions more efficiently, leading
to better patient outcomes, we designed the project
MedTem, medication and treatment event extrac-
tion and their relation modelling with temporal

information. By using natural language process-
ing (NLP) methods to extract temporal information
from clinical texts, doctors can spend less time de-
ciphering medical records and more time focusing
on providing the best care possible to their patients.
This study reports findings from MedTem2.0, a
follow-up work from our previous investigation
MedTem (Tu, 2022).

Clinical texts can be challenging to process due
to their unstructured nature and the use of medi-
cal jargon. Thus, developing effective NLP tech-
niques for extracting temporal information from
clinical texts is crucial for improving healthcare
outcomes. The primary goal of this work is to clas-
sify temporal information related to medication,
surgeries, and other treatments within Electronic
Health Records (EHRs) to determine if these treat-
ments occurred during the hospitalisation period.
This work aims to develop a system capable of clas-
sifying temporal information using prompt-based
learning (PBL) from texts, which could aid health-
care professionals in understanding patients’ medi-
cal histories and facilitate research in clinical text
mining.

As an example, in Table 1, given the admission
and discharge dates, we aim to determine if the a
left carotid endarterectomy and vein patch angio-
plasty were used during the hospitalisation period.
The note indicates that those treatments were ad-
ministered on 3/3/92, which is during the admission
and discharge dates, suggesting that it was used dur-
ing hospitalisation. We assume that all treatment
information is provided and only need to analyse
the temporal information.

To the best of our knowledge, this is the first
attempt at using prompt-based learning for the tem-
poral classification of treatments in the clinical
domain, with the following outcomes: 1) we es-
tablished a high baseline score with 90.89% F1
measurement and 72.07% balanced accuracy by
using prompt-based learning, demonstrating the
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clinical free text
Admission Date Discharge Date Doctor’s Note
02/22/92 03/08/92 She was, therefore, cleared for the operating room, and on 3/3/92,

she underwent a left carotid endarterectomy, with continuous
electroencephalogram monitoring and vein patch angioplasty,
which was uneventful .

Table 1: Task Example

effectiveness of the developed system for classify-
ing temporal relationships between treatments and
hospitalisation times; 2) we achieved improved per-
formance using fine-tuning with the BERT model,
resulting in a 92.45% F1 score and 77.56% bal-
anced accuracy.

2 Methodologies

2.1 Task Overview
The pipeline shown in Figure 1 presents the
methodology. The key approaches entail deriv-
ing gold labels from annotated datasets, follow-
ing several pre-processing steps such as few-shot
learning and sentence segmentation, among others.
To evaluate the efficacy of prompt-based learning
in temporally classifying treatment entities, two
widely-adopted paradigms were used for compar-
ison: pre-trained fine-tuning and prompt-based
learning. Within these paradigms, three state-of-
the-art pre-trained language models were used to
perform the task: the Masked Language Model
BERT, Seq2seq model T5 and Auto-regressive Lan-
guage Model GPT-2 (Devlin et al., 2018; Raffel
et al., 2020; Radford et al., 2019). All these mod-
els are based on Transformer structures but with
different architecture/components, BERT for the
encoder, GPT for the decoder, and T5 for both
the encoder and decoder. We used BERT-base in-
stead of BERT-large because the latter one costs
too much power that the Colab platform we used
could not afford.

2.2 Data Pre-processing
Step I: Generation of Gold Standard The i2b2
temporal relations corpus we used contains pre-
existing layers of gold standard annotations, such
as clinical concepts (problems, tests, treatments)
and coreference relations (Uzuner et al., 2012,
2011), which can facilitate temporal reasoning.

In each discharge note, there are three types of
annotations: events, temporal expressions, and tem-
poral relations. Event annotations (EVENTs) en-

compass three distinct clinical concepts (i.e. PROB-
LEMs, TESTs, and TREATMENTs), clinical de-
partments, EVIDENTIALs (words or phrases pa-
tients use to describe their symptoms), and OC-
CURRENCEs (other events, such as admission,
that indicate the patient’s timeline). Each EVENT
possesses three attributes: TYPE, MODALITY,
and POLARITY. For this specific task, we
only need to identify the TYPE of EVENT as
TREATMENT and OCCURRENCE among all
the TYPE attributes (PROBLEM, TEST, TREAT-
MENT, CLINICAL_DEPT, EVIDENTIAL, or OC-
CURRENCE). Figure 2 shows the discharge sum-
mary paragraph; the EVENTs in this record are
shown in Table 2.

In clinical records, the temporal expression an-
notations use the TIMEX3 tag, which includes four
categories: time, date, duration, and frequency.
Each TIMEX3 value (VAL) is standardised to a uni-
fied format, such as time and date being represented
as [YYYY-MM-DD]T[HH:MM]. Additionally, the
MOD attribute indicates the characteristics of the
temporal expression. Table 3 shows the TIMEX3 in
the sample clinical record snippet. Once we have
acquired all the EVENT and TIMEX3 informa-
tion, we can map the temporal relations (TLINKs)
between time and events, or between events them-
selves (Table 4). The TLINK categories include
BEFORE, AFTER, BEGUN_BY, ENDED_BY,
DURING, SIMULTANEOUS, OVERLAP, and BE-
FORE_OVERLAP.

Upon identifying all the treatment EVENTs and
their relationships with admission and discharge
times, we assign a label of "ON" to those enti-
ties where treatment occurs after or overlaps with
the admission time and is also before or overlaps
with the discharge time, indicating that the treat-
ment was administered during hospitalisation. Con-
versely, we assign a label of "OFF" to the remain-
ing treatments, signifying that they were not used
during hospitalisation. Figure 3 illustrates the ap-
plication of this rule-based approach for generating
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Figure 1: System Pipeline

Figure 2: Sample Clinical Record Snippet (Underscored: EVENTs, Italics: TIMEX3s)

the necessary gold labels. These gold labels com-
prise the document name, discharge note, treatment
entity, and the label. In this study, the provided
dataset consists of a training dataset and a testing
dataset. After processing the data using the gold
label generator as above, we obtained 3,075 ON-
labelled training samples (indicating treatments
used during hospital stays) and 762 OFF-labelled
samples (indicating treatments not used during hos-
pital stays). This results in an imbalanced label set
on the dataset.

Step II: Few-shot Learning to Balance Labels
To address the label-imbalance issue, we used a
few-shot learning approach to create a balanced
training dataset. This involved randomly select-
ing an equal number of samples from each label
and combining them to form the few-shot training
dataset.

Furthermore, most notes contain numerous ab-
breviations, such as "mcg subq q.d.", which stands
for "micrograms subcutaneously once daily". How-
ever, since our objective is to analyse temporal in-
formation related to treatments, addressing dosage

and frequency abbreviations is not necessary.

Step III: Sentence Segmentation Due to the
nature of the dataset, which consists of clinical
discharge notes, doctors frequently use brief sen-
tences or even short phrases to describe various
treatments, tests, or other patient-related informa-
tion. This characteristic simplifies the process of
Sentence Segmentation, which can be achieved by
splitting the text based on newline characters ("/n")
and periods ("."). The rationale behind sentence
segmentation is to preserve and enhance the extrac-
tion of contextual information within the text, as
distinct sentences often address different topics or
aspects.

Step IV: Sentence Window An interesting as-
pect is that a single treatment may be mentioned
multiple times in one clinical note, each referring
to different events with distinct time sequences.
Providing the entire text as input data would be
imprecise and inaccurate. Additionally, clinical
notes predominantly consist of factual statements
and clinical declarations, with sentences generally
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Event Type Modality Polarity
[Admission] OCCURRENCE FACTUAL POS
[Discharge] OCCURRENCE FACTUAL POS
[gravida IV] OCCURRENCE FACTUAL POS
[metastatic cervical cancer] PROBLEM FACTUAL POS
[malignant pericardial effusion] PROBLEM POSSIBLE POS
[a total abdominal hysterectomy] TREATMENT FACTUAL POS
[a fibroid] PROBLEM POSSIBLE POS
[Vanor] CLINICAL_DEPT FACTUAL POS

Table 2: EVENT Annotation Examples

Figure 3: Example of Generated Gold Label

TIMEX3 Type VAL Mod
[06/11/1991] DATE 1991-06-11 NA
[06/22/1991] DATE 1991-06-22 NA

Table 3: TIMEX3 Annotation Examples

being independent. As a result, we used a Sentence
Window approach to extract valuable information.
For instance, if the target treatment entity is in the
target sentence, and the sentence window size is
set to 4, the model selects two sentences before and
after the target sentence. The input data consists
of the target sentence, its surrounding sentences,
and the key temporal information of admission and
discharge times, which appear at the beginning of
every clinical note. Thus, this approach ensures
that the model incorporates relevant temporal infor-
mation and context.

Step V: Tokenization Tokenization is a crucial
step in the natural language processing pipeline,
wherein paragraphs are segmented into sentences,
and sentences are further broken down into individ-
ual tokens or words (Koehn, 2009). This process
enables the conversion of unstructured textual data
into a structured, word-based data format, facilitat-
ing subsequent processing and analysis. By trans-
forming unstructured data into structured data, we
can represent textual information as vectors, and
tokenization serves as the foundational step in this
transformation.

In prompt-based learning, designing a template
that includes an input sequence and prompting sen-
tence is essential. However, creating a tokenizer for
this purpose can be time-consuming and prone to
errors. This is due to the presence of specific infor-
mation, such as masked tokens or auto-generated
tokens, embedded in the template, which requires
careful handling during tokenization. Any mis-
matches in masked tokens can result in serious
consequences. Furthermore, different PLMs may
have distinct architectures, leading to varying to-
kenization strategies, necessitating consistency in
context processing.

2.3 Prompt-based Learning vs Fine-Tuning

In conventional supervised learning for NLP, the
objective is to predict an output y based on an
input x utilising the model P (y|x; θ) (Manning
and Schutze, 1999). In classification tasks, y de-
notes the class label corresponding to input x. To
train the model’s parameters θ, a dataset consist-
ing of input-output pairs is required for predict-
ing this conditional probability (Goodfellow et al.,
2016). However, obtaining adequately annotated
(labelled) data for certain domains can be chal-
lenging. Prompt learning methods address this
limitation by learning a language model (LM) that
estimates the probability P (x; θ) of the text x itself.
Consequently, this probability is used to predict y,
thereby bypassing the need for extensive labelled
datasets (Liu et al., 2023; Ding et al., 2021). There
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From extent Type To extent
[Admission] SIMULTANEOUS [06/11/1991]
[Discharge] SIMULTANEOUS [06/22/1991]
[gravida IV] BEFORE [SECTIME: 06/11/1991]
[para 2] BEFORE [SECTIME: 06/11/1991]
[para 2] OVERLAP [gravida IV]
[...] ... [...]
[a total abdominal hysterectomy] BEFORE [SECTIME: 06/11/1991]

Table 4: TLINK Annotation Examples

will be three main steps of doing that including
prompt construction, answer selection, and answer
mapping (refer to Appendix C.1).

We used OpenPrompt, a toolkit for implement-
ing prompt learning in downstream tasks (Ding
et al., 2021). It offers a function for loading
PLMs, tokenizers, and other required configura-
tions, which function accommodates the choice of
PLMs (MLM, LM, and Seq2seq) and conducts tok-
enization accordingly. Designed with encapsulated
data processing APIs, users can apply a human-
readable style to create templates and conveniently
operate on both the input and template simultane-
ously.

To identify the optimal prompt format for this
task, we examine various components in the
prompt-based construction. We explore different
large langauge model (LLM) architectures, and ad-
just the template’s structure and format within the
prompt construction. We modify the answer’s form
in answer selection to correspond with the chosen
template.

In this context, we will first define the templates
and verbalizers used within the framework and our
experiments. We refer to the traditional prompt-
based learning approach that uses human designed
templates and verbalizers as manual templates and
manual verbalizers respectively. This strategy was
initially introduced as Pattern-Exploiting Training
(PET) by Schick and Schütze (Schick and Schütze,
2020).

Manual Template Creating manual components
in prompt learning can be quite intricate, as slight
modifications to the tokens can lead to significant
changes in performance. Domain expertise is typ-
ically required for effective engineering of these
components. Examples of manual template can be
a statement or question-answering format.

The Soft Template (Example 1) approach shares
similarities with the manual method but replaces

fixed manual components with soft (trainable) to-
kens or embeddings, denoted as <[soft]>. Combin-
ing some fixed manual components with soft tokens
leads to the Mixed Template approach (Example
2), which uses both fixed and trainable elements in
the template construction.

Listing 1: Example of Soft Template
text = ’<[clinical_record]> <[soft]>

<[treatment]> <[soft]> <[soft]>
<[mask]> <[soft]>.’

Listing 2: Example of Mixed Template
text = ’<[clinical_record]> Question:

<[treatment]> <[soft]> <[soft]>
<[soft]> <[soft]> <[soft]>. Is it
correct? <[mask]>’

Leveraging the T5 model’s encoder-decoder
architecture, we can generate variable-length
output sequences based on the input sequence.
With this advantage, the PLM can generate
part of the prompt within the manual template.
Choosing to sacrifice human interpretability,
one can create soft prompt components instead.
A typical mixed template takes the form x0 =
[P0, P1, . . . , Pj ], x, [Pj+1, Pj+2, . . . , Pk], [MASK],
where for i ∈ 0, 1, . . . , k, Pi represents the token
of the template.

Verbalizer The verbalizer functions as a mech-
anism that maps single or multiple distinct tokens
to well-defined class labels. The embedding or
hidden state associated with the < [MASK] >
position, generated by the PLM, is subsequently
processed through a standard language model head
or classifier. This step computes the probabilities
connected to the class label tokens derived from the
verbalizer. In this task, a Manual Verbalizer was
used, which entailed manually constructing a list of
answers. These answers can be either token-based
or span-based, depending on the specific template
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Figure 4: Illustration of Manual Template and Verbalizer in Prompt Learning

used.
In a similar fashion to the soft template, a

Soft Verbalizer can be conceptualised as replaced
words in the verbalizer with trainable embeddings
for each class. As a result, when useing a soft
verbalizer, there is no necessary to establish a map-
ping from vocabulary V to class C, as the trainable
vectors lack semantic meaning.

2.4 Traditional Fine-tuning

In traditional fine-tuning methodology, the down-
stream task uses a multilayer perceptron (MLP)
denoted as fMLP (·). This MLP takes the pooled
sequence embedding generated by the PLM as in-
put and delivers an n-dimensional vector, where n
represents the numeral of classes (Kowsari et al.,
2019). Given an input text x, the PLM first pro-
cesses the raw input to obtain the m-dimensional
embedding for each token. Next, a pooling process,
such as the mean, is involved in all the token’s em-
beddings to generate a single sequence embedding
h(x) with the same m-dimensional size. The sen-
tence embedding h(x) is then fed into the MLP
block through a typical feed-forward process to
obtain the likelihood distribution across n classes
using a softmax operator.

Figure 4, 5, and 6 illustrate the examples of PBL
and PLM fine-tuning on our task, adapted from
(Taylor et al., 2022).

2.5 Evaluation Methods

We take the label "ON" as the positive class and
label "OFF" as the negative class. In addition to
F1 score, we used balanced accuracy as a perfor-

mance measure for our model, which calculates the
average recall across all classes. The decision to
use balanced accuracy instead of overall accuracy
stems from the imbalanced distribution of class
labels in the test dataset, with 3164 instances of
label "ON" and 921 instances of the label "OFF".
Balanced accuracy considers the performance of
the model on each class individually, thus avoiding
potential misinterpretations that can arise from us-
ing overall accuracy when one class is substantially
more prevalent than the other.

3 Experimental Work

3.1 Dataset

In this project, we use electronic health records
(EHRs) from the National NLP Clinical Challenges
(n2c2, formerly known as i2b2) dataset, which is
part of an annual challenge workshop 1. We primar-
ily focus on the 2012 n2c2 challenge (Sun et al.,
2013b), which is centred around temporal relations.
The dataset consists of 310 patient clinical history
records and hospital course sections from Partners
Healthcare and Beth Israel Deaconess Medical Cen-
ter, along with clinical events, time expressions,
and temporal relationship annotations (Sun et al.,
2013a). For ethical reasons and to protect patient
privacy, the data has been de-identified and ab-
stracted, including the obfuscation or alteration of
names, addresses, and other personal information.
Additionally, accurate time information has been
randomly shifted.

1https://n2c2.dbmi.hms.harvard.edu/
about-n2c2
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Figure 5: Illustration of Mixed Template and Verbalizer in Prompt Learning.

3.2 Output from Prompt-based Learning

We adopt a systematic approach to optimise the
performance of different PLMs. Initially, we use
various PLMs by the full training dataset, basic
manual templates, and verbalizers, while fixing the
sentence window for input text and adjusting the
learning rate to identify the optimal performance
for each model. Comparing the results, we will
determine the best-performing PLM at this stage.

Next, with the best PLM and fixed sentence win-
dow, we will train the model using the full dataset
while varying templates and verbalizers to identify
the most effective template. Furthermore, we will
maintain the best PLM and template while altering
the sentence window to assess the impact of input
text on performance.

Upon completing the hyperparameter selection
for prompt-based learning, we will obtain the best-
performing model. Finally, we will use few-shot
learning to compare this model with the fine-tuning
paradigm.

3.2.1 Different Language Models
To evaluate the performance of various models, we
use a combination of admission and discharge infor-
mation along with three sentences that include the
target sentence and the sentences immediately pre-

ceding and following it, where the target sentence
contains the target treatment entity. Moreover, we
use manual templates and verbalizers, with the tem-
plate following a question-answering format. The
verbalizer is set to a collection of words, specifi-
cally "Yes", "No". The entire training process spans
5 epochs.

L.R. F1.on B.Accy.

BERT
1E-4
2E-4
5E-6

87.29
90.75
90.14

50
69.72
69.57

GPT-2
6E-5
2E-5
5E-6

90.57
90.79
90.28

70.24
71.19
65.58

T5
6E-5
4E-5
2E-5

90.69
91.24
90.12

70.43
71.43
68.36

Table 5: Performance of Different PLM. L.R.: learning
rate; F1.on: score of ON class; B.A.:Balanced Accuracy

Upon adjusting the learning rate for the various
PLMs, several examples of results were obtained
in table 5. The bold font indicates the highest score
for each PLM. In fact, there was not a big differ-
ence between them. T5 is 1.71 and 0.24 higher
than BERT and GPT-2 under balanced accuracy
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Figure 6: Illustration of Conventional Fine-tuning Method. (Here [CLS] and [SEP] tokens are special tokens for
BERT-based models that are added to the beginning and end of sequences.)

respectively and held a 0.49 and 0.45 advantage in
F1 score.

During the training process, we observed that
all the results demonstrated a higher recall than
precision, indicating that the model correctly iden-
tifies most of the true positive cases (with few false
negatives). This situation can be attributed to the
training data having a significantly larger number
of positive examples compared to negative ones,
which is also reflected in the testing dataset. Addi-
tionally, when examining the negative class accu-
racy, the models only achieve approximately 50%.
This suggests that they are not proficient in detect-
ing negative classes. However, when using a bal-
anced training dataset, the negative class accuracy
increases to 61%.

3.2.2 Different Prompt Learning Setups

In order to assess the effectiveness of different com-
binations of templates and verbalizers, we used a
variety of templates in conjunction with both man-
ual and soft verbalizers. For the manual template,
we used a question-answering format, combined
with a yes, no manual verbalizer and a soft verbal-
izer. Additionally, the soft template used Example 1
for prompting, with fixed and predefined positions
and lengths for the soft tokens, and was combined
with the same manual and soft verbalizers as the
manual template. For the mixed template, we used
Example 2 along with the same verbalizers as be-
fore. During the comparison of different prompt en-

gineering approaches, we also experimented with
various text lengths for each template category.

Template Verbalizer F1.on B.Accy.

Manual
Manual

Soft
91.24
90.85

71.43
70.52

Soft
Manual

Soft
90.68
89.8

68.33
72.48

Mixed
Manual

Soft
90.89
90.7

72.07
69.01

Table 6: Performance of Different Prompt Learning.
F1.on: score of ON class; B.Accy.: Balanced Accuracy

The evaluation results presented in Table 6 reveal
that the (Manual, Manual) combination, with the
format (Template, Verbalizer), achieves the highest
F1 score of 91.24. This indicates its strong capa-
bility to classify "ON" class samples. Additionally,
the (Soft, Soft) setup demonstrates the best bal-
anced accuracy of 72.42, which is more suitable
when the "OFF" class is as important as the positive
class. We list error analysis examples and compar-
isons of different input text in Appendix (F). The
(Mixed, Manual) configuration showcases compar-
atively good results for both evaluation metrics and
will be used as the standard for the next section of
comparisons.

3.3 PBL vs Traditional Fine-Tuning
The Hyperparameters-optimised outputs from PBL
and traditional fine-tuning are displayed in Table
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Figure 7: Balanced Accuracy and F1 Score for Prompt Learning and Traditional Fine-tuning Frameworks Across
the Temporal Classification Task. ("Full" refers to a full training dataset size.)

7 and Figure 7, with the hyper-parameter sets in
Appendix (G).

Paradigm F1 score B.Accy.
Traditional fine-tuning 92.45 77.56
Prompt-based learning 91.79 75.08

Table 7: Hyperparameter Optimised Model for Tempo-
ral Classification. B.Accy.: Balanced accuracy

4 Related Work

Early research in temporal relation classification
focused on extracting and representing temporal in-
formation from clinical text. Hripcsak et al. (2002)
proposed a method for representing clinical events
and their temporal relationships using an interval-
based temporal model, laying the groundwork for
understanding temporal dependencies in clinical
text.

Inspired by the TimeML standard (Pustejovsky
et al., 2003) for annotating temporal expressions
and relations in text, the THYME (Temporal Histo-
ries of Your Medical Events) annotation guidelines
were developed by Styler IV et al. (2014) to adapt
TimeML for clinical narratives. These guidelines
provided a foundation for temporal relation clas-
sification research in the clinical domain. How-
ever, achieving temporal understanding in clinical
narratives is challenging due to the complexity of

determining implicit temporal relations, handling
temporal granularity, and dealing with diverse tem-
poral expressions.

5 Conclusion and Future Work

In this work, two state-of-the-art approaches were
developed to classify the relative timing of treat-
ments in hospital discharge summaries, focusing
on determining whether a treatment was admin-
istered during hospitalisation or not. These ap-
proaches used cutting-edge pre-trained language
models, BERT, GPT-2, and T5, in conjunction with
prompt-based learning and fine-tuning paradigms.
Both approaches achieved F1 scores of 91.79%
and 92.45%, and balanced accuracy of 75.08% and
77.56%, respectively, on the n2c2 2012 Temporal
Relations dataset. The primary challenge was ac-
curately classifying the "OFF" class due to data
imbalance and complex semantic meanings that
made it difficult for the models to make correct de-
cisions. Future work could investigate the impact
of fixed tokens on mixed template performance or
the role of longer sequence lengths in soft templates
for improved understanding. Additionally, a more
comprehensive comparison of prompt learning and
traditional fine-tuning can be conducted across var-
ious clinical domain tasks, using frozen PLMs in
conjunction with few-shot learning methods.
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Limitations

There are several limitations to the experiments
conducted in this project that should be acknowl-
edged:

• Selection of the best pre-trained language
model (PLM) for prompt-based learning: The
evaluation method used to compare the per-
formance of BERT, GPT-2, and T5 in the
context of manual templates and manual ver-
balizers may not be entirely accurate. The
performance of these models did not show
significant differences, making it difficult to
determine the best model for prompt-based
learning. Furthermore, other domain-specific
PLMs, such as Bio-BERT, which may be bet-
ter suited for handling clinical data, were not
considered in this project.

• Limited exploration of templates: The ex-
periments utilized a limited number of tem-
plates, particularly for soft and mixed tem-
plates. These templates were primarily based
on prompts derived from manual templates.
Further experimentation is needed to explore
different patterns, such as varying the position
and length of soft token sequences or using
soft tokens in mixed templates to replace man-
ual tokens (e.g., "Question:").

• Comparison with frozen PLMs: The experi-
ments did not include a comparison between
fine-tuned and frozen PLMs, as done in Tay-
lor’s study (Taylor et al., 2022). This com-
parison could provide valuable insights into
the performance trade-offs between these two
approaches.

• Addressing the effects of imbalanced datasets,
several strategies have gained popularity. 1)
Re-sampling techniques, for example, Monte
Carlo Simulation Analysis, can be used to bal-
ance class distribution by oversampling the
minority class, undersampling the majority
class, or the combination of these two (Glad-
koff et al., 2021). 2) Data augmentation tech-
niques, such as the use of Generative Adver-
sarial Networks (GANs), can generate new
examples for the minority class by applying
transformations to existing data. 3) Further-
more, machine learning approaches like bag-
ging and bootstrapping can reduce variances

by implementing a "voting system" that en-
ables models to make better decisions.

• Finally, it would be advantageous to develop
a post-processing step that generates a table
displaying all treatments along with their cor-
responding temporal information. This would
create an end-to-end system that physicians
could use as a practical tool.

Future research should address these limitations
by exploring a broader range of PLMs, templates,
and experimental setups to provide a more compre-
hensive understanding of the performance charac-
teristics of prompt-based learning methods in the
clinical domain. Application to some more power-
ful computational resources will also extend this
work.

Ethical Discussion

The n2b2 (formerly i2b2) 2012 Temporal Rela-
tions dataset was used for the development of the
approach in this project. This dataset comprises
patient-level data in the form of discharge sum-
maries. These documents have been de-identified
in accordance with the Health Insurance Portability
and Accountability Act of 1996 privacy regulations
by the organizers of the n2c2 2012 NLP challenge
(Act, 1996). The dataset was obtained with per-
mission for academic use only after signing a Data
Use and Confidentiality Agreement with the n2c2
National Center for Biomedical Computing. So
no further ethical approval forms were required to
gain access to the dataset.
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A Background and More Literature

In this section, We introduce some key concepts
and then explore the methods and techniques used
in clinical text mining, with a particular focus on
temporal classification (Tu, 2022). We will begin
by examining the fundamentals of clinical text min-
ing and its applications in healthcare, followed by
an in-depth discussion on the challenges associated
with temporal event extraction and classification.
Next, we will delve into the recent developments in
prompt-based learning and its potential to revolu-
tionise the field of clinical text mining, including its
ability to handle diverse NLP tasks with a unified
framework.
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Our objective is to provide a comprehensive
overview of the current landscape of clinical text
mining in the context of temporal classification,
emphasising the emerging role of prompt-based
learning and its potential to drive further innova-
tion and improvement in healthcare research and
practice.

A.1 Temporal Classification from EHRs
Electronic Health Records (EHRs) have evolved
from the concept of Computer Patient Records
(CPR) proposed by the Institute of Medicine in
1991 (Dick et al., 1997). Temporal relation classifi-
cation of clinical events is crucial in understanding
the chronological sequence and dependencies of
events within electronic health records (EHRs). Ex-
tracting and analysing temporal information from
EHRs can enhance our comprehension of disease
progression, treatment efficacy, and patient risk
factors, ultimately leading to improved healthcare
outcomes.

A.2 Related NLP Applications
Rule-based methods in NLP involve using a pre-
defined set of linguistic rules, patterns, or heuris-
tics to process and analyse text. These rules are
often developed by domain experts or linguists, re-
flecting the inherent structure and patterns present
in the language. For instance, in Named Entity
Recognition (NER) tasks, rule-based approaches
can identify proper names, organisations, and loca-
tions using regular expressions (Hobbs et al., 1997),
which often target words starting with a capital
letter. And Chapman (Chapman et al., 2001) pro-
poses a rule-based algorithm designed for detecting
negated concepts in clinical text. The advantages
of rule-based methods include their speed and the
lack of requirement for extensive computational
resources.

However, rule-based methods have many limita-
tions such as low recall (Riloff, 1996). In certain
domains, only experts can develop effective rules.
Changes in the data source might render existing
rules ineffective. Moreover, rule-based methods
can be challenging to apply in temporal classifica-
tion tasks involving free text, due to the absence
of a standard format and the diverse and varied
language expressions.

Statistical sequence models are particularly well-
suited for language processing tasks due to their
ability to handle variable-length sequences, such
as sentences. CRFs have been widely used in

sequence labelling tasks such as part-of-speech
tagging, information extraction, and named entity
recognition (NER) (Moreau et al., 2018; Han et al.,
2015). In clinical domain, Shivade et al. (2014)
used a combination of HMMs and CRFs for clinical
named entity recognition (NER) tasks. They used
these methods to identify medical concepts such as
medications, dosages, and durations from clinical
text. Their results demonstrated that HMMs and
CRFs could effectively recognize medical concepts,
with CRFs outperforming HMMs in most cases.

Before the advent of word embeddings, re-
searchers primarily used statistical techniques
like one-hot encoding (Chren, 1998) and TF-IDF
(Aizawa, 2003) to represent words based on their
frequency of occurrence in the text. This led to
the creation of large, sparse vectors for word rep-
resentation. The introduction of Word2Vec (Gold-
berg and Levy, 2014) offered several advantages,
including lower-dimensional, dense, and continu-
ous vectors that captured semantic similarity be-
tween words based on their co-occurrence with
other words.

With the development of hardware capabilities,
large neural networks have become feasible, which
allows the exploration of deep learning architec-
tures that can discover hidden features and auto-
matically learn representations from the input in
an end-to-end structure, mostly via the encoder-
decoder style (Goodfellow et al., 2016). Collobert
and Weston (2008) first introduced temporal con-
volutional neural networks (CNNs) for named en-
tity recognition (NER) tasks. To model long se-
quences, Hochreiter and Schmidhuber (1997) pro-
posed the long short-term memory (LSTM) model
based on the architecture of recurrent neural net-
works (RNNs), addressing the challenge of captur-
ing long-distance historical information and mit-
igating the vanishing gradient problem faced by
RNNs.

Tu (2022) used a combination of Bidirectional
Long Short-Term Memory (BiLSTM) and Condi-
tional Random Fields (CRF) to perform Named En-
tity Recognition (NER) tasks on a clinical dataset.
The model achieved a weighted average accuracy
of 0.98 and a macro-averaging score of 0.69. Addi-
tionally, they explored the use of a Convolutional
Neural Network (CNN) with BiLSTM, resulting
in improved performance compared to the BiL-
STM+CRF model. This hybrid model demon-
strated a precision of 85.67%, recall of 87.83%,
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and an F1-score of 88.17%.

A.3 Recent Large Language Models

A.3.1 Pre-trained Language Models
The development of the Transformer architecture
by Vaswani et al. (2017) brought NLP to a new
stage with its self-attention mechanism, which en-
hances the model’s ability to capture long-range
dependencies among words in the input sequence.
Pre-trained language models like BERT, GPT, and
T5, which are based on the Transformer architec-
ture, have achieved state-of-the-art performance
on numerous tasks. These models learn con-
textualised word representations, different from
traditional word representations (e.g., Word2Vec,
GloVe), which map words to fixed-length vectors
and assume words in similar contexts have similar
meanings. In contrast, pre-trained models learn
context-dependent representations, capturing con-
textual information more effectively (Qiu et al.,
2020). This process allows models to better “un-
derstand” language, context, and words.

A.3.2 Fine-tuning Paradigm
Fine-tuning has been the traditional approach for
adopting pre-trained language models (PLMs) to
specific tasks. This is usually done by task-specific
layers or heads on top of the pre-trained model
and adjusting the model’s weights through back-
propagation (Wu et al., 2022). It has achieved
state-of-the-art results in many NLP tasks, such
as sentiment analysis (Socher et al., 2013), named
entity recognition (Wadden et al., 2019) and ma-
chine translation (Vaswani et al., 2018; Han et al.,
2022). However, it requires lots of training data,
which may not be available in certain scenarios,
and to fine-tuning a model can be computationally
expensive.

Fine-tuning From 2017 to 2019, there was a
paradigm shift in NLP model learning, with re-
searchers moving away from fully supervised meth-
ods and increasingly adopting the pre-training and
fine-tuning paradigm. This approach uses a fixed
architecture pre-trained language model (PLM) to
predict the probability of observed textual data.
The PLM is adapted to different downstream tasks
by fine-tuning additional parameters using objec-
tive functions specific to each task. For instance,
Zhang et al. (Zhang et al., 2020) introduced a
loss function for predicting salient sentences, and
when combined with PLMs and fine-tuning, it re-

sulted in state-of-the-art performance on various
popular datasets and tasks (Devlin et al., 2018).
However, the fine-tuning approach is most suitable
when large-scale text data is available for optimis-
ing the objective function, which is not always
feasible in certain domains. In the case of clini-
cal records, data privacy issues and the need for
clinical experts to annotate data for training make
it difficult to produce large open clinical datasets.
For example, BERT models trained on non-medical
text tend to perform poorly when applied to medi-
cal domain tasks (Lee et al., 2020; Wu et al., 2022).
Additionally, each specific task requires its own
fine-tuning process, and as the NLP field continues
to increase model sizes to improve performance
(e.g., Microsoft’s Megatron (Shoeybi et al., 2019)
with 530 billion parameters), full or partial fine-
tuning of these massive models demands consider-
able computational, financial resources, and time
(Han et al., 2022). These concerns have led to the
emergence of a new paradigm called prompt-based
learning, which aims to achieve strong performance
across a wide range of applications without the
need for extensive fine-tuning.

A.3.3 Few-shot Learning
Few-shot learning is an area of machine learn-
ing that focuses on training models to recognize
or generalize new concepts with very limited la-
belled examples. This approach aims to alleviate
the need for large amounts of labelled data, which
can be costly and time-consuming to obtain. The
few-shot learning problem is typically framed in
terms of episodes, where each episode consists of
a small support set and a query set. The support
set contains a few labelled examples of each class,
while the query set comprises unlabelled exam-
ples from the same classes. The goal is to learn a
model that can accurately classify the query set in-
stances based on the limited information provided
in the support set. Finn et al. (Finn et al., 2017)
proposed MAML, a meta-learning algorithm that
learns an optimal initialisation of model parame-
ters, enabling rapid adaptation to new tasks with
few gradient updates.

A.3.4 Prompt-based Learning Paradigm
Prompt-based learning is a recent paradigm in NLP
that leverages pre-trained language models (PLMs)
like GPT-3 (Brown et al., 2020) to perform various
tasks without the need for fine-tuning. This ap-
proach involves using carefully designed prompts
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or templates that guide the PLM to generate de-
sired outputs based on the input context. Moreover,
this approach is especially useful in situations with
limited task-specific training data, as it does not re-
quire retraining the entire model, however, crafting
effective prompts for specific tasks can be challeng-
ing and may require manual engineering or iterative
search procedures. It gives me the inspiration to
construct a fine prompt learning and challenge with
more traditional fine-tuning methods.

Prompt-based learning emerged with the advent
of models like T5 and GPT-3, as researchers dis-
covered that pre-trained language models (PLMs)
could be effectively guided by textual prompts in
low-data scenarios. The T5 model innovation sug-
gested that PLMs possess strong language under-
standing capabilities, and by providing appropriate
instructions or prompts, they can adapt to various
tasks (Liu et al., 2023). This approach, dubbed "pre-
train, prompt, and predict" or prompt-based learn-
ing, revolves around prompt engineering, which
tailors prompts to suit different downstream tasks.

For instance, given the sentence “Patient is com-
plaining of a stomachache” an emotion recognition
task can be framed by adding a prompt like “Pa-
tient felt so ___”, prompting the language model to
fill in the blank with an emotion-laden word. Simi-
larly, for translation tasks, a prompt like “English:
Patient is complaining of a stomachache, Chinese:
___” can be used. ChatGPT’s ability to understand
and answer questions in natural language can also
be considered a form of prompting, influencing the
quality of responses.

OpenPrompt Ding et al. (Ding et al., 2021)
introduced a unified, user-friendly toolkit called
OpenPrompt to facilitate prompt-based learning
with PLMs. OpenPrompt’s modular and combin-
able research-friendly framework enables the in-
tegration of various tasks, prompting techniques,
and PLMs while accommodating different tem-
plate formats, verbalizer formats, and initialization
strategies. Taylor et al. (Taylor et al., 2022) ap-
plied prompt learning to the clinical domain using
frozen language models by using the OpenPrompt
framework. Their research compared prompt-
based learning and fine-tuning in clinical classifi-
cation tasks, finding that prompt learning typically
matched traditional fine-tuning performance on full
datasets and outperformed it in few-shot settings
which means prompt learning is more adopted train-
ing with smaller datasets. Additionally, prompt

learning excelled when working with frozen PLMs,
showcasing its potential with fewer trainable pa-
rameters.

A.4 Summary

In this section, we delve into prior work concern-
ing temporal classification and examine the funda-
mental concepts and methods used in constructing
our model. Given the absence of previous stud-
ies utilising prompt-based learning for temporal
classification in the clinical domain, there are no
established guidelines or approaches for this task.
In the following section, we will provide a detailed
explanation of the methodology used to develop
our model, outlining each step of the process.

B On Dataset Used

Figure 8 presents the format used for training the
model, where the discharge note column contains
clinical text information, and the treatment entity
column comprises treatment entities. The training
dataset consists of 3,836 samples, with 3,075 hav-
ing the label "ON" (treatment used during hospital-
isation) and 762 having the label "OFF" (treatment
not used during hospitalisation), resulting in an im-
balanced distribution with label "ON" being four
times more prevalent than label "OFF".

To gain a deeper understanding of the dataset,
various statistical analyses were conducted. As
depicted in Figure 9, the word count distribution
for clinical notes, excluding the first five lines, is
displayed. The first five lines of each note, which
contain admission and discharge dates, are not con-
sidered beneficial for statistical analysis. The fig-
ure illustrates that most sentences have fewer than
20 words, and no sentences in the training dataset
exceed 80 words. Based on this information, the
maximum input sequence length can be determined.

C Learning Models

C.0.1 State-of-the-Art PLMs
A pre-trained language model is a neural network
model that has already been trained on a large cor-
pus of text data before being fine-tuned for spe-
cific tasks (Han et al., 2022). These models are
designed to learn the structure and nuances of a
language by predicting the next word in a sentence
or reconstructing a sentence with masked words.
By learning the complex patterns and relationships
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Figure 8: Training Dataset Format

within the language, these models can generate con-
textually relevant embeddings or representations of
words and phrases.

Masked Language Model: BERT BERT (Bidi-
rectional Encoder Representations from Transform-
ers) is a pre-trained language model developed by
Google researchers in 2018 (Devlin et al., 2018).
As its name suggests, it uses the encoder archi-
tecture from the Transformer model but with a
deeper structure, as shown in Figure 14. The BERT-
base language model comprises 12 encoder blocks,
which is twice the size of a standard Transformer
Encoder.

In contrast to OpenAI’s GPT (Generative Pre-
trained Transformer), BERT uses a bidirectional
Transformer block connection layer (Figure 15), al-
lowing it to access information from both preceding
and following content, while GPT only considers
the preceding content during training. Although the
concept of "bi-directionality" is not new. For exam-
ple, ELMo uses two individual objective functions
P (wi|w1, ...wi−1),P (wi|wi+1, ..., wn) to train the
language model. However, BERT uses a single
objective function:

P (wi|w1, ...wi−1, wi+1, ..., wn) (1)

to train the language model, integrating both pre-
ceding and following context.

The Masked Language Model (MLM) serves as
one of BERT’s pre-training tasks, wherein it ran-
domly masks certain words in a sentence with the
[mask] token. By leveraging the bidirectional En-
coder Representations, BERT predicts the masked

words based on both preceding and following con-
text, resulting in a more comprehensive understand-
ing of word meanings. Additionally, the Next
Sentence Prediction (NSP) pre-training task trains
the model to discern the relationship between sen-
tences by determining whether sentence B follows
sentence A in the original text (Devlin et al., 2018).

The input for BERT consists of Token Embed-
dings, Segment Embeddings, and Position Embed-
dings, as illustrated in Figure 16. Each input sen-
tence is treated as a sequence of tokens, with every
sequence starting with a special classification token,
[CLS]. BERT uses another special token, [SEP],
to separate sentences and assigns segment embed-
dings to each token to indicate whether it belongs
to sentence A or B. This enables BERT to handle
various downstream tasks, such as separating ques-
tion and answer sequences (Devlin et al., 2018).
By incorporating position embeddings, the model
generates distinct word vector outputs for the same
word based on its contextual environment, thereby
enhancing the model’s accuracy.

Fine-tuning enables BERT to accommodate vari-
ous downstream tasks by adjusting the correspond-
ing inputs and outputs (Figure 17). The same pre-
trained model parameters are used to initialise mod-
els for different downstream tasks, and all param-
eters are fine-tuned end-to-end to adapt the model
to the specific task. In comparison to pre-training,
fine-tuning is relatively cost-effective and compu-
tationally efficient.

Auto-regressive Language Model: GPT-2 The
Generative Pre-trained Transformer 2 (GPT-2) is
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Figure 9: Word Count Distribution in Sentences

an advanced language model introduced by Ope-
nAI in 2019, building upon the foundation of the
original GPT (Radford et al., 2019). GPT-2 uses a
transformer-based decoder architecture with multi-
layer, multi-head self-attention mechanisms, as
shown in Figure 18. This design allows GPT-2
to generate sequences of arbitrary length, making it
particularly adept at producing highly coherent and
contextually relevant text, often used for question-
answering and summarization tasks.

GPT-2 differs from BERT in several ways. As
an autoregressive model, GPT-2 predicts one token
at a time, using previously generated tokens as con-
text for subsequent predictions based on the equa-
tion of p(ss−k, ..., sn|s1, ..., sn−k−1). This process
continues until the desired output length is achieved
or an end-of-sequence token is generated. By mod-
elling a sequence of outputs as a product of con-
ditional probabilities, GPT-2 leverages the natural
sequence of symbols inherent in language. Un-
like BERT’s bidirectional approach, GPT-2 uses
masked self-attention, processing input sequences
in a unidirectional manner, resulting in more con-
textually relevant text generation (Radford et al.,
2018).

One innovative aspect of GPT-2 is its ability to
perform supervised learning tasks using an unsuper-
vised pre-training model. While traditional super-
vised learning aims to estimate p(output|input),
GPT-2 seeks to model p(output|input, task), al-

lowing for a more generalised model across various
tasks. This approach has been used in multitask
and meta-learning settings. For instance, a trans-
lation training example could be presented as a
sequence (translate to French, English text, French
text), enabling the model to understand the trans-
lation task and the relationship between input and
output (McCann et al., 2018).

Seq2Seq: T5 T5, an abbreviation for Text-To-
Text Transfer Transformer, proposes the idea that
fine-tuning models for specific tasks may no longer
be necessary (Raffel et al., 2020). Instead, a large
pre-trained model can be used for any task, with
the main focus on adapting the task into appro-
priate textual inputs and outputs (Raffel et al.,
2020). For example, refer to Figure 19, in trans-
lation tasks, inputting "translate English to Ger-
man" followed by a [sequence] results in the model
producing the translated [sequence]. Similarly,
for summarization tasks, inputting "summarise"
along with the [sequence] generates a summary
of the [sequence]. This method establishes a uni-
fied Text-to-Text format for NLP tasks, expressed
as [Prefix + SequenceA] → [SequenceB], en-
abling the use of the same model, loss function,
training process, and decoding process across all
NLP tasks with different prefix information.

To accomplish this, a powerful language model
that genuinely comprehends language is required.
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The Google team developed a strategy to deter-
mine the optimal model architecture and parame-
ters, ultimately creating a robust baseline. First,
they examined three popular model architectures.
The encoder-decoder Transformer (Vaswani et al.,
2017), also known as a seq2seq model (left panel of
Figure 20), comprises two layer stacks: the encoder
processes the input sequence and encodes each
token, while the decoder generates a new output
sequence with each token based on the decoding
input and previous output sequences. The language
model architecture (middle one of Figure 20), akin
to the decoder in an encoder-decoder Transformer,
predicts output at each time-step based on previous
time-step predictions, with GPT-2 being a typical
Example The Prefix LM (language model) incor-
porates fully-visible masking applied to the pre-
fix, rendering the architecture more effective for a
wide range of text-to-text tasks shown in the left
panel of Figure 20. Following experimentation, the
Google team determined that the encoder-decoder
architecture is the most suitable for the text-to-text
framework, thus adopting it for T5 (Raffel et al.,
2020).

Subsequently, they used masked language mod-
elling (BERT-style) as an unsupervised pre-training
method. Similar to BERT, but using masks to re-
place spans surrounding the original masked tokens
as corruption strategies, with a 15% corruption rate
and 3 corrupted span length according to experi-
mental results.

After utilising multi-task learning to train with
the C4 (Colossal Clean Crawled Corpus) dataset,
which comprises hundreds of gigabytes of clean
English text extracted from the web, the Google
team acquired the best pre-trained language model,
T5, among numerous combinations of model archi-
tecture, training methods, and various parameters.

C.1 Prompt-Based Learning

Prompt Construction The first step involves cre-
ating a prompting function fprompt(·), which trans-
forms the input x into a prompted x′ = fprompt(x)
(Liu et al., 2023). This function entails two stages:
(1) Designing a template, a string containing an
input slot [X] for the input x and an answer slot [Z]
for the generated answer, which is mapped to the
output y. (2) Filling the slot [X] with the input x.

In the case of temporal classification for treat-
ment "a total abdominal hysterectomy," the tem-
plate could be structured as "[Input] Here is the clin-

ical record, treatment a total abdominal hysterec-
tomy [Z] during the hospitalisation." Additionally,
templates can be categorised based on the position
of the empty slot, such as close (prompts with slots
in the middle of the text) or prefix prompts (slots
appearing before the entity) z (Liu et al., 2023).

Answer Selection Subsequently, the language
model (LM) is used to identify the highest-
probability text ẑ. Liu et al. (Liu et al., 2023)
characterises Z as a collection of acceptable values
for z, indicating that the LM determines the most
probable answer z from the set of answers Z. This
process is also referred to as answer engineering
or verbalisation (we will consistently use the terms
verbalizer2 and verbalization).

The verbalizer can be regarded as a mapping be-
tween one or many distinct tokens and unique class
labels. The embedding generated at the <[MASK]>
position by using PLM is through a large language
model head or classifier, and prediction of the to-
kens from verbalizer class labeled are obtained. In
the previous temporal classification example, Z =
"is", "is not" corresponds to class labels Y = ON,
OFF.

The function ffill(x
′, z) fills the slot [Z] in

prompt x’ with a potential answer z. Lastly, the
probability of the corresponding filled prompt is
calculated using a PLM P (·; θ), as shown in Eq. 2:

ẑ = searchz∈ZP (ffill(x
′, z); θ) (2)

The search function could use argmax for the
highest-scoring output or sampling to randomly
generate outputs according to the LM’s probability
distribution (Liu et al., 2023).

Answer Mapping The final step maps the
highest-scoring answer ẑ to the highest-scored out-
put ŷ. While this step might not be crucial in binary
classification, it is necessary for tasks like trans-
lation or sentiment analysis with multiple words
(e.g., "good", "wonderful", "perfect") mapped to
the same class (e.g., "++"). Thus, a mapping pro-
cess between the answer and the true output value
is required (Ding et al., 2021).

D Parameters and Settings

The code below shows how to load the PLM of
T5 and tokenizer in OpenPrompt: “ plm, tokenizer,
model_config, WrapperClass = load_plm ("t5", "t5-
base") ”

2
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E More Discussion on PLM Outputs

The dataset we used is derived from clinical notes,
implying that in real life, there are indeed more
positive labels than negative ones. In some cases,
having a high recall may be more important than
having high precision. For instance, in medical
diagnosis, it could be crucial to identify all patients
with a specific disease (high recall) to ensure they
receive appropriate treatment, even if some healthy
patients are misclassified as having the disease (low
precision). It is unclear whether recall is more im-
portant than precision in the context of temporal
information of treatment. However, doctors can ad-
just the model’s preference based on their specific
situations.

It is not surprising that T5 outperforms the other
models in the comparison. Firstly, T5 is the most
recent model among the three and has been exten-
sively tested by Raffel et al. (Raffel et al., 2020)
to evaluate its advantages and disadvantages rela-
tive to the other architectures. Their results suggest
that T5’s encoder-decoder architecture performs
better than BERT and GPT-2 in certain tasks. our
experiment also demonstrates that T5 has a slight
advantage over BERT and, more notably, GPT-2,
which exhibit comparable performance.

Secondly, although it is not universally true that
"bigger models are better" in the NLP field, Ope-
nAI has made significant strides in showcasing the
effectiveness of larger models in recent years. The
development of models such as GPT-2, GPT-3, and,
more recently, Megatron-Turing, has demonstrated
that models with more parameters can improve
performance on a variety of natural language pro-
cessing tasks, as illustrated in Figure 10. In our
experiment, we used bert-base-uncased, which has
110M parameters, and the gpt-2 model with 117M
parameters. However, T5-base model has 220M
parameters, twice as many as bert-base-uncased.
Therefore, T5 is the best model for temporal classi-
fication in the clinical domain when compared to
the other two models.

F PBL with Differed Input Text

One intuitive method to create prompts is to manu-
ally craft templates based on human understanding.
For instance, we can create a cloze-style manual
template using Code 3, where the < [MASK] >
token appears in the middle of the template. Ac-
cording to the code example, the < [MASK] >
token can be filled with “is" or “is not”.

Figure 10: Development of Model in NLP Recently
(from COMP34312 week5 slides)

Listing 3: Example of cloze manual template
text = ’<[clinical_record]> In this

paragraph of the note,
<[treatment]> <[mask]> used between
admission and discharge time.’

Another popular manual template approach is
the question prompt shown in Figure 4, in which
the< [MASK] > token is placed at the end. In this
template, a discriminative statement or question is
presented, such as "Question: this treatment was
used between admission and discharge time. Is it
correct?" Combined with the clinical context input,
the PLM decides whether the statement is correct.
Therefore, the possible answers for < [MASK] >
can be "yes" or "no".

Listing 4: Example of manual template with question
text = ’<[clinical_record]> Question:

<[treatment]> were used between
admission and discharge time. Is it
correct? <[mask]>’

In the previous work, Gu et al. (2021) report
a mixed template tokens and soft tokens in some
yields better than manual and soft template, and
Taylor et al. (Taylor et al., 2022) propose that soft
template working with soft verbalizer perform the
best on ICD9 Triage task in clinical domain.

During manual template engineering, some in-
teresting findings were made. Initially, the manual
template was designed as "<clinical note>. Ques-
tion: <treatment> was used during hospitalisation.
Is it correct?". While this appeared sufficient, upon
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analysing errors in the testing data, a particular ex-
ample revealed that the treatment in question was
used during the patient’s last hospitalisation but
not the current one. Consequently, the template
was modified to specify "between admission and
discharge time", which better emphasised the tem-
poral aspect.

Furthermore, certain errors were identified due
to complex language logic. During this period,
chatGPT was a popular topic in NLP domain,
and the GPT-3.5 model demonstrated remarkable
question-answering abilities. we input a template
(shown in Figure 11) to the chatGPT and the chat-
GPT model provided an incorrect response, despite
giving an accurate explanation, which is not self
coherent. This indicates that GPT-3.5 and the T5
model have difficulty capturing information from
words such as "attempt" and "but".

By comparing the results of the cloze (Example
3) and question prompt (Example 4) in the manual
template, it was found that the question prompt
performed better. This suggests that the PLM may
be more proficient in judging discriminative state-
ments or providing answers after processing the
entire input sentence. The (Mixed, Manual) pair
also performed well, possibly because the gener-
ated soft tokens, based on the input sentence and
fixed template tokens, provided guidance for the
model to better select an answer from the set of
possible responses.

F.0.1 Different Input Text

Experiments of Different Input Text In this ex-
periment, the input length for clinical records was
modified by controlling the number of sentences
in the input text using a sentence window size, as
well as the number of sentences before and after
the target sentence.

Discussion and Summary of Different Input
Text The results displayed in Table.8 indicate that
as the number of input sentences increases, both
the F1 score and balanced accuracy improve. How-
ever, when the input text becomes too long, such
as the entire clinical text, the performance slightly
declines. It was found that a window size of 6, com-
prising 3 sentences before the target sentence, the
target sentence itself, and 2 sentences after, yielded
the best F1 score and balanced accuracy of 91.79
and 75.08, respectively.

G PBL vs Traditional Fine-tuning

G.0.1 Summary of Prompt-based Learning
Evaluation

In conclusion, the prompt-based learning paradigm
experiments led to the establishment of a bench-
mark for the best-performing prompt model. The
hyperparameter details are provided in Table.9. In
the following section, this model will be compared
to the traditional fine-tuning paradigm using a few-
shot learning approach.

G.1 Prompt Learning versus Traditional
Fine-tuning

In this section, we present a benchmark compar-
ison between Prompt-based Learning (PBL) and
Traditional Fine-tuning (FT) under few-shot set-
tings. Table 10 displays the selected hyperparame-
ters for Fine-tuning. we chose to focus on a mixed
template approach, which combines a manually de-
signed template for the task with soft and trainable
tokens. Since few-shot scenarios can introduce bias
and variance that significantly affect performance,
we aggregated the results from 10 trials and aver-
aged them, providing a more accurate assessment.

The results (Table 7 and Figure 7) indicate that
in the temporal classification task, the traditional
fine-tuning model outperforms the prompt learning
model. The prompt learning model performs better
than the fine-tuning model only when the training
set size is 10 in terms of F1 score, and when the
dataset size is 20, the prompt learning model’s bal-
anced accuracy is slightly higher. This finding is
consistent with Taylor’s work (Taylor et al., 2022),
which showed that prompt learning did not outper-
form fine-tuning in various clinical domain classifi-
cation tasks, such as ICD-9 50, ICD-9 Triage, and
In-hospital mortality. However, in specific classifi-
cation tasks under Frozen PLM conditions, prompt
learning exhibited better performance. In this con-
text, "frozen" refers to the absence of updates to
the model’s weights and parameters during the fine-
tuning process.

These results were surprising, as prompt learn-
ing has been frequently reported to be more effec-
tive in few-shot settings in numerous publications.
There could be several reasons for this discrepancy.
First, the soft and trainable tokens in the mixed tem-
plate were not trained using a separate optimizer,
which may have resulted in suboptimal tokens for
the given task. Second, the benchmark for prompt
learning might not be accurate due to computa-

179



Figure 11: Example of error analysis with ChatGPT.(“tap” is the treatment)

Sentences window size (sentences before, sentences after) F1 score of ON class B.Accy.
1 (0,0) 88.13 64.24
2 (0,1) 89.58 65.89
3 (1,1) 90.89 72.07
4 (1,2) 91.60 73.29
5 (2,2) 91.93 73.00
6 (3,2) 91.79 75.08
7 (3,3) 91.44 71.71

Whole text 84.86 63.95

Table 8: Performance of Different Input Text (B.Accy.: Balanced Accuracy)

Parameter Value
PLM T5
learning rate 4E-5
batch size 4
epochs 5
optimizer AdamW
template mixed template
verbalizer manual verbalizer
input sentences window size 6 (3,2)

Table 9: Hyperparameter Selection for Prompt-based
Learning

tional resource and time limitations. For instance,
the best PLM and learning rate were determined
based on a manual template and manual verbalizer,
but these selections may not be ideal for mixed
and soft templates. Third, potential biases in the
training process could have impacted the results,
as no validation set was used for prompt learn-
ing, possibly preventing the selection of the best
model during training. Furthermore, averaging the

Parameter Value
PLM BERT
learning rate 2E-5
batch size 4
epochs 5
optimizer AdamW
input sentences window size 6 (3,2)

Table 10: Hyperparameter Selection for Fine-tuning

results of 10 trials might not provide a sufficiently
accurate assessment, and more trials could be nec-
essary. Fourth, in a few-shot learning scenario,
useing a language model pre-trained on medication
and clinical domain data might be more beneficial
for clinical classification tasks. Finally, prompt-
based learning is a relatively new paradigm with
much-untapped potential, whereas traditional fine-
tuning has a well-developed training and tuning
process.

Upon examining errors from the test dataset of
prompt-based learning, specifically for both "ON"
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Figure 12: Example of an error in OFF class

Figure 13: Example of an error in ON class

and "OFF" classes as shown in Figures 12 and 13,
it becomes evident that determining whether a treat-
ment was administered during hospitalisation can
be challenging. The input content often lacks suffi-
cient temporal information to clearly indicate the
treatment status. Furthermore, there are instances
of ambiguity in the dataset annotations, which com-
plicates the classification task. The sentence tense
and specific temporal expressions might be the only
cues for understanding the event timeline, even for
human readers, without considering the broader
context of the document. It is also worth noting
that discharge summaries are typically prepared at
the end of a patient’s hospital stay, and as such,
they do not describe the hospitalisation period as
the present. These observations highlight the com-
plexities involved in classifying temporal relation-
ships in clinical texts and the need for further im-
provements in methods to effectively address such
challenges.

H Learning Structures

Figure 21 illustrates the general architecture of
OpenPrompt, which allows for modifications to the
PLM-related class (purple block) and the prompt-
related class (blue block).

Figure 14: BERT Architecture (Vaswani et al., 2017)
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Figure 15: Differences in Rre-training Model Architectures (Devlin et al., 2018)

Figure 16: BERT Input Representation (Devlin et al., 2018)

Figure 17: Overall Pre-training and Fine-tuning Procedures for BERT (Devlin et al., 2018)

Figure 18: Architecture of GPT2 (Radford et al., 2018)
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Figure 19: Text-to-text Framework (Raffel et al., 2020)

Figure 20: Different Transformer Architecture (Raffel et al., 2020)

Figure 21: OpenPrompt Overall Architecutre (Ding et al., 2021)
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Abstract
In this paper, we investigate a type of seman-
tic shift that occurs when a sudden event radi-
cally changes public opinion on a topic. Look-
ing at Sweden’s decision to apply for NATO
membership in 2022, we use word embeddings
to study how the associations users on Twit-
ter have regarding NATO evolve. We identify
several changes that we successfully validate
against real-world events. However, the low
engagement of the public with the issue often
made it challenging to distinguish true signals
from noise. We thus find that domain knowl-
edge and data selection are of prime importance
when using word embeddings to study semantic
shifts.

1 Introduction

A well-known adage in Natural Language Process-
ing is that one knows a word by the company it
keeps (Firth, 1957). Yet, this company does not
need to be stable and can change in either the long
or short term. When this happens, the word un-
dergoes a semantic shift. One common way to
study these semantic shifts is by using temporal –
or diachronic – word embeddings.

Most semantic shifts are slow and happen over
many years or decades. Examples are words such
as “nice”, “broadcast” and “gay” which today have
a different meaning than they would have had in
the nineteenth century. Yet, while such shifts occur
over various decennia, other shifts are more rapid.
For example, the word “hero” changed its context
from “veteran” and “ superman” to “frontliner” and
“covidwarrior” during the COVID-19 pandemic in
a matter of months (Guo et al., 2022).

The speed of semantic change depends on vari-
ous factors, such as whether the word has more than
one meaning or how common it is in use (Hamilton
et al., 2016). Also, sudden semantic change can
occur during high-impact events, such as abrupt
political, social, or cultural changes. For exam-
ple, Tahmasebi et al. (2012) notes that the meaning

of the word “terrorism” changed rapidly after the
events of September 11, 2001. This, combined
with the knowledge that a change in the meaning of
a word also changes the opinions people associate
with that word (Pérez and Tavits, 2023), makes un-
derstanding such sudden shifts relevant if we wish
to understand people’s changing opinions during
real-world events.

Here, we use word embeddings to focus on an
abrupt event in the case of Sweden: the country’s
decision to apply for NATO membership in 2022,
following the Russian invasion of Ukraine. This
decision was a sudden shift and a marked change in
the country’s stance on foreign affairs and defense.

To study this shift, we focus on the time from
September 11, 2021, to September 11, 2022, the
day of the 2022 Swedish general election. We
chose this period as we wished to examine how the
language used around NATO changed under the
assumption that NATO would be a major election
issue in Sweden. To measure the semantic shifts,
we use the word embeddings from a Word2Vec
(Mikolov et al., 2013) model to estimate the seman-
tic context of a set of words of interest. We then
track these words over time to see if and how they
changed by comparing the rank sorting of the most
similar words between various periods.

From here on, this paper will proceed as fol-
lows. First, we will introduce the background to the
Swedish application for NATO membership, and
how it can serve as a marked and sudden change.
We then introduce our data and the procedure we
used for pre-processing. Following this, we discuss
our methods and the findings that result from them.
We end with some brief conclusions and several
suggestions for further research.

2 Background

For over two hundred years, Sweden followed a
self-proclaimed policy of non-alignment (“allians-
frihet”) (Brommesson et al., 2022). As a result,
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it did not take part in most major wars, nor be-
came part of any military alliance during the Cold
War. And while it often participated in NATO ex-
ercises (Wieslander, 2022), full membership was
rarely considered. Thus, Minister for Defense Peter
Hultqvist could describe a Swedish membership
of NATO as unthinkable as late as November 2021
(Bolin, 2023, p.307). After the invasion of Ukraine
in February 2022 though, the government changed
its position. This sudden change was possible due
to the support of the opposition for membership
and the disengagement of most citizens on the is-
sue (Hinnfors, 2022). As a result, the government
announced its plans to join NATO on April 13 and
formally applied for NATO membership on May
16, 2022.

Within this timeframe, three events are of note.
First, there was the Turkish opposition to Swedish
membership, rooted in that country’s opposition to
Sweden’s support for Kurdish parties and activists
(Henley and Michaelson, 2022). Second, there was
a “No Confidence” vote in the Swedish House of
Representatives on the future of Minister for Jus-
tice Morgan Johansson. While he survived this
vote thanks to the support of Kurdish-Iranian MP
Amineh Kakabaveh, in return the government had
to affirm an earlier agreement made in 2021 that
stated that “people from those [Kurdish] organi-
zations coming to Sweden are not terrorists” – a
line of reasoning that went straight against Turkish
demands (Duxbury, 2022). Third, there was the
NATO Summit that took place between 28 – 30
June, where all NATO members (Turkey included)
extended a formal invitation to both Finland and
Sweden to join NATO.

A final point of note is that over this period,
the application to NATO membership was what
Berglez (2022) calls a “hidden issue”. That is,
both the government and opposition aimed to - and
succeeded - in drawing attention away from it and
were thereby followed by most of the media. An
illustration of this is that the words “alliansfrihet”
and “NATO” only occurred respectively 471 and
7936 times in the main Swedish media over the
period of a year around the application. Moreover,
the use of both words peaks around May, after
which their number drops to almost zero until the
elections in September.

3 Related Work

We base our decision to use global word embed-
dings to capture sudden semantic shifts on a well-
founded body of work. Not only are they able to
capture the semantic similarity and alignment be-
tween words, but they are also able to track the
shifts in the meaning of political concepts. For
example, Guo et al. (2022) show that the mean-
ing of medical words changed before and after the
first outbreak of Covid-19, while Rodman (2020);
Rheault and Cochrane (2020) does the same for
parliamentary data, and Durrheim et al. (2023) suc-
cessfully use global embeddings to measure socio-
logical concepts such as bias.

Of note is that all these papers opt to use global
word embeddings instead of contextual word em-
beddings (e.g. ELMo (Peters et al., 2018), BERT
(Devlin et al., 2019)). While global word embed-
dings associate a single embedding vector with a
word, contextual word embeddings assign a dif-
ferent vector for the same word depending on the
sentence in which it appears. While this has the
advantage of being able to take the context of the
specific occurrence of a word into account, it does
not provide a way to represent the position of a sin-
gle word in the embedding space. That is, when we
care about the global shift of words (as we do here),
we need a global and not a contextual embedding.
As such, most authors in the social sciences, and
we here as well, opt to use global embeddings.

4 Data

To measure our semantic shifts, we rely on
Swedish-language Twitter posts (“tweets”) that fo-
cus on NATO. We do so as Twitter’s broad user
base touches all segments of society, allowing us to
get a complete picture of the debate around NATO.
Besides, as tweets have a limit of 280 characters,
their length is very similar. This has the advantage
that it improves data consistency while reducing
computational complexity.

Within our year-long period, we collected
1, 188, 556 tweets, made by a total of 64, 315 users
participating in 507, 359 conversations. Of these,
329, 336 are retweets, leaving 859, 220 original
tweets. We collected a tweet if it contained any
one of a set of search terms relating to NATO. To
generate these terms, we drew on both theoreti-
cal expectations (deductive) as well as first results
(inductive). As such, we ended up with seventy-
five unique search terms covering NATO, alliances,
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and the war in Ukraine (see Bonafilia (2023) for
a complete list). Many of these words were either
compound words that contain “nato” or relate to
NATO and are specific enough to only occur in that
context. Thus, we did not include general terms
such as “allians” (alliance), unless they were part
of the phrase “militär allians” (military alliance) or
“allians med turkiet” (alliance with Turkey). In the
end, we included a tweet when: a) it contained any
of the search terms, b) the tweet is a response to
another tweet that contained a search term, or c)
the tweet has a response containing a search term.

Based on the background of the NATO issue
as sketched above, we divide our tweets into four
periods. First, there is the pre-invasion period,
ranging from September 11, 2021, to 24 Febru-
ary 2022 (the date of the Russian military invasion
of Ukraine). Second, there is the post-invasion pe-
riod running from February 24 to April 13, the date
of the joint press conference of the Swedish PM
Andersson and her Finnish colleague Marin, where
both announced the possibility of their countries
joining NATO. Third, there is the pre-application
period, running between April 13 and the formal
application on May 16. Finally, there is the post-
application period, running between May 16 and
the elections on September 11. Table 1 shows the
number of tweets for each of the periods.

Tweets Words

Pre-Invasion 131 889 2.3 M
Post-Invasion 413 517 6.8 M
Pre-Application 294 453 5.1 M
Post-Application 346 948 5.4 M

Table 1: Sizes of the Twitter dataset for each period.

To support our choice for these four periods, we
look at the daily number of tweets we gathered
(see Figure 1). Here, we see that at the boundaries
of the four periods (indicated by arrows 2, 3, and
5) there are clear peaks in the number of tweets.
Besides, we find smaller peaks between January
15 – 19 (during the Russian military build-up near
the Ukrainian border), on May 13 (the first Turkish
signal of opposition to Sweden’s entry into NATO),
on June 7 (during the “No Confidence” vote against
Morgan Johansson), and on June 28 (the NATO
summit in Madrid).

5 Pre-Processing

Given that the choice – and order of – pre-
processing steps will influence our analysis, we
discuss each of these steps in turn (Denny and Spir-
ling, 2018). First, we remove any URLs and men-
tions to other users as well as some minor punc-
tuation. Second, we split our tweets into individ-
ual tokens. For this, we use the NLTK library’s
nltk.TweetTokenizer, as it splits hashtags and emo-
jis better than other tokenizers (Bird et al., 2009).
Third, we lowercase all tokens, create n-grams
(with no limit, so 3-grams can occur), and remove
all remaining punctuation. Finally, we normalize
the spelling of our tokens to address the various
spellings of the same word (e.g. “grey” and “gray”).
For a more detailed overview of the pre-processing
see Bonafilia (2023).

We did not perform the common steps of remov-
ing stop words or lemmatizing the tokens, as we
found that these steps weakened the relationship be-
tween related words. Singletons and low-frequency
words were filtered out by the Gensim library (Ře-
hůřek and Sojka, 2010), which was used for the
analysis.

6 Method

The model we chose to find our word embeddings
is Word2Vec (Mikolov et al., 2013). This is a single-
layer neural network that is trained to predict a
word from its context – Continuous Bag-of-Words
(CBOW) – or context from a given word – Skip-
gram (SG). We opted to use both architectures
given that they are different in the associations they
capture, their computational efficiency, and their
sensitivity to less-frequent words (Mikolov et al.,
2013).

6.1 Training of the Model
As with all other embedding models, Word2Vec
needs a large amount of text to be able to capture
word associations. As the tweets from each period
contained insufficient data to train a new model, we
used Twitter data for each period to fine-tune an al-
ready trained model representing general Swedish.
This initial model was trained on Swedish media
text (Göteborgs-Posten, SVT, and Wikipedia) from
2003 until 2014, made available by Språkbanken’s
Korp language resource (Borin et al., 2012). The
total number of tokens in this corpus is 759 million,
with about 1.04 million unique tokens which ap-
pear at least ten times. We chose the cut-off dates
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Figure 1: Tweets found by the search criteria from 2021-09-11 until 2022-09-11. The timeline of tweets with key
dates: (1) January 2022, build-up of Russian forces near the Ukrainian border, (2) February 24th, the Russian
Federation invades Ukraine, (3) April 13th, Swedish and Finnish PMs hold a joint press conference about the
decision to join NATO, (4) Turkey expresses opposition to Sweden joining NATO on May 13th, and (5) May 16th,
Sweden and Finland formally apply to join NATO. (6) A vote of No Confidence is held for Justice Minister Morgan
Johansson on June 7th, and (7) the NATO Summit in Madrid on June 28th.

of 2003 and 2014 to avoid biasing the model with
inputs from after the Maidan uprisings in Ukraine
in 2014. This control over the input period and
model parameters was our main motivation to train
and validate a new model rather than use a publicly
available set of pre-trained vectors.

We then trained two base models – one for the
Skip-gram and one for the Continuous Bag-of-
Words architecture. For both, we used Negative
Sampling, a window size of 5, a minimum num-
ber of word occurrences of 10, and 160 training
iterations. To validate our base model, we used
the word similarities and relatedness from Super-
Sim by Hengchen and Tahmasebi (2021) and a
QVEC-CCA scoring as introduced by Tsvetkov
et al. (2016) using a Swedish pack available from
Språkbanken’s Korp (Borin et al., 2013). In all
cases, the results indicated that the base models
were well trained (Bonafilia, 2023).

We then fine-tuned both the SG and CBOW ar-
chitectures on the tweets made within each period,
using our pre-trained models as a base. Because
the Word2Vec model training is a stochastic pro-
cess, and as we have to account for instability due
to data variability, we trained 10 models for each
case on a different uniform random sample of 90%
of the text data from that period when we perform
our bootstrapping. We then ranked the most similar
words based on the average cosine similarity across
all 10 models.

6.2 Analysis Approach

Once we have our model, we have to formalize a
search method to decide which words we want to
select to look at. While we are aware that we could
use the embeddings themselves to find the most
similar and most different words – we opt here for
a subjective approach. The reason for this is that
we know our topic of interest (NATO) and can draw
on prior knowledge not included in the model.

For the core selection of words, we take those
that have either a direct relation to NATO or are
synonymous with it (e.g. “försvarsalliansen” (de-
fense alliance)), have a link to states or persons
involved in Sweden’s application (e.g. “erdogan”,
“putin”, “finland”), have an association with the
topics raised in the NATO discussion (e.g. “su-
veränitet” (sovereignty)), or words for which one
subset of users in the polarization study had a
markedly different use as indicated by word em-
beddings than another subset of users (e.g. “inkom-
petent” (incompetent), “dotters” (daughter’s)). Be-
sides this, we also draw on a study of words linked
to polarized opinions on the issue of Sweden’s en-
try into NATO (Bonafilia, 2023). In the end, this
results in a list of 8000 words.

We then use these 8000 words and compare the
averaged most similar words across the different
time steps to find novel associations. While do-
ing so, we ignore words that appeared in similar
placements in all periods, such as synonyms or
inflections of the word of interest. As not all the
8000 show interesting behavior, we then perform a
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second selection of words.
For refining the selection of words, we take all

those words that fall under any one of the following
criteria:

– Words which domain knowledge suggested
are relevant.

– Words seen to be polarizing by Bonafilia
(2023).

– Words which markedly changed their most
similar words from the pre-trained model
or between periods as determined by Rank-
Biased Overlap (RBO) (Webber et al., 2010)
of the sorted list of most similar words.

– Words for which unique words appeared
among the most similar words in one of the
periods but not among the most similar words
in any other period.

After this second selection, we perform a last,
manual review to look at general trends and to drop
noisy findings. We did so as we wanted to drop
those words which had very different embedding
only because they were too infrequent to have a
meaningful embedding at all.

7 Results

As both architectures lead to different results, we
will look at both the results of the Continuous Bag-
of-Words (CBOW) and the Skip-gram (SG) in turn.
For each of the two, select four words that we
deemed showed interesting patterns. These are
“natoansökan” (NATO application) and “försvaret”
(defense), as well as two unique ones for each –
“nato” (NATO) and “säkerhet” (security) for COBW
and “förskolor” (preschools) and “putin” (Putin)
for SG. For each word, we give the top four words
associated with it based on their cosine similarity.
Besides these, we will also reflect on several other
words that we found showed interesting behavior.

7.1 Continuous Bag-of-Words
Table 2 shows the words with the highest cosine
similarity for each of the four words for the CBOW
model. Also, in Figure 2, we show, for each of
these four words, the comparison of the Rank-
Biased Overlap between the list of the most sim-
ilar words for each period and the list from the
pre-trained CBOW model. Words such as “natoan-
sökan”, “nato” and “säkerhet” have a consistently

low agreement in all periods, indicating a substan-
tial shift from the base model. While “försvaret”
drops to zero in the Pre-Application period as the
agreement is lost completely, however, from Ta-
ble 2 it is hard to determine the meaning of the
shift, illustrating the difficulty in isolating the sig-
nal from noise and interpreting the results. In the
pre-training data, “natoansökan” (NATO applica-
tion) is so infrequently used that the word embed-
dings are meaningless. In the period leading up
to the application, the subject of Sweden’s NATO
application becomes topical enough that a hashtag
(#natoansökan) starts to be used. Also, for the topic
of “säkerhet” (security), we find that it becomes re-
lated to the concepts of “suveränitet” (sovereignty)
as the discussion of Sweden giving up neutrality to
join a defensive alliance takes shape.

The word “nato” itself, becomes closely asso-
ciated with the word “sverige” (Sweden), as both
have a higher frequency (11×10−3) and (6×10−3)
when compared with the pre-trained data (1×10−5

and 8 × 10−4 respectively). Leading to the word
“nato” having a more meaningful word embedding
in the base model. The reason for this is that “nato”,
being one of the search words, is so frequent in our
data, that it has a high association with all other
words. This makes the embedding relatively unin-
teresting to look at, as the embedding of the word
is more related to other words of high frequency
- such as “sverige” (Sweden) and “vi” (we) - than
with words of similar meaning. This underscores
the limitation of using word embeddings to find
meaningful shifts for words that are deliberately
sought out to generate the dataset.

7.2 Skip-gram

Table 3 shows the words with the highest cosine
similarity for the Skip-gram architecture and Fig-
ure 3 shows the RBO results. Here, it can be seen
that during the period after the Russian invasion of
Ukraine and before the application, there is an asso-
ciation between “natoansökan” (NATO application)
and “destabiliserande” (destabilizing). References
to destabilization appeared almost exclusively dur-
ing this period. This also fits well with the political
consensus at the time, i.e. that a Swedish appli-
cation to NATO would destabilize the country by
jeopardizing its relationship with Russia. After the
press conference on April 13, this changed and an
association with “eventuell” (possible) and other
words relating to the (likeliness of the) process of
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natoansökan försvaret nato säkerhet

Base sverigesregering försvarsmakten försvarsalliansen rättssäkerhet
regeringsbildandet flygvapnet fn trovärdighet

Pre-Invasion osansökan försvarsmakten sverige säkerhetspolitik
emuomröstning underhållet ukraina natoansökning
natooption rättsväsendet usa konkurrenskraft
intresseanmälan välfärdssystemet vi stabilitet

Post-Invasion medlemskapsansökan försvarsmakten sverige säkerhetspolitik
natoanslutning totalförsvaret vi natoansökning
dispensansökan försvarsanslaget ukraina suveränitet
osansökan försvarsförmågan finland frihet

Pre-Application #natoansökan underhållet sverige suveränitet
natomedlamskap försvarsförmågan #nato rättssäkerhet
ansökningsprocess bnp finland försvarskapacitet
medlemskapsansökan insatsförsvaret vi säkerhetspolitik

Post-Application natoanslutningen luftsförsvaret sverige säkerhetspolitik
natoprocess(en) totalförsvaret finland överlevnad
natomedlemskap välfärdssystemet turkiet oljeförsörjning
natoansökningen insatsförsvaret #nato suveränitet

Table 2: Words with top cosine similarity in Continuous Bag-of-Words models grouped by period, for “natoansökan”
(NATO application), “försvaret” (defense), “nato” (NATO), and “säkerhet” (security)

Figure 2: Comparison of the Rank-Biased Overlap between a list of the most similar words in each period and the
pre-trained CBOW model for a small selection of words. A higher RBO value signifies more agreement with the
base model and therefore a smaller semantic shift. The Average (solid line) and one standard deviation (shading) for
1000 randomly chosen words are also shown.

application, began to appear. We can see a similar
change for “försvaret” (defense) from where the
association shifts from words relating to mainte-
nance and juridical matters before the application
to a connection to the spending goal of 2% of GDP
(the words “2%” and “bnp”) for NATO members
afterward.

Furthermore, we see a neutral word such as
“förskolor” (preschool) has a strong cosine similar-
ity to “kärnvapen” (nuclear weapons) in the period
leading up to the application. While seemingly con-

tradictory, the reason behind this is that during this
time, Left Party leader Nooshi Dadgostar made a
public statement regarding not wanting NATO’s nu-
clear weapons to be housed within Sweden, allud-
ing to a possibility of nuclear weapon silos near her
daughter’s preschool. This generated conversation
among Twitter users discussing the pros and cons
of the NATO application, resulting in the SG model
finding the similarity in the contexts in which these
words appeared in. Also, we see the emergence
of novel words related to Vladimir Putin. For ex-
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natoansökan försvaret förskolor putin

Base sverigesregering försvarsmakten skolor vladimirputin
ratificera flygvapnet äldreboenden medvedev

Pre-Invasion medlemsansökan försvarsmakten gymnasieskolor ryssland
byggförhandlingarna invasionförsvaret äldreboenden biden
omvärldsutveckling förbandsverksamhet fritidshem nato
drömregering fm vårdcentraler xi

Post-Invasion medlemsansökan försvarsmakten polisstationer ryssland
natomedlemskap bnp äldreboenden han
destabilisera(nde) rusta gymnasieskolor ukraina
natoanslutning anslagen fritidshem nato

Pre-Application natoanslutning bnp dotters ryssland
eventuell 2% dagis putler
natomedlemskap rusta kärnvapen erdogan
svensk försvarskostnaderna kärnvapenbaser ryssen

Post-Application sveriges bnp skolbibliotek erdogan
finlands 2% förskoleverksamhet ryssland
natoprocessen försvarsanslaget fritidshem biden
inlämnad materielanskaffning gymnasieskolor putler

Table 3: Words with top cosine similarity in Skip-gram models grouped by period, for “natoansökan” (NATO
application), “försvaret” (defense), “förskolor” (preschools) and “putin” (Putin)

Figure 3: Comparison of the Rank-Biased Overlap between a list of the most similar words in each period and the
pre-trained SG model for a small selection of words. A higher RBO value signifies more agreement with the base
model and therefore a smaller semantic shift. The Average (solid line) and one standard deviation (shading) for
1000 randomly chosen words are also shown.

ample, the word “putler” is meant to draw a con-
nection between Russia’s invasion of Ukraine and
the aggression of Nazi Germany during the Sec-
ond World War. Finally, when looking at the RBO
results, in contrast to CBOW, SG shows a larger
average shift from the baseline model for all peri-
ods. This results in the approach yielding less clear
results and the need for more noise words to be
filtered to find useful examples, making it harder
to detect a true signal. For example, even when
“förskolor” becomes a relevant word, the dip in the

rank order similarity is small since the similarity
was low across the board.

7.3 Further Examples

Other words (not shown here), also exhibit a strong
relationship with certain events during the period.
Thus, the word “inkompetent” (incompetent) first
had associations with words like “korrumperad”
(corrupted) and “felprioriteringar” (misplaced pri-
orities), but later switched those to words such
as “minister” (Minister), and “morganjohansson”
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(Morgan Johansson) at the time of the vote of no-
confidence against Minister for Justice Morgan
Johansson. Besides, the word “natomotståndare”
(NATO opponent), while first being associated with
the Left Party (a traditional opponent of Swedish
NATO membership), became associated with the
Green Party and individual Social Democrats (such
as former Minister for Defense Peter Hultqvist) in-
stead. Finally, as expected, we observe that the
word “kiev” is first associated with other cities,
such as Tbilisi, while Post-Invasion it gains an as-
sociation with the Ukrainian “kyiv” spelling, pre-
sumably by Twitter users who wished to express
solidarity with Ukraine. Finally, while the word
“azov” in the pre-training data referred to the Sea
of Azov or any of a number of Ukrainian and Rus-
sian locations, the most similar words were other
places in the area. Later, during the Post-Invasion
period, this changed. First, the use of “azov” cen-
tered around the alleged neo-Nazi ties of the Azov
Battalion, a Ukrainian militia, and then later be-
came associated with the Siege of Mariupol, where
defenders had occupied the “Azovstal” Steel Plant.

8 Conclusion

Our aim with this study was to look at the sud-
den semantic shift that we expected to occur when
Sweden decided to apply for NATO membership
in 2022. Looking at various words related to this
application process, we find that word embeddings
are a powerful tool to capture some of those shifts.
Moreover, when validating them against real-world
events, we find that those shifts are both accurate
and meaningful. Yet, the sparsity of the dataset of-
ten makes it difficult to separate signal from noise
when looking at the model results alone.

The misalignment between the signals that each
of the two model architectures – SG and CBOW
– manage to capture, as well as the difficulty of
validating and interpreting the results exemplifies
the challenges in using word embeddings for auto-
matically detecting and measuring semantic shifts.
Thus, there is a need for extensive human interpre-
tation and validation based on domain knowledge
together with a broad range of statistics that can
reveal different aspects of the patterns captured
by the models. Despite this though, word embed-
dings are still a powerful method that can aid the
discovery process. As we showed, they are effi-
cient enough to process large amounts of data and
capture several underlying word relationships and

sudden semantic shifts.

9 Suggestions for Further Research

We see two suggestions for further research, two
methodological and one practical. On the method-
ological side, we saw that selecting Tweets by their
relationship to NATO resulted in a skewed fre-
quency of NATO-related words when compared
with those in the pre-trained model. Such a sparse
dataset with non-representative word distributions
makes the study of the search words hard. To al-
lay this, one could extend the criteria to capture
a broader and more diverse representation of the
language used during the period.

Another methodological option is the consid-
eration of a different model. Two alternatives to
the model we used here are FastText (Joulin et al.,
2017) and GloVe (Pennington et al., 2014). Both
offer a different perspective on word embeddings
and might address some of the issues we faced
here.

From the practical side, we assumed that
Swedish NATO membership would be a major
electoral issue and that a single year was enough
to capture this debate. Both proved to be wrong.
NATO membership was rarely discussed in the pe-
riod leading up to the elections, and at the time of
writing, Sweden’s NATO aspirations are still unful-
filled. Thus, further research could extend the data
collection period to gain a better view of any shifts
in the word embeddings.
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Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta. ELRA.

Ludovic Rheault and Christopher Cochrane. 2020.
Word Embeddings for the Analysis of Ideological
Placement in Parliamentary Corpora. Political Anal-
ysis, 28(1):112–133.

9
192

https://doi.org/10.1007/s10579-013-9233-4
http://www.lrec-conf.org/proceedings/lrec2012/pdf/248_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/248_Paper.pdf
https://doi.org/10.1093/oso/9780192856296.003.0014
https://doi.org/10.1093/oso/9780192856296.003.0014
https://doi.org/10.1017/pan.2017.44
https://doi.org/10.1017/pan.2017.44
https://doi.org/10.1017/pan.2017.44
https://doi.org/10.1017/pan.2017.44
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1111/bjso.12560
https://doi.org/10.1111/bjso.12560
https://www.politico.eu/article/sweden-government-survive-no-confidence-vote/
https://www.politico.eu/article/sweden-government-survive-no-confidence-vote/
https://doi.org/10.1111/j.1467-968X.1957.tb00568.x
https://hal.science/hal-03866314
https://hal.science/hal-03866314
https://hal.science/hal-03866314
https://doi.org/10.18653/v1/P16-1141
https://doi.org/10.18653/v1/P16-1141
https://ep.liu.se/ecp/178/027/ecp2021178027.pdf
https://ep.liu.se/ecp/178/027/ecp2021178027.pdf
https://ep.liu.se/ecp/178/027/ecp2021178027.pdf
https://www.theguardian.com/world/2022/may/13/erdogan-turkey-not-feeling-positive-about-sweden-and-finland-joining-nato
https://www.theguardian.com/world/2022/may/13/erdogan-turkey-not-feeling-positive-about-sweden-and-finland-joining-nato
https://www.theguardian.com/world/2022/may/13/erdogan-turkey-not-feeling-positive-about-sweden-and-finland-joining-nato
http://miun.diva-portal.org/smash/get/diva2:1698555/FULLTEXT01.pdf
http://miun.diva-portal.org/smash/get/diva2:1698555/FULLTEXT01.pdf
https://aclanthology.org/E17-2068
https://aclanthology.org/E17-2068
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://press.princeton.edu/books/ebook/9780691243412/voicing-politics
https://press.princeton.edu/books/ebook/9780691243412/voicing-politics
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://doi.org/10.1017/pan.2019.26
https://doi.org/10.1017/pan.2019.26


Emma Rodman. 2020. A Timely Intervention: Tracking
the Changing Meanings of Political Concepts with
Word Vectors. Political Analysis, 28(1):87–111.

Nina Tahmasebi, Gerhard Gossen, Nattiya Kanhabua,
Helge Holzmann, and Thomas Risse. 2012. NEER:
An Unsupervised Method for Named Entity Evolu-
tion Recognition. In Proceedings of COLING 2012:
Technical Papers, pages 2553–2568, Mumbai. The
COLING 2012 Organizing Committee.

Yulia Tsvetkov, Manaal Faruqui, and Chris Dyer. 2016.
Correlation-based Intrinsic Evaluation of Word Vec-
tor Representations. In Proceedings of the 1st Work-
shop on Evaluating Vector-Space Representations for
NLP, pages 111–115, Stroudsberg, PA. Association
for Computational Linguistics.

William Webber, Alistair Moffat, and Justin Zobel. 2010.
A Similarity Measure for Indefinite Rankings. ACM
Transactions on Information Systems, 28(4):1–38.

Anna Wieslander. 2022. “The Hultqvist doctrine”
– Swedish Security and Defence Policy after the
Russian Annexation of Crimea. Defence Studies,
22(1):35–59.

10
193

https://doi.org/10.1017/pan.2019.23
https://doi.org/10.1017/pan.2019.23
https://doi.org/10.1017/pan.2019.23
https://aclanthology.org/C12-1156.pdf
https://aclanthology.org/C12-1156.pdf
https://aclanthology.org/C12-1156.pdf
https://doi.org/10.18653/v1/W16-2520
https://doi.org/10.18653/v1/W16-2520
https://doi.org/10.1145/1852102.1852106
https://doi.org/10.1080/14702436.2021.1955619
https://doi.org/10.1080/14702436.2021.1955619
https://doi.org/10.1080/14702436.2021.1955619


Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics - Student Research Workshop, pages 194–199

July 10-12, 2023 ©2023 Association for Computational Linguistics

Building a Buzzer-Quiz Answering System

Naoya Sugiura Kosuke Yamada Ryohei Sasano
Koichi Takeda Katsuhiko Toyama

Graduate School of Informatics, Nagoya University, Japan
{sugiura.naoya.e7,yamada.kosuke.v1}@s.mail.nagoya-u.ac.jp

{sasano,takedasu,toyama}@i.nagoya-u.ac.jp

Abstract
A buzzer quiz is a genre of quiz in which mul-
tiple players simultaneously listen to a quiz be-
ing read aloud and respond it by buzzing in as
soon as they can predict the answer. Because
incorrect answers often result in penalties, a
buzzer-quiz answering system must not only
predict the answer from only part of a question
but also estimate the predicted answer’s accu-
racy. In this paper, we introduce two types of
buzzer-quiz answering systems: (1) a system
that directly generates an answer from part of a
question by using an autoregressive language
model; and (2) a system that first reconstructs
the entire question by using an autoregressive
language model and then determines the an-
swer according to the reconstructed question.
We then propose a method to estimate the ac-
curacy of the answers for each system by using
the internal scores of each model.

1 Introduction

We use the term “buzzer quiz” to refer to a genre of
quiz in which questioner reads quiz questions aloud
and players answer by buzzing in as soon as they
can predict the answer. A well-known example
of a similar format to what we call a buzzer quiz
here is the U.S. TV program Jeopady!, in which
contestants must buzz in with a lock-out device
before trying to answer a question. However, in
Jeopady!, answers are only allowed after all the
questions have been read aloud, whereas we as-
sume a format in which answers are allowed while
the questions are being read out. Because of the
importance of buzzing in quickly, players normally
answer incomplete questions in buzzer quiz.

Quizzes have been studied as open-domain ques-
tion answering (QA) tasks because they do not
limit the scope of knowledge. However, the major
datasets for open-domain QA tasks, like Natural
Questions (Kwiatkowski et al., 2019) and TriviaQA
(Joshi et al., 2017) cointain complete questions.
Consequently, systems built using those datasets

Q (75% completeness): Pete Rose and this player are
tied with ten 200-hit seasons each. This Japanese
outfielder played most of his career with the Mariners,
and currently plays for the Marlins.
Confidence score: 0.991 A: Ichiro Suzuki correct

Q (25% completeness): Pete Rose and this player are
tied with ten 200-hit seasons each. This Japanese
outfielder played most of his career with the Mariners,
and currently plays for the Marlins.
Confidence score: 0.125 A: Ty Cobb incorrect

Table 1: Examples of quiz question text and output
of answering system. Gray texts indicate the unread
portions of the question text. “Completeness” denotes
the percentage of the question text that has been read,
and the “confidence score” refers to a value indicating
the likelihood of the predicted answer being correct.

(Karpukhin et al., 2020; Yamada et al., 2021; Izac-
ard and Grave, 2021) are not designed to answer
incomplete questions. Furthermore, it is certainly
crucial in buzzer quizzes to give correct answers,
but it is also essential to consider the plausibility of
a predicted answer based on the given question at
that moment and to decide whether to actually re-
spond. For example, consider the question listed in
Table 1 if it has not been read past the phrase “200-
hit.” At that point, because other baseball players
also hold records comparable to that of Pete Rose,
it is difficult to narrow the answer down to a sin-
gle candidate. This makes the predicted answer
at that moment more likely to be incorrect, so it
would be better not to answer at that point. On the
other hand, once the question has been read further,
the predicted answer converges to the correct an-
swer, “Ichiro Suzuki.” Hence, to construct a more
effective buzzer-quiz answering system, we need
an indicator of a predicted answer’s likelihood of
being correct, which call a “confidence score.”

We believe that the capability to respond to
buzzer quizzes by answering incomplete ques-
tions could help replicate the human capacity to
smoothly generate responses in a conversation by
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sequentially predicting the content of the dialogue.
In this study, we first constructed a buzzer-quiz an-
swering system that produces appropriate answers
for incomplete questions, and we propose the meth-
ods for calculating the confidence scores for two
different models. Specifically, we constructed two
systems: the GPT-only system, which directly gen-
erates answers in response to a question by using
GPT (Radford et al., 2018); and the GPT+DPR sys-
tem, which generates answers through a retriever-
reader approach using Dense Passage Retrieval
(DPR) (Karpukhin et al., 2020), after completing
the question via GPT. For the former system, we
calculate a confidence score by using token output
probabilities during answer generation, while for
the latter system, we use scores that are used in the
output of the model.

2 Proposed Method

We propose two types of buzzer-quiz answering
systems based on open-domain QA systems. We
also propose methods to estimate the accuracy of
the answers in each system by using the internal
scores in each model.

2.1 Open-Domain QA System

In open-domain QA, there are two mainstream ap-
proaches. The first is a generation-based approach
that generates answers directly in response to input
questions. A representative model is GPT (Rad-
ford et al., 2018), which is a pre-trained language
model that is based on the Transformer decoder
(Vaswani et al., 2017) and is trained to predict
word sequences from a context by using a large
text corpus. Because of this property, GPT can
be used in language generation tasks that involve
generating text in response to input text. In the
case of QA, GPT can generate answers by format-
ting the input in such a way as to infer only the
answer to a question. Furthermore, because GPT
often achieves higher performance through fine-
tuning with datasets from downstream tasks, such
fine-tuning can be applied to build QA models.

The second major open-domain QA approach is
a retriever-reader approach that searches for docu-
ments related to a question and extracts the answer
from the documents. A representative model is
the retriever-reader model, which uses DPR as the
retriever. DPR uses a dual encoder network with
different BERT models (Devlin et al., 2019) for
questions and documents. When sentences are in-

put to BERT, a special token [CLS] is inserted at
the beginning of a document, and the embedding
representations for the question text and each docu-
ment are obtained. Then, documents are selected
according to the semantic similarity calculated as
the inner product of the obtained representations
(Karpukhin et al., 2020). In the reader, BERT pre-
dicts the relevant documents containing the correct
answer and extracts the answer portion within a
document. Specifically, it predicts the document
that is most likely to contain the answer at the po-
sition of the token [CLS]. Then, it performs the
answer-portion extraction from the predicted docu-
ment and determines the start and end points of the
token sequence that forms the answer.

2.2 Buzzer-Quiz Answering Systems
The effectiveness of the open-domain QA systems
that answer complete questions has been confirmed,
but their effectiveness for a buzzer-quiz answering
system remains unclear because such a system re-
quires to answer incomplete questions. Generally,
when only part of a question is given, the nature of
the problem differs significantly from the case of a
complete question, because there may be multiple
possible answers, or the necessary information to
determine the answer might not be available yet.

In this study, we constructed two buzzer-quiz an-
swering systems: one that relies solely on inference
via GPT, called the GPT-only system, and another
that uses GPT for question completion and applies
the retriever-reader approach with DPR, called the
GPT+DPR system. For the GPT-only system, the
designed input format is “[question text] + ‘/the an-
swer is’,” which prompts the model to generate the
answer within the single quotation marks, which
is then used as the predicted answer. The purpose
of inserting a slash ‘/’ between the question text
and “the answer is” is to make the model recognize
the boundary of the question text, which prevents
the completion of incomplete questions. For the
GPT+DPR system, an incomplete question is input
to the GPT to complete the question text, and the re-
sulting complete question is then used as input for
the DPR-based retriever-reader model to generate
the answer.

2.3 Confidence Scores
Next, we propose to calculate the confidence scores
for predicted answers by using the internal scores
that each model uses when it generates the outputs
for the buzzer-quiz answering system. Here, the
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confidence score means an indicator for judging
whether a predicted answer is correct. For higher
values of our proposed confidence scores, we ex-
pect a higher percentage of correct answers.

For the GPT-only model, we use the generation
probability of the first token in the predicted an-
swer (referred to as the generation score) as the
confidence score. When given a sentence’s first n
tokens during sentence completion, GPT outputs
the (n+ 1)-th token from the vocabulary with the
highest generation score. The first token largely
determines the direction of the answer in the buzzer
quiz, because the answer often comprises a small
number of tokens. Hence, we adopt only the first
token’s generation score as the confidence score.

As for the GPT+DPR model, three internal
scores can be used as confidence scores: the doc-
ument score and the extraction score calculated
by the reader, as well as their arithmetic mean, the
average score. In the reader, each [CLS] token
in a document is scored through a learned linear
layer, and the document with the highest score is se-
lected; this is the document score. Then, the model
extracts the span containing the answer from the se-
lected document by calculating a span score, which
comprises a start score and an end score. The ex-
traction score is the sum of these start and end
scores.

3 Experiments

We conducted two experiments: an evaluation of
the proposed buzzer-quiz answering system’s ac-
curacy, and an investigation of the effectiveness of
the confidence scores for each model. We define
question completeness as x% when a question is
truncated after the first x% of the text in terms of
the character count. For the accuracy verification,
we applied the GPT-only and the GPT+DPR mod-
els to questions with completeness levels of 25%,
50%, 75%, and 100%. For investigation of the
confidence scores’ effectiveness, we evaluated the
confidence scores for each model by examining the
relationship between the confidence scores and the
accuracy at each level of question completeness.

3.1 Settings

Datasets We used the 2nd AIO Official Dataset
(AIO),1 which contains past questions from
Japanese quiz competitions. The AIO dataset is

1https://sites.google.com/view/
project-aio/dataset

Subset Source Size Length

Train AIO 17,735 48.2
Minhaya 35,149 64.8

Dev AIO 1,000 46.9
Test AIO 2,000 51.6

Table 2: Overview of the datasets. “Length” means the
average number of characters for the questions.

officially divided into a training set, a develop-
ment set, and a test set. In addition, we collected
past questions from the Japanese quiz application
“Minna de Hayaoshi Quiz” (Minhaya)2 as addi-
tional training data. Table 2 shows the number
of quiz-answer pairs and the average number of
characters in the questions for the datasets. Note
that the training of DPR required positive and neg-
ative documents in addition to quiz-answer pairs.
Accordingly, DPR was trained using only the AIO
dataset, whereas the Minhaya dataset was used only
for training GPT.

Comparison Models We compared both models,
GPT-only and GPT+DPR, in the accuracy verifi-
cation. In the investigation of confidence score
effectiveness, for GPT-only, we used the genera-
tion score; in contrast, for GPT+DPR, we used all
three scores, i.e., the document score, extraction
score, and average score.

We used the Japanese GPT model3 on Hug-
ging Face Hub (Wolf et al., 2020) and a DPR
model4 based on Japanese BERT-large,5 which is
pre-trained the Japanese Wikipedia corpus. For
GPT-only, we fine-tuned the model on the training
set with the input format “[question text] + ‘/ the
answer is’ [answer].” For GPT+DPR, GPT was
fine-tuned using only the questions from the train-
ing set. In both cases, the training was conducted
for 5 epochs. DPR was based on Japanese BERT-
large for both the retriever and reader components.
The retriever was trained for 5 epochs with a batch
size of 128 and a learning rate of 1e-5, and the
reader was trained for 3 epochs with a batch size
of 8 and a learning rate of 2e-5.

Metrics In the accuracy verification, the correct-
ness of the predicted answer was assessed in terms

2https://livequiz.work/minhaya1/
3https://huggingface.co/rinna/

japanese-gpt-1b
4https://github.com/cl-tohoku/AIO2_

DPR_baseline
5https://huggingface.co/cl-tohoku/

bert-large-japanese
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Model 25% 50% 75% 100%
GPT-only 11.9 27.9 45.6 56.2
GPT+DPR 11.9 28.8 45.9 62.0

Table 3: Results of accuracy verification. The x% repre-
sents the question completeness.

of exact matching. In the investigation of confi-
dence score effectiveness, we created curves of the
correct answer rate with respect to the answer gen-
eration rate, and we evaluated the effectiveness in
terms of the area under the curve (AUC). Here, the
answer generation rate was the proportion of times
that the system actually provided an answer. If
the models only answered questions for which the
confidence score exceeded a threshold α, we can
control the answer rate by changing α. On the other
hand, the correct answer rate was the proportion of
correct answers among the answers output by the
models. If α is set to a value below 0, the answer
rate will coincide with the overall correct answer
rate of the system. As α increases, only questions
with high confidence scores will be answered, so
the correct answer rate will be expected to increase.

3.2 Accuracy Verification

Table 3 lists the accuracies for the GPT-only and
GPT+DPR models for each level of question com-
pleteness. As the question completeness decreased,
the correct answer rate also decreased, but the rate
of decrease was not proportional. From 100% to
75%, the decline was relatively gentle. This was
likely because many important words that deter-
mine the answer appear in the first half of a ques-
tion, whereas cases with information-rich words
appearing in the latter half of a question are rela-
tively rare. Comparing the scores of the two mod-
els, we see that GPT+DPR performed better when
the question completeness was 100%. When the
questions were incomplete, however, there was no
significant difference in performance between the
two models was observed.

3.3 Confidence Score Effectiveness

Table 4 lists the AUC values for each level of ques-
tion completeness. Among the three confidence
scores for GPT+DPR, using the document score
yielded the highest AUC. Furthermore, among
all the results, the generation score for GPT-only
achieved the highest AUC.

Next, because the document score had the high-
est AUC for GPT+DPR, we used it to compare

Model Score 25% 50% 75% 100%
GPT-only generation score 41.4 63.6 81.2 85.9

document score 31.8 58.1 77.3 84.8
GPT+DPR extraction score 25.0 51.3 70.0 84.1

average score 29.1 56.1 75.8 84.0

Table 4: AUC values for each level of question com-
pleteness. “Score” means the internal scores we used.

Answer generation rate
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Solid line: GPT-only
Dotted line: GPT+DPR

Figure 1: Curves of the correct answer rate vs. the
answer generation rate. The x% represents the question
completeness.

the correct answer rate vs. answer generation rate
curves of the GPT-only model and the GPT+DPR
models. Figure 1 shows the results. For all settings,
we can observe that the accuracy was increased by
limiting the questions to be answered to only those
with high confidence scores, thus confirming the
effectiveness of the confidence scores. Comparing
GPT-only and GPT+DPR, as listed in Table 3, the
accuracy at an answer rate of 1.0 was higher for
GPT+DPR when the question completeness was
100%, and equivalent in for less-complete ques-
tions. When the answer rate was less than 0.8, how-
ever, GPT-only had higher accuracy in all cases.
This difference was more obvious when both the
question completeness and the answer rate were
low. For example, in the case of 25% question
completeness and an answer rate of 0.1, the accu-
racy of GPT+DPR is around 0.5, whereas that of
GPT-only was around 0.8, thus showing a signifi-
cant difference. Accordingly, we can conclude that
the GPT-only model is more suitable for buzzer
quizzes.

Table 5 shows examples of quiz question text
and output from the GPT-only system. Examples
(a) and (b) are cases with 25% question complete-
ness, while Examples (c) and (d) are cases with
75% question completeness. In Examples (a) and
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Examples

(a)

Q (25% completeness):
ごはんの上にハンバーグと目玉焼きを乗せ、グレービーソースをかけたハワイの名物料理は何でしょう?
(This is a rice dish topped with a hamburger steak and a fried egg, which is covered with gravy sauce and originated
in Hawaii. What is this?)
Confidence score: 0.996 A:ロコモコ (loco moco) correct

(b)

Q (25% completeness):
オーストリアの首都はウィーンですが、オーストラリアの首都はどこでしょう?
(The capital of Austria is Vienna, but what is the capital of Australia?)
Confidence score: 0.982 A:キャンベラ (Canberra) incorrect

(c)

Q (75% completeness):
約5年の歳月をかけてシスティーナ礼拝堂の祭壇に描かれた、ミケランジェロの代表作である絵画は何で
しょう?
(This painting was created over the span of about five years in the Sistine Chapel. Now, this is known as one of
Michelangelo’s masterpieces. What is this?)
Confidence score: 0.991 A:最後の審判 (The Last Judgment) correct

(d)

Q (75% completeness):
1985年に発売され、全世界で 4000万本以上を売り上げたという任天堂ファミリーコンピュータのゲーム
で、「スーマリ」などと略されるものは何?
(This game was launched for the Nintendo Family Computer in 1985 and has sold 40 million copies, which is often
referred to by the abbreviation “Su-Mari.” What is this?)
Confidence score: 0.955 A:ドンキーコング (Donkey Kong) incorrect

Table 5: Examples of quiz question text and output from the GPT-only system. Since the actual data are in Japanese,
English translations are given in parentheses.

(c), the system predicted correct answers with high
confidence scores because sufficient information
was provided to narrow down the answer. In con-
trast, in Examples (b) and (d), the system predicts
the answers with high confidence scores, but the
answers are incorrect. Example (b) is a question
text with contrasting first and second halves, which
would be difficult to answer in a situation where
only the first half of the question is given. Example
(d) is incorrect because the question text is mostly
clear, but does not contain the key information that
determines one answer.

4 Conclusion

In this study, we constructed two models for an-
swering buzzer quiz questions, which have not been
considered in previous research: GPT-only and
GPT+DPR. Then, we evaluated the accuracy for
various levels of question completeness. Further-
more, we investigated the relationship between the
model’s internal scores, which were treated as con-
fidence scores, and the accuracy; as a result, the
validity of using the internal scores of the models
as confidence scores was confirmed.

In the future, we consider the use of more pow-
erful models like FiD (Izacard and Grave, 2021)
or GPT-4 (OpenAI, 2023) to improve the correct
answer rate for quizzes. We also would like to val-
idate the differences in performance between our
systems and humans.

Limitations

We built buzzer quiz answering systems. How-
ever, they do not take into account the time re-
quired to respond, and these systems do not have
the ability to generate real-time responses, which
is essential in actual buzzer quizzes. Additionally,
the experiments in this study were conducted only
in Japanese, and it remains unclear whether sim-
ilar results would be obtained in other languages.
Particularly, English has a significantly different
sentence structure compared to Japanese, hence fur-
ther investigation is necessary to confirm whether
appropriate results can be achieved.
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Abstract
Hyperbole is a common figure of speech, which
is under-explored in NLP research. In this
study, we conduct edge and minimal descrip-
tion length (MDL) probing experiments for
three pre-trained language models (PLMs) in
an attempt to explore the extent to which hy-
perbolic information is encoded in these mod-
els. We use both word-in-context and sentence-
level representations as model inputs as a basis
for comparison. We also annotate 63 hyper-
bole sentences from the HYPO dataset accord-
ing to an operational taxonomy to conduct an
error analysis to explore the encoding of dif-
ferent hyperbole categories. Our results show
that hyperbole is to a limited extent encoded
in PLMs, and mostly in the final layers. They
also indicate that hyperbolic information may
be better encoded by the sentence-level repre-
sentations, which, due to the pragmatic nature
of hyperbole, may therefore provide a more ac-
curate and informative representation in PLMs.
Finally, the inter-annotator agreement for our
annotations, a Cohen’s Kappa of 0.339, sug-
gest that the taxonomy categories may not be
intuitive and need revision or simplification.

1 Introduction

Hyperbole is a common figure of speech that
involves the use of exaggerated language for
emphasis or effect (Claridge, 2010). Humans
exaggerate in a variety of registers and con-
texts, spanning from the colouring of informal,
everyday speech to a literary trope or a rhetor-
ical means of persuasion. Hyperboles inten-
tionally augment or diminish a feature of some
referent of discourse, presenting this feature
on some more or less abstract scale of mag-
nitude. The task of hyperbole identification
poses a challenge to natural language process-
ing in that it is highly pragmatic and utilizes
context and background knowledge to distin-
guish between literal and exaggerated usage of

a given lexical unit. As an illustration of the
pragmatic nature of hyperbole, we can inspect
the following two example sentences, wherein
(1A) is hyperbolic and (1B) is literal:
(1A) I’ve seen this movie at least eighty thousand times.

(1B) These products are tested at least eighty thousand times.

In (1A), it is reasonable to assume that the
speaker is exaggerating the number of times
they have seen this particular movie to empha-
size their enjoyment or familiarity with it be-
cause this would otherwise be a significant and
unrealistic time investment. However, when
it comes to a particular product, it has likely
gone through rigorous testing and quality con-
trol measures, which means that the statement
in (1B) can reasonably be interpreted literally.

Hyperbole identification has recently at-
tracted the interest of NLP researchers who
have collected datasets manually or semi-
automatically and shown that computational
modelling of hyperbole is indeed plausible
(Troiano et al., 2018). However, it remains
an under-explored area of research in figura-
tive language processing (FLP), primarily be-
cause its subjective and contextual nature com-
plicates computational modelling of the phe-
nomenon and makes it challenging to apply a
standard for collecting high-quality annotated
data (Biddle et al., 2021).

This paper seeks to contribute to the grow-
ing research on hyperbole identification in two
ways: Firstly, we perform probing tasks to
investigate whether pre-trained language mod-
els (PLMs) encode hyperbolic information in
its representation without fine-tuning on task-
specific data.1 In recent years, probing tasks

1By “hyperbolic”, we consistently refer to the figure of
speech, not the mathematical space.

200



have emerged as a popular approach in NLP
for interpreting and analyzing model represen-
tations, and it has previously been shown that
PLMs do encode both simile and metaphori-
cal knowledge (Chen et al., 2022). However,
to our knowledge, hyperbole probing remains
so far unexplored. Therefore, we replicate
edge and minimal description length (MDL)
probing experiments for metaphor described
by Aghazadeh et al. (2022) on a small hy-
perbole dataset constructed by Troiano et al.
(2018). We expect that encoding hyperbole
may present a larger challenge to PLMs than
metaphor because hyperbole knowledge is pri-
marily pragmatic rather than semantic (Mc-
Carthy and Carter, 2004).

Secondly, we build an operational taxonomy
based on a meta-analysis of the linguistic treat-
ment of hyperbole, and annotate an existing
dataset according to said taxonomy (McCarthy
and Carter, 2004; Mora, 2009; Claridge, 2010;
Burgers et al., 2016; Troiano et al., 2018). We
then use these annotations to analyze errors in
model predictions to further shed light on the
types of hyperboles that may pose a particular
challenge to PLMs, as well as when construct-
ing training corpora for the phenomenon. Our
work will hopefully provide insight into the
challenges of PLMs in identifying hyperbole,
as well as contribute to developing an opera-
tional annotation standard for computational
modelling of hyperbole.2

The remainder of this paper is structured as
follows: Section 2 contains an overview of re-
lated work in hyperbole research, as well as
probing experiments on other figures of speech.
Section 3 provides a background on the lin-
guistic research that is the framework for our
operational taxonomy and annotation. Section
4 is a short explanation of probing tasks for
PLMs, which we relate to the aim of our ex-
periments. Section 5 outlines our experimental
setup and describes the modifications made
to the HYPO dataset. Section 6 provides our
results and preliminary error analysis, and sec-
tion 7 is a discussion of said results, as well as

2Our code for the probing tasks is available at https:
//github.com/NiSc91/HyperboleProbe

ideas for future research. Section 8 contains a
summary and conclusions.

2 Related Work

In this section, we outline previous research
related to both hyperbole and probing experi-
ments on other figures of speech.

Hyperbole in NLP. While tropes such as
metaphor and sarcasm have received consider-
able attention within figurative language pro-
cessing research (Abulaish et al., 2020; Rai and
Chakraverty, 2020; Moores and Mago, 2022),
the automatic modelling of hyperbole is still at
a relatively early stage. Research within this
area can be roughly split into two objectives,
hyperbole identification (HI) and hyperbole
generation (HG).

Within the first, and for our purposes most
interesting, category, Troiano et al. (2018)
introduce the task of hyperbole detection
by showing that classical machine learning
pipelines can identify hyperboles with beyond-
chance accuracy. For this purpose, they col-
lect HYPO, the only manually constructed cor-
pus of 709 English hyperboles, and include
with the hyperbolic sentence s two contrasting
corpora: One consisting of the manually con-
structed literal paraphrases to each of the sen-
tences, and another consisting of a contrastive
non-hyperbolic example using the same min-
imal lexical unit. They then identify a set of
hand-crafted features targeting qualitative and
quantitative aspects of exaggeration and re-
port the best-performing classifier to be logis-
tic regression using the literal paraphrases as
negative examples, which achieves a 76% F1
score. In the same realm, Kong et al. (2020) ad-
dress hyperbole detection using deep learning
techniques on a constructed Chinese corpus
and find that an LSTM with hand-crafted and
embedding features produced superior results
(85.4% accuracy). Biddle et al. (2021) con-
struct a multitask learning classification archi-
tecture for hyperbole detection using a multi-
task BERT-based approach, wherein the model
is fine-tuned on the HYPO dataset and takes
the literal paraphrases as privileged informa-
tion using triplet sampling. The authors find
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that their model improves the logistic regres-
sion baseline described by Troiano et al. (2018)
by 10%. The authors also devise a series of test
sentences to linguistically probe their model
for extreme case formulations (ECFs), quanti-
tative, and qualitative hyperboles, as described
by Mora (2009), and find that their model par-
ticularly excels at hyperboles containing ECFs,
which may be due to the lexical substitution be-
tween the hyperbole and the literal paraphrase
being minimal.

Recent frameworks have also leveraged pre-
trained language models to generate hyper-
bole and expand on existing hyperbole data
in a semi-supervised way. Specifically, Tian
et al. (2021) construct a sentence-level hyper-
bole generation model by fine-tuning it on sen-
tences from a Reddit corpus using the syntac-
tic pattern known as the “so ... that” pattern,
which is said to be a productive strategy for
hyperbole (McCarthy and Carter, 2004). The
authors annotate the data with semantic rela-
tionships within the sentence and feed the an-
notations to COMeT models (Bosselut et al.,
2019) trained to generate commonsense and
counterfactual inference. They then train a
classifier to rank hyperbole candidates and use
a paraphrase model to generalize to more syn-
tactic patterns. An HG approach by Zhang and
Wan (2021) involves constructing a large-scale
hyperbole corpus, HypoXL, and proposes an
unsupervised approach to hyperbole genera-
tion wherein a fine-tuned BART model is used
to fill in masked hyperbolic spans.

While these efforts point towards the possi-
bility of successfully training computational
models for the task of identifying hyperbole,
the research so far also has significant gaps:
Firstly, hyperbole in NLP lacks a unifying
definition or linguistically motivated formal
theory to describe the phenomenon. This is
reflected in a lack of a consistent annotation
scheme and procedure for hyperbole identifica-
tion in the available data, which makes hyper-
bole studies relatively far behind investigations
of metaphor, where most annotated data use
either the Metaphor Identification Procedure
and its extensions (MIP/MIPVU; Group, 2007;

Steen et al., 2019), or Conceptual Metaphor
Theory (CMT; Lakoff and Johnson, 1980) as
a procedure for annotation. This consistency
of theoretical framework and annotation pro-
cedure makes it easier to perform experiments
generalizing across languages and datasets.
Secondly, limited attempts have been made
to probe pre-trained language models on how
well they encode hyperbole without any fine-
tuning. This makes it unclear whether models
simply reconstruct the hyperboles found in the
fine-tuning objective, and how well the model
is able to learn hyperbolic information in a
zero-shot or few-shot setting.

Our experiment is, to our knowledge, the
first one to not utilize a fine-tuned model on hy-
perbolic sentences and to instead use probing
methods to test for the encoding of hyperbolic
information in PLMs.

Probing PLMs for Figurative Language
Information. Probing techniques provide
ways to understand and interpret the internal
representations learned by deep neural net-
works (Belinkov, 2022). They typically in-
volve extracting particular features or repre-
sentations from a model’s intermediate layers
to gain insights into its structure or decision-
making process. Several recent experiments
have been designed to probe PLMs for infor-
mation on figurative language. Namely, Chen
et al. (2022) tackle similarity interpretation (SI)
and generation (SG) tasks by probing simile
knowledge from PLMs by testing it on similar-
ity triple completion, i.e. sentences that take
the form [NP1] is as [ADJ] as [NP2]. Their
approach is to manually construct masked sen-
tences with this syntactic pattern and predict
the candidate words in the masked position.
To that end, they adopt an auxiliary training
process with the MLM loss to enhance the pre-
diction diversity of candidate words. While
this kind of probing works well to generate
particular syntactic constructions, it would be
ineffective for hyperbole due to its relatively
limited dependence on syntax.

Instead, we choose to adapt several exper-
iments conducted for metaphor probing by
Aghazadeh et al. (2022) for hyperbole. The
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(a) Subtree and examples for the Dimension category.

(b) Subtree and examples for the Type category.

Figure 1: The first two categories in the proposed taxonomy for hyperbole with examples for each.

authors conduct probing in two ways: First,
they train a linear probing classifier on 3 dif-
ferent PLMs to evaluate the accuracies and ex-
tractabilities with which they encode metaphor-
ical knowledge. Secondly, they use MDL prob-
ing to analyze the depth of the encoding of
metaphorical information in multi-layer repre-
sentations. The authors further extend their ex-
periment by generalizing across four datasets
and four languages. The results suggest that
contextual representations in PLMs do encode
metaphorical knowledge, mostly in their mid-
dle layers, and that it is possible to transfer
this information across languages and datasets
provided the annotation is consistent across
training and testing sets.

While we can replicate the basic probing
experiments, we cannot test the model’s gen-
eralizability given the scarce hyperbole data.
However, we do expect that it is possible via
these techniques to learn something about the
internal representations of hyperbole.

3 A Taxonomy for Hyperbole

In simple terms, hyperbole involves exagger-
ating a feature’s property X beyond what is
justified by the literal state of affairs (Claridge,
2010; Troiano et al., 2018). Stated in a more
discourse-centred way, hyperbole occurs when
an expression is more extreme than justified
given the ontological referent, i.e. the entity in
the world referenced by the text (Burgers et al.,
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(a) Subtree and examples for the Possibility category.

(b) Subtree and examples for the Conventionality category.

Figure 2: The last two categories in the taxonomy.

2016). While much of the work on hyperbole
has previously been subsumed under studies
of metaphor, humour, and verbal irony, recent
corpus linguistic analyses have shed light on
more fine-grained characteristics. Namely, the
consensus in the treatment of hyperbole in lit-
erature is that the phenomenon is, among oth-
ers, characterized by the presence of extreme
case formulations (ECF), the ability of hyper-
bole to create either extreme possible worlds or
downright counterfactual and absurd scenarios,
and its augmentation of some property along a
qualitative or quantitative scale (McCarthy and
Carter, 2004; Mora, 2009; Claridge, 2010).

In the following, we outline some of the
key characteristics and visualize them in an
operational taxonomy (see Figures 1 and 2).

Dimension. There is widespread agreement
that hyperbole occurs on a scale of magni-
tude along two main dimensions: a quantita-
tive scale and a qualitative scale (Mora, 2009;
Claridge, 2010; Troiano et al., 2018). The dis-
tinction between these scales refers to whether
a hyperbole primarily concerns objective and
measurable aspects or subjective and evalua-
tive emotional states of affairs. According to
Mora (2009), who conducted a corpus analy-

sis of natural conversation on a 52000 word
subset of the British National Corpus (BNC),
quantitative hyperboles comprise 61% of the
analyzed hyperboles and include the seman-
tic fields of completeness, universality, mea-
sure, and magnitude. Qualitative (evaluative)
hyperboles concern positive or negative sen-
timents, as well as impact or singularity; e.g.
’shocking’, ’smashing’ etc. However, an im-
portant point to make here is that there is a
significant overlap between these dimensions,
as hyperboles will generally have an evalua-
tive function: For instance, the expression that
somebody has “piles of batteries in their room”
could be said to be a negative evaluation of the
state of the room, but we choose to annotate
such expressions as primarily quantitative, as
the exaggerated property is one of measure.
Another potentially relevant distinction is that
quantitative hyperboles have a verifiable ele-
ment, whereas purely qualitative hyperboles
often serve to convey an internal subjective
mental or emotional state (Claridge, 2010):
For instance, in the statement, It was the worst
meal I have ever had, the speaker could either
be conveying their honest opinion of the meal,
or they could be using exaggeration as a figure
of speech to emphasize their disappointment
with the meal.

Type. We use the term “type” to refer to
whether the hyperbole is basic or composite,
i.e., whether it stands alone or is combined
with another figure of speech. According to
Claridge (2010), hyperboles are basic if they
preserve the semantic domain of the corre-
sponding literal paraphrase, and composite if
it involves a domain transfer where elements
of a source domain is mapped onto a target
domain. The latter is primarily the case with
metaphor and, to a lesser extent, metonymy
<citeclaridge2010hyperbole. In our annota-
tions, we analyze simile as domain-preserving,
even though we recognize that simile can be an-
alyzed as an explicit metaphor (Burgers et al.,
2018).

Degree of possibility. This distinction is one
of degree and refers to the extent to which hy-
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perboles generate impossible, absurd, or coun-
terfactual scenarios. This is purely pragmatic
and influences the degree to which a statement
may be perceived as hyperbolic (McCarthy and
Carter, 2004; Troiano et al., 2018).

Level of conventionality. This last di-
chotomy refers to the fact that hyperboles can
use either more conventional or more novel
and creative language to express exaggeration.
This also impacts the extent to which a state-
ment is perceived as a hyperbole: For instance,
to say that one has not seen a person for ages is
so frequent that it could be considered a latent
or dead hyperbole, in the sense that it might
not be viewed as intentional exaggeration for a
specific purpose (McCarthy and Carter, 2004).
However, in our annotation, we do label such
frequent sentences as hyperbolic, although a
conventionalized one.

4 Probing PLMs for Hyperbole

Probing language models aims to answer ques-
tions related to the model’s internal repre-
sentation, such as the location and depth of
the encoding of a linguistic property in the
multi-layer representation, or which input fea-
tures contributed to a particular behaviour of
the PLM (Belinkov, 2022). Standard probing
methods involve training a linear classifier on
top of a PLM to predict a linguistic property of
interest, where a high probing performance on
the task is associated with the model encoding
said property. It is common practice to freeze
the parameters of the PLM, which serves to
prevent the gradients of the probing classi-
fier from back-propagating into the model and
thereby altering its pre-trained representation
(Tenney et al., 2019). Following Aghazadeh
et al. (2022), our experiments are not aimed
at improving the accuracy of hyperbole iden-
tification tasks; we simply want to check the
extent to which hyperbole knowledge may be
encoded in the base representations. To that
end, we employ edge probing, in which the
classifier receives span-level representations
from the PLM as inputs after they have been
projected to a fixed-dimensional layer, 250 in
this case. Thus, we define the span input to

the PLM as the minimal lexical unit conveying
hyperbolic information as given by the HYPO
dataset (Troiano et al., 2018).

One common criticism of edge probing is
that it may not be explanatory in the sense
that it does not provide insight into whether
a model is learning a linguistic property or
simply memorizing the task (Belinkov, 2022).
An information-theoretic perspective on ad-
dressing this limitation is to combine the prob-
ing quality of the classifier with some metric
of the effort needed to extract the linguistic
knowledge. This approach is known as MDL
probing (Voita and Titov, 2020), wherein ef-
fort intuitively refers to the number of steps
required by the PLM to encode a compressed
representation of the input sequence. Follow-
ing Aghazadeh et al. (2022), we use the online
coding implementation of MDL, which mea-
sures a representation’s ability to learn from
various portions of the data. We report the
compression, which is given by N · log2(K).
In the context of language modelling, N refers
to the size of the dataset, and K is the set of
unique sequences being compressed. A ran-
dom classifier will have a compression of 1,
and increased data compression is associated
with a better encoding of the given property.

5 Experiments

Here we describe our data and setup.

Dataset and annotation. We utilize HYPO,
a manually constructed English hyperbole
dataset (Troiano et al., 2018) of 709 hyper-
boles with corresponding literal paraphrases,
as well as a minimal units corpus that provides
the contrastive negative (literal) examples for
each hyperbole (see examples (1A) and (1B)
in §1).

For the purpose of our experiment, we first
discard the corpus of literal paraphrases as we
are interested in contrasting the hyperbolic us-
age of a particular word or phrase with a literal
usage of the same word or phrase. It would
otherwise not be possible to construct spans.
To obtain span labels for each hyperbole and
its negative contrast sentence, we programmat-
ically extract the positions of each minimal
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Figure 3: Inter-annotator agreement for the four aspects.

lexical unit and manually adapt the labels as
needed; namely, we exclude examples with
multiple spans and those without minimal unit
contrasts.3 Our final dataset contains 1396
span-labelled hyperbolic and literal sentences,
which we split into training (70%), test (20%),
and development (10%) sets.

We meticulously annotate the 63 hyperbolic
sentences in the development sample using
the operative taxonomy outlined in §3.4 In
order to obtain inter-annotator agreement, we
enliste the help of additionally 5 annotators,
assigning 12-13 sentences to each. As a result,
each sentence is annotated twice. We observe
a mean Cohen’s Kappa of 0.339 (see Figure 3),
suggesting only fair agreement, with particular
difficulties on the dimension and type spectra
on the taxonomy.

Experimental setup. We conduct edge- and
MDL probing experiments for three models,
BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019), and Electra (Clark et al., 2020).
Following Aghazadeh et al. (2022), all the
models are initiated from the base versions
of the Huggingface Transformer library (Wolf
et al., 2020), with 12 layers, 768 hidden size,
and 110m parameters. In line with the pro-
cedure described in detail by by Tenney et al.
(2019), we use the contextual vector represen-

3See examples in Appendix A.
4Similar fine-grained annotations were conducted by citet-

troiano2018computational, although they weren’t included in
the HYPO dataset, and inter-annotator agreement were not
measured due to expected degree of difficulty.

Word-in-Context Sentence Level
Experiment Accuracy µ-F1 Accuracy µ-F1

BERT 0.69 0.6895 0.72 0.7184
RoBERTa 0.72 0.7220 0.78 0.7762
ELECTRA 0.73 0.7256 0.78 0.7761

Table 1: Edge probing classification results.

tation for each span as inputs to the model, fol-
lowed by a projection-layer and self-attention
pooling to collapse the span vectors down to
a fix-length 256-dimensional representation.
The edge probing classifier, which in this case
is a single linear layer, is then trained on top of
the PLM. We do not change the original hyper-
parameters; we keep the batch size of 32 and
the learning rate of 5e − 5, and train over 5
epochs for each experiment. During model
training, the development set is used to moni-
tor the model’s performance and as a stopping
criterion at each epoch. The MDL probe is
based on the same structure as the edge prob-
ing experiment (Aghazadeh et al., 2022). One
minor change we make to accommodate the
small size of our data is to delete the smallest
fraction trained on by the MDL probe, as it
would otherwise amount to a single example.
We run our experiments in two configurations:
One in which we use the manually labelled hy-
perbole spans as inputs to the PLM, which fol-
lows the classic edge probing procedure. We
call this the word-in-context (WiC) represen-
tation to emphasize that the model only has
access to the rest of the sentence through the
context embeddings (Tenney et al., 2019). In
the other configuration, which is used as ba-
sis for comparison, we feed the entire sentence
span to the model - the so-called sentence-level
configuration.

6 Results

All our results are reported on the test set.

Edge probing results. The edge probing
classification results are in Table 1 and the
classification scores for the hyperboles and the
literal sentences are in Table 2. We only report
last layer scores, as we just evaluate the base
representations.
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Experiment Class Precision Recall F1

Word-in-Context

BERT literal 0.70 0.66 0.68
nonliteral 0.68 0.72 0.70

RoBERTa literal 0.73 0.71 0.72
nonliteral 0.71 0.73 0.72

Electra literal 0.74 0.71 0.72
nonliteral 0.72 0.74 0.73

Sentence Level

BERT literal 0.78 0.61 0.69
nonliteral 0.68 0.82 0.74

RoBERTa literal 0.80 0.74 0.77
nonliteral 0.75 0.82 0.78

ELECTRA literal 0.84 0.69 0.76
nonliteral 0.73 0.87 0.79

Table 2: Performance metrics for each of the models.

Annotation WiC Sentence Total

QUAL 0.784 0.865 37
QUANT 0.692 0.731 26
PDOM 0.676 0.765 34
SDOM 0.828 0.862 29
NPOSS 0.769 0.821 39
POSS 0.708 0.792 24
CONV 0.806 0.806 36
NCONV 0.667 0.815 27

Table 3: Recall for word-in-context and sentence-level
annotations for each category.

MDL probing results. We report the com-
pression for each of the experiments in Fig-
ure 4. The best layer is consistently near the
top layer, but not the top layer itself.

Error analysis. Our error analysis is con-
ducted for the model with the best recall,
RoBERTa, and is only conducted for the hy-
perbolic examples, i.e. the 63 annotated hyper-
boles in the development set. We choose the
best layer based on the compression displayed
in Figure 4; i.e. layer 11 for the WiC repre-
sentation and layer 8 for the sentence-level
representation.

Table 3 report the recalls, i.e. the percent-
ages of correctly predicted hyperboles, for
each of the annotated categories, for both of
our experiments, along with the distributions
of each of the annotations on the 63 samples.

7 Discussion

We observe notably lower scores than for
the metaphor probing experiments across the

BERT WiC. BERT sentence-level.

RoBERTa WiC. RoBERTa Sentence-level.

ELECTRA WiC. ELECTRA sentence-level.

Figure 4: Compression for each of the models.

board: Based on the compression reported for
the MDL probes, only reaching up to 1.4 in
the best configuration, we can conclude that
hyperbolic information does appear to a minor
extent to be encoded in PLM representations.
This is in line with our expected hypothesis
that encoding hyperbole may pose a bigger
challenge given its primarily pragmatic nature,
and also fits with the fact that PLMs have been
reported to struggle with pragmatic inference
and commonsense knowledge (Rogers et al.,
2020). Perhaps more interestingly, we can in-
spect the compression for each of the 12 layers
reported in Figure 4 to understand where hy-
perbole is best encoded by the representation,
which appears to mostly be in the final lay-
ers. This is different from metaphor and may
lend further credence to the idea that pragmat-
ics is typically encoded deeper into the PLM.
However, since we are employing a very small
dataset, the extent to which we can draw def-
inite conclusions is limited. In the future, we
would like to extend our experiments to more
data and languages to measure generalizability.
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Upon analyzing the MDL compressions of
the two model representations, we make an in-
triguing observation that the sentence-level rep-
resentation consistently outperforms the WiC
representation, with compressions reaching up
to 1.4 for the top layer. This discovery raises
thought-provoking questions about the amount
of hyperbole information inferred by the con-
textual embeddings, as hyperbole often sur-
passes the token or phrase level. For example,
consider the sentence, "The temperature was
so low, I saw polar bears wearing jackets." In
this case, the entire complement sentence cre-
ates the hyperbole. This leads to discussions
about defining the lexical unit of hyperboles
for corpus collection and annotation purposes
(Burgers et al., 2016). As for the model rep-
resentations themselves, while PLMs theoreti-
cally encode context in their representation, it
is worth exploring how much information is
contained within and between subwords in the
WiC representation. Employing interpretabil-
ity metrics could provide further insights into
this matter.

Considering the low inter-annotator agree-
ment and that recall seems to generally in-
crease with the frequency of the subcategory in
the sample, it is challenging to draw insights
from the model error analysis (see Table 3).
However, we may tentatively conclude that
the models have an easier time with conven-
tional hyperboles, which is the opposite find-
ing to that of Troiano et al. (2018) for tradi-
tional machine learning pipelines. Similarly
surprisingly is it that the PLMs have better
recall for domain-switching hyperboles than
domain-preserving ones, which may also be
confounded by a strength variable. Further-
more, when manually expecting the false pos-
itives, we observe that some sentences pre-
dicted to be hyperbolic do indeed contain
words and phrases with a potential hyperbolic
interpretation, e.g. paradise in the sentence
“He thought a place awaited him in paradise”„
suggesting that analyzing hyperbole in a larger
context might provide further insights.

Finally, the low inter-annotator agreement,
particularly on the dimension and type di-

chotomies, suggests that the hyperbole cate-
gories are not intuitively well-understood or
discriminated. During discussions with anno-
tators upon completion of the task, we had
several instances where overlap of the dimen-
sion subcategories was so large that annotators
could argue for either one, and it also wasn’t
clear to annotators when a semantic domain-
switch was present. The latter suggests that
more linguistic training may be necessary to
identify combined figures of speech in context,
for instance, through application of the hyper-
bole identification procedure (HIP) (Burgers
et al., 2016). As a consequence, we would
like to change our approach to hyperbole an-
notation in future corpus construction and in-
vestigate to which extent these categories are
indeed computationally relevant. Our nega-
tive findings lend credence to the claim by
Biddle et al. (2021) that annotation schemes
may present a bottleneck for further devel-
opment of of the task. We would also like
to explore approaches for model evaluation
of hyperbole types using conceptual knowl-
edge bases and linguistic resources; namely
leveraging framenets to explore their utility
for metaphorical hyperboles, as well as inves-
tigating templates using particular syntactic
patterns for evaluating quantitative hyperboles.

8 Conclusions

This study has attempted to probe three pre-
trained language models (PLMs) for hyper-
bolic knowledge to better inspect how this in-
formation is encoded in their representations.
We find, predictably, that knowledge of hy-
perbole is only to a limited extend encoded
by PLMs, and, somewhat more surprisingly,
that sentence-level representations appear to
be supperior to word-in-context (WiC) repre-
sentations, which may further highlight that
most hyperbolic information does in fact ex-
ist beyond the token or phrase level. In the
future, we would like to contribute with more
hyperbole data with an operational annotation
procedure, extend to cross-lingual experiments,
as well as investigate the role of linguistic re-
sources for hyperbole identification.
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Hyperbole Literal Dim. Type Poss. Conv.

Marriage is the grave of love. I have gone to visit the grave of a
friend.

QUAL SDOM NPOSS CONV

So much snow that it is like walking
in the firmament.

Some stars in the firmament have a
name.

QUANT PDOM NPOSS NCONV

The ancient castle was so big that it
took a week to walk from one end to
the other.

It took a week to walk from one end
of the region to the other.

QUANT PDOM POSS CONV

His feet are colder than the arctic. The Antarctic is colder than the
Arctic.

QUANT PDOM NPOSS NCONV

Table 4: Sample data with annotations. Token spans are marked by italics around the word or phrase.
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Abstract

In this paper we describe the task of adapting
NLP models to dialogue processing in the emer-
gency response domain. Our goal is to provide
a recipe for building a system that performs
dialogue act classification and domain-specific
slot tagging while being efficient, flexible and
robust. We show that adapter models (Pfeif-
fer et al., 2020) perform well in the emergency
response domain and benefit from additional di-
alogue context and speaker information. Com-
paring adapters to standard fine-tuned Trans-
former models we show that they achieve com-
petitive results and can easily accommodate
new tasks without significant memory increase
since the base model can be shared between
the adapters specializing on different tasks. We
also address the problem of scarce annotations
in the emergency response domain and evalu-
ate different data augmentation techniques in a
low-resource setting.

1 Introduction

Emergency response is a very challenging domain
for NLP for a variety of reasons. First, this domain
has strict requirements regarding memory and com-
putational efficiency. Often it is not feasible to load
several large NLP models because of the limitations
in the available infrastructure (e.g., memory of the
machine where the models are running). Second,
the environment is often noisy and the speakers
communicate using domain-specific lexicon and
abbreviations. Third, emergency situation envi-
ronment is very changeable and the domain may
vary from a rescue operation in a car accident to
explosions or building collapse. Hence, the ideal
dialogue processing system for the emergency re-
sponse domain should be memory efficient, robust
and flexible at the same time.

To address the efficiency aspect we use adapters1

1The code and the pre-trained models are available at
https://github.com/tanikina/emergency_response_
dialogue

(Pfeiffer et al., 2020) that were tested on a variety
of NLP tasks and have shown a comparable perfor-
mance with the full fine-tuning while using only
1% of the parameters of the fully fine-tuned mod-
els. Adapters are small in size, can be easily shared
and combined with different models. This is espe-
cially interesting in our use case since we deploy
the same base model (bert-base-german-cased)
for several tasks2.

To tackle the problem of noisy, incomplete
and domain-specific communication we investigate
whether it is possible to boost the performance
by integrating additional context and experiment
with different ways of encoding it (e.g., by adding
speaker, previous turn and dialogue summary in-
formation). We also experiment with various lin-
guistic features and test how they affect the perfor-
mance (e.g., by embedding the POS tags or includ-
ing the ISO-style dialogue act annotations).

Finally, to simulate the low-resource scenario
which is very common for the emergency response
domain we reduce the amount of the training and
development data to 12% of the original dataset and
apply different ways of data augmentation includ-
ing backtranslation, LM-based word replacements
and random edit operations.

Figure 1 provides an overview of different ex-
perimental settings addressed in this work. To our
knowledge, this is the first work that explores di-
alogue processing in the emergency response do-
main with adapters and performs a comprehensive
study of the context integration and data augmenta-
tion in this setting.

2 Related Work

Adapters (Houlsby et al., 2019; Rebuffi et al., 2017)
seem like a natural choice for lightweight and ef-

2We also tried multilingual BERT but it resulted in worse
performance in our pilot experiments. Hence, we decided to
focus on the model that was trained on German only and has
a reasonably small size (436 MB).
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Figure 1: Overview of the Experiments

ficient NLP models. Adapters implement a fine-
tuning strategy that involves only a small amount
of trainable parameters per task. Each adapter
adds a small set of newly initialized and trainable
weights at each layer of the transformer architec-
ture (Vaswani et al., 2017). Hence, the original
network has mostly fixed parameters and can be
efficiently transferred between the tasks. Adapters
have shown good performance comparable to the
fully fine-tuned models on a variety of tasks includ-
ing, e.g., sentiment analysis, commonsense rea-
soning, paraphrase detection and entailment (Pfeif-
fer et al., 2021) and further modifications and im-
provements to the original idea were proposed in
the recent work by Rücklé et al. (2020); Fu et al.
(2022). Adapters have been successfully used for
low-resource speech recognition (Hou et al., 2021),
cross-lingual transfer (Parovic et al., 2022) and
tested on the named entity recognition and classifi-
cation tasks (Lee et al., 2022).

Also, in the field of dialogue processing there is
a growing body of work involving adapter models.
For example Xu et al. (2021) inject knowledge into
pre-trained language models using adapters and ex-
plore grounded dialogue response generation with
adapters. Another work by Madotto et al. (2020)
proposes a simple and efficient method based on
residual adapters in the continual learning setting

for task-oriented dialogue systems. Wang et al.
(2021) design a GPT-Adapter-CopyNet system that
combines adapters and CopyNet modules into GPT-
2 in order to perform transfer learning and dialogue
entity generation. Their system significantly out-
performs the baselines models on both DSTC8 and
MultiWOZ data.

Efficiency and robustness are crucial in the low-
resource setting when we have a limited amount of
data. The main objective of data augmentation is to
generate new data points by modifying the existing
ones through a variety of transformations and while
some of these transformations can be very simple
such as random token deletion or insertion (Wei
and Zou, 2019; Miao et al., 2020), others might
require more computation and processing power,
e.g., backtranslation (Edunov et al., 2018) or LM-
based substitutions (Kobayashi, 2018; Kumar et al.,
2020). Feng et al. (2021) and Chen et al. (2021)
provide comprehensive surveys of the techniques
and methods for data augmentation in NLP that
served as a motivation for our work.

3 Data

The dataset used in our experiments is based
on the dialogues collected during several robot-
assisted disaster response training sessions (Kruijff-
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Korbayova et al., 2015; Willms et al., 2019). All
dialogues are in German and they represent team
communication between a team leader or mission
commander and several operators who remotely op-
erate robots in order to explore some area, find haz-
ardous materials, locate fires, damage or victims.
Figure 2 shows a part of one dialogue translated
into English.

speaker original turn translation
TL: UGV2 von Team-

leader.
UGV2 for team
leader.

UGV: UGV2, kommen. UGV2, coming.
TL: Ja, UGV2, wir

brauchen nochmal
schärfere Bilder
von dem Fass und
der Kennzeichnung.

Yes, UGV2, we
need again
sharper pictures
of the barrel and
the sign.

UGV: Ich habe Sie nicht
verstanden, können
Sie wiederholen?

I didn’t under-
stand you, could
you repeat?

TL: Ja, von dem Fass
brauchen wir
nochmal bessere
Bilder, und auch
von der Kennzeich-
nung.

Yes, we need bet-
ter pictures of the
barrel, and also
of the sign.

Figure 2: Example of communication between the Team
Leader (TL) and the Unmanned Ground Vehicle opera-
tor (UGV).

The complete dataset contains 2,542 dialogue
turns annotated with dialogue acts and domain-
specific slots. For the dialogue act classification we
reserve 2,261 turns for training, 281 turns for de-
velopment and 283 for testing. In the low-resource
setting we leave the test set unchanged but reduce
the amount of the training samples to 310 (240 in
training and 70 in development).

Figure 3 shows the overall distribution of differ-
ent dialogue act labels in the data and Figure 6 in
the appendix provides an example for each label.
There are seven main labels: Call, CallResponse,
InfoRequest, InfoProvide, Confirm, Disconfirm,
Order and the additional label Other for the cases
that do not fit in any of the main categories. The
labels are derived based on the domain expertise
and represent categories that are important for the
emergency response domain. Part of the dataset
is also annotated according to the ISO standard
for dialogue act classification by Bunt et al. (2020)

Figure 3: Dialogue Act Distribution

and we use these fine-grained labels in some of the
experiments described in Section 4.

In the emergency response domain it is very im-
portant to correctly recognize and annotate all de-
ployment orders (Einsatzbefehl in German). Note
that not every utterance classified as request ac-
cording to the ISO standard would qualify as Order
in our domain. E.g., the request "Could you re-
peat, please?" is not a deployment order since it
does not require performing a domain-specific ac-
tion and should be classified as information request
(InfoRequest).

For each turn annotated as Order we also per-
form the slot tagging. The slots are based on the
regulation document of the emergency responders
Feuerwehr-Dienstvorschrift (1999). We show an
example containing all relevant Order slots in Fig-
ure 4. Note that the distribution of slots is quite
uneven (see Figure 5). Some slots are present in
almost every dialogue turn classified as Order (e.g.,
Unit is present in 67% of the turns and Task ap-
pears in 99% of them) while other slots are anno-
tated only in 8% of the turns (Way). Also, the slots
can be nested and the same token may belong to
several slots. E.g., in "Schickst du mir noch ein
Foto?" (Will you send me also the photo?), "du"
(you) is part of the slot Task and also the slot Unit.
This is the reason why we train separate models for
each slot and then combine the results to provide
final annotations.

For the slot tagging task we experiment with the
full data as well as with the sampled data since
the distribution of the negative versus positive in-
stances per label varies a lot (see Figure 5 for the
details). For the sampled data we limit the amount
of negative samples (turns without the slot annota-
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Figure 4: Slot Tags for Deployment Order

Figure 5: Slot Distribution

tion) to maximum 80% of the corresponding pos-
itive samples. Our intuition is that having uneven
distribution with too many negative samples may
hinder the model’s performance and it might be
easier for the adapter model to learn the tagging
task on more balanced data. We test this idea and
describe our results in the next section.

4 Experiments

Our experiments aim to answer the following re-
search questions:

• Can we replace fully tuned BERT models with
adapter models for dialogue act classification
and slot tagging in the emergency response
domain?

• Does integrating context and linguistic fea-
tures in the model result in better perfor-
mance?

• Does data augmentation in the low-resource
setting help to improve the performance and
what are the best ways to augment the data?

4.1 Vanilla BERT vs. Adapters

In order to check whether adapter models work
well for dialogue act classification we compare
their performance to vanilla BERT fine-tuned on
the same data. Both models use the same base

bert-base-german-cased model as a backbone
and are trained for 20 epochs. The best perform-
ing checkpoint is selected based on the loss on
the development set. When only the current turn
embeddings are used as input we obtain 0.82 F1
score with the fine-tuned BERT and 0.80 F1 with
the adapter model (Table 1). Adding speaker to
the input results in 0.80 F1 for BERT and 0.79 F1
score for adapter.

We also compare the performance of the fully
tuned BERT vs. adapters on the slot tagging task.
Since the slots can be nested we train a separate
model for each slot type (i.e., 5 adapters or 5 fine-
tuned BERT models per setting). We use BIO no-
tation for each slot type and compute F1 scores
based on the token-level annotations. The results
are summarized in Table 2. Since the distribution
among the slots is uneven we also experiment with
the setting where we reduce the amount of negative
samples and balance the data.

It is clear from the evaluation results presented
in Table 2 that adapters consistently outperform
BERT on the slot tagging task and also benefit from
the sampling of negative examples. Reducing the
amount of negative samples gives us 9% increase
in the macro F1 score for adapters while it does not
bring any improvement for the vanilla BERT and
effectively hurts the model’s performance in terms
of micro F1 (0.86 vs. 0.99). It turns out that we
can use fewer parameters of the adapter model to
achieve better results with the balanced classes.

Interestingly, the fully fine-tuned BERT model
trained on the full data achieves the same macro F1
as the model trained on the sampled data but their
micro F1 scores differ (0.99 vs. 0.86). One possible
explanation is that since tuning of the BERT model
involves more parameters that need to be updated
in each iteration the training process becomes less
stable. The difference in training stability between
the adapters and the fully fledged fine-tuning in
the low-resource setting is an interesting research
question that needs further investigation.
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Setting Fine-tuned BERT Adapter
OnlyTurn 0.82 0.80
Speaker+Turn 0.80 0.79
Context+Speaker+Turn 0.91 0.84
Context+AllSpeakers+Turn 0.90 0.85
Summary+Speaker+Turn 0.80 0.73

Table 1: Macro F1 scores on the dialogue act classification task (BERT vs. adapters).

Slot Label Adapt+full Adapt+sampled BERT+full BERT+sampled
Unit 0.93 0.92 0.82 0.80
Task 0.75 0.82 0.77 0.41
Means 0.86 0.89 0.82 0.88
Goal 0.57 0.81 0.59 0.67
Way 0.70 0.80 0.57 0.77
Macro F1 0.76 0.85 0.71 0.71
Micro F1 0.99 0.99 0.99 0.86

Table 2: Adapters (Adapt) vs. fine-tuned BERT (BERT) on the slot tagging task.

4.2 Contextual Augmentation

In the next set of experiments we look into the
impact of context on the dialogue act classification
(Table 1). First, we train both vanilla BERT and
adapter model using only the current turn text as an
input (OnlyTurn). This results in 0.82 F1 score for
BERT and 0.80 F1 for the adapter. Next, we add
the speaker information (Speaker+Turn) and obtain
0.80 for BERT and 0.79 for the adapter model.
Moreover, adding the previous dialogue turn as
additional context (Context+Speaker+Turn) results
in a big improvement for both fine-tuned BERT
(0.91 F1) and adapter (0.84 F1).

To integrate more context into the model input
we also experiment with extractive summarization
of the dialogue using the Summarizer model intro-
duced in Miller (2019). We limit dialogue context
to 10 previous turns and set the number of summary
sentences to 3 (Summary+Speaker+Turn). How-
ever, this additional information seems to confuse
the model which is especially striking in the case of
adapters. Compared to the baseline Speaker+Turn
(0.79 F1) the average score drops by 6 point (0.73
F1). The BERT model performance does not de-
crease in this setting compared to the baseline but
it also does not show any improvement.

As a baseline for further experiments we use
the version that encodes only the speaker infor-
mation and the current turn text (Speaker+Turn).
The main reason to select this setting as a base-
line instead of OnlyTurn with a slightly higher

macro F1 score is the fact that there is an impor-
tant difference in how these two models annotate
instances of the class Order. Speaker+Turn model
has a better F1 score for the class Order (0.86)
compared to the OnlyTurn version (0.77) and since
correct processing of orders is crucial for our do-
main we choose this setting for the baseline. An-
other reason to pick Speaker+Turn and not the best-
performing version that includes additional context
(Context+AllSpeakers+Turn) is the fact that it is
simpler and quicker to compute.

4.3 Adding Linguistic Information

Dialogue Act Classification

The subset of our dataset also provides the ISO-
based annotations of dialogue acts according to
Bunt et al. (2020) which we use to train a sepa-
rate classifier that generates fine-grained ISO la-
bels. These labels are added to the input of our
main classifier that performs the domain-specific
dialogue act classification. The distribution of the
labels according to the ISO standard is shown in Ta-
ble 7 in the appendix. We split the data into 1,224
samples for training and 170 for development. Al-
though the overall accuracy of this classifier is only
62% it performs differently on different labels. The
categories that have many instances in the training
set (e.g., AutoPositive and TurnAccept) achieve F1
score around 0.81 and 0.82 but most of the rare
labels are being misclassified.

After training the adapter-based classifier on the
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ISO labels we run it on our training, development
and test data to annotate the turns with additional
ISO labels. Here we do not use the gold labels to
simulate a realistic scenario when gold annotations
are not available. The generated labels are then
translated into German and added to the turn text
with a special [SEP] token as a separator. The eval-
uation results are summarized in Table 3. The first
column shows the scores for each of the dialogue
acts when the baseline model (Speaker+Turn) is
used. The second column shows the performance
when additional (generated) labels are added to the
input. We obtain an overall 3% improvement in the
F1 scores with the additional ISO labels. We also
consider a simplified version of the labels when
we automatically map the original ISO taxonomy
to the closest equivalents in the domain-specific
taxonomy (see Table 8 in the appendix). The per-
formance of the adapter model with such simplified
dialogue act annotations is slightly worse than the
ISO version (0.81 vs. 0.82).

Slot Tagging

To investigate whether linguistic annotations are
also useful for the slot tagging task we annotate
each word with its part of speech tag using the
SpaCy library and 7 coarse categories including
noun, pronoun, verb, preposition, adverb, adjective
and other. For each tag we generate an embedding
and combine it with the BERT embedding of the
corresponding token. To process the combined em-
beddings we use a custom adapter head that adds
two linear layers on top of the Transformer model,
the tanh activation function and the final fully con-
nected layer that outputs scores for the slot labels
(BIO tags). The evaluation results of the adapter
models with and without embedded POS informa-
tion are presented in Table 4. Although the overall
F1 score does not change we can see an improve-
ment for almost every category (Task, Means and
Way) except for the category Goal3. It is possible
that for the class Goal the over-reliance on the POS
information leads to some misclassifications.

4.4 Data Augmentation in the Low-Resource
Setting

In order to simulate a low-resource scenario for the
dialogue act classification we reduce the amount
of the training and development data. The test set

3Here we report the results of a single run but the trend
was consistent among several runs of the model.

is left unchanged but the training set is reduced
from 2,261 to 240 instances and the development
set from 281 to 70 instances. As shown in Table 5
the performance drops to 0.47 F1 score on the test
set when the model is trained on the reduced data.

First, we experiment with backtranslations us-
ing the NLPAug library. We translate between Ger-
man and English and then back to German with
Helsinki-NLP/opus-mt models and add these ad-
ditional data as new instances with the same labels
to the training data. This gives us an average im-
provement of 9 points in the F1 score. We also test
whether adding more backtranslated samples helps
to improve the performance and add the samples
translated from German to French and back. How-
ever, doubling the amount of backtransalted data
does not bring any further improvements (see Table
5). When looking at the generated backtranlations
we notice that many instances are correct and rep-
resent good paraphrases. E.g., "Und guck mal ob
du ein genaues Bild von diesen Samples kriegen
kannst" (And see if you can get a clear picture of
these samples) was backtranslated into "Und sehen
Sie, ob Sie ein genaues Bild von diesen Proben
bekommen können" which is semantically equiv-
alent. However, sometimes the generated sam-
ples contain repetitions, hallucinations or incorrect
translations. For example, "Einsatzleiter" (group
leader) was translated into "Operations Managers"
which is not a valid term in the emergency response
domain.

Although backtranslation brings a substantial
boost in performance, it also involves computa-
tionally heavy translation models, requires some
extra processing time4 and may not be feasible
for some language pairs. Hence, we also exper-
iment with cheaper and less time- and resource-
consuming methods for data augmentation. First,
we apply random masking to different propor-
tions of the original tokens and generate substi-
tutions using bert-base-german-cased language
model. Table 6 shows in each row the proportion
of the replaced tokens and each column shows
the number of augmentation rounds. When se-
lecting a new word for the masked token we set
the parameter topk to 10 and iterate over all gen-
erated tokens to select the one that is different
from the original word and does not represent
a subtoken starting with ##, we also ignore all
[unused punctuation] tokens. Some of the LM-

4It takes around 7 minutes to backtranslate 240 instances.
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Dialogue Act Adapter Baseline Adapter+ISO DA Adapter+simple ISO DA
Call 0.88 0.85 0.84
CallResponse 0.84 0.81 0.80
InfoRequest 0.98 0.83 0.97
InfoProvide 0.87 0.88 0.88
Confirm 0.44 0.52 0.49
Disconfirm 0.44 0.73 0.73
Order 0.86 0.83 0.79
Other 1.00 1.00 1.00
Macro F1 0.79 0.82 0.81

Table 3: Performance of the adapter model with and without additional ISO dialogue act labels (F1 scores).

Slot Label Adapter Baseline Adapter+POS
Unit 0.92 0.92
Task 0.82 0.85
Means 0.89 0.91
Goal 0.81 0.76
Way 0.80 0.82
Macro F1 0.85 0.85

Table 4: Performance of the adapters models with and without part-of-speech information on the slot tagging task.

based replacements are near-synonyms and match
the context quite well (e.g., substituting "Realbild"
(real picture) with "Gesamtbild" (overall picture)).
However, sometimes the substituted token changes
the meaning significantly. For instance, when re-
placing "ja" in "ja kommt sofort" (yes, coming
immediately) with "Geld" (money) we generate a
nonsensical in our domain sentence "Geld kommt
sofort" (money comes immediately). We believe
that this might be the reason why the performance
of this approach is not consistently better as in case
of backtranslations, although some settings (e.g.,
60% LM replacements 5x) achieve similar perfor-
mance. Also, we observe that replacing more than
60% tokens or augmenting more than 10 times is
not beneficial for the model and leads to decreased
performance.

The simplest and cheapest way of augmenting
the data in terms of both time and computational
resources is random editing. We add new instances
by applying three different operations to randomly
selected tokens: insert, delete or swap and simi-
larly to the case of LM substitutions we experi-
ment with different settings w.r.t. the number of
edited tokens as well as the amount of the aug-
mented data. As shown in Table 6 we get an over-
all improvement over the baseline model with 0.47
F1 score but there is no clear pattern regarding
how many times or how many tokens should be

changed. The experimental results show that the
gains from adding new edited data are diminishing
after 5 rounds of augmentation and the best perfor-
mance can be achieved with 5 augmentation rounds
and 40% edited tokens (Macro F1 0.57).

Training Details
All the experiments reported in this paper were per-
formed on a a single GPU NVIDIA GeForce RTX
2080. We use adapter-transformers library to
train the adapter models and transformers library
for tuning the standard BERT models. As a base
model we use bert-base-german-cased. We
run the SpaCy library for the POS tag annotation
with de_core_news_sm model for German and
Summarizer for generating dialogue summaries.
Baktranslations are performed with the data aug-
mentation library NLPAug. Further details about
exact versions of the software and training hyper-
parameters can be found in the appendix (Figures
9 and 10).

5 Discussion

Our experiments show that adapter models can be
successfully applied in a very specific and challeng-
ing domain such as emergency response. Although
fine-tuning BERT gives a slightly better perfor-
mance (0.80 vs. 0.79 F1 for the baseline), adapters
are much more efficient in terms of memory and
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Dialogue Act Baseline (full) Baseline (low-resource) Backtranslated 1x Backtranslated 2x
Call 0.88 0.32 0.68 0.63
CallResponse 0.84 0.35 0.78 0.69
InfoRequest 0.98 0.87 0.70 0.79
InfoProvide 0.87 0.59 0.65 0.71
Confirm 0.44 0.56 0.66 0.65
Disconfirm 0.44 0.29 0.35 0.35
Order 0.86 0.76 0.64 0.67
Other 1.00 0.05 0.00 0.00
Macro F1 0.79 0.47 0.56 0.56

Table 5: Performance of the adapter model on the full and low-resource dialogue act classification with and without
backtranslations (F1 scores).

LM-based word replacements
% 1x 2x 5x 10x
0.1 0.50 0.50 0.49 0.51
0.2 0.45 0.49 0.48 0.52
0.4 0.54 0.53 0.55 0.54
0.6 0.52 0.53 0.56 0.54
Random edits: insert, delete, swap
% 1x 2x 5x 10x
0.1 0.48 0.52 0.55 0.53
0.2 0.54 0.51 0.56 0.55
0.4 0.52 0.52 0.57 0.54
0.6 0.56 0.54 0.53 0.54

Table 6: Dialogue act classification performance (macro F1) on the augmented data. The baseline macro F1 is 0.47.

computational resources. As shown in Table 10 in
the appendix an average size of an adapter model
is 3.6MB compared to 436.4MB of the fully tuned
BERT model. Also, adapters are very flexible and
can be easily combined and stacked in different
ways to perform a variety of annotations on top of
the same base model.

We found that contextual augmentation (Con-
text+AllSpeakers+Turn setting) is very beneficial
for adapters and helps to increase F1 score up to 6
points compared to the baseline version. However,
including longer context and dialogue summary
actually confuses the model and hurts the perfor-
mance. Hence, we conclude that for the dialogue
act classification task the best way of integrating
context is to combine the current and the previous
turn with the speaker information. Adding linguis-
tic features such as ISO dialogue acts and POS
tags also helps to boost the performance but to a
smaller extent (e.g. adding an ISO label increases
F1 score by up to 3 points). The slot tagging task
with adapters outperforms vanilla BERT in all set-
tings and greatly benefits from the data balancing

and negative sampling.
In the low-resource setting with 12% of the orig-

inal data we find that adding backtranslated sam-
ples helps to improve the performance by up to 9
F1 points. However, multiple backtranslations are
not necessarily useful and performance plateaus
after one round of augmentation. LM-base word
replacements and random edits can achieve similar
performance but have a greater variance across the
settings with different number of edits and augmen-
tation rounds.

The dialogue turn tokens have different rele-
vance to the task in the emergency response do-
main and replacing words blindly may result in
unrealistic or simply wrong instances. E.g., "kom-
men" (coming) has a specific meaning according
to the communication protocol used by the respon-
ders and represents an instance of the CallResponse
class. Replacing "kommen" with "gehen" (going)
or another similar verb results in the wrong interpre-
tation and should not be labeled as CallResponse.
In the future we would like to explore various con-
straints on the token substitutions and include more
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domain knowledge and ontology information to
perform targeted replacements and edits.

Active learning for text classification (Schröder
and Niekler, 2020; Zhang et al., 2022) is another ap-
proach that may work well in our domain. We have
already shown that adapters benefit from balancing
the data and it would be interesting to see whether
they further improve by learning in stages when
the model starts with he balanced dataset with easy-
to-classify labels and the difficulty level gradually
increases with each epoch. Also, in the future we
would like to explore conditional text generation
with the models like BART (Lewis et al., 2019)
or T5 (Raffel et al., 2020) which can be trained to
generate text given the corresponding label.

6 Limitations

The main limitation of our work is the focus on
the specific domain and the dataset that is not yet
publicly available. However, we should note that
the dataset can be requested for further research
and replication studies and it will be released in the
future.We believe that testing adapters with differ-
ent settings in the emergency response domain is
a valuable contribution but we are also aware of
the fact that the dataset used in our experiments is
not large or exhaustive enough to cover all the vari-
ety of topics relevant for the emergency response.
For example, our data cover cases of explosions,
leakages of hazardous materials and building col-
lapse but do not include any dialogues for open
field rescue operations or car accidents.

Another issue that is worth mentioning is the fact
that all recordings were collected during the train-
ing sessions and not the actual missions. Hence,
the responders might be under less pressure than in
a real life-threatening situation and their communi-
cation might be more of a textbook case. However,
all simulations had a realistic setting that includes
several operators, robots and points of interest (ob-
jects or locations) and we believe that the recorded
communication is representative for the domain in
question.

7 Conclusion

In this work we evaluate the performance of several
adapter models in the emergency response domain.
We demonstrate that adapters show similar perfor-
mance to the vanilla fine-tuned BERT in the base-
line setting (0.79 vs. 0.80 F1 score) while using
only 1% of the parameters of the fully tuned model.

Our experiments show that including additional
context such as previous turn and speaker can im-
prove the performance by up to 6 points in F1 score.
Also adding linguistic annotations such as ISO dia-
logue acts boosts the performance in dialogue act
classification. The slot tagging task mostly benefits
from the balanced data. As for the low-resource
setting, it shows a substantial improvement over
the baseline (9 F1 points) when a single round of
backtranslated turns is added to the training set.
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A Appendix

label original translation
Call UGV 2 von Teamleader. UGV 2 for team leader.
CallResponse UGV 2, kommen. UGV 2, coming.
InfoRequest Du sprachst eben von einer anderen

Ebene, habt ihr die schon erreicht?
You were talking about another floor,
have you already reached it?

InfoProvide Foto ist erstellt und geteilt. Photo was made and shared.
Confirm Ja, mache ich. Yes, I will do this.
Disconfirm Wir haben aktuell immer noch Probleme

mit der Steuerung.
We are currently still having problems
with the controls.

Order Schickst du mir noch mal ein aktuelles
Foto euren Standortes?

Will you send me again the current
photo of you position?

Figure 6: Dialogue Act Examples
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ISO Dialogue Act Samples ISO Dialogue Act Samples
Allo-positive 4 Agreement 5
Auto-negative 5 DeclineOffer 5
AddressRequest 10 ChoiceQuestion 10
Instruct 10 SetQuestion 11
Pausing 17 Promise 18
AcceptOffer 19 CheckQuestion 20
TurnTake 20 Disconfirm 24
Other 29 Question 36
Confirm 37 PropositionalQuestion 38
Offer 39 Answer 45
AcceptRequest 47 Request 107
Auto-positive 159 TurnAccept 207
TurnAssign 217 Inform 255

Table 7: Distribution of the ISO dialogue acts.

Simplified Dialogue Act Original ISO Labels
Call TurnTake, TurnAssign
CallResponse TurnAccept
InfoRequest Question, ChoiceQuestion, SetQuestion, CheckQues-

tion, PropositionalQuestion
InfoProvide Answer, Inform, Offer, Promise, AddressRequest,

Instruct
Confirm Confirm, Agreement, AcceptOffer, AcceptRequest
Disconfirm Disconfirm, Auto-negative
Order Request
Other All other labels

Table 8: Mapping between the ISO labels and the domain-specific dialogue acts.

Library Version URL Reference
Adapter-transformers 3.1.0 https://github.com/adapter-hub/

adapter-transformers
Pfeiffer et al. (2020)

Transformers 4.18.0 https://github.com/huggingface/
transformers/

Wolf et al. (2020)

Summarizer 0.10.1 https://github.com/dmmiller612/
bert-extractive-summarizer

Miller (2019)

NLPAug 1.1.10 https://github.com/makcedward/
nlpaug

Ma (2019)

SpaCy 3.2.4 https://spacy.io/ NA

Table 9: External libraries used in the experiments.
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Parameters Adapt Dialogue Acts BERT Dialogue Acts Adapt Slots BERT Slots
Base Model bert-base-german-cased bert-base-german-cased
Learning Rate 1e-4 1e-4 1e-3 1e-5
Number of Epochs 20 20 12 12
Batch Size 32 16 16 16
Optimizer AdamW AdamW AdamW AdamW
Avg. Training Time 6 min 22 min 4 min 4 min
Avg. Model Size 3.6MB 436.4MB 3.6MB 434.1MB

Table 10: Training parameters for different model types. The best performing model was selected based on the loss
on the development set.
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Abstract
Neural text generation models have achieved
remarkable success in carrying on short open-
domain conversations. However, their perfor-
mance degrades significantly in the long term,
especially in their ability to ask coherent ques-
tions. A significant issue is the generation of
redundant questions where the answer has al-
ready been provided by the user. We adapt and
evaluate different methods, including negative
training, decoding, and classification, to miti-
gate the redundancy problem. We also propose
a simple yet effective method for generating
training data without the need for crowdsourc-
ing human-human or human-bot conversations.
Experiments with the BlenderBot model show
that our combined method significantly reduces
the rate of redundant questions from 27.2% to
8.7%, while improving the quality of the origi-
nal model. The code, dataset, and trained mod-
els can be found at our repository1.

1 Introduction

Despite recent significant improvements in text gen-
eration techniques, open-domain dialogue genera-
tion is nowhere near perfect. Large-scale neural-
based models, such as GPT-3 (Brown et al., 2020)
and BlenderBot (Roller et al., 2020b; Chen et al.,
2021; Shuster et al., 2022), still present many issues
including but not limited to contradiction (Li et al.,
2021a), “hallucinations" (Shuster et al., 2021), of-
fensive and toxic responses (Roller et al., 2020a;
Dinan et al., 2022), which undermine their use in
real-world applications. As a result, many social
chatbots (Hakkani-Tur, 2021) still rely heavily on
hand-designed dialogue managers and scripted re-
sponses. End-to-end neural-based models are only
used for handling unexpected inputs, but only for a
few turns, before giving back control to the hand-
designed dialogue manager (Konrád et al., 2021).
Although neural-based models have shown supe-
rior performance in generating statement responses,

1https://github.com/mailong25/redundancy-dialogue

Figure 1: Examples of redundant questions generated
by the BB3 model.

they are also reported to ask undesirable questions
such as redundant, irrelevant, and topic-changing
questions (Konrád et al., 2021; Paranjape et al.,
2020). This is because the models are often trained
on short conversations, which results in generating
questions that prioritize local appropriateness over
global cohesiveness. This is why the quality of
generated questions often degrades rapidly when
the conversation is carried on over multiple turns.

To address difficulties of long-term dialogue gen-
eration, a multi-session dialogue dataset (MSC)
(Xu et al., 2021) has been proposed with an average
conversation turn of 53; this is significantly higher
than any of the previous datasets, of 2-15 turns. The
authors also proposed a memory-augmented model
that makes use of summary of the conversation for
generating global-coherent responses. However,
the issue of redundant questions is still present.
Figure 1 shows examples of redundant questions
generated by the recent Blenderbot 3.0 (BB3) chat-
bot (Shuster et al., 2022), partly trained on MSC
with memory-augmentation. Redundant questions
can be categorized into explicit and implicit. Ex-
plicit are questions that have been asked previously
in the dialogue context while implicit are the ones
in which the answers are already given or can be
inferred but was not previously asked.
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The problem of redundant questions can also
be attributed to the maximum likelihood training
objective that does not explicitly teach the model
what kinds of questions it should not ask. Although
several techniques, such as unlikelihood training
(Welleck et al., 2019), negative training (He and
Glass, 2019), and contrastive learning (Su et al.,
2022; Su and Collier, 2022) have been proposed to
mitigate undesirable behaviors of maximum likeli-
hood training, none of them have been focused on
preventing bad questions from being generated.

This study is the first to address the problem of
redundant questions in open-domain dialogue sys-
tems. We adapt and evaluate different methods, in-
cluding unlikelihood training, contrastive training,
contrastive decoding, and classification to mitigate
the redundancy problem. Whether a question is re-
dundant or not is determined based on the previous
speaker’s personas, which are input to the model
alongside the truncated dialogue history. As there
are no relevant datasets for this task, we created
the first one, called the Non-Redundant Questions
(NRQ) dataset, to facilitate training. To demon-
strate the effectiveness of the proposed method, we
apply it to improve the question-asking ability of
the Blenderbot 2.0 model (BB2) (Chen et al., 2021)
- a simpler version, but comparable to the recent
BB3 model. Experimental results show that our
proposed methods reduce the redundant question
rate of the original BB2 model from 27.2% to 8.7%,
which results in better overall performance.

2 Related work

2.1 Decoding methods

The generation of redundant questions is highly
related to repetition problems in neural-based di-
alogue models in which the model tends to copy
words and phrases from the preceding context (Xu
et al., 2022). Prior studies often tackled this issue
by controlling the decoding stage. Several beam
search variants and stochastic decoding methods,
such as top-k (Fan et al., 2018) or nucleus sam-
pling (Holtzman et al., 2019), have been proposed
to reduce the level of repetition by favoring less
likely but non-repetitive candidates. Contrastive
decoding (Su and Collier, 2022) is also proposed to
mitigate the repetition issue. Another simple yet ef-
fective approach is N-gram blocking (Kulikov et al.,
2018) in which N-gram presented in the preceding
context are blocked during candidate expansion.
However, the solution is not suitable for dealing

with implicit or explicit redundant questions with
no N -gram in common.

2.2 Training methods

Although improved decoding algorithms can re-
duce redundant question rates, the underlying issue
has not been resolved: the model still assigns a high
probability for undesirable response candidates.
Several training methods have been proposed to
address this problem. For dialogue response gen-
eration, (He and Glass, 2019) proposed a negative
training framework to resolve the problem of mali-
cious and generic responses. (Welleck et al., 2019)
stated that the standard likelihood training objec-
tive for text generation is a flawed approach, which
contributes significantly to the generation of unde-
sirable behaviors. They then proposed an unlike-
lihood training objective that forces unlikely gen-
erations to be assigned a lower probability by the
model. The method is then applied to reduce not
only dull and repetitive sentences but also inconsis-
tent and contradictory responses (Li et al., 2021b).
Another approach to discourage the model from
generating undesirable texts is contrastive training
(Cao and Wang, 2021; Li et al., 2022), which aims
to differentiate the embedding representations of
positive and negative responses.

3 Methodology

3.1 Dialogue generation

The goal of open-domain dialogue generation is
to predict the target response y = (y1, y2, .., yn),
given the dialogue context x = (x1, x2.., xm) and
augmented information s = (s1, s2, .., sk). The
dialogue context x1:m is the concatenated history
utterances from both speakers while the augmented
information s1:k can be scenarios, external knowl-
edge, speaker personas, etc.

Since using the full dialogue context is compu-
tationally expensive, prior studies often use a trun-
cated one, e.g. last 128 tokens, alongside personas
from both speakers. The introduction of personas
is to make sure the newly generated response is
consistent with what has been said in the dialogue
history. In this study, we propose another utility of
speaker personas: to avoid asking redundant ques-
tions. For example, if one of the partner’s personas
is I am a vegan, then the chatbot should not ask a
question like What is your favorite kind of meat?.

To augment the generation with personas, we use
the Fusion-in-Decoder (Izacard and Grave, 2020)
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Figure 2: Response generation with augmented speaker personas using Fusion-in-Decoder method.

as shown in Figure 2. We prepend each of the top
N personas to the dialogue context and encode
them independently using an encoder. The decoder
then attends to the concatenated encoding outputs
to produce a final response. To extract speaker
personas from conversation history, we use a pre-
trained BB2 Memory Decoder from ParlAI2. All
partner personas are used to produce the responses.

3.2 Likelihood training
Given a dataset D+ = {(x+, s+, y+)} collected
from real human conversations, we train a response
generation model using standard maximum likeli-
hood estimation (MLE)
LMLE(pθ, x

+, s+, y+) =

−
|y+|∑

t=0

log pθ(y
+
t |x+, s+, y+<t)

where x+ is the truncated dialogue context, s+ is
the speaker personas, y+ is the next target response,
and y+t is the t-th token of y+.

4 Redundancy mitigation methods

4.1 Unlikelihood training
We apply the unlikelihood loss (UL) (Welleck et al.,
2019) to discourage the model from generating
undesirable responses. Given an incoherent dataset
D− = {(x−, s−, y−)}, the loss is computed as:
LUL(pθ, x

−, s−, y−) =

−
|y−|∑

t=0

β(y−t ) log(1− pθ(y−t |x−, s−, y−<t))

where y− is the undesirable response, and s− con-
tains partner’s persona that make y− a redundant
question. β(y−t ) is a candidate-dependent scale
that controls how much the token t-th should be
penalized. We set β = 0 for the first two tokens
of the question and for tokens that do not belong
to the question. The β values for the remaining
tokens are set to 1.

2https://parl.ai/docs/zoo.html

We train the model with a mixture of likelihood
and unlikelihood losses to avoid degradation. The
likelihood is performed on D+ to push up the prob-
ability of tokens in the positive response y+ while
unlikelihood is performed on D− to push down the
probability of tokens in the undesirable response
y−. It should be noted that samples from D+ and
D− can overlap or differ. In this study, we generate
D− using the same samples from D+.

For each positive sample (x+, s+, y+) in D+,
we generate the corresponding negative one
(x−, s−, y−) by keeping x and y: x− = x+; y− =
y+. We then append an additional partner persona
sneg to the existing personas: s− = s++sneg. The
negative persona sneg is chosen so that its presence
will turn the positive response y+ into a negative
one. For example, if the positive response is What
is your favourite kind of meat?, then an example
of sneg should be I am a vegan. A simple strategy
to generate sneg is to extract the partner persona
from the next response in the dialogue. Figure 3
illustrates how a positive and a negative training
sample are generated.

As the samples from D+ and D− overlap, the
total loss can be now written as follow:

L = LMLE(pθ, x, s
+, y) + LUL(pθ, x, s

−, y)

4.2 Classification
As the model can produce multiple responses given
the input, we can filter out candidates containing
redundant questions. Hence, we can build a bi-
nary classification model that can detect whether a
generated response contains such questions. The
model takes three inputs: the truncated dialogue
context, partner speaker persona, and the generated
response. Rather than inputting all speaker per-
sonas at once for a single prediction, we split them
into multiple one-sentence personas and perform
multiple predictions. If any of the predictions in-
dicate redundancy in the generated response, we
classify it as containing redundant questions.

To generate training data for the classification
model, we use the sameD+ andD− sets discussed
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in Section 4.1. For the redundant class, we pair up
the negative partner persona sneg with the target
response y and dialogue context x. Meanwhile, we
replace sneg with a partner persona presented in s+

to form the non-redundant class.
We fine-tune three pre-trained language mod-

els, namely XLnet (Yang et al., 2019), RoBERTa
(Liu et al., 2019), and DeBERTa (He et al., 2020),
for classification task. Each training sample is
formed by concatenating the dialogue context, part-
ner speaker persona, and generated response with
a separator token in between.

4.3 Contrastive decoding

To address the repetition problem in text genera-
tion, (Su et al., 2022) has proposed a new approach
called contrastive decoding. Since the method was
originally designed for decoder-only language mod-
els (e.g., GPT2), we made some modifications to
adapt it to encoder-decoder models.

Given the context x and prefix decoded text y<t,
the selection of the output token yt follows:

yt = argmax
v∈V (k)

{(1− α)×
model confidence︷ ︸︸ ︷
pθ (v | y<t, x)

− α×max{sim
(
hv, hxn

j

)
}

︸ ︷︷ ︸
degeneration penalty

}

Where V (k) is the set of top-k predictions from
the model’s probability distribution pθ (· | y<t).
The representation of token v, denoted as hv, refers
to the decoder output (i.e., the hidden state of the
final layer) given the concatenation of the prefix
y<t and v, as well as the encoder outputs of the
dialogue context x. Similarly, the representation
hxn

j
is the decoder output of the j-th token of the

n-th turn in the dialogue context. hxn
j

is computed
based on the concatenation of the prefix xn≤j and
xnj , as well as the encoder outputs of dialogue con-
text x<n. sim(·, ·) computes the cosine similarity
between token representations while α ∈ [0, 1]
controls the importance of model confidence and
degeneration penalty. Model confidence refers to
the probability assigned by the model to the candi-
date v, while the degeneration penalty measures the
similarity between the candidate v and all tokens
presented in the dialogue context. We set α = 0.4
based on the results presented in (Su et al., 2022).

4.4 Contrastive training
Contrastive learning can be used to discourage
model from generating undesirable responses (Cao
and Wang, 2021). We propose a contrastive train-
ing objective that drives the model to favour the
generation of non-redundant questions over redun-
dant ones. Given a positive sample q+ = (x, s+, y)
from D+ and its corresponding negative sample
q− = (x, s−, y) from D−, the objective is to dif-
ferentiate the question representations between the
two samples. Assume that we have a positive set
P = {q+1 = q+, q+2 , .., q

+
m} generated from q+

and a negative set N = {q−1 = q−, q−2 , .., q
−
m} gen-

erated from q−, the contrastive loss for q can be
written as follow:

l =
−1
( |P |

2 )

∑

q+i ,q+j ∈P
q+i ̸=q+j

log
exp(sim(h+

i ,h
+
j ))∑

qk∈P∪N
qk ̸=q+i

exp(sim(h+
i ,hk))

Where h+i and h+j are representations of q+i and
q+j , while hk is representation of qk, which can be
either a sample of the positive or negative set.

Sample construction. Given a positive sample
q+ = (x, s+, y), we generate its sibling posi-
tive/negative samples by keeping x and y but ap-
pending an additional partner persona sadd to the
existing personas s+. sadd is chosen from a persona
pool S, which is a collection of all speaker personas
extracted from the training set. First, we rank per-
sonas in S based on their similarity scores to the
context x and then pick the top-k personas as sadd.
After that, we use the redundant classifier from Sec-
tion 4.2 to classify the each input (x, sadd, y). If
the prediction is redundant, we use sadd to generate
a negative sample, otherwise we use it to construct
a positive one.

Sample representation (h∗). We use the outputs of
the decoder’s last layer to form the representation h
for each positive and negative sample. More specif-
ically, we only average over tokens that belong to
the question in the target response y.

Training. To avoid model degradation, we com-
bine contrastive loss with the original MLE loss
L = LMLE + LCL.

4.5 Unlikelihood training with augmented loss
We reuse the sample construction method from Sec-
tion 4.4 to increase the coverage of the training set
and boost the performance of unlikelihood training.
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More specifically, we augment the original unlikeli-
hood loss with loss computed from sibling positive
and negative samples as follow:

Laug =
1

|P |

|P |∑

i=1

LMLE(pθ, x, s
+
i , y)

+
1

|N |

|N |∑

j=1

LUL(pθ, x, s
−
j , y)

Where P and N are the positive and negative
sets. s+i is the speaker persona of i-th sample from
P and s−j is the speaker persona of j-th sample
from N . Samples from P and N are included in
the same batch of training. Using augmented loss
helps the model better distinguish between negative
and positive samples, which reduces the number of
redundant questions while maintaining quality of
the original model.

5 Experiments setup

5.1 NRQ dataset
As there is no available dataset addressing the prob-
lem of redundant questions, we create a new non-
redundant question set called NRQ, which con-
sists of positive training samples for D+ and nega-
tive samples for D−. To form our D+, we gather
training samples from Wizard of Wikipedia (WoW)
(Dinan et al., 2018), Empathetic Dialogues (ED)
(Rashkin et al., 2018), Blended Skill Talk (BST)
(Smith et al., 2020), Multi-Session Chat (MSC)
(Xu et al., 2021), and Wizard of Internet (WOI)
(Komeili et al., 2021) datasets. Note that we only
select samples with questions presented in the tar-
get response. To extract speaker personas from
conversation history, we use a pre-trained Dialogue
Summarization Model from ParlAI.

To create negative samples for the NRQ dataset,
we use the approach outlined in Section 4.1, illus-
trated in Figure 3. Specifically, we convert each
positive sample (x, s+, y) into a negative one by
augmenting the speaker personas s+ with a neg-
ative partner persona sneg (e.g. I have two girls),
which we obtain from the partner personas of the
next dialogue turn (e.g. Yes, I have two girls),
denoted as snext. However, this procedure poses
two challenges: (i) snext may contain multiple per-
sonas, some may not be relevant to the questions
posed in the target response y, (ii) snext may be
entirely irrelevant, for instance if the next dialogue
turn is off-topic or the persona extractor model

Figure 3: A training sample of NRQ dataset

fails to identify the correct personas. As a result,
we rely on human annotators to select only the rele-
vant sneg from snext and discard samples where no
relevant sneg can be found. The number of samples
in NRQ is 100,181 before filtering, and 50,178 after
filtering. We split the final dataset into 46,286 for
training, 2,000 for validation, and 1,892 for testing.

Redundant question classification. As described
in Section 4.2, we useD+ andD− to generate train-
ing data for our the redundant question classifier,
resulting a total of 48,297 and 45,494 samples for
redundant and non-redundant class respectively. In
addition, we incorporate human annotation results
mentioned above where the negative persona sneg
is deemed irrelevant to the question. This provides
an additional 39,271 non-redundant samples.

5.2 BB2 Baseline
As training an end-to-end generation model from
scratch is computationally expensive, we choose to
use the pre-trained BB2 model (3 billion parame-
ters) as baseline. Our goal is to reduce the number
of redundant questions generated by the model.
The BB2 model is fine-tuned from the Blenderbot1
model (Roller et al., 2020b) on BST, MSC, and
WOI datasets. For decoding, we use beam search
with 4-gram blocking to prevent repetitive ques-
tions from generating. The maximum number of
tokens in the dialog context is set to 128.
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5.3 Evaluation
Perplexity (PPL) is a metric to measure how well a
generation model predicts a response. We want the
model to output low perplexity scores for good and
coherent responses while producing high perplexity
scores for undesirable responses such as redundant
questions in our case.

Diversity measures lexical diversity of generated
texts, which is computed based on corpus-level
repetition at different n-gram levels as follow:
diversity =

∏4
n=2(1.0 − rep−n

100 ), where rep-n
= 1.0 − |unique n−grams(C)|

|total n−grams(C)| ; C is a collections
of generated responses by the model.

Coherence measures the semantic similarity be-
tween dialogue context and generated response.
We use SimCSE following (Su et al., 2022) to com-
pute the similarity in the embedding space.

Redundant question rate is the percentage of gen-
erated questions that are redundant. For automatic
evaluation, we use the classifier presented in Sec-
tion 4.2 to check if a question is redundant.

Automatic evaluation is essential for hyperparam-
eter tuning and model selection. To automatically
estimate quality of generated texts, we first per-
form self-chat, i.e two chatbots chatting with each
other, to generate 50 bot-bot dialogues using BB2
Baseline. To make sure each dialogue is different,
we seed each one with a human-human conversa-
tion (25 turns) from the MSC Session1&2 and then
generate 40 more turns. After that, we calculate di-
versity, coherence, and redundant rate scores based
on the generated questions.

Human evaluation. We recruited human annota-
tors from Amazon Mechanical Turk to conduct 50
human-bot conversations for evaluation. We seed
each human-bot conversation with 25 turns from
MSC Session1&2. The human and the bot, i.e BB2
Baseline, are asked to continue each seeded con-
versation for 40 turns. After that, we asked another
group of annotators to manually check if each gen-
erated question is a redundant question based on
the entire conversation.

Method comparison. We propose a method for
a fair comparison between the BB2 Baseline and
other approaches mentioned in Section 4. Instead
of having each model conduct its own conversa-
tions, we use responses generated by the BB2
Baseline as a ground for comparison. For each

Models Acc
F1-score

Redundant
Non-
redundant

XLNet 88.3% 85.9 90.0
RoBERTa 88.6% 86.3 90.1
DeBERTa 88.2% 86.5 89.5

Table 1: Redundant question classification results on
the test set. Acc stands for accuracy.

of the BB2-generated questions, we regenerate it
with the compared models and then recompute the
evaluation scores. In cases where a model does
not generate any questions at the end, we replace
the end-of-sentence token with the most probable
question-words token (e.g. what, how, when, etc)
and continue the decoding process.

5.4 Training configuration
We fine-tune the BB2 Baseline using one A100
GPU with an Adam optimizer. The learning rate
and batch size are set to 5e-6 and 8. The model
is fine-tuned in a multi-task fashion using samples
from BST, MSC, WOI, and NRQ datasets. We
draw samples from each task equally in a round-
robin fashion. We use early stopping based on the
combined score of test set perplexity and redundant
question rate of bot-bot conversations.

6 Experiment results

Redundant question classification. We first report
performances of our redundant question classifier
in Table 1. As can be seen, all three models per-
form similarly well, with RoBERTa achieving the
highest accuracy of 88.6%. Therefore, we choose
RoBERTa to automatically calculate the redundant
question rate of the generation models in subse-
quent analyses.

Conversation length vs redundant rate. As
shown in Figure 4, the redundant question rate
increases significantly with respect to the length
of the conversation. For BB2 Baseline, the rate is
18.4% at turn 30. The number further increases
by another 8.1% when the conversation reaches
65 turns. However, this issue is not a concern in
previous studies as most evaluate the chatbots on a
short conversation setting (less than 10 turns). The
increase in redundant rate can be attributed to the
limited number of topics the chatbot can initiate.
When the conversation is prolonged, it often revisit
topics that have already been discussed.
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Figure 4: The impact of conversation length and trun-
cated context length on redundant question rate.

Truncated context length vs redundant rate. The
limitation of 128 tokens for truncated dialogue in
the BB2 Baseline could be the cause of higher re-
dundant question rate. Increasing the truncation
length could be considered as a possible solution
to address this issue. To investigate this hypothesis,
we utilized the MSC model (Xu et al., 2021), which
was specifically trained on the MSC dataset to ef-
fectively handle long conversations. In Figure 4,
the results demonstrate a significant reduction in re-
dundancy rates by extending the truncation length.
For conversations with a length of 30, the redun-
dancy rate decreased from 18.4% (truncated at 128)
to 10.4% (truncated at 1024). However, it is impor-
tant to note that despite these improvements, they
still fall short compared to the BB2 Tuned model
using our proposed methods, while also incurring
increased training and inference costs.

Bias in training data. Another contributing factor
to the redundant issue is the bias of the BB2 Base-
line towards common topics, such as pets, hobbies,
and careers, which increases the likelihood of re-
peating the same topics over again. An explanation
can be seen in Table 2, which shows the most fre-
quent redundant questions generated by the BB2
Baseline. Obviously, these questions strongly over-
lap with the most frequent questions in the training
data of BB2 Baseline, demonstrating the model’s
tendency to generate the most probable questions
as a downside of maximum likelihood estimation.

Mitigation methods comparison. We apply miti-
gation methods to improve the performance of BB2
Baseline. As can be seen in Table 3, our proposed
methods are able to not only reduce the redundancy
rate but also increase the diversity score. Discus-
sions for each method is provided as below:

Most common redundant questions
Do you have any pets?
What kind of dog do you have?
What do you do for a living?
What are you studying in school?
What kind of music do you like?
Most common questions in training data
What do you do for a living?
Do you have any pets?
Do you have any hobbies?
Where are you from?
What music do you like?

Table 2: Most common redundant questions generated
by the BB2 Baseline and most frequent questions pre-
sented in the training data of the model.

BB2 Baseline does not perform well in most met-
rics. The negative perplexity is significantly lower
than the positive one, indicating that the model is
more likely to generate redundant questions instead
of target questions. Additionally, the low measure
of lexical diversity suggests that the model tends to
produce common but repetitive questions, resulting
in a high redundant rate of 26.5%.

Contrastive decoding can significantly reduce the
redundant question rate to 17% without the need
to retrain the model. This improvement can be
explained by the significant increase in diversity
score, indicating that the model favors less repet-
itive questions. We also observe an improvement
in coherence score, which is consistent with prior
studies (Su et al., 2022).

Unlikelihood training obtains the best redundant
rate at 7.5%, thanks to significant increases in neg-
ative PPL and diversity score. The slight increase
in positive PPL suggests a tiny degradation in the
quality of the generated questions, which demon-
strates by a lower coherence score. However, using
augmented loss and further combining with con-
trastive decoding bring considerable improvements
across all metrics, especially in diversity score.

Contrastive training reduces the redundant rate
to 11.4% but it is still pales in comparison to un-
likelihood training. Also, using contrastive train-
ing comes at the cost of question degeneration, as
demonstrated by the increase in both negative and
positive PPL. It can be seen that the model is con-
fused between the task of degenerating redundant
questions versus degenerating all questions.
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Methods
Positive

PPL
Negative

PPL
Coherence Diversity

Redundant
rate

BB2 Baseline 12.2 7.9 0.34 0.02 26.5%
Contrastive decoding - - 0.36 0.07 17.0%
Contrastive training 14.4 69.6 0.34 0.11 11.4%
Unlikelihood training 12.5 37.5 0.32 0.09 7.50%
+ Augmented loss 12.7 38.0 0.33 0.12 6.44%
+ Contrastive decoding - - 0.33 0.15 6.66%

Table 3: Performances of different redundancy mitigation methods. Positive PPL refers to the perplexity of target
questions from positive samples, while negative PPL refers to the perplexity of redundant questions from negative
samples. We compute the positive PPL on the combined test set of BST, MSC, WOI, and NRQ. Negative PPL is
computed on the NRQ test set. Coherence, diversity, and redundant rate are computed on the generated questions
from 50 bot-bot conversations.

Methods Redundant
BB2 Baseline 27.2%
Classification 15.4%
Unlikelihood 11.4%
Unlikelihood + Classification 8.7%

Table 4: Evaluation results on 50 human-bot dialogues

BB2 Baseline BB2 Tuned
37.8% 62.1%

Table 5: Win rate of the BB2 Baseline and our proposed
approach.

Human evaluation. Table 4 reports human eval-
uation results on 50 human-bot dialogues. The
results indicate that the BB2 Baseline still has a
high redundant question rate of 27.2%, highlight-
ing the need for effective solutions. While using a
redundant classifier alone can reduce the rate sig-
nificantly to 15.4%, this is still much higher than
the 11.4% rate achieved with unlikelihood train-
ing. The failure of the redundant classifier can be
attributed to two reasons: (1) Since the problem of
assigning high probabilities to redundant questions
remains unaddressed, it is not uncommon that the
model generates all candidate responses with re-
dundant questions (2) With an accuracy of 88.6%,
the redundant classifier can misclassify some re-
dundant questions as non-redundant. Nevertheless,
using classification on top of unlikelihood training
can reduce the redundant rate further to 8.7%.

We can see that the improvements in human-bot
conversations are considerably lower compared to
bot-bot conversations. This is due to the fact that
human-bot conversations are typically more var-
ied and less predictable than bot-bot conversations.

In contrast, bot-bot conversations tend to revolve
around common topics and employ a shared vocab-
ulary that is well-represented in the training data of
the NRQ dataset.

Finally, we asked human annotators to compare
the overall question-asking ability of the original
BB2 Baseline with our proposed method comb-
ing unlikelihood training with redundant classifier.
For each pair of comparisons, two annotators were
asked to choose which of the two generated re-
sponses was better, or if they were both equally
good or bad. In cases where the annotators dis-
agreed, we manually reviewed the case and deter-
mined the correct annotation. When calculating
the win rate, we excluded comparison cases where
both responses were equal in quality. According
to the results presented in Table 5, our approach
significantly outperforms the original model.

7 Predictions analysis

We present several successful and failed cases of
the proposed approach. Table 6 compares perplexi-
ties of the BB2 Baseline and BB2 tuned with unlike-
lihood training in generating the target questions
based on different partners’ personas. On the one
hand, if the partner’s persona, i.e I have a dog, has
nothing to do with the target question, i.e What do
you do for a living, then there is not much differ-
ence in perplexity between BB2 Baseline and BB2
Tuned. This suggests that the proposed negative
training method does not badly affect the question-
asking ability of the original BB2 Baseline. On the
other hand, if the presence of the partner’s persona,
i.e I’m a software engineer, turns the target ques-
tion into a redundant question, then the perplexity
of the BB2 Tuned model increases significantly to
68.5 while the number for BB2 Baseline remains
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Questions Partner’s persona
Question perplexity
Baseline Tuned

What do you do for a living?
I have a dog. 2.04 2.42
I’m a software engineer. 2.06 68.5
I’m still in high school. 2.07 3.41

Do you have any pets?
I like to read books. 2.56 2.49
I have a cat and a dog. 2.52 50.0
My apartment doesn’t allow pets. 2.48 2.93

Table 6: Example perplexities of the BB2 Baseline and BB2 Tuned with NRQ when predicting the target questions.

very low, at 2.06. We also note that one of the
weaknesses of the BB2 Tuned model is that it is
still unable to spot redundant questions if they are
not clearly related to the partner’s persona. For in-
stance, the partner’s persona I’m still in high school
can be interpreted as I don’t have a job but the BB2
Tuned model still assigns a very low perplexity for
the redundant question What do you do for a living.

8 Conclusion

Asking good questions is an important skill for
a chatbot to engage in a long-term conversation.
This study first introduces the problem of redun-
dant questions in neural text generation models.
Several methods, including negative training, de-
coding, and classification have been proposed to
lower the probabilities of these undesirable ques-
tions. We also create the first-of-its-kind dataset
named NRQ dataset containing training samples
with a redundant question assigned to each dia-
logue context and speaker personas. We validate
our methods with the BB2 model and observed a
significant reduction of the redundant rate, which
results in a higher rating for the questioning skills
of the chatbot. We believe the proposed approaches
and datasets will be beneficial for building future
dialogue systems.
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Limitations

Resource hungry. One of the difficulties in de-
ploying large-scale neural text generation models
is resource allocation and latency problems. For
example, the BB2 Baseline 3B requires at least a
16GB GPU and a couple of seconds to generate the
response using one Tesla V100. As our approach

requires inputting all of the partner’s persona along-
side dialog context, it almost doubles the inference
time and increases the use of GPU memory signifi-
cantly. As a result, it is not resource-friendly when
the conversation is prolonged. A possible solution
to this is to use the RAG retriever model to select
a few relevant partner personas and incorporate
only these into the input. However, this may be
difficult to do so as we might not know what ques-
tions are going to be generated during decoding. A
redundant question might be generated because a
partner’s persona is missing.

The redundant rate is still high. Although the pro-
posed approach significantly reduces the redundant
question rate, the number still remained relatively
high, at 8.7%. We believe this is a much more
serious issue compared to other challenges, such
as contradiction or “hallucinations", as it is very
uncomfortable for the user to repeat the same in-
formation or discuss a topic multiple times during
the conversation. As mentioned in the previous
sections, one of the main weaknesses of the fine-
tuned model is the failure in recognizing the in-
direct relations between a speaker persona and a
redundant question. We believe the problem can be
addressed by scaling up the size of the NRQ dataset
to cover more of these difficult cases. Better data
augmentation techniques can also be used to di-
versify redundant questions and negative partner
personas.
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Abstract

Currently, most knowledge-grounded dialogue
response generation models focus on reflect-
ing given external knowledge. However,
even when conveying external knowledge, hu-
mans integrate their own knowledge, expe-
riences, and opinions with external knowl-
edge to make their utterances engaging. In
this study, we analyze such human behavior
by annotating the utterances in an existing
knowledge-grounded dialogue corpus. Each
entity in the corpus is annotated with its in-
formation source, either derived from external
knowledge (database-derived) or the speaker’s
own knowledge, experiences, and opinions
(speaker-derived). Our analysis shows that
the presence of speaker-derived information in
the utterance improves dialogue engagingness.
We also confirm that responses generated by
an existing model, which is trained to reflect
the given knowledge, cannot include speaker-
derived information in responses as often as
humans do.

1 Introduction

More and more dialogue research has utilized exter-
nal knowledge to enable dialogue systems to gener-
ate rich and informative responses (Ghazvininejad
et al., 2018; Zhou et al., 2018; Moghe et al., 2018;
Dinan et al., 2019; Zhao et al., 2020). The major
focus of such research is in how to select appropri-
ate external knowledge and reflect it accurately in
the response (Kim et al., 2020; Zhan et al., 2021;
Rashkin et al., 2021; Li et al., 2022).

However, as shown in Figure 11, a good speaker
not only informs the dialogue partner of external
knowledge but also incorporates his or her own
knowledge, experiences, and opinions effectively,
which makes the dialogue more engaging. The
extent to which models specializing in reflecting

1Examples of dialogues presented in this paper are origi-
nally in Japanese and were translated by the authors.

What is the highlight of this movie?

Highlight? This movie stands out because even though it was 
released in 2003, it doesn't feel outdated when you watch it 

now. The movie centers around a pirate war, and what I 
really find enjoyable is how the pirates bond and strengthen 

their relationships while facing betrayal.

Seeker

Recommender

2003Released Year

The first of the worldwide hit 
movies about the pirates' struggleReview

Figure 1: An example of Japanese Movie Recommen-
dation Dialogue (Kodama et al., 2022). The table
above the recommender’s utterance indicates the ex-
ternal knowledge used in that utterance. The recom-
mender incorporates not only database-derived infor-
mation but also speaker-derived information.

given external knowledge can achieve such an en-
gaging behavior has not yet been explored quanti-
tatively.

In this study, we first analyze how humans incor-
porate speaker-derived information by annotating
the utterances in an existing knowledge-grounded
dialogue corpus. Each entity in the utterances is
annotated with its information source, either de-
rived from external knowledge (database-derived)
or the speaker’s own knowledge, experiences, and
opinions (speaker-derived). The analysis of the an-
notated dataset showed that engaging utterances
contained more speaker-derived information.

In addition, we train a BART-based response
generation model in a standard way, i.e., by min-
imizing perplexity, and investigate the extent to
which it incorporates speaker-derived information.
The result showed that the response generation
model did not incorporate speaker-derived infor-
mation into their utterances as often as humans do.
This result implies that minimizing perplexity is
insufficient to increase engagingness in knowledge-
grounded response generation and suggests room
for improvement in the training framework.
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2 Information Source Annotation

This section describes the annotation scheme for
information sources and the annotation results.

2.1 Scheme
We annotate Japanese Movie Recommendation Di-
alogue (JMRD) (Kodama et al., 2022) with in-
formation sources2. JMRD is a human-to-human
knowledge-grounded dialogue corpus in Japanese.
A recommender recommends a movie to a seeker.
Each utterance of the recommender is associated
with movie information as external knowledge.
Each piece of knowledge consists of a knowledge
type (e.g., title) and the corresponding knowledge
contents (e.g., “Marvel’s The Avengers”).

In this study, we extract entities from the rec-
ommender’s utterances and annotate them with
their information source. Entities are nouns, verbs,
and adjectives and are extracted together with their
modifiers to make it easier to grasp their meanings.
Entities are extracted using Juman++ (Tolmachev
et al., 2020), a widely-used Japanese morphologi-
cal analyzer. Annotators classify the extracted enti-
ties into the following information source types:
Database-derived: The entity is based on the ex-
ternal knowledge used in that utterance.
Speaker-derived: The entity is based on the
knowledge, experiences, and opinions that the rec-
ommender originally has about the recommended
movie.
Other: The entity does not fall under the above
two types (e.g., greetings).

An annotation example is shown below.

(1) Utterance: The action scenes(database) are
spectacular(speaker)!

Used knowledge: Genre, Action

We recruited professional annotators, who are na-
tive Japanese speakers, to annotate these informa-
tion source types. One annotator was assigned to
each dialogue. After the annotation, another anno-
tator double-checked the contents.

2.2 Result
Table 1 shows the annotation statistics. While
JMRD is a knowledge-grounded dialogue corpus
and thus inherently contains many database-derived
entities, it also contains about 60,000 speaker-
derived entities. This result verifies that humans

2Examples of dialogue and knowledge in JMRD can be
found in Appendix A.1.

Train Dev Test Total

# dialogues 4,575 200 300 5,075
# utterances (R) 51,080 2,244 3,347 56,671
# entities 235,771 10,320 15,734 261,825

# database-derived 166,958 7,223 10,476 184,657
# speaker-derived 51,170 2,303 4,095 57,568
# other 17,643 794 1,163 19,600

Table 1: Statistics of the information source annotation.
R indicates recommender.
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Figure 2: Relationship between dialogue engagingness
and ratio of each information source label.

incorporate their own knowledge, experiences, and
opinions into their utterances, even in dialogues to
convey external knowledge.

3 Analysis of Human Utterances

We analyze human utterances at the dialogue level
and utterance level.

3.1 Dialogue-level Analysis

4,328 dialogues in JMRD have post-task question-
naires on 5-point Likert scale (5 is the best.) We
regard the rating of the question to the seekers (i.e.,
Did you enjoy the dialogue?) as dialogue engag-
ingness and analyze the relationship between this
and the ratio of each information source label.

Figure 2 shows that dialogues with high engag-
ingness scores tend to have more speaker-derived
entities (or less database-derived) than those with
low engagingness scores. When constructing
JMRD, recommenders were given a certain amount
of external knowledge and asked to use that knowl-
edge to respond. However, recommenders highly
rated by their dialogue partners incorporated not
only the given external knowledge but also speaker-
derived information to some extent in their dia-
logues.
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Figure 3: Relationship between utterance engagingness
and ratio of each information source label.

3.2 Utterance-level Analysis

We conduct the utterance-level evaluation via
crowdsourcing. We randomly extract 500 re-
sponses along with their contexts (= 4 previous
utterances) from the test set. For each utterance,
workers rate utterance engagingness (i.e., Would
you like to talk to the person who made this re-
sponse?) on a 5-point Likert scale, with 5 being the
best. Three workers evaluate each utterance, and
the scores are averaged.

The average score for utterances with speaker-
derived entities was 3.31, while those without
speaker-derived entities was 3.07. Student’s t-test
with p = 0.05 revealed a statistically significant
difference between these scores.

Furthermore, Figure 3 shows the relationship
between utterance engagingness and the ratio of
each information source label. This figure shows
that utterances with high scores tend to have more
speaker-derived entities. This trend is consistent
with that of the dialogue engagingness.

Does subjective knowledge contribute to engag-
ingness? The knowledge type used in JMRD can
be divided into subjective knowledge (review) and
objective knowledge (title, etc.). Reviews are the
opinions of individuals who have watched movies
and have similar characteristics to speaker-derived
information. We then examine whether there is
a difference in engagingness between utterances
using subjective and objective knowledge. The av-
erage engagingness scores were 3.32 and 3.163,
respectively, and Student’s t-test with p = 0.05 re-
vealed no statistically significant difference. The

3We exclude utterances referring to both of subjective and
objective knowledge from this result.

above analysis demonstrates that information ob-
tained from the speaker’s own experience is an
important factor in utterance engagingness.

4 Analysis of System Utterances

We investigate the distribution of information
source labels in the responses of the model trained
on the knowledge-grounded dialogue dataset. First,
we train a Response Generator (§4.1) with the dia-
logue contexts and external knowledge as input and
responses as output. Next, an Information Source
Classifier (§4.2) is trained with responses and ex-
ternal knowledge as input and information source
labels as output. Then, the Information Source
Classifier infers the information source labels for
the system responses generated by the Response
Generator. Finally, we analyze the distribution of
inferred information source labels.

4.1 Response Generator
We use a BARTlarge (Lewis et al., 2020) model as
a backbone.4 The input to the model is formed as
follows:

[CLS]ut−4[SEP ]ut−3[SEP ]ut−2[SEP ]

ut−1[SEP ][CLSK ]kt1[SEP ]kc1[SEP ]...

[CLSK ]ktM [SEP ]kcM [SEP ], (1)

where t is the dialogue turn, ut is the t-th response,
and kti and kci (1 <= i <= M) are the knowl-
edge type and knowledge content associated with
the target response, respectively (M is the max-
imum number of knowledge associated with ut.)
[CLSK ] is a special token. We feed the gold knowl-
edge into the model to focus on how knowledge
is reflected in the responses. The model learns to
minimize perplexity in generating ut.

We evaluated the quality of response generation
with the SacreBLEU (Post, 2018). BLEU-1/2/3/4
scored high, 81.1/73.5/71.0/69.9. This result is
reasonable because the gold knowledge was given.

4.2 Information Source Classifier
We fine-tune a RoBERTalarge (Liu et al., 2019)
model.5 The Information Source Classifier per-
forms a sequence labeling task to estimate BIO6

4https://nlp.ist.i.kyoto-u.ac.
jp/?BART%E6%97%A5%E6%9C%AC%E8%AA%
9EPretrained%E3%83%A2%E3%83%87%E3%83%AB

5https://huggingface.co/nlp-waseda/
roberta-large-japanese-seq512

6B, I and O stand for Begin, Inside and Outside, respec-
tively.
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engagingness

...
Context Recommender: This movie is an animation movie released in 2015.

Seeker: I see.

Knowledge {director, Takahiko Kyogoku}, {cast, Emi Nitta}, {cast, Yoshino Nanjo}

Response
Human: The director is Takahiko Kyogoku, and the voice actors are Emi Nitta and Yoshino
Nanjo. These two are also singers.

4.00

System: The director is Takahiko Kyogoku. The voice actors are Emi Nitta and Yoshino Nanjo. 2.33

Table 2: An example of the human and system response. The blue and red parts refer to database-derived and
speaker-derived information, respectively.

Prec. Rec. F1

database-derived 94.92 95.61 95.27
speaker-derived 80.88 84.39 82.60
other 82.93 64.15 72.34

micro avg. 90.52 90.48 90.50

Table 3: Results of the sequence labeling by Informa-
tion Source Classifier.

Dist. (%) Human (gold) Human (pred) System (pred)

database-derived 66.22 66.75 85.48
speaker-derived 26.33 27.49 10.66
other 7.45 5.77 3.86

Table 4: Distributions of information source labels for
human and system responses.

labels of the information source. The input to the
model is formed as follows:

[CLS]ut[SEP ][CLSK ]kt1[SEP ]kc1[SEP ]...

[CLSK ]ktM [SEP ]kcM [SEP ] (2)

Table 3 shows precision, recall, and F1 scores
for each label and micro average scores across all
labels. The micro average F1 score was 90.50,
which is accurate enough for the further analysis.

4.3 Analysis for Inferred Labels
The information source labels for system responses
are inferred using the classifier trained in Sec-
tion 4.2. Table 4 shows distributions of infor-
mation source labels for human and system re-
sponses. For a fair comparison, the human re-
sponses are also given labels inferred by the
classifier (denoted as Human (pred)), although
they have gold labels (denoted as Human (gold)).
Human (gold) and Human (pred) have simi-
lar distributions, indicating that the accuracy of
the classifier is sufficiently high. For System
(pred), the percentage of database-derived labels
increased significantly (66.75%→85.48%) and that

Ratio (%) Human (gold) Human (pred) System (pred)

Title 30.21 34.12 27.09
Released Year 16.41 22.31 6.56
Director 13.94 11.96 4.50
Cast 36.11 45.34 23.45
Genre 10.47 15.14 5.49
Review 27.72 31.42 6.32
Plot 13.98 13.68 2.32
No knowledge 57.49 63.08 55.99

Table 5: Average ratios of speaker-derived labels per
knowledge type used.

of speaker-derived information decreased signifi-
cantly (27.49%→10.66%). This result shows that
the response generation model, trained in a stan-
dard way, was not able to use speaker-derived in-
formation as often as humans do.

Table 2 shows an example of human and system
responses along with the engagingness scores. The
system was able to reflect given knowledge in the
response appropriately but did not incorporate ad-
ditional speaker-derived information, such as the
information two voice actors also work as singers.

For further analysis, we investigated the av-
erage ratios of speaker-derived information by
knowledge type used. Table 5 shows the re-
sult. Significant drops were observed for reviews
(31.42%→6.32%) and plots (13.68%→2.32%).
This is probably because reviews and plots are rela-
tively long and informative external knowledge, so
the system judged there was no need to incorporate
additional speaker-derived information.

Combined with our observation that speaker-
derived information improves engagingness, the
current model is likely to have lower engaging-
ness due to its inability to effectively incorporate
speaker-derived information. Such an ability is
hardly learned by simply optimizing a model to
reduce the perplexity of response generation, sug-
gesting the need for a novel learning framework.
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5 Conclusion

We analyzed the distribution of speaker-derived
information in human and system responses in
the knowledge-grounded dialogue. The analysis
showed that the use of speaker-derived information,
as well as external knowledge, made responses
more engaging. We also confirmed that the re-
sponse generation model trained in a standard way
generated less speaker-derived information than
humans.

It is difficult to make good use of speaker-derived
information by simply minimizing the perplexity
of the model because a wide variety of speaker-
derived information appears in each dialogue. We
hope our published annotated corpus becomes a
good launch pad for tackling this issue.
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A Appendices

A.1 Example of JMRD
Table 6 and 7 show examples of the dialogue and
knowledge in JMRD.

A.2 Implementation Details
A.2.1 Response Generator
Dialogue contexts, knowledge (knowledge types
and contents), and target responses are truncated
to the maximum input length of 256, 256, and 128,
respectively. The model is trained for up to 50
epochs with a batch size of 512 and 0.5 gradi-
ent clipping. We apply early stopping if no im-
provement of the loss for the development set is
observed for three consecutive epochs. We use
AdamW optimizer (Loshchilov and Hutter, 2019)
with β1 = 0.9, β2 = 0.999, ε = 1e − 8 and an
initial learning rate = 1e − 5. We use an inverse
square root learning rate scheduler with the first
1,000 steps allocated for warmup. During decod-
ing, we use the beam search with a beam size of
3.

A.2.2 Information Source Classifier
Target responses and knowledge (knowledge types
and contents) are truncated to the maximum input
length of 128 and 384, respectively. The model
is trained for up to 20 epochs with a batch size
of 64 and 0.5 gradient clipping. We apply early
stopping if no improvement of the f1 score for the
development set is observed for three consecutive
epochs. We use AdamW optimizer (Loshchilov
and Hutter, 2019) with β1 = 0.9, β2 = 0.999,
ε = 1e−8 and an initial learning rate = 1e−5. We
use an inverse square root learning rate scheduler
with the first 1,000 steps allocated for warmup.
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Turn Dialogue Knowledge type Knowledge content

R1 Hello. No knowledge -
S1 Hello. Nice to meet you!
R2 Do you know “Avengers: Endgame”? Title Avengers:

Endgame
S2 I have only heard of the title...
R3 This movie was released in 2019. Released Year 2019
S3 Got it. Is it an American movie?
R4 Yes, It’s an American action movie. Genre Action
S4 What are some of the highlights?
R5 The highlight is when the heroes gather to confront Thanos, who is an alien

villain!
Review Heroes gather to

confront Thanos
S5 I see! Is this a story of battles in space?
R6 No, it takes place on Earth. No knowledge -
S6 Then, the villain will attack the earth...
R7 Yes, there are some scary moments. No knowledge -
S7 Is it scary...? I don’t really like horror movies, but I like action ones. Would I

be able to enjoy watching it?
R8 It is not scary like horror movies, so I think you will enjoy watching it! No knowledge -
S8 Good! The fight between Thanos and the heroes sounds exciting!
R9 Please watch it! No knowledge -
S9 Yes! I’ll have a chance to go to the video store soon and rent “Avengers:

Endgame”!
R10 Thank you! No knowledge -
S10 Thank you, too, for this valuable information!

Table 6: A full dialogue example in JMRD. R and S in Turn column denote recommender and seeker, respectively.
Subscript numbers indicate the number of turns in the dialogue. “No knowledge” means that the recommender did
not use the given knowledge information.

Knowledge type Knowledge content

Title Avengers: Endgame

Released Year 2019

Director name Anthony Russo, Joe Russo
description Director, producer, screenwriter, actor, and editor for television and film in the United States.

Cast

cast1 name Robert Downey Jr.
cast1 description an American actor, voice actor, musician, and producer.
cast2 name Chris Evans
cast2 description an American actor. He was born in Sudbury, Massachusetts.

Genre Action, Adventure

Review 5 sentences, such as “Heroes gather to confront Samus.”

Plot 10 sentences, such as “In 2018, three weeks after half of all life in the entire universe was erased
by decimation (genocide using the power of the Infinity Stone) by Thanos the Titan.”

Table 7: An example of knowledge used in JMRD. The director and the casts have two attributes: name and
description, respectively.
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Abstract

Pre-trained language models have achieved re-
markable results on several NLP tasks. Most
of them adopt masked language modeling to
learn representations by randomly masking to-
kens and predicting them based on their con-
text. However, this random selection of to-
kens to be masked is inefficient to learn some
language patterns as it may not consider lin-
guistic information that can be helpful for
many NLP tasks, such as multimodal machine
translation (MMT). Hence, we propose three
novel masking strategies for cross-lingual vi-
sual pre-training – more informed visual mask-
ing, more informed textual masking, and more
informed visual and textual masking – each
one focusing on learning different linguistic
patterns. We apply them to Vision Transla-
tion Language Modelling for video subtitles
(Sato et al., 2022) and conduct extensive exper-
iments on the Portuguese-English MMT task.
The results show that our masking approaches
yield significant improvements over the origi-
nal random masking strategy for downstream
MMT performance. Our models outperform
the MMT baseline and we achieve state-of-the-
art accuracy (52.70 in terms of BLEU score)
on the How2 dataset, indicating that more in-
formed masking helps in acquiring an under-
standing of specific language structures and has
great potential for language understanding1.

1 Introduction

Pre-trained language models have achieved remark-
able results on several Natural Language Process-
ing (NLP) tasks (Devlin et al., 2019; Liu et al.,
2019; Baevski et al., 2019; Yang et al., 2019; Joshi
et al., 2020; Clark et al., 2020; Lan et al., 2020;
Zhuang et al., 2021). One of these tasks is multi-
modal machine translation (MMT), which has at-
tracted considerable attention from both Computer

1The source codes have been released at https://github.
com/LALIC-UFSCar/more-informed-masking

Vision and NLP communities as it not only consid-
ers text information but also uses other modal infor-
mation – mostly visual information – to improve
translation outputs (Specia et al., 2016; Elliott et al.,
2017; Barrault et al., 2018). Recent advances in this
field have achieved significant success and high-
lighted the efficiency of both multimodal and mul-
tilingual pre-training for MMT (Caglayan et al.,
2021; Sato et al., 2022).

Nonetheless, most pre-trained models follow
BERT’s pre-training paradigm (Devlin et al., 2019)
and adopt masked language modeling (MLM) and
its variants to learn representations by masking to-
kens and making predictions based on their context.
The conventional MLM relies on randomly select-
ing tokens to be masked and therefore may not
consider linguistic information that can be helpful
for some NLP tasks, such as MMT.

In this paper, we address this problem through
a systematic study of new masking approaches
for cross-lingual visual pre-training. We propose
more informed masking strategies to learn particu-
lar language patterns for downstream multimodal
machine translation performance. These strategies
consist of selectively masking linguistic and visual
tokens instead of randomly masking them, focus-
ing on situations that can be favored by a better
understanding of specific visual or textual informa-
tion.

For instance, since most pre-trained language
models are based on English, they fail to under-
stand some linguistic patterns that are common
in many other languages, such as the grammati-
cal gender of words. The English language treats
the grammatical gender of words differently from
languages such as French, Spanish, Portuguese, or
Italian. While some languages have different words
with the same meaning that are found in the fem-
inine and masculine forms, this does not happen
in the English language. For example, considering
the English-Portuguese translation, the pronoun
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“they” can be translated to “elas” (feminine) or
“eles” (masculine). Another example is the adjec-
tive “beautiful”, which can be translated to “bonita”
(feminine) or “bonito” (masculine) depending on
who or what it is referring to.

In this context, we propose three selective mask-
ing strategies – more informed visual masking,
more informed textual masking, and more informed
visual and textual masking – each one focusing
on masking specific linguistic and visual tokens
that can contribute to better understanding some of
these different linguistic patterns. We apply them to
Vision Translation Language Modelling for video
subtitles (Sato et al., 2022) and run an extensive set
of experiments on the Portuguese-English MMT
task.

We find that predicting particular masked el-
ements can be a powerful objective for cross-
lingual visual pre-training as the pre-trained model
can acquire a better understanding of specific lan-
guage structures. Experimental results show that
our masking approaches yield significant improve-
ments over the original random masking strategy
for downstream MMT performance. Our models
outperform the MMT baseline and achieve state-of-
the-art accuracy (52.70 in terms of BLEU score) on
the How2 dataset (Sanabria et al., 2018), indicat-
ing that more informed masking helps in capturing
domain-specific language patterns and has great
potential for language understanding.

2 Method

In this section, we present the detailed implemen-
tation of three masking strategies: more informed
visual masking (Section 2.2.1), more informed tex-
tual masking (Section 2.2.2), and more informed
visual and textual masking (Section 2.2.3), as well
as the VTLM for video subtitles pre-training objec-
tive in Section 2.1.

2.1 Visual translation language modelling for
video subtitles

The VTLM objective (Caglayan et al., 2021) joins
the translation language modelling (TLM) (Con-
neau and Lample, 2019), which employs the
masked language modelling objective, with masked
region classification (MRC) (Chen et al., 2020; Su
et al., 2020) to generate cross-lingual and multi-
modal representations. VTLM defines the input x
as the concatenation of m-length source language
sentence s(1)1:m, n-length target language sentence

s
(2)
1:n, and {v1, · · · , vo} corresponding image fea-

tures:

x = [s
(1)
1 , · · · , s(1)m , s

(2)
1 , · · · , s(2)n , v1, · · · , vo]

The final model combines the TLM loss with the
MRC loss according to the following equation:

L =
1

|X|
∑

x∈X
logPr({ŷ, v̂}|x̃; θ)

where x̃ is the masked input sequence, ŷ denotes
the ground-truth targets for masked positions, v̂
represents the detection labels and θ denotes the
model parameters.

VTLM for video subtitles (Sato et al., 2022)
corresponds to VTLM adapted to the Brazilian
Portuguese-English language pair and to more chal-
lenging circumstances regarding the image-text re-
lationship. Its pre-training has visual and cross-
lingual resources and performs MLM and MRC on
a three-way parallel multimodal and multilingual
corpus, How2 (Sanabria et al., 2018).
Masking. VTLM selects a random set of linguistic
and visual input tokens for masking. The masking
proportion is 15% and it is applied separately to
visual and language flows. For textual masking,
80% of the 15% chosen tokens are replaced with
the [MASK] token, 10% are replaced with random
tokens from the vocabulary, and 10% are kept un-
changed. And visual masking follows a similar
approach: VTLM replaces its vector of projected
features by the [MASK] token embedding, with 10%
of the masking being equivalent to using region
features randomly selected from all images in the
batch, and the remaining 10% of the regions are
left intact.

2.2 More informed masking strategies
Unlike the original approach, we do not randomly
select tokens for masking. Instead, we focus on
masking specific tokens in order to learn particular
language patterns efficiently. Thus, we propose
three new masking strategies that explore more
informed ways of masking linguistic and visual
tokens.

These approaches are based on the hypothesis
that by performing more informed masking (e.g.,
masking tokens that reveal the grammatical gen-
der of words) the model could come to a better
understanding of these concepts, obtaining better
performance in the translation of pronouns and
words assigned as masculine, feminine, or neuter.

245



Figure 1: VTLM architecture, highlighting the more informed visual and textual masking strategy.

The overall architecture of the model is depicted in
Figure 1.

2.2.1 More informed visual masking

This approach consists of changing the visual mask-
ing so that the initial selection of tokens for mask-
ing is no longer random, and a greater proportion
of tokens related to elements categorized as people
are selected for masking, such as objects in the
image categorized as “man”, “woman”, “boy”, or
“girl”. For convenience, we denote these tokens as
TPeople.

To accomplish this, we changed the visual mask-
ing stage to retrieve detection information neces-
sary to perform the identification of class labels
during training. Specifically, we used object fea-
tures that were previously extracted using the Faster
R-CNN model (Ren et al., 2015) pre-trained on the
Open Images Dataset V4 (Kuznetsova et al., 2020)
to retrieve the information needed to identify the
categories of visual tokens during training.

At the beginning of the visual masking stage, we
obtain the category index from the label map of the
Open Images Dataset, as well as the variables con-
taining the class predictions and confidence scores
for each image from the batch. We then identify the
index associated with each image and the position
of each visual token in relation to the set of images
from the batch. As a result, we are able to obtain
the class label and confidence score for each token
candidate to be masked and selectively choose the
tokens that will be masked.

We apply this strategy to increase the proportion
of TPeople among masked tokens, with a percent-
age of 33.34%, 50.0%, and 66.67%. In all cases,
the remaining candidate tokens for making do not
have the same category as TPeople and are randomly

chosen. We maintained the visual masking ratio:
15% of inputs are selected for masking, from which
80% are replaced with the [MASK] token, 10% are
replaced with random tokens, and 10% are left in-
tact.

2.2.2 More informed textual masking

Similar to the previous approach, this masking
strategy aims to mask a greater amount of tokens
that reveal the grammatical gender of words in a
given sentence. Thus, the initial selection of tokens
for masking was changed to no longer be random
and to favor more pronouns – such as “he”/“she”,
“him”/“her”, and “his”/“hers” – among the tokens
that will be masked, maintaining the 15% textual
masking ratio. For convenience, we denote these
tokens as TPronouns.

As VTLM stores the input textual stream as
integer-type Tensors, we changed the VTLM archi-
tecture to convert this numerical stream to words at
the beginning of the textual masking stage and then
ascertain each sentence from the batch to identify
subject pronouns, object pronouns, and possessive
adjectives and pronouns. After identifying these
words, they are marked and associated with their
original numerical form so that they can be iden-
tified later in the selection of tokens for masking.
At this stage, TPronouns are identified and tokens
are selectively chosen to be masked, with a higher
proportion of TPronouns being masked.

We performed three experiments with the fol-
lowing percentages of TPronouns: 33.34%, 50.0%,
and 66.67%. In all cases, the remaining masked
tokens did not have the same category as TPronouns
and were randomly chosen following the standard
approach.

246



Model TPeople
Test Valid

BLEU METEOR BLEU METEOR
VTLM: random masking 51.80 78.04 52.44 78.25

VTLM: more informed visual masking
33.34% 52.70 79.63 53.25 79.83
50.00% 51.92 79.10 52.51 79.41
66.67% 51.65 78.64 52.26 79.09

Table 1: BLEU and METEOR scores for random masking VTLM (baseline) and more informed visual masking
VTLM (our model) for the MMT task.

2.2.3 More informed visual and textual
masking

The more informed visual and textual masking
strategy is a combination of the two previous ap-
proaches, i.e., we mask a greater proportion of
TPeople tokens at the visual masking stage, as well
as TPronouns tokens at the textual masking stage.

This approach aimed to analyze the model be-
havior when applying more informed visual mask-
ing and more informed textual masking simultane-
ously.

3 Experiments

Pre-training data. We use the How2 corpus
(Sanabria et al., 2018) in all stages of experimenta-
tion. How2 is a multimodal and multilingual collec-
tion of approximately 80,000 instructional videos
accompanied by English subtitles and around 300
hours of collected crowdsourced Portuguese trans-
lations. For pre-training, we used a set from the
How2 corpus that contains 155k features and their
corresponding text in English and Portuguese2. We
applied Moses tokenization3 and used byte pair en-
coding (Sennrich et al., 2016) to split words into
subword units.
Pre-training. We followed Caglayan et al.’s (2021)
work to conduct the experiments. We set the model
dimension to 512, the feed-forward layer dimen-
sion to 2048, the number of layers to 6 and the num-
ber of attention heads to 8. We randomly initial-
ize model parameters rather than using pre-trained
LM checkpoints. We use Adam (Kingma and Ba,
2014) with the mini-batch size set to 32 and the
learning rate set to 0.0001. We set the dropout (Sri-
vastava et al., 2014) rate to 0.1 in all layers. The
pre-training was conducted on a single NVIDIA
GeForce GTX 1070 GPU for 1.5M steps, and best

2The dataset used in this work is publicly available under
the Creative Commons BY-SA 4.0 License and BSD-2-Clause
License.

3https://github.com/moses-smt/mosesdecoder

checkpoints were selected with respect to valida-
tion set accuracy.
Fine-tuning. The encoder and the decoder of
Transformer-based (Vaswani et al., 2017) MMT
models are initialized with weights from VTLM,
and fine-tuned with a smaller learning rate. We
use the same hyperparameters as the pre-training
phase, but we follow Sato et al.’s (2022) work and
decrease the batch size to 16 and the learning rate
to 1e-5. For evaluation, we use the models with the
lowest validation set perplexity to decode transla-
tions with beam size of 8.
Evaluation Metrics. We report the automatic eval-
uation using BLEU (Papineni et al., 2002) and ME-
TEOR (Banerjee and Lavie, 2005). We also con-
duct qualitative analyzes to better show the effects
of the proposed masking strategies.

4 Results

The trained models were evaluated on valid and test
sets of How2 for the multimodal machine transla-
tion (MMT) task. We compare our models with
the original VTLM for video subtitles model (Sato
et al., 2022), which has the same architecture but
uses the popular random masking strategy instead
of ours.

4.1 More informed visual masking

Table 1 shows BLEU and METEOR scores across
valid and test sets of How2. The results show that
this new masking strategy affects the final perfor-
mance of the model. For TPeople = 33.34%, our
model achieved 52.70 BLEU and 79.63 METEOR
on the test set and 53.25 BLEU and 79.83 ME-
TEOR on the valid set for the MMT task, outper-
forming the baseline by approximately 1 BLEU
and 1.6 METEOR. When TPeople = 50.0%, our
model also outperformed the baseline in terms of
both BLEU and METEOR, but its performance
was slightly inferior to the performance of the first
experiment. Finally, when TPeople = 66.67%, the
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Source: Então ele ou ela não carrega todo o peso do SCBA, na área do ombro ou região ao
redor do pescoço.

Reference: So he or she is not carrying all the weight of the SCBA, in the shoulder area, or
region around the neck.

Baseline: So it or it doesn’t carry all the weight of the SCBA, in the shoulder area, or region
around the neck.

Our model: So he or she won’t carry all the weight of the SCBA, in the shoulder area, or region
around the neck.

Source: Então, há algumas maneiras diferentes de levá-lo pra fora.
Reference: So there’s a couple of different ways to take him out.

Baseline: So there’s a couple of different ways to take it out.
Our model: So there’s a couple of different ways to get him out.

Source: E nós vamos fazer isso em seu cabelo hoje.
Reference: And we’re going to be cornrowing that into her hair today.

Baseline: And we’re going to do that on your hair today.
Our model: And we’re going to do that on her hair today.

Source: Ela pegará neve e a empurrará para o lado da estrada ou ela pegará a sujeira de um
ponto alto e a moverá para o lado.

Reference: It will catch snow and push it over to the side of the road or it will catch dirt out of a
high spot and move it over to the side.

Baseline: She will take snow and push it to the side of the road or she will take the dirt from a
high point and move it to the side.

Our model: It will take snow and push it to the side of the road or it will take the dirt from a high
spot and move it to the side.

Table 2: Translation examples of random masking VTLM (baseline) and more informed visual masking VTLM
(our model).

performance of our model was superior to the base-
line by approximately 0.7 METEOR. However, in
terms of BLEU, the performance was inferior to the
baseline by approximately 0.16 BLEU, presenting
a behavior different from that observed in the last
two experiments.

Therefore, the results indicate that more in-
formed visual masking benefits the final perfor-
mance of the model to a certain extent. By increas-
ing the proportion of TPeople tokens being masked,
there is an improvement in the performance of
the model compared to the baseline. Nevertheless,
when this proportion becomes greater than 50%,
this improvement tends to decrease. This behavior
may be explained by the decrease in tokens related
to other categories being masked since the visual
masking ratio did not change, i.e., it remained at
15%. Thus, excessively increasing the proportion
of TPeople tokens being masked can jeopardize the
learning of elements from other categories.

Qualitative Analysis. To better understand the ef-
fect of our proposed pre-training masking approach,
we compare some examples of texts translated by
random masking VTLM (baseline) and more in-
formed visual masking VTLM (our model). The

examples are presented in Table 2. In the first exam-
ple, the baseline mistranslates the subject pronouns
“he” and “she”, translating both to “it”, while our
model translates them correctly, achieving better
performance. In the second example, the baseline
mistranslates the object pronoun “him”, translating
it to “it”, while our model translates it correctly.
The third example illustrates the correct transla-
tion of the possessive adjective “her” by our model,
while the baseline mistranslates it to “your”. Fi-
nally, the baseline references an object using the
subject pronoun “she” instead of “it”. In contrast,
our model does not make the same mistake and
uses the pronoun correctly.

4.2 More informed textual masking

We run the same experiment using three different
ratios of TPronouns – 33.34%, 50.0%, and 66.67% –
and the results are shown in Table 3. The results
show that this masking strategy also affects the
final performance of the model. For TPronouns =
33.34%, our model scored 52.64 BLEU and 79.45
METEOR on the test set and 52.96 BLEU and
79.53 METEOR on the valid set, outperforming
the baseline by approximately 0.7 BLEU and 1.3

248



Model TPronouns
Test Valid

BLEU METEOR BLEU METEOR
VTLM: random masking 51.80 78.04 52.44 78.25

VTLM: more informed textual masking
33.34% 52.64 79.45 52.96 79.53
50.00% 52.39 79.35 52.94 79.51
66.67% 52.21 79.27 52.82 79.42

Table 3: BLEU and METEOR scores for random masking VTLM (baseline) and more informed textual masking
VTLM (our model) for the MMT task.

Source: Se você andar seu cachorro do seu lado esquerdo, você quer que ele se sente do lado,
porque o que ele faz é apertar, então, se você estiver por aqui, o cachorro deveria tê-lo
aqui.

Reference: If you walk your dog on your left side you want it to sit on the side because what it does
is tighten up so if you’re over here the dog should have it over here.

Baseline: If you walk your dog on your left side you want him to sit on the side because what he
does is squeeze, then if you’re standing over here the dog should have him here.

Our model: If you walk your dog on your left side you want it to sit on the side because what it does
is tighten, then if you’re over here the dog should have it here.

Source: Ela entra em cena depois que a cena começa entre o policial e Stanley.
Reference: She walks into the scene after the scene begins between the police officer and Stanley.

Baseline: It goes into scene after the scene starts between the police officer and Stanley.
Our model: She goes into scene after the scene starts between the police officer and Stanley.

Source: E eu só trabalhei uma noite com ela.
Reference: And I only worked one night with her.

Baseline: And I just worked a night with it.
Our model: And I just worked a night with her.

Source: Mas, eu vou tentar de qualquer maneira e você pode ter uma ideia do que você pode
querer fazer.

Reference: But, I’m going to try it anyway and you can get an idea of what you might want to do.

Baseline: But, I’m going to try anyway and you might have an idea of what you might want to do.
Our model: But, I’m going to try it anyway and you might get an idea of what you might want to do.

Table 4: Translation examples of random masking VTLM (baseline) and more informed textual masking VTLM
(our model).

METEOR. As for TPronouns = 50.0%, our model
also surpassed the baseline, but its performance
was worse than in the previous experiment. Finally,
for TPronouns = 66.67%, our model performed better
than the baseline in terms of BLEU and METEOR,
but its performance was inferior than in the last two
experiments, when the chosen proportions were
33.34% and 50.0%.

Therefore, the results indicate that masking more
TPronouns tokens leads to an improvement in the
final performance of the model. However, even
though our model surpassed the baseline in all
experiments, this performance improvement is
limited, as the best performance was observed
when TPronouns proportion was 33.34%, followed
by 50.0% and 66.67%, respectively.
Qualitative Analysis. Some examples of texts
translated by each model are presented in Table 4.

In the first example, the random masking VTLM
uses the pronouns “he” and “him” to refer to the
word “dog” instead of using the pronoun “it”,
which should have been used in this case. On the
other hand, our model does not make the same
mistake and uses the correct pronoun in all cases,
achieving better translation performance. In the
second example, the random masking VTLM mis-
translates the subject pronoun “she” and translates
it to “it”, which is a serious translation error since
the pronoun “it” cannot be used to refer to a person.
In contrast, our model uses the correct pronoun
and achieves better performance. The next exam-
ple illustrates the incorrect translation of the object
pronoun “her” by the baseline, which again uses
the pronoun “it” to refer to a person. However,
this error is not made by our model, which makes
the correct use of the pronoun in the translation.
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The three previous examples illustrate situations
similar to those observed with the application of
more informed visual masking. However, the last
example shows a further improvement in transla-
tion. This improvement is related to the use of the
pronoun “it” as the direct object of a verb. While
the baseline omits this pronoun in the translation,
our model correctly uses it after the verb “try”.

4.3 More informed visual and textual masking

Table 5 shows BLEU and METEOR scores across
valid and test sets of How2. The obtained results
show that the more informed visual and textual
masking strategy also affects the performance of
the MMT model. Our model achieved 52.34 BLEU
and 78.77 METEOR on the test set and 53.28
BLEU and 79.44 METEOR on the valid set, outper-
forming the baseline by approximately 0.7 BLEU
and 0.9 METEOR.

Although the performance improvement was not
very high in terms of BLEU and METEOR, the
results indicate that applying more informed visual
and textual masking benefits the final performance
of the model.
Qualitative Analysis. To further understand the
effectiveness of our approach, we compared some
examples of texts translated by random masking
VTLM (baseline) and more informed visual and
textual masking VTLM (our model). The examples
are presented in Table 6. In the first example, the
random masking VTLM references the word “web-
site” using the subject pronoun “he” instead of the
pronoun “it”. In contrast, our model does not make
the same mistake and uses this pronoun correctly.
In the second example, the object pronoun “him”
is used incorrectly by the baseline. In this case,
the pronoun “it” should have been used and our
model makes the correct use of this pronoun. The
third case illustrates the correct translation of the
possessive adjective “your” by our model, while
the baseline mistranslates it to “their”. In the fourth
example, our model correctly uses the pronoun “it”
as the direct object of the verb “take”, while the
baseline omits this pronoun in the translation.

Finally, the last situation illustrates a new im-
provement not seen when applying more informed
visual masking or more informed textual masking
separately. Although visual information improves
the overall performance of the standard multimodal
model, we observed that it can lead to the incor-
rect use of certain pronouns. For instance, when

the video frame associated with the text has an ele-
ment categorized as “man”, the pronouns used in
the translation tend to be “he” or “him”. Likewise,
when there is an element categorized as “woman”
in the video frame, the pronouns tend to be “she”
or “her”. On the other hand, our more informed
masking approach tends to better deal with this
bad tendency of multimodal models. In the last
example, the two elements categorized as “man” in
the image possibly influenced the incorrect choice
of the pronoun “him” after the verb “bring” by
the baseline model. However, our model did not
make the same mistake and used the pronoun “it”
correctly.

5 Related Work

Pre-trained language models have become essen-
tial in the natural language processing field. One
pre-trained model that has attracted considerable
attention in this field is BERT (Devlin et al.,
2019). BERT introduces masked language mod-
eling (MLM) to efficiently learn bidirectional rep-
resentations by masking a set of input tokens at
random and predicting them afterward. In this ap-
proach, 15% of input tokens are randomly selected
for masking, from which 80% are replaced with
the [MASK] token, 10% are replaced with a random
token, and 10% are left intact.

Following BERT, several approaches have been
proposed to optimize pre-trained language mod-
els. Devlin et al. (2019) later propose whole word
masking (wwm) in an attempt to address the draw-
backs of random token masking in the MLM task.
In this approach, input tokens are segmented into
units corresponding to whole words, and instead
of selecting tokens to mask at random, they mask
all of the tokens corresponding to a whole word
at once. Zhang et al. (2019) introduce ERNIE to
optimize the masking process of BERT by applying
entity/phrase masking. Instead of randomly select-
ing input words, phrase-level masking masks con-
secutive words and entity-level masking masks the
named entities. Clark et al. (2020) present ELEC-
TRA, which uses a generator-discriminator frame-
work. While the generator learns to predict the
original words of the masked tokens, the discrim-
inator uses Replaced Token Detection to discrim-
inate whether the input token is replaced by the
generator. Levine et al. (2021) propose a principled
masking strategy based on the concept of Pointwise
Mutual Information (PMI). PMI-masking jointly
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Model Test Valid
BLEU METEOR BLEU METEOR

VTLM: random masking 51.80 78.04 52.44 78.25

VTLM: more informed visual and textual masking 52.34 78.77 53.28 79.44

Table 5: BLEU and METEOR scores for random masking VTLM (baseline) and more informed visual and textual
masking VTLM (our model) for the MMT task.

Source: Isso é o que dá ao meu site as opções de cores que ele tem.
Reference: That is what gives my site the color options that it has.

Baseline: That’s what gives my website to the color options that he has.
Our model: That’s what gives my website to the color options that it has.

Source: E eu vou empurrá-lo de volta.
Reference: And I’m going to push it back down.

Baseline: And I’m going to push him back.
Our model: And I’m going to push it back down.

Source: Eles mantêm seus dedos juntos e são bons para muitas atividades.
Reference: They keep your fingers kind of together and are good for a lot of activities.

Baseline: They keep their fingers together and they’re good for many activities.
Our model: They keep your fingers together and they’re good for a lot of activities.

Source: Agora pegue, coloque a marca do oleiro lá.
Reference: Now take it, put the potter’s mark in there.

Baseline: Now take, put your potter’s mark on there.
Our model: Now take it, put the potter’s mark in there.

Source: Ele quer trazê-lo de volta naturalmente.
Reference: He wants to bring it back naturally.

Baseline: He wants to bring him back naturally.
Our model: He wants to bring it back naturally.

Table 6: Translation examples of random masking VTLM (baseline) and more informed visual and textual masking
VTLM (our model).

masks a token n-gram if it exhibits high collocation
over the corpus.

Combining cross-lingual and visual pre-training,
Caglayan et al. (2021) propose Visual Translation
Language Modelling (VTLM), which extends the
TLM framework (Conneau and Lample, 2019) with
regional features and performs masked language
modeling and masked region classification on a
three-way parallel language and vision dataset. The
standard masking ratio is maintained (i.e. 15%) and
it is applied separately to visual and language flows.
VTLM achieved a 44.0 BLEU and 61.3 METEOR
on the English-German 2016 test set of Multi30k
(Elliott et al., 2016) for the MMT task. Following
this approach, Sato et al. (2022) propose VTLM for
video subtitles, which extends VTLM to a new lan-
guage pair and to more challenging circumstances
concerning the image-text relationship by using
video frames with subtitles instead of images with
their corresponding description. They use the same

random masking approach for both visual and tex-
tual masking and achieved a 51.8 BLEU and 78.0
METEOR on the Portuguese-English test set of
How2 (Sanabria et al., 2018) for the MMT task. In
this paper, we propose three novel masking strate-
gies for cross-lingual visual pre-training and we
apply them to VTLM for video subtitles to test
their efficacy for downstream MMT performance.

6 Conclusions

In this work, we show that predicting particular
masked elements can benefit cross-lingual visual
pre-training as the pre-trained model can acquire
a better understanding of specific language struc-
tures, which improves downstream tasks such as
multimodal machine translation. We present three
selective masking strategies that focus on masking
specific linguistic and visual tokens that can con-
tribute to understanding some language patterns.
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We achieve state-of-the-art accuracy on the How2
dataset and show that our masking approaches yield
significant improvements over the original random
masking strategy for downstream MMT perfor-
mance. Even though we only conduct experiments
on the MMT task using VTLM as the base model,
our method can easily generalize to other models
and other NLP tasks. We hope that our work here
will further accelerate future research on Brazil-
ian Portuguese and other low-resource languages.
For future work, we will investigate the impact
of visual and textual masking probability and fur-
ther explore more effective masking approaches for
downstream MMT performance.

Limitations

Although our research led to improvements in the
translation of subject pronouns, object pronouns,
and possessive adjectives and pronouns, these im-
provements did not cover non-binary-associated
pronouns, such as they/them/theirs, xe/xem/xyr
and ze/hir/hirs. The large underrepresentation of
non-binary genders in textual and visual data con-
tributes to propagating the misrepresentation of
non-binary people by language models. In this pa-
per, we were unable to work against this issue, thus
we hope to contribute to a fairer representation of
these disadvantaged groups in the future.

Ethics Statement

We acknowledge that all co-authors of this paper
are aware of the ACM Code of Ethics and honor
the code of conduct. We collected our data from a
public dataset that permits academic use. As our ex-
periments are limited to the binary linguistic forms
represented in the used data, we cannot guaran-
tee that our models will always generate unbiased
content.
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Abstract
Procedural knowledge understanding underlies
the ability to infer goal–step relations. The task
of Visual Goal–Step Inference addresses this
ability in the multimodal domain. It requires
the identification of images that depict the steps
necessary to accomplish a textually expressed
goal. The best existing methods encode texts
and images either with independent encoders,
or with object-level multimodal encoders us-
ing blackbox transformers. This stands in con-
trast to early, linguistically inspired methods
for event representations, which focus on cap-
turing the most crucial information, namely
actions and participants, to learn stereotypical
event sequences and hence procedural knowl-
edge. In this work, we study various methods
and their effects on procedural knowledge un-
derstanding of injecting the early shallow event
representations to nowadays multimodal deep
learning-based models. We find that the early,
linguistically inspired methods for representing
event knowledge do contribute to understand
procedures in combination with modern vision-
and-language models. This supports further
exploration of more complex event structures
in combination with large language models.1

1 Introduction

Procedural Knowledge Understanding (PKU) im-
plies reasoning about how to complete a task or
achieve a goal (Mujtaba and Mahapatra, 2019).
While previous works focus on plain texts (Yang
and Nyberg, 2015; Zhou et al., 2019; Zhang et al.,
2020a,b; Lyu et al., 2021; Sun et al., 2022), recent
studies extend the task to the visual–linguistic do-
main. They ground procedural everyday tasks in
the visual world, as a step towards situated proce-
dural understanding in the real world.

Yang et al. (2021) propose a novel PKU task that
utilizes both textual and visual information by se-
lecting an image conditioned on a sentence which

1The code is available at https://github.com/
st143575/Exploring-Event-In-VGSI.

I1 I2

I3 I4

Figure 1: An example of the VGSI task. For the given
goal G, image I1 (Combine the milk and cream before
adding everything to the large bowl) should be selected
since it depicts a step S that leads to accomplishing G.

describes a high-level goal (illustrated in Figure 1,
cf. Section 2.2). Their experimental results show
that there is still a large gap to human performance
on this task. While Yang et al. (2021) represent
goal descriptions by their neural embeddings, ear-
lier approaches to representing procedural knowl-
edge or stereotypical event sequences (i.e., goals
and steps; cf. scripts, Shank and Abelson, 1977),
in contrast, focus on capturing the most essential
information of events, namely the actions and their
main participants (Balasubramanian et al., 2013;
Pichotta and Mooney, 2014, inter alia).

In this work, we explore different ways to in-
ject these linguistically inspired representations
to the recent powerful deep learning approaches,
and study their contribution to multimodal PKU.
Specifically, we investigate the relational event
representation (Balasubramanian et al., 2013) and
the multi-argument event representation (Pichotta
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and Mooney, 2014, 2016) due to their simple but
condensed structure holding the most crucial in-
formation such as the action and the main par-
ticipants in the main clause. We also evaluate
different approaches to encode and inject such
event knowledge to the model used by Yang et al.
(2021), while also taking the contextual informa-
tion into account. We conduct our experiments
from three perspectives. First, we explore two
approaches for event knowledge injection: (1)
EVENT replaces the sentence describing the event
by the two aforementioned event representations;
(2) SENTENCE+EVENT appends the two types of
event representations to the sentence describing
that event. Second, we compare the embeddings
extracted from different layers of the text encoder
based on the finding of Jawahar et al. (2019) and
Vulić et al. (2020), namely that lexical, syntactic
and semantic information tend to be captured by the
first, middle and last couple of layers, respectively.
And third, we study the contribution of contextu-
alised embeddings to represent the event and its
participants compared to local embeddings.

The main contributions of this paper are:
(1) comparison between two approaches for
linguistically-inspired event knowledge injection
for the task of multimodal procedural knowledge
learning; (2) comparison of three levels of linguis-
tic information in the text embedding; (3) investiga-
tion of local and contextualised event embeddings;
(4) assessment of different abstract representations
for the implicit subject of instructional texts.

We find that appending the multi-argument
event representation to the input sentence with the
<|startoftext|> token as the implicit subject, and
taking the average of the last 4 hidden layers of
CLIP’s text encoder is the best way to encode and
inject event knowledge to a deep learning model.
Specifically, first encoding the full sentence and
then extracting and averaging the word-level em-
beddings of the components of the event represen-
tation can use the contextual information in the
sentence outside the event itself.

2 Related Work

2.1 Event Definitions and Representations

The concept event can be defined in various ways.
In early works, an event is either defined as a verb
(Katz and Arosio, 2001), or an expression that have
implicit time dimension and is either a verb or a
noun phrase (Schilder and Habel, 2001), or a propo-

sition consisting of the subject and the predicate (Fi-
latova and Hovy, 2001). Pustejovsky et al. (2005)
define an event as a predicate describing a state or
a circumstance in which something holds true. Li
et al. (2021) define an event as the occurrence of an
action causing a state change, which is performed
by some participant(s) in a particular manner. For
instance, image I3 in Figure 1 illustrates the event
of A person beating together butter and sugar with
a mixer.

Later studies on script learning (Zhang, 2022)
extend the definition of the event by its surround-
ing components in the text. Chambers and Juraf-
sky (2008) represent an event as a (verb, depen-
dency)-pair extracted from narrative texts using a
dependency parser. Balasubramanian et al. (2013)
generate event schemata from news articles using
(subject, verb, object)-pairs as the event representa-
tion. Pichotta and Mooney (2014, 2016) represent
events as (subject, verb, object, preposition) tuples
that model the interactions between entities in a
script.

In contrast, recent works focus on extracting
events with more complex structures and richer in-
formation from contexts. Yu et al. (2022) design
a BERT-based framework for building event ex-
tractors in a weak supervised manner. Chen et al.
(2021) train a multimodal Transformer (Vaswani
et al., 2017) to jointly extract events from videos
and texts. Wei et al. (2023) propose a framework
for zero-shot event extraction using a sibling model
to InstructGPT (Ouyang et al., 2022). Knowledge
graphs (Hogan et al., 2021) have been widely used
to extract events from multimodal data and repre-
sent events in a more complex structure (Li et al.,
2020, 2022). We adopt the relational event rep-
resentation of Balasubramanian et al. (2013) and
the multi-argument event representation of Pichotta
and Mooney (2014) for our experiments due to the
low performance of recent event extractors on the
dataset used for our experiments.

2.2 Procedural Knowledge Understanding

A procedure is a compound event that can be bro-
ken down into multiple events (Zhang, 2022). It
consists of a goal and a sequence of steps towards
accomplishing that goal. Procedural knowledge
understanding (PKU) is the task of learning the
relations between the goal and the steps. Various
approaches have been proposed to understanding
procedures using event knowledge. Tandon et al.
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(2020) use entity tracking to generate state changes
from procedural text. Zhang et al. (2020b) learn
goal–step relations and step–step temporal relations
in procedural texts and introduce a 4-way multiple
choice task for goal–step inference. Yang et al.
(2021) extend it to the multimodal domain and
learn goal–step relations from texts and images.
Lyu et al. (2021) generate the sequence of steps
conditioned on a given goal. Zhou et al. (2022)
discover the hierarchical structure in procedural
knowledge using action linking. Based on the work
of Yang et al. (2021), we investigate different ways
to encode and inject classical event knowledge to
recent deep learning models.

Goal–Step–Inference (Zhang et al., 2020b) is the
task of reasoning about goal–step relations from
instructional texts. Given a goal sentence and four
candidate step descriptions, a model should choose
the step that leads to the goal. The main challenge
of this task is that it requires to understand both,
the actions of goals and steps and their relations.
Yang et al. (2021) extend the task to the multimodal
domain through the Visual Goal–Step Inference
task, in which steps are described by images. They
attempt to overcome the challenge by matching the
goal sentence and the step image. However, they
still observe a significant gap between model and
human performance. Our work seeks to bridge this
gap with multiple approaches by combining state-
of-the-art neural models with early linguistically
motivated event representations (see above).

2.3 Vision-and-Language Models

In recent years, Vision-and-Language (V&L) mod-
els have made tremendous progress on a wide range
of multimodal tasks, such as visual commonsense
reasoning (Lu et al., 2019), image–text retrieval
(Chen et al., 2020), text-to-image and image-to-
text generation (Rombach et al., 2022; Li et al.,
2023). One strand of models are fusion encoders
which learn a fused representation of images and
texts. For example, LXMERT (Tan and Bansal,
2019) uses attention (Vaswani et al., 2017) to learn
intra-modal and cross-modal relationships while
training a language encoder, an object relationship
encoder and a cross-modality encoder. Although
the model learns the alignment between images,
objects and words in sentences via the object-level
pretraining objectives, it does not understand the re-
lations between the objects and the action. Another
line of works propose dual encoders which learn

separate encodings of images and language. A
prominent example is CLIP (Radford et al., 2021),
which uses a contrastive objective to train a text en-
coder (GPT-2, Radford et al., 2019) and an image
encoder (e.g., ViT Dosovitskiy et al., 2020). CLIP
achieves state-of-the-art performance across multi-
ple tasks. Different from LXMERT, CLIP is trained
to match an image as a whole to a text description.
We use this advantage and extract image-grounded
sentence embeddings using CLIP’s text encoder.
Since CLIP applies a subtoken-level tokenization,
the outputs of its text encoder are embeddings for
the subtokens in the input sentence. Although it is a
common practice to use the embedding of the clas-
sification token as the overall sentence embedding,
this approach has been shown to be suboptimal
(Vulić et al., 2020). We conduct experiments to
find the optimal sentence representation.

3 VGSI: Visual Goal–Step Inference Task

Task Definition. Yang et al. (2021) define VGSI
as a 4-way multiple choice problem. As shown in
the example in Figure 1, given a textual goal G and
four images Ii, i ∈ {1, 2, 3, 4} representing four
candidate steps, the task is to select the image that
represents a correct step towards accomplishing G.

In this paper, we additionally explore a stricter
definition of VGSI, where the task is to select the
respective correct image of all steps that are neces-
sary to reach the goal G.

3.1 Methods

3.1.1 Event Representations
To obtain event representations from goal and step
sentences, we first extract the subject, verbal predi-
cate, direct object and prepositional phrase from
the sentences using a dependency parser (Dozat
and Manning, 2016)2.

Implicit Subject Representation. Due to the na-
ture of the dataset of procedural instructions, tex-
tual goals and steps are usually imperative sen-
tences, and as a consequence, the subject is left
off. To encode the subject, we conduct experi-
ments to compare event representations with no
explicitly mentioned subject to those which ex-
press the subject (1) by the token person, or (2)
by the special <|startoftext|> token of the CLIP to-
kenizer. Since the <|startoftext|> token added by

2We use SuPar available at https://github.com/
yzhangcs/parser
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us is always between the <|startoftext|> token of
the CLIP tokenizer and the verbal predicate, its
embedding is supposed to capture syntactic infor-
mation from these two surrounding tokens via the
attention mechanism (i.e. the information about the
position of the subject of a sentence). To verify
this hypothesis, we conduct two groups of prob-
ing experiments using the most common and the
least common token in the input text as the pseudo-
subject, respectively (see Section 5.1). We find
that sentences with the <|startoftext|> token as the
pseudo-subject lead to the best result.

Event Representations. The event representa-
tion is an essential component of our task. As intro-
duced in Section 2, we represent events in the goal
and step sentences using two types of representa-
tions: (1) the relational event representation (Bala-
subramanian et al., 2013) which is a (subject, verb,
object) tuple, and (2) the multi-argument event rep-
resentation (Pichotta and Mooney, 2014) which is
a (subject, verb, object, prepositional phrase) tuple.
Table 1 shows examples of all representations we
explore. In the case that the object or prepositional
phrase is absent, we represent it by a [PAD] token,
e.g., (<|startoftext|>, pour, sauce, [PAD]).

Local vs. Contextualised Event. To assess the
effectiveness of event representations, we deliber-
ately use non-contextualised embeddings to disen-
tangle the subj–pred–obj(–pp) information from
the overall sentence. In detail, the components of
the event representations are concatenated to form
a sentence, which is then encoded by the CLIP
text encoder (i.e. GPT-2). For instance, the event
(<|startoftext|>, pour, sauce) is turned into the in-
put <|startoftext|> pour sauce. We compare this
encoding method to one that uses contextualised
embeddings: We first encode the whole sentence
and extract all word embeddings. If the tokenizer
split a word into subtokens, we mean-pool their
corresponding embeddings. Then, we mean-pool
the word embeddings which are part of the com-
ponents of the event representations. For example,
the word embeddings in the object phrase into con-
tainer or jug are averaged to a single vector. Note
that for both local and contextualised approaches,
the CLIP tokenizer automatically adds a <|startof-
text|> and an <|endoftext|> token to the start and
the end of the input, respectively. We remove these
two special tokens after the encoding, such that
only the embedding of the <|startoftext|> as the

text
Pour the soy or tamari sauce into
a suitable small mixing container

or jug.

eventrel (<|startoftext|>, pour, sauce)

eventmult
(<|startoftext|>, pour, sauce,

into container or jug)

Table 1: Example of the relational and multi-argument
event representation.

implicit subject is averaged with other words. We
evaluate the text embeddings obtained from three
groups of layers of CLIP.3 The visual embeddings,
in turn, are the last hidden state of the CLIP image
encoder (i.e. ViT).4

3.1.2 Triplet Network for Goal–Step Inference

We use Triplet Network (Hoffer and Ailon, 2015)
in all our experiments and use the cosine similarity
as the similarity metric.

Training. The triplet network for training is im-
plemented as a three-branch network with a text
module and an image module, where the two
branches of the image module share the same pa-
rameters. The input is a triplet (G+S, Ipos, Ineg),
where G+S is the embedding of the concatenated
goal–step sentence, Ipos is the embedding of the
positive image, Ineg is the embedding of a nega-
tive image (see Section 4.3). The model learns a
cross-modal embedding space by minimizing the
distance between G+S and Ipos, while maximizing
the distance between G+S and Ineg. Different from
Yang et al. (2021) which use G as the textual input
for training, we use G+S because S share common
information with I and serves as a bridge between
G and I. Thus, G+S could help the model to better
understand the relation between G and I.

Inference. During inference, we follow the in-
put format of Yang et al. (2021), i.e. the textual
input is the goal alone. The model takes each
pair (G, Ii), i ∈ {1, 2, 3, 4} from a test data point
(G, [I1, I2, I3, I4]) as input. By computing the sim-
ilarity between G and Ii, the model predicts the
correct step image Î as that with the highest simi-

3Based on (Vulić et al., 2020)’s findings, we do not use the
embedding of the classification token, cf. Sect. 2.

4We use clip-vit-large-patch14 from Hug-
gingFace available at https://huggingface.co/
openai/clip-vit-large-patch14
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Experiment group Embed size #params Input format Event injection

SENTENCE
768 (text)

1024 (image)
3,936,256

goal+step (train)
goal (test)

s

EVENT
768 (text)

1024 (image)
3,936,256

goal+step (train)
goal (test)

e

SENTENCE+EVENT
1536 (text)

1024 (image)
4,722,688

goal+step (train)
goal (test)

s+e

Table 2: Embedding size, number of parameters, input formats to the text encoder and event injection approaches of
different experiment groups: concatenation of goal and step headline (goal+step), goal only (goal); sentence only
(s), event only (e), sentence+event (s+e).

larity as follows:

Î = argmax
Ii

cos(G, Ii) (1)

4 Experiments

4.1 Data

We conduct our experiments on wikiHow-VGSI
(Yang et al., 2021),5 a dataset for multimodal goal-
oriented PKU collected from the English wiki-
How6. The dataset contains articles of instructions
to complete tasks across a wide range of daily-life
topics, including health, home and garden, educa-
tion, recipes etc. Each article contains a goal G
in the form of a “How to”-sentence and a set of
methods (e.g., “How to bake mini cupcakes”, Fig-
ure 1). Each method comprises a list of steps. Each
step has a step headline S which is an imperative
sentence describing that step, and an image I cor-
responding to that step (e.g., I1 and S in Fig. 1).
To describe a goal and its steps, we use the goal G
and the step headline S and its associated image I,
respectively.

We lowercase all the texts in the dataset, and
use the special token <|startoftext|> to represent
the subject in all sentences (i.e., pseudo-subject).
Specifically, <|startoftext|> substitutes How to in all
goals and is prepended to all step headlines. Since
we found some issues in the dataset, such as dupli-
cates or non-English text, we removed 3 goals and
56 step headlines. Details to our filtering procedure
are given in Appendix 9.1. As a result, the dataset
used for our experiments contains 53, 186 goals,
772, 221 step headlines and 772, 277 step images.

5https://github.com/YueYANG1996/
wikiHow-VGSI

6https://www.wikihow.com/Main-Page

4.2 Models

We assess the benefit of the two approaches for
the event knowledge injection (relational and multi-
argument representations, see Sect. 3.1.1) when
being used as the only representation of the goal G
and step S during training (EVENT), or when being
used as additional information to the full sentences
(SENTENCE+EVENT). We compare them against
only using the full sentence (SENTENCE), which
is also employed by Yang et al. (2021). Table 2
gives an overview of the different inputs and the
corresponding hyperparameters of the models.

Jawahar et al. (2019) observed that the embed-
dings obtained from different layers of BERT tend
to be dominated by different levels of linguistic
information: surface (i.e. lexical) information in
bottom layers, syntactic information in middle lay-
ers and semantic information in top layers. Thus,
we examine sentence embeddings of three linguis-
tic levels in each of these experiment groups: (1)
FIRST4 averages the outputs of the first 4 layers
of CLIP’s text encoder; (2) MIDDLE4 averages the
outputs of the 5-th to the 8-th layers of the encoder;
(3) LAST4 averages the outputs of the last 4 layers.

4.2.1 EVENT

In this group of experiments, the goal and step sen-
tences are replaced by the event representations ex-
tracted from them. For example, the sentence in Ta-
ble 1 is replaced by <|startoftext|> pour sauce for
the relational event representation and by <|startof-
text|> pour sauce into container or jug for the
multi-argument event representation.

4.2.2 SENTENCE+EVENT

In this group of experiments, the event representa-
tions are appended to the goal and step sentences.
For example, the aforementioned sentence is con-
verted to <|startoftext|> pour the soy or tamari
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sauce into a suitable small mixing container or jug.
<|startoftext|> pour sauce. for the relational event
representation, and <|startoftext|> pour the soy or
tamari sauce into a suitable small mixing container
or jug. <|startoftext|> pour sauce into container or
jug. for the multi-argument event representation.

4.2.3 SENTENCE

While event representations have been found valu-
able in earlier, linguistically motivated research on
procedural texts (see Section 2), it stands the ques-
tion whether they fully provide the crucial infor-
mation for learning procedural knowledge. Hence,
we also compare against a model that takes the
encoded full sentence describing the goal or the
goal+step as textual input, i.e. the model learns the
task-relevant features from the full goal sentence
or the step headline.

4.3 Training Procedure

We apply the random sampling strategy of Yang
et al. (2021) to select negative step images. For
each data point, we randomly select three different
articles and take a random image from each article
as the negative step image. We leave the experi-
ments with other sampling methods used in Yang
et al. (2021) to future work.

We initialize the weights using He-uniform with
ReLU non-linearity. All models are trained for 200
epochs with batch size 1024 and a learning rate of
1e-5 with early stopping. In each experiment group,
the model is trained and evaluated five times. We
implemented the models in Keras with Tensorflow
2.0 and trained them on a single RTX A6000.

4.4 Evaluation Measures

We evaluate our models with two settings. The first
one, which we call weak, follows the original task
definition by Yang et al. (2021), where a data point
in the test set is considered correctly predicted, if
one step towards the goal given by that data point
is correctly selected. To better fit the concept of
procedural knowledge, we also apply a strict set-
ting, in which a data point is correctly predicted, if
all the steps required to achieve the goal given by
the data point are correctly selected. We report the
mean accuracy obtained by the five individual train-
ing and testing runs, as well as the corresponding
standard deviation.

5 Results

Tables 3 and 5 give the most important results. The
full results can be found in Appendix 9.2.

5.1 Event-based Representations

Table 3 shows the performance of the models with
the <|startoftext|> token as pseudo-subject, using
different event representations containing different
levels of linguistic knowledge. The last two rows
list the results of the best model and the human
evaluation in Yang et al. (2021).

As expected, by comparing the EVENTrel,∗ and
EVENTmult,∗ groups (i.e., <[2],[3]>, <[7],[8]>,
<[12],[13]>), we observe that the multi-argument
event representation outperforms the relational
event representation.

Linguistic Level Embedding. To find out which
level of linguistic knowledge is most suitable for
the task, we compare the following three groups
of results in Table 3: <[2],[7],[12]>, <[3],[8],[13]>
and <[5],[10],[15]>. On average, the LAST4 groups
achieve the highest accuracy, while the FIRST4
groups perform the worst. The performance gap
between FIRST4 and the other two groups is con-
siderably larger than that between MIDDLE4 and
LAST4. This indicates that both semantic and syn-
tactic information play important roles in the task,
while lexical information is far less important than
syntactic and semantic information.

Event Knowledge Injection. The results of
<[3],[5]>, <[8],[10]>, and <[13],[15]> in Table 3
show that SENTENCE+EVENT results in higher ac-
curacy than EVENT. This reveals the advantage
of attaching event knowledge to the sentence over
using only the event knowledge. It also implies
that the sentence could provide additional informa-
tion to the event, which could help models better
understand procedural knowledge.

Local vs. Contextualised Embeddings. By
comparing the results of local and contextualised
event embeddings in Table 3, we observe a signifi-
cant improvement of the performance in the latter
group. On average, the accuracy with contextu-
alised embeddings is 3.71% and 13.73% higher
than that with the local ones in the weak setting
and in the strict setting, respectively. This verifies
the observation in the last paragraph that sentences
provide additional, useful information.
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Models Local Event Contextualised Event
weak strict weak strict

[2] EVENTrel,first4 68.9±0.3 9.9±0.3 71.6±0.4 12.2±0.3
[3] EVENTmult,first4 75.8±0.4 15.3±0.5 77.0±0.1 15.9±0.2
[5] SENTENCE+EVENTmult,first4 80.9±0.8 19.3±1.3 81.0±0.1 19.6±0.3

[7] EVENTrel,middle4 70.3±0.2 11.1±0.2 74.9±0 14.9±0.1
[8] EVENTmult,middle4 76.9±0.6 16.9±0.9 79.9±0 19.1±0.4
[10] SENTENCE+EVENTmult,middle4 82.4±0.1 22.1±0.3 82.8±0.9 22.4±1.5

[12] EVENTrel,last4 69.1±0.3 11.5±0.4 75.9±0 16.7±0.1
[13] EVENTmult,last4 77.3±0.4 18.8±0.4 80.8±0 21.2±0.2
[15] SENTENCE+EVENTmult,last4 81.1±0.7 21.5±0.8 84.7±0 26.4±0.2

[16] EVENTmult,last4,+1layer 76.6±0.3 17.9±0.2 80.5±0 20.7±0

Triplet Net (BERT) (Yang et al., 2021)† 72.8 - 72.8 -
Human (Yang et al., 2021) 84.5 - 84.5 -

Table 3: Accuracy (%) of experiments using different event representations encoded by different layers of the CLIP
text encoder. The implicit subject is represented by <|startoftext|> (sot+sent). †Results adopted from the authors,
they are not directly comparable.

Implicit(/Pseudo-)Subject weak strict

sot+sent 82.7 22.3
person+sent 80.3 19.9
-+sent 79.4 19.4
sot 24.2 0.11

most-frequent+sent 79.8 20.3
least-frequent+sent 68.6 10.4

Table 4: Accuracy (%) of SENTENCE experiments us-
ing different implicit (top) / pseudo (bottom) subjects:
<|startoftext|>+sentence (sot+sent), person+sentence
(person+sent), sentence without subject (-+sent),
<|startoftext|> only (sot).

Implicit Subject Abstract Representation. The
sentences in the dataset either begin with How to,
or they do not have an explicit subject. Thus, we
assess the contribution of different abstract rep-
resentations for the implicit subject of the sen-
tences. Table 4 (top) shows the performance of
the SENTENCEmiddle4 models with four abstract
representations as the subject. The results show
that <|startoftext|> is the most powerful abstract
representation for the subject. However, we ob-
serve a significant performance degradation when
using this token separately as the representation of
the whole sentence (i.e. sot in Table 4). In this case,
the embedding of <|startoftext|> is derived from
the last hidden state of CLIP’s text encoder. A pos-

sible reason could be that the <|startoftext|> token
is always located between the verbal predicate and
the <|startoftext|> token added by CLIP’s tokenizer
which indicates the start of the sentence. Hence,
its embedding may capture syntactic information
about the subject’s position in the sentence from
these contextual tokens via the attention mecha-
nism. To verify this hypothesis, we conduct two
groups of probing experiments for the syntactic
information in the <|startoftext|> token. We eval-
uate the SENTENCEmiddle4 model by taking the
most and the least frequent token in the dataset (“.”
and “50.0”, respectively) as a pseudo-subject of
the input text, as we assume them to be generally
less informative for the sentences. We observe a
considerable performance drop with the least fre-
quent token (see Table 4, bottom), indicating that
<|startoftext|> indeed gives the model valuable cues
about the subject position in a sentence.

5.2 Event-Enhanced Sentences

Table 5 compares the performance of using
sentence-only embeddings with using event-
enhanced sentence embeddings. As a result, SEN-
TENCE+EVENT outperforms SENTENCE with con-
textualised event embeddings when using the av-
erage of the last 4 hidden layers of the CLIP text
encoder. The groups using the first 4 and middle 4
layers achieve comparable performance. Moreover,
the best model (i.e., [15]) reaches the human upper
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Models Local Event Contextualised Event
weak strict weak strict

[1] SENTENCEfirst4 81.6±0.1 20.1±0.1 81.2±0.0 19.7±0.2
[5] SENTENCE+EVENTmult,first4 80.9±0.8 19.3±1.3 81.0±0.1 19.6±0.3

[6] SENTENCEmiddle4 82.7±0.4 22.3±0.5 82.7±1.1 22.2±1.7
[10] SENTENCE+EVENTmult,middle4 82.4±0.1 22.1±0.3 82.8±0.9 22.4±1.5

[11] SENTENCElast4 82.1±0.4 22.3±0.7 84.6±0.1 26.0±0.2
[15] SENTENCE+EVENTmult,last4 81.1±0.7 21.5±0.8 84.7±0.0 26.4±0.2

Triplet Net (BERT) (Yang et al., 2021)† 72.8 - 72.8 -
Human (Yang et al., 2021) 84.5 - 84.5 -

Table 5: Accuracy (%) and standard deviation of the experiments using different event representations encoded by
different layers of the CLIP text encoder.

bound, demonstrating the necessity of applying the
strict evaluation setting.

5.3 Disentangle the Influence of Model Sizes
and Embeddings

Since the models in the SENTENCE+EVENT group
have more trainable parameters due to the concate-
nation of sentence- and event embeddings, the per-
formance gain could attribute either to the number
of parameters or to the embeddings. To disentan-
gle the influence of these two factors, we conduct
an experiment based on EVENTmult,last4, with the
text module of the triplet network being extended
by an additional dense layer. This increases the
number of trainable parameters of the model to
4, 750, 973, which is comparable with the most ef-
fective SENTENCE+EVENTmult,last4 models. The
results of [16] in Table 3 show that there is no
considerable change in performance from [13] and
[15], indicating that the performance gain is due to
attaching the event representation to the sentence.

6 Qualitative Analysis

We provide a qualitative analysis on the semantic
gap between the ground-truth and the predicted
images. Figure 2 shows part of an example of
the model’s predictions for the goal How to stop
twitching in your sleep? In this example, four out
of ten steps are incorrectly predicted.

For Step 5, the textual input for training
is <|startoftext|> stop twitching in your sleep.
<|startoftext|> exercise every day. The model se-
lects Image (e) which depicts a hand holding a
heart. The model may associate “twitching” with
the heart in the image, but fails to infer the rela-

tion between “twitching” and the jogging people
in the correct image (a). Thus, the model may
not learn causal relationships between the goal and
the step image, such as “Jogging can improve peo-
ple’s health condition and thus stop twitching in
the sleep”.

For Step 7 with the textual input <|startoftext|>
stop twitching in your sleep. <|startoftext|> eat
plenty of magnesium., the model selects Image (f)
illustrating a person sitting at a laptop. Possible
reasons could be: (1) The action “eat” is usually
performed by humans, but the correct image only
describes some food, which the model misses to
associate with “eat”; and (2) The phrase “plenty
of magnesium” may mislead the model to select
the wrong image with a laptop, which is associ-
ated more with magnesium than vegetables. Hence,
the model may only learn knowledge about sim-
ple, superficial properties of the objects in images,
and may lack more complex commonsense knowl-
edge about the relations between objects, such as
“Laptop is not edible” or "Human cannot take mag-
nesium by eating laptops”.

For Step 8, the input is <|startoftext|> stop
twitching in your sleep. <|startoftext|> adjust what
you consume before bed. The model selects the
image showing a lady with a hat being pointed to
by an arrow. This again indicated that the model’s
decision heavily relies on the verb. Furthermore, it
also suggests that the model has limited capability
of identifying the affordances of the objects in the
image and associating them with the goal.

For Step 10 with the input <|startoftext|> stop
twitching in your sleep. <|startoftext|> address
potential vitamin deficiencies., the model again
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(a) Step 5: <|startoftext|>
exercise every day.

(b) Step 7: <|startoftext|>
eat plenty of magnesium.

(c) Step 8: <|startoftext|>
adjust what you consume
before bed.

(d) Step 10: <|startoftext|>
address potential vitamin
deficiencies.

(e) Step 5: <|startoftext|>
be gentle.

(f) Step 7: <|startoftext|>
search online for job post-
ings.

(g) Step 8: <|startoftext|>
put on a sun hat to pro-
tect your hair and keep you
cool.

(h) Step 10: <|startoftext|>
start to learn about and
change any patterns in your
daily life that may act as
triggers or contribute to
your loved one’s destruc-
tive behavior.

Figure 2: Ground-truth (top) and model’s false predictions (bottom) for Steps 5, 7, 8, 10. Goal: How to stop
twitching in your sleep?

seems to not capture causal relationships such as
“Vitamin deficiency can lead to twitching in sleep”,
but to base its inference on shallow object features
such as “A man opens the door and wakes the
sleeping woman up”.

In conclusion, our observations indicate that the
model’s decision highly depends on shallow fea-
tures in the image and their alignment to the verbs
and nouns in the text, while its effectiveness is
impaired by its limited understanding of deeper se-
mantics and causal relationships between the goal
and the step images.

7 Conclusions

In this paper, we investigate two linguistically-
inspired event knowledge injection approaches for
the Visual Goal–Step Inference (VGSI) task. We
experimentally compare three levels of linguistic in-
formation in the text embedding produced by state-
of-the-art neural deep learning models. Further-
more, we also compare event embeddings which
encode only the information of the event compo-
nents themselves with contextualised event embed-
dings which include information about the overall
sentence syntactically not belonging to the argu-
ments forming an event representation itself. Last
but not least, we assess different representations for

the implicit subject of instructional sentences. We
find that the early, linguistically inspired methods
for representing event knowledge do contribute to
understand procedures in combination with modern
V&L models.

8 Limitations

We explore early, very simple structured event rep-
resentations. Recent works in visual–linguistic se-
mantic representations which use richer represen-
tations comprising predicate–argument structures
and event types and argument roles, the general
graph-based approaches, as well as scene graphs,
are left for future work. Furthermore, the wikiHow
articles may reflect the bias of their human authors.
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9 Appendix

9.1 Data Preprocessing and Cleaning
1. We remove the goals with file-ID 385799 and

5323060, as they contain non-English words.

2. Two data points share the same file-ID 411540,
each refers to the goal How to keep healthy
family relationships and How to keep relation-
ships healthy within your family. The first data
point is automatically removed when building
a mapping from file-IDs to goals.

3. We remove the step headlines with step-IDs
1926747_3_0, 2191502_0_0 and 985548_2_0,
since they contain only a dot (.) and cannot
be parsed by the dependency parser.

9.2 Full Table of the Results
As a supplement to Table 3 and Table 5, Table 6
shows the results of all experiment groups.
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Experiments Local Event Contextualised Event
weak strict weak strict

[1] SENTENCEfirst4 81.6±0.1 20.1±0.1 81.2±0 19.7±0.2
[2] EVENTrel,first4 68.9±0.3 9.9±0.3 71.6±0.4 12.2±0.3
[3] EVENTmult,first4 75.8±0.4 15.3±0.5 77.0±0.1 15.9±0.2
[4] SENTENCE+EVENTrel,first4 79.9±0.3 17.9±0.7 80.4±0.1 18.6±0.1
[5] SENTENCE+EVENTmult,first4 80.9±0.8 19.3±1.3 81.0±0.1 19.6±0.3

[6] SENTENCEmiddle4 82.7±0.4 22.3±0.5 82.7±1.1 22.2±1.7
[7] EVENTrel,middle4 70.3±0.2 11.1±0.2 74.9±0 14.9±0.1
[8] EVENTmult,middle4 76.9±0.6 16.9±0.9 79.9±0 19.1±0.4
[9] SENTENCE+EVENTrel,middle4 81.8±0.3 21.2±0.3 81.8±1.1 20.4±1.8
[10] SENTENCE+EVENTmult,middle4 82.4±0.1 22.1±0.3 82.8±0.9 22.4±1.5

[11] SENTENCElast4 82.1±0.4 22.3±0.7 84.6±0.1 26.0±0.2
[12] EVENTrel,last4 69.1±0.3 11.5±0.4 75.9±0 16.7±0.1
[13] EVENTmult,last4 77.3±0.4 18.8±0.4 80.8±0 21.2±0.2
[14] SENTENCE+EVENTrel,last4 80.3±0.6 20.2±1.0 84.1±0.4 25.2±1.1
[15] SENTENCE+EVENTmult,last4 81.1±0.7 21.5±0.8 84.7±0 26.4±0.2

[16] EVENTmult,last4,+1layer 76.6±0.3 17.9±0.2 80.5±0 20.7±0

Triplet Net (BERT) (Yang et al., 2021)† 72.8 - 72.8 -
Human (Yang et al., 2021) 84.5 - 84.5 -

Table 6: Accuracy (%) of experiments using different event representations encoded by different layers of the CLIP
text encoder (full table).
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Abstract

Although Shapley values have been shown to
be highly effective for identifying harmful train-
ing instances, dataset size and model complex-
ity constraints limit the ability to apply Shapley-
based data valuation to fine-tuning large pre-
trained language models. To address this, we
propose TS-DSHAPLEY, an algorithm that
reduces computational cost of Shapley-based
data valuation through: 1) an efficient sampling-
based method that aggregates Shapley values
computed from subsets for valuation of the en-
tire training set, and 2) a value transfer method
that leverages value information extracted from
a simple classifier trained using representations
from the target language model. Our experi-
ments applying TS-DSHAPLEY to select data
for fine-tuning BERT-based language models
on benchmark natural language understand-
ing (NLU) datasets show that TS-DSHAPLEY
outperforms existing data selection methods.
Further, TS-DSHAPLEY can filter fine-tuning
data to increase language model performance
compared to training with the full fine-tuning
dataset.

1 Introduction

Large language models (LMs) have achieved state-
of-the-art performance on many natural language
processing (NLP) tasks (Radford et al., 2019;
Brown et al., 2020; Sanh et al., 2022). To adapt
these models to new datasets and tasks, the standard
approach is to fine-tune a pre-trained LM on a tar-
geted downstream task. This allows the pre-trained
general linguistic knowledge to be leveraged while
fine-tuning to learn the task-specific information.
However, during fine-tuning, pre-trained LMs are
prone to significant performance degradation in
the presence of noisy data (Srivastava et al., 2020).
This effect may be further amplified when noisy or
otherwise harmful instances are highly influential
to the model parameters (Koh and Liang, 2017).
As a result, it is important to identify harmful in-

Figure 1: An overview of TS-DSHAPLEY: 1) Pro-
cess the data using the target LM; 2) Compute sampling
chains using a subset of the training set and aggregate
the resulting Shapley values; and 3) Transfer the esti-
mated data value information for use with the target LM
by estimating the optimal low value data removal index.

stances in the fine-tuning data that may obfuscate
the task information and degrade performance.

To automatically identify harmful data, prior
works have used training dynamics (Swayamdipta
et al., 2020) and estimation of marginal contribu-
tions via leave-one-out retraining (Cook, 1977) or
influence functions (Koh and Liang, 2017). Shap-
ley values, which satisfy certain desirable fairness
guarantees, have also recently been adopted from
cooperative game theory to measure datum con-
tributions, where a data point’s Shapley value is
the average marginal contribution to every possible
data subset (Ghorbani and Zou, 2019).

In practice, Shapley-based data values are ap-
proximated using various techniques (Ghorbani
and Zou, 2019; Jia et al., 2019b, 2021; Kwon and
Zou, 2022; Schoch et al., 2022), as exact Shapley
value computation over a dataset would require ex-
haustively retraining the model for every datum on
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every possible subset (i.e. exponential complexity
with respect to the number of data points). How-
ever, many of the existing approximation methods
still exhibit a computational bottleneck when con-
sidering datasets and models at scale (e.g. datasets
larger than 5K instances). This, in turn, directly lim-
its the application of Shapley-based data valuation
to state-of-the-art LMs and many NLP datasets.

To address the challenges posed by 1)
the model constraint (the model retraining re-
quirement) and 2) the dataset constraint (the
time-complexity/dataset size relation), we pro-
pose Transferred Sampling Data Shapley (TS-
DSHAPLEY), an algorithm that utilizes two novel
components that directly address each constraint.
Specifically, to address the model constraint, we
propose to compute Shapley-based data values us-
ing a simple, linear model that is trained on the
learned representation from the target LM. Addi-
tionally, to address the dataset constraint, we pro-
pose a sampling-based method that computes Shap-
ley values on data subsets and aggregates them for
valuation of the entire training set.

Our contributions are as follows: 1) we propose a
sampling-based data Shapley computation method
and demonstrate its efficacy empirically using as
little as 2% of the original training data; 2) we pro-
pose the use of a simple linear classifier with a tar-
get model’s pre-trained representation and demon-
strate empirically the performance gains achieved
over alternate pre-trained embeddings; and 3) we
show the efficacy of Shapley-based data valuation
and selection methods on benchmark NLU tasks
using fine-tuned large LMs.1

2 Related Work

While Shapley values are often applied in a post
hoc manner following model training (Ghorbani
and Zou, 2019; Kwon and Zou, 2022; Jia et al.,
2019a,b, 2021; Schoch et al., 2022), the demon-
strated efficacy makes it a natural extension to ap-
ply such methods for data selection prior to train-
ing. To this end, Shapley values have been used
for evaluating data for transfer learning (Parvez
and Chang, 2021) and in active learning (Ghorbani
et al., 2021).

Further, although Shapley-based data values
have primarily been considered model-specific, in
practice, a subset of training instances that may

1Code is available at https://github.com/
stephanieschoch/ts-dshapley

harm performance may be mislabeled (Koh and
Liang, 2017; Swayamdipta et al., 2020; Ghorbani
and Zou, 2019) or exhibit spelling mistakes or
grammatical errors (Sun et al., 2020; Srivastava
et al., 2020), which should be intrinsic to the
dataset. Prior works have demonstrated the trans-
ferability of Shapley-based data values across var-
ious classifier architectures (Schoch et al., 2022)
and have demonstrated the efficacy of surrogate
KNN classifiers using pre-trained embeddings (Jia
et al., 2021). Notably, our work differs in that we
utilize the pre-trained embeddings extracted from
the target LM and avoid the k-nearest neighbor as-
sumption that training data far from a test datum do
not contribute to its prediction (Jia et al., 2019a).

3 Method

Let D = {(xi, yi)}ni=1 denote a training set
containing n training instances. For each
training instance i, the Shapley value ϕi is
defined as the average marginal contribution
of i to every possible subset S ⊆ D that con-
tains this instance (Ghorbani and Zou, 2019):
ϕi =

∑
S⊆D;i∈S

1

( n−1
|S\{i}|)

{vA(S)− vA(S\{i})}
where vA(S) is a value function, typically defined
as the development accuracy of model A trained
on S. The challenge of calculating ϕi is two-fold:
the exponential complexity of all possible subsets
S ⊆ D and the computational cost of training A
on each S and S\{i}. While Shapley-based data
values are approximated in practice, most existing
approximation methods are not efficient enough
for large scale learning problems.

3.1 TS-DSHAPLEY

Let Atgt be the target classifier (i.e. large LM)
that we want to fine-tune on a subset of D. To
reduce computational cost, we propose to (1) use
a linear classifier Asrc as the proxy of Atgt for
data valuation; (2) use multi-chain Monte Carlo
sampling to compute Shapley values on different
subsets ofD. For faithful data valuation, we further
propose to train Asrc on the data representations
extracted from Atgt.

Representation Extraction. We extract the rep-
resentations from the penultimate layer of the pre-
trained LM Atgt as the inputs for training Asrc.
Note that training Asrc in this way is equivalent to
fixing the LM and only fine-tuning the last classifi-
cation layer. To further remove the redundancy in
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the representations and reduce computational cost,
we follow prior work by performing PCA on the
collection of representations and selecting the first
32 principal components (Ghorbani and Zou, 2019;
Kwon and Zou, 2022; Schoch et al., 2022).

Sampling Data Shapley. Instead of directly esti-
mating Shapley-based data values via Monte Carlo
sampling on the whole training set, our approach
performs Monte Carlo sampling on subsets of the
data, which we refer to as sampling chains. Within
a single sampling chain c, we sample a subset of
training instances St, estimate their contributions,
and repeat T times. The contribution of each in-
stance in St is calculated by removing one instance
at a time in a random order. For example, the con-
tribution of the first randomly removed instance i
is cSt(i) = vAsrc(St)− vAsrc(St\{i}), the contri-
bution of the second randomly removed instance
k is cSt(k) = vAsrc(St\{i}) − vAsrc(St\{i, k}),
and so on. On the other hand, if an instance i is not
in St, cSt(i) = 0.

After T times, the Shapley value of instance i
is approximated as ϕi ≈ 1

T

∑
St
cSt(i). To balance

the computational efficiency and approximation,
we empirically define a range of the size |St| ∈
[ s2 , s], with subset size s as the sampling upper
bound.

Computation can be further sped up with mul-
tiple Monte Carlo sampling chains S

(c)
t , c ∈

{1, . . . , J}. The corresponding value approxima-
tion is defined as ϕi = 1

J

∑
c

1
T

∑
S
(c)
t

c
S
(c)
t

(i). As
each chain can be computed independently, the
efficiency can be boosted with parallel comput-
ing. This novel idea of multi-chain sampling serves
as the core of TS-DSHAPLEY and significantly
speeds up computation, in practice working with a
simple model Asrc.

Data Selection with TS-DSHAPLEY Values. To
identify harmful data points, we use the data re-
moval strategy of Ghorbani and Zou (2019) on
Asrc and transfer the selection outcome to the tar-
get model Atgt. Specifically, we gradually remove
training instances from the lowest estimated contri-
bution value to the highest estimated contribution
value. Following each removal, we retrain Asrc

and evaluate predictive performance on the held-
out development data. As a result, this removal pro-
cedure will identify a optimal subset Sopt that gives
the best predictive performance on Asrc. With the
assumption of data value transferability (Schoch

et al., 2022), we expect that Atgt trained on Sopt
will give no worse, and likely better performance,
than Atgt trained on D. While this data removal
strategy is proposed in prior work (Ghorbani and
Zou, 2019), the data selection use case is novel in
NLP.

4 Experiments

4.1 Experiment Setup

Pre-trained Large Language Models. We uti-
lize two transformer-based large LMs for which
traditional Shapley-based data value computation
would be intractable: RoBERTa-base (Liu et al.,
2019, 125M parameters) and DistilBERT (Sanh
et al., 2019, 66M parameters).

Datasets. We select one GLUE benchmark
(Wang et al., 2019) dataset from each task cate-
gory: SST-2 (Socher et al., 2013), QQP (Iyer et al.,
2017), and RTE (Dagan et al., 2006), representing
Single-Sentence Tasks, Similarity and Paraphrase
Tasks, and Inference Tasks, respectively. Addi-
tional dataset details are reported in Appendix A.
Notably, we select datasets of varied sizes to reflect
diverse sampling subset to training set size ratios.

Data Selection Baselines. We compare against
performance when training on the full data subset
as well as three selection baselines: leave-one-out
(LOO) (Cook, 1977), KNN-shapley (KNN) (Jia
et al., 2019a, 2021), and random sampling. For
LOO, we use the same classifier architecture as
with TS-DSHAPLEY to compute value estimates.
For both LOO and KNN, we reduce the dataset us-
ing the data removal procedure defined in section 3.
Finally, for random sampling, we remove a random
sample of data points equal to the number of points
removed via TS-DSHAPLEY.

4.2 Data Selection Experiment

To test the efficacy of using TS-DSHAPLEY to se-
lect data for fine-tuning large LMs, we compute
data values using each method and perform the data
removal procedure described in section 3. Specif-
ically, we remove the lowest value data points
preceding the data removal step that achieved the
highest development accuracy using Asrc. For TS-
DSHAPLEY, we vary the subset size and number
of chains based on dataset size, using subset size
= 6.7k(10%), 7.28k(2%), 374(15%) and number
of chains = 25, 10, 25 for SST-2, QQP, and RTE,
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Method Category Method RoBERTa DistilBERT

SST-2 QQP RTE SST-2 QQP RTE

Full Training Set
Liu et al. (2019) 0.948 0.919 0.787 – – –
Sanh et al. (2019) – – – 0.913 0.885 0.599
Full Dataset 0.950 0.917 0.788 0.908 0.905 0.618

Data Selection Baselines
Leave-One-Out 0.947 – 0.784 0.912 – 0.614
KNN Shapley 0.946 0.916 0.781 0.911 0.905 0.622
Random 0.947 0.917 0.684 0.911 0.905 0.589

Our Method TS-DSHAPLEY 0.953 0.919 0.801 0.915 0.907 0.652

Table 1: Predictive accuracy when selecting data using each valuation method. Results reflect the mean of five
trials. We do not report LOO as a baseline for QQP due to computational intractability.

respectively. Additional training and hyperparame-
ter details, including details of a limited hyperpa-
rameter sweep, can be found in Appendix A.

Results Results are shown in Table 1. TS-
DSHAPLEY consistently outperforms baseline se-
lection methods as well as performance using
the full fine-tuning dataset. Notably, data se-
lection using TS-DSHAPLEY resulted in perfor-
mance improvements of up to 1.3% and 3.4% for
RoBERTa and DistilBERT, respectively, over the
predictive performance when training using the
full fine-tuning dataset. These results indicate TS-
DSHAPLEY successfully identifies data points that
harm model performance. As an additional anal-
ysis, for the RTE dataset we show the location
of harmful points identified by TS-DSHAPLEY

on a data map (Swayamdipta et al., 2020) in Ap-
pendix B.

4.3 Sampling Hyperparameter Analysis
TS-DSHAPLEY exhibited good performance for
data selection across various subset sizes and
numbers of chains. For example, on QQP TS-
DSHAPLEY outperformed the full dataset and base-
line methods when using a subset of just 2% of
the training set. To better understand the impact
of different parameter values, we utilize a parame-
ter value grid on the RTE dataset and re-compute
TS-DSHAPLEY. Specifically, using the best hyper-
parameters from subsection 4.2 (see Appendix A),
we evaluate performance of RoBERTa and Distil-
BERT using a parameter sweep of subset size as
a percentage of the total training set size, subset
size ∈ {1, 2, 5, 10, 15}%, and number of chains
∈ {2, 5, 10, 15} and report the Pearson’s correla-
tion between each parameter and performance.

Results. All correlations are reported in Ap-
pendix B and summarized here. When subset

Model Embeddings SST-2 QQP RTE

RoBERTa
RoBERTa 0.953 0.919 0.801
DistilBERT 0.951 0.906 0.762
GloVe 0.948 0.908 0.767

DistilBERT
DistilBERT 0.915 0.907 0.652
RoBERTa 0.906 0.903 0.623
GloVe 0.909 0.903 0.632

Table 2: Predictive accuracy using TS-DSHAPLEY
with different word embeddings.

size > 2%, both models demonstrate a high pos-
itive correlation between number of chains and
performance. For example, when using 15% of the
training data, RoBERTa on RTE had a correlation
of 0.94. Across the different number of chains,
however, there was no consistent pattern of corre-
lation between subset size and performance. This
indicates that increasing number of chains (which
can be computed in-parallel) may be of more bene-
fit compared to increasing sampling subset size.

4.4 Effect of Different Embeddings

To test the efficacy of computing TS-DSHAPLEY

using the extracted representations from the target
LM, we perform an experiment where we use the re-
moval indices computed with 1) the representation
from a different language model (e.g. removing
indices for fine-tuning RoBERTa using the optimal
removal index identified using DistilBERT data
representations), and 2) GloVe pre-trained word
embeddings (Pennington et al., 2014), as a third-
party representation repository.

Results. As shown in Table 2, while alternate
embeddings can still lead to improvements over the
full data, using the representation from the target
LM is beneficial and consistently outperforms other
embeddings. The results suggest that low value
data is likely a combination of (i) inherently noisy
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data (e.g. mislabeled instances) and (ii) instances
that are harmful to specific models due to different
model architectures and pre-training strategies.

5 Conclusion

In this work, we propose TS-DSHAPLEY to ad-
dress the model and dataset constraints that cur-
rently contribute to a computational bottleneck
when computing Shapley-based data value esti-
mates.

Limitations

While we demonstrate the efficacy of TS-
DSHAPLEY empirically, the current work is limited
in terms of theoretical analysis. For example, while
we have good empirical performance with a linear
SVM, additional analysis could determine if there
are optimal ways to select an alternative simple
model architecture for the source classifier depend-
ing on the target classifier or dataset. Additionally,
while we found a strong correlation between num-
ber of sampling chains and performance when the
subset size was > 2% of the training data size, the
lower subset size threshold to observe this corre-
lation may be dataset dependent, which additional
analysis could address.
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A Additional Experiment Details

In this section, we include additional experiment
setup details.

A.1 Datasets

Dataset statistics are provided in Table 3, with fur-
ther description provided below.

SST-2: Stanford Sentiment Treebank (Socher
et al., 2013) is a collection of English movie re-
views with human annotations of their sentiment.
The model is tasked with predicting a review’s sen-
timent as positive or negative.

QQP: Quora Question Pairs (Iyer et al., 2017)
is a collection of English question pairs from the
website Quora where the task is to determine if a
pair of questions are similar in meaning.

RTE: Recognizing Textual Entailment (Dagan
et al., 2006) combines several English datasets
from annual textual entailment challenges, where
the task is to predict if the text entails the hypothesis
or not.

A.2 Hyperparameters

For each experiment, we consider a limited hyper-
parameter sweep for each model, selection method,
and task, with batch size ∈ {16, 32} and learning
rate ∈ {10−5, 3 × 10−5}. The rest of the hyper-
parameters are kept consistent across experiment
conditions. We report the mean development set
accuracy from five random initializations for which
we fine-tune for 10 epochs and select the model
checkpoint with the highest development set accu-
racy. Results from each hyperparameter sweep are
reported in Table 4 and Table 5.

B Additional Results

B.1 Additional Data Selection Analysis

While we compare directly with baseline selec-
tion methods that directly measure estimated data
contribution, we perform an additional analy-
sis by comparing the indices removed with TS-
DSHAPLEY with the mapped training dynamics us-
ing data maps (Swayamdipta et al., 2020). Specif-
ically, we first plot the data map for RoBERTa
trained on RTE using the same hyperparameters as
in subsection 4.2. Then, we plot the same data map
showing only the data points that were identified by
TS-DSHAPLEY to be harmful, i.e. removed from

the fine-tuning training data. These are shown in
Figure 2 and Figure 3, respectively.

We observe that a handful of instances in the
hard-to-learn region (identified by Swayamdipta
et al. (2020) to contain some mislabeled exam-
ples) were removed, as well as a small number
of instances in the ambiguous region. Interest-
ingly though, we observe that 1) most of the data
points in RTE belonged to the easy-to-learn region,
and 2) a cluster of easy-to-learn points were re-
moved. Swayamdipta et al. (2020) found that too
many easy-to-learn instances could decrease both
in-distribution and out-of-distribution performance
and noted that determining how to select an optimal
balance of easy-to-learn and ambiguous examples,
particularly in low data settings, was an open prob-
lem. As TS-DSHAPLEY achieved a performance
gain over the full dataset performance, these results
suggest that TS-DSHAPLEY may be effective to
potentially determine an optimal balance and ad-
dress this problem. We leave further analysis of
this to future work.

B.2 Sampling Hyperparameter Analysis.
Pearson’s correlation coefficients for the sampling
parameter analysis in section 4 are reported in Ta-
ble 6 and Table 7, where each result represents
the mean of five sampling and chain computation
trials.
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Dataset GLUE Task Category Task Metric Data Split

Train Dev

SST-2 Single Sentence Tasks Sentiment Acc. 67k 1.8k
QQP Similarity and Paraphrase Tasks Paraphrase Acc./F1 364k 40.4k
RTE Inference Tasks NLI Acc. 2.5k 277

Table 3: Statistics for each dataset. We use the train and development data splits as GLUE tasks have held out test
set labels.

Model Method SST-2 QQP RTE

BS LR BS LR BS LR

RoBERTa

Full Dataset 16 10−5 32 3× 10−5 16 3× 10−5

Leave-One-Out 32 10−5 – – 16 3× 10−5

KNN Shapley 16 10−5 32 3× 10−5 16 3× 10−5

Random 32 3× 10−5 32 3× 10−5 16 3× 10−5

TS-DSHAPLEY 32 10−5 32 3× 10−5 16 3× 10−5

DistilBERT

Full Dataset 16 10−5 32 3× 10−5 32 3× 10−5

Leave-One-Out 32 10−5 – – 16 10−5

KNN Shapley 16 10−5 32 3× 10−5 16 10−5

Random 32 3× 10−5 16 3× 10−5 16 3× 10−5

TS-DSHAPLEY 16 3× 10−5 16 10−5 16 3× 10−5

Table 4: Batch size (BS) and learning rate (LR) for the data selection experiment based on the hyperparameter
sweep defined in section 4.

Model Embeddings SST-2 QQP RTE

BS LR BS LR BS LR

RoBERTa
RoBERTa 32 10−5 32 3× 10−5 16 3× 10−5

DistilBERT 16 10−5 32 10−5 16 3× 10−5

GloVe 16 3× 10−5 32 3× 10−5 32 3× 10−5

DistilBERT
DistilBERT 16 10−5 16 10−5 16 3× 10−5

RoBERTa 32 10−5 32 10−5 32 10−5

GloVe 32 10−5 32 3× 10−5 32 3× 10−5

Table 5: Batch size (BS) and learning rate (LR) for the embeddings switch experiment based on the hyperparameter
sweep defined in section 4.

Model Subset Size (%,#)

1 (25) 2 (50) 5 (125) 10 (249) 15 (374)

RoBERTa 0.119 0.013 0.892 0.929 0.942
DistilBERT 0.240 0.104 0.613 0.776 0.714

Table 6: Correlations between number of chains and performance for each subset size on the RTE dataset.

Model Number of Sampling Chains

2 5 10 15 20 25

RoBERTa -0.463 0.127 -0.474 0.013 0.472 0.763
DistilBERT 0.027 -0.034 0.530 0.447 0.737 0.692

Table 7: Correlations between subset size and performance for each number of sampling chains on the RTE dataset.

273



0.10 0.15 0.20 0.25 0.30
variability

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

co
nf

id
en

ce

ambiguous

easy-to-learn

hard-to-learn

RTE-RoBERTa Data Map

correct.
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.25 0.50 0.75
confidence

0

200

400

600

800

de
ns

it
y

0.1 0.2 0.3
variability

0

200

400

600

de
ns

it
y

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

correctness

0

200

400

600

800

de
ns

it
y

Figure 2: Data map for RoBERTa trained on the RTE dataset.
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RTE.
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Abstract

This study addresses the automatic generation
of distractors for English fill-in-the-blank exer-
cises in the entrance examinations for Japanese
universities. While previous studies applied the
same method to all questions, actual entrance
examinations have multiple question types that
reflect the purpose of the questions. There-
fore, we define three types of questions (gram-
mar, function word, and context) and propose a
method to generate distractors according to the
characteristics of each question type. Experi-
mental results on 500 actual questions show the
effectiveness of the proposed method for both
automatic and manual evaluation.

1 Introduction

Fill-in-the-blank questions, also known as cloze
tests (Taylor, 1953), are one way to assess learn-
ers’ English proficiency and are widely used in
examinations such as TOEIC1 and in school edu-
cation. As shown in Figure 1, the question format
generally consists of a four-choice option with one
correct answer and three distractors. These require
substantial costs because they are manually created
by question writers with extensive language teach-
ing experience. This study automatically generates
distractors to reduce workload.

Most of the previous studies on the automatic
generation of cloze tests (Mitkov and Ha, 2003;
Sumita et al., 2005; Zesch and Melamud, 2014;
Jiang and Lee, 2017; Susanti et al., 2018; Panda
et al., 2022) have generated words that are seman-
tically similar to the correct words as distractors.
Other methods have been proposed, such as those
based on co-occurrence with words in the carrier
sentence (Liu et al., 2005; Hill and Simha, 2016),
considering the whole context (Yeung et al., 2019),
and considering the learner’s error tendencies (Sak-
aguchi et al., 2013). However, these previous stud-
ies apply the same method to all questions, which

1https://www.ets.org/toeic.html

Jeff didn’t accept the job offer because of the ____ salary.
(a) low   (b) weak (c) cheap    (d) inexpensive

It was certainly ＿ crowded than I thought it would be.

(a) less (b) little (c) least (d) fewer

((a) is correct )

Figure 1: Example of English fill-in-the-blank question.
(National Center Test for University Admissions, 2018)2

leads to bias in the characteristics of the gener-
ated distractors. Actual entrance examinations have
multiple question types reflecting the purpose of
the questions, such as grammatical knowledge and
idiomatic expressions. Existing methods have dif-
ficulty in flexibly changing the characteristics of
distractors for each question type.

In this study, we first manually classify English
fill-in-the-blank questions in the entrance exam-
inations for Japanese universities2 by an expert.
Next, we propose a method for automatic distractor
generation according to the characteristics of each
question type. Experimental results on 500 actual
questions show the effectiveness of the proposed
method for both automatic and manual evaluation.

2 Related Work

Previous studies have generated distractors in the
following three steps: (1) candidate generation,
(2) reranking, and (3) filtering.

Jiang and Lee (2017) utilized cosine similarity
with word embeddings (Mikolov et al., 2013) to
identify candidate words that are semantically sim-
ilar to the correct word. These candidate words
were ranked by similarity and filtered by word 3-
gram. That is, if a 3-gram containing a candidate
word appears in Wikipedia, that candidate is ex-
cluded. It filters out expressions that are actually
used in a large-scale corpus to exclude appropriate
examples from the distractor candidates.

Yeung et al. (2019) reranked the candidates gen-
erated from word embeddings by the mask-filling

2https://jcshop.jp/SHOP/18149/list.
html
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Carrier sentence Correct Distractors Type

I hear that one of his three sisters __ four movies a week. sees seeing seen see grammar
My mother was surprised __ the news that I passed the test. at to for in function word
When you exercise, you should wear __ and loose clothing. comfortable delicate serious flat context

Table 1: Examples of question types. From top to bottom, the sources2 are (Toyo University, 2018), (Meijo
University, 2017), (Nakamura Gakuen University, 2018).

probability with BERT (Devlin et al., 2019). They
also utilize BERT for filtering, eliminating candi-
dates with too high and too low probabilities.

Panda et al. (2022) proposed candidate genera-
tion based on round-trip machine translation. That
is, the carrier sentence was first translated into a
pivot language and back-translated into English.
Then, word alignment was used to obtain a can-
didate for the correct word and its corresponding
word. These candidates were reranked using word
embeddings and filtered by WordNet (Miller, 1995).
Specifically, synonyms of the correct word in Word-
Net and words with a different part of speech from
the correct word were excluded from the candi-
dates.

These existing methods have been evaluated in
different ways on different datasets, making it diffi-
cult to compare their performance. We have com-
prehensively evaluated them and propose further
improvements on top of their combinations.

3 Definition of Question Types

An experienced English teacher specializing in En-
glish education has categorized the question types
for English fill-in-the-blank questions. The analy-
sis covers 500 randomly selected questions from
the entrance examinations for Japanese universi-
ties in the five-year period from 2017 to 2021. As
shown in Table 1, the following three question
types were defined:

• Grammar: Questions that mainly use the con-
jugated form of the same word as choices.

• Function word: Questions that are choices
from a prescribed list of function words.

• Context: Questions with choices determined
by context or idiomatic expressions.

Table 2 shows the number of occurrences for
each question type. Approximately half of the ques-
tions were on context, 40% were on function word,
and 10% were on grammar. In the next section, we

Question type Number of questions

Grammar 66 (13.2%)
Function word 195 (39.0%)
Context 239 (47.8%)

Table 2: Statistics of question types.

propose how to generate distractors according to
the characteristics of each question type.

4 Generating Distractors

Following previous studies (Jiang and Lee, 2017;
Yeung et al., 2019; Panda et al., 2022), we also
generate distractors through three steps. For candi-
date generation and reranking, we selected combi-
nations of the existing methods described in Sec-
tion 2 that maximize performance on the validation
dataset3 for each question type. For filtering, we
propose methods according to the characteristics
of each question type, which are described below.

4.1 Filtering for Questions on Grammar

For questions on grammar, the conjugated forms of
the correct word should be obtained as candidates.
Therefore, we apply POS filtering. That is, we ex-
clude candidates that have the same part of speech
or the same conjugation as the correct word.

Furthermore, to avoid unreliable distractors that
could be the correct answer, we exclude candidates
with a high mask-filling probability by BERT (De-
vlin et al., 2019). Unlike Yeung et al. (2019), called
BERT (static), which used two fixed thresholds to
select the top θH to θL, our filter, called BERT
(dynamic), dynamically changes the thresholds.
Specifically, we exclude candidates that have a
higher probability than the correct word. The ex-
ample of the first sentence in Table 1 shows that
“thinks” is eliminated as a candidate for the same

3For the validation dataset, 500 questions were randomly
selected in addition to the evaluation dataset annotated in
Section 3. These questions were automatically annotated with
question types by BERT (Devlin et al., 2019). The accuracy
of BERT was 84.8% in the 10-fold cross-validation.
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Type Method Candidate Reranking Filtering k = 3 k = 5 k = 10 k = 20

Grammar

Jiang-2017 fastText fastText Word 3-gram 24.7 21.6 17.7 11.2
Yeung-2019 fastText BERT BERT (static) 1.5 1.9 3.0 3.4
Panda-2022 Round-trip fastText WordNet 8.6 8.3 5.6 3.6
Ours fastText fastText POS+BERT (dynamic) 27.8 25.0 17.0 10.4

Function word

Jiang-2017 fastText fastText Word 3-gram 10.3 12.1 11.8 9.3
Yeung-2019 fastText BERT BERT (static) 6.3 7.1 7.3 5.7
Panda-2022 Round-trip fastText WordNet 15.9 16.7 13.1 7.8
Ours Round-trip BERT List of function words 19.1 22.2 21.1 13.2

Context

Jiang-2017 fastText fastText Word 3-gram 2.2 2.9 3.7 3.2
Yeung-2019 fastText BERT BERT (static) 1.8 2.0 2.3 2.7
Panda-2022 Round-trip fastText WordNet 4.2 5.1 4.6 3.2
Ours Round-trip fastText BERT (dynamic) 3.8 5.3 5.8 4.4

Table 3: Results of automatic evaluation of generated distractors by F1-score.

part of speech, and “watches” is eliminated as a
high probability candidate.

4.2 Filtering for Questions on Function Word

For questions on function words, only function
words such as prepositions and conjunctions are
basically used as choices. Therefore, we utilize the
list of function words4 for entrance examinations
for Japanese universities to exclude candidates not
included in this list. The example of the second
sentence in Table 1 shows that “time” and “taken”
are eliminated.

4.3 Filtering for Questions on Context

Since the questions on context are designed to test
knowledge of collocations or idioms, candidates
should be obtained for words that often co-occur
with surrounding words in the carrier sentence.
However, as with questions on grammar, to avoid
unreliable distractors, candidates with a high mask-
filling probability by BERT are excluded. The ex-
ample of the third sentence in Table 1 shows that
“comfy” and “cosy” are eliminated.

5 Experiments

We evaluate the method of distractor generation on
the 500 questions constructed in Section 3.

5.1 Setting

Implementation Details For candidate genera-
tion, we implemented methods based on word em-
beddings (Jiang and Lee, 2017) and round-trip ma-
chine translation (Panda et al., 2022). We utilized

4https://ja.wikibooks.org/wiki/大学受験
英語_英単語/機能語・機能型単語一覧

fastText (Bojanowski et al., 2017) as word em-
beddings and Transformer (Vaswani et al., 2017),
trained on English-German language pairs5 (Ng
et al., 2019; Ott et al., 2019) according to the
previous study (Panda et al., 2022), as machine
translators. For word alignment, we used Hungar-
ian matching (Kuhn, 1955) based on word embed-
dings (Song and Roth, 2015).

For reranking, we implemented methods based
on word embeddings (Jiang and Lee, 2017) and
BERT (Yeung et al., 2019). We utilized BERT-
base-uncased (Devlin et al., 2019) via HuggingFace
Transformers (Wolf et al., 2020). Note that the
candidate words are restricted to the intersection of
the vocabulary of fastText and BERT.

For filtering, NLTK (Bird and Loper, 2004) was
used for pos tagging. We used 166 function words.4

Comparative Methods We compared the pro-
posed method with three existing methods de-
scribed in Section 2: methods based on word em-
beddings (Jiang and Lee, 2017), masked language
models (Yeung et al., 2019), and round-trip ma-
chine translations (Panda et al., 2022). For word
3-gram filtering, we used preprocessed English
Wikipedia (Guo et al., 2020). For BERT (static) fil-
tering, we used thresholds of θH = 11 and θL = 39
following Yeung et al. (2019).

Automatic Evaluation To evaluate whether the
generated distractors are matched with the actual
entrance examinations, an automatic evaluation
is performed. We generated 100 words of can-
didates for each method and compared the top

5As a pivot language, we also tried Japanese, the native
language of the examinees, but German performed better.

278

https://ja.wikibooks.org/wiki/%E5%A4%A7%E5%AD%A6%E5%8F%97%E9%A8%93%E8%8B%B1%E8%AA%9E_%E8%8B%B1%E5%8D%98%E8%AA%9E/%E6%A9%9F%E8%83%BD%E8%AA%9E%E3%83%BB%E6%A9%9F%E8%83%BD%E5%9E%8B%E5%8D%98%E8%AA%9E%E4%B8%80%E8%A6%A7
https://ja.wikibooks.org/wiki/%E5%A4%A7%E5%AD%A6%E5%8F%97%E9%A8%93%E8%8B%B1%E8%AA%9E_%E8%8B%B1%E5%8D%98%E8%AA%9E/%E6%A9%9F%E8%83%BD%E8%AA%9E%E3%83%BB%E6%A9%9F%E8%83%BD%E5%9E%8B%E5%8D%98%E8%AA%9E%E4%B8%80%E8%A6%A7


Carrier sentence : There are three people __ school events.
Question type : Grammar Correct answer : discussing Distractors : discuss discussed discusses
(Jiang and Lee, 2017) debating talking discussion commenting mentioning discuss examining
(Yeung et al., 2019) creating talking considering promoting deciding initiating exploring
(Panda et al., 2022) talking dealing speaking working reporting giving wednesday
Proposed Method discussion discuss discussed discussions discusses about conversation

Carrier sentence : They are a little worried __ their daughter’s trip to the Amazon.
Question type : Function word Correct answer : about Distractors : for with from
(Jiang and Lee, 2017) concerning regarding relating talking what telling pertaining
(Yeung et al., 2019) considering up the seeing than just discussing
(Panda et al., 2022) the any and afraid affected anxious at
Proposed Method by after for at from with of

Table 4: Examples of generated distractors. The example in the upper row is from (Ritsumeikan University, 2019),2

and the example in the lower row is from (Morinomiya University of Medical Sciences, 2018).2 Candidates
matching the gold distractors are highlighted in bold.

k ∈ {3, 5, 10, 20} words, after reranking and fil-
tering, to the three gold distractors. Note that if
there are fewer than k candidates, the remainder
were randomly selected from the vocabulary. We
employed the F1-score as the evaluation metric.

Manual Evaluation To assess the correlation of
examinee performance between the generated ques-
tions and the actual entrance examinations, a man-
ual evaluation is performed. First, distractors are
generated for each of the 60 randomly selected
questions in each of the proposed and two compar-
ative methods (Jiang and Lee, 2017; Panda et al.,
2022). Next, ten university students, who are na-
tive Japanese speakers, took 100 English fill-in-the-
blank questions from the actual entrance exami-
nations, as well as these 180 generated questions.
Note that these questions are sampled evenly by
question type, with no duplication. Finally, we
calculated the correlation of accuracy between the
generated and actual questions.

5.2 Results

Automatic Evaluation Table 3 shows the results
of the automatic evaluation. The top three rows
show the performance of the comparison method
and the bottom row shows the performance of the
proposed method for each question type. The pro-
posed method achieved the best performance in
9 out of 12 settings and the second best perfor-
mance in the remaining 3 settings. This implies
the effectiveness of filtering according to the char-
acteristics of question types. The improvement in
performance was particularly noticeable for ques-
tions on function words, with greater improvement
as the number of candidates k increased.

Method Pearson Spearman Kendall

(Jiang and Lee, 2017) 0.739 0.723 0.584
(Panda et al., 2022) 0.776 0.774 0.614

Proposed Method 0.903 0.802 0.629

Table 5: Correlation of accuracy between actual en-
trance examinations and generated questions.

Manual Evaluation Table 5 shows the results
of the manual evaluation. The proposed method
has the highest correlation with the performance
of the actual entrance examinations for all corre-
lation coefficients. This means that the proposed
method is most effective in identifying the English
proficiency of examinees.

Output Examples Table 4 shows examples of
generated distractors. In questions on grammar,
existing methods without consideration of ques-
tion types generate candidates that are semantically
close to the correct word, but the proposed method
correctly generates conjugated forms of the correct
word. In questions on function words, the exist-
ing methods include candidates other than function
words, but the proposed method generates only
function words, correctly ranking the gold distrac-
tors higher. In questions on context, as shown in
Table 3, the proposed method is not much different
from the existing method until the top five, but may
be followed by good candidates even after that.

6 Conclusion

To reduce the cost of creating English fill-in-
the-blank questions in entrance examinations for
Japanese universities, this study addressed auto-
matic distractor generation. First, we identified
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three question types and constructed a fill-in-the-
blank corpus annotated by an expert with those
question types. Next, we proposed methods to gen-
erate distractors that take into account the character-
istics of each question type, focusing on candidate
filtering. Experimental results based on automatic
and manual evaluations demonstrate the effective-
ness of the proposed method. Specifically, our
method is able to generate candidates that match
the gold distractors better than existing methods
and has the highest correlation with the examinees’
English proficiency as assessed in actual entrance
examinations. For future work, we plan to expand
the corpus size by estimating question types, to
generate distractors by supervised learning.
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Abstract

Large Language Models (LLMs) have demon-
strated impressive capabilities in generating flu-
ent text, as well as tendencies to reproduce
undesirable social biases. This study investi-
gates whether LLMs reproduce the moral biases
associated with political groups in the United
States, an instance of a broader capability herein
termed moral mimicry. This hypothesis is ex-
plored in the GPT-3/3.5 and OPT families of
Transformer-based LLMs. Using tools from
Moral Foundations Theory, it is shown that
these LLMs are indeed moral mimics. When
prompted with a liberal or conservative politi-
cal identity, the models generate text reflecting
corresponding moral biases. This study also ex-
plores the relationship between moral mimicry
and model size, and similarity between human
and LLM moral word use.

1 Introduction

Recent work suggests that Large Language Model
(LLM) performance will continue to scale with
model and training data sizes (Kaplan et al., 2020).
As LLMs advance in capability, it becomes more
likely that they will be capable of producing text
that influences human opinions (Tiku, 2022), po-
tentially lowering barriers to disinformation (Wei-
dinger et al., 2022). More optimistically, LLMs
may play a role in bridging divides between social
groups (Alshomary and Wachsmuth, 2021; Jiang
et al., 2022). For better or worse, we should under-
stand how LLM-generated content will impact the
human informational environment - whether this
content is influential, and to whom.

Morality is an important factor in persuasiveness
and polarization of human opinions (Luttrell et al.,
2019). Moral argumentation can modulate willing-
ness to compromise (Kodapanakkal et al., 2022),
and moral congruence between participants in a
dialogue influences argument effectiveness (Fein-
berg and Willer, 2015) and perceptions of ethicality
(Egorov et al., 2020).

Therefore, it is important to characterize the ca-
pabilities of LLMs to produce apparently-moral
content1. This requires a framework from which
we can study morality; Moral Foundations The-
ory (MFT) is one such framework. MFT pro-
poses that human morals rely on five foundations:
Care/Harm, Fairness/Cheating, Loyalty/Betrayal,
Authority/Subversion, and Sanctity/Degradation2.
Evidence from MFT supports the “Moral Foun-
dations Hypothesis” that political groups in the
United States vary in their foundation use - lib-
erals rely primarily on the individualizing founda-
tions (Care/Harm and Fairness/Cheating), while
conservatives make more balanced appeals to all 5
foundations, appealing to the binding foundations
(Authority/Subversion, Sanctity/Degradation, and
Loyalty/Betrayal) more than liberals (Graham et al.,
2009; Doğruyol et al., 2019; Frimer, 2020).

Existing work has investigated the moral foun-
dational biases of language models that have been
fine-tuned on supervised data (Fraser et al., 2022),
investigated whether language models reproduce
other social biases (see (Weidinger et al., 2022)
section 2.1.1), and probed LLMs for differences
in other cultural values (Arora et al., 2023). Con-
current work has shown that LLMs used as dialog
agents tend to repeat users’ political views back
to them, and that this happens more frequently in
larger models (Perez et al., 2022). To my knowl-
edge, no work yet examines whether language mod-
els can perform moral mimicry - that is, reproduce
the moral foundational biases associated with social

1Anthropomorphization provides convenient ways to talk
about system behavior, but can also distort perception of un-
derlying mechanisms (Bender and Koller, 2020). To be clear,
I ascribe capabilities such as “moral argumentation” or “moral
congruence” to language models only to the extent that their
outputs may be perceived as such, and make no claim that
LLMs might generate such text with communicative intent.

2Liberty/Oppression was proposed as a sixth foundation
- for the sake of this analysis I consider only the original 5
foundations, as these are the ones available in the Moral Foun-
dations Dictionaries (Graham et al., 2009; Frimer, 2019; Hopp
et al., 2021).
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Figure 1: An example of the experimental methods. Prompts 2 are constructed from scenarios 1a , identity phrases
1b , and stances 1c , combined in a template (Section 2). Text completions 3 are generated by LLMs based on the
prompts (Section 2). The completions are analyzed for their foundational contents 4 using the moral foundations
dictionaries (Section 2). Differences between texts generated from liberal and conservative prompting are used to
calculate effect sizes 5 .

groups such as political identities.
The present study considers whether LLMs use

moral vocabulary in ways that are situationally-
appropriate, and how this compares to human foun-
dation use. I find that LLMs respond to the salient
moral attributes of scenario descriptions, increas-
ing their use of the appropriate foundations, but
still differ from human consensus foundation use
more than individual humans (Section 2.1). I then
turn to the moral mimicry phenomenon. I inves-
tigate whether conditioning an LLM with a politi-
cal “identity” influences the model’s use of moral
foundations in ways that are consistent with human
moral biases. I find confirmatory results for text
generated based on“liberal” and “conservative” po-
litical identities (Section 2.2). Finally, I ask how the
moral mimicry phenomenon varies with model size.
Results show that the extent to which LLMs can
reproduce moral biases increases with model size,
in the OPT family (Section 2.2). This is also true
for the GPT-3 and -3.5 models considered together,
and to a lesser extent for the GPT-3 models alone.

2 Methods

Data Generation All experiments follow the
same pattern for data generation, described in the
following sections and illustrated in Figure 1. Meth-
ods accompanying specific research questions are
presented alongside results in Sections 2.1 - 2.3.

Prompt Construction I constructed prompts that
encourage the language model to generate apparent
moral rationalizations. Each prompt conditions the
model with three variables: a scenario s, a political
identity phrase i, and a moral stance r. Each prompt

consists of values for these variables embedded in
a prompt template t.

Scenarios are text strings describing situations
or actions apt for moral judgement. I used three
datasets (Moral Stories3 (Emelin et al., 2021),
ETHICS4 (Hendrycks et al., 2021), and Social
Chemistry 1015 (Forbes et al., 2020)) to obtain
four sets of scenarios, which I refer to as Moral
Stories, ETHICS, Social Chemistry Actions, and
Social Chemistry Situations. Appendix Section A.2
provides specifics on how each dataset was con-
structed. I use S and s to a set of scenarios, and a
single scenario, respectively.

Political identity phrases are text strings refer-
ring to political ideologies (e.g. “liberal”). I use I
and i to refer to a set of political identities and an
individual identity, respectively.

Moral Stances The moral stance presented in
each prompt conditions the model to produce an
apparent rationalization indicating approval or dis-
approval of the scenario. I useR, r to refer to the set
of stances {moral, immoral}, and a single stance,
respectively. The datasets used herein contain la-
bels indicating the normative moral acceptability
of each scenario. For a scenario s, I refer to its
normative moral acceptability as rH(s).

Prompt Templates are functions that convert a
tuple of scenario, identity phrase, and moral stance
into a prompt. To check for sensitivity to any par-
ticular phrasing, five different styles of prompt tem-
plate were used (see Appendix Tables 2 and 3).

3Downloaded from https://github.com/demelin/moral_stories
4Downloaded from https://github.com/hendrycks/ethics
5Downloaded from https://github.com/mbforbes/social-

chemistry-101
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Prompts were constructed by selecting a template
t for a particular style, and populating it with a
stance, scenario, and political identity phrase.

Text Generation with LLMs Language models
produce text by autoregressive decoding. Given a
sequence of tokens, the model assigns likelihoods
to all tokens in its vocabulary indicating how likely
they are to follow the sequence. Based on these
likelihoods, a suitable next token is appended to
the sequence, and the process is repeated until a
maximum number of tokens is generated, or the
model generates a special “end-of-sequence” token.
I refer to the text provided initially to the model as
a “prompt” and the text obtained through the decod-
ing process as a “completion”. In this work I used
three families of Large Language Models: GPT-3,
GPT-3.5, and OPT (Table 1). GPT-3 is a family
of Transformer-based (Vaswani et al., 2017) au-
toregressive language models with sizes up to 175
billion parameters, pre-trained in self-supervised
fashion on web text corpora (Radford et al., 2019).
The largest 3 of the 4 GPT-3 models evaluated
here also received supervised fine-tuning on high-
quality model samples and human demonstrations
(OpenAI, 2022). The GPT-3.5 models are also
Transformer-based, pre-trained on text and code
web corpora, and fine-tuned using either supervised
fine-tuning or reinforcement learning from human
preferences (OpenAI, 2022). I accessed GPT-3/3.5
through the OpenAI Completions API (OpenAI,
2021). I used the engine parameter to indicate a spe-
cific model. GPT-3 models “text-ada-001”, “text-
babbage-001”, “text-curie-001”, and “text-davinci-
001”, and GPT-3.5 models “text-davinci-002” and
“text-davinci-003” were used. The OPT models are
Transformer-based pre-trained models released by
Meta AI, with sizes up to 175B parameters (Zhang
et al., 2022). Model sizes up to 30B parameters
were used herein. OPT model weights were ob-
tained from the HuggingFace Model Hub. I ob-
tained completions from these models locally using
the HuggingFace Transformers (Wolf et al., 2020)
and DeepSpeed ZeRo-Inference libraries (Deep-
Speed, 2022), using a machine with a Threadripper
3960x CPU and two RTX3090 24GB GPUs. For
all models, completions were produced with tem-
perature=0 for reproducibility. The max_tokens
parameter was used to stop generation after 64 to-
kens (roughly 50 words). All other settings were

left as default 6.

Measuring Moral Content

Moral Foundations Dictionaries I estimated the
moral foundational content of each completion
using three dictionaries: the Moral Foundations
Dictionary version 1.0 (MFDv1) (Graham et al.,
2009), Moral Foundations Dictionary version 2.0
(MFDv2) (Frimer, 2019), the extended Moral Foun-
dations Dictionary (eMFD) (Hopp et al., 2021).

MFDv1 consists of a lexicon containing 324
word stems, with each word stem associated to one
or more categories. MFDv2 consists of a lexicon of
2014 words, with each word associated to a single
category. In MFDv1, the categories consist of a
“Vice” and “Virtue” category for each of the five
foundations, plus a “MoralityGeneral” category, for
11 categories in total. MFDv2 includes all cate-
gories from MFDv1 except “MoralityGeneral”, for
a total of 10 categories. The eMFD (Hopp et al.,
2021) contains 3270 words and differs slightly from
MFDv1 and MFDv2. Words in the eMFD are as-
sociated with all foundations by scores in [0, 1].
Scores were derived from annotation of news arti-
cles, and indicate how frequently each word was
associated to each foundation, divided by the to-
tal word appearances. Word overlap between the
dictionaries is shown in Appendix Figure 5.

Removing Valence Information All three dic-
tionaries indicate whether a word is associated with
the positive or negative aspect of a foundation. In
MFDv1 and MFDv2 this is indicated by word as-
sociation to the “Vice” or “Virtue” category for
each foundation. In the eMFD, each word has sen-
timent scores for each foundation. In this work I
was interested in the foundational contents of the
completions, independent of valence. Accordingly,
“Vice” and “Virtue” categories were merged into a
single category for each foundation, in both MFDv1
and MFDv2. The “MoralityGeneral” score from
MFDv1 was unused as it does not indicate asso-
ciation with any particular foundation. Sentiment
scores from eMFD were also unused.

Applying the Dictionaries Applying dictionary
d to a piece of text produces five scores {wdf | f ∈
F}. For MFDv1 and MFDv2, these are inte-
ger values representing the number of foundation-
associated words in the text. The eMFD produces

6Default values for unused parameters of the OpenAI
Completions API were suffix: null; top_p: 1; n: 1;
stream: false; logprobs: null; echo: false; stop: null;
presence_penalty: 0; frequency_penalty: 0; best_of: 1;
logit_bias: null; user: null
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continuous values in [0,∞] - the foundation-wise
sums of scores for all eMFD words in the text.

I am interested in the probability P that a human
or language model (apparently) expresses founda-
tion f , which I write as Ph(ef ) and PLM (ef ), re-
spectively. I use P d(ef |s, r, i) to denote this prob-
ability conditioned on a scenario s, stance r, and
political identity i, using a dictionary d for mea-
surement.

I use F to refer to the set of moral foundations,
and f for a single foundation. I useD to refer to the
set of dictionaries. In each dictionary, Wd refers
to all words in the dictionary. For MFDv1 and
MFDv2, Wdf refers to all the words in d belonging
to foundation f . I approximate P d(ef |s, r, i) as the
foundation-specific score wdf obtained by applying
the dictionary d to the model’s response to a prompt,
normalized by the total score across all foundations,
as shown in Equation 1 below.

P d(ef |s, r, i) ≈
wfd∑

f ′∈F wf ′d
(1)

Calculating Effect Sizes Effect sizes capture
how varying political identity alters the likelihood
that the model will express foundation f , given
the same stance and scenario. Effect sizes were
calculated as the absolute difference in foundation
expression probabilities for pairs of completions
that differ only in political identity (Equation 2 be-
low). Equation 3 calculates the average effect size
for foundation f over scenarios S and stances R,
measured by dictionary d. Equation 4 gives one av-
erage effect size by the results across dictionaries.

∆P d
i1,i2

(ef |s,r)=P d(ef |s,i1,r)−P d(ef |s,i2,r) (2)

∆P d
i1,i2

(ef )=Es,r∈S×R ∆P d
i1,i2

(ef |s,r) (3)

∆Pi1,i2
(ef )=Ed∈D ∆P d

i1,i2
(ef ) (4)

2.1 LLM vs. Human Moral Foundation Use
Experiment Details This experiment considers
whether LLMs use foundation words that are situa-
tionally appropriate7. LLMs would satisfy a weak
criterion for this capability if they were more likely
to express foundation f in response to scenarios
where foundation f is salient, compared to their av-
erage use of f across a corpus of scenarios contain-
ing all foundations in equal proportion. I formalize
this with Criterion A below.

Criterion A Average use of foundation f is
greater across scenarios Sf that demonstrate only

7e.g. using the Care/Harm foundation when prompted with
a violent scenario

foundation f , in comparison to average use of foun-
dation f across a foundationally-balanced corpus
of scenarios S (Equation 5).

Esf ,r∈Sf×R PLM (ef |sf ,r)>Es,r∈S×R PLM (ef |s,r)

A stronger criterion would require LLMs to not
to deviate from human foundation use beyond some
level of variation that is expected among humans. I
formalize this with Criterion 2b below.

Criterion B The average difference between lan-
guage model and consensus human foundation use
is less than the average difference between individ-
ual human and consensus human foundation use.

DIFFLM,CH
≤DIFFH,CH

(5)

DIFFLM,CH
=Es∈S[|PLM (ef |s,rH(s))−CH(s)|] (6)

DIFFH,CH
=Es∈S[EH [|Ph(ef |s)−CH(s)|]] (7)

CH(s)=Eh[Ph(ef |s)] (8)

Stance rHs is the normative moral acceptability
of scenario s - the human-written rationalizations
are “conditioned” on human normative stance for
each scenario, so I only compare these with model
outputs that are also conditioned on human norma-
tive stance.

Criterion A requires a corpus with ground-truth
knowledge that only a particular foundation f is
salient for each scenario. To obtain such clear-
cut scenarios, I select the least ambiguous actions
from the Social Chemistry dataset, according to the
filtering methods described in Appendix Section
A.2.3. Estimating human consensus foundation use
(Criterion B) requires a corpus of scenarios that are
each annotated in open-ended fashion by multiple
humans. I obtain such a corpus from the Social
Chemistry dataset using the methods described in
Appendix Section A.2.4.

Results
Figure 2 (left) shows average values of P (ef |s)

for each foundation. For all five foundations, the
model increases its apparent use of foundation-
associated words appropriate to the ground truth
foundation label, satisfying Criterion A. Figure
2 (right) shows LM differences from human con-
sensus |PLM (ef |s, rHs) − CH(s)| obtained from
the text-davinci-002 model, and human differences
from human consensus EH [|Ph(ef |s)− CH(s)|],
on the Social Chemistry Situations dataset. In gen-
eral the LM-human differences are greater than the
human-human differences.
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Figure 2: Left: Foundation expression probabilities for
foundation-specific examples vs. average foundation use
across all examples. Text-davinci-002; Social Chemistry
Actions scenarios. Right: LM and individual human
differences from human consensus foundation use, in
response to scenarios from the Social Chemistry Situa-
tions dataset; text-davinci-002.

2.2 Are LLMs Moral Mimics?
Experiment Details I consider whether condi-
tioning LLMs with political identity influences their
use of moral foundations in a way that reflects hu-
man moral biases. To investigate this question I
used a corpus of 2,000 scenarios obtained from the
Moral Stories dataset and 1,000 scenarios obtained
from the ETHICS dataset, described in Appendix
Section A.2.

Prompts were constructed with template style
2 from table 2. For each scenario, four prompts
were constructed based on combinations of “lib-
eral” and “conservative” political identity and moral
and immoral stance, for a total of 12,000 prompts.
Completions were obtained from the most capa-
ble model in each family that our computational
resources afforded: text-davinci-001 (GPT-3), text-
davinci-002 and text-davinci-003 (GPT-3.5) and
OPT-30B. One generation was obtained from each
model for each prompt. I calculated average effect
size ∆Pi1,i2(ef ) with i1 = “liberal” and i2 = “con-
servative” for all five foundations. Effect sizes were
computed separately for each dictionary, for a total
of 18,000 effect sizes computed per model.

Results Figure 3 shows effect sizes for liberal
vs. conservative political identity, for the most capa-
ble models tested from the OPT, GPT, and GPT-3.5
model families, measured using the three moral
foundations dictionaries. The shaded regions in
each plot represent the effects that would be ex-
pected based on the Moral Foundations Hypothesis

- namely that prompting with liberal political iden-
tity would result in more use of the individualizing
foundations (positive ∆Pi1,i2) and prompting with
conservative political identity would result in more
use of the binding foundations (negative ∆Pi1,i2).

The majority of effect sizes coincide with the
Moral Foundations Hypothesis. Of 60 combina-
tions of 5 foundations, 4 models, and 3 dictionaries,
only 11 effect sizes are in the opposite direction
from expected, and all of these effect sizes have
magnitude of less than 1 point absolute difference.

2.3 Is Moral Mimicry Affected By Model
Size?

Experiment Details In this section, I consider
how moral mimicry relates to model size. I used
text-ada-001, text-babbage-001, text-curie-001, and
text-davinci-001 models from the GPT-3 family,
text-davinci-002 and text-davinci-003 from the
GPT-3.5 family (OpenAI, 2022), and OPT-350m,
OPT-1.3B, OPT-6.7B, OPT-13B, and OPT-30B
(Zhang et al., 2022). The GPT-3 models have
estimated parameter counts of 350M, 1.3B, 6.7B
and 175B, respectively (OpenAI, 2022; Gao, 2021).
Text-davinci-002 and text-davinci-003 also have
175B parameters (OpenAI, 2022). Parameters in
billions for the OPT models are indicated in the
model names.

To analyze to what extent each model demon-
strates the moral mimicry phenomenon, I define a
scoring function MFH-SCORE that scores a model
m as follows:

MFH-SCORE(m)=
∑

f∈F signMFH(f)∆Pm(ef) (9)

signMFH=





−1, iff ∈ {A/S, S/D, L/B}

+1, iff ∈ {C/H, F/C}
(10)

A/S: Authority/Subversion; S/D: Sanctity/Degradation;
L/B: Loyalty/Betrayal; C/H: Care/Harm; F/C; Fairness/Cheating

The MFH-SCORE calculates the average effect
size for each model in the direction predicted by
the Moral Foundations Hypothesis.

Results Figure 4 above shows effect sizes ∆(Pef )
for each foundation and MFH-SCOREs vs. model
size (number of parameters). Effect sizes are aver-
aged over the three moral foundations dictionaries.

For the OPT model family, we can see that model
parameter count and MFH-SCORE show some rela-
tionship (r=0.69, although statistical power is lim-
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Figure 3: Effect sizes for liberal vs. conservative political identity for OPT-30B, text-davinci-001, text-davinci-002,
and text-davinci-003. Dot markers represent average effect size. Error bars represent 95% CI. Shaded regions
represent directions of expected effect size based on the Moral Foundations Hypothesis.

ited due to the limited number of models). In par-
ticular, the Sanctity/Degradation foundation main-
tains a non-zero effect size in the expected direc-
tion for all models 6.7B parameters or larger. Sur-
prisingly, OPT-13B shows decreased effect sizes
for Fairness/Cheating and Care/Harm in compari-
son to the smaller OPT-6.7B. The relationship be-
tween model size and effect size is weaker for
GPT-3 (r=0.23). Care/Harm, Fairness/Cheating,
Sanctity/Degradation, and Authority/Subversion
have effect size in the expected direction for Bab-
bage, Curie, and DaVinci models, though the effect
sizes are smaller than for the OPT family. Mod-
els from the GPT-3.5 family show the largest ef-
fect sizes overall. Unfortunately, no smaller model
sizes are available for this family. If we include
the GPT-3 and GPT-3.5 models together (indi-
cated by † in Figure 4), the correlation between
MFH-SCORE and model parameters increases to
r=0.84. Interestingly, the OPT and GPT-3 families
show Sanctity/Degradation as the most pronounced
effect size for conservative prompting, and Fair-
ness/Cheating as the most pronounced effect size
for liberal prompting. GPT-3.5 instead shows the
largest effect sizes for Authority/Subversion and
Care/Harm, respectively.

3 Discussion

Section 2.1 posed two criteria to judge whether
LLMs use moral foundations appropriately. For
the weaker Criterion A, results show that LLMs
do increase use of foundation words relevant to
the foundation that is salient in a given scenario,
at least for scenarios with clear human consensus

on foundation salience. However, for Criterion B,
results show that LLMs differ more from human
consensus foundation use than humans do in terms
of foundation use.

Section 2.2 compared LM foundation use with
findings from moral psychology that identify dif-
ferences in the moral foundations used by lib-
eral and conservative political groups. Specif-
ically, according to the Moral Foundations Hy-
pothesis, liberals rely mostly on the Care/Harm
and Fairness/Cheating foundations, while conser-
vatives use all 5 foundations more evenly, using
Authority/Subversion, Loyalty/Betrayal, and Fair-
ness/Cheating more than liberals. This finding was
first presented in (Graham et al., 2009), and has
since been supported with confirmatory factor anal-
ysis in (Doğruyol et al., 2019), and partially repli-
cated (though with smaller effect sizes) in (Frimer,
2020).

Results indicate that models from the GPT-3,
GPT-3.5 and OPT model families are more likely
to use the binding foundations when prompted
with conservative political identity, and are more
likely to use the individualizing foundations when
prompted with liberal political identity. Emphasis
on individual foundations in each category differs
by model family. OPT-30B shows larger effect
sizes for Fairness/Cheating than Care/Harm and
larger effect sizes for Sanctity/Degradation vs. Au-
thority/Subversion, while GPT-3.5 demonstrates
the opposite. I suspect that this may be due to dif-
ferences in training data and/or training practices
between the model families. This opens an interest-
ing question of how to influence the moral mimicry
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Figure 4: Top: Effect size vs. model parameters, based on completions obtained from Moral Stories dataset. Dark
lines show mean effect size. Error bars show 95% CI. Effect sizes are averaged over the three moral foundations
dictionaries.; 002: text-davinci-002; 003: text-davinci-003.; Bottom: MFH-SCORE vs. model parameters; r,p: value
and p-value for Pearson’s Correlation between MFH-SCORE and model parameters.; †results of correlation analysis
with GPT-3 and GPT-3.5 models analyzed together

capabilities that emerge during training, via dataset
curation or other methods.

The results from Section 2.3 show some relation-
ship between moral mimicry and model size. Effect
sizes tend to increase with parameter count in the
OPT family, and less so in the GPT-3 family. Both
175B-parameter GPT-3.5 models show relatively
strong moral mimicry capabilities, moreso than the
175B GPT-3 model text-davinci-001. This suggests
that parameter count is not the only factor lead-
ing to moral mimicry. The GPT-3.5 models were
trained with additional supervised fine-tuning not
applied to the GPT-3 family, and used text and code
pre-training rather than text alone (OpenAI, 2022).

4 Limitations

This work used the moral foundations dictionar-
ies to measure the moral content of text produced
by GPT-3. While studies have demonstrated cor-
respondence between results from the dictionaries
and human labels of moral foundational content
(Mutlu et al., 2020; Graham et al., 2009), dictionary-
based analysis is limited in its ability to detect nu-
anced moral expressions. Dictionary-based analy-
sis could be complemented with machine-learning
approaches (Garten et al., 2016; Johnson and Gold-
wasser, 2018; Pavan et al., 2020; Roy et al., 2022)
as well as human evaluation. This study attempted
to control for variations in the prompt phrasing by
averaging results over several prompt styles (Tables
2 and 3). These prompt variations were chosen
by the author. A more principled selection proce-
dure could result in a more diverse set of prompts.
The human studies that this study refers to (Graham
et al., 2009; Frimer, 2020) were performed on popu-
lations from the United States. The precise political
connotations of the terms “liberal” and “conserva-

tive” differ across demographics. Future work may
explore how language model output varies when
additional demographic information is provided, or
when multilingual models are used. Documenta-
tion for the datasets used herein indicates that the
crowd workers leaned politically left, and morally
towards the Care/Harm and Fairness/Cheating foun-
dations (Forbes et al., 2020; Hendrycks et al., 2021;
Fraser et al., 2022). However, bias in the marginal
foundation distribution does not hinder the present
analysis, since the present experiments experiments
focus primarily on the difference in foundation
use resulting from varying political identity. The
analysis in Section 2.1 relies more heavily on the
marginal foundation distribution; a foundationally-
balanced dataset was constructed for this experi-
ment. This study used GPT-3 (Brown et al., 2020),
GPT-3.5 (OpenAI, 2022), and OPT (Zhang et al.,
2022). Other pre-trained language model families
of similar scale and architecture include BLOOM8,
which I was unable to test due to compute bud-
get, and LLaMA (Touvron et al., 2023), which was
released after the experiments for this work con-
cluded. While the OPT model weights are available
for download, GPT-3 and GPT-3.5 model weights
are not; this may present barriers to future work
that attempts to connect the moral mimicry phe-
nomenon to properties of the model. On the other
hand, the hardware required to run openly-available
models may be a barrier to experimentation that is
not a concern for models hosted via an API.

Criticisms of Moral Foundations Theory include
disagreements about whether a pluralist theory of
morality is parsimonious (Suhler and Churchland,
2011; Dobolyi, 2016); Ch. 6 of (Haidt, 2013), dis-
agreements about the number and character of the

8https://bigscience.huggingface.co/blog/bloom
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foundations (Yalçındağ et al., 2019; Harper and
Rhodes, 2021), disagreements about stability of the
foundations across cultures (Davis et al., 2016), and
criticisms suggesting bias in the Moral Foundations
Questionnaire (Dobolyi, 2016). Moral foundations
theory was used in this study because it provides
established methods to measure moral content in
text, and because MFT-based analyses have identi-
fied relationships between political affiliation and
moral biases, offering a way to compare LLM and
human behavior. The methods presented here may
be applicable to other theories of morality; this is
left for future work.

Work that aims to elicit normative moral or eth-
ical judgement from non-human systems has re-
ceived criticism. Authors have argued that non-
human systems lack the autonomy and communica-
tive intent to be moral agents (Talat et al., 2022;
Bender and Koller, 2020). Criticisms have also
been raised about the quality and appropriateness
of data used to train such systems. Notably, crowd-
sourced or repurposed data often reflects a priori
opinions of individuals who may not be informed
about the topics they are asked to judge, and who
may not have had the opportunity for discourse or
reflection before responding (Talat et al., 2022; Eti-
enne, 2021). Some have argued that systems that ag-
gregate moral judgements from descriptive datasets
cannot help but be seen as normative, since their re-
production of the popular or average view tends to
be implicitly identified with a sense of correctness
(Talat et al., 2022). Finally, several authors argue
that the use of non-human systems that produce
apparent or intended normative judgements sets a
dangerous precedent by short-circuiting the discur-
sive process by which moral and ethical progress is
made, and by obscuring accountability should such
a system cause harm (Talat et al., 2022; Etienne,
2021).

The present study investigates the apparent moral
rationalizations produced by prompted LLMs. This
study does not intend to produce a system for nor-
mative judgement, and I would discourage a nor-
mative use or interpretation of the methods and
results presented here. The recent sea change in nat-
ural language processing towards general-purpose
LLMs prompted into specific behaviors enables end
users to produce a range of outputs of convincing
quality, including apparent normative moral or eth-
ical judgements. Anticipating how these systems
will impact end users and society requires study-
ing model behaviors under a variety of prompting

inputs. The present study was conducted with this
goal in mind, under the belief that the benefit of
understanding the moral mimicry phenomenon out-
weighs the risk of normative interpretation.

5 Related Work

Several machine ethics projects have assessed the
extent to which LLM-based systems can mimic
human normative ethical judgement, for example
(Hendrycks et al., 2021) and (Jiang et al., 2021).
Other projects evaluate whether LLMs can pro-
duce the relevant moral norms for a given scenario
(Forbes et al., 2020; Emelin et al., 2021), or whether
they can determine which scenarios justify moral
exceptions (Jin et al., 2022). Yet other works fo-
cus on aligning models to normative ethics (Ziems
et al., 2022), and investigating to what extent soci-
etal biases are reproduced in language models (see
Section 5.1 of Bommasani et al. 2022). As an exam-
ple, Fraser, Kiritchenko, and Balkir (2022) analyze
responses of the Delphi model (Jiang et al., 2021)
to the Moral Foundations Questionnaire (Graham
et al., 2011), finding that its responses reflect the
moral foundational biases of the groups that pro-
duced the model and its training data.

The aforementioned research directions typically
investigate language models not prompted with any
particular identity. This framing implies the pre-
trained model itself as the locus where a cohesive
set of biases might exist. Recent work suggests an
alternative view that a single model may be capable
of simulating a multitude of “identities”, and that
these apparent identities may be selected from by
conditioning the model via prompting (Argyle et al.,
2023; Aher et al., 2023). Drawing on the latter view,
the present study prompts LLMs to simulate behav-
ior corresponding to opposed political identities,
and evaluates the fidelity of these simulacra with
respect to moral foundational bias. Relations be-
tween the present work and other works taking this
“simulation” view are summarized below.

Arora et. al. probe for cultural values using Hof-
stede’s six-dimenension theory (Hofstede, 2001)
and the World Values Survey (Survey, 2022), and
use prompt language rather than prompt tokens
to condition the model with a cultural “identity”.
Alshomary et al. 2021 and Qian et al. 2021 fine-
tune GPT-2 models (1.5B parameters) on domain-
specific corpora, and condition text generation with
stances on social issues. The present work, in con-
trast, conditions on political identity rather than
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stance, evaluates larger models without domain-
specific fine-tuning, and investigates LLM capabili-
ties to mimic moral preferences. Concurrent work
probes language models for behaviors including
sycophancy, the tendency to mirror users’ politi-
cal views in a dialog setting (Perez et al., 2022).
Perez et. al. find that this tendency increases with
scale above ~10B parameters. While sycophancy
describes how model-generated text appears to ex-
press political views, conditioned on dialog user po-
litical views, moral mimicry describes how model-
generated text appears to express moral founda-
tional salience, conditioned on political identity
labels. Argyle et. al. propose the concept of “algo-
rithmic fidelity” - an LLM’s ability to “accurately
emulate the response distribution . . . of human sub-
groups” under proper conditioning (Argyle et al.,
2023). Moral mimicry can be seen as an instance of
algorithmic fidelity where moral foundation use is
the response variable of interest. Argyle et. al. study
other response variables: partisan descriptors, vot-
ing patterns, and correlational structure in survey
responses.

6 Conclusion

This study evaluates whether LLMs can reproduce
the moral foundational biases associated with social
groups, a capability herein coined moral mimicry.
I measure the apparent use of five moral founda-
tions in the text generated by pre-trained language
models conditioned with a political identity. I show
that LLMs reproduce the moral foundational biases
associated with liberal and conservative political
identities, modify their moral foundation use situ-
ationally, although not indistinguishably from hu-
mans, and that moral mimicry may relate to model
size.
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A Appendix A: Additional Details Related
to Experimental Methods

A.1 Additional Details Related to LLMs Used
in the Study

Model Family Model Variant Number of Parameters Instruction Fine-tuning
GPT-3 text-ada-001 350M None
GPT-3 text-babbage-001 1.3B FeedME
GPT-3 text-curie-001 6.7B FeedME
GPT-3 text-davinci-001 175B FeedME
GPT-3.5 text-davinci-002 175B ?
GPT-3.5 text-davinci-003 175B PPO
OPT opt-350m 350M None
OPT opt-1.3b 1.3B None
OPT opt-6.7b 6.7B None
OPT opt-13b 13B None
OPT opt-30b 30B None

Table 1: Models evaluated in this study. Information for
GPT-3 and GPT-3.5 from (OpenAI, 2022). Information
for OPT from (Zhang et al., 2022). Information for OPT-
IML from (Iyer et al., 2023). FeedME: “Supervised
fine-tuning on human-written demonstrations and on
model samples rated 7/7 by human labelers on an overall
quality score” (OpenAI, 2022); PPO: “Reinforcement
learning with reward models trained from comparisons
by humans” (OpenAI, 2022); ?: use of instruction fine-
tuning is uncertain based on documentation.

A.2 Additional Details Related to Datasets
Used in the Study

A.2.1 Preprocessing Details for Moral Stories
Dataset

Each example in Moral Stories consists of a moral
norm (a normative expectation about moral behav-
ior), a situation which describes the state of some
characters, an intent which describes what a partic-
ular character wants, and two paths, a moral path
and immoral path. Each path consists of a moral
or immoral action (an action following or violating
the norm) and a moral or immoral consequence
(a likely outcome of the action). For the present
experiments, I construct scenarios as the string con-
catenation of an example’s situation, intent, and
either moral action or immoral action. We do not
use the consequences or norms, as they often in-
clude a reason why the action was moral/immoral,
and thus could bias the moral foundational contents
of the completions.

We used 2,000 scenarios produced from
the Moral Stories dataset, consisting of 1,000
randomly-sampled moral scenarios and 1,000
randomly-sampled immoral scenarios.
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A.2.2 Preprocessing Details for ETHICS
Dataset

The ETHICS dataset contains five subsets of data,
each corresponding to a particular ethical frame-
work (deontology, justice, utilitarianism, common-
sense, and virtue), each further divided into a “train”
and “test” portion. For the present experiments, I
use the “train” split of the “commonsense” portion
of the dataset, which contains 13,910 examples of
scenarios paired with ground-truth binary labels of
ethical acceptability. Of these, 6,661 are “short”
examples, which are 1-2 sentences in length. These
short examples were sourced from Amazon Me-
chanical Turk workers and consist of 3,872 moral
examples, and 2,789 immoral examples. From
these, I randomly select 1,000 examples split evenly
according to normative acceptability, resulting in
500 moral scenarios and 500 immoral scenarios.
The train split of the commonsense portion of the
ETHICS dataset also contains 7,249 “long” exam-
ples, 1-6 paragraphs in length, which were obtained
from Reddit. These were unused in the present ex-
periment, primarily due to the increased costs of
using longer scenarios.

A.2.3 Preprocessing Details for Social
Chemistry Actions Dataset

The Social Chemistry 101 (Forbes et al., 2020)
dataset contains 355,922 structured annotations of
103,692 situations, drawn from four sources (Dear
Abby, Reddit AITA, Reddit Confessions, and sen-
tences from the ROCStories corpus; see (Forbes
et al., 2020) for references). Situations are brief
descriptions of occurrences in everyday life where
social or moral norms may dictate behavior, for
example “pulling out of a group project at the last
minute”. Situations are annotated with Rules-of-
Thumb (RoTs), which are judgements of actions
that occur in the situation, such as “It’s bad to not
follow through on your commitments”. Some sit-
uations may contain more than one action, but I
consider situations that are unanimously annotated
as having only one action for the present experi-
ment, as this simplifies interpretation of the moral
foundation annotations. RoTs in the dataset are
annotated with “RoT breakdowns”. RoT break-
downs parse each RoT into its constituent action
(e.g. “not following through on commitments”) and
judgement (“it’s bad”). Judgements are standard-
ized to five levels of approval/disapproval: very
bad, bad, expected/OK, good, very good. I discard
actions labeled with “expected/OK”, and collapse

“very bad” and “bad” together, and “very good” and
“good” together to obtain actions annotated with
binary normative acceptability. Actions are also
annotated with moral foundation labels (the exam-
ple in the previous sentence was annotated with
the Fairness/Cheating and Loyalty/Betrayal foun-
dations). Additionally, each RoT belongs to one of
the following categories - morality-ethics, social-
norms, advice, description. I use RoTs belonging
to the “morality-ethics” category, since this is the
category indicating that the RoT contains moral
reasoning rather than advice or etiquette recom-
mendations. After filtering RoTs and situations by
category, and selecting examples with unanimous
ratings for moral foundation and normative accept-
ability, I obtain a dataset of 1300 actions - 130
normatively moral actions and 130 normatively im-
moral actions for each of the five moral foundations.
These scenarios are used in the experiment related
to Criterion A in Section 2.1.

A.2.4 Preprocessing Details for Social
Chemistry Situations Dataset

Criterion B requires comparing PH(ef |s) and
PLM (ef |s), for human- and LLM-written open-
ended text responses containing moral reasoning
about some scenarios. I use situations from the So-
cial Chemistry 101 dataset (Forbes et al., 2020), and
use the human-written RoTs to estimate PH(ef |s)
using the moral foundations dictionaries. To es-
timate consensus human judgement CH(s), I use
situations that are multiply annotated. Specifically,
I filter the Social Chemistry 101 dataset to situa-
tions with 4 or more RoTs, and 4 or more RoT
breakdowns per RoT. This results in a corpus of
170 scenarios. Unlike the Social Chemistry Actions
dataset, this Social Chemistry Situations dataset is
not foundationally-balanced - I encountered a trade-
off between the minimum number of annotations
per situation, and the final corpus size - balancing
the dataset in terms of foundations would have re-
duced the dataset size further. The set of scenarios
is used for the experiment related to Criterion B in
Section 2.1.

A.3 Additional Details Related to Moral
Foundations Dictionaries

A.4 Additional Details Related to Prompt
Construction

Templates from Table 2 were used for the Moral
Stories, ETHICS, and Social Chemistry Situations
datasets, where the scenarios are longer descrip-
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Figure 5: Venn diagram of word overlap between
MFDv1, MFDv2 and eMFD. Since some entries in
MFDv1 are regexes, I represent MFDv1 in this diagram
by all non-compound words in WordNet matching a
regex in MFDv1.

tions of events, with length one sentence or longer.
Templates from Table 3 were used for the Social
Chemistry Actions dataset, where scenarios are
brief action descriptions (sentence fragments). This
was done to ensure grammaticality.

Template Style Stance Template
1 moral [SCENARIO] As a/an [POLITICAL_IDENTITY_PHRASE], this is a moral thing to do because
1 immoral [SCENARIO] As a/an [POLITICAL_IDENTITY_PHRASE], this is an immoral thing to because
2 moral [SCENARIO] As a/an [POLITICAL_IDENTITY_PHRASE], here are the moral arguments for why this is a moral thing to do:
2 immoral [SCENARIO] As a/an [POLITICAL_IDENTITY_PHRASE], here are the moral arguments for why this is an immoral thing to do:
3 moral [SCENARIO] As a/an [POLITICAL_IDENTITY_PHRASE], here’s why this is acceptable behavior:
3 immoral [SCENARIO] As a/an [POLITICAL_IDENTITY_PHRASE], here’s why this is unacceptable behavior:
4 moral [SCENARIO] As a/an [POLITICAL_IDENTITY_PHRASE], here’s why this is a good thing to do:
4 immoral [SCENARIO] As a/an [POLITICAL_IDENTITY_PHRASE], here’s why this is a bad thing to do:
5 moral [SCENARIO] As a/an [POLITICAL_IDENTITY_PHRASE], here’s why this is the right thing to do:
5 immoral [SCENARIO] As a/an [POLITICAL_IDENTITY_PHRASE], here’s why this is the wrong thing to do:

Table 2: Prompt template styles for situations

Template Style Stance Template
1 moral As a/an [POLITICAL_IDENTITY_PHRASE], [ACTION] is a moral thing to do because
1 immoral As a/an [POLITICAL_IDENTITY_PHRASE], [ACTION] is an immoral thing to because
2 moral As a/an [POLITICAL_IDENTITY_PHRASE], here are the moral arguments for why [ACTION] is a moral thing to do:
2 immoral As a/an [POLITICAL_IDENTITY_PHRASE], here are the moral arguments for why [ACTION] is an immoral thing to do:
3 moral As a/an [POLITICAL_IDENTITY_PHRASE], here’s why [ACTION] is acceptable behavior:
3 immoral As a/an [POLITICAL_IDENTITY_PHRASE], here’s why [ACTION] is unacceptable behavior:
4 moral As a/an [POLITICAL_IDENTITY_PHRASE], here’s why [ACTION] is a good thing to do:
4 immoral As a/an [POLITICAL_IDENTITY_PHRASE], here’s why [ACTION] is a bad thing to do:
5 moral As a/an [POLITICAL_IDENTITY_PHRASE], here’s why [ACTION] is the right thing to do:
5 immoral As a/an [POLITICAL_IDENTITY_PHRASE], here’s why [ACTION] is the wrong thing to do:

Table 3: Prompt template styles for actions

B Appendix B: Additional Experimental
Results

B.1 Effect Size vs. Dataset

Figure 6 shows effect sizes for liberal vs. conser-
vative prompting, based on completions obtained
from 2000 scenarios produced from Moral Stories
and 1000 scenarios produced from ETHICS. Scores

Figure 6: Effect sizes, liberal vs. conservative prompt
identity, by dataset and dictionary

are separated by dictionary and dataset. See Section
2 for the methods used to calculate effect sizes.

Effect sizes and directions are consistent
across datasets for the Care/Harm and Author-
ity/Subversion foundations.

B.2 Effect Size vs. Prompt Template Style

Figure 7 shows the results obtained from analysis of
compeletions obtained from five different prompt
styles, as described in 2.

Effects of liberal vs. conservative political iden-
tity are uniform in direction for the Care/Harm and
Authority/Subversion foundations. Regardless of
the prompt style or dictionary used, the comple-
tions contain more Care/Harm words when the lib-
eral political identity is used, and more Author-
ity/Subversion words when the conservative polit-
ical identity is used. Effects are nearly uniform
in direction for the Fairness/Cheating foundation,
with liberal political identity resulting in increased
use of this foundation for thirteen of fifteen com-
binations of prompt style and dictionary. Liberal
prompting resulted in decreased use of the Fair-
ness/Cheating foundation for prompt styles 1 and
2, when measured using MFDv2.
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Figure 7: Effect sizes, liberal vs. conservative prompt
identity, by prompt style and dictionary.

Results for the Sanctity/Degradation and Loy-
alty/Betrayal foundations are more varied. Effect
directions are uniform for the Sanctity/Degradation
foundation when measured with MFDv2 - lib-
eral political identity results in lower Sanc-
tity/Degradation use by 1-2 percent score across
all prompt styles. Effects on Sanctity/Degradation
are less consistent when measured using MFDv1
or eMFD - liberal prompting resulted in decreased
use of Sanctity/Degradation words for only three
out of five prompt styles. Measured by the eMFD,
liberal prompting results in decreased use of Sanc-
tity/degradation words for four of five prompt
styles.

Effect directions are uniform for Loy-
alty/Betrayal when measured with MFDv1 -
prompting with liberal political identity results in
greater percent scores for Loyalty for all prompt
styles. Results are varied when measured with
MFDv1 - liberal prompting results in decreased
use for only three of five prompt styles. When mea-
sured using the eMFD, liberal prompting results
in decreased or equal use of the Loyalty/Betrayal
foundation across the prompt styles, which is
consistent within the dictionary, but is opposite in
effect direction in comparison to MFDv1.
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C Appendix C: LLM Output Examples

Figure 8: Examples of completions obtained from Moral Stories dataset, from OpenAI models of increasing size.
Examples were randomly selected
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Abstract

Recently, dynamic early exiting has attracted
much attention since it can accelerate the in-
ference speed of pre-trained models (PTMs).
However, previous work on early exiting has ne-
glected the intermediate exits’ architectural de-
signs. In this work, we propose a novel frame-
work, Learned Exits and COmparison-based
early exiting (LECO) to improve PTMs’ early
exiting performances. First, to fully uncover
the potentials of multi-exit BERT, we design a
novel search space for intermediate exits and
employ the idea of differentiable neural archi-
tecture search (DNAS) to design proper exit
architectures for different intermediate layers
automatically. Second, we propose a simple-
yet-effective comparison-based early exiting
mechanism (COBEE), which can help PTMs
achieve better performance and speedup trade-
offs. Extensive experiments show that our
LECO achieves the SOTA performances for
multi-exit BERT training and dynamic early
exiting.

1 Introduction

Despite achieving state-of-the-art (SOTA) perfor-
mances on almost all the natural language process-
ing (NLP) tasks (Lin et al., 2021), large pre-trained
language models (PLMs) still have difficulty be-
ing applied to many industrial scenarios with low
latency requirements. Many research works are de-
voted to speeding up the inference of BERT or other
PLMs, such as network pruning (Zhu and Gupta,
2017; Xu et al., 2020a; Fan et al., 2019; Gordon
et al., 2020), student network distillation (Sun et al.,
2019; Sanh et al., 2019; Jiao et al., 2020), and early
exiting (Teerapittayanon et al., 2016; Xin et al.,
2020; Kaya et al., 2019; Xin et al., 2021). Due
to its potential in applications, early exiting has
attracted much attention in the research field (Xu
et al., 2021a). Early exiting requires a multi-exit

∗Corresponding author: michaelwzhu91@gmail.com

BERT, a BERT backbone with an intermediate clas-
sifier (or exit) installed on each layer. And then, a
dynamic early exiting mechanism is applied during
the forward pass to ensure efficient inference. Early
exiting is in parallel with and can work together
with static model compression methods (Tambe
et al., 2020). However, the literature focuses less on
the training of multi-exit BERT (Teerapittayanon
et al., 2016; Xin et al., 2020; Liu et al., 2020; Xin
et al., 2021) and there is no literature systematically
discussing the architectural design of the interme-
diate exits.

In this work, we propose a novel framework,
Learned Exits and COmparison-based Early exit-
ing (LECO), designated to discover the full poten-
tials of multi-exit BERT in early exiting. First, we
design a suitable and comprehensive search space
for architectural learning of the intermediate exits
(see Figure 1). Our search space contains candidate
activation functions, encoding operations, and pool-
ing operations. We follow the differentiable neural
architecture search (DNAS) framework like Liu
et al. (2019a); Xie et al. (2019); Chen et al. (2021)
to learn a set of intermediate exits with different
architectures automatically. Second, reflecting on
the limitations of the patience-based early exiting
method PABEE (Zhou et al., 2020), we propose
a comparison-based early exiting (COBEE) mech-
anism. COBEE makes early exiting decisions by
comparing the predicted distributions of adjacent
intermediate layers.

We conduct extensive experiments and ablation
studies on the GLUE benchmark (Wang et al.,
2018). We show that learned intermediate exits of
LECO outperform the previous SOTA multi-exiting
BERT training methods while adding fewer train-
able parameters. Furthermore, our novel dynamic
early exiting mechanism COBEE outperforms the
previous SOTA early exiting mechanisms. Fur-
ther analysis shows that: (a) our LECO framework
can help to boost the performance of multi-exiting
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Figure 1: The overall framework of our LECO framework. Left: We compare the predicted distributions of adjacent
PTMs’ intermediate layers for mining exiting signals. Middle: the general architecture of intermediate exits. Right:
Each edge in the the search cell is a weighted sum of multiple operations under the DNAS framework.

BERT under different training strategies. (b) our
novel dynamic early exiting strategy outperforms
the baseline early exiting methods.

Our contributions are as follows:

• We propose a novel framework, LECO, which
constructs a search space for intermediate ex-
its and employs a DNAS framework to learn
the suitable exits for different layers.

• We propose a novel comparison-based early
exiting criterion which can achieve better
quality-speed tradeoffs for PTMs.

• We conduct experiments to show that our
LECO achieves SOTA performances for multi-
exit BERT training.

2 Related Work

2.1 Inference acceleration methods

Since the rise of BERT, there are quite large
numbers of literature devoting themselves to speed-
ing up the inference of BERT. Standard method
include direct network pruning (Zhu and Gupta,
2017; Xu et al., 2020a; Fan et al., 2019; Gordon
et al., 2020), distillation (Sun et al., 2019; Sanh
et al., 2019; Jiao et al., 2020), Weight quantiza-
tion (Zhang et al., 2020b; Bai et al., 2020; Kim
et al., 2021) and Adaptive inference (Zhou et al.,
2020; Xin et al., 2020; Liu et al., 2020). Among
them, adaptive inference has drawn much atten-
tion. Adaptive inference aims to deal with simple
examples with only shallow layers of PLMs, thus

speeding up inference time on average.
Early exiting requires a multi-exit model, like a

BERT backbone with an intermediate classifier (or
exit) installed on each layer. Early exiting literature
mainly focuses on the development of the early exit-
ing strategies, that is, determining when an interme-
diate exit’s prediction is suitable as the final model
prediction. Score based strategies (Teerapittayanon
et al., 2016; Xin et al., 2020; Kaya et al., 2019;
Xin et al., 2021), prior based strategies (Sun et al.,
2022) and patience based strategies (Zhou et al.,
2020) have been proposed. Teerapittayanon et al.
(2016) uses the entropy of an intermediate layer’s
predicted distribution to measure the in-confidence
level and decide whether to exit early. PABEE asks
the model to exit when the current layer’s predic-
tion is the same with the previous layers.

Our work complements the literature on early
exiting by proposing the LECO framework to im-
prove early exiting performance via the automatic
architectural design of exit architectures and a
novel early exiting mechanism.

2.2 Neural architecture search
With the rapid development and wide in-

dustrial applications, researchers have devoted
great effect in manually designing neural ne-
toweks (Krizhevsky et al., 2012; Simonyan and
Zisserman, 2015; He et al., 2016; Huang et al.,
2017; Wang et al., 2022). The trend is to stack
more and more convolutional or transformer layers
to construct a deep network. Recently, when trying

299



to avoid manual architecture design, researchers
started considering developing algorithms to de-
sign neural networks automatically. Thus, a new
research sub-field of automated machine learning
(AutoML) (He et al., 2021) called neural architec-
ture search is established (Zoph and Le, 2017).

In the early attempts, NAS requires massive com-
putations, like thousands of GPU days (Zoph and
Le, 2017; Zoph et al., 2018; Liu et al., 2018). Re-
cently, a particular group of one-shot NAS, led by
the seminal work DARTS (Liu et al., 2019a) has
attracted much attention. DARTS formulates the
search space into a super-network that can adjust
itself in a continuous space so that the network
and architectural parameters can be optimized al-
ternately (bi-level optimization) using gradient de-
scent. A series of literature try to improve the
performance and efficiency of DARTS. SNAS (Xie
et al., 2019) reformulate DARTS as a credit assign-
ment task while maintaining the differentiability. P-
DARTS (Chen et al., 2021) analyze the issues dur-
ing the DARTS bi-level optimization, and propose
a series of modifications. PC-DARTS (Xu et al.,
2021b) reduces the memory cost during search by
sampling partial channels in super-networks. Fair-
DARTS (Chu et al., 2021) change the softmax op-
erations in DARTS into sigmoid and introduce a
penalty term to prune the architectural parameters
according to the demand. Gao et al. (2020) make
the hyper-network more close to the discretized
sub-network by penalizing the entropy of the archi-
tecture parameters.

Our work contributes to the NAS literature by
investigate the architectural search of intermediate
exits to improve the early exiting performances.

3 Preliminaries

In this section, we introduce the necessary back-
ground for BERT early exiting. we consider the
case of multi-class classification with K classes,
K = {1, 2, ...,K}. The dataset consists of N
samples {(xi, yi), i ∈ I = {1, 2, ..., N}} , where
xi is an input sentence consisting of L words, and
yi ∈ K is the label.

3.1 Early Exiting

Multi-exit PTM Early exiting is based on multi-
exit PTM, which is a PTM backbone with classi-
fiers (or exits) at each layer. With M layers, M
classifiers fm(x; θm) are designated at M layers of
the PTM, each of which maps its input to the prob-

ability distribution on K classes. fm(x; θm) can
take the form of a simple linear layer (linear exit)
following (Zhou et al., 2020). However, as is shown
in Liu et al. (2020), adding an encoding operation
like the multi-head self-attention layer (Vaswani
et al., 2017) to the intermediate exits (MHA exits)
can significantly boost the performance of inter-
mediate layers, demonstrating the importance of
architectural design.
Training We now introduce the three main multi-
exit BERT training methods widely adopted in the
literature.

JT. Perhaps the most straightforward fine-tuning
strategy is to minimize the sum of all classifiers’
loss functions and jointly update all parameters in
the process. We refer to this strategy as JT. The
loss function is:

LJT =

M∑

m=1

LCE
m (1)

where LCE
m = LCE

m (y, fm(x; θm)) denotes the
cross-entropy loss of the m-th exit. This method
is adopted by Teerapittayanon et al. (2016); Kaya
et al. (2019); Zhou et al. (2020); Zhu (2021).

2ST. The two-stage (2ST) (Xin et al., 2020; Liu
et al., 2020) training strategy divides the training
procedure into two stages. The first stage is identi-
cal to the vanilla BERT fine-tuning, updating the
backbone model and only the final exit. In the sec-
ond stage, we freeze all parameters updated in the
first stage and fine-tune the remaining exits sepa-
rately:

Stage1 : Lstage1 = LCE
M (yi, fM (xi; θM )) (2)

Stage2 : Lstage2 = LCE
m ,m = 1, ...,M − 1. (3)

where LCE
m = LCE

m (yi, fm(xi; θm)) denotes the
cross-entropy loss of m-th exit.

ALT. It alternates between two objectives (taken
from Equation 1 and 2) across different epochs, and
it was proposed by BERxiT (Xin et al., 2021):

Odd : Lstage1 = LCE
M (yi, fM (xi; θM )) (4)

Even : Ljoint =
M∑

m=1

LCE
m (5)

For the search and training of our LECO method,
we adopt the joint training (JT) method, following
Teerapittayanon et al. (2016); Kaya et al. (2019);
Zhou et al. (2020); Zhu (2021). LECO mainly
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employs JT to fine-tune the PTM backbone and
simultaneously learn the best exit architectures for
all intermediate layers under a differentiable NAS
framework.
Early exiting inference At inference, the multi-
exit PLM can operate in two different modes: (a)
static early exiting, that is, a suitable exit m∗ is
appointed to predict all queries. (b) Dynamic early
exiting, the model starts to predict on the classifiers
f (1), f (2), ..., in turn in a forward pass, until it
receives a signal to stop early at an exit m∗ < M ,
or arrives at the last exit M .

3.1.1 Inference speedup ratio
During inference, we will run the test samples

with batch size one following Zhou et al. (2020);
Teerapittayanon et al. (2016). We report the ac-
tual wall-clock run-time reduction as the efficiency
metric. For each test sample xi, denote the infer-
ence time cost under early exiting as ti, and time
cost under no early exiting as Ti. Then the aver-
age speedup ratio on the test set is calculated by

Speedup = 1−
∑Ntest

1 ti∑Ntest
1 Ti

, whereNtest is the num-

ber of samples on the test set. We will run the test
set ten times and report the average speedup ratio
to avoid randomness of run-time.

3.2 Preliminaries on DARTS

Assume there is a pre-defined space of oper-
ations denoted by O, where each element, o(·),
denotes a neural network operation, such as con-
volutional operation, self-attention, and activation.
DARTS (Liu et al., 2019a) operates on a search cell,
a fully connected directed acyclic graph (DAG)
with N nodes. Let (i, j) denote a pair of nodes.
The core idea of DARTS is to initialize a super-
network stacked with blocks with the same archi-
tecture as the DAG. During the search, each edge
in the DAG is a weighted sum including all |O| op-
erations in O, fi,j(zi) =

∑
o∈O a

o
i,j · o(zi), where

aoi,j =
expαo

i,j∑
o′∈O expαo′

i,j

, zi denotes the output of

the i-th node, and αo
i,j is the architectural param-

eters that represent the weight (or the importance
score) of o(·) in edge (i, j). The output of a node is
the sum of all input flow, i.e., zj =

∑
i<j fi,j(zi).

The output of the entire cell is formed by summing
the last two nodes.

This design makes the entire framework differen-
tiable to layer weights and architectural parameters

αo
i,j so that it can perform architecture searches

in an end-to-end fashion. The standard optimiza-
tion method is the bi-level optimization proposed
in DARTS. After the search process is completed,
the discretization procedure extracts the final sub-
network by dropping the operations receiving lower
scores.

4 Search space of LECO

As depicted in Figure 1, we construct the search
space of a LECO intermediate exit mimicking the
MHA exit. Representations of the current BERT
layer,H(m)

i , will first be down-sampled to a smaller
dimensionRde (e.g., 64) to keep the intermediate
exit parameter-efficient.1 Then, it will go through
an activation cell, an encoder cell, a pooling cell,
and finally, another activation cell. The whole DAG
of the intermediate exit consists of 7 edges.
Activation cell Both activations cells are one-
step DAGs (Figure 1), designated to choose the
proper activation function from several candidates.
Similar to So et al. (2019), the collection of activa-
tion functions we consider is: (a) ReLU (Agarap,
2018); (b) GeLU (Hendrycks and Gimpel, 2016);
(c) SWISH (Ramachandran et al., 2017); (d)
Tanh (Krizhevsky et al., 2012); (e) NullAct, which
means making no changes to the input.
Encoder cell As is shown in Figure 1, differ-
ent from Wang et al. (2020); Zhu et al. (2021a),
we construct our encoder cell as a simple DAG,
which consists of at most two encoder operations.
Encoder operations 1 and 2 will encode the cell’s
input, and their outputs will be summed to be the
output of the encoder cell. As an extension to the
encoder search space of Wang et al. (2020); Zhu
et al. (2021a); Chen et al. (2020), our collection of
encoder operations consists of the following com-
monly used encoding operations: (a) 1-d convolu-
tional layers, with stride 1, same padding, output fil-
ters equal to the input’s dimension, and kernel size
equal to 1, 3, or 5 (denoted as conv_k, k = 1, 3, 5);
(b) multi-head self-attention layer (Vaswani et al.,
2017), with k = 2, 4, 8 attention heads, head size
equaling de/k (denoted as mha_k, k = 2, 4, 8); (c)
skip-connection, denoted as skip-connect; (d) the
null encoding operation that multiply zero tensors
to the input (null).2

1Note that the parameters of the intermediate exits consti-
tute at most 1.6% of the BERT’s parameters.

2Selecting this operation means fewer operations will be
included in the encoder DAG.
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Pooling cell It is also a one-step DAG for select-
ing the proper pooling layer. The most commonly
used pooling operation for PTM-based models is to
extract the representations of the [CLS] token (de-
noted as cls_pool). As is summarized in Gong et al.
(2018), other commonly used pooling operations
are: max pooling (max_pool); average pooling
(avg_pool); self-attention based pooling (sa_pool).

Note that our search space contains the MHA
exit (introduced in Section 3.1) as a special case.
The above search space can result in 6.87e+34 com-
binations of different multi-exit BERT. We will
mainly follow DARTS (Liu et al., 2019a) to search
for the optimal architecture designs of exits. But
different from (Liu et al., 2019a), we adopt a macro
search space, that is, the exits from different lay-
ers have different architectural parameters, thus
resulting different architectures for different layers.

5 Comparison-based Early Exiting

The patience-based mechanism (Zhou et al.,
2020) validates the early exiting decisions among
the previous layers, providing a promising direc-
tion for designing early exiting mechanisms. the
early exiting condition in PABEE is coarse: it di-
rectly compares the predicted labels. However, tt is
common for BERT to change its predictions after
a few intermediate layers. Thus, PABEE’s early
exiting performances with low patience parame-
ters may not be reliable. To summarize, we need a
more fine-grained criterion to generate more reli-
able early exiting signals.

We now introduce our Comparison-based early
exiting method, COBEE. The inference procedure
is illustrated in Figure 1. Assume the forward pass
has reached layer m < M . We now compare the
predicted distributions of layer m and layer m

′

(m > m
′
) as follows. Denote the label that receives

the highest probability mass at layer m as k∗m, and
the probability distribution of exit m is denoted as
Prm, then the disagreement between layer m and
layer m

′
is calculated as:

Di(Prm,Prm′ ) = |Prm(k∗m)−Prm′ (k∗m)|. (6)

For simplicity, we denote dim,m′ =
Di(Prm,Prm′ ) ∈ R. The smaller the value
of dim,m′ , the predicted distributions Prm and
Prm′ are more consistent with each other. We
use a counter cnt to store the number of times the
disagreement scores between adjacent layers are
less than the pre-defined exiting threshold τ . At

layer m, cntm is calculated as:

cntm =

{
cntm−1 + 1, if dim,m−1 < τ,

0, otherwise.
(7)

If dim,m−1 is less than the pre-defined threshold,
then the patience counter is increased by 1. Oth-
erwise, the patience counter is reset to 0. If cntm
reaches the pre-defined patience value t, the model
stops inference and exits early. Otherwise, the
model goes to the next layer. However, if the model
does not exit early at intermediate layers, the model
uses the final classifier fM for prediction.

6 Experiments

6.1 Datasets

We evaluate our proposed approach to the clas-
sification tasks on GLUE benchmark (Wang et al.,
2018). We only exclude the STS-B task since it is
a regression task, and we exclude the WNLI task
following previous work (Devlin et al., 2019; Jiao
et al., 2020; Xu et al., 2020b). Since the origi-
nal test sets are not publicly available, we follow
Zhang et al. (2020a) and Mahabadi et al. (2021)
to construct the train/dev/test splits as follows: (a)
for datasets with fewer than 10k samples (RTE,
MRPC, CoLA), we divide the original validation
set in half, using one half for validation and the
other for testing. (b) for larger datasets, we split 1k
samples from the training set as the development
set, and use the original development set as the test
set. The detailed dataset statistics are presented in
Table 1.

For MNLI, we report acc, which is the average
of the accuracy scores on the matched and mis-
matched test set. For MRPC and QQP, we report
acc-f1, which is the average of accuracy and F1
scores. For CoLA, we report mcc, which is the
Matthews correlation. For all other tasks, we report
accuracy (acc).

6.2 Baseline methods

We compare our LECO framework with the fol-
lowing baselines:
Multi-exiting model training For multi-exit
model training, we compare: (a) Joint training (JT)
(Zhou et al., 2020; Teerapittayanon et al., 2016),
with both a linear exit and an MHA exit (de = 64);
(b) two-stage training (2ST) (Liu et al., 2020; Xin
et al., 2020), with an MHA exit (de = 64); (c) alter-
nating training (ALT) in Xin et al. (2021); (d) the
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Category Datasets |train| |dev| |test| |Y| Type Labels

Single-sentence
SST-2 66349 1000 872 2 sentiment positive, negative
CoLA 8551 521 522 2 linguistic acceptability acceptable, not acceptable

Sentence-pair

MNLI 391702 1000 19647 3 NLI entailment, neutral, contradiction
MRPC 3668 204 204 2 paraphrase equivalent, not equivalent
QNLI 103743 1000 5463 2 NLI entailment, not entailment
QQP 362846 1000 40430 2 paraphrase equivalent, not equivalent
RTE 2490 138 139 2 NLI entailment, not entailment

Table 1: The statistics of datasets evaluated in this work. For MNLI task, the number of samples in the test set is
summed by matched and mismatched samples. |Y| is the number of classes for a dataset.

Gradient Equilibrium technique (GradEquil) (Li
et al., 2019), which incorporates JT with gradient
adjustments and is adopted by Liu et al. (2021); (e)
Global Past Future (Liao et al., 2021) (Global-PF)
which asks the lower layers to imitate the deeper
layers; (f) GAML-BERT (Zhu et al., 2021b), which
employs a mutual learning strategy to improve the
performances of shallow exits.
Early exiting methods We compare the early
exiting performances of our COBEE method on the
multi-exit backbone trained under the LECO frame-
work with the following methods: (a) Entropy-
based method (Entropy) originated from (Teer-
apittayanon et al., 2016), which is equivalent to
the maximum-probability based method Schwartz
et al. (2020); (b) Patience-based method (Pa-
tience) (Zhou et al., 2020); (c) learning-to-exit
based method (LTE) proposed by Xin et al. (2021),
which train an extra meta-classifier to estimate the
confidence on a sample and achieves the SOTA
performances of early exiting. For comparison, we
also run the patience-based method on the back-
bone obtained by the JT method with linear exits.

6.3 Experimental settings

Devices We implement LECO on the base of
HuggingFace’s Transformers. We conduct our ex-
periments on Nvidia V100 16GB GPUs.
PTM models. We mainly adopt the ALBERT
base (Lan et al., 2019) backbone. We will also
include RoBERTa-base (Liu et al., 2019b), and
DeBERTa-base (He et al., 2020) in the ablation
studies.
Settings for Architecture search We add a
LECO search cell (Figure 1) with dimension de
equal to 32 on each intermediate layer of the PTM
and adopt the DARTS (Liu et al., 2019a) method
to learn the best exit architecture for each layer.
AdamW optimizer (Loshchilov and Hutter, 2019)
is used for both the model and architecture parame-
ters. At the beginning of each epoch, the training

set is randomly split into D1 (for updating model
parameters) and D2 (for updating architecture pa-
rameters) with a ratio of 1 : 1. The search will last
for 30 epochs. The learning rate is 2e-5 for model
parameters and 2e-4 for architectural parameters.
The search procedure is run once on each GLUE
task.
Settings for Architecture evaluation After the
search procedure ends, the top-scored sub-network
is discretized from the super-network at each layer
and will be trained from scratch as the final learned
exit. The learning rate is 2e-5, and AdamW op-
timizer (Loshchilov and Hutter, 2019) is used for
optimization. We evaluate the dev set and save the
checkpoint after each epoch. After training ends,
we evaluate the best checkpoint on the test set. We
train the final learned exits under 5 random seeds
to obtain its average test performance.

6.4 Main results

Comparison of multi-exit model training meth-
ods Table 2 reports the main results on the GLUE
benchmark with ALBERT as the backbone model.
All baseline models are run with the original au-
thors’ open-sourced codes. We report AVG, the
cross-layer average score, and BEST, the best score
among all the intermediate layers. From Table 2,
Our LECO method outperforms the previous multi-
exit model training methods in terms of the AVG
scores (with statistical significance), demonstrating
that our LECO framework effectively boosts the
overall performances of intermediate exits and thus
providing stronger backbones for early exiting.

Note that both 2ST + MHA exit (Liu et al., 2020)
and JT + MHA exit introduce 66k parameters per
exit, while the LECO method adds 25k-26k param-
eters per exit. The comparison among the three
methods demonstrates that our LECO method does
not rely only on adding more parameters to obtain
performance improvements. The improvements of
LECO result from better architectural designs for
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RTE MRPC CoLA SST-2 QNLI QQP MNLI
Baseline methods

AVG BEST AVG BEST AVG BEST AVG BEST AVG BEST AVG BEST AVG BEST
JT + linear exit 66.8 72.5 83.7 87.9 43.7 53.3 89.2 91.1 82.6 87.3 82.2 87.2 76.0 83.1
JT + MHA exit 68.1 76.9 84.1 88.2 43.6 57.5 88.2 91.5 82.8 87.6 82.4 87.1 76.8 83.2

GradEquil 67.3 77.4 84.2 89.3 43.6 56.1 89.2 91.8 82.4 88.0 82.7 87.0 76.5 83.6
ALT 68.5 77.8 84.6 88.3 44.1 57.3 88.9 91.6 82.3 87.8 82.5 86.8 76.6 83.2

GAML-BERT 68.8 77.6 84.9 88.8 45.0 57.9 89.1 92.3 82.6 87.9 82.6 87.5 75.9 83.4
Global-PF 68.5 78.1 84.9 88.6 45.1 57.7 88.9 92.6 82.5 88.1 82.6 87.4 76.5 83.3

2ST + MHA exit 68.9 77.5 85.1 89.2 45.0 57.9 89.3 92.4 82.5 88.0 82.7 87.3 76.2 82.7
Our proposed method

LECO 69.7∗ 77.9 85.8∗ 89.4 46.4∗ 58.0 89.6∗ 92.5 83.4∗ 88.1 83.1∗ 87.4 77.3∗ 83.4

Table 2: Average test performance of methods with ALBERT backbone on GLUE tasks across 5 random seeds.
AVG represents cross-layer average score, and BEST represents best score among all layers. The ∗ symbol on the
AVG scores means the results surpass the baseline method with statistical significance (by the Wilcoxon signed-rank
test).

(a) RTE (b) SST-2

Figure 2: The speedup-score curves with different dynamic early exiting methods, on the RTE and SST-datasets.

exits of different depths.

Comparison of dynamic early exiting mecha-
nisms We compare our COBEE method with
the previous best-performing early exiting methods
on the multi-exit ALBERT-base backbone trained
under our LECO framework (as reported in Ta-
ble 2). We also run the patience-based early exit-
ing with the multi-exit ALBERT-base trained with
the JT method. For the patience-based method
(Zhou et al., 2020), early exiting is run on dif-
ferent patience parameters. For the other meth-
ods, we run early exiting under different confi-
dence thresholds or patience parameters so that
the speedup-performance curves consist of at least
20 points evenly distributed across the interval
(0, 1) of speedup ratios. The speedup-performance
curves for the RTE and SST-2 tasks are plotted in
Figure 2.

The following takeaways can also be made from
Figure 2: (a) With the same backbone model,
our COBEE method achieves better speedup-
performance trade-offs than the previous SOTA
early exiting methods, especially when the speedup

ratio is large. (b) The comparison between Pa-
tience and JT+linear exit: Patience demonstrates
that our LECO method can provide superior back-
bones for early exiting and consistently result in
superior performances under different speedup ra-
tios, even though introducing a more complex exit
architecture. The learned exit architecture consti-
tutes 0.25% of the parameters on each intermediate
layer and increases 0.6% inference latency on av-
erage. However, the performance gains on the in-
termediate layers clearly out-weights the increased
latency.

6.5 Discussions and ablation studies

Discussion on the learned architectures Ta-
ble 6 of the Appendix A presents the best-learned
exit architectures on each layer of ALBERT when
the downstream task is MRPC or RTE. Three ob-
servations can be made: (a) although we allow at
most two encoder operations in the encoder search
cell, more than half of the learned exits include
one valid encoding operation, making the exits
more parameter efficient. (b) The learned archi-
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Method AVG score
- RTE SST-2

LECO 69.7 89.6
2ST + MHA exit 68.9 89.3

2ST + LECO 69.6 89.5
ALT 68.5 88.9

ALT + LECO 69.3 89.4

Table 3: Comparisons of LECO with different multi-
exit training methods. Cross-layer average performance
(AVG) scores are reported.

tectures tend to use a pair of different activation
functions, which is different from the combination
of the Tanh-Tanh activation functions applied in the
MHA exit (Liu et al., 2020). (c) Most exits do not
select the cls_pool pooling operation, validating
the necessity of our pooler search cell.
LECO works well with other multi-exit train-
ing strategies In the main experiments, we train
LECO with the JT method. Table 3 demonstrates
the results of LECO when trained with 2ST and
ALT. The results show that LECO can effectively
improve the performances of 2ST and ALT, and
achieve comparable results with LECO combined
with JT. However, the JT method is more conve-
nient and takes less training time.
LECO works well with other pretrained back-
bones We now substitute the pretrained back-
bone to RoBERTa-base (Liu et al., 2019b) and
DeBERTa-base (He et al., 2020), and the results
are reported in Table 4. We can see that our
LECO framework can also help to improve the aver-
age performance of multi-exit RoBERTa/DeBERTa
model. An interesting take-away is that RoBERTa
and DeBERTa can not outperform ALBERT in
terms of AVG scores. We hypothesis that ALBERT
shares parameters across transformer layers, thus
the difference between shallow and deep layers are
smaller than the other models.
Ablation on the search space We now conduct
an ablation study to show the validity of our search
space design. We consider reducing our search
space O to a singleton step-by-step: (a) reduce the
activation cells by only keeping the Tanh activation
(O1); (b) further reduce the pooler cell to only in-
clude cls_pool (O2); (c) further reduce the encoder
cell to only include mha_dot, and now the search
space only contains the MHA exit. Table 5 reports
the search results on different search spaces. From
Table 5, we can see that dropping any components
of the whole search space results in performance

Method AVG score
- RTE SST-2

ALBERT backbone
LECO 69.7 89.6

JT + MHA exit 68.1 88.2
RoBERTa backbone

LECO 68.6 88.7
JT + MHA exit 66.5 87.4

DeBERTa backbone
LECO 69.5 89.3

JT + MHA exit 66.9 88.1

Table 4: Comparisons of LECO with different pre-
trained backbones. Cross-layer average performance
(AVG) scores are reported. We can see that RoBERTa
and DeBERTa can not outperform ALBERT in AVG
scores.

search space AVG score
- RTE SST-2
O 69.7 89.6
O1 69.3 89.1
O2 68.9 88.7

MHA exit 68.1 88.2

Table 5: Experimental results for the ablation study of
our LECO search space. Cross-layer average (AVG)
performance scores are reported.

losses, demonstrating that our search space design
is necessary and beneficial.

7 Conclusion

In this work, we propose a novel framework,
LECO. Our contributions are three-fold. First,
LECO designs a unified search space for archi-
tectural designs of intermediate exits. Second, we
apply the differentiable NAS framework of DARTS
to learn the optimal exit architectures automatically.
Third, we propose a novel comparison based early
exiting mechanism, COBEE. Experiments on the
GLUE benchmark and ablation studies demonstrate
that our LECO framework can achieve SOTA on
multi-exit BERT training and outperforms the pre-
viously SOTA dynamic early exiting methods.

Limitation

Although our LECO framework is shown to be
effective in improving the multi-exit BERT train-
ing, it still has certain limitations that need to be
addressed in the future: (a) MHA exits and our
learned exits indeed introduce new parameters and
additional flops. We would like to explore more
parameter-efficient methods to improve multi-exit
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BERT training in future works. (b) In this work,
we demonstrate our framework’s performance on
sentence classification or pair classification tasks.
In future works, we would like to extend our work
to broader tasks such as sequence labeling, relation
extraction, and text generation. We would like to
explore this aspect in the future.

Ethics Statement

Our LECO framework is designated to improve
the training of multi-exit BERT and dynamic early
exiting performances. Our work can facilitate the
deployment and applications of pre-trained models
on devices with less powerful computation capabil-
ities, making the state-of-the-art models accessible
for everyone. In addition, we hope this technology
can help reduce the carbon footprints of NLP-based
applications. Furthermore, the datasets we exper-
iment with are widely used in previous work and,
to our knowledge, does not introduce new ethical
concerns.
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the RTE and SST-2 tasks are presented in Table 6.
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task layer index activation 1 activation 2 pooler encoder op 1 encoder op 2

SST-2

1 swish leaky_relu avg_pool conv_3 null
2 gelu leaky_relu max_pool null mha_4
3 nullAct swish max_pool mha_4 null
4 swish leaky_relu cls_pool conv_3 null
5 swish gelu sa_pool conv_5 skip-connect
6 swish swish avg_pool null conv_5
7 gelu swish max_pool mha_4 conv_1
8 nullAct leaky_relu max_pool null skip-connect
9 tanh gelu cls_pool conv_1 conv_1
10 nullAct gelu cls_pool skip-connect mha_8
11 nullAct gelu avg_pool conv_3 null
12 gelu nullAct cls_pool conv_3 skip-connect

RTE

1 nullAct tanh sa_pool null conv_1
2 swish nullAct avg_pool conv_1 conv_5
3 gelu tanh sa_pool null mha_2
4 swish nullAct sa_pool skip-connect conv_3
5 gelu nullAct sa_pool conv_3 null
6 gelu tanh sa_pool mha_pdot conv_3
7 nullAct tanh sa_pool conv_3 null
8 leaky_relu leaky_relu max_pool conv_1 null
9 nullAct swish max_pool null conv_1
10 swish leaky_relu max_pool conv_1 null
11 nullAct gelu cls_pool skip-connect mha_4
12 nullAct swish cls_pool mha_4 null

Table 6: The best architectures learned via our LECO framework. We can see that on the same task, BERT requires
different intermediate exits to better exploit the representation capabilities on different layers.
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Abstract

Authorship attribution aims to identify the au-
thor of an anonymous text. The task becomes
even more worthwhile when it comes to lit-
erary works. For example, pen names were
commonly used by female authors in the 19th
century resulting in some literary works be-
ing incorrectly attributed or claimed. With this
motivation, we collated a dataset of late 19th-
century novels in English. Due to the imbal-
ance in the dataset and the unavailability of
enough data per author, we employed the GAN-
BERT model along with data sampling strate-
gies to fine-tune a transformer-based model for
authorship attribution. Differently from the
earlier studies on the GAN-BERT model, we
conducted transfer learning on comparatively
smaller author subsets to train more focused
author-specific models yielding performance
over 0.88 accuracy and F1 scores. Furthermore,
we observed that increasing the sample size
has a negative impact on the model’s perfor-
mance. Our research mainly contributes to the
ongoing authorship attribution research using
GAN-BERT architecture, especially in attribut-
ing disputed novelists in the late 19th century.

1 Introduction

Authorship attribution identifies authors of a given
set of unknown documents (Hu et al., 2020; Neal
et al., 2018; Stamatatos, 2009). Conventional tech-
niques and neural networks are the two main au-
thorship attribution methods. The studies on the
conventional approaches typically focus on feature
engineering and stylometry. The deep learning ap-
proaches have been gaining popularity recently due
to the superior results compared to the conventional

approaches. Furthermore, authorship attribution
can be tackled in two ways: closed-set and open-
set attribution. In closed-set attribution, an author
is selected from a set of candidate authors, whereas
in open-set attribution, the target author may not
be included in the candidate authors’ list.

Applications of authorship attribution are em-
ployed in various domains, such as digital forensics
(Abbasi and Chen, 2005; Sun et al., 2012), social
media analysis (Junior et al., 2016; Duman et al.,
2016; Brocardo et al., 2017) and digital humani-
ties Juola (2021). In historical texts, the authorship
styles may contain socio-linguistic characteristics
due to the century in which the author lived, idea
movements inspired by the author, and language-
specific attributes. Also, in written texts, the genre
and topics are crucial in defining the author’s style.
Several pieces of research have been undertaken in
the literature and historical domains, for instance,
identifying anonymous or disputed texts (Koppel
et al., 2007; Kestemont et al., 2016; Tuccinardi,
2017). The work presented by Fung (2003) anal-
yses the Federalist Papers, which involves 85 ar-
ticles and essays written by Alexander Hamilton,
James Madison and John Jay. Another application
of authorship attribution in literature is resolving
doubted authorships. For instance, Thompson and
Rasp (2016) investigate whether C.S. Lewis wrote
The Dark Towers. The Shakespearean Authorship
Dispute was addressed by Fox and Ehmoda (2012).
Furthermore, attributing the author is one of many
variations in authorship applications, as research
directions are in different domains, such as attribut-
ing to the publication year and identifying the lit-
erary genre and the topic. One such example is
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Tausz (2011) which predicts the date of authorship
in historical texts.

This research proposes a GAN-BERT-based
model to enhance transformer-based authorship at-
tribution in late 19th-century novels. To our knowl-
edge, this is the first attempt to ensemble GAN
and BERT models and, precisely, the GAN-BERT
model to address authorship attribution in literary
texts. In some of the recent works on authorship
attribution, the models were trained in a controlled
setting and had less elaboration on the data prepara-
tion stage, resulting in the poor reproducibility and
generalisation of these models. Here, we present
an end-to-end process from domain selection to
dataset collection with insights to experiment plan-
ning.

An authorship attribution model highly depends
on the number of authors represented in the train-
ing dataset and the text available per each author.
Most of the related works emphasise controlled
training environments. To improve the model’s
generalisation and ability to perform well on ro-
bust scenarios, it should be identified how much
the model depends on the number of authors in
the training dataset and the amount of text by each
author. We use a normalised dataset of 20 novels
per author to avoid dataset imbalance. Therefore,
to identify how much data provides better model
performance, we control the text data sample size
drawn from the book text. Therefore, the research
questions in this study are as follows:

RQ 1: How to effectively utilise the GAN-BERT
model for authorship attribution?

RQ 2: How does the number of authors in the
dataset impact the GAN-BERT performance for
authorship attribution?

RQ 3: How does the amount of text data (i.e.
sample size) drawn from each novel affect the
GAN-BERT performance for authorship attribu-
tion?

The remainder of the paper is organised into
several sections: Section 2 demonstrates a brief
literature survey. Then Section 3 describes the pro-
posed model’s architecture, and Section 4 presents
the dataset collection and preparation. Section 5
elaborates on the experiment design, focusing on
the research questions, Section 6 summarises the
results and findings obtained, and finally, Section 7
involves the concluding remarks and future direc-
tions.

2 Related Work

Texts vary in terms of topic, sentiment and style.
According to Stamatatos (2009), information about
the authors can be extracted from the style of their
written documents. The task involves identifying
the author from unknown documents, known as
authorship attribution, which breaks into two major
tasks: Authorship Identification and Authorship
Verification. Authorship Identification is identi-
fying a document’s author by comparing a set of
candidate authors (Stamatatos, 2009). Authorship
Identification can be interpreted as a binary clas-
sification problem, whereas authorship attribution
is a multi-class classification problem. Authorship
Verification is a fundamental problem in authorship
attribution which focuses on finding whether the
considered person wrote one or more documents or
not. Authorship Verification is comparatively chal-
lenging with less data (Koppel et al., 2011; Luyckx
and Daelemans, 2008).

With the popularity of deep neural networks for
NLP applications, recent authorship attribution re-
search shares a similar trend. The works of Bag-
nall (2015a); Hosseinia and Mukherjee (2018);
Boumber et al. (2018) are examples of neural
network-based models in authorship attribution.
Additionally, transfer learning also proved to have
astonishing results. Zhang et al. (2021) introduce
a Deep Authorship Verification using new met-
rics: DV-distance and DV-projection, which utilise
pre-trained language models. Their work high-
lights the utilisation of pre-trained language mod-
els in our approach. Character and n-gram-based
CNN (Ruder et al., 2016), Syntax-augmented CNN
(Zhang et al., 2018), and Convolutional Siamese
Networks (Saedi and Dras, 2021) are some other
authorship attribution models which utilise deep
learning techniques. These deep learning-based
applications provide valuable insights for our ap-
proach to utilising the GAN-BERT model for au-
thorship attribution tasks.

Language Models (LM) used in the authorship
tasks can be categorised as n-gram-based and neu-
ral network-based (Fourkioti et al., 2019). Ge
et al. (2016) used a neural network-based language
model. The works of Bagnall (2015b) present a
character-level RNN-based LM combining a multi-
headed classifier. To address the cross-domain
problem, Barlas and Stamatatos (2020) extended
Bagnall (2015b)’s works for closed-set authorship
attribution by combining a multi-headed LM with
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a pre-trained LM. According to Barlas and Sta-
matatos (2020), having a normalised corpus is cru-
cial for the performance of cross-domain author-
ship attribution. BertAA (Fabien et al., 2020) is
the recent fine-tuned form of the pre-trained BERT
model for the authorship attribution task, which
presents extensive experiments on various datasets:
Enron Email (Klimt and Yang, 2004), Blog Au-
thorship (Schler et al., 2006) and IMDb (Seroussi
et al., 2014). Although pre-trained models have
gained popularity and promising results in some
authorship tasks, the performance of such models
highly depends on the training set.

Generative Adversarial Networks (GAN) are
used in authorship-related tasks to prevent adver-
sarial attacks, mainly in the Authorship Obfusca-
tion problem where one’s writing style is masked.
Ou et al. (2022) introduce source code authorship
verification using GAN models and multi-head at-
tention. A4NT (Shetty et al., 2018) is a GAN-
based style transformation to perform authorship
obfuscation learned from data via adversarial train-
ing and sequence-to-sequence LMs. Kazlouski
(2019)presents an LSTM-GAN classifier to recog-
nise imitations generated by the A4NT (Shetty
et al., 2018) model. Tang et al. (2019) presents
a data augmentation approach to authorship attri-
bution in Weibo text using Wasserstein-GAN to
generate samples of the positive class.

The class imbalance problem is hard to avoid
in real-world scenarios, particularly in authorship
attribution. Stamatatos (2018) introduced a novel
strategy to produce synthetic data for the authorship
identification task. The approach that Stamatatos
(2018) mentioned is segmenting the training texts
into text samples, considering the training size of
the class. The works of Eder (2015) highlight how
much data is required to identify authors across
different languages and genres. The findings in
Eder (2015) show that the minimum sample range
is 2500-5000, representing the two ends for Latin,
English, German, Polish, and Hungarian datasets.
Further experiments by Eder (2017) attempt to iden-
tify the minimum sample size by removing text one
by one from the training set, which yields that 2000
words sample size is appropriate. Also, Eder (2017)
emphasises that this finding depends strongly on
the authors. Hadjadj and Sayoud (2021)propose
a hybrid PCA and SMOTE approach of oversam-
pling, which reports outperforming the state-of-the-
art accuracies. The Stylometric Set Similarity (S3)

method presents the authorship attribution task as
a set similarity problem by considering 3000 nov-
els from 500 authors curated from Project Guten-
berg (Sarwar et al., 2018). Granichin et al. (2015)
present a KNN-resampling approach to authorship
identification by simulating samples from 2 texts.

In previous research on authorship attribution,
the combination of GAN and transformer models
has not yet been explored. Furthermore, to the best
of our knowledge, no attempt has been made to
use the GAN-BERT model specifically for the task
of authorship attribution, especially with sampling
strategies for many authors and limited data. The
critical literature analysis suggests that deep neu-
ral networks in authorship attribution would show
promising performance with well-designed sam-
pling strategies. Here, we propose GAN-BERT
model for authorship attribution along with vari-
ous sampling strategies, and analyse how transfer-
learning would support the proposed model in liter-
ary domain.

3 GAN-BERT Model for Authorship
Attribution

Let A be a collection of authors of interest, A =
{a1, a2, . . . , aN}, where N is the total number
of authors in A. The document set belonging
to each author forms the complete dataset T =
{ta1 , ta2 , . . . taN } where tai is the document set at-
tributed to the author ai in the dataset. Given a text,
tu of an unknown author u, the proposed model
assigns the text to the most likely author from A.

GAN-BERT (Croce et al., 2020) combines
BERT-based models and Semi-Supervised GAN
(Salimans et al., 2016). Figure 1a illustrates the
GAN-BERT model architecture, where discrimina-
tor D is utilised to classify examples and generator
G generates fake examples F. The discriminator
takes the vector representations returned via BERT
for unlabeled U and labelled L input texts. When
training is complete, G is discarded from the model
to use the rest of the model for inference.

In contrast to GAN-BERT (Croce et al., 2020),
which utilises a semi-supervised GAN model (Sal-
imans et al., 2016) with labelled and unlabeled
data, we train the GAN-BERT model with labelled
data only. The discriminator D is trained over N+1
classes to assign the true samples to a class from
{1, 2, 3, ..., N}. The fake sample generated from
the generator G represents the (N+1)th class. The
discriminator is suitable for detecting authorship
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obfuscation and forgery since it is trained with fake
samples similar to the original author-written texts.
Figure 1b illustrates the modified GAN model.

The GAN-BERT model generally shows supe-
rior results for classification tasks with limited la-
belled data. Furthermore, the intuition to use GAN-
BERT for authorship attribution is that, due to the
fake data generated in the generator, it considers
not only the real writing styles, but also the possible
fake writing styles that are synthesised.

4 Creating the Datasets

4.1 Pre-Screening Authors

We performed pre-screening on the authors before
collecting the dataset, which is, to the best of our
knowledge, the first attempt to perform a qualitative
analysis on the literary domain for authorship attri-
bution. We considered two parameters during the
author selection process: distribution and filtering.
Distribution parameters ensure that the collected
texts span equally among different attributes such
as gender, genre and ethnicity. Filtering parameters
focus on whether selected works by the distribution
parameters should be included or excluded from
the dataset. It mainly concerns the novelists’ char-
acteristics and the nature of their literary works. A
summary of these two parameters is illustrated in
Table 1.

4.2 Dataset Collection and Validation

We collected datasets from Project Gutenberg
across genres such as novels, short stories, essays,
poems and biographies. There is no specific field
in Project Gutenberg to indicate genre and year of
publication. We manually validated texts to cap-
ture the year of publication. We also filtered novels
so that all fiction had a word count greater than
10,000. To our knowledge, other researchers using
Project Gutenberg have not performed similar data
validation to filter novels.

In the master dataset, we have filtered 1232 nov-
els written by 62 authors, which are segmented as
follows:

1. Early 19th Century (1800-1835)

2. Mid-19th Century (1836-1870)

3. Late 19th Century (1871-1900)

4. Early 20th Century (1901-1914)

This paper focuses on the late 19th-century seg-
ment from the master dataset, which includes 541
novels. We filtered authors based on the number of
novels available in the dataset and selected those
with at least 20. We narrowed the author selection
by selecting the top 20 authors with the most nov-
els from this focused subset. These authors were
used to train and test the proposed GAN-BERT
model. Therefore the dataset is thus uniformly dis-
tributed regarding the number of novels per author.
The selected authors are Anthony Trollope, Arthur
Conan Doyle, Bret Harte, Fergus Hume, Frances
Hodgson Burnett, H.G. Wells, Henry Rider Hag-
gard, Jack London, James Grant, John Kendrick
Bangs, Joseph Conrad, Louisa May Alcott, Mar-
garet Oliphant, Marie Corelli, Mark Twain, Mary
Elizabeth Braddon, Mrs Henry Wood, Nathaniel
Hawthorne, Oliver Optic, and Wilkie Collins.

4.3 Balanced Author Representation
The filtered dataset of late 19th century English
novels consists of 400 novels by 20 authors. Es-
pecially in deep neural networks, this dataset is
insufficient to represent a larger number of authors
than 20. Furthermore, as authors have different
writing styles, different combinations of authors
in the same size dataset have a strong impact on
model performance. We observed this problem
during the preliminary experiments with manually
sampled sets of authors. Therefore, to ensure a bal-
anced representation of authors in the training and
validation datasets and to mitigate the effect of dif-
ferent author combinations, we performed random
sampling for a considered number, as shown in Fig-
ure 2. Different author combinations are denoted
by a ’sample set’.

Furthermore, one of the aims of the experiments
is to see how increasing the number of authors
would affect the model’s performance. To do this,
we split the dataset to represent different numbers
of authors.

4.4 Dataset Splits
We followed the leave-n-out method to split the
dataset for manually selected 5 sets. For example,
of 20 authors, two were assigned as a 2-author
case, while the rest of the 18 were included as an
18-author case. This process is repeated to obtain
distinct 5 manually selected author sample sets.
The author’s case defines how many authors were
considered in the train/test datasets. For example,
a 2-author case means a focused dataset with only
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(a) GAN-BERT Model (Croce et al., 2020) (b) Modified GAN-BERT Model

Figure 1: Model Architecture Comparison

Parameter Type Category Condition
Distribution Parameters Genre Romance, Thrillers, Science Fiction, Realist

Gender Male, Female
Ethnicity American, British
Doubted Authorship Only original works by novelist in the training set
Readers Adult, Children

Filtering Parameters Publication Period Later 19th Century 1871-1900
Number of novels during publication period >3
Literature Genre Novels
The number of total novels >20
Written Language English
Non-translation Yes
Multi-Authors No
Digitised work availability Available on the Project Gutenberg

Table 1: Distribution and Filtering Parameters used for Pre-Screening of Authors

novels by 2 authors. We can define any number of
author sample sets to perform experiments in each
n-author case. For example, manually selected
author sample sets for a 2-author case include 5
different combinations of 2 authors out of 20 can
be present. 50 random samples in a 2-authors case
mean, out of 20 authors, 50 randomised different
2-author combinations. Random sampling does not
cover all combinations of authors in a given author
case, but would ensure that the majority of author
combinations are considered. The dataset splitting
process is illustrated in Figure 2.

We ensured the dataset splits were distinct for all
the sample sets per case. The 20-author case was
used as the base model to train and perform transfer
learning on other models. We used a randomised
approach to shuffle and return 50 and 100-author
sample sets for a random sample generation.

We split train-test-validation (80:10:10) sets,
stratified by author ids, for each sample set con-
sidered for the experiments, with one sample set
per experimental round. The average results of all
sample sets represent a particular n-author case.
The base model was trained on all 20 authors in the
transfer learning experiments. The stratified split
in the train-test-validation ensured a uniform dis-
tribution of novels per author, and the test data are

distinct from the training data. In transfer learning,
the training set may include evaluation data from
the 20-author case.

4.5 Baseline Datasets
To compare the performance of the proposed GAN-
BERT model on other baseline datasets, we used
the IMDB62 (Seroussi et al., 2014) and Blog Au-
thorship (Schler et al., 2006) datasets. We created
a subset of 20 authored content from these datasets
to be consistent with the 20-author dataset, which
refers to as IMDB20 and Blog20 respectively.

4.6 Dataset Availability
Due to the copyright restrictions explained in Sec-
tion 7, we do not release the entire dataset. Instead,
we release the scripts used for creating and pre-
processing the dataset. We also publish the list of
the authors, selected novels, and novel indices used
to extract the sample sets 1.

5 Experiment Design

We conducted experiments on different dataset sub-
sets and different model configurations to address
the following:

1https://github.com/Kaniz92/AA-GAN-Bert/tree/
main
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Figure 2: Dataset Splitting Process

1. Random Sampling Author Combinations

2. The Impact of Transfer Learning

3. Number of Authors in Dataset

4. Text Sample Size per Novel

We explored the GAN-BERT model under two
dimensions: Random Sampling and Transfer Learn-
ing. As illustrated in Figure 2, the 20 novels per
each author from the 20-author dataset provide dif-
ferent combinations under different numbers of
authors. Therefore, first, we manually selected au-
thors per each n-author case and then randomly
sampled 50 and 100 author combinations. In trans-
fer learning experiments, we compared the per-
formance of manually selected sample sets under
standalone training and transfer learning from the
20-author dataset to each n-author case.

In a practical scenario of authorship attribution,
the number of authors to compare would vary.
Therefore, we experimented with the GAN-BERT
model response for different numbers of authors
in the dataset. Also, the text sample size drawn
from a novel can be varied when representing the
novel text due to varying text lengths. We used the

manual sampling of authors to identify any trend
towards the text sample size drawn from a novel.

In the default setting, unless specified, we used
20 samples per novel drawn sequentially from the
book text for training and testing. We first trained
the base model on 20-authors for 10 epochs, using
Adam optimiser, one hidden layer for both gener-
ator and the discriminator, a dropout rate of 0.2,
batch size of 8, a warm-up proportion of 0.1, and
learning rate of 1e−5 for both generator and the dis-
criminator. Then the pre-trained 20-author model
was used for transfer learning on smaller subsets of
each case in {2, 4, 6, 8, 10, 12, 14, 16, 18}-author
counts and trained further on these sub-sets for 5
epochs.

We compared the proposed GAN-BERT model
with different baseline models such as word-level
TF-IDF, character n-gram, Stylometric features
(Sari et al., 2018) and BertAA (Fabien et al.,
2020) on the 20-authors dataset, 18-authors dataset,
IMDB, and Blog Authorship datasets. These base-
line experiments provide insights into how the cre-
ated datasets performed with other baseline models
and how other datasets would perform with the pro-
posed GAN-BERT model. To be consistent with
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the rest of the experiments, we selected 20 samples
per each document by an author, but the 20-sample
restrictions are not applied to baseline models.

6 Results and Discussion

For each experiment across different sample sets,
we reported Accuracy, F1, Precision, and Recall
with averaging results sampled manually and ran-
domly.

6.1 Random Sampling Author Combinations

Analysing the model with manually selected author
sample sets may fail to describe the results and any
trends due to the bias factors. For example, the up-
shot performance of the 18-authors model in manu-
ally sampled authors as in Figure 3a could be due to
biases in generated manual sample sets. Therefore
we conducted additional experiments for the 50 and
100 sample sets using random sampling. Rather
than selecting books randomly, we focused on ar-
ranging authors into different sample sets and then
keeping books per each author the same (20 books
per author). This experiment explores whether the
model could tolerate the robustness of any author
combinations. Before deciding on the random sam-
pling limits, we analysed the maximum number of
author combinations per each case. To cover all
the author cases, the maximum random sampling
count is 190, so we decided to experiment on 50
and 100 random samples.

Compared to the manually selected author sam-
ple sets, 50 and 100 random sampling achieves a
higher accuracy for all the author cases, precisely
more than 0.97% of accuracy. Results in Table 2
and Figure 3b show that the model is robust with
consistent performance over different author cases.

6.2 The Impact of Transfer Learning

The intuition behind applying transfer learning for
the authorship attribution model is that instead of
having a model that learns each author’s style and
overfits into a particular dataset with a fixed number
of authors, it makes the model more practical to
use in real-world scenarios if the model learns the
authorship attribution task regardless of the number
of authors. This also applies to different author
styles, regardless of topic, genre or unique author
style. Moreover, transfer learning allows the model
to transfer knowledge into a limited data set.

Extensive experiments have been carried out
to identify how transfer learning has affected the

model’s performance from the 20-author cases to
smaller author subsets. We trained standalone and
transfer learning models using the same hyperpa-
rameters as the base model.

Transfer learning has substantially improved the
model’s performance, especially for the increasing
number of authors. The best-performing model
was observed for the 2-author case, and the worst-
performing model was for the 18-author case. Over-
all, the transfer learning results suggest that it is a
promising technique for improving performance,
especially for smaller datasets.

6.3 Incremental Number of Authors in the
Dataset

We designed the dataset subsets to increment the
number of authors by two, ranging from [2, 18], to
investigate how the author count would affect the
model’s performance. The number of samples per
author is uniform across each author sample set and
case. We also selected the same 20 books for each
author to ensure that the topics or genres do not
affect the experiments. One text sample should not
exceed 512 words, BERT’s maximum input token
size. Therefore we set the one sample size as 512
words and drew 20 sequential text samples from
each book, representing one author by 400 (20 x
20) instances before the train-test split.

Both the standalone and transfer learning models
for five manually selected author sample sets show
a declining trend in performance as the number
of authors increases, as illustrated in Table 3 and
Table 2. The binary classification shows the best
performance overall, while the multi-class classifi-
cation shows comparatively a lower performance.

Averaging accuracies for transfer learning for 50
and 100 randomly sampled author sets are illus-
trated in Table 2. The results do not indicate any
clear trend with the author counts, but accuracy and
F1 are consistent and higher than manually selected
author sample sets.

As illustrated in Figure 3b, manual samples
and random samples show clear distinction with
increasing the number of authors in the dataset.
Therefore, the model performance depends highly
on how the sample sets were defined, i.e. different
author combinations. Therefore, strategies must be
explored to overcome the biases towards different
configurations of authors’ sample sets.
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n-Authors
5 Manual Samples 50 Random Samples 100 Random Samples

Accuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy F1 Precision Recall
2-authors 0.98† 0.98† 0.99† 0.98† 0.98 0.98 0.98 0.98 0.98 0.98 0.99 0.98
4-authors 0.96 0.96 0.96 0.96 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
6-authors 0.93 0.93 0.93 0.93 0.98 0.98 0.98 0.98 0.97∗ 0.97∗ 0.97∗ 0.97∗

8-authors 0.91 0.91 0.92 0.91 0.96∗ 0.96∗ 0.97∗ 0.96∗ 0.98 0.98 0.98 0.98
10-authors 0.92 0.92 0.92 0.92 0.98 0.98 0.98 0.98 0.99† 0.99† 0.99† 0.99†

12-authors 0.92 0.92 0.93 0.92 0.99† 0.99† 0.99† 0.99† 0.99† 0.99† 0.99† 0.99†

14-authors 0.88∗ 0.88∗ 0.90∗ 0.88∗ 0.98 0.98 0.98 0.98 0.99† 0.99† 0.99† 0.99†

16-authors 0.89 0.89 0.90∗ 0.89 0.98 0.98 0.98 0.98 0.99† 0.99† 0.99† 0.99†

18-authors 0.88∗ 0.88∗ 0.90∗ 0.88∗ 0.99† 0.99† 0.99† 0.99† 0.98 0.98 0.98 0.98

Table 2: Results of the GAN-BERT Model for Transfer Learning on a 20-Author Dataset
∗ - mini result across a metric † - max value across a metric

(a) F1 Scores between Standalone Training and Transfer Learn-
ing

(b) F1 Scores between Manual Sampling and Random Sam-
pling for Transfer Learning

Figure 3: F1 Score Results of the Transfer Learning Approach

n-Authors Accuracy F1 Precision Recall
2-authors 0.95† 0.96† 0.95† 0.95†

4-authors 0.82 0.85 0.82 0.82
6-authors 0.82 0.84 0.82 0.83
8-authors 0.76 0.78 0.76 0.75
10-authors 0.72 0.75 0.72 0.72
12-authors 0.70 0.74 0.70 0.70
14-authors 0.66 0.70 0.66 0.66
16-authors 0.64∗ 0.67∗ 0.64∗ 0.64∗

18-authors 0.80 0.82 0.80 0.80

Table 3: Results of the GAN-BERT Model for Stan-
dalone Training on Manually Selected Author Sample
Sets
∗ - mini result across a metric † - max value across a
metric

6.4 Text Sample Size per Novel

To investigate how each novel’s sample size affects
the model performance, we selected the 18 authors’
cases and experimented across different text sample
sizes ranging from 5 to 35 text chunks per novel.
Each sample consists of a text chunk of 512 words

drawn from the book text. For example, a text
sample size of 5 means that we selected 5 x 512
text chunks from the book text, which resulting 5
separate instances in the dataset. We performed this
experiment using the same 20 books per author.

The results in Table 4 demonstrate that increas-
ing the sample size has a negative impact on the
model’s performance across all sample sets for the
18-author model. In this experiment, as the sample
size increases, the model is trained on the same
novels and 18 authors during training. One of the
main findings is that the larger text samples from
novels only sometimes lead to better performance.
The model may have shown a negative impact in
larger text sample sizes due to the high variance
in the data or overfitting. Hence, further investiga-
tion must be performed to identify the optimal text
sample size per novel under different experiment
settings.
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Sample Size Accuracy F1 Precision Recall
5 0.92† 0.93† 0.92† 0.92†

10 0.91 0.91 0.91 0.91
15 0.89 0.90 0.89 0.89
20 0.80∗ 0.82∗ 0.80∗ 0.80∗

25 0.86 0.87 0.86 0.86
30 0.86 0.87 0.86 0.86

Table 4: Effect of Sample Size on Model Performance
for 18-Author Classification
∗ - mini result across a metric † - max value across a
metric

6.5 Baseline Experiments
We evaluated various baseline models with dif-
ferent datasets including IMDB20, Blog20, 20-
authors and 18-authors. The accuracy results ob-
tained are reported in Table 5. Using stylometric
features performed the worst with an accuracy of
0.14 on the IMDB20 dataset. The proposed GAN-
BERT model outperforms the stylometric and char-
acter n-gram-based models but does not perform as
well as the TF-IDF and BertAA models. Our pro-
posed model performs as well as the other models
on IMDB20 dataset; however, BERTAA outper-
forms the others on our dataset. This indicates that
further improvements (e.g. including other features
such as tf-idf or stylometric features) are needed to
enhance the proposed GAN-BERT model perfor-
mance on specific datasets.

Model IMDB20 Blog20 20-authors 18-authors
Stylometric (Sari et al., 2018) 0.14∗ 0.11∗ 0.14∗ 0.11∗

Character Ngram (Fabien et al., 2020) 0.69 0.23 0.94 0.95
Word level TF-IDF (Fabien et al., 2020) 0.97† 0.47 0.91 0.90
BERTAA (Fabien et al., 2020) 0.97† 0.62† 0.99† 0.99†

Proposed Model 0.96 0.40 0.63 0.80

Table 5: Baseline Experiment Results
∗ - mini result across a metric † - max value across a
metric

7 Conclusion

This research proposes a GAN-BERT-based model
for authorship attribution in late-19th-century nov-
els. Our primary focus is identifying how the au-
thor counts and the text sample size per book af-
fects the model’s performance. The manually se-
lected five authors’ combinations indicate that the
model’s performance degrades when the number
of authors increases. The declining trend is the
same for transfer-learning models, although the
overall performance is better than the standalone
models. Additionally, we experimented with how
transfer learning has improved the mean accura-

cies over manually selected author sample sets for
each n-author case. A future improvement would
be an experiment around few-shot and zero-shot
tests. Furthermore, it would be interesting to exper-
iment with different GAN and transformer models
replaced in this model architecture.

Limitations

While this research provides valuable insights into
using the GAN-BERT model for authorship attri-
bution, there are also a few limitations to note. We
only focused on a limited number of authors from
the late 19th century, which may include short-
comings towards model generalisability. Future
research should consider using the whole dataset
of long 19th-century novelists to address this lim-
itation. Due to the copyright issues explained in
Section 4.6 and Section 7, we do not release the
whole dataset, instead, we release scripts to repro-
duce the datasets. Furthermore, incorporating a
rich feature set and comparing performance among
different models would be another interesting re-
search direction.

Ethics Statement

The duration 1800-1914 is considered as the out-
of-copyright duration in Project Gutenberg, under
the categories ‘Rule 1: Works First Published Be-
fore 95 Years Ago and Before 1977’ and ‘Rule
10(c) - Works of Treaty Parties and Proclama-
tion Countries First Published Between 1923 and
1977’ (Gutenberg). Although the duration is out-
of-copyright regarding literary works, we stored
the data securely with restricted access. We do not
release the dataset.
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Abstract
Instructional texts for specific target groups
should ideally take into account the prior
knowledge and needs of the readers in order
to guide them efficiently to their desired goals.
However, targeting specific groups also carries
the risk of reflecting disparate social norms and
subtle stereotypes. In this paper, we investigate
the extent to which how-to guides from one
particular platform, wikiHow, differ in prac-
tice depending on the intended audience. We
conduct two case studies in which we exam-
ine qualitative features of texts written for spe-
cific audiences. In a generalization study, we
investigate which differences can also be sys-
tematically demonstrated using computational
methods. The results of our studies show that
guides from wikiHow, like other text genres,
are subject to subtle biases. We aim to raise
awareness of these inequalities as a first step to
addressing them in future work.

1 Introduction

How-to guides provide practical instructions that
help humans to achieve specific goals. In the past
decades, such guides also attracted increasing inter-
est in NLP and AI research (Branavan et al., 2009;
Chu et al., 2017; Anthonio et al., 2020). Resources
such as wikiHow,1 a collaboratively edited online
platform for instructional texts, make it possible
to scale research efforts to hundreds of thousands
of articles. By covering an ever-increasing number
of guides, including niche topics and articles for
minority groups, there is also an increasing risk
of perpetuating stereotypes and jeopardizing gen-
eral accessibility. In fact, we notice that wikiHow
already contains articles written for specific tar-
get groups as well as articles that exist in different
versions for different audiences. As an example,
Table 1 shows two articles with the same title, “Act
Like a Kid Again”, one with the indicator ‘(Girls)’
and one with ‘(Boys)’.

1www.wikihow.com

Act Like a Kid Again (Girls)
Eat well and exercise, but don’t obsess about
your body. Be healthy without stressing too
much about it. (. . . ) Generally, go for lots
of fruits and veggies. And even though kids
love sugar, don’t eat too much of it!

Act Like a Kid Again (Boys)
Eat your childhood favorite food. Recollect
every snack, chocolates, ice cream, candy
bars, cotton candy and everything that you
loved as a kid or would make you feel pam-
pered. Eat as per your capacity as too much
at once may make you feel uncomfortable.

Table 1: Two versions of the same guide in wikiHow.

Among other things, we find that such articles
dramatically differ in terms of details. For exam-
ple, the texts highlighted in Table 1 vary in how
much they focus on issues potentially related to
body images. As such, the articles reflect disparate
standards, which ultimately may contribute to dis-
crimination (Prentice and Carranza, 2002). The
specific example can also be linked to observations
of gender differences in weight concerns from psy-
chology (Dougherty et al., 2022), which might rep-
resent a reason for disparate treatment. On the
surface, it is not always possible to say exactly why
there are certain differences in articles for specific
audiences. However, through qualitative and quan-
titative comparisons on the linguistic level, we can
at least determine what types of differences are
present and to what extent they can be systemati-
cally identified. In this sense, we aim to contribute
to questions about biases and fairness in data and,
at the same time, connect to related research in
psychology and other social sciences.

There already exists a large body of research that
examines biases and stereotypes in NLP data and,
likewise, how-to guides from wikiHow have been
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used as training material for a variety of language
processing tasks (§2). However, previous studies
have not explicitly looked into issues related to bias
in the wikiHow data. As a first step towards ad-
dressing this gap, we create our own sub-corpora of
how-to guides, which let us investigate differences
across articles for specific target groups (§3).

We perform two case studies and a generaliza-
tion study on our collected data: In the first study,
we identify a number of articles that exist in multi-
ple variants for different target groups and examine
them in terms of distinctive content and linguistic
characteristics (§4). As a second case study, we ex-
plicitly examine how far topics covered for specific
target groups differ from each other (§5). Finally,
we investigate whether the qualitative findings from
our case studies can be validated quantitatively and
generalized to our whole corpus using computa-
tional modeling (§6).

In summary, we find systematic differences be-
tween articles for specific groups in terms of topic,
style, and content. We conclude the paper with a
discussion of these findings and point out links to
existing work in the social sciences (§7).

2 Related Work

We summarize existing work on the three strains
of research that this paper builds on: wikiHow as a
data source (§2.1), subtle biases in datasets (§2.2),
as well as understanding the characteristics of texts
that target specific audiences (§2.3).

2.1 wikiHow as a Data Source

wikiHow is a prominent data source for a vari-
ety of tasks, including summarization (Koupaee
and Wang, 2018), goal-step inference (Zhang et al.,
2020), and question answering (Cai et al., 2022).
By exploiting the revision history of wikiHow, An-
thonio et al. (2020) created wikiHowToImprove,
which has been used to better understand phenom-
ena related to the (re-)writing process of how-to
guides (Roth and Anthonio, 2021; Anthonio et al.,
2022). Writing, but especially revising, instruc-
tions should presumedly take into account the read-
ers’ context, perspective and knowledge about the
domain and the world. The need for clarification
stands prominently out as a main purpose of the re-
finements of wikiHow guides (Bhat et al., 2020). It
has been shown that while annotators tend to agree
that “revised means better”, the disagreements can
be caused by differences in common knowledge

and intuitions (Anthonio and Roth, 2020). As spe-
cific phenomena, previous work studied implicit
references and lexical vagueness (Anthonio and
Roth, 2021; Debnath and Roth, 2021). However,
none of the aforementioned studies accounted for
audience-specific differences. This work takes a
first step to close this gap.

2.2 Subtle Biases in Datasets

Diagnosing the presence of biases in data is one
of the crucial steps in diminishing the spread of
harmful stereotypes. This work contributes to the
research on subtle biases, i.e., textual patterns that
implicitly reflect societal power asymmetries. Such
biases are embeded in specific linguistic phenom-
ena (e.g., masculine generics; Swim et al., 2004)
or in inequalities in how people from different de-
mographic groups are represented (e.g., empha-
sizing the romantic relationships in the bibliogra-
phies of women; Wagner et al., 2015). Moreover,
they can be frequent even in domains where blatant
stereotypes and openly expressing beliefs about
social hierarchies is generally considered inappro-
priate (Cervone et al., 2021). For example, there
is a long line of work analyzing subtle stereotypes
in Wikipedia (Callahan and Herring, 2011; Rea-
gle and Rhue, 2011; Konieczny and Klein, 2018;
Schmahl et al., 2020, among others), where the lack
of diversity represents an issue already at the level
of the editors’ community (Lam et al., 2011). Be-
yond notability for representation itself, linguistic
aspects in Wikipedia show a remarkable disparity
concerning biographies of men and women, both
in terms of topics and polarity of abstract terminol-
ogy (Wagner et al., 2016). Such inequalities do not
pertain only to biographies but find systemic cor-
respondence in all domains and across languages
(Falenska and Çetinoğlu, 2021).

To the best of our knowledge, the presence of
subtle stereotypes in wikiHow has not yet been in-
vestigated. However, the guides from this platform
are a valuable entry point for studying bias, as they
are produced by a community of contributors and
by experts2 suggesting how to perform activities.
In other words, given the different purposes of the
platforms, while Wikipedia data is rather descrip-
tive, wikiHow data features instructional texts that
potentially differ depending on the audience.

2https://www.wikihow.com/Experts
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2.3 Different Audiences
The mind of the readers features a priori goals that
affect the understanding of written texts (Fum et al.,
1986). However, the goals and knowledge of dif-
ferent (groups of) people may vary. An example of
work that considers different readers’ expertise re-
gards title generation (Senda and Shinohara, 2002).
In that work, less expert readers were found to be
tentatively more influenced by effective titles. Con-
sequently, a system for revising titles accounting
for the readers’ expertise has been proposed (Senda
et al., 2004). As such, that contribution indicates
the importance of considering the target audience
for efficient communication. Additionally, differ-
ent audiences can understand to different extents
technical terminology (Senda et al., 2006; Elhadad
and Sutaria, 2007) and causation (Siddharthan and
Katsos, 2010). Previous contributions accounted
for different target groups also in the controllable
text generation tasks of paraphrasing (Kajiwara
et al., 2013), text simplification (Scarton and Spe-
cia, 2018; Sheang and Saggion, 2021), machine
translation (Agrawal and Carpuat, 2019), and dic-
tionary examples generation (He and Yiu, 2022).

3 Corpus Construction

As introduced in §2.1, wikiHowToImprove is a
well-established data set derived from wikiHow
and consisting of more than 246,000 how-to guides.
In general, each guide consists of multiple revisions
of an article, a fixed goal that is named in the title,
and (optionally) an indicator that follows the title
in parentheses (cf. Table 1). As we are interested
in how-to guides for different target groups, we
filter the data for indicators that specify a group of
people as targets, which we also refer to as the au-
dience. Table 2 lists the 20 most frequent indicators
extracted from wikiHowToImprove.

Based on a manual grouping of these indicators,
we find that 15 out of 20 indicators refer to at-
tributes of performative gender and age (the remain-
ing five are underlined in Table 2). Apart from their
high frequency, both of these attributes are of inter-
est to studies in the social sciences, in which they
are often used as independent variables (Cortina
et al., 2013; Cha and Weeden, 2014; Palència et al.,
2014). Following a traditional binary setup, we
distinguish two audiences based on gender, women
(W) and men (M), and two audiences based on age,
kids (K) and teens (T).3 For each type of audience,

3Note that while the selected audiences follow discrete

Rank Indicator # Rank Indicator #

1 Girls 370 11 Guys 35
2 for Girls 284 12 for Women 35
3 for Kids 182 13 Women 34
4 Kids 114 14 UK 34
5 Teens 110 15 for Men 31
6 Teen Girls 100 16 Christianity 31
7 for Teens 73 17 Men 29
8 USA 49 18 for Beginners 29
9 for Guys 42 19 Boys 25

10 Windows 38 20 Teenage Girls 25

Table 2: Counts of the 20 most frequent indicators.

W M K T

Indicators 29 13 23 16
Articles 993 209 499 411
Sentences per article 40 50 29 43
Words per article 509 682 352 544

Table 3: The distribution of the indicators and of the
articles for the target audience groups. Sentences and
words are indicated via their median values by article.

we create a set of all indicators used and collect
all corresponding guides by extracting the latest
article versions from wikiHowToImprove.

Statistics of our corpus with audience-specific
how-to guides are provided in Table 3. We note
that there is a much higher number of indicators
and articles for W than for M. In comparison, the
number of articles and indicators for K and T are
similar. With only 2,112 how-to guides in total,
the corpus seems relatively small. However, the
average length of articles ranges from 352 to 682
words, which adds up to a corpus size of more than
one million words. Throughout this work, we refer
to this dataset as wikiHowAudiences.4 Next, we
approach it in its entirety with two case studies.

4 Case Study: Same Title, Different
Audience

Our starting example from Table 1 includes two
guides with the same title but different target indica-
tors. Such guides outline the ultimate instances of
instructions that are written for different audiences.

categories, we explicitly caution that individual readers can
only be represented on a continuum.

4https://github.com/mnfanton/
wikiHowAudiences
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Women – Men

BODY 11 Lose Belly Fat
INTERACT 11 Act on a Date
PRESENT 13 Dress Like a CEO

Kids – Teens

GROWN-UP 3 Look Older
ADVICE 4 Balance School and Life
ACTIVITY 10 Apply Makeup

Table 4: Frequencies and examples of topical categories.

Therefore, we start our investigation by analyzing
how often such cases occur in wikiHowAudiences,
which topics they cover, and what differs between
versions for specific target groups.

4.1 Guides Selection

First, we identify titles that occur more than once
in wikiHowAudiences: 32 unique titles for W–M
and 15 for K–T. Next, we group guides with the
same title but different target audiences into pairs.
A complete list of article titles in this subset can be
found in Appendix A.1.

4.2 Guides Analysis

To understand which goals require audience-
specific adaptations, we analyze the topics and arti-
cles of the filtered guides.

Topics. We start by manually investigating titles
of the filtered pairs of guides. For this purpose, we
assign each of them to one of three content-related
categories. The categories were designed to cover
all the titles while being as concrete as possible. An
overview of all the categories and their examples
is listed in Table 4.

We find that W–M instructions cover a rela-
tively wide range of topics, from body-related ac-
tivities (BODY), over interacting with other peo-
ple (INTERACT), to self-presentation (PRESENT),
which is the most frequent category. In contrast,
among titles in K–T, we notice one clear pattern:
all topics focus on issues that require different steps
depending on the age of the target. Among them,
we distinguish and report in ascending order of fre-
quency articles about learning how to do activities
for grown-ups or concerning the urge to grow old
(GROWN-UP), advice related to the life of young
people (ADVICE), and activities about oneself or
the relation of oneself to others (ACTIVITY).

Length. Next, we check whether there are sig-
nificant differences in terms of how detailed the
instructions are for different target groups. We
quantify this by simply measuring the length per
article in words and sentences. We notice a con-
siderable difference between K and T: the median
length of articles for K is only 30 sentences and
346 words, while articles for T contain 98 sentences
and 1081 words. In the case of W and M, we do
not find such large differences in terms of average
word (785 vs. 856) and sentence counts (59 vs. 62).
Overall, the numbers reflect the patterns shown in
Table 3 for the whole wikiHowAudiences data.

Content. Finally, we switch our attention to the
actual content of the articles. As a simple measure
of how similar two guides are, we consider their
word overlap in both directions using BLEU score
(Papineni et al., 2002).

Table 5 presents the articles with the lowest and
highest word overlap in both analyzed groups. In-
terestingly in the case of W–M, both articles cover
concepts related to BODY, namely clearing skin
and recognizing an infection. Manual inspection
of their content reveals that even in the case of the
least overlapping articles, “Get Clear Skin”, slight
differences can be noticed: W article includes more
specific information as well as different usage of
punctuation. In the case of most overlapping arti-
cles, “Recognize Chlamydia Symptoms”, the main
difference comes from the vocabulary related to dif-
ferent body parts from body types. The high word
overlap of these two versions is likely related to
their introductions, which provide an interchange-
able overview to the topic.

In the case of K–T, the least and most overlap-
ping articles come from two different categories:
ACTIVITY and GROWN-UP. The least overlapping
pair, “Flirt”, is a case of two instructions that treat
the same goal with different levels of complexity.
For example, the matter of eye contact is described
with one step in K and more than ten in T. The
most overlapping articles, “Make Money”, can be
an example of a content stalemate – for both target
audiences, babysitting is the first suggested activity
to achieve the profit goal. However, it is possible
to notice differences in how this concept is contex-
tualized for two groups: either in a list of activities
or discussed with its implications and advantages.
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W–M Get Clear Skin (0.02 BLEU) Recognize Chlamydia Symptom (0.69 BLEU)

W
Gently pat your face dry with a clean towel.
Don’t rub your face! This can irritate your
skin more.

Chlamydia is a dangerous yet common and
curable sexually transmitted infection (...)

M
Dry your face – but not roughly. Chlamydia, specifically chlamydia trachoma-

tis, is a common and curable but dangerous
sexually transmitted infection (...)

K–T Flirt (0.05 BLEU) Make Money (0.59 BLEU)

K
Make eye contact. Both girls and boys love
eye contact.

There are the traditional jobs like babysitting,
shoveling snow, and doing chores around the
house.

T
Make eye contact. Body language is a big
part of flirting, and a big part of that is eye
contact. Eye contact conveys intimacy (...)

Babysit for friends and family. One of the
best ways for teenagers to make money and
help out in the community is babysitting.

Table 5: Excerpts from the article pairs with the lowest (left) and highest (right) word overlap.

4.3 Summary

We exemplified three characteristics that can distin-
guish guides written for different audiences. First,
the instructions written for K–T significantly dif-
fered in length. Next, we saw pairs of guides that
varied in style (such as punctuation) and content
(e.g., vocabulary in BODY articles). Some of the
presented examples suggest that considering only
simple content features could be enough to distin-
guish articles written for different audiences. How-
ever, such an approach could be insufficient in more
complex cases, such as pairs of guides with high
word overlap (see “Make Money”). We discuss
these articles again in our generalization study (§6).

5 Case Study: “How To Be” Guides

In the previous section, we looked at how-to guides
that occur in different versions for specific audi-
ences. Such guides might concern particular goals
that require being addressed in distinct ways. In
this section, in contrast, we broaden the scope of
analysis to explore other cases of differences in
audience-specific instructions.

5.1 Guides Selection

The initial example from the introduction (see Ta-
ble 1) explain how to perform like somebody the
reader is presumably not. Inspired by this example,
we investigate what other guides instruct their read-
ers “how to be”. Concretely, we filter titles starting
with the word ‘be’, which gives us 118 guides for
W, 20 for M, 32 for K, and 30 for T.

Completion(s) Title

W
Popular Be Popular and Athletic
Cute Be Cute at School

M
Cool Be Cool in High School
More Be More Physically Attractive

K Good Be Good With Money

T Good Be a Good Friend

Table 6: The most frequent target-specific completions
of "how to be" guides and examples of respective titles.

5.2 Guides Analysis

To understand which topics the “how to be” guides
cover, we group them according to the first word
that occurs after ‘be’ (henceforth the completion).5

Table 6 shows the most frequent completions for
each target group and respective example titles.

Regarding K–T guides, we notice no clear pat-
tern that would distinguish instructions based only
on their titles. There is roughly the same number
of how-to articles for K and T (32 vs. 30). More-
over, among the most frequent completions we
commonly find the word ‘good’, followed by words
such as ‘comfortable’, ‘less’, or ‘safe’.

In contrast, we find substantial differences for W–
M. Specifically, we note that “how to be” guides are
more common for W (12% of all articles for this tar-
get group) and for both audiences we find differing
frequencies of completions: While W articles focus

5We ignore the articles ‘a’, ‘an’, and ‘the’.

325



on being ‘cute’ and ‘popular’ (9 guides), M articles
put more emphasis on being ‘cool’ and ‘more’ (6
guides). Even though all the how-to guides refer
to similar contexts (mostly related to school), we
do not find mutual correspondence—there are no
instructions for how to “be cool at school” for W
and no guide for how to “be cute at school” for M.

5.3 Summary
In this section, we looked at a particular subset
of wikiHowAudiences, namely guides with titles
starting with the word ‘be’. We found that, in the
case of W–M targets, the differences in instruc-
tions occur already at the level of goals that these
guides describe. In other words, we saw examples
of instructions where the information for which au-
dience they were intended could be deduced strictly
from their titles.

6 Generalization Study: Computational
Approach

Our case studies show that, depending on the au-
dience, there exist examples of articles that differ
in terms of topic, length, style, and/or vocabulary.
However, an open question is whether these are
only individual cases or if such differences occur
systematically. In this study, we investigate this
question computationally and attempt to verify our
observations on the basis of a larger dataset. For
this purpose, we implement tentative characteristics
in the form of features and models (§6.1), evaluate
in a setting with our full sub-corpora (§6.2), discuss
quantitative results (§6.3), and analyze qualitative
findings (§6.4).

6.1 Models
Based on the findings from the two case studies,
we define majority and length-based baselines and
several simple logistic regression classifiers with
different sets of features.

Baselines. We use a simple majority baseline that
always assigns the most frequent class. We also
implement two length-based baseline models that
use the number of words in a title (or article) as the
only feature for classification.

Content (title/article). The words and phrases
used in a text can be potential indicators of its target
group. Thus, we make use of the most common6

6Note that we could have used all n-grams, but due to
the small size of our data (see §6.2), we decided to limit the
number of features via an additional hyperparameter.

W M K T Total

TRAIN 805 172 416 337 1,730
DEV 94 23 45 37 199
TEST 94 14 38 37 183

Total 1,202 910 2,112

Table 7: Number of articles for each target group and
data split, as well as for each task in total.

uni-grams and bi-grams, excluding stop words, as
a feature representation for the content of a how-to
guide. We evaluate two variants: features derived
from the articles and from the titles.

Style (article). We represent style using two sets
of established features from authorship attribu-
tion (Sari et al., 2018), namely lexical style: av-
erage word length, number of short words, vocabu-
lary richness in terms of hapax-legomena and dis-
legomena, % of digits, % of upper case letters; and
syntactical style: occurrences of punctuation, fre-
quencies of POS tags, and stop-word frequencies.

combined (article). Content and style can po-
tentially provide complementary information. We
test whether a model can leverage a combination
of information from different sources. For this
purpose, we simply concatenate the article-level
features for content, style, and length.

RoBERTa (article). As an alternative to manu-
ally selected features, we further test features de-
rived from a large language model, RoBERTa (Liu
et al., 2019). Specifically, we encode the article’s
text, truncated to the first 512 tokens, and extract
the representation of the special classification token
from the last hidden layer as a set of feature values.

6.2 Experimental Setup

In order to find out whether and to what extent arti-
cles for different target groups can be distinguished
computationally, we define two classification tasks
in which specific articles, based on their charac-
teristics, are to be assigned to one target group
each. We distinguish between articles for women
and men (W–M) and between articles for kids
and teenagers (K–T). For all four classes, we use
the full wikiHowAudiences, which we divide into
TRAIN, DEV, and TEST sets following the article-
level partition of the original wikiHowToImprove
corpus (Anthonio et al., 2020). Statistics for each
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Model W–M K–T

Baselines
Majority baseline 0.47 0.34
Length (title) 0.47 0.44
Length (article) 0.47 0.61

Content & Style
Content (title) 0.57 0.57
Content (article) 0.59 0.78
Style (article) 0.58 0.67

“Full” models
combined (article) 0.71 0.78
RoBERTa (article) 0.68 0.74

Table 8: Macro F1-scores on the test sets.

class and set are shown in Table 7. For the style
features, the texts are lemmatized with spaCy.7

We train each model on the TRAIN set and evalu-
ate in terms of macro F1-score on the TEST set. We
compute F1-score per class as the harmonic mean
between precision (ratio of correct predictions) and
recall (ratio of correctly classified instances). As
our data is imbalanced, we use macro F1 instead of
a weighted/micro score to treat each class (rather
than each instance) as equally important.

A number of hyperparameters are optimized on
the DEV set: We try different values for the logis-
tic regression classifiers’ L1 and C terms, sampled
from 10 instances between 1e − 5 and 100. For
the content features, we optimize the number of
k most common n-grams (k = 200). We also
made use of the DEV set to determine the best
language model for our tasks, which we found to
be roberta-large (results of other models are
shown in Appendix A.2).8

6.3 Results

The results are summarized in Table 8. As con-
jectured based on the K–T articles from the first
case study, we find that the length-based baselines
indeed outperform the majority baseline9 in that set-
ting. As the further results show, content and stylis-
tic features can indeed be used to correctly assign a
specified target group to many how-to guides. Ac-
cording to the evaluation scores, features calculated

7https://spacy.io/
8We used HuggingFace Transformers (Wolf et al., 2020).
9Note that the F1-score for the majority baseline lies below

0.5 because we calculate the macro average over both classes
and the score does not reach 1.0 for either class.

at the article level are particularly suitable for this
purpose: The combined model, which uses con-
tent, style and length features on the article level,
achieves the best result with macro-F1 scores of
0.71 and 0.78 for W–M and K–T, respectively. Fea-
tures generated based on the roberta-large
language model achieve competitive scores (0.68
and 0.74), but fall short of the combined model.

The large differences in result between the base-
lines and our models show that the target audience
of many articles can be determined simply from the
vocabulary and style of an article. Next, we take a
closer look at model features and errors.

6.4 Analyses

For our analyses, we focus on the combined
model because it achieves the best results and its
features are easily interpretable.

Features. For each target group, we analyze what
features are most important to the model. Since
our model uses independent features in a binary
classification task, we can simply check the high-
est positive and negative feature weights for this
purpose. A selection from the ten most predic-
tive features10 and example sentences are shown
in Table 9. As the examples illustrate, some of the
strongest features are, again, based on stereotypes
(e.g., ‘cute’, ‘makeup’ for W) or reflect heteronor-
mative assumptions (‘hers’ for M). Interestingly,
we also see characteristics of gender-inclusive lan-
guage (‘theirs’ for M) and direct address of the
reader in terms of their group membership (‘kid’
for K and ‘teen’ for T). We further find negations
(e.g., ‘wasn’t’) as part of strong features for W,
which is particularly worrying in light of sociopsy-
chological findings that have shown negations to
serve a stereotype-maintaining function across lan-
guages (Beukeboom et al., 2010, 2020).

Same title articles. As examples of particularly
hard cases, we return to the how-to guides from the
first case study, which consisted of article versions
for different audiences (§4). Following the data
partition from previous work, we identify 16 such
articles in the DEV and TEST splits. We find that the
combined model classifies 12 of them correctly
(75%). In the remaining 4 cases, the prediction er-
rors could have been caused by superficial features
that are predictive for the opposite audience. We
note for each of these 16 articles that the version

10Appendix A.2 lists all top-10 most predictive features.
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Feature(s) Example Title

W cute, makeup Do cute makeup. Look Cute
wasn’t She most likely wasn’t wearing the right

colors for her skin tone.
Go from Ugly to Popular

M hers Slowly move your hand towards hers . . . Know if Your Crush Likes You Back
theirs Being a good partner is all about

. . . adjusting your style to suit theirs.
Grind

K name Think of your blog’s name. Write a Blog
kid . . . even if you’re a kid, there are ways to

bank a few extra bucks.
Make Money

T dress Dress up, make it look important. Know What to Wear on Dates
teen When you’re a teen with a busy schedule,

it can be difficult to find time to be active.
Stay Active After School

Table 9: Sample of the top-10 most predictive features and example sentences from articles of each target group.

for the opposite audience is part of the TRAIN split.
Therefore, the topics of the guides are generally not
specific to one audience, and a correct classifica-
tion of the majority of cases demonstrates that the
model indeed captures characteristics of content
and style that seem specific to the audience itself.

7 Discussion and Conclusion

In this paper, we assessed differences across how-
to guides written for specific audiences. In the
construction of sub-corpora for four target groups,
we already noticed inequalities on the level of who
is being instructed in wikiHow: as a target audi-
ence, women are mentioned more than four times
more frequently than men, and teens receive about
50% more instructions per article than kids. In two
case studies, we investigated and provided exam-
ples of target-related differences on the levels of
topic, style, and content.

The differences observed in our case studies in-
spired feature sets of shallow classifiers for pre-
dicting the target audience of a given guide. Us-
ing these classifiers, we showed that it is, in many
cases, indeed possible to automatically predict for
which audience an article was written. In an analy-
sis of our results, we found that this success is not
merely based on different topics covered for each
target group but that the articles for each group
systematically differ in terms of content and style.

Each of the aforementioned observations
presents a tiny, seemingly insignificant piece of
a puzzle. But taken together, these pieces reveal
a surprisingly clear picture: there are noticeable

differences in what topics are covered for each tar-
get group, how many articles and instructions are
provided for each audience, and how these arti-
cles are written. Even though the audience-specific
characteristics used in our studies are by no means
exhaustive, our straightforward approach allowed
us to identify, qualitatively and quantitatively, de-
batable differences in how wikiHow guides present
particular topics to specific target groups. While
there is an inevitable need for differences in vo-
cabulary when speaking about physical features
or body parts, it is at best unclear in which ways
how-to guides about human interactions or self-
presentation should cast significant differences.

Some of the observed differences have already
been critically discussed in the context of social
science research. For example, it is well-known
that labels such as ‘cute’ are used pejoratively as
a form of social control (Talbot, 2019) and that
prescriptive components of gender stereotypes in
education contribute to discrimination (Kollmayer
et al., 2018). However, exposing readers to cultural
messages and beliefs about age, gender or other
factors cannot be avoided entirely, especially on
a collaboratively edited online platform. In fact,
it seems to be a challenge for any pluralistic so-
ciety to find a balance between communicating
traditional values and empowering everyone. It is
therefore all the more important for a comprehen-
sive understanding to determine when and in what
form social norms are conveyed. As such, we view
the contributions of this paper, namely our data set
of audience-specific guides, wikiHowAudiences,
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and our mixed-methods approach for identifying
and verifying differences, as a valuable connecting
point to raise awareness of potential issues and to
foster interdisciplinary dialogue for future research.

Limitations

Our studies focus on the differences in how-to
guides written for specific audiences only in one
language, namely English. A major limitation is
therefore that we do not consider other languages.

The perspectives provided by the data source
we rely on, wikiHow, allow us to identify specific
phenomena and peculiarities. Yet, contemplating
only one data source lets us generalize only to a
limited extent. For example, the audiences consid-
ered in this work depended on the target groups
portrayed in the data. They are neither exhaustive
nor representative of the diversity of humankind,
especially of marginalized social groups. There-
fore, a wider variety of data sources will be needed
to test generalizations.

Finally, a further limitation of our studies con-
cerns intersectionality. While it seems possible
that guides can be tuned by contemplating one spe-
cific attribute of the audience at a time, this does
not hold with regard to the actual attributes of the
readers. Such attributes are per se coexistent, and
consequently, they are not separable.

Ethics Statement

We acknowledge that the content that emerged from
the data is narrow in terms of cultural perspectives,
mainly addressing western cultures. Moreover,
the analysis of the audiences is not exhaustive of
the diversity of humankind, especially not exhaus-
tively accounting for queer identities in particular
trans and non-binary identities. With the present
research, we do not intend to reinforce representa-
tional biases, rather to highlight them.
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A Appendix

A.1 Case Study

Category Word
Overlap Same Title Indicator for W Indicator for M

BODY 0.02 Get Clear Skin for Middle School Girls Guys
BODY 0.05 Burn Fat for Girls for Men

PRESENT 0.07 Get Ready for School for Girls Guys
PRESENT 0.09 Look Rich Without Being Rich Teen Girls for Guys
PRESENT 0.16 Get Ready for School Teen Girls Guys

INTERACT 0.16 Catch Your Crush’s Eye for Girls Only Boys
INTERACT 0.16 Dance at a School Dance for Girls for Guys
PRESENT 0.21 Act Like a Kid Again Girls Boys
PRESENT 0.21 Look Like an Abercrombie Model for Girls Boys
PRESENT 0.21 Dress Emo for Girls Guys

BODY 0.24 Have Good Hygiene Girls Boys
PRESENT 0.25 Prepare for a School Dance for Girls for Guys
PRESENT 0.27 Pack for Soccer Practice Girls Boys

INTERACT 0.28 Be in a Female Led Relationship Women Men
INTERACT 0.30 Act on a Date for Girls for Boys
PRESENT 0.31 Dress Cool for Girls Guys

BODY 0.31 Lose Belly Fat Teen Girls for Men
PRESENT 0.33 Look Hot on Club Penguin Girls Guys
PRESENT 0.35 Be Awesome for Girls for Boys

INTERACT 0.36 Have Fun with Your Friends Teen Girls Guys
PRESENT 0.36 Dress Like a CEO Women Men

INTERACT 0.37 Cradle a Lacrosse Stick Girls Men
INTERACT 0.41 Get Your Crush to Like You Girls Guys
INTERACT 0.43 Practice Changing Room Etiquette Girls Men
INTERACT 0.43 Practice Changing Room Etiquette Women Men

BODY 0.44 Recognize Trichomoniasis Symptoms Women Men
PRESENT 0.45 Be Popular in Middle School for Girls for Boys

BODY 0.47 Lose Belly Fat for Women for Men
BODY 0.49 Gain Weight Fast for Women for Men
BODY 0.52 Be Indie for Girls for Guys

INTERACT 0.54 Grind for Girls for Guys
INTERACT 0.55 Host a Sleepover Teen Girls for Boys

BODY 0.57 Treat Acne Teenage Girls Teen Boys
BODY 0.60 Prevent HIV Infection Women Men
BODY 0.69 Recognize Chlamydia Symptoms for Women for Men

Indicator for K Indicator for T

ACTIVITY 0.05 Flirt Middle School for Teens
ACTIVITY 0.10 Redo Your Bedroom Preteen Girls Teen Girls

GROWN-UP 0.11 Look Older Preteen Girls Teenage Girls
ACTIVITY 0.14 Enjoy Summer Vacation for Kids for Teens
ACTIVITY 0.18 Clean Your Room Kids Teens

ADVICE 0.19 Enjoy a Plane Ride for Grade School Kids Teen Girls
ADVICE 0.20 Be Less Insecure Preteens for Teen Girls

ACTIVITY 0.28 Clean Your Room Tween Girls Teens
ACTIVITY 0.29 Pack for a Vacation Preteen Girls Teen Girls

ADVICE 0.30 Get a Boy to Like You Pre Teens Teens
ACTIVITY 0.31 Apply Makeup Preteens for Teen Girls

ADVICE 0.33 Balance School and Life Middle School Teens
ACTIVITY 0.36 Host a Girls Only Sleepover for Preteens Teens
ACTIVITY 0.39 Get Ready for Bed Tween Girls for Teenage Girls

GROWN-UP 0.46 Get Fit for Kids Teenage Girls
ACTIVITY 0.53 Apply Makeup Preteens for Teens

GROWN-UP 0.59 Make Money for Kids for Teenagers

Table 10: All “Same Title, Different Audience” guides.
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Be (. . . ) X (. . . ) indicator

Be Popular and Athletic (for Girls)
Be Popular in Grade 6. (for Girls.)
Be Popular in Middle School (for Girls)
Be Popular in a School Uniform (Girls)
Be Popular in Secondary School (for Girls)

Be a Cute Teen (Girl)
Be Cute (Tween Girls)

Be the Cute and Hot Teen (Girls)
Be Cute at School (Girls)

Be Cool Around Your Crush (for Boys)
Be Cool in High School (Boys)

Be a Cool Christian (Teen Guys)
Be More Attractive to Girls (for Boys)
Be More Physically Attractive (Men)
Be More Socially Open (Men)

Be a Good Hamster Owner (for Kids)
Be a Good Stuffed Animal Mom (for Kids)

Be Good With Money (for Kids)

Be a Good Friend (Teens)
Be a Good Writer (Teens)

Table 11: The most common completions in the titles for “how to be”.

A.2 Classification tasks

model-name W–M K–T
bert-base-uncased 0.57 0.64
roberta-base 0.81 0.73
bert-large-uncased 0.73 0.74
roberta-large 0.82 0.75

Table 12: The performance on the DEV set of the classi-
fication tasks with optimized LR using the [CLS] token
representations from the different LMs.

Most predictive features of the combined
model:

W: hadn’t - wasn’t - cute - makeup - ourselves -
bag - skirt - outfit - move - sleep

M: man - product - boy - yourselves - o - dance -
theirs - shoe - hers - person

K: kid - the - adult - name - are - step - were -
else - probably - mean

T: teen - without - than - dress - next - her - want
- buy - everyone - ADJ

A.3 Confusion Matrices

DEV TEST

W M W M
W 0.83 0.17 0.87 0.13
M 0.48 0.52 0.36 0.64

W 78 16 82 12
M 11 12 5 9

Table 13: The confusion matrix for the dev set (left) and
the confusion matrix for the test set (right).

DEV TEST

K T K T
K 0.78 0.22 0.87 0.13
T 0.35 0.65 0.30 0.70

K T K T
K 35 10 33 5
T 13 24 11 26

Table 14: The confusion matrix for the dev set (left) and
the confusion matrix for the test set (right).
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Abstract

Sarcasm is a form of figurative language that
serves as a humorous tool for mockery and
ridicule. We present a novel architecture for
sarcasm generation with emoji from a non-
sarcastic input sentence in English. We divide
the generation task into two sub tasks: one for
generating textual sarcasm and another for col-
lecting emojis associated with those sarcastic
sentences. Two key elements of sarcasm are in-
corporated into the textual sarcasm generation
task: valence reversal and semantic incongruity
with context, where the context may involve
shared commonsense or general knowledge be-
tween the speaker and their audience. The
majority of existing sarcasm generation works
have focused on this textual form. However,
in the real world, when written texts fall short
of effectively capturing the emotional cues of
spoken and face-to-face communication, peo-
ple often opt for emojis to accurately express
their emotions. Due to the wide range of ap-
plications of emojis, incorporating appropriate
emojis to generate textual sarcastic sentences
helps advance sarcasm generation. We con-
clude our study by evaluating the generated sar-
castic sentences using human judgement. All
the codes and data used in this study has been
made publicly available1.

1 Introduction

Sarcasm is defined as the use of remarks that often
mean the opposite of what is said in order to hurt
someone’s feelings or to criticize something in a
humorous way2. Sarcastic remarks are often chal-
lenging to interpret considering their literal mean-
ing differs greatly from the speaker’s actual intent.

*These authors contributed equally to this work.
1https://github.com/WrightlyRong/

Sarcasm-Generation-with-Emoji
2https://dictionary.cambridge.org/

Compared to verbal or in-person conversations, tex-
tual sarcasm presents additional challenges due to
the absence of visual cues, vocal tone etc.

Non-Sarcastic Input Sarcastic Output with Emoji
I really hate walking
in the rain.

I really love the outdoors walk-
ing in the rain. I sat feeling
thoroughly miserable.

Mom is in a bad
mood today.

Happy mothers day mom is
in a well mood today. She
sounded tense and angry.

That movie was bad. That movie was awesome.
Bad intelligence and political
incompetence.

Table 1: Sample sarcastic outputs with emoji generated
from non-sarcastic inputs

The presence of sarcasm makes it significantly
harder for machines to understand the actual mean-
ing of the textual data. This has motivated research
in detecting sarcasm in textual data. In order to
train machines to detect sarcasm, we need quality
datasets that represent different aspects of sarcasm
in text. Even though we have an abundance of so-
cial media data and resources, it can be difficult
to collect correctly labeled sarcastic texts. Instead,
many research have tried to generate texts that can
accurately express sarcastic notions (Joshi et al.,
2015; Mishra et al., 2019; Chakrabarty et al., 2020).
Many studies have also investigated strategies in in-
corporating sarcasm generation into chatbots (Joshi
et al., 2015, 2017).
Emojis, small ideograms that represent objects,
people, and scenes (Cappallo et al., 2015), are one
of the key elements of a novel form of communi-
cation due to the advent of social media. Using
emojis within texts can give us additional cues on
sarcasm, replicating facial expressions and body
language, etc. Incorporating emojis with texts for
training will let the machines catch these cues eas-
ily (Bharti et al., 2016). Subramanian et al. (2019)
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observed that when emojis were included in the sen-
tence, their emoji-based sarcasm detection model
performed noticeably better.
In this study, we propose a new framework in which
when given a non-sarcastic text as input, the text is
converted into a sarcastic one with emoji where the
emoji will specifically help to identify the sarcas-
tic intent of the text. Table 1 shows a few sample
non-sarcastic input and sarcastic output pairs with
emoji. In order to implement the architecture, we
have focused on two major components: Sarcastic
text generation and Emoji prediction for the text.
For textual sarcasm generation, we are incorpo-
rating the works of Chakrabarty et al. (2020) and
Mishra et al. (2019) and for Emoji prediction, a
deep learning model fine tuned on OpenAI’s CLIP
(Contrastive Language-Image Pre-training)3 (Rad-
ford et al., 2021) is used. The emoji prediction
module along with the sarcasm generation module
generates the final sarcastic text including emoji.
This work provides two major contributions:

1. Propose a novel multi-modular framework for
sarcasm generation incorporating the reversal
of valence and semantic incongruity charac-
teristics of sarcasm while also including ap-
propriate emojis.

2. Create and publish a sarcastic corpora which
can serve as valuable training data for sarcasm
detection models.

As far as our understanding goes, there has been
no previous framework proposed on textual sar-
casm generation that also incorporates emojis. This
framework can aid downstream tasks by allowing a
deeper understanding of sarcasm to produce more
contextually relevant responses.

2 Related Work

Research on sarcasm have been a subject of interest
for several decades. The following sub sections
provide a brief overview of the past work done on
different aspects of sarcasm.

2.1 Studies on Sarcasm Detection
Sarcasm detection is a classification task in its most
typical form. From a given text, the task includes
classifying the text as sarcastic or non-sarcastic.
Sarcasm detection is a fairly recent but promising
research field in the domain of Natural Language

3https://openai.com/research/clip

Processing. Nonetheless, it serves as a crucial part
to sentiment analysis (Maynard and Greenwood,
2014).
Most of these studies on sarcasm detection train
and test on already available popular datasets such
as the datasets used by Riloff et al. (2013), Kho-
dak et al. (2017) and Cai et al. (2019). We ob-
served that Twitter is predominantly the most pop-
ular social media platform used for sarcasm de-
tection datasets although Reddit, Amazon and a
few discussion forums were also seen being used.
We also saw a shift in Sarcasm detection method-
ologies from rule-based approaches (Riloff et al.,
2013; Bharti et al., 2015), machine learning and
deep learning approaches (Bharti et al., 2017; Poria
et al., 2016; Ghosh and Veale, 2016) to transformed
based approaches (Dadu and Pant, 2020; Kumar
et al., 2021). We include two tables Table 9 and Ta-
ble 10 summarizing the datasets and methodologies
used in sarcasm detection in the appendix (Section
A).
Recent works on sarcasm detection include fre-
quent use of BERT (Savini and Caragea, 2022;
Zhang et al., 2023; Pandey and Singh, 2023), multi-
modal and cross-modal detection tasks (Liang
et al., 2022; Chauhan et al., 2022; Ding et al.,
2022), enhancement of sarcasm detection in com-
plex expressions with sememe knowledge (Wen
et al., 2022), study on the effect of foreign accent
(Puhacheuskaya and Järvikivi, 2022), use of vocal
and facial cues (Aguert, 2022) etc. Sarcasm and
irony detection from languages other than English
i.e. Chinese, Dutch, Spanish, Arabic, Romanian
etc. have also been studied in recent works (Farha
and Magdy, 2020; Muaad et al., 2022; Maladry
et al., 2022; Wen et al., 2022; Ortega-Bueno et al.,
2022; Buzea et al., 2022).

2.2 Characteristics of Sarcasm

Studies have identified a variety of potential
sources for sarcasm. According to Gerrig and Gold-
varg (2000), sarcasm stems from a situational dis-
parity between what the speaker desires, believes,
or expects and what actually happens. Incongruity
between text and a contextual information is men-
tioned as a factor by Wilson (2006). Context In-
congruity (Campbell and Katz, 2012) is addressed
in the works of Riloff et al. (2013) who suggests
that sarcasm arises from a contrast between posi-
tive verbs and negative situation phrases. Burgers
et al. (2012) formulates that for an utterance to be
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Figure 1: Model Architecture of the proposed system

sarcastic, it needs to have one or more of these five
characteristics:

1. the sentence has to be evaluative,
2. it should be based on the reversal of valence

of the literal and intended meanings,
3. it should have a semantic incongruity with the

context, which may consist of common sense
or general information that the speaker and
the addressee share,

4. should be aimed at some target,
5. should be in some manner relevant to the com-

munication scenario. Many studies focused
on one or more of these characteristics.

2.3 Sarcasm Generation

Compared to sarcasm detection, research on sar-
casm generation is still in its early stages. Joshi
et al. (2015) introduced SarcasmBot4, a chatbot
that caters to user input with sarcastic responses.
SarcasmBot is a sarcasm generation module with
eight rule-based sarcasm generators where each of
the generators produces a different type of sarcas-
tic expression. During the execution phase, one
of these generators is selected based on user input
properties. Essentially, it yields sarcastic responses
rather than converting a literal input text into a sar-
castic one, the latter one being a common practice
in future research. This method was later utilized
in the author’s subsequent work (Joshi et al., 2017)
where they built SarcasmSuite, a web-based inter-
face for sarcasm detection and generation.
The first work on automatic sarcasm generation
conditioned from literal input was performed by

4https://github.com/adityajo/sarcasmbot/

Mishra et al. (2019). The authors relied on the
Context Incongruity characteristic of sarcasm men-
tioned by Riloff et al. (2013) and employed infor-
mation retrieval-based techniques and reinforced
neural seq2seq learning to generate sarcasm. They
used unlabeled non-sarcastic and sarcastic opinions
to train their models, where sarcasm was formed as
a result of a disparity between a situation’s positive
sentiment context and negative situational context.
A thorough evaluation of the proposed system’s per-
formance against popular unsupervised statistical,
neural, and style transfer techniques showed that it
significantly outperformed the baselines taken into
account.
Chakrabarty et al. (2020) introduced a new frame-
work by incorporating context in the forms of
shared commonsense or world knowledge to model
semantic incongruity. They based their research
on the factors addressed by Burgers et al. (2012).
Their architecture is structured into three modules:
Reversal of Valence, Retrieval of Commonsense
Context, and Ranking of Semantic Incongruity.
With this framework they were able to simulate
two fundamental features of sarcasm: reversal of
valence and semantic incongruity with the context.
However, they opted for a rule-based system to re-
verse the sentiments. The authors also noticed that
in a few cases, the simple reversal of valence strat-
egy was enough to generate sarcasm which meant
the addition of context was redundant.
Recent similar works in the field include that of
Oprea et al. (2021) where they developed a sarcas-
tic response generator, Chandler, that also provides
explanations as to why they are sarcastic. Das
et al. (2022) manually extracted the features of a
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benchmark pop culture sarcasm corpus and built
padding sequences from the vector representations’
matrices. They proposed a hybrid of four Paral-
lel LSTM Networks, each with its own activation
classifier which achieved 98.31% accuracy among
the test cases on open-source English literature. A
new problem of cross-modal sarcasm generation
(CMSG) that creates sarcastic descriptions of a
given image was introduced by Ruan et al. (2022).
However, these studies have only focused on gen-
erating textual sarcastic sentences, but as described
by Subramanian et al. (2019), incorporating emojis
improved the overall performance of sarcasm de-
tection and thus can be a potential research scope.

3 Methodology

Our model architecture consists of 3 modules
which are as follows: Reversal of Valence, Re-
trieval of Commonsense and Emoji Prediction. The
Reversal of Valence module takes in a negative ut-
terance and generates an utterance with positive
sentiment. The Retrieval of Commonsense module
outputs relevant commonsense context sentence
which helps in creating a sarcastic situation. Lastly,
the Emoji Prediction module generates an emoji
which makes the overall output more sarcastic.
With these three modules, we have incorporated
two of the fundamental features of sarcasm: re-
versal of valence and semantic incongruity with
the context. A diagram of the overall pipeline is
demonstrated in Figure 1. We describe the modules
in details in the next few sub sections.

3.1 Reversal of Valence
In the work of Chakrabarty et al. (2020), for the
reversal of valence module, they have used a rule-
based approach to manually reverse the sentiment
of the negative sentence. But a rule-based model
cannot reverse sentences that do not follow the tra-
ditional structure of sentences such as those used
in social media. We have worked on this limitation
of this current state-of-the-art sarcasm generation
model where we replace their rule-based reversal
module with a deep-learning reversal module in-
spired by the work of Mishra et al. (2019). This
module is divided into two parts: Sentiment Neu-
tralization and Positive Sentiment Induction.

3.1.1 Sentiment Neutralization
We implement the Sentiment Neutralization mod-
ule to filter out the sentiment words from the in-
put utterance, which results into a neutral sentence

from a negative one. An example is shown in table
2.

Negative Input Neutral Output
Is feeling absolutely
bloated and fat from lack
of a proper workout

Is feeling absolutely and
from a proper workout

Table 2: Example of sentiment neutralization from input
sentence

The neutralization model is essentially a sentiment
classification model which first detects the sen-
timent of the given utterance (positive/negative).
This model consists of several LSTM layers and
a self-attention layer. During testing, the self-
attention vector is extracted as done by Xu et al.
(2018) which is then inversed and discretized as
follows:

âi =

{
0, if ai > 0.95 ∗max(a)
1, otherwise

(1)

where ai is the attention weight for the ith word,
and max(a) gives the highest attention value from
the current utterance. A word is filtered out if the
discretized attention weight for that word is 0. The
sentiment detection model architecture is shown in
figure 2.

Figure 2: Sentiment detection model architecture for
the Sentiment neutralization module

3.1.2 Positive Sentiment Induction
The output from the Sentiment Neutralization mod-
ule is fed to the Positive Induction module as input.
The module takes in a neutral utterance and incor-
porates positive sentiment into the utterance and
returns a sentence with positive sentiment. An ex-
ample is shown in table 3. For this, we use Neural
Machine Translation method built on OpenNMT
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framework (Klein et al., 2017) where we first train
our model with a set of < source, target > pairs
where the source is a neutral sentence and target is
its positive counter part. We use the Positive dataset
provided by Mishra et al. (2019) which includes
a set of positive sentences. We pass this dataset
through the sentiment neutralization module to get
the neutral source sentence to its positive target
sentence and use these < source, target > pairs
to train the positive induction module. The input
sentences are transformed into embeddings that go
through the translation encoders and decoders. The
encoders and decoders are both built with LSTM
layers.

Neutral Input Positive Output
Is feeling absolutely and
from a proper workout

Is feeling absolutely
amazing and high got
away from a proper
workout

Table 3: Example of positive sentiment induction from
neutralized sentence

3.2 Retrieval of Commonsense
This module is used to retrieve additional context
for the sarcastic sentence based on commonsense
knowledge. Figure 3 demonstrates a schematic
view of this module. We discuss the detailed pro-
cess in the following sections. Additionally, we
show an example input-output pair for this module
in table 4.

Input Commonsense Sentence
His presentation was bad The manager is criticized

by his boss after a presen-
tation

Table 4: Example of commonsense sentence generation
from input sentence

3.2.1 Generation of Commonsense Knowledge
For generating commonsense knowledge con-
text, COMETDIS

TIL (West et al., 2021) is used.
First, we feed the input sentence to COMETDIS

TIL.
COMETDIS

TIL is a machine trained 1.5B parame-
ters commonsense model generated by applying
knowledge distillation (Hinton et al., 2015) on a
general language model, GPT-3. It offers 23 com-
monsense relation types. For our study, we use
the xEffect relation. From the three variants of
COMETDIS

TIL (COMETDIS
TIL, COMETDIS

TIL + criticlow
and COMETDIS

TIL + critichigh), we have chosen
COMETDIS

TIL + critichigh for our work. The model

Figure 3: Model Architecture for Retrieval of Common-
sense module

returns a contextual phrase pertaining to the xEf-
fect relation with the extracted words of the non-
sarcastic sentence. For a non-sarcastic sentence
“His presentation was bad”, COMETDIS

TIL predicts
the contextual phrase with xEffect relation – ‘is
criticized by his boss’.

3.2.2 Retrieval of Relevant Sentences
Once we have the inferred contextual phrase, we
retrieve relevant sentences. For doing so, we im-
ply 2 methods - 1. Retrieval from corpus and 2.
Generation from the inferred phrase.

• Retrieval from corpus: First, from the con-
textual phrase, we extract the keyword. Then
using the keyword, we search for related sen-
tences in a corpus. We use Sentencedict.com5

as the retrieval corpus. For filtering the re-
trieved sentences, two constraints are set - (a)
the commonsense concept should appear at
the beginning or at the end of the retrieved sen-
tences; (b) to maintain consistency between
the length of the non-sarcastic input and its
sarcastic variant, sentence length should be
less than twice the number of tokens in the
non-sarcastic input. Next, we check the con-
sistency of the pronoun in the retrieved sen-
tence and the pronoun in the input sentence.
If the pronoun does not match, we modify
it to match the non-sarcastic text input. If
the non-sarcastic input lacks a pronoun while
the retrieved sentence does not, it is simply
changed to “I”. These constraints for retriev-
ing the sentences and the assessment of gram-
matical consistency are done following the

5https://sentencedict.com/
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work of Chakrabarty et al. (2020).

• Generation from the inferred phrase: Un-
like the previous method, we keep the inferred
phrase intact in this case. We first extract the
Subject of the non-sarcastic input. If the sen-
tence contains no Subject, we set it to ’I’. Then
the auxiliary verb in the inferred context is
checked and modified to match with that of
the Subject. Then we feed the Subject and con-
textual phrase to a pre-trained sentence gener-
ation model6. The model fine-tunes Google’s
T5 on CommonGen (Lin et al., 2019). The
model returns us a commonsense sentence
based on the Subject and contextual inference.
For example - the Subject-inference pair for
the input “His presentation was bad” becomes
[‘His’, ‘is criticized by his boss’], and from
this collection of words, the sentence “The
manager is criticized by his boss after a pre-
sentation.” is generated.

3.2.3 Selection based on Semantic Incongruity

The module in section 3.2.2 returns several sen-
tences containing the context. Among them, we
choose the sentence having the highest semantic
incongruity with the sentence generated after the
Reversal of Valence module. For calculating the
semantic incongruity, following Chakrabarty et al.
(2020), we have used the RoBERTa-large (Liu et al.,
2019) model fine-tuned on the Multi-Genre NLI
dataset (Williams et al., 2017). Considering the
non-sarcastic input “His presentation was bad”, the
Retrieval of Relevant Sentences module yields a
list of sentences such as - “The manager is criti-
cized by his boss after a presentation”, “He openly
criticized the plan as impracticable”, and “My boss
criticized my sloppy personal appearance”. From
these sentences, the highest ranked sentence, “The
manager is criticized by his boss after a presenta-
tion”, is returned as the final output to this module
as it contains the most semantic incongruity with
the reversed sentence.

3.3 Emoji Prediction

In this module, we use a pre-trained emoji predic-
tion model which is fine tuned on the CLIP (Rad-
ford et al. (2021)) deep learning model by Ope-
nAI to predict an emoji from a given input. After

6https://huggingface.co/mrm8488/
t5-base-finetuned-common_gen

concatenating the non-sarcastic input and the con-
text retrieved from the Retrieval of Commonsense
module, we predict an emoji based on this con-
catenated sentence. The model employs a masked
self-attention Transformer as a text encoder and a
ViT-B/32 Transformer architecture as an image en-
coder. By using a contrastive loss, these encoders
are trained to optimize the similarity of (image,
text) pairs. One version of the implementation
used a Vision Transformer and the other a ResNet
image encoder. The variation with the Vision Trans-
former is used in this case. The dataset7 used for
fine-tuning the model consists of two columns: raw
tweets and emoji labels. The emoji labels corre-
spond to the appropriate one among a set of 32
emojis shown in figure 4.

Figure 4: Set of 32 emojis

4 Experimental Setup

The dataset, model configurations for the different
modules, and the evaluation criteria for our work
are all discussed in the following sub sections.

4.1 Dataset
For our experiments, we utilize the Positive and
Negative sentiment corpora by Mishra et al. (2019)
which contains tweets and short snippets. Tweets
have been normalized by eliminating hashtags,
usernames, and conducting spell checking and lex-
ical normalization using NLTK (Loper and Bird,
2002). After filtering out sentences longer than 30
words and running them through all three modules,
we get the final dataset of 2k sarcastic sentences
from the Mishra et al. (2019) dataset. We have
made our dataset8 publicly available.

4.2 Model Configurations
The sentiment classification model of the neutral-
ization module is trained on the sentiment dataset

7https://huggingface.co/datasets/vincentclaes/
emoji-predictor

8https://github.com/WrightlyRong/
Sarcasm-Generation-with-Emoji
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Non-Sarcastic Utterance System Sarcastic Utterance Sarcasticness Creativity Humor Grammaticality

Home with the flu.

Full Model Happy to be home with the fam. Being incarcerated-under

the label of being mentally ill.

3.67 4.33 4 5

Without Emoji Happy to be home with the fam. Being incarcerated-under
the label of being mentally ill.

3.67 4.33 3.67 5

Without Context Happy to be home with the fam. 3.33 3 3 5
R3 (Chakrabarty
et al., 2020)

Home with the not flu. 1.67 1.33 1.33 3

The boss just came and
took the mac away.

Full Model The boss just ended and took the mac away awesome.

Angry is not the word for it - I was furious.

5 5 4.67 4.33

Without Emoji The boss just ended and took the mac away awesome.
Angry is not the word for it - I was furious.

4 3.67 3 4.67

Without Context The boss just ended and took the mac away awesome. 5 5 4.67 4.33
R3 (Chakrabarty
et al., 2020)

The boss just came and took the mac away. Angry is not
the word for it - I was furious.

1.67 2.33 1.67 5

Friday nights are so
boring when the
boyfriend is working late
and then i have to work at
on saturday mornings.

Full Model Friday nights are so cute when the boyfriend is working
rearrange and then i have to work at on mornings. At least

they weren’t bored.

4 4 3.67 4

Without Emoji Friday nights are so cute when the boyfriend is working
rearrange and then i have to work at on mornings. At least
they weren’t bored.

4 4 3.67 4

Without Context Friday nights are so cute when the boyfriend is working

rearrange and then i have to work at on mornings.

4 4 3.67 4

R3 (Chakrabarty
et al., 2020)

Friday nights are so boring when the boyfriend is working
early and then I have to work at on saturday mornings.
Friday saw the latest addition to darlington’s throbbing
night life packed to the rafters.

1.33 2 1.33 5

Just finished workin bed
feeling sick.

Full Model Just finished workin feeling good. My stomach heaved

and I felt sick.

5 5 4.67 5

Without Emoji Just finished workin feeling good. My stomach heaved
and I felt sick.

5 5 4.67 5

Without Context Just finished workin feeling good. 3 3 3 5
R3 (Chakrabarty
et al., 2020)

Just finished workin bed feeling healthy. My stomach
heaved and I felt sick.

5 4.33 4.67 5

Table 5: Score comparison among the generated outputs from the different systems (Full model, Output without
context, Output without emoji and the State-of-the-art model) on four categories

given by Mishra et al. (2019) where the negative
sentences are labeled as 1 and the positive sen-
tences are labeled as 0. Each word in the input
sentence is first encoded with one-hot encoding
and turned into a K-dimensional embedding. Then,
these embeddings go through an LSTM layer with
200 hidden units, a self-attention layer, an LSTM
layer with 150 hidden units and finally a softmax
layer. The classifier is trained for 10 epochs with a
batch size of 32, and achieves a validation accuracy
of 96% and a test accuracy of 95.7%.
The positive sentiment induction module is built on
top of the OpenNMT 3.0 framework, and following
Mishra et al. (2019), the embedding dimensions of
the encoder and decoder is set to 500, with 2 LSTM
layers each consisting of 500 hidden units. Train-
ing iteration is set to 100000 and early stopping
is incorporated to prevent overfitting. After train-
ing, the model produced a corpus-BLEU score of
51.3%.

4.3 Evaluation Criteria

For evaluating the performance of our proposed
architecture we incorporate Human judgement. To
assess the quality of the generated dataset we com-
pare among 4 systems.

1. Full Model contains all the proposed mod-
ules of the framework and generates the final
dataset.

2. Without Emoji system includes the context
sentences along with the outputs from the re-
versal of valence module but does not contain
any emoji that goes with each sarcastic sen-
tence.

3. Without Context system consists of genera-
tions from the reversal of valence module as
well as emoji. It does not include any context.

4. R3 is the state-of-the-art sarcasm generation
system proposed by Chakrabarty et al. (2020).

To assess each of the four systems, we randomly
choose 100 samples from our sarcastic dataset
which totals to 400 output from the four systems.
We evaluate these 400 generated sentences for com-
paring on the basis of the 4 above mentioned sys-
tems.
Following the evaluation approach proposed by
Chakrabarty et al. (2020), we evaluate the gener-
ated sentences on these criteria:

1. Sarcasticness (“How sarcastic is the output?”),
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2. Creativity (“How creative is the output?”),

3. Humour (“How funny is the output?”),

4. Grammaticality (“How grammatically correct
is the output?”).

Previous studies on sarcasm generation have em-
ployed sarcasticness as a criterion for evaluating
the effectiveness of the generated outputs (Mishra
et al., 2019; Chakrabarty et al., 2020; Das et al.,
2022). As sarcasm exemplifies linguistic creativity
(Gerrig and Gibbs Jr, 1988), creativity has been
proposed as a method for operationalizing the qual-
ity of sarcastic sentences by Skalicky and Cross-
ley (2018). The association between humor and
sarcasm is frequently mentioned in literature as
well (Dress et al., 2008; Lampert and Ervin-Tripp,
2006; Leggitt and Gibbs, 2000; Bowes and Katz,
2011). The grammaticality criterion assesses the
syntactic accuracy and conformity of the generated
sentences.
Three human judges have been chosen to rate the
outputs from the 4 systems on the 4 criteria men-
tioned. The label indicates a rating on a scale of
1 (not at all) to 5 (very). All 3 judges label each
of the 400 sentences from the 4 systems. The hu-
man judges have been chosen based on their high
efficiency in English, good grasp in understanding
and differentiating between Creativity, Humor and
Sarcasticness in English sentences.
To assess the inter-annotator agreement for the rat-
ings, we incorporated the Intraclass Correlation
Coefficient (ICC). ICC is a statistical measure used
to assess the degree of agreement or correlation
among the ratings given by different evaluators or
raters for a certain category or metric. The agree-
ment scores are shown in table 6. The ICC score
ranges between 0 and 1 where a higher score in-
dicates a greater agreement among the raters. For
all the four systems evaluated in our work, the rat-
ings by 3 judges for the 4 evaluation criteria yield
ICC scores above 0.9 in each case. A score above
0.9 indicates highly consistent observations and
excellent agreement among the 3 judges.
Besides, human evaluation, we also evaluate our
generated data against an emoji-based sarcasm de-
tection model trained with existing emoji-based
sarcastic dataset. For this, we utilize the work of
Subramanian et al. (2019) and use their proposed
sarcasm detection model trained with their dataset.
Their data samples were tweets with emojis scraped
from Twitter and were labeled either 1 (sarcastic)

System Intraclass Correlation Coefficient (ICC)
S C H G

Full Model 0.90 0.92 0.92 0.94
Without
Emoji

0.95 0.96 0.95 0.92

Without
Context

0.93 0.94 0.94 0.93

R3

(Chakrabarty
et al., 2020)

0.97 0.97 0.97 0.97

Table 6: Intraclass Correlation Coefficient (ICC)
scores on different metrics for the four systems.
Here, S=Sarcasticness, C=Creativity, H=Humor,
G=Grammaticality are the 4 evaluation criteria.

or 0 (non-sarcastic). The model consists of a Bi-
GRU with a text encoder and an emoji encoder. We
add 2k non-sarcastic texts with our generated 2k
sarcastic texts and test the model with these data.
The model’s performance is discussed in section 5.

5 Experimental Results & Analysis

System Varianceeval
S C H G

Full Model 0.62 0.59 0.60 0.96
Without Emoji 0.74 0.73 0.65 0.96
Without Context 0.57 0.43 0.44 1.02
R3 (Chakrabarty
et al., 2020)

1.48 1.17 1.16 0.99

Table 7: Variances among each evaluation criterion
for each system. Here, S=Sarcasticness, C=Creativity,
H=Humor, G=Grammaticality are the 4 evaluation cri-
teria.

Table 5 shows the comparison between a few sam-
ple sarcastic outputs across the various systems
(our full model, output without the context, output
without any emoji and lastly the state-of-the-art
model (Chakrabarty et al., 2020) on different mea-
sures (Sarcasticness, Creativity, Humor and Gram-
maticality). Each score is the average rating given
by the three human judges. Table 7 shows the vari-
ances among each evaluation criterion for each of
the four systems. The variances among the four
criteria for the system R3 are higher than all the
other systems.
Table 8 shows the average ratings on 100 samples
by human judges for generated sarcastic sentences
from the four systems based on the four categories.
Our full model achieves the highest average score
among all the systems including the state-of-the-
art sarcasm generation model by Chakrabarty et al.
(2020) on three of the four categories except Gram-
maticality. Besides the full model, the without
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System Sarcasticness Creativity Humor Grammaticality
Full Model 3.44 3.29 3.16 3.72
Without Emoji 2.77 2.83 2.69 3.7
Without Context 3.1 2.99 2.88 3.72
R3 (Chakrabarty et al., 2020) 2.32 2.2 2.1 4.29

Table 8: Average ratings by human judges for outputs from the four systems

emoji system and without context system also out-
perform the state-of-the-art on Sarcasticness, Cre-
ativity and Humor. Our system lacks in Gram-
maticality due to the fact that we replace the rule
based approach of the reversal of valence module
by Chakrabarty et al. (2020) with a deep learning
approach which results in a slightly more signif-
icant information loss. However, the rule based
model performs worse in case of the other three
categories as it fails to generalize on all types of
sentence structures. It is apparent from the scores
that context plays an important role in recognising
a sarcastic sentence. Additionally, the notable im-
provement in the score for full model compared
to the without emoji model suggests that emojis
obviously help better detect the incongruity that
exist in sarcastic utterances.
The emoji based sarcasm detection model by Sub-
ramanian et al. (2019) gives an F1-score of 67.28%
and an ROC AUC score of 53.33% on our gener-
ated data samples. It is to be noted that the model’s
training data samples have significantly different
sentence structure than the test samples.

Conclusion

We propose a novel multi-modular framework for
sarcasm generation with emoji considering two key
characteristics of sarcasm: reversal of valence and
semantic incongruity between the sarcastic remark
and the context. To generate sarcastic sentences,
we first neutralize the input sentence’s sentiment
and then add positive sentiment to the sentence to
reverse its meaning. We also incorporate a relevant
emoji and its contextual information to enhance
the sarcastic effect. We conclude by evaluating our
model using human judgement.

Limitations

Although our proposed architecture successfully
generates emoji-based sarcastic sentences from
non-sarcastic texts, in some cases, particularly
longer sentences, adding commonsense context
does not add much to make it more sarcastic as
in such cases, the longer sentences already contain

the contextual information. In future, we plan to
modify our architecture in a way such that it can
identify whether or not adding commonsense con-
text would be necessary.
In our work, we have used COMETDIS

TIL to gener-
ate additional commonsense context. So the per-
formance of our proposed architecture heavily de-
pends on the accuracy of COMETDIS

TIL. In future,
we would like to find and incorporate better models
for generating commonsense context.
The low grammaticality score by our final model is
likely to be caused by the insufficient training data
for the Positive Sentiment Induction module for
which the model could not generalize properly. We
believe that there is still room for improvement here
by collecting and adding more training samples to
improve the model’s performance. To further fix
the grammatical errors we plan to add another mod-
ule after the Positive Induction module where the
module will use a Transformer based grammar cor-
rection model which will take a sentence with bad
grammar and output a grammatically correct sen-
tence.
Lastly, our emoji prediction module only predicts
one emoji per sentence. However, to make a sen-
tence sarcastic, it is not uncommon to use more
than one emoji. Hence, we plan to explore multi-
label emoji prediction in the future.
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A Appendix

Table 9: Summary of sarcasm detection datasets from different social media platforms

Dataset Annotation

Sh
or

tT
ex

t

L
on

g
Te

xt

Im
ag

e

Samples Platform M
an

ua
l

H
as

ht
ag

N
on

e

(Filatova, 2012) ✓ 1254 Amazon ✓
(Riloff et al.,
2013)

✓ 1600 Twitter ✓

(Ptáček et al.,
2014)

✓ 920000 Twitter ✓ ✓

(Barbieri et al.,
2014)

✓ 60000 Twitter ✓

(Bamman and
Smith, 2015)

✓ 19534 Twitter ✓

(Amir et al.,
2016)

✓ 11541 Twitter ✓

(Bharti et al.,
2016)

✓ 1.5M Twitter ✓

(Joshi et al.,
2016)

✓ 3629 Goodreads ✓

(Ghosh and
Veale, 2016)

✓ 41000 Twitter ✓

(Poria et al.,
2016)

✓ 100000 Twitter ✓ ✓

(Schifanella
et al., 2016)

✓ ✓ 600925 Instagram, Tum-
blr, Twitter

✓

(Zhang et al.,
2016)

✓ 9104 Twitter ✓

(Felbo et al.,
2017)

✓ 1.6B Twitter ✓

(Ghosh and
Veale, 2017)

✓ 41200 Twitter ✓

(Khodak et al.,
2017)

✓ 533.3M Reddit ✓

(Oraby et al.,
2017)

✓ 10270 Debate forum ✓ ✓

(Prasad et al.,
2017)

✓ 2000 Twitter ✓

(Baziotis et al.,
2018)

✓ 550M Twitter ✓

(Hazarika et al.,
2018)

✓ 219368 Reddit ✓

(Ghosh et al.,
2018)

✓ ✓ 36391 Twitter, Reddit,
Discussion
Forum

✓ ✓

(Ilić et al., 2018) ✓ ✓ 419822 Twitter, Reddit,
Debate Forum

✓ ✓
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(Tay et al., 2018) ✓ ✓ 94238 Twitter, Reddit,
Debate Forum

✓ ✓

(Van Hee et al.,
2018)

✓ 4792 Twitter ✓ ✓

(Wu et al., 2018) ✓ 4618 Twitter ✓ ✓
(Majumder et al.,
2019)

✓ 994 Twitter ✓

(Cai et al., 2019) ✓ 24635 Twitter ✓
(Kumar et al.,
2019)

✓ ✓ 24635 Twitter, Reddit,
Debate Forum

✓

(Subramanian
et al., 2019)

✓ ✓ 12900 Twitter, Face-
book

✓

(Jena et al.,
2020)

✓ 13000 Twitter, Reddit ✓ ✓

(Potamias et al.,
2020)

✓ 533.3M Twitter, Reddit ✓ ✓

Table 10: Performance summary of various approaches used in sarcasm detection

Data Architecture Performance
Accuracy F1-

Score
Precision Recall

(Davidov
et al., 2010)

Tweets SASI (Semi-
supervised Algo-
rithm for Sarcasm
Identification)

0.896 0.545 0.727 0.436

(Gupta and
Yang, 2017)

Tweets CrystalNet 0.60 0.52 0.70

(Bharti et al.,
2017)

Tweets PBLGA with SVM 0.67 0.67 0.68

(Mukherjee
and Bala,
2017)

Tweets Naive Bayes 0.73

(Jain et al.,
2017)

Tweets Weighted Ensemble 0.853 0.831 0.298

(Poria et al.,
2016)

Tweets CNN-SVM 0.9771

(Ghosh and
Veale, 2016)

Tweets CNN-LSTM-DNN 0.901 0.894 0.912

(Zhang
et al., 2016)

Tweets GRNN 0.9074 0.9074

(Oraby et al.,
2017)

Tweets SVM + W2V +
LIWC

0.83 0.80 0.86

(Hazarika
et al., 2018)

Reddit
posts

CASCADE 0.79 0.86

(Ren et al.,
2018)

Tweets CANN-KEY 0.6328

CANN-ALL 0.6205
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(Tay et al.,
2018)

Tweets,
Reddit
posts

MIARN Twitter:
0.8647

0.86 0.8613 0.8579

Reddit:
0.6091

0.6922 0.6935 0.7005

(Ghosh
et al., 2018)

Reddit
posts

multiple-LSTM 0.7458 0.7607 0.7762

(Diao et al.,
2020)

Internet
argu-
ments

MQA (Multi-
dimension Question
Answering model)

0.762 0.701 0.835

(Kumar
et al., 2020)

Reddit
posts

MHA-BiLSTM 0.7748 0.7263 0.8303

(Kumar
et al., 2019)

Tweets sAtt-BiLSTM con-
vNet

0.9371

(Majumder
et al., 2019)

Text snip-
pets

Multi task learn-
ing with fusion and
shared attention

0.866 0.9101 0.9074

(Potamias
et al., 2019)

reviews
of lap-
tops and
restau-
rants

DESC (Deep En-
semble Soft Classi-
fier)

0.74 0.73 0.73 0.73

(Srivastava
et al., 2020)

Tweets,
Reddit
posts

BERT + BiLSTM +
CNN

Twitter:
0.74

Reddit:
0.639

(Gregory
et al., 2020)

Tweets,
Reddit
posts

Transformer en-
semble (BERT,
RoBERTa, XLNet,
RoBERTa-large,
and ALBERT)

0.756 0.758 0.767

(Potamias
et al., 2020)

Tweets,
Reddit
politics

RCNN-RoBERTa Twitter:
0.91

0.90 0.90 0.90

Reddit:
0.79

0.78 0.78 0.78

(Javdan
et al., 2020)

Tweets LCF-BERT 0.73

Reddit
posts

BERT-base-cased 0.734

(Lee et al.,
2020)

Tweets,
Reddit
posts

BERT + BiLSTM +
NeXtVLAD

Twitter 0.8977 0.8747 0.9219

Reddit 0.7513 0.6938 0.8187
(Baruah
et al., 2020)

Tweets,
Reddit
posts

BERT-large-
uncased

Twitter 0.743 0.744 0.748

Reddit 0.658 0.658 0.658
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(Avvaru
et al., 2020)

Tweets,
Reddit
posts

BERT Twitter 0.752

Reddit 0.621
(Jaiswal,
2020)

Tweets,
Reddit
posts

Ensemble of sev-
eral combinations
of RoBERTa-large

0.790 0.790 0.792

(Shmueli
et al., 2020)

Tweets BERT 0.703 0.699 0.70
0.7741

(Dadu and
Pant, 2020)

Tweets,
Reddit
posts

RoBERTa-large Twitter 0.772 0.772 0.772

Reddit 0.716 0.716 0.718
(Kalaivani
and Then-
mozhi,
2020)

Tweets,
Reddit
posts

BERT Twitter 0.722 0.722 0.722

Reddit 0.679 0.679 0.679
(Naseem
et al., 2020)

Tweets T-DICE + BiLSTM
+ ALBERT

0.93 0.93

(Dong et al.,
2020)

Tweets,
Reddit
posts

context-aware
RoBERTa-large

Twitter 0.783 0.784 0.789

Reddit 0.744 0.745 0.749
(Kumar
and Anand,
2020)

Tweets,
Reddit
posts

context-aware
RoBERTa-large

Twitter 0.772 0.773 0.774

Reddit 0.691 0.693 0.699
(Kumar
et al., 2021)

Tweets AAFAB (Adversar-
ial and Auxiliary
Features-Aware
BERT)

0.7997 0.8101 0.7896

(Lou et al.,
2021)

Tweets,
Reddit
posts

ADGCN-BERT
(Affective De-
pendency Graph
Convolutional
Network)

Twitter:
0.9031

0.8954

Reddit:
0.8077

0.8077
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Abstract

With the fast-growing popularity of current
large pre-trained language models (LLMs), it
is necessary to dedicate efforts to making them
more reliable. In this thesis proposal, we aim
to improve the reliability of natural language
generation systems (NLG) by researching the
semantic accuracy of their outputs. We look at
this problem from the outside (evaluation) and
from the inside (interpretability). We propose
a novel method for evaluating semantic accu-
racy and discuss the importance of working
towards a unified and objective benchmark for
NLG metrics. We also review interpretability
approaches which could help us pinpoint the
sources of inaccuracies within the models and
explore potential mitigation strategies.

1 Introduction

The introduction of the Transformer architecture
(Vaswani et al., 2017) irreversibly changed the re-
search landscape in natural language processing.
Moreover, in the past year, large pre-trained lan-
guage models (LLMs) have managed to permeate
into the hands and minds of millions of users world-
wide (Ouyang et al., 2022; Touvron et al., 2023;
Scao and et al., 2023). With a growing public in-
terest in natural language generation (NLG) and
dialogue systems, it is essential to thoroughly re-
search their reliability. If a human does not know
the answer to a question, the socially acceptable be-
havior is to say ‘I do not know’ instead of making
up a plausibly sounding lie. This is how many users
expect intelligent systems to behave, and failing to
fulfill this expectation can lead to distrust, or in a
worse scenario, even to the spread of misinforma-
tion.

We believe it is worth trying to propose evalua-
tion schemes that could incentivize institutions and
companies to optimize their models for reliability
rather than just fluency and impressiveness. The
proposed thesis aims to take a step in this direction

by investigating semantic accuracy in a data-to-text
generation setting. We consider a text semantically
accurate if it faithfully represents the underlying
input data.

Despite the fact that inaccurate does not always
mean wrong (Maynez et al., 2020), i.e. conflicting
with our current understanding of the world, we
argue that an NLG system should produce semanti-
cally accurate texts to be considered reliable. We
still consider it important to research NLG through
the lens of semantic accuracy, without the intent of
explicitly fact-checking (Thorne et al., 2018), for
the following reasons:

• It is important to alert the user about the out-
put text deviating from the data so they do
not overlook it and can evaluate the factuality
themselves.

• The NLG system stores a representation of
its training data in its parameters. However,
some of that information might be outdated
and therefore is no longer accurate. If we
supply an NLG system with input data con-
taining updated information, such as the name
of a new prime minister, we want this to take
precedence over the information learned dur-
ing training.

• In some use cases, such as in task-oriented
dialogue systems, we want full control of the
output to maintain a high level of reliability.
This is especially important if explicit dia-
logue state tracking is used so that the system
has an accurate representation of what was
already communicated to the user.

Thesis Objectives The main objective of this the-
sis is to answer the question: “How can we make
data-to-text Natural Language Generation more
reliable?” We hope to achieve this objective by
carefully studying NLG systems, namely LLMs,
with respect to semantic accuracy, from the outside
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(evaluating their outputs) as well as from the inside
(inspecting their hidden layers).

It is valuable to quantify how reliable an NLG
system is before attempting to increase its reliabil-
ity to measure the magnitude of such an increase.
Furthermore, we hope to provide insights into the
operation of NLG systems and the limitations they
have. This will allow for a more informed design
of NLG systems to tackle the detected problems.

Thesis Structure The first part of the thesis, de-
scribed in Section 2, is dedicated to NLG evalua-
tion. We propose a novel approach for evaluating
the semantic accuracy of a generated text given
the source data. We also intend to contribute a
benchmarking dataset for evaluating NLG metrics
focused on semantic accuracy. Thomson and Re-
iter (2021) have presented such a dataset with high-
quality human annotations, however, due to the
high costs of human annotation it is very modest in
size. Therefore, we share our idea of constructing
a larger dataset automatically.

In the second part of the thesis, described in
Section 3, we will use interpretability techniques to
explore where inaccuracies appear. We aim to then
use these insights to learn how to guide the NLG
system to produce outputs that are more faithful to
the input data.

Applications This thesis’ most visible contribu-
tion will be in the task of data-to-text natural lan-
guage generation as it is our primary goal. We
anticipate our insights will also be helpful in dia-
logue systems and retrieval-augmented generation
(Lewis et al., 2020). Furthermore, it is our intention
to extend the described approaches to abstractive
summarization as the task is similar to ours. Finally,
we believe that the evaluation method presented in
Section 2 could even be used for evaluating human-
written texts. While it is not intended as a fact-
checking method by itself, it could be used as an
aid for users who perform fact-checking to warn
them about text parts not consistent with the data.

2 Evaluating Semantic Accuracy

Many aspects of NLG system outputs can be evalu-
ated: fluency, grammatical correctness, acceptabil-
ity with respect to a context, or similarity to a given
reference text, etc (Howcroft et al., 2020). In this
thesis, we focus solely on the aspect of semantic
accuracy which is far from being solved.

We aspire to evaluate how accurately a target

text represents given source data either in a set of
semantic triples (subject-predicate-object), a table,
or a different structured form. Our proposed output
is not only the numeric result of the metric which
can be used in a development or research setting,
but primarily a set of alignments between the text
and the data (Dou and Neubig, 2021) This will
allow for an intuitive visualization for a user in a
fact-checking setting.

We consider three major types of semantic in-
accuracy, following Maynez et al. (2020) The first
is extrinsic hallucination – a phenomenon where
the text includes additional information that is not
directly inferrable from the input data, such as in-
troducing new entities. The second and more subtle
way of introducing semantic inaccuracy is intrin-
sic hallucination – creating new relations between
entities that are not described in the input data.
Finally, we consider omission – omitting some in-
formation from the source data in the target text.

2.1 SoTA in Semantic Accuracy Evaluation

We review state-of-the-art semantic accuracy met-
rics and discuss the limitations we aim to address
in our work. We refer to Celikyilmaz et al. (2020)
and Sai et al. (2022) for a broader overview.

Metrics such as BERTScore (Zhang et al., 2020),
Bleurt (Sellam et al., 2020), or PARENT (Dhingra
et al., 2019) can be used to evaluate the semantic
accuracy of a given text. The major difference be-
tween these metrics and the method we propose
later on in this section is that instead of comparing
the target text with the source data, they compare
it with a reference text. This means the methods
can only be applied to examples where a reference
is available. Furthermore, such metrics cannot ex-
plain why a text received a high or a low score –
they can only measure the proximity to a reference.

The majority of metrics for evaluating the se-
mantic accuracy of generated text utilize models
pre-trained for the task of Natural Language Infer-
ence (NLI). Such metrics include NUBIA (Kane
et al., 2020), MENLI (Chen and Eger, 2023), and
approaches presented by Maynez et al. (2020) and
Dušek and Kasner (2020).

The advantage of NLI-based metrics is that they
generally do not need a reference (with the ex-
ception of NUBIA) and can handle lexical diver-
sity. However, they are not easily interpretable by
the user, because they natively do not show where
the inaccuracies occur within the text. A work by

353



Goyal and Durrett (2020) mitigates this by apply-
ing entailment to dependency trees. This method
is not equipped to deal with negation and omission
which we aim to address in our work.

Finally, we review a text-level error detection
metric for table-to-text generation presented by
Kasner et al. (2021). This metric uses rules to con-
struct a set of sentences that can be derived from
the input data and measure the semantic similarity
between them and the evaluated sentence. We as-
pire to reach a better result by crafting a synthetic
pre-training set containing more intricate halluci-
nations as described later on in this section.

2.2 Metric Evaluation

To our knowledge, there is not yet an objective
way of evaluating how well semantic accuracy met-
rics perform in finding inaccurate information. We
might not fully achieve objective evaluation of met-
rics but we argue it is important to move towards
this goal as it will lead to better evaluation meth-
ods. The most prevalent method of measuring met-
ric performance is comparing the scores given to
selected evaluated examples to human judgment.
However, such evaluation is not easily reproducible
and does not give us enough information to com-
pare the metrics among themselves (Belz et al.,
2021).

Data-to-text datasets such as WebNLG (Gardent
et al., 2017), Enriched WebNLG (Castro Ferreira
et al., 2018), DART (Nan et al., 2021) are not suf-
ficient for benchmarking evaluation metrics. As
datasets intended as NLG system data, they gener-
ally do not contain phenomena like hallucination,
but in the rare cases when they do, they are not
marked as such. The closest to our goals is the
dataset presented by Thomson and Reiter (2021)
intended for error detection in table-to-text genera-
tion. It contains high-quality human annotation at
the drawback of being small in size – 90 examples
across train and validation sets combined. Maynez
et al. (2020) created such a dataset for the task of
abstractive summarization by extending the XSum
dataset (Narayan et al., 2018). They conducted a
human annotation experiment to tag hallucinations
in the generated summaries. While we hope we can
extend our evaluation method to abstractive sum-
marization, this dataset is not directly suitable for
evaluating data-to-text generation. A similar bench-
marking dataset is available for dialogue systems
(Dziri et al., 2022). This dataset contains anno-

tations with manually evaluated judgments about
whether a system response is fully attributable to a
relevant large unstructured source of information.
Such task is out of scope for this thesis.

To create a unified way of evaluating and com-
paring NLG metric performance, we propose a
construction of a dataset designed for data-to-text
metric evaluation which will contain examples of
semantically accurate texts, both extrinsic and in-
trinsic hallucination, and omission. This will allow
for a fine-grained diagnostic of the metric perfor-
mance in a fully automated setting.

A portion of the data-to-text datasets mentioned
above will serve as positive examples containing no
hallucinations or omissions. Hallucinations could
be automatically generated by dropping semantic
triples. We selected this format as our starting point
for several reasons:

• It is widely used in the datasets we considered.

• Other formats (tables, graphs, name-value slot
pairs) can be losslessly transferred to semantic
triples.1

In case we drop a triple where both the subject and
object are included in other triples, we are creating
an intrinsic hallucination, since the only thing being
removed is the relation between the two. Otherwise,
we are creating an extrinsic hallucination.

Generating examples of omission could be done
by dropping a sentence from the reference text
whenever there are more sentences. More intricate
examples could be generated by dropping a subtree
from the dependency tree of the reference.

A portion of the dataset should also include cate-
gorized outputs produced by various NLG systems.
This will ensure that the metric itself is properly
evaluated on the data it was designed for. There
is no scarcity of erroneous NLG outputs, however,
the bottleneck will be the need for human annota-
tion and categorization. For this reason, we intend
to start with a small set of such data and slowly
expand it.

Creating such a benchmarking dataset would
help us compare the performance of existing met-
rics on the three categories of inaccuracies and to
understand their limits.

1We consider graphs as tuples G = (V,E) where V is
a set of vertices and E is a set of edges. We propose that
the edges can be converted to predicates and vertices can be
converted to subjects and objects in the semantic triples.
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2.3 Evaluation Method
We propose a novel method to evaluate semantic
accuracy based on alignments between source data
and target text. Using the alignment method in-
troduced by Dou and Neubig (2021), we intend to
align portions of the data, e.g. semantic triples, to
phrases in the target text. To reach phrase-level
granularity, we aim to use dependency trees – in-
spired by the work of Vamvas and Sennrich (2022)
and Goyal and Durrett (2020).

If a portion of the data cannot be aligned with
any combination of the phrases, it means the in-
formation was omitted. On the other hand, if a
phrase cannot be aligned with any portion of the
data, it is likely indicative of a hallucination. We
are aware this could also happen with filler words
or phrases. We can handle such cases during depen-
dency parsing or filter them through their perplex-
ity – filler phrases generally have a lower perplexity
than information-bearing phrases.

The main output of this method is the set of align-
ments that can be used to flag any suspicious parts.
However, in a development setting, it is desirable to
have a numerical output quantifying the quality of
an evaluated system. This can be obtained either as
a total distance between the aligned embeddings in
the embedding space or the percentage of embed-
dings not aligned. Both scores can be normalized
for sequence length.

The advantage of this method is that it allows us
to track the source of all information in the target
text, not only the inaccurate parts. This can be use-
ful in a setting where the alignments are presented
directly to the user because if visualized properly,
it could make fact-checking faster and easier.

Expected Qualities We aspire for the evaluation
method to have the following qualities:

• Explainable Instead of just outputting a nu-
merical value to characterize the accuracy of
a target text given the source data, it also iden-
tifies the hallucination spans. Therefore, it
should be able to point out precisely which
parts of the text are not supported by the data
or which parts of the data were omitted from
the text.

• Reference-less The metric is designed to eval-
uate novel texts where no reference text is
available. This corresponds to the task of
quality estimation (Dušek et al., 2019; Spe-
cia et al., 2013). While this might seem like

a limitation, recent work by Kocmi and Fed-
ermann (2023) shows that neural metrics are
capable of reaching better results when not
presented with a reference.

• Robust The metric is robust with respect to
lexical diversity. The choice of words should
not matter as long as they are semantically
similar. We expect to approach this quality
by working with embeddings rather than n-
grams.

• Automatic While the metric can be used to
help a user, it should not require any input
from the user.

Alternative Approach as Tagging Finding hal-
lucinations and omissions in the text can also be
approached as a BIO tagging problem (Ramshaw
and Marcus, 1995). In our case, we aim to clas-
sify every token as the beginning of a hallucination
or omission. This approach has been previously
explored on a more narrow task of error detection
(Kasner et al., 2021) trained on data from Thomson
and Reiter (2021).

We believe that training a BIO tagger could ben-
efit from our proposed benchmarking dataset from
Section 2 could be used for training such a tagger.
The hallucination and omission spans can then be
automatically annotated using the alignments from
our main evaluation method. Even in case the align-
ments prove to be worse quality than anticipated,
we will investigate whether adding this data as a
pre-training step and then refining on high-quality
data from Thomson and Reiter (2021) will lead to
better performance.

3 Mitigating Inaccuracies with
Interpretability

In the second part of the thesis, we will use various
techniques to uncover the sources of semantic in-
accuracies within networks. We will then use the
gained knowledge to improve the semantic accu-
racy of the generated text.

In the first subsection, we discuss the methods
we intend to explore. In the second subsection, we
name the research questions we seek to answer.

3.1 Methods

We will investigate LLMs with openly accessible
weights (Touvron et al., 2023; Taori et al., 2023;
Chung et al., 2022; Wang et al., 2022). In our
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experiments, we will aim to always have a mix-
ture of encoder-decoder models vs decoder-only
models, to explore whether the model architecture
makes a difference. We will also compare mod-
els fine-tuned on instructions to those that were
not to investigate whether this training schema is
beneficial in increasing semantic accuracy.

Attention Visualization The first step in our
search for semantic inaccuracies is using Atten-
tion Visualization (Vig, 2019). The goal is to look
for an intuitive insight into what happens inside
the networks while inaccuracies are generated. We
will search for any reoccurring patterns that can be
addressed by pruning. We bear in mind that the
results might be hard to interpret or even mislead-
ing (Mareček et al., 2020; Wiegreffe and Pinter,
2019). Nevertheless, we consider this method a
good place to start in our interpretability research.

Probing We anticipate that the major part of our
analysis will be done using probing (Ettinger et al.,
2016; Adi et al., 2017; Conneau et al., 2018). Prob-
ing aims to extract information from the network’s
hidden layers by applying a classifier of an investi-
gated linguistic phenomenon on top of them.

In this thesis, we will mostly be interested in
extracting graph structures as we are equally inter-
ested in entities (nodes) and relations among them
(edges). This will be inspired by extracting syn-
tactic properties (Hewitt and Manning, 2019), and
discourse structures (Huber and Carenini, 2022)
from hidden layers. The core idea of both works is
applying linear transformations to the activations,
considering the result as a distance metric which
was then applied to construct trees directly or using
dynamic programming.

Our idea of utilizing this approach is to extract
the structures in a similar manner and to try to
match them to the input data. This can be done on
multiple levels to look for the precise point when
a hallucination forms by the introduction of new
information into the structure or when a part of the
input data is forgotten.

We also plan to build upon the work of Schuster
and Linzen (2022), who show that Transformer-
based models do not yet have entity tracking ca-
pabilities and can introduce new entities, which is
an instance of extrinsic hallucination (Schmidtova,
2022). Klafka and Ettinger (2020) use probing to
obtain information about the surrounding words
from a given word. This approach could help us

reveal intrinsic hallucination in case we retrieve
information about a predicate not supported by the
data. We will also look into probing via prompting
an LLM (Li et al., 2022) as this approach does not
require a trained probe.

Pruning After identifying a potential source of
inaccuracy, one of the most natural mitigation
strategies is attention head pruning – removing
some of the attention heads after training. Voita
et al. (2019) and Behnke and Heafield (2020) ob-
served a comparable model performance in ma-
chine translation before and after strategically prun-
ing attention heads.

Our aim is to identify attention heads that consis-
tently contribute to hallucination via copying from
the training data instead of attending to the input
data via attention visualization and probing. In case
we succeed, there is a possibility of improving a
model’s semantic accuracy by pruning those heads.

Fine-tuning Fine-tuning a large pre-trained lan-
guage model can be computationally very demand-
ing. Most LLMs which achieve state-of-the-art
results are simply too large to fine-tune using
traditional methods on hardware accessible to a
Ph.D. student. Therefore, we aim to explore meth-
ods such as LoRA (Hu et al., 2021) and QLoRA
(Dettmers et al., 2023) to fine-tune LLMs using the
available data-to-text generation datasets to reach
higher semantic accuracy.

Furthermore, in case we find recurring halluci-
nation patterns through attention visualization and
probing, we can use the matrix injection method
described by Hu et al. (2021) to remove hallucina-
tions before they can even appear in the generated
text.

Modelling Uncertainty In case a model is not
confident enough in its answer, it should rather say
‘I don’t know’ instead of hallucinating a plausible-
sounding response. Goldberg (2023) argues that
such behavior cannot be learned in a supervised
manner, as we ourselves do not know what knowl-
edge is stored in the model.

We aim to explore Bayesian methods to estimate
the model uncertainty. Wu et al. (2022) model
aleatory (data) and epistemic (model) uncertainty
(Kiureghian and Ditlevsen, 2009) to detect out-of-
domain queries fed to dialogue systems. Our in-
tentions are the opposite – instead of using this
method on the system inputs, we aim to focus on
the outputs. We intend to leverage this method is to
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model epistemic uncertainty and use the modeled
values to update the system weights.

We believe this will be a promising research area
as this is the kind of interaction humans intuitively
expect.

Prompt Engineering The performance of LLMs
largely depends on the prompts they receive. We
will investigate to what extent prompt choice can in-
fluence the semantic accuracy of the produced texts.
There are already many strategies and courses for
prompt engineering (Bach et al., 2022; Sanh et al.,
2022; Liu et al., 2021; Ng and Fulford, 2023), how-
ever, the suggested strategies for hallucination mit-
igation are often not very effective. We will seek
the boundaries of semantic accuracy that can be
achieved through prompt engineering.

We aim to experiment with zero-shot prompting
(Chang et al., 2008; Palatucci et al., 2009), few-
shot prompting (Brown et al., 2020), and chain-of-
thought prompting (Wei et al., 2023). We are aware
that a prompt that will mitigate hallucinations for
one model might not be so successful for another
one and we are willing to modify the prompts for
specific models. We plan to experiment with many
aspects of the prompt such as sentence length, un-
ambiguity, word choice, using placeholders, special
symbols as delimiters etc.

The advantage of prompt engineering is that the
results will be applicable immediately. We expect
to observe a wide range in LLM performance based
on prompt choice.

3.2 Research Questions
Through our interpretability research, we aim to
answer the following questions:

• Are there reoccurring patterns in attention that
appear when the model is hallucinating?

• Can we use probing to identify the layers
where hallucinated information infiltrates the
input data?

• Is it possible to teach the network to esti-
mate its confidence in a fact before reply-
ing? Would such confidence be reliable or
arbitrary?

• Is it possible to minimize the influence of the
prompt on semantic accuracy by manipulat-
ing the model by fine-tuning, pruning atten-
tion heads, or using reinforcement learning to
estimate model confidence?

• How significantly can we increase semantic
accuracy through modifying the model’s inner
properties (weight updates, skip connections,
or attention head pruning) compared to the
increase we can achieve through less resource-
intensive prompt engineering?

4 Conclusion

This thesis proposal has outlined the importance
of investigating semantic accuracy in natural lan-
guage generation. By focusing on this important
aspect, we aim to address the challenge of ensuring
that NLG systems generate text that represents the
underlying data more faithfully.

We proposed a unified benchmark for NLG met-
rics focusing on semantic accuracy, which will
enable researchers to compare them in an objec-
tive and standardized manner. Additionally, we
introduced a novel semantic accuracy evaluation
method, which measures how accurately the gener-
ated text represents the underlying data while also
providing data-text alignments.

Furthermore, we discussed ways to investigate
where inaccuracies appear inside NLG models,
with the aim of identifying potential areas for im-
provement. Our proposed approach includes at-
tention visualization and probing, which provide
insights into the decision-making process of the
models and enhance their interpretability. The miti-
gation strategies we aim to use with this knowledge
are attention head pruning, fine-tuning, and updat-
ing the weights using estimated uncertainty. We
also aim to explore how prompt engineering can
contribute to more semantically accurate texts.

We hope our research will lead to improved
communication between humans and machines, en-
hanced user experiences, and more trust from the
public.

Challenges There is a possibility that certain
LLMs may have already encountered the devel-
opment and testing portions of the datasets that
we plan to use for evaluation during their training
process. We will be very mindful of this while
conducting all evaluations and aim to use training
data extraction techniques (Carlini et al., 2021) to
verify whether this is the case for a particular set
of data and a given LLM. However, searching for
new unseen data will be challenging and is def-
initely something that should be addressed by a
wider scientific community.
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Abstract
The art of mathematical reasoning stands as a
fundamental pillar of intellectual progress and
is a central catalyst in cultivating human in-
genuity. Researchers have recently published
a plethora of works centered around the task
of solving Math Word Problems (MWP) — a
crucial stride towards general AI. These exist-
ing models are susceptible to dependency on
shallow heuristics and spurious correlations to
derive the solution expressions. In order to
ameliorate this issue, in this paper, we pro-
pose a framework for MWP solvers based
on the generation of linguistic variants of the
problem text. The approach involves solving
each of the variant problems and electing the
predicted expression with the majority of the
votes. We use DeBERTa (Decoding-enhanced
BERT with disentangled attention) as the en-
coder to leverage its rich textual representa-
tions and enhanced mask decoder to construct
the solution expressions. Furthermore, we in-
troduce a challenging dataset, PARAMAWPS,
consisting of paraphrased, adversarial, and in-
verse variants of selectively sampled MWPs
from the benchmark MAWPS dataset. We ex-
tensively experiment on this dataset along with
other benchmark datasets using some baseline
MWP solver models. We show that training on
linguistic variants of problem statements and
voting on candidate predictions improve the
mathematical reasoning and robustness of the
model. We make our code and data publicly
available.

1 Introduction

Math word problem solving is a long-standing re-
search problem in Artificial General Intelligence
(AGI) and a lot of studies about this topic, from
both industry and academia, have been published
recently. A typical Math Word Problem (MWP)
takes the form of a written narrative that articu-
lates a problem scenario and poses a question re-
garding one or more unknown quantities. A lan-
guage model capable of solving such problems has

Problem: 69 handbags are sold for $13 each. There are a
total of 420 handbags in a boutique and the remaining ha-
ndbags are sold for $7 each. How much did the boutique
earn after selling all the handbags?
Expression: x = 69× 13 + (420− 69)× 7
Solution: 3354

Table 1: An example of a Math Word Problem.

to translate the human-readable problem statement
to a valid mathematical expression that can be eval-
uated to obtain the numeric answer. An example
of a classic MWP is portrayed in Table 1, where
the reader is asked to infer the revenue of a bou-
tique shop. Such problems are generally found in
math textbooks of 1st to 8th grade students and are
easily solvable by humans with decent mathemati-
cal aptitude.

A lot of challenges manifest while designing
an automated system for solving these problems
(Zhang et al., 2019; Sundaram et al., 2022). The
primary challenge is to understand the quantities
in the problem and capture their complex mathe-
matical interconnections from a linear textual se-
quence written in natural language. There exists
a diverse range of MWPs with differing difficulty
levels, i.e., varying numbers of unknown values,
and depth of the relationships between quantities,
which require good mathematical reasoning abil-
ity to solve. Furthermore, the absence of crucial
information and the presence of irrelevant infor-
mation in the problem statements proves to be
quite a challenge for the solver models (Patel et al.,
2021). Other challenges include learning to tackle
the chronological and temporal ambiguities of the
events happening in the problem statements and
dealing with MWPs that significantly differ from
the training set in terms of semantic and syntactic
structure.

To address the problem outlined in Table 1, a
competent MWP solver model would need to pos-
sess the ability to associate the quantity, i.e., 69
handbags, with its price attribute of $13, and un-
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derstand the relative arithmetic order by deriving
351 remaining handbags, i.e., 420− 69, before as-
sociating the price attribute of $7. A lot of psycho-
logical studies have been done on how human be-
ings learn to solve mathematical problems and im-
prove their aptitude (Piaget, 2013; Peterson et al.,
2003; Kingsdorf and Krawec, 2016). The fron-
tier of research involving MWP solving is consid-
ered a momentous step towards the apogee of AGI
(Bubeck et al., 2023) and so researchers have dedi-
cated their efforts to replicating these complex cog-
nitive patterns exhibited by human beings within
the frameworks of AI models. The existing meth-
ods that are considered strong baselines for MWP
solving can be demonstrably shown to use shal-
low heuristics to solve many of the MWPs in the
benchmark datasets (Patel et al., 2021) creating a
faux impression of their mathematical reasoning
capability. To account for this limitation, in this
paper —

• We propose a framework for solving sim-
ple math word problems by generating para-
phrased linguistic variants of the input prob-
lem statement using OpenAI’s latest Genera-
tive Pre-trained Transformer (GPT-3) (Brown
et al., 2020) models, namely text-davinci-
003 and gpt-3.5-turbo. The problem state-
ment variants along with the original prob-
lem text then undergo the appropriate pre-
processing steps and are fed to an MWP
solver model with a DeBERTa-based encoder
and Enhanced Mask decoder.

• We also generate a large, augmented ver-
sion of the MAWPS (Koncel-Kedziorski
et al., 2016) dataset, namely PARAMAWPS
(Paraphrased MAth Word Problem Solving
Repository), as a challenging dataset by the
introduction of paraphrased structural varia-
tions of almost all categories of problems, but
emphasizing more on the categories that the
strong baseline models find difficult to solve.

DeBERTa (Decoding-enhanced BERT with dis-
entangled attention) (He et al., 2020) is currently
one of the most popular language models due
to its effectiveness in achieving state-of-the-art
results on a variety of natural language pro-
cessing tasks, including language translation,
text classification, and question answering. In
our work, we find that the DeBERTa model
achieves value accuracies of 63.5% and 91.0%

on the SVAMP dataset (Patel et al., 2021) and the
MAWPS dataset (Koncel-Kedziorski et al., 2016)
respectively. It falls behind the current SOTA
accuracy of ROBERTA-DEDUCTREASONER (Jie
et al., 2022) by a slight margin of 1 ± 0.20%
on the MAWPS dataset, but exceeds its accu-
racy of 47.3 ± 0.20% on the SVAMP dataset.
Our code and data are publicly available at —
https://github.com/Starscream-11813/
Variational-Mathematical-Reasoning

2 Problem Formulation

A Math Word Problem S is a sequence of word
tokens and numeric values, where the VS =
{v1, . . . , vm} denotes the word tokens in S and the
set nS = {n1, . . . , nl} denotes the set of numeric
quantities in S. The set of word tokens VS consists
of entities such as names of people, objects, units,
and rates while the set of quantities nS consists of
the numerical amount relevant to those entities.

The goal of an MWP solver model is to map S
to a valid mathematical expression E, consisting
of the quantities in (nS ∪ C), where C is a set of
constants, and the fundamental mathematical oper-
ators O = {+,−,×,÷}, which can be evaluated
to obtain the correct answer.

3 Literature Review

3.1 Math Word Problem Solving

3.1.1 Preliminary Works
The dawn of research on MWP solving was in
the mid-1960s (Feigenbaum et al., 1963; Bobrow,
1964). Rule-based methods (Fletcher, 1985; Bak-
man, 2007; Yuhui et al., 2010) are chronologi-
cally some of the earliest approaches to solving
MWPs. They use a set of manually hard-coded
rules about the language they are analyzing to find
out regularities in the data. Statistical methods
(Kushman et al., 2014; Hosseini et al., 2014; Roy
et al., 2015; Zhou et al., 2015; Mitra and Baral,
2016; Liang et al., 2016a,b) use generic ML clas-
sifiers to extract the entities, quantities, and opera-
tors from the problem statement and infer the nu-
meric answer with simple logic. Tree-based meth-
ods (Koncel-Kedziorski et al., 2015; Roy and Roth,
2016; Roy et al., 2016; Roy and Roth, 2017) utilize
the inherent binary tree-like structure of expres-
sions/equations. Other primitive categories of ap-
proaches that have now been rendered somewhat
obsolete are Parsing-based methods (Shi et al.,
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2015; Zou and Lu, 2019), Similarity-based meth-
ods (Huang et al., 2016), and Template-based
methods (Kushman et al., 2014; Zhou et al., 2015;
Roy et al., 2016; Upadhyay et al., 2016; Huang
et al., 2017).

3.1.2 Deep Learning-based Methods
Currently, the landscape of Deep learning mod-
els for the MWP solving task is primarily com-
prised of five distinct paradigms, SEQ2SEQ-
based, SEQ2TREE-based, GRAPH2TREE-based,
complex relation extraction-based, and Large Lan-
guage Model (LLM) prompt-based approaches,
each of which has demonstrated remarkable levels
of performance and efficacy. Wang et al. (2017)
were the pioneers of introducing deep learning to
solve MWPs with their proposed SEQ2SEQ model.
To improve the SEQ2SEQ model, researchers re-
sorted to alternative strategies, such as reinforce-
ment learning techniques (Wang et al., 2018b;
Huang et al., 2018), using dense problem repre-
sentation (Mishra et al., 2018), adopting template-
based methodologies (Wang et al., 2019), and in-
corporating group attention mechanisms (Li et al.,
2019). Xie and Sun (2019) were the progenitors
of the novel Goal-driven Tree-Structured (GTS)
model, designed to generate expression trees using
the tree-based decoder in order to imitate the goal-
driven problem-solving approach of humans. The
use of this tree decoder along with pre-trained lan-
guage models, such as BERT (Devlin et al., 2018),
BART (Lewis et al., 2019), RoBERTa (Liu et al.,
2019b), as the encoder in some of the SEQ2TREE

approaches (Liu et al., 2019a; Shen and Jin, 2020;
Wu et al., 2020; Lin et al., 2021; Shen et al.,
2021; Liang et al., 2021; Liang et al.; Li et al.,
2021; Xiong et al., 2022) brought about substan-
tial performance improvements over the previous
SEQ2SEQ methods. Cao et al. (2021) devised
a directed acyclic graph (SEQ2DAG) model of
the equations for the purpose of extracting the
expression. Zhang et al. (2020a) incorporated
the idea of Knowledge Distillation (KD) (Hinton
et al., 2015) in their proposed model where the
teacher network is pre-trained to guide the learn-
ing behaviors of the student networks. Yu et al.
(2021) introduced 2 types of encoders in their
model. Hong et al. (2021) modified the work of
Xie and Sun (2019) by incorporating a symbolic
reasoning based Learning-by-fixing (LBF) frame-
work. Huang et al. (2021) attempted to emulate
human-like analogical learning in their proposed

memory-augmented model. GRAPH2TREE-based
approaches (Zhang et al., 2020b; Li et al., 2020)
fused the merits of Graph-based Transformer (Yun
et al., 2019; Cai and Lam, 2020) encoders with
multiple Graph Convolutional Network (multi-
GCN) modules (Kipf and Welling, 2016), and tree-
based decoders to solve MWPs. Chatterjee et al.
(2021) introduced a weakly supervised approach
for MWP solving. Li et al. (2021) introduced a
contrastive learning approach with pattern diver-
gence to solve MWPs. Jie et al. (2022) formulated
the MWP solving task as a complex relation ex-
traction problem and leveraged explainable deduc-
tive reasoning techniques to iteratively construct
the target equations.

With the advent of LLMs, many innovative
prompt-based methods (Shao et al., 2022; Li et al.,
2022; Wang et al., 2022; Pi et al., 2022; Chen
et al., 2022; Liang et al., 2023) of solving MWPs
that capitalize on the models’ exceptional few-shot
learning capability came into the limelight and
demonstrated good performance across numerous
benchmark datasets. Cobbe et al. (2021) used ver-
ifiers with their GPT-3 (Brown et al., 2020) model.
Although LLMs excel at natural language under-
standing and have serendipitous emergent reason-
ing abilities (Yang et al., 2023), they are still
lackluster in complex reasoning tasks (Huang and
Chang, 2022). Numerous studies on complex rea-
soning tasks have empirically demonstrated that
the approach of fine-tuning smaller models is
more effective (Ho et al., 2022) than adopting
LLM prompting techniques like Chain of Thought
(CoT) prompting (Wei et al., 2022).

3.2 Paraphrasing

Paraphrase generation has garnered significant at-
tention from various NLP approaches, encompass-
ing rule-based methods (McKeown, 1980; Meteer
and Shaked, 1988), data-driven techniques (Mad-
nani and Dorr, 2010), linguistic translation meth-
ods (Bannard and Callison-Burch, 2005; Barzilay
and McKeown, 2001; Prakash et al., 2016) that
leverage bilingual corpora for iterative refinement
(Madnani and Dorr, 2010; Prakash et al., 2016;
Mallinson et al., 2017). Witteveen and Andrews
(2019) demonstrated the superiority of LLMs like
GPT-3 over the preceding methods in the para-
phrasing task.

Accordingly, our work attempts to leverage the
strengths of GPT-3 to generate a more linguisti-
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cally diverse pool of problem statements to fine-
tune a relatively smaller DeBERTa solver model
on the downstream task of MWP solving which
falls under the rubric of complex reasoning tasks.

4 Methodology

Figure-1 in Appendix-A shows an overview of our
proposed architecture. Given a problem statement
S, we prompt the paraphraser model to generate k
linguistic variants of S which are, S1, S2, . . . , Sk.
These k variant problems along with the seed prob-
lem S consists of quantities that are tagged appro-
priately using quantity tags. Each of the k+1 text
sequences is then tokenized and the content em-
beddings H and positional embeddings P of the
tokens are fed to the DeBERTa model. The dis-
entangled self-attention mechanism of DeBERTa’s
encoder utilizes H and P to generate the output
Houtput, which is a contextual representation of
the content of each problem statement. Houtput,
along with the relative positional embeddings P
and absolute positional embeddings I of each of
the problem statements are used by the Trans-
former layers of Enhanced Mask Decoder (EMD)
of DeBERTa to generate the k + 1 predicted equa-
tions E1, E2, . . . , Ek+1. These equations are then
simplified and the equation that is predicted the
most number of times is elected as the final predic-
tion of the model. This majority voting module is
used only during the validation/testing phase and
for inference. During the training phase, the k +
1 problem statements are deemed as stand-alone
training samples and the Negative Log-Likelihood
loss (NLLLoss) is calculated using the predicted
equations and the ground-truth equation. Conse-
quently, if the training set of the dataset used to
train the model consists of n samples, it is as if the
model is trained with (k + 1)× n = kn+ n sam-
ples. The knowledge points gathered after being
trained on an extra kn samples contributes to the
robustness of the model.

4.1 Paraphrasing Model

The task of correctly reformulating a Math Word
Problem statement requires a good level of lan-
guage understanding which is not present in its
entirety in rule-based and data-driven methods
of paraphrasing rendering them unsuitable in this
case. These methods frequently yield incorrect, in-
coherent, and grammatically inaccurate linguistic
variations; sometimes even leaving out crucial nu-

merical information. Accordingly, we choose text-
davinci-003 and gpt-3.5-turbo, two GPT-3 models
from OpenAI, as the paraphrasing models. GPT-
3 (Generative Pre-trained Transformer 3) (Brown
et al., 2020) is a large language model with 175
billion parameters, that is capable of performing a
wide range of natural language processing tasks,
including paraphrasing a given sentence. Upon
being prompted, it restates a given problem state-
ment in different words while still maintaining the
original meaning. To select the most appropri-
ate paraphrase, GPT-3 uses a scoring mechanism
that evaluates the semantic similarity between the
original sentence and each of the generated para-
phrases. The model assigns a higher score to para-
phrases that are more similar in meaning to the
input sentence, based on its understanding of the
context and the relationships between the words.
It also allows users to customize the level of com-
plexity and the style of writing in the paraphrased
version. We generate k variants of the original
problem text by prompting the model.

4.1.1 Prompts and System Task Description
The prompts that we use for accomplishing our lin-
guistic variant generation task are,

• system role Task Description —
You are a Math Word Problem rephraser that
generates variations of math word problem
statements.

• user role Prompts —

– Generate k1 paraphrased variations of
the problem by changing the sentence
structure.

– Generate k2 paraphrased variations of
the problem by changing the named
entities and objects.

– Generate k3 paraphrased variations of
the problem with irrelevant numerical
information.

Here, the total number of linguistic variants of a
problem, k = k1 + k2 + k3 and 5 ≤ k ≤ 15.

A detailed discussion on the types of problem
variations is delineated in Section-5.

4.2 Quantity Tagging
All the quantities (written either numerically or in
words) in every single variant of the problem along
with the original problem itself, are tagged with
unique quantity tags using RegEx and a Python
script which is provided in our GitHub repository
(see Section-1). This quantity tagging step ensures
that the same quantity is present in both the input
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as well as in the output. The quantity-tagged to-
kens have their own content and positional embed-
dings. For example, if the problem statement is,

“Melanie picked 4 plums, Dan picked 9
plums, and Sally picked 3 plums from
the plum tree. How many plums were
picked in total?"

then the quantity-tagged version of the problem
statement is,

“Melanie picked [Q1] plums, Dan
picked [Q2] plums, and Sally picked
[Q3] plums from the plum tree. How
many plums were picked in total?"

We use this quantity tagging for the ground truth
equation’s quantities as well.

4.3 Encoder
We use the pre-trained language model DeBERTa
(Decoding enhanced BERT with disentangled
attention). DeBERTa is a newly developed neural
language model by He et al. (2020) that is based
on the Transformer architecture. It boasts a signif-
icant advancement over previous state-of-the-art
(SOTA) pre-trained language models (PLMs) due
to the incorporation of two novel techniques. The
first technique is a disentangled attention mech-
anism and the second technique is an enhanced
mask decoder. Together, these techniques make
DeBERTa a highly effective PLM that outper-
forms its predecessors on a wide range of NLP
downstream tasks.

4.3.1 Disentangled Attention
Contrary to BERT, which utilizes a vector repre-
sentation for each word in the input layer by sum-
ming its content and position embeddings, in De-
BERTa, every word is represented by two separate
vectors that encode its content and position indi-
vidually. The attention scores between words are
computed using separate matrices that are disen-
tangled based on the content and relative position
of each word. This design choice is based on the
observation that the attention weight between a
pair of tokens is influenced by both their content
and in tandem their relative positions. This espe-
cially holds paramount importance for the task of
MWP solving as the relative positions of certain
keywords in the problem statements dictate the so-
lution.

To represent a token xi located at a specific posi-
tion i within a given sequence, it employs two dis-

tinct vectors, Hi and Pi|j , which are respectively
the content and relative positional representation
vectors of xi with respect to a token xj at position
j. The inter-token attention weights between xi
and xj can be broken down into four constituent
components,

Aij = ⟨Hi, Pi|j⟩ × ⟨Hj , Pj|i⟩⊤

= HiH
⊤
j︸ ︷︷ ︸

C2C

+HiP
⊤
j|i︸ ︷︷ ︸

C2P

+Pi|jH
⊤
j︸ ︷︷ ︸

P2C

+ Pi|jP
⊤
j|i︸ ︷︷ ︸

P2P
(omitted)

(1)

where, the four disentangled matrix attention
scores represent their contents and positions
as content-to-content (C2C), content-to-position
(C2P), position-to-content (P2C), and position-to-
position (P2P). The P2P portion of (1) is some-
what rendered obsolete since DeBERTa uses rela-
tive positional embedding which is why no useful
information can be extracted from it.

The self-attention mechanism described by
Vaswani et al. (2017) has 3 parameters, Q (Query),
K (Key), and V (Value). The non-contextual em-
bedding that is being contextualized at any point
requests for information from its surrounding to-
kens within the context window and that is repre-
sented by the query token, and the tokens that the
model pays attention to are the key tokens.

Qc = HWcQ ,Kc = HWcK , Vc = HWcV

Qr = PWrQ ,Kr = PWrK

(2)

where, WcQ ∈ Rd×d, WcK ∈ Rd×d, WcV ∈
Rd×d are the projection weight matrices for the
projected content vectors Qc, Kc, Vc respectively.
Similarly, WrQ ∈ Rd×d and WrK ∈ Rd×d play
the role of projection matrices for the projected
relative position vectors Qr and Kr. The metric
to calculate the relative distance between tokens
xi and xj is,

δ(i, j) =





0, if i− j ≤ k

2k − 1, if i− j ≥ k

i− j + k, otherwise
(3)

which implies, δ(i, j) ∈ [0, 2k). Each element
Āij of the attention matrix Ā denotes the atten-
tion score from token xi to the token xj and is
computed using the vectors defined in (2) in the
following manner,

Āij = Qc
iK

c⊤
j︸ ︷︷ ︸

C2C

+Qc
iK

r⊤
δ(i,j)︸ ︷︷ ︸

C2P

+Kc
jQ

r⊤
δ(j,i)︸ ︷︷ ︸

P2C

(4)

The attention score is yielded using the dot-
product of the query and key in the formula to let
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the model have an idea of how similar the key is to
the query. The output of the self-attention mecha-
nism, which is denoted by Houtput ∈ RN×d is,

Houtput = softmax

(
Ā√
3d

)
Vc (5)

The result of the dot-product is normalized by di-
viding with

√
3d to avoid very hard softmax with

small gradients, which is especially required for
training stability in the case of large-scale PLMs
(Vaswani et al., 2017; He et al., 2020).

4.4 Decoder

He et al. (2020) postulates that the premature inte-
gration of absolute positions, which is employed
by BERT (Devlin et al., 2018) in its decoding
phase, could potentially impede the model’s abil-
ity to acquire adequate knowledge of relative po-
sitions. With this as the justification, DeBERTa,
being a model that was pre-trained using MLM
(Masked Language Modeling), uses the absolute
positions of the tokens in the penultimate layer,
right before the softmax layer during the masked
token prediction in its decoding phase. This en-
ables all the Transformer layers in the decoder to
work with the relative positional information with-
out the susceptibility of hampering the learning
process of the model. Since the absolute positions
of the tokens in a sentence highly influence the
nuanced understanding of the sentence’s semantic
and syntactic structure, and extracting information
from only the relative positions isn’t sufficient, the
absolute positions are incorporated in the tail-end
of the pipeline in the case of DeBERTa. This is
why DeBERTa’s decoding module is dubbed an
Enhanced Mask Decoder (EMD) and it demon-
strably outperforms the decoder counterparts of its
predecessor PLMs (He et al., 2020).

4.5 Majority Voting

Since there can be multiple valid equations for
a single MWP, each of the k + 1 predictions
from the decoder, E1, E2 . . . , Ek+1, is simplified
to a reduced normal form using the python pack-
age sympy1. These k + 1 simplified predictions,
E′

1, E
′
2 . . . , E

′
k+1, are then counted and the predic-

tion that is the most frequent or that is yielded the
most number of times is elected as the final an-
swer of the whole solver model. It is to be noted
that this voting mechanism is used only during the

1https://www.sympy.org/en/index.html

testing/validation phases or during inference.

E∗ ← argmax
E′

Votes(E′
i); i = 1, 2, . . . , k + 1

(6)

5 Experiment

5.1 Data Acquisition
We introduce a new large-scale dataset, namely
PARAMAWPS (Paraphrased MAth Word
Problem Solving Repository), consisting of
16,278 single equation MWPs. It is gener-
ated as a by-product of using one of the most
commonly-used English MWP datasets, MAWPS

(Koncel-Kedziorski et al., 2016) which consists
of a total of 2,373 problems, and the paraphraser
model. We save the generated paraphrased vari-
ants of selectively sampled problems of MAWPS

and also manually include inverse versions of the
problems to create our dataset. The dataset con-
tains all the problems from the original MAWPS

dataset as well as paraphrased versions of some
of the more challenging problems within MAWPS,
hence the name, PARAMAWPS. The samples are
manually checked for correctness by 3 under-
graduate students. By generating variations of
some of the more difficult problems, we intend to
increase familiarity of challenging concepts found
within those problems to any model trained over
this data, as well as more thoroughly challenge
existing models trained on datasets that do not
provide said complexity at an equal or higher
density. We generate k problems from each seed
problem in the dataset, adding up to a total of
k + 1 problems, where 5 ≤ k ≤ 16. Each of the
k generated problems will be a variation on the
original that will feature several changes to the
problem text. We generate 4 types of variations of
each seed problem (see Table-7 in Appendix-A).

• Changed phrase order — Variations with
the order of the phrases being changed facili-
tate a break from the standard problem state-
ment template where quantities are generally
given before the question formulation. Hav-
ing a changed ordering of phrases makes apri-
ori question formulations more common.

• Changed object and entity names — Ob-
ject and entity names are altered with inter-
changeable alternatives (names, synonyms)
in problem variations to prevent fixation on
elements of the problem mostly agnostic to
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the process of solving the problem. It also
serves to prevent an increase in density for
similar terms that originate from the seed
problem yielding good problem samples for
language models (Lee et al., 2021).

• Added unrelated information — Some vari-
ations contain an extra phrase or quantity, or
similar additions that are in excess of the in-
formation required to solve a problem and do
not affect the original problem formulation in
any meaningful way. These adversarial vari-
ations serve to obfuscate and familiarize the
models with only the necessary information,
enhancing deductive abilities (Kumar et al.,
2021).

• Inverted question — Some variations will
take a previously known quantity and turn
it into an unknown quantity while revealing
the previous unknown quantity of the prob-
lem. This, in many cases, alters the question
drastically, changing the needed calculations
and equations, while keeping a roughly sim-
ilar question body to the seed problem. Liu
et al. (2021) used such problem samples in
their work.

5.1.1 Seed Problems
Many of the seed problems used to generate vari-
ations from MAWPS pose sufficient difficulty to
even SOTA MWP solvers and often contain nu-
meric information embedded within the statement
itself. An example is the following problem,

"Mary, Sam, Keith, and Alyssa each
have 6 marbles. How many marbles do
they have in all?"

This problem yields the equation "x = 4× 6", de-
spite the quantity 4 not being mentioned anywhere
in the statement. This quantity had to be inferred
from the other parts of the statement itself, namely,
the 4 entities referred to in the statement; Mary,
Sam, Keith, and Alyssa. Another such problem is,

"When the price of diesel rose by 10%,
a user reduced his diesel consumption
by the same amount. How much would
his diesel bill change in terms of percent-
age?"

which yields the complex equation of "x = (1.0−
((1.0+(10.0×0.01))× (1.0− (10.0×0.01))))×
100.0". This problem, although seemingly simple

on the surface in terms of quantities described, has
several calculations dictated through the problem
statement, some of which require additional real-
world anecdotal knowledge, such as the conver-
sion of percentages. Another problem with similar
inferences of a more complex nature is,

"Lauren wants to mix 5 liters of 7% milk
with skim-milk (0% fat) to produce a
mixture of 2.9787% milk. How much
skim-milk should Lauren add?"

yielding the equation "x = (7.0 × 0.01) ×
5.0/(2.9787 × 0.01) − 5.0", containing similar
conversions of percentages, as well as additional
knowledge of types of mixtures. Here, 7% milk
is mixed with pure milk, or 100% milk. Yet the
only indication that the milk is of 100% purity is
nowhere to be seen in a direct capacity in the prob-
lem, but rather in a roundabout way - by referring
to the amount of fat (0%) rather than the purity
of the milk. Models have to infer a vast amount
of real-world contextual knowledge to be able
to solve such problems. Problems with second-
degree unknown quantities are also present as seed
problems. For example, the problem

"The Hudson River flows at a rate of 3
miles per hour. A patrol boat travels 60
miles upriver and returns in a total time
of 9 hours. What is the speed of the boat
in still water?"

that yields the equation "(60.0/(x − 3.0)) +
(60.0/(3.0+x)) = 9.0", which is a quadratic equa-
tion. The problem itself deals with calculations of
speed, which requires knowledge of how speed is
calculated given certain quantities, as well as the
effect of certain elements in the problem scenario
on speed.

We resort to this data generation approach due
to the lack of large-scale, diverse, single-equation
English MWP datasets. Other commonly-used
benchmark datasets, MATH23K (Wang et al.,
2017) and APE210K (Liang et al., 2021) consist
of math problems written in Chinese Mandarin.
We also aim to diversify the samples in MAWPS

to enable better training for MWP solvers (Schick
and Schütze, 2021; Kumar et al., 2022). SVAMP,
created by Patel et al. (2021) consists of chal-
lenging versions of problems and is considered a
challenge set for testing the robustness of MWP
solvers. We use the original version of MAWPS

and SVAMP along with our dataset PARAMAWPS
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for conducting our experiments. A comparative
summary of the statistics of the datasets used is
shown in Table-2 and their operator count distribu-
tions are portrayed in Figure-2.

Properties SVAMP MAWPS PARAMAWPS
# of problems 1,000 2,373 16,278

# of unique templates 27 159 215
Avg. # of operators 1.236 1.606 1.68

Avg. # of quantities per prob. 2.81 2.57 2.54
Avg. # of quantities per equ. 2.23 2.59 2.67
# of problems with constants 0 185 3313

Table 2: Comparison of the datasets used.

5.2 Model Implementation Details and
Training

5.2.1 Baseline Models
We implement the DeBERTa model using Mi-
crosoft’s deberta-base that is publicly available in
Hugging Face2. The other baseline MWP solver
models are implementations already available in
the open-source MWPToolkit3 developed by Lan
et al. (2022). We use an extensive set of base-
line models, Transformer (Vaswani et al., 2017),
DNS (Wang et al., 2017), MathEN (Wang et al.,
2018a), GroupATT (Li et al., 2019), RNNEncDec
(Sutskever et al., 2014), RNNVAE (Su et al.,
2018), BERT (Devlin et al., 2018), RoBERTa (Liu
et al., 2019b), and compare them with the perfor-
mance of the DeBERTa model. See Appendix-A
for more training process details.

5.3 Result Analysis

Methods MAWPS†

(%)
SVAMP

(%)
PARA-

MAWPS†

(%)

DNS 59.5 22.1 71.2
Math-EN 69.2 21.8 71.6
GROUP-ATT 76.1 19.2 70.8
RNNEncDec 79.4 25.4 73.6
RNNVAE 79.8 25.9 72.8
Transformer 85.6 20.7 64.6
BERT 86.9 24.8 72.1
RoBERTa 88.4 30.3 72.5
DeBERTa 90.7 63.5 74.1
DeBERTaPM + VM 91.0 - -
DeBERTaVM - - 79.1

Table 3: Value accuracy of the DeBERTa model and
various baseline models. † denotes 5-fold cross val-
idation. PM stands for Paraphrasing Model and VM
stands for Voting Mechanism.

Table-3 shows the performance comparison of
the DeBERTa model and the baseline models men-
tioned in Section-5.2.1. The DeBERTa model cou-
pled with the Paraphrasing model and the Voting

2https://huggingface.co/microsoft/deberta-base
3https://github.com/LYH-YF/MWPToolkit/

Mechanism outperforms all the baseline models
in the MAWPS (Koncel-Kedziorski et al., 2016)
dataset with an accuracy of 91.0%. The Paraphras-
ing Model and the Voting Mechanism contributed
to a 0.3% increase in accuracy. The vanilla De-
BERTa model also outperforms the baseline mod-
els in our PARAMAWPS dataset by boasting an
accuracy of 74.1%. With the voting mechanism
at the tail-end of the pipeline, we are able to yield
an improvement of the accuracy by 5.04% mak-
ing the accuracy 79.1%. We test the robustness
of the vanilla DeBERTa model on the SVAMP

(Patel et al., 2021) challenge dataset and get an
accuracy of 63.5% which is quite higher than
that of the other baseline models. The model
still lags a mere 1 ± 0.20% behind the current
SOTA model on MAWPS, which is the ROBERTA-
DEDUCTREASONER model by Jie et al. (2022)
(92.0 ± 0.20%) but supersedes its accuracy of
47.3± 0.20% on the SVAMP dataset.

The superiority of the model’s accuracy in
PARAMAWPS over SVAMP, despite the demon-
strably greater difficulty of the MWP samples in
PARAMAWPS, indicates that training a language
model on a more diverse set of linguistically varied
problem statements leads to a better quality math-
ematical reasoning ability after the training phase.

5.4 Ablation Study

To gain insights into the individual contributions
of the Paraphrasing Model and Voting Mechanism
in conjunction with the DeBERTa model, we per-
form ablation studies. Table-4 shows the effect of

# of variants MAWPS† (%)
w/ k = 0 90.7
w/ k = 5 90.4
w/ k = 10 90.8
w/ k = 15 91.0

Table 4: Value accuracy with different numbers of lin-
guistic variants of the problem samples. † denotes 5-
fold cross validation.

Voting Mechanism PARAMAWPS† (%)
w/o VM 72.9, 74.1, 76.5, 72.1, 74.6
w/ VM 78.5, 77.8, 82.4, 77.2, 79.5

Table 5: Effect of Majority Voting on Value accuracy
across all 5 folds. † denotes 5-fold cross validation.

increasing the number of generated problem vari-
ants to infer the solution expressions of the prob-
lem samples in the MAWPS dataset’s test set. Al-
though there is a slight decrease in the accuracy for
k = 5, we see a minuscule increase in accuracy for
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k = 10 and k = 15. In Table-5 we see the impact
of the Voting Mechanism which contributed to a
5.4% increase on average in the accuracy of the
DeBERTa model on the PARAMAWPS dataset.

5.5 MWP Task Performance Analysis of
Large Language Models

To test out the assertion made in other studies
(Huang and Chang, 2022; Ho et al., 2022) about
the incompetence of LLMs in complex reasoning
tasks compared to fine-tuned smaller models, we
use the GPT-J model and some of the presently
used GPT-3 models by OpenAI to perform the
task of MWP solving. We use the original ver-
sion of MAWPS (Koncel-Kedziorski et al., 2016)
along with our dataset PARAMAWPS for testing
the mathematical reasoning of these models.

Models MAWPS†

(%)
PARA-

MAWPS†

(%)

GPT-J (6B) 9.9 5.9
text-babbage-001 (6.7B) 2.76 3.21
text-curie-001 (13B) 4.09 4.20
gpt-3.5-turbo (175B) 80.3 73.0

Table 6: Value accuracy of the LLMs in a zero-shot
setup testing. † denotes evaluation on the whole
dataset.

One of the most capable models in the GPT-3.5 se-
ries of models is text-davinci-003, with 175 billion
parameters and the ability to follow instructions
consistently and produce lengthy outputs. How-
ever, the most capable and up-to-date model ac-
cording to OpenAI is gpt-3.5-turbo, with 175 bil-
lion parameters, which is primarily optimized for
chat completions but can be tweaked to follow
more specific instructions similar to text-davinci-
003. While all models used are instructed to out-
put in a specific format — ‘Answer: [ANS]’ with
just the numerical value in the place of ‘[ANS]’,
the ability to do so consistently deteriorated with
the models with relatively fewer parameters. Out
of the base GPT-3 models, the 13 billion parame-
ters text-curie-001 can output in the given format
relatively consistently, text-babbage-001 with 6.7
billion parameters can occasionally produce the
output in the correct format, but tries to generate
full sentences more often than not, whereas the
350 million parameters text-ada-001 can barely
generate a single output in the correct format,
choosing to generate full sentences almost all of
the time. Models tend to try to ‘work through’ the
problem in text form rather than just generating
the output, although with gpt-3.5-turbo this can

be mostly mitigated by using very specific instruc-
tions for the prompt. The results in Table-6 and
Table-3 support the current weakness of LLMs
in mathematical reasoning tasks and the suitabil-
ity of fine-tuning smaller models. It indicates the
improvement in performance for a well-reasoning,
but comparatively small model when it has the op-
tion to democratically choose from a substantial
number of solution guesses.

6 Conclusion and Future Work
In this paper, we propose the idea of an MWP solv-
ing framework that utilizes the paraphrased lin-
guistic variations of problem texts to train a De-
BERTa model that generates candidate solution
expressions and finalizes the predicted math ex-
pression by employing majority voting on a set
of simplified candidate expressions. Our find-
ings demonstrate that incorporating linguistic vari-
ants of problem statements during training and
utilizing a voting mechanism for candidate pre-
dictions enhance the model’s mathematical rea-
soning and overall robustness. We also intro-
duce a large-scale, diverse, and challenging single-
equation MWP dataset, PARAMAWPS, consisting
of paraphrased, inverse, and adversarial variants of
selectively sampled datapoints from MAWPS, as a
formidable evaluation test-bed and a proper bench-
mark for training MWP solver models. We wish to
experiment further with harder problem text vari-
ations (e.g. grammatical errors) and conduct a
thorough error analysis of the models for identify-
ing their lapses in mathematical reasoning and dis-
covering more scopes of improvement. We also
aim to expand our research to encompass the in-
tricate realms of multi-equation, multi-step deduc-
tion, and domain-knowledge problems. We hope
our approach and findings will pave the way to
more scholarly works on the vistas of AGI and in
tandem be deemed a noteworthy and meaningful
contribution to this domain of research.

7 Limitations

There are still some avenues of improvement in
our work. The temporal overhead due to the prob-
lem variant generation by the paraphraser model
may make our proposed architecture unsuitable
for real-world applications even though it takes
merely 10 to 12 seconds to generate k = 5 vari-
ants for a single sample. Another limitation of
our work is the absence of a proper tie-breaking
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strategy in our Majority Voting module. Further-
more, we need to introduce a system of weighted
votes (e.g. semantic similarity scores as weights)
so that the votes of wrongly predicted equations
don’t trump that of correctly generated predictions.
We also plan to incorporate and experiment with
the Tree-based decoder (Xie and Sun, 2019) in our
proposed pipeline.
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A Appendix

A.1 Dataset Split

We use an 80:10:10 train-validation-test split for
our PARAMAWPS dataset. For MAWPS, we use
5-fold cross-validation using the splits provided by
its authors Koncel-Kedziorski et al. (2016). The
SVAMP dataset is a challenge set and all 1,000 of
its samples constitute the test set while the model
itself is trained on a combination of the MAWPS

and ASDIV-A (Miao et al., 2021) dataset.

A.2 Performance Evaluation and Metric

We use Negative log-likelihood loss (NLLLoss)
for training all the models. For the baseline mod-
els, MWPToolkit uses two metrics of accuracy,
Equation Accuracy and Value Accuracy. Equation
accuracy measures the correctness of the gener-
ated equation. Value accuracy measures the cor-
rectness of the value yielded from evaluating the
generated equation. This metric takes into con-
sideration the fact that models may generate equa-
tions that have a different template than the respec-
tive ground truth equations but nevertheless yield
the correct answers to the problem statements.

A.3 Hyperparameters

In the DeBERTa model, we use embedding dimen-
sion d = 768, FFNsize = 1024, number of de-
coder layers N = 4, number of attention heads
h = 16, dropout ratio Pdrop = 0.5, learning rate
lr = 10−5, batch size b = 8, and Epochs = 200.
The hyperparameters for the other baseline models
are as set on the respective MWPToolkit implemen-
tations.

A.4 Optimizer

We use Adam (Kingma and Ba, 2014) with a
StepLR learning rate scheduler as our optimizer.
The learning rate lr is set according to Vaswani
et al. (2017), lr = d−0.5 · min(n−0.5, n · w−1.5)
where, d is the embedding dimension, n is the step
number and w is the number of warm-up steps.
Here, warm-up steps w simply insinuate that the
learning rate rises linearly for the initial w training
steps. We set β1 = 0.9, β2 = 0.999, ϵ = 10−8

and w = 1500 for the models’ Adam optimizer.
For the StepLR scheduler, we set γ = 0.5 and
step_size = 5.
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A.5 Hardware and Schedule
We have used the NVIDIA RTX 3090 GPU
equipped with 25GB of VRAM and Intel Core i9
Processor for conducting our experiments. The
DeBERTa model took around 18 hours to fully
train on the PARAMAWPS dataset with 5-fold
cross-validation and 200 epochs per fold, which
was the highest expense of time among the lot.
The other baseline models took approximately 7 to
9 hours on the PARAMAWPS dataset and around
5 hours on MAWPS and SVAMP. The greater the
number of parameters that a model possesses the
more time it takes to fully complete the 5-fold
training process. As DeBERTa has an astounding
134 million parameters (He et al., 2020), it takes
the longest time to train.
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Figure 1: Overview of our proposed architecture.
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Variation
Type Original Variation

Changed
phrase order

There were originally 20817 houses in Lincoln
County. During a housing boom, developers built
97741. How many houses are there now in Lin-
coln County?

How many houses are there in Lincoln County
now, after developers built an additional 97741
during a housing boom, when there were origi-
nally 20817 houses?

Changed
object and

entity names

While playing a trivia game, Mike answered 3
questions correct in the first half and 5 questions
correct in the second half. If each question was
worth 3 points, what was his final score?

While playing a game of Hangman, Emily guessed
3 letters correctly in the first half and 5 letters cor-
rectly in the second half. If each letter was worth
3 points, what was her final score?

Added
unrelated

information

A carpenter bought a piece of wood that was 8.9
centimeters long. Then he sawed 2.3 centimeters
off the end. How long is the piece of wood now?

A carpenter bought a piece of wood that was 8.9
centimeters long. Then he sawed 2.3 centimeters
off the end and sanded the wood for 20 minutes.
How long is the piece of wood now?

Inverted
question

Mary bought 3 pizzas for $8 each. What was the
total amount she paid for the 3 pizzas?

If Mary paid $24 for 3 pizzas, how much did she
pay for each pizza?

Table 7: Types of Variations with examples. The problems in the Original column are samples taken from the
MAWPS dataset, whereas, the ones in the Variation column are from the PARAMAWPS dataset.

Figure 2: Operator count distributions of PARA-
MAWPS, MAWPS, and SVAMP. We keep the distri-
bution of PARAMAWPS somewhat similar to that of
MAWPS to maintain a proper balance between easy and
difficult problems.
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Zielińska, Anita, 152
Zieba, Maciej, 119

380


	Title page
	Sponsors
	Copyright
	Introduction
	Organizing Committee
	Program Committee
	Table of Contents
	ChatGPT vs Human-authored Text: Insights into Controllable Text Summarization and Sentence Style Transfer
	Multi-Dialectal Representation Learning of Sinitic Phonology
	Prompt-based Zero-shot Text Classification with Conceptual Knowledge
	How do different tokenizers perform on downstream tasks in scriptio continua languages?: A case study in Japanese
	Semantic-Aware Dynamic Retrospective-Prospective Reasoning for Event-Level Video Question Answering
	Jamp: Controlled Japanese Temporal Inference Dataset for Evaluating Generalization Capacity of Language Models
	Constructing Multilingual Code Search Dataset Using Neural Machine Translation
	Multimodal Neural Machine Translation Using Synthetic Images Transformed by Latent Diffusion Model
	Enhancing Ancient Chinese Understanding with Derived Noisy Syntax Trees
	The Turing Quest: Can Transformers Make Good NPCs?
	Making the Most Out of the Limited Context Length: Predictive Power Varies with Clinical Note Type and Note Section
	Intriguing Effect of the Correlation Prior on ICD-9 Code Assignment
	Classical Out-of-Distribution Detection Methods Benchmark in Text Classification Tasks
	Can LMs Store and Retrieve 1-to-N Relational Knowledge?
	Theoretical Linguistics Rivals Embeddings in Language Clustering for Multilingual Named Entity Recognition
	Native Language Prediction from Gaze: a Reproducibility Study
	MedTem2.0: Prompt-based Temporal Classification of Treatment Events from Discharge Summaries
	Sudden Semantic Shifts in Swedish NATO discourse
	Building a Buzzer-quiz Answering System
	Probing for Hyperbole in Pre-Trained Language Models
	Towards Efficient Dialogue Processing in the Emergency Response Domain
	I already said that! Degenerating redundant questions in open-domain dialogue systems.
	Is a Knowledge-based Response Engaging?: An Analysis on Knowledge-Grounded Dialogue with Information Source Annotation
	Choosing What to Mask: More Informed Masking for Multimodal Machine Translation
	Combining Tradition with Modernness: Exploring Event Representations in Vision-and-Language Models for Visual Goal-Step Inference
	Data Selection for Fine-tuning Large Language Models Using Transferred Shapley Values
	Distractor Generation for Fill-in-the-Blank Exercises by Question Type
	Moral Mimicry: Large Language Models Produce Moral Rationalizations Tailored to Political Identity
	LECO: Improving Early Exiting via Learned Exits and Comparison-based Exiting Mechanism
	Authorship Attribution of Late 19th Century Novels using GAN-BERT
	How-to Guides for Specific Audiences: A Corpus and Initial Findings
	When Words Fail, Emojis Prevail: A Novel Architecture for Generating Sarcastic Sentences With Emoji Using Valence Reversal and Semantic Incongruity
	Semantic Accuracy in Natural Language Generation: A Thesis Proposal
	Math Word Problem Solving by Generating Linguistic Variants of Problem Statements

