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Introduction

Welcome to the ACL 2023 Student Research Workshop!

The ACL 2023 Student Research Workshop (SRW) is a forum for student researchers in computational
linguistics and natural language processing. The workshop provides a great opportunity for student par-
ticipants to take part in a mentorship program, present their work and receive valuable feedback from the
international research community.

Following the tradition of the previous student research workshops, we accept three kinds of submis-
sions: long and short research papers as well as thesis proposals. The research paper track is a venue for
students to describe completed work or work-in-progress along with preliminary results. The thesis pro-
posal track is offered for Ph.D. students who have decided on a thesis topic and are interested in getting
feedback on their proposal and ideas about future directions for their work.

Mentoring is at the heart of the SRW. In keeping with previous years, we had a pre-submission mento-
ring program before the submission deadline. A total of 58 papers participated in the pre-submission
mentoring program. This program offered students the opportunity to receive feedback from a mentor to
improve the writing style and presentation of their submissions.

The Student Research Workshop again attracted a very large number of submissions this year. We recei-
ved 145 submissions including 135 research papers (81 long papers and 54 short papers) and 10 thesis
proposals. Out of these, 5 were ACL Findings papers whose authors wished to present their work at the
SRW. A further 9 submissions were desk rejected and 2 submissions were withdrawn by the authors prior
to the completion of the review process. A total of 50 submissions (5 Findings, 2 Thesis Proposals, 28
long papers and 15 short papers) were accepted. 46 of the accepted papers will be presented in person
and/or virtually in the poster sessions of the main conference and 4 will be presented as oral presentations.

We are deeply grateful to our sponsors for providing funds for the travel grants that we make available to
paper authors. We thank our program committee members for their careful reviews of each paper and all
of our mentors for donating their time to provide feedback to our student authors. We are deeply thankful
to our faculty advisors, Ivan Vulic and Lu Wang, and to the ACL 2023 organizing committee for their
advice and support throughout the process. Finally, we thank each and every one of the authors for their
enthusiastic participation!
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ChatGPT vs Human-authored Text: Insights into Controllable Text
Summarization and Sentence Style Transfer

Dongqi Pu and Vera Demberg
Department of Computer Science
Department of Language Science and Technology
Saarland Informatics Campus, Saarland University, Germany
{donggipu,vera}@lst.uni-saarland.de

Abstract

Large-scale language models, like ChatGPT,
have garnered significant media attention and
stunned the public with their remarkable ca-
pacity for generating coherent text from short
natural language prompts. In this paper, we
aim to conduct a systematic inspection of Chat-
GPT’s performance in two controllable gener-
ation tasks, with respect to ChatGPT’s ability
to adapt its output to different target audiences
(expert vs. layman) and writing styles (formal
vs. informal). Additionally, we evaluate the
faithfulness of the generated text, and compare
the model’s performance with human-authored
texts. Our findings indicate that the stylistic
variations produced by humans are consider-
ably larger than those demonstrated by Chat-
GPT, and the generated texts diverge from hu-
man samples in several characteristics, such as
the distribution of word types. Moreover, we
observe that ChatGPT sometimes incorporates
factual errors or hallucinations when adapting
the text to suit a specific style.!

1 Introduction

Generative Pre-trained Transformer (GPT; e.g.,
ChatGPT) models, which produce results from
given conditional input prompts, have exhibited
exceptional performance on various natural lan-
guage understanding (NLU) and generation (NLG)
tasks (Jiao et al., 2023; Wang et al., 2023a; Bang
et al., 2023b; Zhou et al., 2023; Dai et al., 2023).
For instance, in NLU tasks, Qin et al. (2023) have
proved that ChatGPT is comparable to state-of-
the-art fine-tuning models in language reasoning.
In NLG tasks, Yang et al. (2023a) assessed four
widely used benchmark datasets, such as QMSum,
and confirmed ChatGPT’s comparability to tradi-
tional fine-tuning methods. Peng et al. (2023) fur-
ther investigated effective strategies for machine
translation using ChatGPT and highlight its strong

'The project information of our study can be accessed at
https://dongqi.me/projects/ChatGPT_vs_Human.
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translation ability. Additionally, ChatGPT can even
facilitate multi-modal tasks (Yang et al., 2023b;
Shen et al., 2023), as well as the application of data
augmentation (Dai et al., 2023). Although the stud-
ies mentioned above have demonstrated notable
performance of ChatGPT across different domains,
there remains a dearth of qualitative and quantita-
tive evaluation of the texts generated by ChatGPT.
Such an evaluation is vital to uncover the behav-
ioral differences, potential limitations, and chal-
lenges associated with ChatGPT-generated texts,
especially when compared with human-authored
texts.

Controllable text generation seems to be a task
in which ChatGPT-like models could potentially
excel. This task is driven by the desire to tailor
text for a diverse array of target users (e.g., experts
and laypersons) (Kumar et al., 2022; Cao et al.,
2020; Luo et al., 2022), and thereby enhancing
the accessibility of textual information. In con-
trollable text generation, one delineates a partic-
ular set of parameters or provides a prompt that
defines the intended target style. This area has re-
cently received growing interest from researchers
in the field (Hu and Li, 2021; Li et al., 2022; Zhang
et al., 2022; Dathathri et al., 2019a; August et al.,
2022; Carlsson et al., 2022; Gu et al., 2022; Li
et al., 2022; Keskar et al., 2019; Dathathri et al.,
2019b). The traditional natural language genera-
tion task (Pu and Sima’an, 2022), which focuses
solely on adequately responding with respect to a
given input, can be regarded as a special case of
controllable natural language generation, wherein
the control setting remains unconditioned. Consid-
ering ChatGPT as the most recent language gen-
eration capability, the assessment of its language
generation proficiency, specifically in the realm of
controllable language generation, remains largely
uncharted. Therefore, our study delves into two
distinct applications of ChatGPT, namely control-
lable summary generation and sentence style trans-

Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics - Student Research Workshop, pages 1-18
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fer. In the former, we examine ChatGPT’s ability
to generate summaries that cater to two distinct
readerships, namely experts and non-experts, for
a given academic literature. Concerning sentence
style transfer, we investigate ChatGPT’s capability
to generate both formal and informal sentences for
the task of sentence formality.

The objective of this study is to tackle the
research question: In relation to the human-
produced text, to what extent does ChatGPT-
generated content demonstrate significant diver-
gence from human behavior and the potential
susceptibility to inaccuracies? Our primary con-
tributions are enumerated below:

* To the best of our knowledge, we are the first

to utilize ChatGPT to evaluate its effective-
ness in controllable text generation.

* Our findings indicate that there are substan-
tial performance disparities between the text
generated by ChatGPT and that generated by
humans.

* Our study exposes and quantifies the existence
of numerous hard-to-spot errors in the text
generated by ChatGPT, which have a tendency
to amplify with successive transformations of
the text.

2 Related Work

2.1 Controllable Text Summarization

Controllable text summarization is a rapidly evolv-
ing field that aims to produce summaries with spe-
cific characteristics, such as length, style, or con-
tent (Shen et al., 2022b; Chan et al., 2021; Sarkhel
et al., 2020; Shen et al., 2022a; Goldsack et al.,
2022; Keskar et al., 2019; Dathathri et al., 2019b;
He et al., 2022; Earle et al., 2021; Liu et al., 2022b).
A range of approaches has been proposed for this
task, including the use of sequence-to-sequence
models such as the Transformer model (Vaswani
et al., 2017). These models have demonstrated
promising progress in producing high-quality sum-
maries that can be modulated according to specific
requirements (Fan et al., 2018; Wu et al., 2021;
Amplayo et al., 2021). Additionally, other tech-
niques also have been proposed to enhance the
controllability of the summaries, such as condi-
tional generation (He et al., 2022; Luo et al., 2022),
prompt-based summarization (Yang et al., 2022;
Liu et al., 2022a; Zhang and Song, 2022), and
multi-task learning (Cui and Hu, 2021; Gu et al.,
2022).

2.2 Text Style Transfer

Text style transfer is a task that involves trans-
forming an input sentence into a desired style
while retaining its style-independent semantics (Jin
et al., 2022; Zhu et al., 2021; Dai et al., 2019; Li
et al., 2020; Babakov et al., 2022; Mir et al., 2019;
Ramesh Kashyap et al., 2022; Tokpo and Calders,
2022). To achieve this, prior research has exam-
ined sequence-to-sequence learning strategies that
utilize parallel corpora with paired source/target
sentences in different styles (Cheng et al., 2020;
Hu et al., 2021; Nouri, 2022). Owing to the consid-
erable demand for human resources and material
investments in data labeling, parallel data across
diverse styles are scarce. This has led to an in-
creased interest in exploring more pragmatic situa-
tions where only non-parallel stylized corpora are
accessible (Malmi et al., 2020; Reif et al., 2022).

2.3 ChatGPT

ChatGPT? is a large language model (LLM), which
is built upon the innovations and improvements
of its predecessors, such as GPT-33. In terms of
training strategies, ChatGPT employs instruction
learning and reinforcement learning from human
feedback (RLHF; Ouyang et al., 2022) to enhance
its overall performance and adaptability.

Upon its emergence, ChatGPT has garnered con-
siderable attention from researchers, who have un-
dertaken initial studies into the model. Scholars
such as Baidoo-Anu and Owusu Ansah (2023);
Rudolph et al. (2023); West (2023); Sobania et al.
(2023); Gilson et al. (2023); Lai et al. (2023); Wang
et al. (2023b) have explored the notable strengths
of ChatGPT from the fields of education, science,
programming, healthcare, and text generation, re-
spectively. However, Bang et al. (2023a) discov-
ered that ChatGPT suffers from hallucination is-
sues in the context of logical reasoning. Due to its
immense and inaccessible training corpus and pa-
rameters, and the inability to access external knowl-
edge for reliable sources of support, it is imperative
to question whether ChatGPT demonstrates the
same hallucination issue as other LLMs when per-
forming sentence generation. Based on these clues,
we firmly assert that in-depth analysis of the text
generated by ChatGPT and its behavioral patterns
are both significant and valuable, and can provide
meaningful insights to the readers of this paper.

Zhttps://openai.com/blog/chatgpt
3https://openai.com/research/instruction-following



3 Study on Controllable Summarization

3.1 Prompt Formulation

In this section, our main objective is to test the
zero-shot performance of ChatGPT on controllable
summarization, with the goal to generate sum-
maries for laymen vs. experts. To this end, we
constructed several prompts as natural language
instructions for ChatGPT. The prompts we tested
include for the layman style: Please give me a
layman / simple / simplified and understandable
/ easy-to-comprehend / straightforward / general
audience summary of X, where X was replaced by
the source text that should be summarized. Sim-
ilarly, for the expert summary, we experimented
with the prompts: Please give me an expert / a
technical / comprehensive and detailed / difficult-
to-comprehend / in-depth / complicated summary
of X.

3.2 Experimental Setup

For all experiments, we used ChatGPT gpr-3.5-
turbo, which was, at the time of experimentation,
the best-performing publicly accessible version pro-
vided by OpenAl. For the hyper-parameter setting,
we set temperature = 0, top p = 1, frequency penalty
= 0.2, and presence penalty = 0.2. For summary
generation, we configured the maximum number
of generated tokens to 512. The remaining hyper-
parameters were set to their default values as recom-
mended by OpenAl. It is noteworthy that ChatGPT
has the potential to generate empty responses (i.e.,
empty strings) as the result of network transmis-
sion timeouts or API request overloads. Should
this arise, we adhere to the established practice of
resubmitting the request until ChatGPT provides
non-empty responses.

All of our experiments were conducted on the
version of ChatGPT between 15 Feb 2023 and 30
Apr 2023 by using the OpenAI’s ChatGPT APL*
We should emphasize that to prevent any potential
interference from the prior responses, we cleared
the conversation history each time we submit a new
query to ChatGPT. Unless otherwise specified, we
refrained from engaging in any further conversation
with ChatGPT to modify its responses.

3.3 Dataset

We selected ELIFE (Goldsack et al., 2022) dataset
for our experiments. It contains summaries of aca-

“https://platform.openai.com/overview

demic literature that exhibit varying levels of read-
ability, tailored to suit either expert or non-expert
audiences. By means of this dataset, we can exam-
ine to what extent ChatGPT can regulate the sum-
mary generation process in accordance with the
intended target users, and compare its summaries
to human summaries.

3.4 Metrics

In order to assess automatically whether ChatGPT
summaries substantially differ in terms of their au-
dience design based on the given prompt, we opted
for a set of three automatic readability metrics:
Flesch Reading Ease (FRE; Kincaid et al., 1975),
Coleman-Liau Index (CLI; Coleman and Liau,
1975), and Dale-Chall Readability Score (DCR;
Chall and Dale, 1995).

The Flesch Reading Ease (Kincaid et al., 1975)
is a metric that gauges the comprehensibility of a
given text. This index relies on the average num-
ber of syllables per word and the average num-
ber of words per sentence. A higher score signi-
fies an easier-to-understand text. Additionally, the
Coleman-Liau Index (Coleman and Liau, 1975)
is a measure of the text’s difficulty level, which
considers the average number of characters per sen-
tence and the average number of sentences per 100
words. A higher score indicates a more challenging
text. The Dale-Chall Readability Score (Chall and
Dale, 1995) is computed by comparing the number
of complex words in the text with a list of common
words. A higher score denotes a more challenging
text.

We also employed Rouge scores (Lin, 2004) to
evaluate the performance of ChatGPT in the task of
text summarization, with the aim of comparing its
efficacy against the state-of-the-art model. In order
to assess the extent to which the summaries re-use
word sequences from the original text, we further-
more evaluated N-gram novelty (See et al., 2017;
Gehrmann et al., 2019; Pu et al., 2022). Finally,
we quantified inconsistency based on factual con-
sistency checking metric SummaC (Laban et al.,
2022), as well as hallucination checking metric
(Cao et al., 2022; Fischer et al., 2021). SummaC
(Laban et al., 2022) uses sentence compression
and summarization techniques to extract important
information and improve the detection of inconsis-
tencies in NLI models by segmenting documents
and aggregating scores. Named entity hallucination
(Fischer et al., 2021) flags potential hallucinations



in named entities if they do not match the original
sources. We here used BERT semantic similarity,
rather than exact matching, when computing the
named entities matching.

3.5 Results on Controllable Summarization

3.5.1 Effect of Prompt Formulation

Table 1 illustrates that different prompt versions are
somewhat consistent regarding whether the instruc-
tions asking for layman summaries actually lead
to more readable texts than those asking for expert
summaries, with FRE ranging between scores of
31 and 38 for automatically generated layman sum-
maries, and between 28 and 37 for automatically
generated expert summaries. Conversely, human-
written summaries exhibit very large differences
according to the automatic metrics, with FRE of
53.1 for layman summaries and 22.5 for expert
summaries. Similar effects are observed for the
CLI and DCR measures. This preliminary test was
conducted on a subset of the ELIFE dataset, con-
taining merely 500 random samples; for the rest of
the tests, we proceeded to the entire dataset, select-
ing the prompts asking for “layman” and “expert”
summaries, as responses for these prompts seemed
to align with the right direction wrt. the readability
measures.

Prompt version FRE CLI DCR
layman 37.267 14.82F 11.21F
simple 31.92F 15701 11.54f
simplified and understand. ~ 35.487 15.17F 11.21f
easy-to-comprehend 36.59" 14.931 11.32f
straightforward 31.74" 15587 11.42%
general audience 35.867 14.981 10.96f
“human answer (for layman) 53.06 12.36 8.90
expert 29.897 15.917 11.88T
technical 36.65" 13.761 12.20f
comprehensive and detailed 31.627 1547 11.157
difficult-to-comprehend 28.95" 16.147 11.71%
in-depth 34371 14.931 10.82f
complicated 29.057 1576 11.40f
“human answer (for expert)  22.54 17.65 11.79

Table 1: Reading difficulty on different prompts, tested
on a set of 500 randomly selected items from the dataset.
T indicates statistical significance (p<0.05) against cor-
responding human answers via paired t-test.

3.5.2 Reading Difficulty Control

Table 2 corroborates that the results of the whole
dataset are consistent with the findings from the
smaller sample. We conclude that ChatGPT can

produce summaries with different levels of reading
difficulty to a certain extent based on the provided
prompts. Notably, ChatGPT-generated sentences
for expert-style summaries show greater complex-
ity than those for layman-style summaries. How-
ever, the magnitude of the difference in the reading
difficulty scores between the two types of sum-
maries is considerably smaller than that observed
in human-written summaries.

Candidate FRE CLI DCR
Human Layman 5242 1246 8.93
Human Expert 2320 17.62 11.78

ChatGPT Layman 37.387% 14.787% 11.177¢
ChatGPT Expert 30.381% 15.82ff 11.85'%

Table 2: Reading difficulty scores by automatic metrics;
t and ¥ indicate statistical significance (p<0.05) against
same-style human answers, and opposite-style ChatGPT
answers via paired t-test, respectively.

3.5.3 Comparison to Previous SOTA Model

We also compared summaries generated by Chat-
GPT to a previous state-of-the-art (SOTA) neural
fine-tuned summarization model (Pu et al., 2023).
On the same test split, the summaries produced by
ChatGPT reached Rouge-1=25.53, Rouge-2=5.48,
Rouge-L.=13.30 under unsupervised learning, and
Rouge-1=47.88, Rouge-2=13.75, Rouge-L=42.44
in few-shot learning use the training samples from
the same subset of Section 3.5.1, while the model
by Pu et al. (2023) reached Rouge-1=48.70, Rouge-
2=14.84, and Rouge-L=46.13.

3.5.4 Disparities in Summarization Behavior

We next examined whether ChatGPT and Humans
are consistent with each other regarding the read-
ability of summarization with respect to different
items — it could be possible, that some texts simply
lead to less readable summaries than others. How-
ever, we discovered that Pearson correlations of
FRE scores for summaries by humans and Chat-
GPT were only 0.31 for expert summaries, and 0.2
for layman summaries. (Scores were similarly low
for the CLI and DCR metrics.) In addition, the sta-
tistical significance test elucidates the noteworthy
divergence between the distinctive response styles
produced by ChatGPT and the analogous styles of
human-generated answers.

Following this, we contrasted the n-gram novelty
of human vs. ChatGPT summaries wrt. the original
texts. Figure 1 reveals that a significantly higher



number of novel 4-grams are present in human-
written summaries, particularly those aimed at lay-
men. This suggests that ChatGPT summaries are
slightly more extractive compared to human sum-
maries.
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Figure 1: Comparison of abstractiveness between Chat-
GPT and human-generated summaries

3.5.5 Inconsistencies and Hallucinations

Given that ChatGPT has previously been reported
to generate misinformation, we sought to evalu-
ate its risk of hallucinating on our specific task.
Figure 2 demonstrates that the SummaC consis-
tency scores are lower for ChatGPT-generated sum-
maries than for human-written summaries. A cor-
responding phenomenon is verified in the halluci-
nation assessment. Precision scores provided in
Table 3 demonstrates the extent to which ChatGPT-
generated text contains named entities that are ab-
sent in the source text. A lower precision score
suggests that the generated text has more named
entities that lack support in the source text. The re-
call scores reflect the ability of ChatGPT to capture
named entities from the source text. A lower recall
score implies that ChatGPT has missed a consid-
erable number of named entities from the source
text. F1 score represents the harmonic mean of the
precision and recall scores. By examining Table
3, our findings demonstrate that ChatGPT gener-
ates a greater number of named entities that are not
present in the source text after undergoing multiple
iterations of text conversions and modification. For
example, in an expert summary, ChatGPT misin-
terpreted the meaning of “Geocode” as “regional
regulations”.

3.6 Intermediary Discussion

Our experiments show that ChatGPT-generated
summaries do not adapt as strongly to the target
audience as human-authored summaries. One pos-

SummaCConv
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Figure 2: Summary consistency detection. L stands for
layman, E for expert.

Candidate Precision Recall Fl
Human Layman 0.78 0.63 0.70
Human Expert 0.92 0.61 0.73
ChatGPT Layman  0.75% 0477 0.58f
ChatGPT Expert ~ 0.90F 049" 0.63f
ChatGPT L2E2L  0.74%  0.391F 0.51f%
ChatGPT E2L2E  0.88F  0.47t 0.62f*

Table 3: Named entity hallucination on Elife dataset. f
and ¥ indicate statistical significance (p<0.05) against
same-style human answers, and opposite-style ChatGPT
answers via paired t-test, respectively. L stands for
layman, E for expert.

sible reason could be that ChatGPT, given the zero-
shot setting, had no way to “know’” how strongly
the texts should be adapted to the target style. Fur-
thermore, we identified evidence for potential hal-
lucinations generated during summarization. We,
therefore, carried out two post-hoc experiments:
(1) We modified the prompt to include an example
from the dataset, so ChatGPT would have a chance
to know the expected level of text adaptation. (2)
We subjected the resulting summaries to several
re-writing steps and test whether this further inten-
sifies the occurrence of hallucinations.

3.6.1 Follow-up Experiment: Example
Inclusion in Prompt

We experimented with prompts that also include
a human summary example. Unlike the previous
few-shot learning experiment, we do not adjust the
parameters of the ChatGPT, but just let the model
perform unsupervised reasoning through the con-
tents of the prompt. We observe (see Appendix
Table 7) that when guided by a human example
from the dataset, the summaries generated by Chat-
GPT indeed tend to be more aligned with human



performance, particularly on the Flesch Reading
Ease metric (49.23 for layman, 28.88 for expert
summaries). However, no significant changes are
detected in other metrics. The degree of control
over the summarization style has increased, yet it
remains inferior to human capabilities.

3.6.2 Follow-up Experiment: Repeated
Re-writing

Summaries are further re-written based on the
prompt Please give me a layman/expert style
version of X, where X was the previously gen-
erated summary. Figure 2 and Table 3 display the
performance of ChatGPT after re-writing in the
entries “ChatGPT L2E2L" and “ChatGPT E2L2E”
which stand for the order in which instructions
were given (L stands for layman, and E for expert).
The examinations point out that misinformation
and hallucinations may be further increased during
subsequent rewriting (lower SummacC scores, lower
values in the named entity hallucination metric).

4 Study on Text Formality Transfer

4.1 Prompt Formulation and Experimental
Setup

Our subsequent set of experiments investigates
ChatGPT’s capacity for style transfer concerning
language formality. Our prompt for this task was
formulated as Please give me a formal / an infor-
mal version of X. We utilized the same experimen-
tal setup as for the summarization task; however,
we restricted the maximum number of generated
tokens to 32. We again experimented with vari-
ous prompts, as shown in Table 4 below. Unless
otherwise specified, all experiments used the same
configuration.

4.2 Dataset

We investigated whether ChatGPT can proficiently
execute style transfer on sentences using data from
the GYAFC (Rao and Tetreault, 2018) dataset. The
dataset has two branches, Entertainment & Music
(EM) and Family & Relationships (FR). With the
aid of this dataset, we aim to evaluate ChatGPT’s
ability for sentence style transfer, examine the dif-
ferences in vocabulary selection and syntactic struc-
tures between ChatGPT and human performance,
and identify the limitations of ChatGPT.

4.3 Maetrics

To evaluate the level of formality in the generated
text, we utilized Text Formality Score (Heylighen

and Dewaele, 1999) and MTLD Lexical Diversity
(McCarthy and Jarvis, 2010) metric. The Text For-
mality Score (Heylighen and Dewaele, 1999) is a
metric that quantifies the degree of formality in lan-
guage usage within a text, based on the adherence
to formal linguistic norms. Another measure that
evaluates language formality is the MTLD Lexi-
cal Diversity metric (McCarthy and Jarvis, 2010).
This index measures the diversity and richness of
the vocabulary used in the text, based on the fre-
quency and number of unique words. A higher
MTLD score indicates a greater variety of vocabu-
lary, which typically corresponds to a more formal
language style. We also utilized BLEU (Papineni
et al., 2002) score to draw a comparison between
ChatGPT and SOTA approach. We additionally as-
sessed the distribution of POS tags in the generated
different styles, as well as the distribution of depen-
dency labels’. For quantifying misinformation and
hallucinations, we used DAE and named entity hal-
lucination checking. The DAE algorithm (Goyal
and Durrett, 2020) utilizes dependency arcs to iden-
tify entailment relationships between propositions
and identify inconsistencies in factual information
based on syntactic and semantic structures.

4.4 Results on Formality Control
4.4.1 Effect of Prompt Formulation

Table 4 presents the results for a set of 500 random
samples from the GYAFC dataset. We observe that
the Formality scores are very similar for ChatGPT
formal vs. informal texts. We note however that
the difference in ratings for human-written texts is
also small for this metric. The MTLD metric on
the other hand shows higher values for ChatGPT-
generated formal texts; in fact, the scores are sub-
stantially larger than those of human-written texts,
but differ not much from each other. We therefore
proceed with the prompts using the formulation
formal/informal for the rest of the experiments on
the whole dataset.

4.4.2 Sentence Formality Control

Table 5 offers supplementary evidence from the
full dataset supporting ChatGPT’s capacity to mod-
ify the formality level of sentences. By employing
the Formality indicator (Heylighen and Dewaele,
1999), it is apparent that the generated text tends
to manifest a higher level of formality overall. A
primary factor contributing to this result is the pre-

Shttps://spacy.io/



Prompt version Formality MTLD

informal 51.09  13.227
unprofessional 5120  16.23f
spoken version 51301 14.47f
easygoing 51431 14111
casual 51.00  16.301
laid-back 5127  13.941
“human answer (for informal) ~ 50.76  11.42
formal 52227 31.237
professional 51.96f  31.98f
written 51.62F  29.69f
stately 51.307  34.43f
grandiose 52.851  30.71f
majestic 52.23"  33.49%
“human answer (for formal) ~ 53.92 1499

Table 4: Text formality on different prompts, tested on
a set of 500 randomly selected items from the dataset. T
indicates statistical significance (p<0.05) against corre-
sponding human answers via paired t-test.

disposition of ChatGPT’s training corpus towards
written sources, encompassing materials such as
books and news articles, as opposed to spoken lan-
guage corpora (OpenAl, 2023). This perspective is
further corroborated by an examination of the gen-
erated sentence samples. The MTLD metric under-
scores that ChatGPT’s lexical diversity is consider-
ably lower when generating informal sentences, but
shows a marked increase when generating formal
sentences.

Dataset Candidate Formality MTLD
. Human Informal 49 .87 15.20
8 Human Formal 53.57 18.70
< ChatGPT Informal 50.777%  14.60
© ChatGPT Formal  52.06'% 31.68*
E Human Informal 50.11 12.11
%): Human Formal 53.76 15.82
£ ChatGPT Informal 51 02t 12.01%
o ChatGPT Formal ~ 51.987F 29.80f*

Table 5: Text formality scores by automatic metrics;
and * indicate statistical significance (p<0.05) against
same-style human answers, and opposite-style ChatGPT
answers via paired t-test, respectively.

4.4.3 Comparison to Previous SOTA Model

We also find that ChatGPT outperforms the previ-
ous supervised SOTA model (Nouri, 2022) by train-
ing on the same subset at Section 4.4.1 for few-shot
learning, as evident from the higher BLEU score.
Specifically, ChatGPT yields superior scores of

0.711 and 0.697 in the EM and FR branches, as
compared to the SOTA model’s scores of 0.671 and
0.652. However, ChatGPT achieved only 0.07 and
0.06 BLEU scores on the EM and FR branches,
respectively, in the unsupervised setting.

4.4.4 Effect of Example Inclusion in Prompt

We again examined the impact of including an ex-
ample of the dataset into the prompt and find that
this again helps ChatGPT slightly with matching
the dataset style (with details provided in Table 8).
Specifically, the formality score for the informal
style is 50.67, while it climbs to 52.13 for the for-
mal style, with the MTLD score also displaying an
increase from 14.81 for informal texts to 19.22 for
formal texts.

4.4.5 Disparities in Style Transfer Behavior

In terms of controlling the formality of sentence
style, ChatGPT’s performance still exhibits sig-
nificant differences compared to human behavior.
While the by-item correlation is slightly higher
for this dataset than for the summary task (Pear-
son correlation of around 0.4 for formal style and
0.5 for informal style on the Formality metric; 0.3
for MTLD measure), there are interesting dispari-
ties between the distributions of POS tags between
ChatGPT and humans. The examination of statisti-
cal significance further substantiates our antecedent
observation, indicating a substantial disparity be-
tween the different response styles engendered by
the model, as well as between the answers conform-
ing to the same styles exhibited by humans.

Figure 3 illustrates the absolute differences in the
distribution of Part-of-Speech (POS) tags. Based
on this figure, it is evident that ChatGPT employs
a higher frequency of adjectives, adpositions, de-
terminers, and nouns in the generation of formal
sentences when compared to those produced by
human writers. Conversely, in the generation of
informal sentences, ChatGPT tends to utilize more
auxiliary words and punctuation marks. These vari-
ances in word choice between formal and informal
styles, as exemplified by ChatGPT, are indicative
of differences in its selected vocabulary for distinct
stylistic modes compare with humans.

By analyzing the distribution of dependency la-
bels (Appendix Figures 5, 6, 7, 8), it is also clear
that, in comparison to human-authored sentences,
ChatGPT utilizes a greater frequency of adjectival
modifiers, auxiliaries, determiners, objects of the
preposition, and prepositional modifiers for formal



sentences. Contrarily, compounds and dependents
are infrequently employed in the generation of in-
formal sentences by ChatGPT.
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Figure 3: Absolute differences in POS tags distribution
of ChatGPT and human-generated sentences: GYAFC -
EM

4.4.6 Inconsistencies and Hallucinations

In order to assess the risk of introducing erroneous
information when ChatGPT performs sentence
style transformation, we employed DAE (Goyal
and Durrett, 2020) at the sentence level to exam-
ine the factuality after text style transformation,
and compare again the effect of multiple re-writes.
Similar to before, F denotes formal style, I signifies
informal style, and X2X2X (X € {F, I}) represents
multiple rewriting transformations of the text. The
outcomes of our inquiry are depicted in Figure 4,
and Appendix Figure 14. We also again scrutinized
the potential incorporation of hallucinatory infor-
mation regarding named entities in the ChatGPT-
generated text, and the findings are presented in
Appendix Table 9.
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Figure 4: Dependency arc entailment: GYAFC - EM.
Data points>0.95~Accurate. To clarify discrepancies,
cutoff point=0.95.

Upon conducting factuality checking (see Fig-
ure 4, and Appendix Figure 14), it is discovered
that ChatGPT’s performance is inferior to that of
humans in sentence-style rewriting. Interestingly,
with the increase in the number of text conversions
and rewritings, ChatGPT’s tendency to commit fac-
tual errors escalates while the output increasingly
deviates from the original text, compromising the
fidelity of the final result. In a particular instance,
the human-generated formal expression states “She

is a poor vocalist”, whereas the formal rendition
provided by ChatGPT articulates “She does not
possess the ability to sing". This discrepancy rep-
resents a significant semantic alteration. The de-
gree of dependency arc entailment is low in this
case. Similarly, Appendix Table 9 reveals that re-
call scores on the named entity hallucination metric
are lower in ChatGPT sentences than in human sen-
tences.

4.4.7

To explore whether ChatGPT-generated sentences
significantly alter the original semantics of the in-
put text, we conducted a case study by randomly se-
lecting 15 samples from each branch of the GYAFC
dataset. Our findings indicate that ChatGPT poses
a relatively severe risk of modifying the original se-
mantics during sentence style transformation, with
approximately 18% of the samples exhibiting no-
ticeable semantic inconsistencies. The examples
in Table 6 reveal that during the process of sen-
tence style transfer, ChatGPT erroneously modifies
the content words, resulting in significant semantic
alterations.

Qualitative Examples

Formal to Informal

It is such a waste of TV space. (Reference)
Yes, because it’s such a waste of TV space! (Human)
‘What a total waste of TV time! (ChatGPT)
The other boy isn’t that great. (Reference)
The other boy is not that good. (Human)
The other kid’s not so hot. (ChatGPT)
I really enjoy how the composition has the tec... (Reference)
I really like how they do like the whole techn... (Human)
I’'m diggin’ how the techno beat slows down in ... (ChatGPT)
Informal to Formal

Fatboy Slim - Right Here, Right Now Or any oth...  (Reference)
Fatboy Slim is right here and now. He Rocks! (Human)
Fatboy Slim’s "Right Here, Right Now" is an ex... (ChatGPT)
loved them since their first album. (Reference)
I have loved them since their first album. (Human)
I have held a fondness for them since the rele... (ChatGPT)
if u occasionally doing it then u alrady r add... (Reference)
If you occasionally do it, then you are already... (Human)
If you are engaging in the activity on a regul... (ChatGPT)

Table 6: Case study of ChatGPT generated output

Furthermore, our examination of the visualized
dependency tree (see Appendix Figures 11, 12, and
13), which relies primarily on the dependency arc
entailment (DAE) algorithm for fact-checking, re-
veals that the text generated by ChatGPT contains a
higher number of dependency arcs lacking support
from the original text, when compared to human
responses.



5 Conclusion

This paper presents a broad assessment of Chat-
GPT’s proficiency in generating controllable text.
We conducted quantitative and qualitative exami-
nations at the document level (summarization task)
and sentence level (text style transfer). The em-
pirical findings show that ChatGPT outperforms
the previous state-of-the-art models on automatic
metrics, but that there are substantial disparities be-
tween its generated texts and human-written texts.
These disparities are reduced by providing a target
example of the human writing style. Furthermore,
our investigations also confirm the previously re-
ported problems of hallucinations and inaccuracies
in text generated by ChatGPT.

6 Limitations

The primary limitations of the current study pertain
to the selection of prompts and evaluation metrics.
The experimental cost of requesting API responses
from OpenAl to assess ChatGPT’s text genera-
tion abilities imposes significant constraints on our
choice of datasets. Therefore, we have to limit our
experimentation to only two related controllable
text generation datasets. While we have evaluated
ChatGPT’s performance at both the document and
sentence levels, we cannot extrapolate that Chat-
GPT has similar performance for other text genera-
tion datasets. Additionally, the experimental cost
prohibits us from conducting traversal experiments
on the selection of hyperparameters. We relied on
the default configuration recommended by OpenAl,
and we maintain consistency in all hyperparameters
to ensure the fairness of the experiments.

Secondly, although we have studied the impact
of prompt engineering on ChatGPT, the selection of
prompts is mainly affected by human understand-
ing, and the number of potential prompts is infinite.
Hence, we cannot guarantee whether other prompts
that we did not select will yield the same conclu-
sions as our experiment. Furthermore, ChatGPT is
subject to continuous updates and iterations, which
may lead to improved performance, making it diffi-
cult to predict if future versions of ChatGPT will
have similar results to our experiments.

Finally, to select appropriate evaluation metrics,
we have included both domain-related evaluation
metrics (such as reading difficulty and text formal-
ity) and domain-independent evaluation indicators
(such as fact-checking and hallucination detection).
However, we acknowledge that the automatic met-

rics may sometimes not capture all aspects of the
intended construct correctly.

7 Ethics Considerations

All datasets utilized in this study are publicly avail-
able, and we have adhered to ethical considerations
by not introducing any additional information into
ChatGPT’s inputs.
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Candidate FRE CLI DCR

Document: {Original Document}, Layman Summary: { Human Layman Summary}.

Please learn the way of summarization from the previous example, and give me a layman-style summary of X 49.23" 13.261 10.451

Human Answer 52.42 1246 893
‘Document: {Original Document}, Expert Summary: {Human Expert Summary}.

Please learn the way of summarization from the previous example, and give me an expert-style summary of X 28.887 15.92f 11.82

Human Answer 2320 17.62 11.78

Table 7: Reading difficulty of one-shot guidance. T indicates statistical significance (p<0.05) against corresponding
human answers via paired t-test.

Candidate Formality MTLD
Formal: {Formal Sentence}, Informal: {Informal Sentence}.

Please learn the way of formality conversion from the previous example, and give me an informal version of X~ 50.67 14.81

Human Answer 49.87 15.20
‘Informal: {Informal Sentence}, Formal: {Formal Sentence}.
Please learn the way of formality conversion from the previous example, and give me a formal version of X 52.131 19.22
Human Answer 53.57 18.70

Table 8: Text formality of one-shot guidance on GYAFC-FR branch. t indicates statistical significance (p<0.05)
against corresponding human answers via paired t-test.
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Figure 5: Absolute differences in dependency labels distribution of ChatGPT and human-generated formal style
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sentences: GYAFC - EM
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Figure 11: Case study of dependency tree visualization (Reference)

Yes. because it s such a waste of ™v space!
INTJ Scony PRON AUX DET DET NOUN ADP NOUN NOUN

Figure 12: Case study of dependency tree visualization (Human)

det pobj
m m e
What a total waste of \ time!
PRON DET ADJ NOUN ADP NOUN NOUN

Figure 13: Case study of dependency tree visualization (ChatGPT)
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D Appendix: Named Entity Hallucination

Dataset Candidate Precision Recall F1
Human Informal 0.989  0.988 0.988
% Human Formal 0.988  0.989 0.988
Er:) ChatGPT Informal 0.986  0.985 0.986
§ ChatGPT Formal 0.974 0974 0974
© ChatGPT I2F2I 0.982  0.982 0.982
ChatGPT F2I2F 0.974 0.973 0.973
Human Informal 0979  0.987 0.983
2 HumanFormal 0977 0989 0982
&) ChatGPT Informal  0.975 0.974 0974
Lé ChatGPT Formal 0.950 0.952 0.951
S ChatGPT I2F2I 0.970 0.969 0.970
ChatGPT F212F 0.945 0.946 0.945

Table 9: Named entity hallucination - GYAFC
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Abstract

Machine learning techniques have shown their
competence for representing and reasoning in
symbolic systems such as language and phonol-
ogy. In Sinitic Historical Phonology, notable
tasks that could benefit from machine learning
include the comparison of dialects and recon-
struction of proto-languages systems. Moti-
vated by this, this paper provides an approach
for obtaining multi-dialectal representations of
Sinitic syllables, by constructing a knowledge
graph from structured phonological data, then
applying the BoxE technique from knowledge
base learning. We applied unsupervised clus-
tering techniques to the obtained representa-
tions to observe that the representations cap-
ture phonemic contrast from the input dialects.
Furthermore, we trained classifiers to perform
inference of unobserved Middle Chinese labels,
showing the representations’ potential for indi-
cating archaic, proto-language features. The
representations can be used for performing
completion of fragmented Sinitic phonological
knowledge bases, estimating divergences be-
tween different characters, or aiding the explo-
ration and reconstruction of archaic features.

1 Introduction

The evolution of languages in the Sinitic family
created intricate correspondences and divergences
in its dense dialect clusters. Investigating the dy-
namics of this evolution, through comparison and
proto-language reconstruction, is an essential task
to Sinitic Historical phonology. However, it may
be costly for researchers to manually probe through
the groups in search of phonological hints. Hence,
it is desirable to accelerate the process with modern
algorithms, specifically, representation learning.
Graph-based machine learning (Makarov et al.,
2021) have gained increasing attention in recent
years, due to their versatility with data with flexible
structures. Especially, missing link prediction al-
gorithms for knowledge graphs (Wang et al., 2021)
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(Zhu et al., 2022) can uncover a latent structure in
noisy and incomplete knowledge. In the case for
learning phonological representations, using graph-
based learning can allow for more comprehensive
integration of multi-dialectal evidence. Thus, we
propose applying graph-based techniques for multi-
dialectal representation learning.

We construct a knowledge graph from the multi-
dialectal phonological data, by abstracting unique
phonetic components and individual characters into
two kinds of nodes. Then, we connect them with
edges specific to the dialect type wherein the char-
acter is associated with the given component. On
the constructed knowledge graph, we train the
BoxE algorithm (Abboud et al., 2020), a Box Em-
bedding Model for knowledge base completion. Fi-
nally, we evaluate the obtained representations with
unsupervised and supervised clustering, as well as
MLP probes based on Middle-Chinese-derived la-
bels, to show this tool’s value for Sinitic phonolog-
ical investigation.

2 Background on Sinitic Languages

The analysis of Sinitic languages face a few specific
challenges due to unique phonological characteris-
tics. These characteristics define crucial details of
our design.

In Sinitic languages, morphemes are primarily
monosyllabic. Hence, Chinese writing binds one
syllable to each of its glyphs, known as characters.
A syllable in Sinitic can be decomposed into an
initial, a final and a tone. (Shen, 2020) Initials refer
to the consonant-like sounds at the beginning of a
syllable, which include both stops (e.g. /p-/, /b-/)
and fricatives (e.g. /s-/, /[-/). These initials could
be combined with various finals to form syllables.
Finals refer to the vowel-like sounds at the end of a
syllable, which included both simple vowels (e.g. /-
a/, /-i/, /-u/), complex vowels (e.g. /-ai/, /-ao/, /-ei/),
and vowels combined with consonant codas (/-m/,/-
n/,/-y/,/-p/,/-t/,/-K/). Tones refer to the pitch patterns
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associated with syllables in Chinese. Tones could
distinguish between words that were otherwise ho-
mophonous, and they were an important part of the
Chinese phonological system.

Due to the early conception of the Chinese writ-
ing system, syllables from different Sinitic lan-
guages can usually be aligned to each other through
a written form. As this alignment is typically im-
plemented in databases of raw Sinitic data, the
difficulty of cognate identification is drastically
reduced, facilitating analysis. However, the sim-
ple syllable structure introduces large amounts of
homophones, words sharing same pronunciations,
into Sinitic languages. This hinders the use of
the comparative method in reconstructing a Sinitic
proto-language. The existence of a supersegmental
tone feature also complicates a historical analysis
of Sinitic languages.

Orthographic Alignment

V4
Characters: 9%':[

Sinitic Variants:
Shanghai Wu /tSlS3 / / b‘cln)]/
Yongzhou Xiang /tGiB //b€33/

Syllable
Decomposition

Initial
Final
Tone

Monosyllabism

Figure 1: Highlighting key characteristics of Sinitic rele-
vant to our approach. Characters are the central identity
in the multi-dialectal representations. The orthographic
alignment of sub-syllable components form the struc-
ture of data used in this study.

Two factors that motivate the use of a graph-
based method include the uniform structure of
Sinitic syllables and their intimate relationship with
characters. The intuitive syllable decomposition
and the glyph-based alignment inspire viewing the
components contextualized in various dialects as
different "observations" of a single character. Theo-
retically, these observations are derivable from the
reading of the character in the proto-language.

3 Related Work

The practice of computationally-aided proto-
language construction, often associated with cog-
nate identification, has been extensively considered
in the past two decades (Nerbonne et al., 2007). Ex-
amples include (Steiner et al., 2011) which draws
insights from bio-informatics and the classical com-
parative workflow, and (List et al., 2017), which
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compared many methods for cognate identifica-
tion. An relevant insight from the latter paper is
that language-specific methods often outperform
language-general ones, especially for languages
like Sinitic. An epitome of neural methods for
proto-language reconstruction would be (Meloni
et al., 2021), in which Latin is reconstructed from
Romance descendent languages with a encoder-
decoder structure. Though, our approach differs
from their study in many crucial aspects. In Mel-
oni et al. 2021, the reconstruction is supervised,
with the proto-language Latin provided at training
time. But our method targets not only documented
proto-languages like Middle Chinese, but also un-
known, intermediate varieties in the development
from ancient Sinitic to modern dialects, which re-
quires an unsupervised approach. Additionally, in
term of techniques, their use of GRU and attention-
based transducers contrasts with our emphasis on a
graph-based method.

Considering the representation learning of
Sinitic, we found abundant literature on the topic of
speech recognition (Ma et al., 2022), segmentation
and synthesis, which often yield representations
of certain phonological relevance as by-product.
Though, these studies devote heavily to a few ma-
jor languages, specifically Mandarin or Cantonese,
and, since they are rarely claim motivation from
historical phonology, seldom take a multi-lingual
or multi-dialectal approach.

While speech representation learning often serve
the aformentioned purposes, the proposals of using
neural networks to model phonetics and phonology
from either symbolic abstractions or acoustic data
in order to examine theories in these fields are rele-
vant to this study. Unsupervised binary stochastic
autoencoders were explored in (Shain and Elsner,
2019). GAN (Generative Adversarial Networks)
was used in (Begus, 2020). These proposals mod-
eled perception and categorization, in relation to
language acquisation. Most interestingly, repre-
sentation learning has been applied for discover-
ing phonemic tone contours in tonal languages(Li
et al., 2020), of which a great portion are Sinitic
Languages. However, these proposals again rarely
address issues from historical phonology.

Finally, it should be noted that the concept of
transforming porous data in a regular, matrix-like
form to a loose, graph-like form for flexibility in
processing, while essential to the designs of this
paper, is not novel in the literature. Rather, it orig-



inates with the GRAPE framework in (You et al.,
2020). Notably, when the data in question con-
cerns Chinese historical phonology, it coincides
with Johann-Mattis List’s proposals for introduc-
ing network methods into computational linguistics
and Chinese historical phonology. Generally, this
line of work should be considered most relevant to
our study (List, 2018; List et al., 2014; List, 2015).
List (2018) approaches issues spanning character
formation, Middle Chinese annotation, as well as
Old Chinese reconstruction with network methods.
List et al. (2014); List (2015) examines dialect evo-
lution with display graphs, with a focus on the
complex word-borrowing dynamics between the
dialect families. He calls for colleagues to lend
more attention to data-driven, quantitative meth-
ods. Our proposal answers List’s call by bringing
together knowledge graphs with Chinese historical
phonology. Furthermore, the utilization of SOTA
representation learning extends beyond the scope
of the aforementioned work.

4 Method

The graph-based method for representing dialect
data has the benefit of making the model more
flexible, robust, and efficient at using porous, in-
complete data. This is particularly important since
investigations into dialects are often uncoordinated,
resulting in a large amount of partial character en-
tries, where only some columns have pronuncia-
tions while others are missing. It could be argued
that we can use missing data imputation to alleviate
the issue, and continue processing the dialect data
in a matrix form, perhaps with feed-forward neural
networks or denoising autoencoders(Vincent et al.,
2008). However, traditional missing-data imputa-
tion techniques may create fictitious syllables that
violate the phonotactics of that dialect when imput-
ing initials or finals according to the mode of a type.
Conditioning the initials or finals on each other will
cause higher-order dependencies that are hard to
solve. Therefore, by keeping the spaces untouched
and using paired comparisons, the graph formalism
circumnavigates the problem. This formulation
may also allow for auxiliary input features, such as
basic phonological knowledge about the nature of
phonemic contrast, to be injected into the model.
On this graph, we learn the embeddings with the
BoxE algorithm, to be discussed below.
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4.1 Construction of a Multi-Dialectal
Knowledge Graph

Shuangfeng_initial

Figure 2: Partial Illustration of the Phonology Knowl-
edge Graph. The numerals represent the indices repre-
senting the Chinese characters and the glyphs for what
they represent. /33/ is a tone in Chao’s notation. The
other nodes are segments represented in the Interna-
tional Phonetic Alphabet. The text labels for the edges
demonstrate the how edges are categorized according
to both dialect and phone type. Note that it is bi-partite
by nature, as edges can only occur between “phonemic”
nodes and “character” nodes, colored blue and black in
the figure.(This is not provided explicitly)

We expressed the data with a knowledge graph
and trained the representations through an auxiliary
task of completing the multi-dialectal knowledge
graph. With a graph-based technique, the represen-
tations can be more robust to noisy and porous data.
Additionally, the method will be more flexible, al-
lowing for auxiliary input features to be injected.

We construct a graph by leveraging the charac-
ters, as well as individual initials, finals and tones
from various dialects as nodes. (See Figure 2) .For
instance, the fact of character C having an initial I
in dialect D is modeled with an edge from C to I.
The edge has type specific to the dialect D and the
category of the component, which is an initial. This
edge type can be denoted as “D-initial”. Demon-
strated in Fig. 2, C could be character No. 1, when
Iis /t/ and the edge is "Changsha_initial".

After constructing the graph, character-level and
component-level representations are trained simul-
taneously. The knowledge graph algorithm at-
tempts to model the nodes features as well as a
prediction function so that, when given a character
node and a type of link, the corresponding pronun-
ciation node can be predicted with maximum like-
lihood. In this process, the model implicitly gen-



erates hypotheses about character pronunciations
missing or unseen in training, as well as historical
relationships between the syllables.

If there are M characters with readings from
N dialects involved in an experiment, the upper
bound for the number of edge types will be 3/NV.
Assuming that F} 4+ F> + F3 unique initials, finals
and tones could be found within the aggregated
phonological systems of the NV dialects, the upper
bound for number of nodes is M + F; + F5 + Fj.
The graph size scales sub-linearly with the number
of dialects, since as more dialects are considered,
their phonemic inventories will start to overlap and
exhaust.

Following convention in knowledge base re-
search, the graph is presented in Triples of Head-
Relation-Tail format.

4.2 The Box Embedding Model

In pilot tests, We considered various algorithms
from the field of graph representation learning and
knowledge base completion for application. In the
process, it is revealed that few algorithms are in-
herently suitable, as there are many subtle require-
ments in this context:

1. Models designed for knowledge graphs are
more suited to this application than general
graph learning algorithms, since the graph to
be processed is heterogeneous, besides carry-
ing edge type as information.

The model must have strong capacity for mod-
eling multiple unique relations between the
same two nodes. It is very common for one
character to have the same initial across differ-
ent dialects. This rules out many translation-
based models, that, when given different re-
lations, always predict different tail nodes.
Prominent examples of such models include
TransE (Bordes et al., 2013) and RotatE (Sun
etal., 2019).

If the model uses inverse triples as an aug-
mentation technique, then the model should
also be expressive in many-to-one and one-
to-many relations, because one initial or final
will be mapped to numerous characters.

Of the applicable algorithms, interpretability
should be prioritized, since we hope to extract
interpretable phonological knowledge from
the obtained representations. This casts doubt
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on a another large family of knowledge graph
models, namely the bi-linear models, epito-
mized by RESCAL(Nickel et al.) and Dist-
Mult(Yang et al., 2015).

After consideration, we chose BoxE for its ex-
pressiveness and tolerance to many-to-one relation-
ships, due to its Box embedding designs. Empir-
ically, we also demonstrate that the BoxE is rela-
tively optimal for the phonological task through
comparison with RotatE (Sun et al., 2019) and
ComplEx (Trouillon et al., 2016) in Table 4.

Here is a brief description of the BoxE algorithm.
It is a translational model that embeds each node
with two vectors: e;, which represents the position
vector, and b; € Rd, which represents the trans-
lational bump. These vectors are obtained after
incorporating triples into the model. Additionally,
each edge type is defined with two hyper-rectangles
() and r?) € R To satisfy the relation I be-
tween entity £, and Fs, there is e; + by € (1) and
es+ by € r2), Intuitively, this means that £ and
E5 "bump" each other in hyperspace R? by some
distance. If the new vectors fall within the bounds
of the associated boxes, then the proposition is con-
sidered probable. To facilitate gradient descent, the
boxes have relaxed borders. It is worth noting that
BoxE is also capable of hyper-graph learning as it
accepts higher arity relations as input, though we
did not exploit this feature for this study.

Our training objective was to maximize the score
or probability of given relations. To elaborate,
this means maximizing the chance of predicting
masked initials/finals/tones of some character in
some dialect with the unmasked components as-
sociated with that character, from both within and
without the dialect. This is analog to the compara-
tive method in Historical Phonology, as the model
implicitly reconstructs a latent "proto-language",
from which the descendent languages can be de-
duced (or, "decoded") with maximum likelihood.

5 Data and Experimental Setup

We use pronunciation data from four varieties of
Xiang Chinese Changsha %7, Shuangfeng # 1,
Guanyang Wenshi #5317, and Quanzhou Xi-
ancheng 2 /M 5%3., spoken primarily in Hunan
Province, provided by CCR(Huang et al., 2011),
and retrived with Comparative analysis toolset for
Chinese dialects(Huang, 2021). We also obtain
labels of Middle Chinese readings from the same
source. In this work, Middle Chinese refers to



the phonological system recorded in the dictio-
nary Qieyun, from the year 601 AD. It was sup-
plemented in the Song Dynasty into the dictionary
Guangyun, from which this study draws data. Mid-
dle Chinese is literary and may not reflect the col-
loquial speech of China in any time or place. How-
ever, most phonological systems of modern Sinitic
languages (with the notable exception of the Min
Languages) can be derived from the Qieyun system.
Thus we treat it as a useful protolanguge model for
most Sinitic Languages.

We operate on symbolic abstractions instead of
raw acoustic data, as all the data have been tran-
scribed into IPA in the database. One row of data
corresponds to readings of one Chinese character.
Internally, each character is mapped to a unique
identifier, which is the character’s serial number
in Guangyun. For every variety of Chinese, there
are four columns, corresponding to initial value,
final value, tonal value and tonal type of a given
character’s pronuciation. The tone type argument
is actually redundant, and it is assigned manually
by investigators. In each dialect, there is a one-to-
one correspondence between one tone value with
one tone type. Between two dialects, tones aris-
ing from the same Middle Chinese tone are given
same names. Hence, the tone type feature intro-
duces prior expert knowledge about the historical
origin of tones. However, we expect the model to
derive the historical tones without any diachronic
expert knowledge. Hence, we discard the tone type
feature, and use only the three values for this study.

5.1 Processing of Duplicate Data

Characters in Sinitic can be polyphonic, that is,
sometimes a character will be mapped to multiple
readings in one dialect. This results in duplicate
data in the dataset. For convenience, we drop the
extra pronunciations and keep only the first line
for every entry. Though, there can be ambiguity
surrounding the correspondence of readings for
polyphonic characters. For instance, the first read-
ing entry for a polyphonic character in dialect A
might be cognate with the second reading entry
for the character in dialect B. However, our naive
approach will match all the first entries to each
other. Additionally, two dialects may inherit only
partial readings of a polyphonic character in the
proto-language. Hence, this procedure potentially
introduces erroneous alignment into the model.
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5.2 Split of Training, Testing and Validating
Datasets

The model was not trained with all the data, so as
to examine the robustness of the model. Instead,
some triples are diverted to form testing and vali-
dating datasets. Unfortunately, assignment in this
context is slightly more complicated than simple
stochastic choice. There is the scenario where all
initial (final/tonal) information about one character
is diverted from training. In this case, the model
will not be able to correctly embed this character.
To circumvent this issue, we mandate that at least
one feature from any of the three compositional
types is retained in the training set for any charac-
ter. In the four Xiangyu in this case, the result is
empirically a split of 80.50%:12.52%:6.98%.

5.3 Data Statistics

The initials, finals and tones count for the four
dialects are listed in Table 1. A total of 2805 char-
acters is included, but not every character has the
corresponding phonological data documented in
every dialect. In the training set, there are 22300
entries.

5.4 Model Setup

For the parametric size of the model, see Table 2.
We employ the BoxE algorithm implemented in the
Python library PyKeen (Ali et al., 2021b,a). We did
not fine-tune the model or any model parameters,
so as to demonstrate the capability of the model in
even in a highly suboptimal setting.

Initials Finals Tones
Changsha 21 38 11
Shuangfeng 28 35 11
Guanyang 28 42 5
Quanzhou 26 43 4
Table 1: Data Statistics
Parameter Value
Vector and hyperbox dimension 64
Number of nodes 2946
Number of edge types 12
Cumulative parameter size 378624
Optimization algorithm Adam
Number of epochs 2000

Table 2: Model Parameters



6 Experimental Evaluation

Losses Plot Entity Plot using PCA

) 500 1000

Epoch

1500 2000

Figure 3: Preliminary Visualization of Training Dynam-
ics and Trained Embeddings.

Figure 4: UMAP(McInnes et al., 2018, Mclnnes et al.,
2018,Uniform Manifold Approximation and Projection)
decomposed visualizations of the translational bumps
(a) and position embeddings (b). The coloring reflects a
point’s index in the Guangyun, which is sorted accord-
ing to thyme.

6.1 Canonical Evaluation of Model

The convergence of the model, and a preview of
the spatial distribution of embeddings can be seen
in Figure 3. The model quickly converges. The
entity plot decomposed with PCA reveals a mass
of character readings “ejecting” two groups of en-
tities, respectively the combination of all initials
and tones, and all finals, which is in accordance
with the bi-partite and heterogeneous nature of this
graph.

Canonically, BoxE is evaluated with the hit@n
metric and MRR (mean reciprocal rank) for link
prediction. On the validation set, our model
achieved hit@1:51.25%, hit@5: 87.19%, hit@10:
93.76% on the “tail” batches. The head batches are
not relevant because they involve “predicting char-
acters from initials/finals”, of which there is many
to one. In Table 4, we demonstrate empirically the
superiority of the BoxE algorithm over other com-
mon knowledge graph algorithms on this phonolog-
ical task. A clearer visualization of the embedded
points can be seen in Figure 4. Guangyun ensures
that rhyming characters (having the same final)
have similar coloring on the map. The coloring is
only a reflection of the point’s serial in the dataset
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and does not have any quantitative interpretation.
Presumably, the translational bump for characters
will contain more relevant information to histori-
cal phonology, as they designate which component
types to "bump into the box." Without mention, all
experiments are carried out on the bump embed-
dings and not positions. However, empirically we
find that the two kinds of embeddings are inter-
changeable.

6.2 Examining Contrastive Information

In this section, unsupervised clustering is used to
evaluate contrastive information in the embeddings.
Based on the hypothesis that the phonological struc-
tures of the dialects are co-embedded in the latent
structure of embeddings, we determined if the high-
dimensional embeddings retain information asso-
ciated with the theoretic categories of the input
dialects, a similar task to Tilsen et al. 2021. After
applying a clustering algorithm to the embedded
characters, the information yield ! of the found cat-
egories against input categories of initials, finals
and tones is computed. A higher information yield
indicates that the clusters found by unsupervised
clustering were more interpretable with respect to
the input phonemic categories. 2

The clustering algorithms used for dissecting
the cloud of embedded characters include HDB-
SCAN (MclInnes and Healy, 2017,A density based
method), Affinity Propagation, K-means and Ag-
glomerated Clustering.* The results can be seen in
Figure 5.

Affinity propagation and HDBSCAN achieved
best effects on finding interpretable clusters from
the datasets. Though, we find that HDBSCAN
is very sensitive to the two parameters: its effect
degrades when we allow for smaller clusters but
demands greater confidence on the classification.
Notably, HDBSCAN achieved an effect similar to
affinity propogation with just 29 clusters, while the
latter used 130.

The large information yields reflect that the unsu-

"Entropy subtracted by conditional entropy, or an empirical
estimate of mutual information.

HDBSCAN sometimes refuses to classify points it is not
sure of. These points are combined into one category for the
aforementioned purpose.

3Before using HDBSCAN, UMAP was first used to reduce
the 64 embedding dimensions to 8§ dimensions, with the neigh-
bour parameter set to 50. This is an advised practice from the
HDBSCAN documentation.

*The numerous methods were tried sequentially as we do
not know which algorithm best recovers the latent structure of
representations in accordance with theoretic categories.



80%

69% 70%

70%

59%
60%

0%
50% -

53%

51%

40%

H jnitials

30%

20% -

10%

0% -

34% H finals

o tones
‘0
1%

HDBSCAN
2_200

HDBSCAN
575

HDBSCAN
20_20

AP

KM30

KM10 AG30 AG10

Figure 5: Information yield in percentage averaged across four dialects. For HDBSCAN, the min samples and
min cluster size parameters were set to 2 and 200, 5 and 75, 20 and 20 respectively. The other three methods were
employed on the original embeddings. For K-means and agglomerative clustering, the number of clusters was

specified to be 30 and 10.

pervised algorithms do tend to dissect the character
set along latent lines corresponding to phonologi-
cal opposition in the input dialects, as shown in a
partial observation in Table 3. It appears that the
distribution of finals in dialects had more influence
on the latent structure than initials or tones. Simply
put, the characters within each unsupervised clus-
ter are more likely to rhyme than alliterate, though
both cases occur in observation of the HDBSCAN
Clusters.

There are limitations to this experiment though,
which will be discussed below.

6.3 Inference of Proto-language Features

In this section, we investigate the quality of our
embeddings with respect to proto-language recon-
struction tasks, as an important potential applica-
tion of this method lies with such work. Hence, we
trained classifiers in attempt to infer labels from
Middle Chinese, which likely predates proto-Xiang,
therefore an accessible surrogate for that proto-
language.

The features to infer are Grades (55 ), Voice(J&
J&), Tones(Z#), She ($#, a coarse division of
finals), Initials (5% £}), and Mu(#8 H ,a fine division
of finals).

Grades are believed to be associated with me-
dials, a component in the front of the final (amal-
gamated with final in Xiangyu data). Voice is a
division based on properties of the initial, in which
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voiced consonants, voiceless unaspirated conso-
nants, voiceless aspirated consonants and nasal
consonants are distinguished. For tones, in Middle
Chinese, there were four: level, rising, departing,
and entering. Of these categorical labels, there are
respectively 4, 4, 4, 16, 36 and 206 unique classes.
5

For this experiment, a train-test split of 0.67-
0.33 was instated. Since phonological evolution is
quite regular and systematic, we should expect de-
cent results without a great proportion of data used
for training. Accuracies below are for the test set.
These values are consistently higher than a naive
baseline of guessing the mode of each distribution,
proving that proto-language related features were
preserved in the retrived embeddings. (See Table
5.)

The MLP generally outperforms Ridge Classi-
fication on inference for these characters, with
the sole exception of tones, where RC outper-
forms MLP by 1.1%. The best results are attained
for tones and voice, showing these features to be
phonologically well preserved from Middle Chi-
nese to Xiang languages.

Interesting observations can be drawn from the
confusion matrices generated with such classifica-
tion. Presumably, these matrices can offer insight

SCanonically so, but there are a few erroneous entries in
the data we used, resulting in sometimes one or two extra
categories containing a few characters. They were kept.



ID Changsha Shuangfeng Guanyang Quanzhou
0 Initial:/m/ Initial:/m/ Initial:/m/  Initial:/m/
1 Initial:/p"/  Initial:/p"/  Initial:/p"/  Initial:/p"/
2 Final:/in/ Final:/i/ Final:/ i&/  Final/ ier/
7  Final:/(u)ei/ Final:/ui/ Final:/ uei/  Final:/uei/

Table 3: Analysis of Selected HDBSCAN Clusters. In these clusters, characters are predominantly, but not

exclusively associated with the listed features.

Alg. (Metric %) | Hit@1 | Hit@5 | Hit@10
BoxE 51.25 | 87.19 93.76
RotatE 33.11 | 5747 66.18
ComplEx 9.40 24.65 35.37

Table 4: An empirical demonstration of the superiority
of the BoxE algorithm for the phonological investigation
task among common missing link prediction methods.
The models were set to the same embedding dimension.
None of the models were fine-tuned or ran for more
than a single time, hence all readings should be seen as
sub-optimal.

into what categories were blended, which opposi-
tions were lost during the development of some lan-
guage family. One such example is demonstrated
in Figure 6. It could be seen that there is large
confusion between the Xian Ji{, Dang % and Shan
[1] Shes, and also between Xie # and Zhi IF Shes.
 This could indicate that in Proto-Xiang, there
is confusion between these categories relative to
Middle Chinese.

True Label

(A E TR G B O (| S N 7 O~ - i |
Predicted Label

Figure 6: Confusion matrix for She.

°In Baxter’s transcription, Bl = -eam, & = -ang, U = -ean;
& = _ea, Ib = -i (Baxter and Sagart, 2014). There are only
hypothetical IPA values available for these archaic categories.
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7 Discussions

Our current setting only operates on pre-abstracted
symbols and lacks incorporation of acoustic or
articulatory evidence. Incorporating multi-modal
data into a knowledge graph framework could en-
hance the quality of embeddings and enable more
accurate representations of phonological features.
Alsp, the proposed method uses shared embed-
dings for symbolic components across different
dialects, which cannot fully capture dialect-specific
variations. Investigating contextualized or dialect-
specific component embeddings could improve the
model’s ability to capture finer-grained phonologi-
cal distinctions. Finally, phonetically similar com-
ponents are currently treated as independent items,
which is too absolute an assumption. However, it
is also possible for phonetic cues to override the
correct phonological alignment in the model. In
many cases, phonetic similarity does not imply
diachronic homology. Two phonetically equiva-
lent syllables from two different dialects may have
different origins. Conversely, two phonetically dis-
tinct syllables from two different dialects may be
cognate. The subtle balance between "phonetic"
and "phonological” proximity requires further dis-
cussion.

Several lines of research may benefit from ro-
bust multi-dialectal representations. In dialectol-
ogy, there is need for estimating divergence be-
tween phonological systems. That includes the
divergences between its constituents, such as indi-
vidual characters, phonemes and syllables. With
multi-dialectal representations, this divergence can
be estimated quantitatively. In historical phonology,
the reconstruction of a proto-language demands
deep scrutiny of dialect systems whose efficiency
can be improved with manipulating the representa-
tions. Also, they can be used for completion of the
phonological knowledge base. Often knowledge
bases for Sinitic phonology are fragmented, due to
imperfect surveys and heterogeneity of sources, etc.
The representations can be used to infer missing



Algorithm(Acc %) | Grades | Voice | Tones | She | Initials | Mu
Ridge Classification 65.3 764 | 84.1 | 54.6| 494 18.6
MLP 70.5 81.1 | 83.0 | 614 | 532 |269
Naive Baseline 48.4 354 356 | 153 8.1 1.8

Table 5: Comparison of Ridge and MLP probes for proto-language Feature Inference. The baseline is the accuracy
obtained by uniformly guessing the most frequent class for each character.

pronunciations in different dialects to improve the
quality of observations.

The graph-based method proposed in this pa-
per benefits from phonological characteristics spe-
cific to Sinitic languages, but is also limited by
these characteristics. Specifically, the process of
constructing a phonological graph from words, as
proposed in this study, is less natural in languages
where words typically have many syllables, and
vary in the number of syllables contained. In these
languages, the temporal interaction of syllables
within a word is a new phenomena that the graph-
based method needs to adapt to. Additionally, in
these languages, it will be less straightforward to to-
kenize the words into expressive sub-words to use
as nodes in the graph. Presumably, in non-Sinitic
languages, the proposed method will be most per-
formant in other languages of the Southeast Asian
Sprachbund, such as those in the Hmong-Mien
or Austroasiatic families. These languages share
phonological features with Sinitic languages that
enable our method. On the other hand, this method
will likely meet more complications outside of the
local sprachbund.

8 Conclusion

This paper demonstrated the potential of graph-
based representation learning in Chinese Historical
Phonology. The representations are potent in many
ways, i.e. facilitating the reconstruction of minor
proto-languages.

In the future, more sophisticated techniques such
as deep learning models could be explored to fur-
ther improve the quality of the obtained represen-
tations. Furthermore, the proposed method can be
integrated with other linguistic resources, such as
recordings, articulatory time series, or orthographic
corpora, to enrich the knowledge base and improve
the accuracy of reconstructions. With the develop-
ment of modern, massive linguistic datasets such
as Nk2028(nk2028, 2020), CogNet(Batsuren et al.,
2022) or MorphyNet(Batsuren et al., 2021) as well
as improvements in large pre-trained models, we
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can expect foundational models that possess emer-
gent and meta-generalizing capabilities to arise in
historical phonology or morphology. This avenue
of research holds great promise for advancing our
understanding of the phonology and evolution of
Sinitic languages, and potentially other language
families as well.

Limitations

This study stems from a novel idea for Chinese
Historical Phonology Studies. As few direct pre-
decessors could offer hindsight, there are quite a
few limitations to this study that may be addressed
with further work.

1. While the initial-final-tone decomposition is
convenient in this context, it also limits the
transferrability of the proposed tool to lan-
guages outside of the Sinosphere. This calls
for further exploration of more generalize-
able approaches to phonological representa-
tion learning.

. Polyphonic characters were not fully uti-
lized in the study, and their alignment per-
reading and tokenization into separate identi-
fiers should be considered in future work.

. Finally, making full use of the dataset is cru-
cial, and the stochastic train-test split used
in this study may leave out important hints.
Alternative sampling strategies, such as cross-
validation or bootstrapping, could enhance the
robustness of the results.
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Abstract

In recent years, pre-trained language models
have garnered significant attention due to their
effectiveness, which stems from the rich knowl-
edge acquired during pre-training. To mitigate
the inconsistency issues between pre-training
tasks and downstream tasks and to facilitate the
resolution of language-related issues, prompt-
based approaches have been introduced, which
are particularly useful in low-resource scenar-
ios. However, existing approaches mostly rely
on verbalizers to translate the predicted vocab-
ulary to task-specific labels. The major limi-
tations of this approach are the ignorance of
potentially relevant domain-specific words and
being biased by the pre-training data. To ad-
dress these limitations, we propose a frame-
work that incorporates conceptual knowledge
for text classification in the extreme zero-shot
setting. The framework includes prompt-based
keyword extraction, weight assignment to each
prompt keyword, and final representation es-
timation in the knowledge graph embedding
space. We evaluated the method on four widely-
used datasets for sentiment analysis and topic
detection, demonstrating that it consistently
outperforms recently-developed prompt-based
approaches in the same experimental settings.

1 Introduction

Numerous studies have achieved great success in
applying supervised natural language processing
(NLP) techniques to address a plethora of NLP
applications, including text classification (Dong
et al., 2019), natural language inference (Wang
et al., 2020) and neural machine translation (Mi
et al., 2016). However, achieving high accuracy
with deep learning models for textual data analysis
necessarily requires a large amount of manually
annotated samples, which is both time-consuming
and labour-intensive.

To address the issues in low-resource settings,
considerable attention has been paid to the pre-
trained language models (PLMs), such as GPT-3
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MLM
head

No apparent joy. It was = <mask>

QO R

Figure 1: An example of prompt-based text classifica-
tion for the binary sentiment analysis task.

(Brown et al., 2020), BERT (Devlin et al., 2019),
and Roberta (Liu et al., 2019), due to their superior
performances on knowledge transfer. The model
pre-training stage typically involves language mod-
elling tasks, i.e., word prediction based on the con-
text of the input. Extensive investigations, e.g.,
knowledge probing, on PLMs show that they have
a certain capacity to store both linguistic and rela-
tional knowledge from large-scale corpora of gen-
eral domain data (Petroni et al., 2019).

In recent years, the paradigm of NLP has been
shifted from “pre-train and fine-tune” to “pre-train
and prompt” (Liu et al., 2023), to fully exploit these
PLMs in a gradient-free manner and effectively mit-
igate the gap between pre-training tasks and down-
stream tasks for the extreme zero-shot scenario
(Yin et al., 2019). Specifically, in the prompt-based
approaches (Schick and Schiitze, 2021; Min et al.,
2022; Gao et al., 2021a), each sample in NLP tasks
can be wrapped into cloze-style questions with their
corresponding templates, prompting the PLMs to
generate the targeted output to solve the problem.
For example, in a binary sentiment analysis task
(shown in Figure 1), the text “no apparent joy” is
transformed to the prompt-augmented input “no ap-
parent joy. It was <mask>.”, where the <mask> is
a special token to be predicted by the PLMs. This
text will then be labelled as positive or negative
according to the predicted words. Most existing
works utilize a verbalizer to provide the translations
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from the predicted vocabulary to the label space in
a specific task (Schick and Schiitze, 2021). How-
ever, these approaches are subject to two significant
limitations: (i) by only considering a limited set
of pre-defined label words filled in the masked po-
sition, some potentially relevant or useful words
in the certain domain could be ignored, hindering
the model’s capacity to generalize; and (ii) the pre-
training data of PLMs may contain biases that are
reflected in the model’s predictions on downstream
tasks (Zhao et al., 2021). Some works propose
calibration strategies to adjust the distribution of
prior probabilities (Hu et al., 2022), which requires
access to a large amount of data in specific datasets
for true estimation.

In this work, we propose a framework to perform
prompt-based zero-shot text classification with con-
ceptual knowledge and overcome the above limita-
tions. The proposed framework includes prompt-
based keyword extraction, weight assignment to
each keyword in the meaningful semantic space,
and final representation estimation. Specifically, in
the weight assignment component, by leveraging
the contextual relationships captured by SimCSE
(Gao et al., 2021b), a powerful contrastive learning
model, we refine the probabilities of each keyword
being filled in the masked position from the lan-
guage prompt to mitigate the bias. Additionally, in
the final representation, we integrate structured fac-
tual data provided by the knowledge graphs (KGs)
to include a wider range of semantic relationships
between entities in a given domain. By combining
their strengths, the proposed framework enables
more informed predictions and a richer understand-
ing of the underlying domain. In the experiment,
we strictly follow the “label-fully-unseen” setting
proposed by Yin et al. (2019) for evaluation. We
employ four widely-used text classification datasets
and compare the proposed framework with sev-
eral recently-developed prompt-based approaches
under the same experimental settings. The result
indicates that our proposed framework brings sig-
nificant improvement to the model performance.

2 Related Works

Language prompt has been introduced to elicit
knowledge from PLMs to solve different NLP
tasks, which was inspired by a series of works re-
lated to prompt-based approaches, including GPT-3
(Brown et al., 2020) and PET (Schick and Schiitze,
2021). However, one issue under the zero-shot set-
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ting identified by Chen et al. (2022) is the lack of
domain adaptation. They performed prompt-aware
continual pre-training based on adaptively retrieved
data for better performance on text classification
tasks. To widen the coverage of label words, Hu
et al. (2022) incorporated external knowledge bases
for the verbalizer construction, which greatly im-
proved the stability.

The above-mentioned works used hand-crafted
prompt templates, particularly designed by humans
for various NLP tasks. While they are carefully
constructed, the process requires a considerable
amount of human effort. Several automatic prompt-
ing techniques were introduced to automatically
select a prompt based on the input provided to
the PLMs. Gao et al. (2021a) suggested to em-
ploy a pre-trained text-to-text transformer, T5 (Raf-
fel et al., 2020), for candidate template genera-
tion. The best language prompt can be derived
after the evaluation of each candidate template.
Shin et al. (2020) proposed a gradient-based ap-
proach to search for a set of impactful tokens as
the prompts that can cause significant changes in
the model’s output. Nevertheless, the quality of
the automatically generated prompt usually cannot
be guaranteed, and this approach lacks sufficient
interpretability. Besides discrete prompts, research
such as (Li and Liang, 2021) and (Gu et al., 2022)
presented continuous prompts as prefixes to the
input, which are continuous vectors that can be
learned based on patterns and structures from the
data. This approach avoids the hassle of explicit
prompt design while it introduces a large number
of new parameters to be optimized.

3 Methodology

We propose a prompt-based approach to tackle the
zero-shot text classification problem. The overall
framework is shown in Figure 2. We first extract
the keywords to summarize the input text with the
prompt-based approach. Then, we assign weights
to these keywords based on their semantic rele-
vance to the overall meaning of the text. The
weighted embeddings of all extracted keywords
in the knowledge graph (KG) embedding space are
aggregated to produce the final representation of
the input text. Finally, we determine if the text
is related to a label in the KG according to their
cosine similarity. In the following subsections, we
describe the task definition in the extreme zero-shot
setting, prompt-based keyword extraction, weight



assignment and final representation estimation in
the constructed KG embedding space.

3.1 Task Definition

Given n textual inputs X = {z1,x2, ..., 2, }, the
aim of the text classification task is to assign each
input = a label y from a fixed label set containing
m labels, ie., Y = {y1,¥y2,..,Ym}. Unlike the
label-partially-unseen zero-shot text classification,
where a part of labelled data is available for model
training or fine-tuning on a specific domain, in this
work, all samples are unseen, and only the label
names from the label set )V can be accessed in ad-
vance. In order to achieve this goal, it is essential to
ensure that the aspect being described in the input
text and the meanings of the labels are comprehen-
sible to the framework (Yin et al., 2019).

3.2 Prompt-based Keyword Extraction

To remove noise and preserve the most relevant
information, keyword extraction from the input
text can summarize its main content and identify
the most important concepts. The meaning of an
expression, particularly its implicit meaning, can
often be inferred from the context in which it is
used. Therefore, we first employ a contextualized
pre-trained masked language model, denoted as
M, for prompt-based keyword extraction. This
model has an MLM head on top of the transformer-
based architecture, and consequently, it reduces the
text classification to the MLM problem with a task-
specific template ¢, which is either added at the
beginning or the end of the original input to form
a prompt-augmented input. The template includes
a mask token <mask>, and the probability of each
word v from vocabulary V being filled in this posi-
tion can be predicted by M. The most likely words
generated in this manner are somewhat relevant
to the input context, as the model integrates con-
textual information to make predictions. We then
construct a keyword set for x, namely, V*, i.e.,

V¥ = top K [Py (<mask> = v|[x; 1])]
veV

(1

where [z; ] is the prompt-augmented input for x.
Py(]-) is the conditional probability generated by
the MLLM head of M. According to the observa-
tions by Meng et al. (2020), the top 50 probable
words usually well represent the mask. Hence, we
set the parameter K to 50.
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3.3 Weight Assignment

To estimate the text representation for the input,
each word in the V* should be associated with a
weight, indicating relevance and importance to the
original textual input. Directly using the probability
output by the MLM head could be one possible
solution. However, the masked language model
may produce a biased probability distribution over
the keyword set.

To address this issue, we utilize SImCSE (Gao
et al., 2021b), a Siamese network for simple con-
trastive learning, to assign weights to each word.
SimCSE employs entailments and contractions
from natural language inference (NLI) datasets
as supervised signals. In contrastive loss, the
premise and entailment hypothesis are consid-
ered positive pairs, while in-batch negatives and
contradiction hypothesis are treated as negative
pairs. This approach helps align semantically simi-
lar sentence embeddings while separating contra-
dicted/unrelated sentence embeddings.

We use the encoding function for SImCSE fy(-),
parametrized by 6, to transform both the original
input z and a template in which the mask token
has been replaced by the k-th word in V*, denoted
as ty, into a meaningful semantic space. We then
assign the weight w; to the i-th word in V* based
on the similarity between #; and z, i.e.

6sim(fg(x),f9(fi))
Zf—l esim(f9($)7f9(£k))

2

Ww; =

where sim(-) is the cosine similarity function.

3.4 Final Representation in Knowledge Graph
Embedding Space

As for the extreme zero-shot scenario in our work,
ideally, each label y in the label set ) should be
equipped with auxiliary information, e.g., a textual
description and hand-engineered attributes. Never-
theless, such information available for a particular
task is usually limited and may not provide a pre-
cise description of the label. Fortunately, there is a
source of external knowledge that can be applied
with little human effort — KGs. ConceptNet (Speer
et al., 2017) is a type of KG that organizes and
represents linked open data regarding real-world
entities and their relations, offering rich structured
knowledge at the conceptual level for the labels.
To leverage the knowledge from the ConceptNet,
a process called retrofitting (Faruqui et al., 2015)
is used to refine the pre-trained distributional word
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Figure 2: Overall framework of our proposed method

embeddings. The idea is to bring the embeddings
of connected entities in the KG closer while main-
taining the original distributional ontology (Speer
etal., 2017).

The following objective function is minimized
to construct the KG embedding space based on the
entity set, denoted as V°:

>

v;epent

Z )\7» (Vi — Vj)2 + i (Vi — \A/'Z')Z
(’Ui,T,'Uj)Gg
(3)

where £ is the triplet set of the KG, consisting of
two entities v; and v; linked by their relation 7, i.e.,
(v, 7,v5), and A, is the corresponding weight for
r. vj is the updated KG graph embedding for the
entity v;. v; stands for the original word embed-
ding of v; and 7); controls the associative strength
between ¥; and v;. For simplicity, we applied the
alignment by the name to align the entity in V™
with a word in V.

To estimate the final representation in the KG
embedding space for input text z, we integrate the
conceptual representation of each keyword v; in V*
based on semantic relevance between v; and x. Our
assumption for the multi-class classification task is
that the content of input text should remain within
its desired label and not be relevant to any other
labels in the label set. Therefore, the label with the
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highest similarity to this representation, among all
labels in ), is then selected as the predicted label,
denoted by 7, i.e.

“

y = argmax |sim [ vy, Z WiV
yey v, EVT
where v, is the label embedding for y in the KG
embedding space.

4 Preliminary Results

4.1 Datasets

We conducted experiments on four commonly used
text classification datasets, including two sentiment
analysis datasets (SST-2 (Socher et al., 2013) and
Yelp-polarity (Zhang et al., 2015)) and two topic
detection datasets (AG’s News (Zhang et al., 2015)
and DBPedia (Lehmann et al., 2015)). We adopted
the prompt templates from (Chen et al., 2022) for
better comparison. For each dataset, we evaluated
our method on different templates and reported
their average accuracy along with standard devia-
tion. The statistics and example prompt templates
of these datasets are listed in Table 1.

4.2 Setup

For the prompt-based keywords extraction and
weight assignment, we made use of roberta-large



Datasets #Samples #Classes Type Example Prompt

SST-2 1,821 2 Sentiment All in all, it was <mask>
Yelp-polarity | 38,000 2 Sentiment  All in all, it was <mask>
AG’s News 7,600 4 Topic This topic is about <mask>
DBPedia 70,000 14 Topic Introduction to the <mask>

Table 1: Statistics of datasets and example prompt templates used in our work.

models with transformers' and simcse? libraries.
We used the latest version of ConceptNet (5.7) 3
for KG embedding space construction.

We implemented our method with PyTorch 1.5.0
and Python 3.6 on IBM Power 9 architecture. The
inference process was accelerated on an NVIDIA
Tesla V100 Volta GPU card with 32GB of graphics
RAM.

4.3 Main Results

We compared the results with those produced by
several prompt-based methods for text classifica-
tion introduced recently, which share the same ex-
treme zero-shot setting. The main results on the
four datasets are shown in Table 2. Channel is
the noisy channel approach based on GPT-2 pro-
posed by Min et al. (2022). GPT-3 refers to the
work of Zhao et al. (2021) that calibrated the prob-
ability distribution with a content-free input. The
results of applying Roberta for prompt-based text
classification were reported by Chen et al. (2022).
AdaPrompt (Chen et al., 2022) refers to the method
that adaptively retrieves data from large-scale cor-
pora for continual pre-training, and iAdaPrompt is
the process of iterative adaption.

It is clear that the proposed method outper-
formed the baselines on all datasets, providing a
performance gain of 13.88% and 5.31% on Yelp-
polarity and AG’s News datasets, respectively. An-
other notable observation from the main results is
that our method has significantly lower standard
deviations in comparison with Roberta, AdaPrompt
and iAdaPrompt, suggesting that it is more stable
when using different prompt templates for text clas-
sification.

4.4 Ablation Study

We also carried out ablation experiments to ex-
plore the effectiveness of weight assignment and
KG embedding space construction in the proposed

"https://huggingface.coftransformers

“https://pypi.org/project/simcse/

3https://github.com/commonsense/conceptnet-
numberbatch
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framework. The result of the study is shown in
Table 3.

Instead of assigning weights to each keyword
based on their importance and relevance as ex-
plained in Section 3.3, we directly utilized proba-
bilities of masked token output by the MLM head.
This resulted in a slight decrease in performance,
with an average accuracy drop of 0.87%. Then, we
replaced the KG embeddings for text representation
estimation with another semantically consistent em-
bedding, GloVe (Pennington et al., 2014), which is
solely based on the word co-occurrence in the pre-
training corpus. We observe significant decreases
in accuracy on AG’s News and DBPedia datasets
by 19.3% and 14.4%, respectively. This indicates
that, compared with distributional semantic embed-
ding space, incorporating knowledge to construct
KG embedding space can greatly enhance the per-
formance of text classification, especially on topic
detection datasets.

4.5 Visualization

To further understand the weight assignment, we
provided the visualization (shown in Figure 3) of
each extracted keyword from examples in topic
detection datasets. We arranged these words in
descending order of probabilities output by the
MLM head. The colour depth denotes the impor-
tance of each word according to the given context.
As can be seen, many of the most significant key-
words (indicated as dark colours) were correctly
highlighted. For example, “rocket”, “space” and
“launch” in AG’s News example; “store”, “‘com-
pany” and “business” in DBPedia example. We
also observed that some less related or wrongly-
predicted words could be detected by the model.
For example, the DBPedia example mainly de-
scribes a game company, even though the words
like “author” and “blog” predicted by the MLM
head are at the top of the list, they were assigned
with low weights (indicated as light colours) in the
weight assignment process, which makes reason-
able amendments to the prompt-based keywords



Models SST-2 Yelp-polarity AG’s News DBPedia
Channel (Min et al., 2022) 77.10 (N/A) - 61.80 (N/A) 51.40 (N/A)
GPT-3 (Zhao et al., 2021) 75.80 (0.00) - 73.90 (0.00) 59.70 (0.00)
Roberta (Chen et al., 2022) 64.56 (16.77) 72.63(6.34)  69.52 (6.96) 56.32(0.49)
AdaPrompt (Chen et al., 2022) | 75.92 (17.36) 75.09 (17.57) 76.55 (7.28) 70.95 (8.80)
iAdaPrompt (Chen et al., 2022) | 77.18 (17.96) 75.81 (18.05) 74.28 (9.00) 73.01 (6.70)
“ours | 80.62 (10.08) 89.69 (2.81)  81.86 (0.75) 73.77 (2.55)

Table 2: Main results on four commonly-used datasets. We report the average accuracy on different templates and
the corresponding standard deviation, which is indicated in brackets.

SST-2 Yelp-polarity AG’s News DBPedia
Ours 80.62 (10.08) 89.69 (2.81) 81.86 (0.75)  73.77 (2.55)
©-WA | 79.42(10.91) 88.82(3.08)  81.65(0.79)  72.59 (2.86)
A -1.20 -0.87 -0.21 -1.18
-KG | 77.58 (10.27) 86.61(4.03) 62.35(16.16) 58.19 (6.49)
A -1.84 -2.21 -19.3 -14.4

Table 3: Ablation study. “~-WA” means that we directly use the output probability from the MLM head, and “-KG”
means that, for final representation estimation, we employ the distributional semantic embedding space rather than

KG embedding space.

extraction.

We also demonstrated an example of KG embed-
dings to show how knowledge integration can help
language understanding in Figure 4. We randomly
selected a number of generated keywords from sam-
ples labelled as “sport”,“politics”, “business” and
“technology”, and utilized the visualization tool,
t-SNE*, to visualize their corresponding entity em-
beddings in the two-dimensional space. The colour
of each point in the figure indicates the label of the
sample from which the keywords were generated.
It is observable that entity embeddings assigned to
different labels are well distributed across the KG
embedding space, indicating that knowledge inte-
gration can help capture diverse conceptual aspects
of the entities. On the contrary, the embeddings as-
signed to the same label are well clustered, suggest-
ing that entities with similar properties are mapped
closely together in the KG embedding space.

5 Conclusion

We proposed a prompt-based framework to tackle
the text classification problem in the extreme zero-
shot setting. We exploited the PLM to extract key-
words from input, assigned their weights in the
meaningful semantic space and incorporated con-
ceptual knowledge from ConceptNet to estimate
the final representation. Evaluation results showed

“https://lvdmaaten.github.io/tsne/
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that the method reduced the biases of the MLM
head and generalized well on two topic detection
and two sentiment analysis datasets, outperform-
ing several recently-developed prompt-based ap-
proaches.

Limitations

The current work has several limitations that war-
rant further investigation. Firstly, due to time con-
straints, we did not conduct experiments using the
proposed framework on few-shot settings or a more
challenging multi-label classification task. Sec-
ondly, our ablation study in Section 4.4 showed that
the framework with the weight assignment resulted
in only a marginal improvement in performance,
suggesting that SimCSE may not be the most effec-
tive method for addressing prediction bias. There-
fore, future work will explore alternative modeling
approaches for bias reduction. Thirdly, in Sec-
tion 4.5, we noticed that several irrelevant words
are also generated as keywords with the language
prompt, which may negatively impact the final rep-
resentation. To address this issue, a better solution,
such as keyword filtering, should be considered to
improve the current framework. Lastly, we treated
each word as a single atomic entity in the KG em-
bedding space, regardless of its possible different
senses or meanings. A more careful treatment of
word meanings is necessary to handle the problem
of polysemy.



The Race is On: Second Private Team Sets Launch Date for Human Spaceflight (SPACE.com) SPACE.com - TORONTO, Canada -- A
second\\team of rocketeers competing for the #36;10 million Ansari X Prize, a contest for\\privately funded suborbital space flight, has
officially announced the first\\launch date for its manned rocket.
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The GOAT Store (Games Of All Type Store) LLC is one of the largest retro gaming online stores and an Independent Video Game Publishing
Label. Additionally, they are one of the primary sponsors for Midwest Gaming Classic.
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Figure 3: Weight visualization examples from two topic detection datasets. The Byte-Pair Encoding (BPE) algorithm
for the Roberta model may generate words that have their first letters capitalized or a special symbol added as the
prefix. After the generation, we replace them with the names of the entities that they actually refer to in the KG.
Therefore, there are several duplicates in the keyword set.
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Figure 4: KG embedding visualization. We randomly select several generated keywords from samples labelled
as “sport”, “politics”, “business” and “technology”, and utilize the visualization tool, t-SNE, to visualize their
corresponding entity embeddings in the two-dimensional space. The colour of each point indicates the label of the
sample from which the keyword was generated.

36



Acknowledgement

We express our sincere gratitude to the matched
mentor in the mentoring program, as well as the
anonymous reviewers, for their valuable and con-
structive feedback. Furthermore, we would like
to acknowledge the financial support provided by
the Postgraduate Research Scholarship (PGRS) at
Xi’an Jiaotong-Liverpool University (contract num-
ber PGRS2006013). Additionally, this research
has received partial funding from the Jiangsu Sci-
ence and Technology Programme (contract num-
ber BK20221260) and the Research Development
Fund at Xi’an Jiaotong-Liverpool University (con-
tract number RDF2201132). We are grateful for
their support, which has enabled us to carry out this
study.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in Neural Information Processing
Systems, 33:1877-1901.

Yulong Chen, Yang Liu, Li Dong, Shuohang Wang,
Chenguang Zhu, Michael Zeng, and Yue Zhang.
2022. AdaPrompt: Adaptive model training for
prompt-based NLP. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
6057-6068, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages 4171—
4186.

Hang Dong, Wei Wang, Kaizhu Huang, and Frans Co-
enen. 2019. Joint multi-label attention networks for
social text annotation. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 1348—1354, Minneapolis, Minnesota.
Association for Computational Linguistics.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar,
Chris Dyer, Eduard Hovy, and Noah A Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

pages 1606—-1615.

37

Tianyu Gao, Adam Fisch, and Danqi Chen. 2021a.
Making pre-trained language models better few-shot
learners. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 3816-3830, Online. Association for Computa-
tional Linguistics.

Tianyu Gao, Xingcheng Yao, and Dangi Chen. 2021b.
SimCSE: Simple contrastive learning of sentence em-
beddings. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Process-
ing, pages 6894—6910, Online and Punta Cana, Do-
minican Republic. Association for Computational
Linguistics.

Yuxian Gu, Xu Han, Zhiyuan Liu, and Minlie Huang.
2022. PPT: Pre-trained prompt tuning for few-shot
learning. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 8410-8423, Dublin,
Ireland. Association for Computational Linguistics.

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan
Liu, Jingang Wang, Juanzi Li, Wei Wu, and Maosong
Sun. 2022. Knowledgeable prompt-tuning: Incor-
porating knowledge into prompt verbalizer for text
classification. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 2225-2240,
Dublin, Ireland. Association for Computational Lin-
guistics.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N Mendes, Sebastian
Hellmann, Mohamed Morsey, Patrick Van Kleef,
Soren Auer, et al. 2015. Dbpedia—a large-scale, mul-
tilingual knowledge base extracted from wikipedia.
Semantic web, 6(2):167-195.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 4582—
4597, Online. Association for Computational Lin-
guistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Computing Surveys, 55(9):1-35.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Dangi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Yu Meng, Yunyi Zhang, Jiaxin Huang, Chenyan Xiong,
Heng Ji, Chao Zhang, and Jiawei Han. 2020. Text
classification using label names only: A language


https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2022.findings-emnlp.448
https://aclanthology.org/2022.findings-emnlp.448
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1136
https://doi.org/10.18653/v1/N19-1136
https://doi.org/10.3115/v1/N15-1184
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.acl-long.295
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2021.emnlp-main.552
https://doi.org/10.18653/v1/2022.acl-long.576
https://doi.org/10.18653/v1/2022.acl-long.576
https://doi.org/10.18653/v1/2022.acl-long.158
https://doi.org/10.18653/v1/2022.acl-long.158
https://doi.org/10.18653/v1/2022.acl-long.158
https://content.iospress.com/articles/semantic-web/sw134
https://content.iospress.com/articles/semantic-web/sw134
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/10.18653/v1/2021.acl-long.353
https://doi.org/https://doi.org/10.1145/3560815
https://doi.org/https://doi.org/10.1145/3560815
https://doi.org/https://doi.org/10.1145/3560815
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.emnlp-main.724
https://doi.org/10.18653/v1/2020.emnlp-main.724

model self-training approach. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 9006-9017,
Online. Association for Computational Linguistics.

Haitao Mi, Zhiguo Wang, and Abe Ittycheriah. 2016.
Supervised attentions for neural machine translation.
In Proceedings of the 2016 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2283-2288.

Sewon Min, Mike Lewis, Hannaneh Hajishirzi, and
Luke Zettlemoyer. 2022. Noisy channel language
model prompting for few-shot text classification. In
Proceedings of the 60th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 5316-5330.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: Global vectors for word
representation. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 1532-1543, Doha, Qatar.
Association for Computational Linguistics.

Fabio Petroni, Tim Rocktischel, Sebastian Riedel,
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and
Alexander Miller. 2019. Language models as knowl-
edge bases? In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-1JCNLP),
pages 2463-2473.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, Peter J Liu, et al. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(140):1-67.

Timo Schick and Hinrich Schiitze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the
16th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics: Main Volume,
pages 255-269, Online. Association for Computa-
tional Linguistics".

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV, Eric
Wallace, and Sameer Singh. 2020. AutoPrompt: Elic-
iting Knowledge from Language Models with Auto-
matically Generated Prompts. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 42224235,
Online. Association for Computational Linguistics.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D. Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1631-1642, Seattle, Washington, USA. Association
for Computational Linguistics.

38

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Thirty-first AAAI conference on
artificial intelligence.

Zikang Wang, Linjing Li, and Daniel Zeng. 2020.
Knowledge-enhanced natural language inference
based on knowledge graphs. In Proceedings of the
28th International Conference on Computational Lin-

guistics, pages 6498—-6508.

Wenpeng Yin, Jamaal Hay, and Dan Roth. 2019. Bench-
marking zero-shot text classification: Datasets, eval-
uation and entailment approach. In Proceedings of
the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-1JCNLP), pages 3914-3923, Hong Kong,
China. Association for Computational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems, volume 28. Curran Associates, Inc.

Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and
Sameer Singh. 2021. Calibrate before use: Improv-
ing few-shot performance of language models. In In-

ternational Conference on Machine Learning, pages
12697-12706. PMLR.


https://doi.org/10.18653/v1/2020.emnlp-main.724
https://doi.org/10.18653/v1/D16-1249
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.18653/v1/2022.acl-long.365
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://dl.acm.org/doi/abs/10.5555/3455716.3455856
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2021.eacl-main.20
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://doi.org/10.18653/v1/2020.emnlp-main.346
https://aclanthology.org/D13-1170
https://aclanthology.org/D13-1170
https://dl.acm.org/doi/10.5555/3298023.3298212
https://dl.acm.org/doi/10.5555/3298023.3298212
https://doi.org/10.18653/v1/2020.coling-main.571
https://doi.org/10.18653/v1/2020.coling-main.571
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://doi.org/10.18653/v1/D19-1404
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
http://proceedings.mlr.press/v139/zhao21c.html
http://proceedings.mlr.press/v139/zhao21c.html

How do different tokenizers perform on downstream tasks
in scriptio continua languages?: A case study in Japanese

Takuro Fujii’
Yokohama National University
tkr.fujii.ynu@gmail.com

Koki Shibata”
University of Tsukuba
s1811496@klis. tsukuba.ac. jp

Atsuki Yamaguchi, Terufumi Morishita and Yasuhiro Sogawa
Hitachi, Ltd.
{atsuki.yamaguchi.xn,terufumi.morishita.wp,yasuhiro.sogawa.tp}@hitachi.com

Abstract

This paper investigates the effect of tokenizers
on the downstream performance of pretrained
language models (PLMs) in scriptio continua
languages where no explicit spaces exist be-
tween words, using Japanese as a case study.
The tokenizer for such languages often consists
of a morphological analyzer and a subword tok-
enizer, requiring us to conduct a comprehensive
study of all possible pairs. However, previous
studies lack this comprehensiveness. We there-
fore train extensive sets of tokenizers, build a
PLM using each, and measure the downstream
performance on a wide range of tasks. Our re-
sults demonstrate that each downstream task
has a different optimal morphological analyzer,
and that it is better to use Byte-Pair-Encoding
or Unigram rather than WordPiece as a sub-
word tokenizer, regardless of the type of task.

1 Introduction

Tokenization is the first key procedure in current
natural language processing when inputting a tar-
get sentence to a pretrained language model (PLM).
It generally splits an input sequence into subword
units, where a subword is a fraction of a word.
Previous efforts have proposed several subword-
tokenization algorithms (hereafter, subword tok-
enizers), such as Byte-Pair-Encoding (BPE) (Sen-
nrich et al., 2016), WordPiece (Schuster and Naka-
jima, 2012), and Unigram (Kudo, 2018), and dif-
ferent PLMs use different subword tokenizers.!

It is widely acknowledged that tokenization af-
fects the downstrem performance of PLMs (Rust
et al., 2021; Gow-Smith et al., 2022; Bostrom and
Durrett, 2020; Park et al., 2020; Toraman et al.,
2022). The majority of the previous studies have fo-
cused on languages with explicit word boundaries,
such as English, while research on scriptio con-

* Work done while interning at Hitachi, Ltd.
"For example, BERT (Devlin et al., 2019) uses WordPiece,
and GPT-3 (Brown et al., 2020) uses byte-level BPE.
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Original text “_"and “/” denote a space and a subword boundary, respectively.
Scriptio il (

TS RERIRATRROIATLE L CWET,

| morphological analyzers on research am doing

English:

|_am_doing_research_on_morphological_analyzers.

Step 1: Morphological analysis (Splitting into “word-level” semantic units)

Step 2: Subword tokenization

B LITERE 3R | BRAT I 238 1 D IR/ Z I LI TI W XS [,
|/ am / doing / research / on / morphological / analyze / ##rs / .

Figure 1: Typical tokenization procedures in both scrip-
tio continua languages and English

tinua languages, or languages without word bound-
aries (like Japanese, Chinese, and Thai), is still
understudied. The tokenization process in scriptio
continua languages traditionally involves morpho-
logical analysis, which splits the input text into
morphemes (semantic units similar to words in
English) using the dictionary designed by human
experts (see Step 1 in Figure 1 for an example). In
this case, a tokenizer for a PLM consists of a mor-
phological analyzer and a subword tokenizer. To in-
vestigate the impact of tokenization in this scenario,
we need to perform a comprehensive study on sev-
eral sets of the available pairs, which is lacking
in the previous work (Bostrom and Durrett, 2020;
Inoue et al., 2022; Lowphansirikul et al., 2021).

In this paper, we investigate the effect of tokeniz-
ers on the downstream performance of PLMs in
scriptio continua languages, focusing on Japanese
as a case study. We train an extensive collection
of tokenizers consisting of known morphological
analyzer and subword tokenizer pairs, use them to
pretrain and fine-tune BERT models, and measure
their performance on a variety of downstream tasks.
On the basis of the experimental results, we address
the following three research questions. We first try
to answer if we should use a morphological ana-
lyzer? in a scriptio continua language (Japanese)

“Not using a morphological analyzer means that we apply
subword tokenization directly, the same as in cross-lingual
PLMs such as XLLM-R (Conneau et al., 2020).
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(RQT). RQ2 and RQ3 each examine whether dif-
ferent morphological analyzers/subword tokenizers
perform differently on a downstream task.

Contributions 1) We test a comprehensive set of
known morphological analyzer and subword tok-
enizer pairs and use various downstream tasks to
clarify the effect of tokenizers on the downstream
performance of Japanese PLMs. 2) Accordingly,
we find the followings:
* We should use a morphological analyzer for
Japanese.
* Each task seems to have its own optimal mor-
phological analyzer(s).
* It is better to use either BPE or Unigram as a
subword tokenizer rather than WordPiece.
3) We publicly release the code and PLMs.?

2 Japanese Tokenizer

In this section, we explain the morphological ana-
lyzers and subword tokenizers used in this paper.

2.1 Japanese Morphological Analyzers

Japanese morphological analyzers are based on ei-
ther a pointwise or sequence prediction method.
The former tokenizes a sentence by extracting fea-
tures from the characters within a pre-defined win-
dow and then predicting if a boundary exists be-
tween each character using a classifier. The latter
first constructs a lattice from an input sentence on
the basis of a pre-defined dictionary, where each
path in the lattice represents a candidate token se-
quence and has a cost, and then selects the path
with the lowest cumulative cost as the analysis
result.* We obtain a cost for each path using a
statistical model(s) or a hand-crafted dictionary.

We test the following four widely used morpho-
logical analyzers: MeCab ™ (Kudo et al., 2004),
Juman++ @ (Tolmachev et al., 2018), Sudachi
(® (Takaoka et al., 2018), and Vaporetto (V) (Akabe
et al., 2022). The first three adopt sequence predic-
tion while the last uses pointwise prediction.’

2.2 Subword Tokenizers

We compare the following three tokenizers: BPE
(B), WordPiece (W), and Unigram (UA), each of

3Available at https://github.com/hitachi-nlp/
compare-ja-tokenizer.

“Since it is intractable to compute costs for all candi-
date paths, previous studies have used either the Viterbi algo-
rithm (Viterbi, 1967) or beam search to select a path.

SFor more details, refer to Appendix A.
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which differs in either vocabulary construction, tok-
enization algorithms, or both. These tokenizers are
empirically known to produce different subword
boundaries (Bostrom and Durrett, 2020).

Vocabulary Construction BPE constructs the
vocabulary by merging and adding a pair of existing
tokens with the highest score in the dictionary until
the total number of tokens in the dictionary reaches
a pre-defined size. The score is calculated based on
the frequency of the existing tokens. WordPiece is
similar to BPE but calculates the score based on the
frequency of a symbol pair and the individual fre-
quencies. Unigram heuristically builds a large seed
vocabulary from a training corpus (e.g., by taking
the most frequent substrings) and then iteratively
removes the least important symbols from the vo-
cabulary. Specifically, it first fits a unigram LM for
the current vocabulary and then computes (i) the
log likelihood of the training corpus with the LM
and (ii) that of the training corpus with the LM after
removing a particular symbol. It then sets (i) — (ii)
as the cost, which shows the degradation of the log
likelihood when the symbol is removed. Finally, it
removes the symbol with the lowest degradation.

Tokenization BPE splits a word into characters
and iteratively merges those with the most frequent
pair into larger known symbols in the vocabulary.
WordPiece® splits a word by the longest subword
starting at the beginning of the word in the dictio-
nary and continues splitting until its end. Unigram
tokenizes a word by performing Viterbi inference to
select the maximum likelihood segmentation based
on its vocabulary and unigram LM.

3 Experimental Setup’

Tokenizers We compared a total of 12 tokenizers
(four morphological analyzers and three subword
tokenizers), as introduced in §2. We also consid-
ered three additional tokenizers not using morpho-
logical analyzers. We trained all tokenizers with
the vocabulary size of 30k utilizing 10M sentences
randomly extracted from Japanese Wikipedia.

Models We used the base configuration of BERT
(total parameters: 125M). For each tokenizer, we
pretrained BERT for 500k steps with masked
language modeling (Devlin et al., 2019) on the
Japanese Wikipedia and CC-100 (Conneau et al.,

We follow the longest-match-first strategy used in BERT.
"For implementation details, refer to Appendix C.
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Tokenizer MARC-ja JSTS JNLI JSQuAD JCQA NER UD Avg.
Subword Morphological Accuracy Spearman Accuracy Fl Acc Fl1 LAS
bert-base-japanese 95.5+0.1 85.340.3 86.840.6 86.440.2 76.6+0.8 85.64+02  93.3+0.1 \ 87.1
& MeCab 95.4+02 84.2+0.1 88.0+0.4 90.1+03 74.1+0.7 83.7+08  93.6+0.1 | 87.0
@ Juman++ 95.5+0.1 84.6+0.4 87.6+0.4 90.1+0.2 73.8403 85.1406  93.6+0.1 | 87.2
BPE ® Sudachi 95.5+0.1 84.2+0.2 88.2+0.3 90.2+0.2 74.2+0.6 83.5+06 93.8+0.1 | 87.1
(B) & Vaporetto 95.6+0.1 84.8+0.2 87.5+0.3 89.9+0.2 74.2+1.1 84.1+09  93.7+0.1 87.1
Nothing 95.4+02 82.8+0.2 87.2+02 88,7403 72.8+0.8 029+1.1  934+01 | 833
MeCab 95.5+0.1 82.4405 87.54+03 89.2403 69.840.7 84.0+09  93.6+0.1 | 86.0
Juman++ 95.3403 83.34+03 87.7+0.2 89.840.3 71.1+06 84.7+05  93.6+0.1 | 86.5
WordPiece  Sudachi 95.340.2 83.7403 87.2404  89.6+0.1 70.040.9 824406 94.0+0.1 | 86.0
(§4%)] Vaporetto 95.3+0.2 83.6+0.1 88.0+04  89.7+02 71.0+04 84.0+08  93.8+0.1 | 86.5
Nothing 85.5+0.0 N/A 55.3+00  10.1+0.1 20.0+0.8 0.040.0 63.8409 | 33.5
MeCab 95.4+0.3 84.6+0.4 88.3+0.4 89.5+0.3 74.5+08 83.1+10 93.4+02 | 87.0
Juman++ 95.4+02 84.3+03 87.8+03 89.9+0.2 74.9+12 84.1+04 934+o01 | 87.1
Unigram Sudachi 95.6+0.2 84.8+0.5 88.4+03 89.9+0.1 74.5+0.6 83.0+13  93.7+o01 | 87.1
) Vaporetto 95.54+03 84.6+0.2 87.9+0.3 89.9+0.1 743408 84.1+04  93.7+0.1 | 87.1
Nothing 95.4+04 83.9+03 87.7+08  89.3+0.1 74.6+04 769+10 932402 | 859
Statistical test results: Kruskal-Wallis test (Kruskal and Wallis, 1952). v if p < .05 otherwise X.
RQ2: (B, W, U) X, X, %) (V. 7, %) (v, % X) (X, X, %) X, /., X) (V. /. %) v, 7.7)
RQ3: @, D. S, ®) KX XX) (/000 KGR (KK (L 00) (KKK (KK, K)

Table 1: Results from seven tasks with standard deviations over five runs. JCQA stands for JCommonsenseQA.
Values with a wavy line denote the worst results among morphological analyzers with the same subword tokenizer.
/ indicates that there is statistical significance among (RQ2) morphological analyzers with the same subword
tokenizer or (RQ3) subword tokenizers with the same morphological analyzer, while X denotes that there is no
statistical significance. For example, (/, x, x) in RQ2 indicates that there is statistical significance between different
morphological analyzers with BPE, while no statistical significance is observed for WordPiece or Unigram.

2020) datasets, consisting of 2.2 and 1.1M samples
each with the maximum length set to 512.

Benchmarks We used the following benchmarks:
JGLUE (Kurihara et al., 2022), NER®, and Univer-
sal Dependencies (UD) Japanese-GSD (Asahara
et al., 2018). Since the test set for JGLUE is
not publicly available, we fine-tuned all models
on the training set using five-fold cross-validation
and evaluated their performance on the develop-
ment set. Since the development and test sets are
not available for NER, we split the training set
into 9:1. We fine-tuned the models with five-fold
cross-validation by the former and measured the
performance using the latter.

4 Results and Analysis
This section addresses the three RQs raised in §1.

RQ1: Should we use a morphological analyzer?
Table 1 lists the results on the seven downstream
tasks grouped by subword tokenizer. The average
scores across tasks (“Avg.”) show that tokenizers

8Dataset: stockmarkteam/ner-wikipedia-dataset

®We provide the description of each task in Appendix
B. For reference, we also measured the performance of
bert-base-japanese, which uses MeCab and WordPiece.
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without a morphological analyzer (“Nothing”) ex-
hibited the worst results among tokenizers with the
same subword tokenizer. This trend also generally
holds for task-specific results. These results make
intuitive sense because a morphological analyzer
can provide explicit semantic boundaries of an in-
put text, making the input units for subword tok-
enization similar to English words (Figure 1). This
should help a model to capture the semantic and
syntactic information more easily and consequently
outperform those that do not use a morphological
analyzer. We therefore conclude that we should use
a morphological analyzer for Japanese.

In addition to the above, we observe that Word-
Piece + Nothing produced by far the worst results
in all tasks due to the poor tokenization. WordPiece
processes a sequence word by word and treats a
sequence without a blank as a single word. If it
fails to tokenize a particular word, it tokenizes the
“whole” as a single [UNK] token. Without a mor-
phological analyzer, the length of a word becomes
abnormally long, making WordPiece more likely
to produce an [UNK] token. This means that the
majority of an input text will be converted into
[UNK] tokens, thus losing almost all of the content
in the text. In fact, the average sequence length


https://github.com/stockmarkteam/ner-wikipedia-dataset
https://huggingface.co/cl-tohoku/bert-base-japanese

JSTS JNLI JCQA NER UD

©>m ©>m
BPE @>® - - @0 @l
. T
’ ©®>n) ©®>0Q)
WordPiece (©>®) - - @>0) (@ > @)
©>®)

Unigram - - - _ _

Table 2: Combinations of morphological analyzers with
statistical significance (p < .05, Steel-Dwass test). “—"
indicates no statistical significance observed. “® > ®)”
indicates that morphological analyzer @ is significantly
better than morphological analyzer ®.

and ratio of [UNK] per sample in pretraining were
1.15 + 3.28 and 99.8 £ 4.9%, respectively. These
caused unstable pretraining (see Appendix D).
Compared with other tasks, Nothing in NER
showed a considerable performance degradation
with a maximum difference of 22.2 (Juman++ vs.
Nothing in BPE). In NER, annotations are word-
level and tend to align well with morphemes. Since
tokenizers with morphological analyzers split a
morpheme into subword tokens, they can produce
more linguistically motivated subword segmenta-
tion than Nothing, thus giving them an advantage.

RQ2: Do different morphological analyzers per-
form differently on downstream tasks? Look-
ing at the statistical test results for RQ2 in Table 1'°,
we can see that there were significant performance
differences between different morphological ana-
lyzers with the same subword tokenizers in some
tasks, e.g., JSTS, NER, and UD. In other words,
different morphological analyzers could perform
differently on different downstream tasks.

For tasks with statistical significance, we further
ran the Steel-Dwass test (Douglas and Michael,
1991) to see which morphological analyzer had a
significant performance difference from the oth-
ers (Table 2). We can observe task-specific trends
for an effective morphological analyzer(s). Specif-
ically, for JSTS, Vaporetto performed well. For
NER, Juman++ was effective. For UD, Sudachi
performed well. Therefore, each task seems to have
its own optimal morphological analyzer(s).

RQ3: Do different subword tokenizers perform
differently on downstream tasks? From the sta-
tistical test results for RQ3 in Table 1, we ob-
serve significant performance differences between
subword tokenizers with the same morphologi-

'"Note that we omit Nothing from the following analyses.

v A

€510 {A“i‘o Category

g 3 Arae® @ WordPiece vs. BPE
59 Ad e A WordPiece vs. Unigram
c20.5 .

t= "y B BPE vs. Unigram

& UO.O R giEl g

0.6 07 _ 08
Vocabulary similarity

Figure 2: Relationship between vocabulary similarity
of subword tokenizers and their performance difference.
Samples with the same subword tokenizer are excluded.

cal analyzers in some tasks, such as JSTS and
JCQA. “Avg.” in Table 1 indicates that Word-
Piece performed poorly, while BPE and Unigram
achieved similar results. The results of the Steel-
Dwass test (Table 3) also confirmed that WordPiece
showed significant performance degradation com-
pared with either BPE, Unigram, or both in some
tasks. We did not observe a significant difference
between BPE and Unigram across all tasks. There-
fore, different subword tokenizers could perform
on downstream tasks differently, and it is better to
use either BPE or Unigram.

We next analyze and discuss which differences
in subword tokenizers produced downstream per-
formance differences. First, we look at the differ-
ence in the vocabulary of subword tokenizers. We
plot the relationship between vocabulary similarity
and performance difference between two different
subword tokenizers in Figure 2. The vocabulary
similarity of two different subword tokenizers is
computed as ‘Vllmé‘, where |V| is the vocabulary
size and V7 and V5 are the vocabularies of two
subword tokenizers (77 and T5). For each task,
we computed the performance difference between
the two as %| > i S1i — Zj 59|, where s1; and s9;
are the i-th and j-th observed scores of 17 and
T5, respectively. We observe that symbols related
to WordPiece (@ and A) are plotted in the upper-
left corner, while others (M) are in the lower-right
corner, indicating that WordPiece has a different vo-
cabulary composition than BPE and Unigram, and
its performance difference is far larger than that
between BPE and Unigram. These results are con-
sistent with our finding that WordPiece performed
poorly with statistical significance, and both BPE
and Unigram showed similar results. Therefore, it
is possible that the vocabulary of a subword tok-
enizer has something to do with the downstream
performance.

Further, while WordPiece uses a greedy longest-
match-first strategy in tokenizing a word, both BPE



MARC-ja JSTS  JNLI  JSQuAD JCQA NER  UD
B wew g
R =
Sudachi - U>W)  U>W) g 2 % Es 2 % - U>W)
Vaporetto - Ezlj i KVV; - _ Ezlj i %; _ _

Table 3: Combinations of subword tokenizers with statistical significance (p < .05, Steel-Dwass test).

[TEKL

indicates

no statistical significance observed. “X > ) indicates that subword tokenizer X is significantly better than subword

tokenizer ).

and Unigram use a more sophisticated approach
(as explained in §2.2). This algorithmic difference
might also contribute to the performance difference
between different subword tokenizers.

5 Conclusion

To investigate the effect of tokenizers on the down-
stream performance of PLMs in a scriptio continua
language (Japanese), we compared extensive sets
of tokenizers by evaluating them on a wide range of
downstream tasks and addressed the three RQs in
§1. Future work will examine how to automatically
select the optimal tokenizer pair for a given task.

Limitations

This study has the following limitations:

» We fixed the vocabulary size of each subword
tokenizer to 30k. Using a different size might
yield different results than those in our paper,
though the effect of varying the vocabulary
size for a subword tokenizer seemed to be
small if the size is sufficiently large (e.g., over
16k or more) (Toraman et al., 2022).

* We have used the BERT architecture for our
comparison, while there are other commonly
used model architectures such as T5 (Raffel
et al., 2020) and GPT-3. The investigation
with these architectures is our future work.

* To investigate the impact of tokenizers on the
downstream performance of PLMs in scriptio
continua languages, we have taken Japanese
as a case study. Other scriptio continua lan-
guages will be addressed in the future.

Ethics Statement

This study did not involve any sensitive data
but only used publicly available data, including
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Wikipedia, CC-100, JGLUE, Japanese NER, and
UD as explained in the paper. Although we plan
to release the resulting models, they might perform
unfairly in some circumstances, as reported in Bal-
dini et al. (2022). We highly recommend users to
refer to studies on debiasing PLMs, such as Guo
et al. (2022).
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Appendices
A Japanese Morphological Analyzers

MeCab (Kudo et al., 2004) MeCab tokenizes a
sentence by first constructing a lattice on the basis
of its dictionary and then selecting the combination
with the lowest cumulative cost using the Viterbi
algorithm (Viterbi, 1967). The cost is calculated
using a pre-defined feature function in sequence
labeling.

Juman++ (Tolmachev et al., 2018) Juman++ tok-
enizes a sentence by constructing a lattice in accor-
dance with the dictionary and subsequently select-
ing the path with the highest score by beam search.
The score is calculated using both a RNN-based
language model and a feature-based linear model.

Sudachi (Takaoka et al., 2018) Sudachi puts an
emphasis on offering a tokenizer and dictionary
for business use, enabling us to select tokens of
different granularity for each application. We use
the “Middle” unit of granularity, which is similar
to words in general sense.

Vaporetto (Akabe et al., 2022) Vaporetto tok-
enizes a sentence by extracting features from the
characters within a pre-defined window and sub-
sequently classifying if a boundary exists between
each character with a linear classification model.

B Downstream Tasks

We briefly describe the seven downstream tasks
used in this paper. The statistics for each task
dataset are presented in Table 4.

MARC-ja A binary classification task to predict
whether a product review is positive or negative.
The dataset is based on the Japanese part of the Mul-
tilingual Amazon Reviews Corpus (MARC) (Ke-
ung et al., 2020).

JSTS A regression task to predict a semantic sim-
ilarity score between two sentences. The score
ranges from O (least similar) to 5 (most similar).
The data were sourced from the Japanese version
of the MS COCO Caption Dataset (Chen et al.,
2015) and the YJ Captions Dataset (Miyazaki and
Shimizu, 2016).

JNLI A three-way classification task to predict
an inference relation between two sentences. The
relation includes “contradiction,” “neutral,” and
“entailment,” the same as in SNLI (Bowman et al.,
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2015). The data source was the same as that for
JSTS.

JSQuAD A question answering task to predict
a corresponding answer span given a question and
context. The data were sourced from Japanese
articles in Wikipedia and its construction process
is based on SQuAD v1.1 (Rajpurkar et al., 2016).

JCommonsenseQA A multiple-choice question
answering task to select the best choice from five
choices given a question. JCommonsenseQA is
a Japanese version of CommonsenseQA (Talmor
et al., 2019), and it was constructed in the same
manner as in CommonsenseQA, which used the
multilingual knowledge base: ConceptNet (Speer
et al., 2017) as seeds.

NER A task to identify and categorize named
entities in a given sentence. The data were sourced
from Japanese articles in Wikipedia and anno-
tated by Stockmark Inc. The dataset is avail-
able at https://github.com/stockmarkteam/
ner-wikipedia-dataset.

UD A dependency parsing task to predict the syn-
tactic dependency structure of a given sentence (Ze-
man et al., 2017, 2018). The output is a directed
tree originating out of a root node. Each edge in
the tree has a label that defines a grammatical rela-
tionship between two words.

C Implementation Details

We implemented our tokenizers with the Tokeniz-
ers library!! and our models using the PyTorch
(Paszke et al., 2019) and Transformers (Wolf et al.,
2020) libraries. We trained our models with four
NVIDIA V100 (32GB) GPUs for pretraining and
one for fine-tuning. We used automatic mixed pre-
cision (FP16) provided by PyTorch as default. The
code is available on the GitHub: https://github.
com/hitachi-nlp/compare-ja-tokenizer, and
the models are available on the Hugging Face Hub:
https://huggingface.co/hitachi-nlp.

C.1 Data

We  downloaded Wikipedia data
https://www.tensorflow.org/datasets/
catalog/wikipedia#fwikipedia20201201ja.
As its preprocessing step, we excluded sentences
with less than 30 characters and those containing
“Category” or table symbols.

from

11https: //github.com/huggingface/tokenizers
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Number of samples

Dataset License Task Type Train Dev Test
MARC-ja Text classification 187,528 5,654 -
JSTS Sentence pair classification 12,451 1,457 -
JGLUE JNLI CCBY-SA 4.0 Sentence pair classification 20,073 2,434 -
JSQuAD Question answering 62,859 4,442 -
JCommonsenseQA Question answering 8,939 1,119 -
Japanese NER CC-BY-SA 3.0 Named entity recognition 5,343 - -
UD-Japanese-GSD CCBY-SA 4.0 Dependency parsing 7,050 507 543

Table 4:
JGLUE.

Hyperparameter Value
Batch size 128
Total training steps 500,000
Adam € le-8
Adam (3 0.9
Adam (2 0.999
Sequence length 512
Learning rate le-4
Learning rate schedule  Linear warmup
Warmup steps 10,000
Weight decay 0.01
Attention dropout 0.1
Dropout 0.1

Table 5: Hyperparameters for pretraining

C.2 Model

We used the base configuration of BERT (12 hid-
den layers and attention heads, Dimpjgden = 768,
Dimjntermediate = 3072, Total parameters = 125M).

C.3 Pretraining

We pretrained all models for 500k steps and opti-
mized them with AdamW (Loshchilov and Hutter,
2019). We mostly followed the configurations of
Devlin et al. (2019). Table 5 lists the hyperparame-
ter settings used in pretraining.

C.4 Fine-tuning

Table 6 lists the hyperparameters for fine-tuning
models on the JGLUE, NER, and UD datasets. For
UD, we trained a deep biaffine attention parser
(Dozat and Manning, 2017) built on top of the
PLMs. We computed an average for each token
over the top four layers of the BERT hidden rep-
resentations and used it as an input to a biaffine
attention parser (BAP). The dimensionalities of arc
and relation features given to each biaffine module
are 500 and 100, respectively. We used the SuPar
library'? to implement the parser and followed its

12https ://github.com/yzhangcs/parser
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Statistics for each dataset used in this paper. Note that the test sets are not currently publicly available for
Japanese NER does not have the corresponding development and test sets.

Hyperparameter Value
Batch size 32
Epochs 5 for JGLUE tasks & NER
10 for UD
Adam € le-8
Adam S 0.9
Adam 5 0.999
Sequence length 512 for MARC-ja & UD
348 for JSQuAD
128 for JSTS, JNLI & NER
64 for JCQA

3e-5 for JGLUE tasks & NER
5e-5 for BERT in UD
le-3 for BAP in UD
Linear warmup
10% of steps

Learning rate

Learning rate schedule
Warmup steps

Weight decay 0.01
Attention dropout 0.1
Dropout 0.1

Table 6: Hyperparameters for fine-tuning

default hyperparameter configurations.

D Pretraining Loss

Figure 3 shows the pretraining loss curves for our
models grouped by morphological analyzer. We
can see that WordPiece + Nothing was unstable in
pretraining.
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Abstract

Event-Level Video Question Answer-
ing (EVQA) requires complex reasoning
across video events to obtain the visual
information needed to provide optimal answers.
However, despite significant progress in
model performance, few studies have focused
on using the explicit semantic connections
between the question and visual information
especially at the event level. There is need for
using such semantic connections to facilitate
complex reasoning across video frames.
Therefore, we propose a semantic-aware
dynamic retrospective-prospective reasoning
approach for video-based question answering.
Specifically, we explicitly use the Semantic
Role Labeling (SRL) structure of the question
in the dynamic reasoning process where
we decide to move to the next frame based
on which part of the SRL structure (agent,
verb, patient, etc.) of the question is being
focused on. We conduct experiments on
a benchmark EVQA dataset - TrafficQA.
Results show that our proposed approach
achieves superior performance compared to
previous state-of-the-art models. Our code is
publicly available at https://github.com/
lyuchenyang/Semantic-aware-VideoQA.

1 Introduction

This paper focuses on one specific variant of Video
Question Answering (VQA) (Xu et al., 2016; Yu
et al., 2018; Zhong et al., 2022), namely Event-
level VQA (EVQA) (Xu et al., 2021). In gen-
eral, the objective of the VQA task is to provide
an answer to a visual-related question according
to the content of an accompanying video. De-
spite significant recent progress in VQA, EVQA
still remains one of the most challenging VQA-
based tasks since it requires complex reasoning
over the events across video frames (Sadhu et al.,
2021; Zhong et al., 2022; Liu et al., 2022). To

*corresponding author
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tackle the challenges in EVQA, a number of ap-
proaches have been proposed (Xu et al., 2021).
Luo et al. (2022) propose a temporal-aware bidi-
rectional attention mechanism for improving event
reasoning in videos, while Zhang et al. (2022) pro-
pose a novel model named Energy-based Refined-
attention Mechanism (ERM), which obtains bet-
ter performance compared to previous approaches
with a smaller model size. Liu et al. (2022), on
the other hand, incorporate visual-linguistic causal
dependencies based on Graph Convolutional Net-
works (Kipf and Welling, 2017) for enhancing
cross-modal event reasoning for EVQA.

Despite recent advances, conventional EVQA ap-
proaches generally fail to take into account the ex-
plicit semantic connection between questions and
the corresponding visual information at the event
level. Therefore, we propose a new approach that
takes advantage of such semantic connections, us-
ing the Semantic Role Labeling (SRL) (Marquez
et al., 2008; Palmer et al., 2010; He et al., 2017)
structure of questions. The model uses SRL in-
formation to learn an explicit semantic connection
between the text-based questions and visual infor-
mation in videos. Additionally, we carry out a
multi-step reasoning mechanism over video frames
to avoid adapting to spurious correlation and short-
cuts by explicitly learning the reasoning process
itself (Yi et al., 2018; Zhang et al., 2021; Picco
et al., 2021; Hamilton et al., 2022; Zhu, 2022).

Specifically, in each reasoning step, the model
should explicitly decide which frame should be fo-
cused on by predicting the reasoning direction (ret-
rospective or prospective). In terms of the ques-
tion, in each reasoning step, we focus on one or
more specific SRL arguments with high attention
weights, and model its connection with the visual
information (i.e., video frames) contained within
the corresponding video. For example, for a ques-
tion such as [ARGI1: How many cars] were [Verb:
involved] [ARG2: in the accident? ], the model con-

Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics - Student Research Workshop, pages 50-56
July 10-12, 2023 ©2023 Association for Computational Linguistics
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Figure 1: Overview of our approach for multi-step visual reasoning. In each reasoning step, the model predicts the
reasoning direction (either retrospective or prospective) and focuses on a specific SRL argument with high attention
weights. A coverage mechanism is employed to improve the coverage of SRL arguments in the question.

centrates on the ARG2 when locating the accident,
before determining how many cars were involved in
the accident (ARGI). In a specific reasoning step, ¢,
we inject the relevant visual information based on
the semantic connection between the question and
video frames by updating a hidden vector. This vec-
tor is ultimately expected to contain the necessary
information for predicting the correct answer. In
the reasoning process, we employ a coverage mech-
anism (Tu et al., 2016) to improve the coverage of
the SRL arguments of question. Namely, instead of
simply focusing on a small number of specific ar-
guments, the model is capable of including a large
range of arguments.

To investigate the effectiveness of the proposed
approach, we conduct experiments on a bench-
mark EVQA dataset: TrafficQA. Results reveal the
model to achieve performance superior to that of ex-
isting baselines for a range of reasoning types (e.g.,
counterfactual, prospective).

2 Methodology

An overview of our approach is shown in Figure 1.
Suppose the input of our model consists of a video
V' composed of n image frames sampled from
it: V.= {fo, f1, , fn—1}, and a correspond-
ing question Q@ = {wq, w1, , Wm—1} with asso-
ciated SRL arguments S = {Sy, S1, ,SN-1}
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where S; = {w;, wit1, ,wg}. All frames
V = {fo, f1, , fn—1} are fed into an IMAGE
ENCODER followed by temporal attention model-
ing to produce temporal-aware frame representa-
tions V' = {f[;, f{, ) ;1—1} € R™? Mean-
while, we use a TEXT ENCODER to obtain the
representations of the question with its correspond-
ing SRL arguments: Q' € R'*% and §" € RV*¢,
We then perform multi-step reasoning in which we
iteratively update the hidden state vector h with
the visual information from frame representations
based on the attention weights between them and
the SRL arguments of the question. & is updated
from the initial step hg to the final step h7_; where
T is the total number of reasoning steps. Finally,
we predict the most probable answer a based on
hr_1.

2.1

Before the first reasoning step, we initialize:

Multi-step Reasoning

ho = Attn(Q', V', V') (1)

j = argmaz(AttnWeights(Q', V', V')) (2

where Attn serves as the g, k, v attention' mod-
eling (Vaswani et al., 2017) and j represents the
'In this work, we use a low temperature 7 in the softmax

to encourage the model to assign more attention weights to
the most relevant frame.



index of the frame with the highest attention weight.
In each specific reasoning step ¢, we firstly use hy—1
as the attention key to obtain the relevant SRL ar-
gument: S; = Attn(hy_1,S ,S"). Subsequently,
we infer the next focused frame by:

vieews — Attn(r, V', V) (3)

where 7, = g(h;_1, S;). Finally, we update the
hidden state vector h;_; based on the currently
focused frame (the frame with the largest attention
weight):

he = 6(hy_y, VIoous) )

2.2 Retrospective-Prospective Reasoning

We propose a Retrospective-Prospective Reason-
ing mechanism for Eq.3 in order to explicitly de-
cide whether the model should move to future
frames (prospective reasoning) or move back to
previous frames (retrospective reasoning). We ob-
tain the retrospective frame V"'"° and prospective
frame VPP by:

VT = (g(hi, 50), V', RetroMask(j))  (5)

VPO = ¢(g(hi-1,8.), V', ProspMask(j))  (6)

where 1) and ¢ are MASKED ATTENTION that
are used to obtain retrospective and prospective
frames, g(hs_1,S;) and V' serve as query and
key, value respectively. RetroMask(j) means
all frames after j (f;~;) will be masked whereas
ProspMask(j) means that all frames before
j (fi<;) will be masked. After obtaining V"¢
and VP"°P we generate a probability:

p= U(}\(Vretr07 Vprosp)) (7)

If p is larger than a pre-defined threshold o, we
update hy = §(hy—1, V") ,otherwise we update
hy = §(hi—1, VP™*P) as in Eq. 4. The index for the
next-focused frame j is also updated accordingly.
The reasoning process is shown in Algorithm 1.

2.3 Coverage Mechanism

We additionally propose to employ a coverage
mechanism (Tu et al., 2016) to encourage the model
to include as many SRL arguments as possible in
the reasoning process. Specifically, we track the
attention distribution C; € R of h,_; on all
SRL arguments S

AttnWeights([hi—1; Ce—1], s, S/)
X

Cy=Ci1 + (8)
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Algorithm 1: Multi-step  dynamic
retrospective-prospective reasoning with
coverage mechanism

V= {f07 f17
frames

Q@ : question

S': SRL representations of )

T': reasoning steps

X : normalization factor

a: threshold of the probability for using retrospective
frame .,

ho = Attn(Q ,V , V)

j= argmax(Atz’fnV[/eights(Q/7 v, V/))

Co=0

for i inT do

S; = Attn(hi—1,S .S, Ci_1)

CimCiy s AttnWeights(h; 1,5 ,S ,Ci_1)

, fn—1}: representations of video

X

Ve = y(g(hi-1,S), V', RetroMask(j))
y/Prosp — ¢(g(h)i717 S;)7 ‘/,7 P’I”OSpMClSk(]))
p = o/ (Ve VIeih))
if p > o then

hi _ S(hiihvretro)

j = argmaz(yp(g(hi—1, S;), V', RetroMask(3)))
else

hi = 0(hi—1, VPTP)
§ = argmaz(¢(g(hi_1,5;),V', ProspMask(j)))

where x represents the normalization fac-
tor> We obtain the weighted S; by S, =
Attn([hs—1;C;_1], 5", S") where we concatenate
C;_1 to hi—1 as an additional input to the At
function for the purpose of informing the model to
assign more attention weights to previously less-
focused SRL arguments, in order to improve the
coverage for all SRL arguments.

2.4 Training Objective

For the answer prediction, we encode all answer
options A = {ay, ,ap;—1} separately and then
select the one with the highest similarity with hp_1.
We optimize our model parameters € using Cross
Entropy loss:

ag,hr_1)

) Yik
©

where [ is the function measuring the similar-
ity between answer candidate and h7_1, and y; j
represents the answer label for the 7—th example
- if the correct answer for the ¢—th example is the
k—th answer then y; ;. is 1 otherwise it is 0.

el (ajhr—1

o
J(0) = — lo
) Zg Iy

i

%In this work, we use the number of SRL arguments of the
corresponding question as the normalization factor.



Models Setting-1/4  Setting-1/2
Q-type (random) (Xu et al., 2021) 25.00 50.00
QE-LSTM (Xu et al., 2021) 25.21 50.45
QA-LSTM (Xu et al., 2021) 26.65 51.02
Avgpooling (Xu et al., 2021) 30.45 57.50
CNN+LSTM (Xu et al., 2021) 30.78 57.64
I3D+LSTM (Xu et al., 2021) 33.21 54.67
VIS+LSTM (Ren et al., 2015) 29.91 54.25
BERT-VQA (Yang et al., 2020) 33.68 63.50
TVQA (Lei et al., 2018) 35.16 63.15
HCRN (Le et al., 2020a) 36.49 63.79
Eclipse (Xu et al., 2021) 37.05 64.77
ERM (Zhang et al., 2022) 37.11 65.14
TMBC (Luo et al., 2022) 37.17 65.14
CMCIR (Liu et al., 2022) 38.58 N/A
Ours 43.19 71.63

Table 1: Evaluation results on TrafficQA dataset.

3 Experiments

3.1 Dataset

We employ a benchmark dataset for EVQA - Traf-
ficQA (Xu et al., 2021) which contains 62,535 QA
pairs and 10,080 videos. We follow the standard
split of TrafficQA — 56,460 pairs for training and
6,075 pairs for evaluation. We further sample 5,000
examples from training data as the dev set.

3.2 Experimental Setup

We use CLIP ViT-B/16 (Radford et al., 2021) 3
to initialize our image encoder and text encoder.
We evenly sample 10 frames from each video
in the TrafficQA dataset. The SRL parser em-
ployed in the experiments is from AllenNLP (Gard-
ner et al., 2018; Shi and Lin, 2019). We train
our model over 10 epochs with a learning rate of
1 x 1075 and a batch size of 8. The optimizer is
AdamW (Loshchilov and Hutter, 2019). We set
the maximum reasoning step 7" to 3 and we use a
temperature 7 of 0.2 in Attention modeling. The
hyper-parameters are empirically selected based on
the performance on dev set. There are two experi-
mental settings for TrafficQA (Xu et al., 2021): 1)
Setting-1/2, this task is to predict whether an an-
swer is correct for a given question based on videos;
2) Setting-1/4: this task follows the standard setup
of multiple-choice task in which the model is ex-
pected to predict the correct the answer from the
four candidate options.

3.3 Results

The experimental results on the test set of Traf-
ficQA are shown in Table 1, where we also in-

3https://openai.com/blog/clip/
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clude the previous baseline models for EVQA.*
The results show that our proposed approach ob-
tains accuracy of 43.19 under the multiple-choice
setting, which surpasses previous state-of-the-art
approaches including Eclipse (Xu et al., 2021),
ERM (Zhang et al., 2022), TMBC (Luo et al., 2022)
and CMCIR (Liu et al., 2022) by at least 4.5 points.
Furthermore, our approach achieves an accuracy
of 71.63 under Setting 1/2, outperforming previous
strong baselines by at least 6 points. The results
show the effectiveness of our proposed multi-step
reasoning approach for event-level VideoQA.

Ablation Study We conduct experiments on the
dev set of TrafficQA, investigating the contribution
of both the retrospective-prospective reasoning and
coverage mechanism on the performance of our
proposed EVQA approach. The results are shown
in Table 3, which reveals that multi-step reasoning
is critical in terms of model performance while the
coverage mechanism can provide additional, albeit
less substantial, improvements.

Results by Question Type We take a closer look
at model performance on different question types,
e.g. reverse reasoning, counterfactual reasoning,
etc. The results are shown in Table 2. They reveal
that our proposed approach outperforms previous
state-of-the-art models on all individual question
types by a large margin with large improvements
seen for introspection, reverse and counterfactual
questions.

Effect of Reasoning Steps We study the effect
of varying reasoning steps. The results are shown
in Table 4. Increasing reasoning steps improves
performance, especially from 1 step to 3 steps. Ad-
ditionally, the performance (both Setting 1/4 and
1/2) is stable with reasoning steps exceeding three.

4 Conclusion and Future Work

In this paper, we propose a multi-step dynamic
retrospective-prospective approach for EVQA. Our
approach employs a multi-step reasoning model
that explicitly learns reasoning based on the seman-
tic connection of the SRL structure of a question
and corresponding video frames. We additionally
proposed a coverage mechanism to improve the
coverage of SRL arguments in the reasoning pro-
cess. Experimental results show that the proposed

*Some of the baseline results are taken from Xu et al.
(2021).



Question Type

Method Basic  Attribution Introspection Counterfactual Forecasting Reverse — All

HCRN (Le et al., 2020b) 34.17 50.29 33.40 40.73 44.58 50.09  36.26
VQAC (Kim et al., 2021) 34.02 49.43 34.44 39.74 38.55 49.73  36.00
MASN(Seo et al., 2021) 33.83 50.86 34.23 41.06 41.57 50.80  36.03
DualVGR (Wang et al., 2021) 33.91 50.57 33.40 41.39 41.57 50.62  36.07
CMCIR (Liu et al., 2022) 36.10 52.59 38.38 46.03 48.80 5221  38.58
Ours 37.05 52.68 43.91 50.81 54.26 55.52 43.19

Table 2: Results by various question type on the dev set of TrafficQA. The highest performance are in bold.

Models Setting-1/4 Setting-1/2
Model w/o MR and CM 42.53 69.61
Model w/o CM 46.15 74.97
Model 47.38 75.83

Table 3: Ablation study results on TrafficQA dev set,
where MR represents Multi-step Reasoning and CM rep-
resents Coverage Mechanism. MR and CM are coupled
in our approach.

Reasoning Steps Setting-1/4 Setting-1/2

Model w/ 1 step 41.57 71.46
Model w/ 2 steps 4421 74.95
Model w/ 3 steps 47.38 75.83
Model w/ 4 steps 47.23 75.96
Model w/ 5 steps 47.15 75.87

Table 4: The effect of various reasoning steps.

approach obtains superior performance compared
to that of state-of-the-art EVQA models.
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Limitations

This papers focuses on a variety of VideoQA -
event-level VideoQA, we only incorporate event
information from the question (textual) side as
we think that parsing video frames is inaccurate
and could introduce unexpected errors, we should
also explore how to inject event-level information
from visual side in the future with more compet-
itive visual parsing models. Our experiments are
only conducted on one dataset due to resource con-
straint, we should also conduct experiments on
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more datasets to verify the effectiveness of our ap-
proach.
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Abstract

Natural Language Inference (NLI) tasks in-
volving temporal inference remain challenging
for pre-trained language models (LMs). Al-
though various datasets have been created for
this task, they primarily focus on English and
do not address the need for resources in other
languages. It is unclear whether current LMs
realize the generalization capacity for tempo-
ral inference across languages. In this paper,
we present JAMP, a Japanese NLI benchmark
focused on temporal inference. Our dataset in-
cludes a range of temporal inference patterns,
which enables us to conduct fine-grained anal-
ysis. To begin the data annotation process, we
create diverse inference templates based on the
formal semantics test suites. We then auto-
matically generate diverse NLI examples by
using the Japanese case frame dictionary and
well-designed templates while controlling the
distribution of inference patterns and gold la-
bels. We evaluate the generalization capacities
of monolingual/multilingual LMs by splitting
our dataset based on tense fragments (i.e., tem-
poral inference patterns). Our findings demon-
strate that LMs struggle with specific linguistic
phenomena, such as habituality, indicating that
there is potential for the development of more
effective NLI models across languages.

1 Introduction

Natural Language Inference (NLI) is the task of
determining whether a set of premises entail a hy-
pothesis. NLI involving temporal inference is a
challenging task and remains a significant problem
for pre-trained language models (LMs). One line
of research has investigated the temporal inference
abilities of LMs (Kober et al., 2019; Vashishtha
et al., 2020; Thukral et al., 2021; Chen and Gao,
2022). However, existing datasets and analyses
primarily focus on English, and more analysis and
datasets are required for other languages, includ-
ing Japanese. Therefore, it is still unclear to what
extent current LMs can perform various types of
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&INT2 T VP
(NP VPpagtin INT2.)
A

[ Template

EINTH T VP
(NP VPpatin INT1.)

(FINT2 A I VPpAas1 fzt INT2 BLE DMFT VPpast
(NP VPpast Within INT2.) (NP VPpgast after more than INT2.)

| l Assi
< ign words
N\ /

(3K T HE L
(Taro arrived in 3 hours.)

Problem |

(& 2] T 2B U

(Taro arrived in 2 hours.)
e
(& B BN I BIE LT (& B MULE/MFT EE LR

(Taro arrived within 3 hours.) (Taro arrived after more than 3 hours.)

Figure 1: An illustration of our data annotation process.
INT in the templates means interval. --» means that
the gold label is undetermined, — means that the gold
label is Entailment and - means that the gold label is
Contradiction.
temporal inference across languages. In this pa-
per, we construct JAMP', which is a Japanese NLI
dataset for temporal inference, and evaluate the gen-
eralization capacity of several LMs on our dataset.
Our goal is to construct a temporal inference
dataset that precisely assesses the generalization
capacities of LMs. Manual annotation is a vi-
able option for achieving this goal, but it does
not fully meet our needs based on several limi-
tations described below. Although using crowd-
sourcing to increase the size of datasets may be
cost-effective (Bowman et al., 2015; Williams et al.,
2018), managing biases and artifacts in the result-
ing data can be challenging (Poliak et al., 2018b;
Gururangan et al., 2018). In contrast, datasets man-
ually constructed by experts (Cooper et al., 1996;
Kawazoe et al., 2015) may have high quality but
are potentially expensive to scale. Additionally,
manual dataset construction makes it difficult to
control the distribution of vocabulary and infer-
ence patterns in a dataset because it heavily relies
on the prior knowledge of each annotator (e.g.,
word choice). To address the issues associated with

'Our dataset is available on https://github.com/
tomo—-ut/temporalNLI_dataset
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Main Tense Fragment | Sub-tense Fragment |

Example Problem

Reference resolution

of WEH (yesterday)

Temporal anaphora

FEH. APCOM W ZHE 12 BA L,

yesterday , APCOM wa contract ni sign .

(APCOM signed the contract yesterday.)

SHIE7H 14 H L#EH 72,

today wa 7 month 14 day Saturday da .

(Today is Saturday, July 14.)

APCOM (3 13 H @ €MEH 12 ZiE 12 BA U,
APCOM wa 13 day no Friday ni contract ni sign .
(APCOM signed the contract on Friday the 13th.)
Entailment

Interval Completion of eventuality

H

G

AIABRN=IVIL I 2EREAE,
Smith wa Birmingham ni 2 year live .
(Smith lived in Birmingham for two years.)
AIAEN=IVHLITHEAR,
Smith wa Birmingham ni live .

(Smith lived in Birmingham.)

Entailment

Table 1: Examples of tense fragments and corresponding problems. P, H, and G indicate a set of premises, a

hypothesis, and a gold label, respectively.

manual annotation, prior work uses template-based
approaches that automatically assign diverse vo-
cabulary to templates that are manually created by
experts to construct scalable datasets (Richardson
et al., 2020; Yanaka and Mineshima, 2021). By
using this method, we can strictly manage the vo-
cabulary and inference patterns in a dataset, thus it
is a suitable approach for probing LMs.

Figure 1 presents our data annotation process,
which consists of two stages: femplate creation
and problem generation. We first collect Japanese
temporal inference examples from JSeM (Kawazoe
et al., 2015), which is the Japanese version of Fra-
CaS (Cooper et al., 1996), and manually transform
them into templates by masking content words (e.g.,
nouns and verbs) and temporal expressions (e.g.,
date and time), producing 46 tense fragments (i.e.,
temporal inference patterns) based on formal se-
mantics. We then generate examples by assigning
content words sampled from a Japanese case frame
dictionary (Kawahara and Kurohashi, 2006) and
randomly generating temporal expressions to those
templates. These techniques ensure that the sen-
tences in JAMP are diverse and cover a wide range
of temporal inference patterns. It is important to
note that our temporal NLI examples are derived
from a diverse set of templates that are classified
with tense fragments, allowing us to create different
test splits depending on the goal of evaluation, such
as generalization across different tense fragments.

We evaluate two Japanese models and one multi-
lingual model on our dataset. We analyze whether
they can solve our dataset in a zero-shot setting
(trained on existing Japanese NLI datasets) and a
fine-tuning setting (trained on a small subset of
our dataset). The experimental results demonstrate
that the LMs can generalize across different tem-
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poral expressions but fail to generalize some tense
fragments such as habituality.

2 Background

2.1 Frame

Frame is one of the basic knowledge for language
understanding. There are several English resources
for frame knowledge, including VerbNet (Schuler,
2005), FrameNet (Baker et al., 1998), and Prop-
Bank (Palmer et al., 2005), and previous studies
have used these resources to construct datasets (Po-
liak et al., 2018a; Mitra et al., 2020).

In Japanese, case particles (e.g., 7>—pronounced
ga) are attached to verbal arguments (e.g., subject)
and determine the case frame. A Japanese case
frame dictionary (Kawahara and Kurohashi, 2006)
is the largest resource that reflects these charac-
teristics of Japanese language. This case frame
dictionary is a set of 110,000 predicates and asso-
ciated nouns extracted from 10 billion sentences,
that are annotated for each predicate usage. Table 2
shows an example of a case frame in the Japanese
case frame dictionary.

As shown in Table 2, the case frame dictionary
contains information regarding the frequencies of
case frames and nouns. In this paper, we use these
case frames to generate a dataset containing diverse
sentence patterns without grammatical errors.

2.2 Fragments

Some existing datasets (Cooper et al., 1996; McCoy
et al., 2019; Yanaka and Mineshima, 2021), includ-
ing JSeM (Kawazoe et al., 2015), define problem
categories for each problem for further analysis.
In this study, we systematically defined tense frag-
ments (i.e., temporal inference patterns) based on



case frame
[CR, 3 .. 218473
handle [recording, job, ...]

Assign

. Split problems
temporal expressions

[ehY K E.]2F3
defend [second, country, ..

Templates
P:agent I int np % Vppast

Sample Problems
P: AX R F2RMEEB LBV

Train Sentences
P: 74 Ji& int BEREBY LT
(Dave handled the recording for int.)
H: 71 JidieiEsy Lk
(Dave handled the recording.)

Train Dataset

P: 7oA Ji32AMEREBY LT
(Dave handled the recording for 2 days
H: 74 JI3RREBY U

(Dave handled the recording.)

G: Entailment

Train Problems
P: 74 Jig2HMRREBY LT
(Dave handled the recording for 2 days.)
H: 74 JI3RREBY U
(Dave handled the recording.)
G: Entailment

(Smith wrote a report for two hours.)

(agent vppast np for int.)

H: RS RFMEB/E /O
(Smith wrote a report.)
G: Entailment

H: agent {& np % vppast
(agent vppast np.)
G: Entailment

Assign content words
with case frame

Mask

content/temporal words G: Entailment

Raw Test Sentences
P:AZD—Rint hY REFS T
(Oscar defended second for int.)
H:AZHh—RBEhY REFo T
(Oscar defended second.)

Test Dataset

P: A AN —REHMEHY REF T
(Oscar defended second for int.)

H: A2 h—@FthY REFoT

Test Sentences
P:AZN—int Ay REFo T
(Oscar defended second for int.)

H AR =AY REFofe
(Oscar defended second.)
G: Entailment

(Oscar defended second.)
G: Entailment

Remove
unnatural sentences

Figure 2: Overview of our data construction pipeline. 1) We first create temporal inference templates from existing
examples. 2) We then assign content words using the Japanese case frame dictionary. 3) After isolating train and
test examples, we assign temporal expressions to the candidate sentences. Additionally, we manually filter unusable

sentences from the test examples.

£|75 7 % (arrive): verb, freq=118520

ga | #F (athlete) fyeq=205, NifiPH (president) freq=114, - - -
ni | ZE¥ (airport) freq=24705, T )V (hotel) freq—9639, * - -
de | FRATHE (airplane) fr.cq=3a7, /¥ A (DUS) freg=203, - - -

Table 2: An example of a case frame in the Japanese
case frame dictionary.

the categories of temporal inference patterns in
JSeM.

Table 1 shows some examples of tense fragments
(see Appendix A for additional tense fragments). In
Table 1, “Main Tense Fragment” represent higher-
level classifications, and “Sub-tense Fragment” rep-
resent sub-classifications that are subdivided from
the main tense fragments. Tense fragments enable
a more detailed analysis of LMs’ understanding of
temporal inference.

3 Jamp

In this paper, we present JAMP, which is a Japanese
NLI dataset for temporal inference, and propose a
method for automatic construction from templates
based on tense fragments. Figure 2 shows the
pipeline of our method. First, we create a template
by masking content words and temporal expres-
sions in existing temporal NLI problems (§3.1).
A template consists of the following triplet: (i) a
set of premises in which content words and tem-
poral expressions are masked, (ii) a hypothesis in
which content words and temporal expressions are
masked, and (iii) a condition for determining a gold
label. Here, a gold label can take on three values:
Entailment, Contradiction, and Neutral. Next, we
generate training and test sentences by assigning
content words selected from the vocabulary list to
the template (§3.2). We create a vocabulary list by
using the Japanese case frame dictionary to make
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P:  agent_l 7% interval_1 DA np_1 % vp_I_past.
H:  agent_1 & interval_2 ANIZ np_1 % vp_1_past,
Template ifg interval_1 < interval_2 then gnlailmesl P
G:
else Neutral
ILY A6 FEM BN IZ T % ER L7z,
P: Ellen ga 6 years within ni goal o achieved .
Generated (Ellen has achieved her goal \ivilhin six‘}:_ea‘rs.)
Problem ITU VSR BN IC -0 & ER LT,
H: Ellen wa 5 years within ni goal o achieved .
(Ellen has achieved her goal within five years.)
G: Neutral

Table 3: An example of a template and a problem gen-
erated by our method.

sentences more coherent.’

We manually inspect all sentences in the test
examples and eliminate any sentences that are un-
natural or harmful. We then generate train and
test problems by assigning temporal expressions to
train and test sentences. Finally, we split the train-
ing problems along three axes (e.g., tense fragment,
time format, and time span) to create training data
for various experimental settings (§3.4). In this
section, we describe each of these steps in detail.

3.1 Template Creation

In the first step, we construct templates consisting
of a set of premises, a hypothesis, and a gold label.
We create templates for temporal problems based
on problems in the temporal inference section of
JSeM by masking content words such as nouns and
verbs (e.g., A X A (Smith), £ A 72 (lived)), and
temporal expressions (e.g., 7 H 14 H (July 14),
2 4 (2 years)). Additionally, because the gold
label depends on the temporal expression in the
sentence, we convert the original gold label into a
condition in which the gold label is determined by
specifying a temporal expression. Table 3 shows

2We considered a generation method using masked LMs or
generative models but did not adopt them in this study because
the generation time was too long, and it was difficult to control

the vocabulary and not change inference patterns and syntactic
structures.



an example of the template. In the example in
Table 3, the condition is “if interval_1 < interval_2
then Entailment else Neutral” and the gold label is
determined according to temporal expressions in
interval_1 and interval_2.

There can be strong correlations between spe-
cific words and labels in examples generated from
templates based on certain JSeM problems. Be-
cause such correlations could introduce undesired
biases into our dataset, we removed these correla-
tions by constructing new challenging templates
for some JSeM problems (see Appendix B for ex-
amples).

3.2 Problem Generation

We generate problems by filling the masks in tem-
plates with various nouns, verbs, and temporal ex-
pressions and determining the gold label from these
temporal expressions. We use the Japanese case
frame dictionary as a vocabulary for selecting verbs
and nouns (§2.1). In this study, we manually filter
about 30 offensive words from verbs whose fre-
quency in the dictionary is greater than 1000 and
nouns whose frequency in the dictionary is greater
than 100 extracted from the case frame dictionary
and use filtered words.

We target two types of temporal expressions
in this study: time points (e.g., 8 H 16 H 7 I
(August 16, 7:00)) and intervals (e.g., 3 7 H (3
months)). For time points, we use 10 formats com-
bining year/month/day/hour units: Year (Y), Month
(M), Day (D), Hour (H), YM, MD, DH, YMD,
MDH, and YMDH. For intervals, we use four for-
mats: Year, Month, Day, and Hour.

We assign content words and temporal expres-
sions to templates as follows. First, we randomly
select a verb with the case in the template from the
case frame dictionary. Next, we randomly select
nouns that the selected verb can take as its case in
the template. Here, we select a noun for a subjec-
tive case from a manually created list of common
first names (e.g., Alice and Bob).

Then, if a temporal expression exists in the orig-
inal problem corresponding to the template, we
generate a new temporal expression as follows and
assign it to templates. If the original temporal ex-
pression is an interval, we generate an interval by
concatenating an integer randomly selected from
one to nine according to one of the four formats
described above. If the original temporal expres-
sion is a time point, we first randomly select a time
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Figure 3: The artifact statistics of (a) JAMP and (b)
Temporal NLI (Vashishtha et al., 2020) training sets.
The majority of words in JAMP, with the exception of
“UN7z,” are located below the green line, implying that
they do not exhibit spurious correlations with the gold
labels. A substantial number of words in Temporal NLI
correlate with the gold labels.

point within the range of January 1, 2000, at 0:00 to
December 31, 2020, at 24:00. Then, one of the ten
formats described above is applied to the selected
time point. For example, if the MD format is ap-
plied to 0:00 on January 1, 2010, then the generated
temporal expression will be “January 1.”

Finally, we assign a gold label by evaluating the
condition for the gold label in the template. Table
3 shows an example of a template and the problem
generated from that template. In Table 3, the condi-
tion is “if interval_1 < interval_2 then Entailment
else Neutral.” Because the generated temporal ex-
pressions for interval_1 and interval_2 are 64E
(six years) and S4E[H] (five years), respectively, its
gold label is Neutral. To ensure that the distribu-
tion of gold labels is approximately uniform, we
generate the same number of problems from each
pair of a template and a gold label.



Unnatural Sentence [ Cause

Fr—U—D A7 % ko,
Charlie ga ink o sucked .

(Charlie sucked ink.)

EENZ ENEY TN oY
Walter wa characteristic ni changed .
(Walter changed in character.)
Frol X EE T ETETVE,
Carroll wa speed ni arise .

(Carroll arose to speed.)

Semantically unnatural

Incomplete sentence

Semantically unnatural
Grammatically unnatural

Table 4: Examples of unnatural sentences we filtered.

3.3 Quality Control

3.3.1 Dataset Artifacts

Previous works have demonstrated that existing
datasets are often affected by dataset artifacts and
spurious correlations between surface features and
gold labels (Jia and Liang, 2017; Gururangan et al.,
2018; Poliak et al., 2018b). We conduct statisti-
cal analysis on our dataset following the method
outlined by Gardner et al. (2021) to identify token-
level artifacts. Our analysis reveals the extent to
which certain words are highly correlated with one
of three labels (see Appendix D for details).

Our automatic data annotation approach enables
us to effectively manage the examples that we gen-
erate. We conduct this statistical analysis during
the data generation phase and modify vocabulary
words and templates to eliminate shortcuts and spu-
rious correlations between certain words and gold
labels. As depicted in Figure 3, the majority of
words in JAMP do not exhibit spurious correlations
with the gold labels, whereas a significant number
of words in Temporal NLI (Vashishtha et al., 2020)
correlate with the gold labels.> In JAMP, the word
“\17z7% stands out as an exception, but its impact
is relatively low because its score is close to the
green line.

3.3.2 Dataset Quality

Naturalness We manually check the naturalness
of all test examples and filter out disqualified sen-
tences (approx. 40% of all sentences).” Table 4
shows examples of sentences we remove from the
test set and the reasons for their removal.
Semantically unnatural (e.g., the examples at the
top and bottom of Table4) refers to sentences that
are grammatically correct but may not be plausible.
One reason for the generation of such sentences is

3We sample 100k training examples for this statistical
analysis.

*This Japanese word has multiple grammatical roles. One
is a past stative verb, and another is a past continuous form of
a verb.

>We ask 3 graduate students studying NLP/linguistics to
judge sentence quality.
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that the Japanese case frame dictionary does not
describe the correspondence between cases (e.g.,
7 ¥ (accusative) and =#% (dative)). The second
case, an incomplete sentence, could be generated
since the Japanese case frame dictionary does not
describe the essential case for predicates. Other ex-
amples, such as the third, show verbs conjugated in
the wrong form. This is probably because the verb
is not included in the dictionary used to conjugate
the verb.

Correctness We randomly sample 100 cases
from the constructed test data and manually judge
their entailment labels. We check whether the
judgement is the same as their gold labels. We
confirm that the gold labels in all cases were an-
notated as intended. However, the gold labels for
some problems were debatable. For example, in the
sentence I read a book for three hours, the mean-
ing of for three hours can be interpreted as "just
three hours," "about three hours," and "at least three
hours". The interpretation depends on the speaker
and the context. In such cases, their gold labels
depend on the reading, but we confirmed that they
are correct in at least one of the possible readings.

3.4 Split Problems

Our controlled data generation method enables us
to split problems into seen problems (i.e., problems
included in both test and training data) and unseen
problems (i.e., problems included only in test data)
systematically, which is suitable for investigating
the generalization capacity of LMs. In this study,
we split our training data to analyze whether LMs
can generalize various temporal inference patterns
learned from training data. We split the training
data based on three axes: tense fragment, time
format, and time span. Table 5, 6, and 7 show an
example of a seen/unseen problem in each split.

3.4.1 Tense Fragment-Based Split

Tense fragment refers to the categorization of the
problems described in Section 2.2. We define
two splits based on the tense fragments: FRAG-
MENT_EASY and FRAGMENT_HARD. These splits
aim to test whether LMs can learn temporal in-
ference from basic problems and generalize the
acquired inference patterns to more challenging
problems. Therefore, both FRAGMENT_EASY and
FRAGMENT_HARD include only basic problems in
the training data and challenging problems in the
test data. FRAGMENT_HARD contains a higher pro-



| Seen problem

Unseen problem

TF: Order relation - Transitive, Gold label: Entailment TF: Order relation - Transitive + Before/After, Gold label: Entailment
<Ly MiE A7 2 BN B R E# D, =TV ERF =D EETIEICEF L,
Mallett wa Eve ga leave before ni leave . Marvin wa Peggy ga study abroad before ni study abroad .
P (Mullet left before Eve left.) (Marvin studied abroad before Peggy studied abroad.)
1470 Fry—Y— 2 HENT 5 B 2, X=U4 Y EFraLAEF LR ICETE L,
Eve wa Charlie ga leave before ni left . Marvin wa Carol ga studied abroad after ni studied abroad .
(Eve left before Charlie left.) (Marvin studied abroad after Carol studied abroad.)
Sy MEFr—U— AT a0 BT, AF—RFFyuL P EFELERICHEFELE,
H | Mallett wa Charlie ga leave before ni leave . Peggy wa Carol ga study abroad after ni study abroad .
(Mullet left before Charlie left.) (Peggy studied abroad after Carol studied abroad.)
TF: Usage of B{fE (now) - Present tense, Gold label: Entailment | TF: Usage of BIfE (now) - Past tense, Gold label: Neutral
Ly b BRESAICERTT 2 BTV, TAY Y 7 X AF T N— % inTuwi,
P Mallett wa everyone ni thinking o state . Isaac wa tour ni bar o visit .
(Mallett is stating his thinking to everyone.) (Isaac was visiting the bar for a tour.)
RLYy N RBEFIAICEZLS 2 BRTVWS, TAYyZ RBERZ T AA— 2 nTnd,
H | Mallett wa now everyone ni thinking o state . Isaac wa now tour ni bar o visit .
(Mallett is now stating his thinking to everyone.) (Isaac is now visiting the bar for a tour.)

Table 5: Examples of problems that are in the training data (seen problems) and corresponding problems that are
not in the training data (unseen problems) in a tense fragment-based split setting. TF means the tense fragment.

portion of challenging problems and fewer tense
fragments in the training data, which is a more
difficult setting for models.

We define basic and challenging problems based
on the sub-tense fragments in the tense fragment
classification. For example, as in the first example
in Table 5, suppose a certain tense fragment has
sub-tense fragments that are finer than that tense
fragment. In this case, the original tense fragment
(Order relation — Transitive) is considered as basic,
and the subcategories (Order relation — Transitive
+ Before/After) are considered as challenging. In
contrast, as in the second example in Table 5, if
there is no such sub-tense fragment, but there are
sub-tense fragments with the same granularity as
that of the classification, one (Usage of B{7E (now)
— Present tense) is considered as basic, and the other
(Usage of BifE (now) — Past tense) is considered
as challenging.

3.4.2 Time Format-Based Split

Time format represents the format of the temporal
expression inserted in a problem. In this study, we
define ten time formats by combining multiple time
units (year, month, day, and hour) for time points
and define two splits based on the time formats.
This split aims to test whether LMs can learn the
size relationships between time units (year > month
> day > hour) from a minimal number of combina-
tions of units and generalize the acquired inference
patterns to apply them to complex combinations.

The first split is FORMAT_HARD, which contains
only a single time unit pattern (i.e., patterns involv-
ing only year, only month, only day, or only hour)
in a training set and evaluates models on combined
patterns of multiple time units.

The other split is FORMAT_EASY, which in-
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cludes a minimum number of combinations (i.e.,
year-month pattern, month-day pattern, and day-
hour pattern) that allow the models to understand
the size relationships between time units, as shown
in the second example in Table 6. By comparing the
accuracy of FORMAT_EASY and FORMAT_HARD,
we can determine whether LMs can learn and gen-
eralize the size relationships between time units.

3.4.3 Time Span-Based Split

Time span represents the closeness of temporal
expressions when multiple temporal expressions
appear in a problem. In this study, we define two
time spans: SHORT and RANDOM. In SHORT time
span problems, the temporal expressions are gen-
erated such that the time points included in the
problem are close to each other (see Appendix C),
as shown in the unseen problem in Table 7. On
the other hand, in RANDOM time span problems,
the distance between the time points included in
the problem is not predetermined, and the temporal
expressions are generated in the same manner as
described in Section 3.2. Therefore, the distances
between the time points included in a problem are
often far apart, as shown in the seen problem in
Table 7.

When a model determines the order of two time
points, the model must compare the two time points
in order, starting with the largest unit. If two time
points are far apart, then the model can determine
their order by comparing only the larger units, but
if two time points are close, then the model must
compare additional units to determine their order.
For example, the order of January 1, 2010, at 1:00
and October 10, 2020, at 10:00 can be determined
by looking only at the year, but the order of Jan-
uary 1, 2010, at 1:00 and January 1, 2010, at 10:00


https://huggingface.co/transformers/

| Seen problem

Unseen problem

Format: Year, Gold label: Neutral Format: Year-Month-Day-Hour, Gold label: Entailment
Ny b pY 6 AR DL T R & o 7, IV Y P2 BN BEX & BT,
Pat ga 6 year within ni price o paid . Ellen ga 2 years within ni mind o changed .
P (Pat paid the price within 6 years.) (Ellen changed her mind within 2 years. )
2%y b 1% 2009 F 2 20 Uil & S BT, ILYIF2016 11 BI8SHISEIZ TD EX & £X lhdT-,
Pat wa 2009 year ni its price o pay began . Ellen wa 2016 year 11 month 18 day 15 hour ni its mind o change began .
(Pat began paying the price in 2009.) (Ellen began to change her mind at 15:00 on November 18, 2016.)
Ny N IE2011 F £TIC 20 Rili 2 LWV EAT-, ILVYIE220F 108 15H2IRETIC TD EX 2 £A KA,
H | Pat wa 2011 year until ni its price o pay finished . Ellen wa 2020 year 10 month 15 day 21 hour until ni its mind wo change finished .
(Pat finished paying the price by 2011.) (Ellen finished changing her mind by 21:00 on October 15, 2020.)
Format: Year-Month, Gold label: Entailment Format: Year-Month-Day-Hour, Gold label: Entailment
2018 FE 8 A Lk, TALX— BB ITERLTVS, 2008F 2827 HOBE LK, EI7X—1Z V7 IRV T IZHBELTVS,
2018 year 8 month since , Walter wa cabinet ni instruct . 2008 year 2 month 27 day 0 hour since , Victor wa Softbank ni transfer .
P (Since August 2018, Walter has instructed cabinet members.) (Since 0:00 on February 27, 2008, Victor has been transferred to Softbank.)
BUE, 2018%F 11 B TH2, BUE, 200828274 TH5,
now , 2018 year 11 month dearu . now , 2008 year 2 month 27 day 4 hour dearu .
(It is now November 2018.) (It is now 4:00 on February 27, 2008.)
T AR — 132018 F 9 B ICIX ERICHERL TV, C7R2— 132008 F 2B 27 H1R X V7 MY TBELTVE,
H | Walter wa 2018 year 9 month niwa cabinet ni instruct . Victor wa 2008 year 2 month 27 day 1 hour niwa Softbank ni transfer .
(Walter had instructed the cabinet ministers in September 2018.) (Victor was transferred to Softbank at 1:00 on February 27, 2008.)

Table 6: Examples of problems that are in the training data (seen problems) and corresponding problems that are
not in the training data (unseen problems) in a time format-based split setting.

Seen problem

Unseen problem

Span: Random, Gold label: Neutral

Span: Short, Gold label: Contradiction

2002F8B16B 7R LK, UALX—IFERIZHE-TWD,
2018 year 8 month 16 day 7 hour since , Walter wa parents’” house ni stay .
(Walter has been staying at his parents’ house since 7:00 on August 16, 2002.)

015F9FNNATRELCE. 7707 BT IC LT3,
2015 year 9 month 11 day 7 hour since , Frank wa craft ni try .
(Frank has been trying to craft since 7:00 on September 11, 2015.)

BE, 203582603 THS, BifE, 201598 11 B 108§ TH 5,

now , 2013 year 5 month 26 day 3 hour dearu . now , 2015 year 9 month 11 day 10 hour dearu .

(It is now 3:00 on May 26, 2013.) (It is now 10:00 on September 11, 2015.)

UANZ—132018FE S A1ISH 2B ICIE ERITHE-> TV, 77320159 MBS ICIE AT T kLT,
H | Walter wa 2018 year 5 month 15 day 12 hour niwa parents’ house ni stay . Frank wa 2015 year 9 month 11 day 5 hour niwa craft ni try .

(Walter was staying at his parents’ house at 12:00 on May 15, 2018.)

(Frank was trying to craft at 5:00 on September 11, 2015.)

Table 7: Examples of problems that are in the training data (seen problems) and corresponding problems that are
not in the training data (unseen problems) in a time span-based split setting.

requires comparing the year, month, day, and hour
in order. Therefore, we consider that determining
the order relationships between close time points is
more difficult than determining the order relation-

ships between distant time points.

We define a time span-based split that contains
only RANDOM in the training data. This split aims
to test whether LMs can learn the order relation-
ships of temporal expressions and generalize the
acquired inference patterns to apply them to combi-
nations of temporal expressions that require more

difficult evaluation.

4 Experiments

our training data but use existing Japanese NLI
datasets for training data. The statistics of the
datasets used in our experiments are provided in
Appendix E.

Zero-shot setting (monolingual) We train the
LMs on three concatenated NLI datasets: the stan-
dard Japanese NLI datasets JSNLI (automatic trans-
lation of the English SNLI dataset (Bowman et al.,
2015)) (Yoshikoshi et al., 2020) and JSICK (man-
ual translation of the English SICK dataset (Marelli
et al., 2014)) (Yanaka and Mineshima, 2022), and
the Japanese NLI dataset PLMUTE_ja (Sugimoto
and Yanaka, 2022), which involves temporal order.
We then evaluate the models on our test data.

We evaluate several NLI models on our dataset.

We consider six pre-trained LMs (Japanese BERT-
base/large, Japanese RoBERTa-base/large, multi-
lingual XLM-RoBERTa-base/large)® available on
in our experiments. We
conduct experiments in three settings: zero-shot

huggingface/transformers’

Zero-shot setting (cross-lingual) We train the
LMs on three concatenated NLI datasets: the stan-
dard English NLI dataset SNLI, SICK, and the En-
glish NLI dataset PLMUTE (Thukral et al., 2021),
which involves temporal order and duration. We
then evaluate the models on our test data.

(monolingual), zero-shot (cross-lingual), and fine-
tuning. Here, zero-shot means that we do not use

Fine-tuning setting We train and evaluate the

%We did not evaluate the prompt-tuning models such as
GPT-3 because accurate comparisons with other models in the

LMs on our training data and test data.

fine-tuning setting are difficult.
"https://huggingface.co/transformers/

Additionally, in the fine-tuning setting, we train
the LMs on the split training data described in Sec-
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seen/ Zero-shot Fine-tuning

Model ﬁnﬂeen Mono Cross- jin) Tense Fragment Time Format Time

; lingual lingual Split Easy Hard Easy Hard A Span
seen - - 8914+0.02 879+0.01 81240.05 -83940.02 -800+0.02 039+0.03 757+0.03
base unseen 428 4.0.02 - 4054 0.04 379+0.02 897+0.03 761 4+0.04 1364.0.05 .6624.0.05
BERT A - - A4744+0.04  43340.05 - - - 0954 0.06
seen - 955+0.01 9691 0.01 96810.02 | 92040.02  922+0.01  -00210.02 | 91210.01
large unseen 4404+ 0.03 - A4574+0.03 41940.01 9704+0.02 8934 0.02 077 +0.03 8764+0.04
A - - S1240.03  54940.02 - - - 0364 0.04
seen - 91440.02 8984 0.03 85140.07 | -83210.03 754+0.08 078+0.09 7149+0.06
base unseen 4684.0.03 - .388+0.02 31840.02 84610 .04 6774012 16910 13 .66910.05
ROBERTa A - - S1040.04  53340.07 - - - 0804 0.08
seen - 937+0.03 | 970+0.01  984to0.01 | 94+0.03  907+0.01 0074+0.03 81940.13
large unseen 4604+ 0.02 - 4454 0.03 39940.04 967 +0.02 88440.01 083+ 0.02 T9+40.11
A - - 52540.03  58540.04 - - - 02040.17
seen - 76840.05 6834 0.01 6494 0.02 -690+0.09 607 +0.02 -083+0.09 -55340.06
base unseen 4l140.03 - 23840.01 309+0.02 .67810.06 S54140.01 1374.0.06 .5534.0.06
XLM- - - 44510 01 3400 .03 - - - 000+ 08
RoBERTa seen - 9414+ 0.01 9524 0.02 95540.03 8834+0.05 8624+ 0.06 .0214+0.08 761 4+0.08
large unseen 4884+0.03 - A5540.04 38340.02 93540.06 783 40.08 1524010 73540.09
. A4974+0.04 5724004 - - - 0264012

Table 8: Results on our test data (average accuracy and standard deviation of five runs).

tion 3.4, as well as on all of the training data.

In all experiments, we conduct five trials and
calculate the averages and standard deviations of
the accuracy of the models. Training details are
provided in Appendix F.

5 Results and Discussion

Table 8 shows the results of all our experiments.
Overall, monolingual models with larger model
sizes tend to perform better. In this section, we
describe the results for each setting in detail.

5.1 Zero-shot setting

The two left columns in Table 8 show the results
on the zero-shot setting. As Table 8 shows, the
accuracy of both the monolingual and cross-lingual
models is approximately 40%, and there is no sig-
nificant difference between them. One possible
reason is that SNLI, SICK, and their Japanese ver-
sions (JSNLI and JSICK) do not contain temporal
inference, and the temporal inference patterns ob-
tained from PLMUTE are only a fraction of the
inference patterns required to solve our test set.

5.2 Fine-tuning setting

The right side of Table 8 shows the results on the
fine-tuning setting. As expected, all models are
highly accurate on the IID split setting (i.e., the
setting in which all training data were used). We
then discuss the results of the experiments using
the splits described in Section 3.4.

Tense Fragment-based Split In the tense
fragment-based split, the difference in accuracy
between seen and unseen problems was nearly
50% for all models on both FRAGMENT_EASY and
FRAGMENT_HARD. This suggests that the models
cannot generalize the temporal inferences obtained
from the training data.
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Table 9 shows an example of unseen problems
that RoBERTa-large could not solve on FRAG-
MENT_EASY and the corresponding seen problems
in the training data. Because all models obtained
similar results in relation to the generalization abil-
ity of LMs for temporal inference, we focus on the
RoBERTa-large model, which achieved the best
performance on our dataset. For this example, the
model gave the same prediction for the both un-
seen and seen problems. The other tense fragment
problems that the model could not solve on FRAG-
MENT_EASY have the same characteristics. Specif-
ically, the model tended to predict incorrect labels
for problems in which the premises and hypotheses
of seen and unseen problems were very similar (dif-
ferences are highlighted in bold), but the gold labels
were different, as shown in Table 9. This suggests
that this model does not capture the essential mean-
ing of a sentence but determines the entailment
relations based only on superficial information (i.e.,
the model does not generalize temporal inference
patterns).

Time Format-based Split As shown in Table
8 shows, all models except XLM-RoBERTa-base
achieved 80% accuracies on both unseen problems
and seen problems of FORMAT_EASY. Further-
more, detailed analysis revealed that the XLM-
RoBERTa-base did not solve problems that re-
quired inference of the size relationships between
time units. This indicates that XLM-RoBERTa-
base only fails to generalize the size relation be-
tween time units. One potential reason for this is
that this model is cross-lingual and not large. In
contrast, on FORMAT_HARD, all models exhibited
reduced accuracy for the unseen problems com-
pared to the seen problems. This indicates that the
models do not have a priori knowledge regarding
the size relationships between time units. There-



Seen problem

Unseen problem

TF: Habituality - Unmentioned TP + Always
Gold label: Neutral

TF: Habituality + Negation - Unmentioned TP + Always
Gold label: Contradiction, Pred label: Neutral

1Ty VIO KM & BT T,
Ivan wa always drawing o late submit .
(Ivan always submits his drawing late. )

FATIEWOE v ay & ENT #inb,
Dave wa always apartment o late visit .
(Dave always visits the apartment late.)

Pl 2011 s 11 H 28 A6 12 1 7 > 1 B A L7 20024E5 1IN H 42 T ik vryay % ifih,

2011 year 11 month 28 day 16 hour ni Ivan wa drawing o submit . 2002 year 5 month 11 day 14 hour ni Dave wa apartment o visit .

(Ivan submitted his drawing at 16:00 on November 28, 2011.) (Dave visited the apartment on May 11, 2002 at 14:00.)

1T 7V E2011F 11 H28 H 22 12 il &2 BT L7z, TATIE2WRE2HIHOKFII Y Yay 2 Bh$ IZiink,
H | Ivanwa2011 year 11 month 28 day 22 hour ni drawing o late submit . Dave wa 2012 year 2 month 1 day 0 hour ni apartment o late not ni visit .

(Ivan submitted his drawing late at 22:00 on November 28, 2011.)

(Dave visited the apartment on February 1, 2012 at 0:00 without delay.)

Table 9: An example of unseen problem that RoBERTa-large could not solve in FRAGMENT_EASY and the
corresponding seen problem in the training data. TF means the tense fragment.

fore, we consider that on FORMAT_EASY, BERT
and RoBERTa succeeded in generalizing the infer-
ence patterns of the size relationships between time
units based on minimal combinations of time units
in the training data.

Time Span-based Split On the time span-based
split, the large models achieved comparable ac-
curacy on both the seen and unseen problems,
whereas the base models tended to exhibit lower
accuracy on the unseen problems. This suggests
that the large models can generalize methods for
determining the order relationships between time
points, but the base models cannot generalize.

6 Conclusion

In this study, we constructed JAMP, a temporal
Japanese NLI dataset, using a template-based ap-
proach. Our dataset is controllable in terms of diffi-
culty, vocabulary, and size based on this approach.
We conducted experiments using our dataset to
probe the generalization ability of pre-trained lan-
guage models for temporal inference. The experi-
mental results indicated that current LMs can gen-
eralize for time format splits and time span splits
but fail to generalize for tense fragment splits. Our
dataset demonstrates that there is room for improve-
ment in the generalization ability of current stan-
dard LMs for temporal inference. Because our
method is applicable to the construction of datasets
for other linguistic phenomena (e.g., modality, com-
parative), we plan to investigate the generalization
ability of language models for other phenomena
using the template-based approach in the future.

7 Limitations

In this section, we discuss two limitations of this
study. The first limitation is that aspect and tem-
poral commonsense are outside the scope of our
dataset. Here, temporal commonsense refers to
knowledge regarding events and the appropriate
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duration of those events. For example, the event
“I washed my face for three years” is unnatural in
terms of temporal commonsense, but this study did
not consider such unnaturalness.

The second limitation is that the proposed
method is currently applicable only to Japanese.
In this study, we used a Japanese case frame dictio-
nary to generate natural sentences. However, other
languages such as English do not have resources
equivalent to such a dictionary. Therefore, to apply
our method to additional languages, we must first
prepare a case frame dictionary for each language.
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A Tense Fragment

Table 10 shows the tense fragments we defined.

Tense Fragment

Sub-tense Fragment

Usage of BL{E (now)
Continuity of state
Ordering relation
Mentioned time point
Unmentioned time point
Reference resolution

of WEH (yesterday)

Comparison of two intervals

Temporal commonsense

Temporal ordering

Time point

Temporal anaphora

Interval Completion of eventuality
Mentioned time point
Habituality Unmentioned time point

Negation
Existential quantification

Table 10: Tense fragments we introduced in this study.

B Problem Creation for Some JSeM
Problems

Table 11 shows examples of created problems
and corresponding original problems in JSeM. As
shown in Table 11, original and new problems are
similar but have different gold labels. We also cre-
ate templates for these created problems.

C Temporal Expression Generation in
SHORT Time Span

The temporal expressions in SHORT are generated
as follows. In the case of generating intervals, they
are generated as described in Section 3.2, except
that the integer selection range is one to three in-
stead of one to nine. In the case of generating time
points, we first identify the next largest unit after
the smallest unit of the time format in the current
problem and then calculate the duration of one-
third of that unit. We then determine a selection
range from a randomly selected time point to a time
point that is advanced by the calculated duration.
For example, if the smallest unit is “hour,” then the
next smallest unit is “day,” so the selection range
is between a specific time point and another time
point one-third of a day (eight hours) in the future.

D Details for Dataset Artifacts Analysis

As mentioned in Section ??, dataset artifacts
analysis reveals correlations between labels and
specific words.  Formally, this analysis is
a one-side binomial hypothesis test with the
null hypothesis p(y|z;) = 1/3, where y €
{Entailment, Neutral, Contradiction}, and z; is a



| Original problem

New problem

Gold label: Entailment Gold label: Contradiction
AIA R YVa—v AN LS 01T EoTz, AIAW YVa—v AN KDL NI EoT,
Smith wa Jones ga leave before ni leave . Smith wa Jones ga leave before ni leave .
P (Smith left before Jones left.) (Smith left before Jones left.)
Va—VRARF TRV YW EDLHIZ Lotz Va—VARFTYR=I YW ED I Loz,
Jones wa Anderson ga leave before ni leave . Jones wa Anderson ga leave before ni leave .
(Jones left before Anderson left.) (Jones left before Anderson left.)
AIAFETYR=VY VDB EDREIC EoTz, AIAFETYR=V YD E2LBITEoT,
H | Smith wa Anderson ga leave before ni leave . Smith wa Anderson ga leave after ni leave .
(Smith left before Anderson left.) (Smith left after Anderson left.)
Gold label: Neutral Gold label: Entailment
A I A H 2 B I mEE & Bk, A I A DI R T WEE & Hz.
P Smith ga 2 hour within ni report o write . Smith ga 2 hour de report o write .
(Smith wrote a report within two hours.) (Smith wrote a report in two hours.)
AIZARZOWEE & HS O 2 & HP LA, AIZR DO HEE & HS O IT 2 & HP LK,
H | Smith wa that report o write no ni 2 hour o spent . Smith wa that report o write no ni 2 hour o spent .
(Smith spent two hours writing that report.) (Smith spent two hours writing that report.)

Table 11: Examples of created problems and corresponding original problems in JSeM.

Section Size
Train 9,750
(3,050/3,340/3,360)
344
Test (114/112/118)

Table 12: JAMP dataset statistics. The lower row in
parentheses shows the number of entailment, contradic-
tion, and neutral examples, respectively.

Dataset Name Size
SNLI (Bowman et al., 2015) 550,152
SICK (Marelli et al., 2014) 9,840
PLMUTE (Thukral et al., 2021) 72,720
JSNLI (Yoshikoshi et al., 2020) 533,005
JSICK (Yanaka and Mineshima, 2022) 5,000
PLMUTE_ja (Sugimoto and Yanaka, 2022) 11,220

Table 13: Statistics of dataset used in our experiments

word included in the vocabulary. For this anal-
ysis, we first split the hypothesis and premise
sentences into individual words/tokens using Ju-
man++ (Morita et al., 2015). We then count the
number of occurrences of the gold label y in the n;
examples for every word z; present in those exam-
ples. p(y|x;) is estimated based on the fraction of
the count of the gold label y over n;. According
to the protocol described in Gardner et al. (2021),
the null hypothesis is either accepted or rejected
with a significance level of o = 0.01 based on the
Bonferroni correction.

E Data Statistics

Table 12 shows JAMP dataset statistics. Table 13
shows sizes of datasets used in our experiments.

F Training Details

We select the best learning rate among [6e-6,8e-
6,1e-5,1.2e-5,2e-5] based on the development set.
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We use a batch size of 16 for training and eight for
test.

G Data Licensing

Japanese case frame dictionary is distributed by
Gengo-Shigen-Kyokai. JSeM is licensed under
by BSD-3-Clause license. Our use of these two
datasets is consistent with the terms of the license.
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Abstract

Code search is a task to find programming
codes that semantically match the given nat-
ural language queries. Even though some of
the existing datasets for this task are multilin-
gual on the programming language side, their
query data are only in English. In this research,
we create a multilingual code search dataset in
four natural and four programming languages
using a neural machine translation model. Us-
ing our dataset, we pre-train and fine-tune the
Transformer-based models and then evaluate
them on multiple code search test sets. Our
results show that the model pre-trained with
all natural and programming language data has
performed best in most cases. By applying
back-translation data filtering to our dataset, we
demonstrate that the translation quality affects
the model’s performance to a certain extent, but
the data size matters more.

1 Introduction

Code search is the task of finding a semantically
corresponding programming language code given
a natural language query by calculating their simi-
larity. With the spread of large-scale code-sharing
repositories and the rise of advanced search en-
gines, high-performance code search is an impor-
tant technology to assist software developers. Since
software developers worldwide search for codes in
their native language, we expect code search mod-
els to be multilingual. Although many previous
studies focus on multilingual code tasks other than
code search (e.g., code generation, code explana-
tion) (Wang et al., 2021; Ahmad et al., 2021; Fried
et al., 2023; Zheng et al., 2023), the existing code
search datasets (Husain et al., 2020; Huang et al.,
2021; Shuai et al., 2021) contain only monolingual
data for search queries.

In this research, we construct a new multilin-
gual code search dataset by translating natural
language data of the existing large-scale dataset
using a neural machine translation model. We
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also use our dataset to pre-train and fine-tune the
Transformer (Vaswani et al., 2017)-based model
and evaluate it on multilingual code search test
sets we create. We show that the model pre-
trained with all natural and programming language
data performs best under almost all settings. We
also analyze the relationship between the dataset’s
translation quality and the model’s performance
by filtering the fine-tuning dataset using back-
translation. Our model and dataset will be pub-
licly available at https://github.com/ynklab/
XCodeSearchNet. The contributions of this re-
search are as follows:

1. Constructing the large code search dataset
consisting of multilingual natural language
queries and codes using machine translation.

Constructing the multilingual code search
model and evaluating it on a code search task
using our dataset.

3. Analyzing the correlation between translation
quality and the model performance on a code
search task.

2 Background

2.1 Code Search Dataset

CodeSearchNet Corpus1 (CSN; Husain et al., 2020)
is a set of code data (code) in six programming
languages: Go, Python, Java, PHP, Ruby, and
Javascript, and natural language data describing
them (docstring). CSN is created by automatically
collecting pairs of function code and its documen-
tation that are publicly available on GitHub and
permitted for redistribution. This corpus contains
approximately 2.3 million data pairs and 4 million
code-only data. The natural language data in CSN
is function documentation, which is pseudo data of
the texts humans use to search for codes.

1https: //github.com/github/CodeSearchNet
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Pre-training (MLM)  Fine-tuning

PHP 662,907 1,047,406
Java 500,754 908,886
Python 458,219 824,342
Go 319,256 635,652
JavaScript 143,252 247,773
Ruby 52,905 97,580

Table 1: Training data size of CSN for each program-
ming language used for pre-training CodeBERT with
MLM and fine-tuning on the code search task.

In contrast, several datasets are created based
on natural language queries used for code search
by humans. CodeXGLUE (Shuai et al., 2021), a
benchmark for various code understanding tasks,
includes two code search datasets: WebQueryTest
(WQT) and CoSQA (Huang et al., 2021). The
query data of these datasets are collected from the
users’ search logs of Microsoft Bing and the code
from CSN. Given these separately collected data,
annotators who have programming knowledge man-
ually map the corresponding query and code to con-
struct the dataset. The common feature of these
datasets is that all natural language data, such as
docstrings and queries, are limited to English and
do not support multiple languages.

2.2 CodeBERT

CodeBERT (Feng et al., 2020) is a model pre-
trained and fine-tuned with CSN and is based on the
RoBERTa (Liu et al., 2019)’s architecture. Code-
BERT uses Masked Language Modeling (MLM;
Devlin et al., 2019; Lample and Conneau, 2019)
and Replaced Token Detection (RTD; Clark et al.,
2020) as pre-training tasks. Both docstring and
code data in CSN are used in MLM, while only
code data are used in RTD. CodeBERT is trained
only with English data, thus not available for a code
search task with multilingual queries.

3 Dataset Construction Using Machine
Translation

A possible way to construct a code search dataset
for multiple languages is to translate an existing
monolingual dataset. However, CSN’s large data
size makes manually translating all of its docstrings
difficult. Table 1 shows the number of CSN data
pairs used for pre-training (MLM) and fine-tuning
the CodeBERT.

Therefore, we use a machine translation model
to translate the English-only data to generate mul-
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Pre-training Fine-tuning

Test

Train Valid Test Train Valid
Go 316,058 3,198 28,533 635,652 28,482 14,277
Python 453,623 4,596 45,283 824,341 46,212 22,092
Java 495,768 4,986 42,237 908,885 30,654 26,646
PHP 656,277 6,630 54,406 1,047,403 52,028 28,189

Table 2: The sizes of CSN data for training and evaluat-
ing the models in our baseline experiments.

tilingual data efficiently. By translating CSN doc-
strings, we create a multilingual dataset consist-
ing of four natural languages (English, French,
Japanese, and Chinese) and four programming lan-
guages (Go, Python, Java, and PHP). We also trans-
late the queries in the datasets Feng et al. (2020)
used for fine-tuning and evaluating CodeBERT for
our experiments in Section 4.1 and Section 4.2.
In their fine-tuning data, the numbers of positive
and negative labels are balanced. Note that we
do not use JavaScript and Ruby data, whose sizes
are much smaller than those of other programming
languages.

As a translation model, we use M2M-100 (Fan
et al., 2022), which supports translations in 100
languages.> M2M-100 achieved high accuracy in
translations of low-resource languages by classify-
ing 100 languages into 14 word families and cre-
ating bilingual training data within those families.
We use m2m_100@_1. 2B model, which is provided
by EasyNMT?, a public framework of machine
translation models. We set the model’s beam size
to 3.

We manually annotate the labels to some data
of our fine-tuning dataset to check the correlation
with the original labels, which is found to be 0.911
(see Appendix B for the details).

4 Baseline Experiments

We conduct baseline experiments, where we train
the Transformer-based model with our multilingual
dataset under various settings of the data sizes and
evaluate it on multiple code search test sets.

4.1 Training

We perform pre-training and fine-tuning on a model
initialized with the XLM-R (Conneau et al., 2019)
architecture and parameters. XLM-R is a model

*We compared the translation results of some docstrings by
several translation models, including Opus-MT and mBART,
and chose M2M-100, which achieved the best performance.

3https: //github.com/UKPLab/EasyNMT
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CSN CoSQA  WQT

Go Python Java PHP Python Python

EN 813 801 737 759  .526 334
No-pre-trainine TR /80 708 681 691 463 302
p & JA 792 68 641 657 372 311
ZH 772 660 633 670 337 297

EN 824 851 763 790  .494 .360

All-to-One FR 798 .796 733 734 432 .363
- JA 805 781 700 711 .460 348
ZH 788 759 712 731 427 .359

EN .835 848 .78 .809 473 351

FR .808 .788 731 759 420 346

All-to-All JA 816 778 719 7730 436 364
ZH .804 759 750 745 418 .359

Table 3: MRR scores of models pre-trained with all natural language data with either one programming language

data or all programming language data.

Go  Python Java PHP
RoBERTa .820 .809 .666  .658
CODEONLY, INIT=S  .793 786 .657 617
CODEONLY, INIT=R  .819 .844 721 671
MLM, INIT=S .830 .826 714 .656
MLM, INIT=R .838 .865 748 .689
RTD, INIT=R .829 .826 15677
MLM+RTD, INIT=R  .840 .869 748 706

Table 4: MRR scores of CodeBERT from Feng et al.
(2020) for Go, Python, Java, and PHP. CODEONLY is
RoBERTa pre-trained only with code data. INIT refers
to how the parameters of the model are initialized. S is
for training from scratch, and R is for the initialization
with those of RoBERTa (Liu et al., 2019).

pre-trained by MLM with the Wikipedia and Com-
mon Crawl corpora for 100 languages using Trans-
former (Vaswani et al., 2017) and achieved high
performance on multilingual tasks, such as ques-
tion answering. Note that we use the term “pre-
training” to refer to further training of XLM-R
with our dataset. In this paper, we use MLM as
the learning objective to pre-train XLLM-R and then
fine-tune it using data pairs whose query and code
languages are monolingual. We use monolingual
data pairs for fine-tuning instead of a multilingual
combination, given that Feng et al. (2020) clari-
fies that fine-tuning CodeBERT with six program-
ming languages altogether “performs worse than
fine-tuning a language-specific model for each pro-
gramming language.” Query and code data are con-
catenated to be input to the model, and it predicts
their similarity based on the vector representation
of the output [CLS] tokens. See Appendix C for
more details on training settings, including hyper-
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parameters.

4.2 Evaluation

As with Feng et al. (2020), we use Mean Recipro-
cal Rank (MRR) as an evaluation metric.

1 QI

P>

|Q| refers to the total number of queries. When a
test set has 1,000 data pairs, given a natural lan-
guage query;, the model calculates the similarity
with the corresponding code; and the 999 distractor
codes. If the similarity score given for code; is
the 2nd highest among 1,000 codes, rank; equals 2.
Then, the average of the inverse of rank; over all
queries and codes is calculated as MRR.

Table 2 shows the sizes of CSN we use in our
experiments. Each test set of CSN for MRR evalu-
ation contains 1,000 data pairs randomly sampled
from the original test sets. We use CoSQA and
WQT as test sets in addition to CSN. As well as
CSN, we create CoSQA test sets from the origi-
nal 20,604 data pairs. We compute the average of
MRR scores over three different test sets for CSN
and CoSQA. The original WQT test set has 422
data pairs, so we use it as-is without sampling data
like CoSQA.

We translate natural language queries in these
test sets using the same machine translation model
and parameter settings as the translation of the train-
ing data.

1

MRR = —
rank;

4.3 Model Settings

We prepare three model settings that differ in the
amount and pattern of training data.



No-pre-training An XLM-R model with no fur-
ther training applied and its initial parameters used.

All-to-One A model that uses data pairs of mul-
tilingual queries and monolingual codes for pre-
training. The size of pre-training data ranges from
1.2 million to 2.7 million, depending on program-
ming languages.

All-to-All A model that uses data pairs of mul-
tilingual queries and multilingual codes for pre-
training. The size of pre-training data is over 7.6
million.

4.4 Results

Table 3 shows the scores of the MRR evaluation
under all settings. The scores with CSN showed
that All-to-All performed best in Go, Java, and
PHP in almost all natural languages. On the other
hand, All-to-One showed better scores than All-to-
All on the Python test set. It is possible that the
performance reached the top at All-to-One on the
Python test set, given that the difference in scores
between All-to-One and All-to-All was relatively
small (<0.1). On CoSQA and WQT, there were
also cases where model settings other than All-to-
All performed better.

The performance of the original CodeBERT on a
code search task is shown in Table 4. Overall, All-
to-All is on par with the performance of CodeBERT
in English data. Especially, All-to-All marks better
scores in Java and PHP than CodeBERT. Note that
our experiments and those of CodeBERT differ
in the number of test sets used. Thus, it is diffi-
cult to compare these scores directly to discuss the
model’s superiority.

We observed a gradual trend that the scores de-
creased in English and French and increased in
Japanese and Chinese as we increased the size of
the pre-training data. This phenomenon might be
due to the difference in knowledge of these lan-
guages acquired during pre-training XLM-R. The
XLM-R pre-training data contain approximately
350 GiB for English and French and approximately
69 GiB and 46 GiB for Japanese and Chinese, re-
spectively. As parameters of XLM-R were updated
during our pre-training, the knowledge of English
and French the model originally had was lost. On
the other hand, the scores of Japanese and Chinese,
in which the model owned a small amount of data,
were improved by increasing the data size.
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Train
0.2 0.3 0.4 0.5 0.6 0.7

FR 621,167 613,893 597,092 570,891 530,485 391,897
JA 612,422 594,477 552,979 480,567 388,189 250,028
ZH 607,468 588,808 557,748 500,622 410,369 265,986

Valid
0.2 0.3 0.4 0.5

FR 27,881 27,535 26,799 25,621
JA 27,433 26,524 24,901 21,981
ZH 27,115 26,178 24971 22,280

0.6 0.7

24,000 20,231
16,327 10,304
18,445 10,792

Table 5: The sizes of our dataset for fine-tuning after
back-translation filtering applied.

0 02 03 04 05 06 0.7
EN 835 NA NA NA NA NA NA
FR 808 .810 .808 .805 .811 .809 .807
JA 816 .805 803 .817 .813 .813 .802
ZH 804 .818 .818 .807 .798 .802 .802

Table 6: MRR scores with back translation filtering for
fine-tuning data. 0 means no filtering applied.

S Analysis on Translation Quality

5.1 Back-translation Filtering

The translation quality of our dataset must affect
the model’s task performance. Therefore, we in-
vestigate whether there is a difference in the scores
of the code search task when we filter out the low-
quality data from the fine-tuning dataset.

We apply a back-translation filtering method
based on previous studies that used machine trans-
lation to automatically build a high-quality mul-
tilingual dataset from the English one (Sobre-
villa Cabezudo et al., 2019; Dou et al., 2020;
Yoshikoshi et al., 2020). We first apply back-
translation to French, Japanese, and Chinese doc-
strings. Then we calculate the uni-gram BLEU (Pa-
pineni et al., 2002) score between the back-
translated docstrings and the original English ones
and collect only data with scores higher than cer-
tain thresholds. In our experiments, we conduct
filtering to the fine-tuning dataset of Go. Table 5
shows the data sizes after back-translation filter-
ing. We set thresholds to 0.2 to 0.7 in increments
of 0.1 and compare the model’s performance with
each threshold. We choose these values because the
sizes of the datasets change relatively hugely when
filtered with the threshold 0.3 to 0.6 (Appendix D).



5.2 Results

Table 6 shows the MRR scores of the models whose
fine-tuning data are filtered with different thresh-
olds. In every language, the scores peak when
we set the threshold between 0.2 to 0.5 and then
drop with larger thresholds up to 0.7. This result
implies that the filtering successfully removes the
low-quality data while maintaining the number of
training data and leads to better MRR scores. We
assume that the change in size from the original
dataset becomes more prominent with thresholds
from 0.5 to 0.7 (around 100K-400K), thus eventu-
ally resulting in lowering the overall scores.

However, the score changes seem insignificant
(£0.02) among these thresholds. One possible rea-
son is that the data size remains over 250K even
after filtering, which should already be enough for
fine-tuning in general.

In summary, the results show that filtering out
some low-quality data improves the model’s perfor-
mance on the code search task, but removing over
150K data worsens the test scores.

6 Conclusion

We created a large multilingual code search dataset
by a neural machine translation model. We then
constructed a multilingual code search model us-
ing our dataset. We found out that the models
pre-trained with all of the multilingual natural lan-
guage and programming language data achieved
the best performance on a code search task almost
all the time. We also investigated the relationship
between the translation quality of our dataset and
the model’s performance. The results indicated
that the data size contributed more to the model’s
code search performance than the data translation
quality.

Overall, this research introduced that using a
publicly available machine translation model helps
to translate texts in the programming domain. We
can apply our method to extend datasets for lan-
guages other than French, Japanese, and Chinese
to construct models for various natural languages.

Limitations

We used XLM-R for the baseline model to train
with our dataset in our experiments because we
wanted to make experimental settings as close as
the previous study of CodeBERT but for multilin-
gual data. Since CodeBERT is based on RoBERTa,
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we chose XLLM-R, which is also RoBERTa-based
and already trained with multilingual data.
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A CodeSearchNet

Table 1 shows the size of CSN for each program-
ming language used for pre-training CodeBERT
with MLM and fine-tuning on the code search task.
The number of data for fine-tuning in Go is listed
as 635,635 in Feng et al. (2020), but the dataset
publicly provided contains 635,652 data.
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B Dataset Translation

We manually evaluate the translation quality of our
dataset. Table 7 shows examples of translation of
query data from English to Japanese using M2M-
100. Since queries of CSN are based on source code
descriptions, some of them contain strings that do
not necessarily need to be translated, such as vari-
able names, function names, and technical terms
(e.g., SetStatus, retrieveCoinSupply). M2M-
100 successfully translates the entire sentence, leav-
ing such domain-specific strings as needed.

On the other hand, we observe some errors, such
as translating to unknown words (e.g., “alphanu-
meric” to “7 )V 7 7 F 77 < 1)) or omitting some
texts from the translation.

We also manually annotate the labels of 45 sam-
pled data pairs from the fine-tuning dataset of
Japanese queries and Go codes and calculate how
much they match the original labels. These 45 data
pairs do not contain queries that were not success-
fully translated and remain in English. Among
45 data pairs, 28 of them have “1” as their labels
and 17 for “0”. We calculate the correlation with
accuracy, and the score is 0.911.

C Training Settings

As hyperparameters for pre-training the model, we
set the batch size to 64, the maximum input length
to 256, and the learning rate to 2e-4. As hyperpa-
rameters for the fine-tuning of the model, we set
the batch size to 16, the learning rate to 1e-5, and
the number of max training epochs to 3. In both
cases, we use Adam as the optimizer.

D Back-translation Filtering

Table 8 shows an example of the removed data
by filtering. Table 9 shows the data size of each
filtering threshold.
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Original (EN) Translated (JA) Quality
SetStatus sets the Status field s value . SetStatus (%, Status 7 1 =)V FOEEZFHEL £, v/
retrieveCoinSupply fetches the coin supply retrieveCoinSupply I%. vins 7— 755 v
data from the vins table . a1 R -2 EEIUELE T,
1 -
stateIdent scans an alphanumeric or field . stateldent (&, 7V 7 7F V7Y Fid X

T4 —IVREAXy LT, Unknown word

VisitFrom calls the do function starting
from the first neighbor w for which w > a
with ¢ equal to the cost of the edge

from v to w . The neighbors are then
visited in increasing numerical order .

If do returns true VisitFrom returns
immediately skipping any remaining
neighbors and returns true .

VisitFrom &, BHIOBEA w 2548 5 do i %

OHL, TOw>akcldvhrowxTO

Ty YDIAMIFELL, X

If do returns true VisitFrom returns immediately . .
— — e Wrong translation / Omission

skipping any remaining neighbors and returns true.

HLZ 5 ThIE, VisitFromldE 5 (12

D OBENZ L T oue Z2IRL £,

Table 7: Examples of query data from the dataset (Japanese, Go, threshold=0.4). These data are sampled from the
top 10 entries of the dataset.

Original (EN) Translated (JA)

Back-translated (EN)

NokError asserts that a function returned
noerror (i.e.nil).

actualObj err : = SomeFunction ()

if a. NoError (err) { assert.

(i.e.nil) ZFRUET,

NoError l%, BBHM T I —%2KLEFHA
¥h. Db EH. D EH. hh

Equal ( t actualObj expectedObj ) }
Returns whether the assertion

EH, bWV EH, DN FEH, HN?

HEEDPEPEZRT,
was successful ( true ) or not ( false ) .

NokError claims that the function

does not return an error (i.e. nil).

Oh well that? Oh well that? Oh well that?
Oh well that? Oh well that?

It is the truth or the truth.

The original query contains a code-like sequence (bold texts), so the model could not successfully translate it (underline texts).

Table 8: An example of filtered-out query data (Japanese, Go, threshold=0.4).

Train
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
FR 626,130 621,167 613,893 597,092 570,891 530,485 391,897 224,928 78,989
JA 621,857 612,422 594,477 552,979 480,567 388,189 250,028 76,965 27,670
ZH 618,904 607,468 588,808 557,748 500,622 410,369 265,986 71,625 20,173
Valid
0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9
FR 28,123 27,881 27,535 26,799 25,621 24,000 20,231 11,646 4,647
JA 27,837 27,433 26,524 24,901 21,981 16,327 10,304 5,422 1,806
ZH 27,693 27,115 26,178 24,971 22,280 18,445 10,792 4228 1,002

Table 9: The sizes of our fine-tuning dataset after back-translation filtering with thresholds in increment of 0.1.
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Abstract

This study proposes a new multimodal neural
machine translation (MNMT) model using syn-
thetic images transformed by a latent diffusion
model. MNMT translates a source language
sentence based on its related image, but the
image usually contains noisy information that
are not relevant to the source language sen-
tence. Our proposed method first generates a
synthetic image corresponding to the content of
the source language sentence by using a latent
diffusion model and then performs translation
based on the synthetic image. The experiments
on the English-German translation tasks using
the Multi30k dataset demonstrate the effective-
ness of the proposed method.

1 Introduction

Recently, multimodal neural machine translation
(MNMT) (Specia et al., 2016), which uses images
in addition to source language sentences for transla-
tion, has attracted attention in the field of machine
translation (MT). Images related to source language
sentences are considered to improve translation per-
formance by resolving ambiguity during translation
and complementing information that is difficult to
capture with source language sentences. However,
a source language sentence often only describes
one aspect of the contents included in its related
image.

Figure 1 shows an example from a standard
dataset in MNMT, the Multi30k dataset (Elliott
etal., 2016). As shown in Figure 1, multiple source
language sentences with differing content are as-
sociated with a single image in the Multi30k. For
example, Source Language Sentence 2 does not
mention the house in the related image. There-
fore, related images are not necessarily optimal as
auxiliary information for MT.

Therefore, in this study, we propose a new
MNMT model using a synthetic image generated
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by image conversion with a latent diffusion model.
Specifically, an original related image is converted
with a latent diffusion model based on its source
language sentence; content unrelated to the source
language sentence is eliminated from the original
image, and an image conforming with the source
language sentence is generated. Subsequently,
translation is performed by using the converted syn-
thetic image instead of the original related image.
Our aim is to improve translation performance by
using related images that better reflect the content
of source language sentences as auxiliary informa-
tion for translation.

We verified the effectiveness of our proposed
method on the English-German translation tasks
using the Multi30k dataset (Elliott et al., 2016)
and the Ambiguous COCO dataset (Elliott et al.,
2017). The results confirmed that, compared with
a conventional MNMT using the original related
images in the Multi30k, our method improved the
BLEU score by 0.14 on both the Multi30k Test
2016 and Test 2017, and by 0.39 on the Ambigu-
ous COCO. Additionally, CLIPScore (Hessel et al.,
2021), which was used to calculate the similarity
between a source language sentence and an image,
confirmed that the synthetic images used in our
method more closely match the source language
sentences than the original related images.

2 Conventional MNMT Models

MNMT models based on Transformer (Vaswani
et al., 2017) have recently become mainstream in
the field of MNMT. Various attempts have been
made to improve their translation performance, in-
cluding the introduction of visual attention mech-
anisms (Nishihara et al., 2020), as well as the
method of simultaneously learning feature repre-
sentations of text and images using a shared en-
coder (Elliott and Kadar, 2017). Li et al. (2022)
have proposed a Transformer MNMT model incor-
porating Selective Attention, an attention mecha-

Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics - Student Research Workshop, pages 76-82
July 10-12, 2023 ©2023 Association for Computational Linguistics



Multimodal Neural Machine Translation Using Transformed Images with Latent Diffusion Model

Image Image
Transformation Transformation
C——

A child in a pink

> { A girl going : ) dress is climbing

] into a wooden 3= ) up a set of stairs

LS ; building . > gm in an entry way .
Transformed Source Language  Original Related  Source Language Transformed

Image 1 Sentence 1 Image Sentence 2 Image 2

MNMT Model

Ein kleines Mddchen klettert
in ein Holzhduschen, das als
Stall dient.

Target Language Sentece 1

Figure 1: Overview of the Proposed Method

nism that captures relationships between words in a
source language sentence and patches of its related
image. We outline the Selective Attention MNMT
model, which is used as the base MNMT model in
this study, below.

The Selective Attention MNMT model first en-
codes the source language sentence X'*' and the
related image X ™2 into feature expressions H*!
and H™¢ by Egs. (1) and (2), respectively.

H'"*' = TextEncoder(X"*"), (1)

Hime — W ImageEncoder (X img)7 2)

where W, TextEncoder, and ImageEncoder are the
parameter matrix, Transformer Encoder, and Vi-
sion Transformer (Dosovitskiy et al., 2021), respec-
tively.

Then, Selective Attention captures relationships
between image patches and source words using an
attention mechanism as follows:

Softmax (QK > V,
vy,

where Q, K, and V are H, H™2 and H'™ME,
respectively, and d, is the dimension of H'X,

Subsequently, the gated fusion mecha-
nism (Zhang et al., 2020) generates a feature
expression H°" that represents the source lan-
guage sentence and the image while controlling
the influence of the image by Egs. (4) and (5).

. T
gme _

attn —

3)

A = Sigmoid(UH'™ + VH™E ) (4)
H = (1= X)- H 4 X-HZE . (5)

where U and V' are learnable parameter matrices.
Finally, H°" is input to the Transformer Decoder
to generate a translated sentence.
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3 Proposed Method

In this section, we propose an MNMT model that
uses synthetic images transformed from related
images based on source language sentences. Figure
1 shows an overview of the proposed method.

The MNMT dataset consists of the triplets of a
source language sentence, a target language sen-
tence, and a related image. In typical MNMT
datasets, each source language sentence usually
only represents one aspect of the content included
in the related images; there are many cases where
content unrelated to the source language sentence
exists in the related image. For example, the image
in Figure 1 shows a scene where a girl in a pink
dress climbs the stairs to enter a wooden house,
but Source Language Sentence 1 does not mention
the climbing of stairs. Further, Source Language
Sentence 2 does not refer to a house. Therefore,
related images are not necessarily the best aids to
translation.

Accordingly, our proposed method first uses a la-
tent diffusion model to eliminate content unrelated
to the source language sentence from the related



image and generate a synthetic image that corre-
sponds to the source language sentence (see Section
3.1). Then, translation is performed with a conven-
tional MNMT model (e.g., the Selective Attention
MNMT model in our experiments) using the gen-
erated synthetic image and the source language
sentence. Because this makes it easier to capture
the relationship between the input image and text
during translation, we expect the improvement of
translation performance.

3.1 Image Transformation: Latent Diffusion
Model

This section explains the latent diffusion
model (Rombach et al., 2022) used in the image
transformation step of our proposed method.
The latent diffusion model applies the diffusion
model (Sohl-Dickstein et al., 2015) to the latent
space of VAE (Kingma and Welling, 2014) and
consists mainly of the VAE, U-Net (Ronneberger
et al., 2015), and a text encoder (see Figure 2).
In the latent diffusion model, an input image is
projected from pixel space into a low-dimensional
latent space using a VAE Encoder to obtain its
latent representation. Then Gaussian noise is
continuously added to the latent expression by
a diffusion process. Next, in a reverse diffusion
process, U-Net is used multiple times to gradually
remove noise from the latent expression that
contained noise. At this time, the U-Net is
conditioned by the feature representation generated
from a text by the text encoder. This conditioning
is realized by a cross attention mechanism. Finally,
the VAE decoder projects the denoised latent
representation from latent space to pixel space to
obtain the output image.

The loss function for the latent diffusion model
is given as follows:

Lipm = Es(r),y,ewN(O,l),t[He — €o(zt, 1, TG(Z/))H%]?

where €, €y, and 7y represent a VAE encoder, an
U-Net, and a text encoder, respectively, and z, y,
€, t, and z; are an input image, a text, a Gaussian
noise, time, and the latent representation of time ¢,
respectively.

In our proposed method, a source language sen-
tence and its related image are input to the text
encoder and the VAE encoder, respectively, to con-
vert the related image into a synthetic image that
conforms to the source language sentence.

78

4 Experiments

4.1 Experimental Setup

We verified the effectiveness of the proposed
method on the English-German translation tasks
using the Multi30k and the Ambiguous COCO. We
used the Multi30k training data (29,000 triplets)
and the Multi30k validation data (1,014 triplets)
as our training and validation data, and used the
Multi30k Test 2016 (1,000 triplets), the Multi30k
Test 2017 (1,000 triplets), and the Ambiguous
COCO (461 triplets) as our test data.

We compared the translation performance of our
proposed method (MNMT{(conv.)) with the transla-
tion performance of 1) an NMT model that does
not use related images (NMT); 2) an MNMT model
that uses original images from the dataset as related
images (MNMT(orig.)); 3) and an MNMT model
that uses images generated only from source lan-
guage sentences as related images (MNMT(gen.)).

Transformer-Tiny' was used as the NMT model.
This model, with a reduced number of layers, size
of hidden layers, number of attention mechanism
heads, etc., as compared to typical Transformer
models, is suitable for small-scale datasets.” Ac-
cording to Wu et al. (2021), we set the number of
encoder and decoder layers, the size of the hidden
layer, the input size of the feed-forward layer, the
number of attention mechanism heads, the dropout,
and the label smoothing weight to 4, 128, 256, 5,
0.3, and 0.1, respectively. Adam (Kingma and Ba,
2015) was used as the optimization method, with
51 = 0.9 and By = 0.98. The learning rate was
linearly warmed up from le~" to 5e~3 over the
first 2,000 steps, and then it was decreased propor-
tionally to the number of updates. The vocabulary
dictionary was shared between the source language
and the target language, and created by Byte Pair
Encoding (Sennrich et al., 2016) with 10,000 merge
operations.

The Selective Attention MNMT? was used as
the MNMT model. As for Vision Transformer,
vit_base_patch16_384* was used for image feature
extraction. Stable Diffusion,’ based on a latent

"https://github.com/LividWo/
Revisit-MMT

“Wu et al. (2021) reported that Transformer-Tiny outper-
forms Transformer Base/Small on the Multi30k dataset.

‘https://github.com/libeineu/fairseq_
mmt

*https://github.com/rwightman/
pytorch-image-models

Shttps://github.com/CompVis/
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Test | Test | Ambiguous
Model 2016 | 2017 | COCO
NMT 40.50 | 31.31 27.81
MNMT(orig.) | 41.06 | 32.06 |  27.91
MNMT(gen.) | 40.81 | 31.81 28.54
MNMT(conv.) | 41.20 | 32.20 28.30

Table 1: Translation Performance (BLEU [%])

Test | Test | Ambiguous
Model 2016 | 2017 | COCO
MNMT(orig.) | 79.59 | 7832 | 78.17
MNMT{(conv.) | 79.74 | 79.35 |  80.08

Table 2: CLIPScore: Similarity between Source Lan-
guage Sentences and Related Images

diffusion model, was adopted for the generation
of related images in MNMT(gen.) and the image
transformation in MNMT(conv.); the specific model
used was stable-diffusion-v1-5.°  StableDiffu-
sionPipeline and StableDiffusionlmg2ImgPipeline
from diffusers,” were used for implementation.
For image generation in MNMT(conv.) and
MNMT(gen.), we used the default parameters. We
set guidance_scale and num_inference_steps to 7.5
and 50 for MNMT(gen.), and guidance_scale and
strength to 7.5 and 0.8 for MNMT(conv.). The hy-
perparameters, optimization methods, and vocab-
ulary dictionary creation methods during training
were the same as the settings used for the NMT
model.

In decoding for all models, we averaged check-
points at the last 10 epochs before the end of train-
ing, and used beam search with a beam width of 5.
BLEU (Papineni et al., 2002) was used as the eval-
uation measure. We trained the models with five
different random seeds, and evaluated the model
with the highest BLEU on the validation data.

4.2 Results

Table 1 shows the experimental results. As Table
1 shows, the three MNMT models using image
information have higher BLEU scores across all
datasets than the NMT model that does not use
image information. This confirms that image infor-
mation helped improve translation performance on

stable-diffusion
®https://huggingface.co/runwayml/
stable-diffusion-v1-5
"https://github.com/huggingface/
diffusers
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the datasets used in our experiments.

Further, a comparison of the three MNMT
models shows that our proposed MNMT(conv.)
achieved the highest translation performance on
Test 2016 and Test 2017. MNMT{(gen.) had a
higher translation performance than MNMT (conv.)
on Ambiguous COCO, but overall, MNMT (conv.)
had better results, confirming the effectiveness of
the proposed method.

5 Discussion

This section analyzes the synthetic images used in
the proposed method. Examples of transformed
images are shown in Appendix A. In order to in-
vestigate how much of the image corresponds to
the source language sentence, we computed Clip-
Score (Hessel et al., 2021), which measures the
similarity between the image used and the source
language sentence by using CLIPScore(c, v)
w - max(cos(c, v),0), where ¢ and v are the fea-
ture vectors from the text encoder and the image
encoder of the CLIP (Radford et al., 2021), re-
spectively. w is used to rescale the output, and
following Hessel et al. (2021), we set it to 2.5.

The evaluation results are shown in Table 2. The
table shows that the synthetic images converted
by our proposed method have a higher similarity
to the source language sentences than the original
related images across all datasets. In particular, the
largest improvement (+1.91 CLIPScore) has been
observed on Ambiguous COCO, which includes
more ambiguity than the other two test datasets.
These results confirm that related images which
better reflect the source languages can be used as
aids to translation via our proposed method.

6 Conclusion

In this study, we proposed a new MNMT model that
uses a latent diffusion model to transform related
images into synthetic images that more closely con-
form to source language sentences and uses the
transformed images as auxiliary information for
MT. The experiments on the English-German trans-
lation tasks using the Multi30k dataset showed that
the proposed method can achieve higher translation
performance than conventional methods, demon-
strating the effectiveness of our proposed method.
The evaluation using CLIPScore confirms that the
images used in our method possess more similari-
ties to the source language sentences than the origi-
nal images.
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Limitations

In this work, we confirm the effectiveness of the
proposed method only on the English-German
translation tasks using the Multi30k dataset, the
most commonly used dataset in the MNMT re-
serach area. It is not clear whether the proposed
method is effective for translation for language
pairs other than English and German or translation
when a larger training dataset is used (e.g., when
using an existing data augmentation method for
MNMT). We will leave these verification experi-
ments for future work.

The proposed method has improved translation
performance of MT, but the performance is not per-
fect and translation results could include translation
errors. Accordingly, there still remains a possibil-
ity that translation results by the proposed method
could convey incorrect information.

The proposed method requires an additional pro-
cess for transforming images, compared with con-
ventional MNMT models. The experiment, in-
cluding model training and testing, on the pro-
posed model MNMT(conv.) took about 20 hours
longer than that on the baseline MNMT model
MNMT(orig.) when using RTX3090 GPU x 1.
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A Appendix

Successful Examples Unsuccessful Examples
a man grilling meat on an outdoor grilling pit . a man wearing black and white stripes is trying to stop a horse .

Source Language Sentence Source Language Sentence

g

Original Related Image Transformed Image Original Related Image Transformed Image

a young girl in a red dress is wearing a black one man holds another man's head down and
cowboy hat . prepares to punch him in the face .

Source Language Sentence Source Language Sentence

Original Related Image Transformed Image Original Related Image Transformed Image

Figure 3: Successful (Left) and Unsuccessful (Right) Examples of our Image Transformation
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Abstract

Despite the rapid development of neural-based
models, syntax still plays a crucial role in mod-
ern natural language processing. However, few
studies have incorporated syntactic informa-
tion into ancient Chinese understanding tasks
due to the lack of syntactic annotation. This
paper explores the role of syntax in ancient Chi-
nese understanding based on the noisy syntax
trees from unsupervised derivation and mod-
ern Chinese syntax parsers. On top of that,
we propose a novel syntax encoding compo-
nent — confidence-based syntax encoding net-
work (cSEN) to alleviate the side effects from
the existing noise caused by unsupervised syn-
tax derivation and the incompatibility between
ancient and modern Chinese. Experiments
on two typical ancient Chinese understanding
tasks, ancient poetry theme classification and
ancient-modern Chinese translation, demon-
strate that syntactic information can effectively
enhance the understanding of ancient Chinese
over strong baselines, and that the proposed
¢SEN plays an important role in noisy scenar-
ios.

1 Introduction

Ancient Chinese literature, such as classical po-
etry, books, and records, is a highly representative
and distinctive cultural heritage that is receiving
increasing attention from the NLP academia. How-
ever, directly applying modern Chinese processing
methods to ancient texts is not appropriate due to
the differences in syntax and semantics between
ancient and modern Chinese. Chinese is one of the
oldest written languages in the world, with a his-
tory of at least 6,000 years (Norman, 1988). Over
time, the language has undergone many changes,
such as the transition from literary to vernacular
Chinese in the early 20th century (Weiping, 2017),
resulting in a significant gap between ancient and
modern Chinese.

* Corresponding authors.
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-

Figure 1: Unlabeled dependency parses from different
parsers, where red arcs indicate prediction noises.

Syntactic features has been utilized in a wide
range of NLP tasks, including coreference resolu-
tion (Fang and Fu, 2019; Trieu et al., 2019; Jiang
and Cohn, 2022), machine reading comprehension
(Zhang et al., 2020; Guo et al., 2020), and machine
translation (Currey and Heafield, 2019; Zhang et al.,
2019a; Bugliarello and Okazaki, 2020). Despite
the effectiveness of syntax in modern Chinese un-
derstanding (Li et al., 2018; Xia et al., 2019; Zhang
et al., 2020), few studies have incorporated syn-
tactic information into ancient Chinese processing.
Most works only take into account explicit features,
such as era (Chang et al., 2021) and imagery (Shen
et al., 2019), ignoring implicit syntactic features.
The main reason for this lies in two aspects: (1) the
linguistic gap between ancient and modern Chinese
makes it difficult for supervised modern Chinese
syntax parsers to correctly parse ancient Chinese
expressions; (2) training a supervised ancient Chi-
nese syntax parser from scratch can be highly costly
due to the lack of annotated data.

Unsupervised syntax parsing or directly employ-
ing modern Chinese parsers will inevitably cause
noise and performance degradation. A unlabeled
example and corresponding human annotation on
ancient Chinese sentence "] 1% AMLH It is

Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics - Student Research Workshop, pages 83-92
July 10-12, 2023 ©2023 Association for Computational Linguistics



pitiful like Chang’e in the moon)" are shown in
Figure 1. To address this challenge, we propose
a novel syntax encoding structure — confidence-
based syntax encoding network (cSEN), which al-
leviates the negative effect of noise by measuring
confidence of arcs in syntax graphs. Specifically,
confidence is calculated by performing Biaffine
transformation over the sequence representation
and the derived syntactic graph adjacency matrix.
With this obtained confidence, our model is capa-
ble of distinguishing useful syntactic features from
noise.

Moreover, compared with modern Chinese, an-
cient Chinese has more concise expressions and
thus more compact structures, each token is highly
relative to the preceding and following one. Consid-
ering such linguistic characteristic, we incorporate
another graph feature — left-right branch (LRB),
which captures local features to further improve
ancient Chinese understanding. Experiments are
conducted on two typical ancient Chinese under-
standing tasks, thematic classification of ancient
poetry and ancient-modern Chinese translation. Re-
sults show that our model achieves significant im-
provements over powerful baselines, and our pro-
posed cSEN can effectively handle the noise in the
derived syntax trees. To our best knowledge, our
proposed cSEN is the first solution that makes the
syntax practical in ancient Chinese processing. The
proposed cSEB can serve as a backbone for enrich-
ing our understanding of ancient texts, offering a
scalable and consistent solution for education, re-
search, and broadening the public’s access to these
significant cultural treasures.

Overall, the contributions of this paper can be
concluded in four folds:

e This study fills the research gap of exploring
the role of syntax in ancient Chinese under-
standing. Our work demonstrates that syntac-
tic information, even noisy parses from unsu-
pervised derivation, can benefit ancient Chi-
nese understanding substantially.

* We propose a novel architecture — confidence-
based syntax encoding network (cSEN),
which alleviates the negative effect of noise in
syntax parses, thus making it practical to uti-
lize derived syntactic information to enhance
ancient Chinese understanding.

* The effectiveness of cSEN is evaluated on
two typical ancient Chinese understanding
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tasks, ancient poetry thematic classification
and ancient-modern Chinese translation. Re-
sults show that our model yields significantly
better performance in noisy scenarios over
powerful baselines.

* We create a new dataset for the thematic
classification of ancient Chinese poetry, with
22,360 poems divided into 10 theme cate-
gories. This dataset offers a data foundation
for related research and helps to eliminate the
lack of available ancient Chinese annotated
corpora.

2 Related Work

2.1 Syntax Role in Modern Chinese
Understanding

As syntax is highly correlated with semantics, syn-
tactic features, including constituent and depen-
dency structures, have been utilized in many mod-
ern Chinese understanding tasks and have been
shown to be helpful clues. Li et al. (2018) explored
the effect of syntax on semantic role labeling (SRL)
and confirmed that high-quality syntactic pars-
ing can effectively enhance syntactically-driven
SRL. Xia et al. (2019) designed a syntax-aware
multi-task learning framework for Chinese SRL
by extracting implicit syntactic representations as
external inputs for the SRL model. Jiang et al.
(2018) incorporated syntactic features to expand
identified triplets for improving Chinese entity re-
lation extraction. Zhang et al. (2020) proposed a
syntax-aware approach for solving machine read-
ing comprehension, which incorporates explicit
syntactic constraints into the attention mechanism
for better linguistically motivated word representa-
tions. Sun et al. (2022) utilized syntactic features,
which capture depth-level structure information, in-
cluding non-consecutive words and their relations,
to enhance recognition of Chinese implicit inter-
sentence relations. Zhu et al. (2022) incorporated
syntactic dependency information to determine en-
tity boundaries for improving Chinese named entity
recognition. Despite the increasing attention that
syntax is receiving in modern Chinese understand-
ing, few studies have attempted to utilize syntactic
features for ancient Chinese understanding.

2.2 Ancient-Modern Chinese Translation

Unlike bilingual translation tasks, such as Chinese-
English, ancient and modern Chinese are written



using the same characters. Despite that, translat-
ing between ancient and modern Chinese can still
be challenging for native speakers. This is due
to two factors: (1) the syntactical structure and
grammatical order of ancient Chinese are differ-
ent from those of modern Chinese, making ancient
Chinese expressions more concise yet also more
confusing; (2) ancient Chinese frequently employs
allusion, metaphor, and symbolic imagery to im-
plicitly evoke sensory and emotional experiences,
which increases the complexity of disambiguating
the intended message.

In recent years, advancements in deep learning
have led to significant progress in neural machine
translation. For example, Zhang et al. (2019b) pro-
posed an unsupervised algorithm that constructs
sentence-aligned ancient-modern pairs, and an end-
to-end neural model with copying mechanism and
local attention to translate between ancient and
modern Chinese. Liu et al. (2019) applied RNN-
based (Bahdanau et al., 2014) and Transformer-
based (Vaswani et al., 2017) machine translation
models to this task. Considering the monolingual
nature of this task, Yang et al. (2021) utilized pre-
trained model UNILM (Dong et al., 2019) and an
ancient Chinese pre-trained model Guwen-BERT
to enhance performance. Over time, the Chinese
language has evolved a lot, resulting in different
characteristics of ancient Chinese in different eras.
To address this, Chang et al. (2021) proposed a
time-aware translation method, where the model
predicts both the translation results and its particu-
lar era, and uses the predicted chronological feature
as auxiliary information to bridge the linguistic gap
between Chinese language in different eras.

2.3 Classification of Ancient Chinese Poetry

Classification of ancient Chinese poetry provides
a basis for higher-level tasks, such as sentiment or
style controllable poetry generation (Yang et al.,
2018; Chen et al., 2019; Shao et al., 2021). In the
past, statistical features and machine learning al-
gorithms were commonly used. For example, Hou
and Frank (2015) proposed a weakly supervised
sentiment classification approach, which created a
sentiment lexicon based on Weighted Personalized
PageRank (WPPR). Shen et al. (2019) incorpo-
rated imagery features for analyzing the sentiment
of Tang Poetry. In recent years, neural classifiers
have been introduced to the task and made remark-
able progress in performance. For instance, Xuan
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et al. (2018) designed a poetry style recognition
model by stacking a genetic algorithm with CNN,
and Tang et al. (2020) combined CNN with a gated
GRU for solving poetry sentiment classification.

3 Model

In this section, we describe architecture of the pro-
posed cSEN. We first present a basic GAT encoder,
then introduce our cSEN. The overview of cSEN
is shown in Figure 2.

3.1 Vanilla GAT

GAT is often applied over a sentence encoder to ex-
tract graph-based representations of the input text.
Given input token sequence 7 = {t1,ta,...,1;},
[ denotes the sequence length. The output of the
sentence encoder is denoted as matrix H € R,
where each row h; € R" is the representation of
token ¢;.

With dependency structure of the input sequence
from a syntax parser, we construct a dependency
graph G = (V,E), where V is the set of tokens
and & is the set of arcs. In the graph encoding, we
employ the form of adjacency matrix to describe
the graph, in which the positions with arcs and
diagonal are assigned to ones, denoted as M (deP)
Linear transformation is performed by multiplying
the sentence representation H with a matrix W €
R™*" for feature extraction, where 7’ denotes the
transformed feature dimension:

Z=HW.
Then, a pair-wise attention operation is performed.
For every pair ¢;,t; € V, it concatenates corre-
sponding representations z; and z;, then takes the
dot product with vector a € R2" and applies a
LeakyReLU activation function:
ST j] = LeakyReLU([z; @ z;]" a),

where © represents the concatenation operation,
and S(™¥) is a score matrix with the size of (I x 1)
that captures inter-node relations. To integrate the
graph structure, the adjacency matrix M (deP) jg
used to constrain the function scope before a regu-
lar Softmax operation is performed. By doing this,
each token can only attend to its head tokens and
itself. The obtained attention weights matrix then
is used for scaling the transformed sentence rep-
resentation Z and calculating the final attentional

output:
W) — Softmax (ST x A (dep)),

fH(attn) _ W(attn)z'
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3.2 Confidence-based GAT

As discussed above, GAT guides the encoding pro-
cess by constraining the scope of the attention com-
putation. Therefore, the presence of noise in the
graph will inevitably impact the encoding output.
To alleviate the negative effects of noise on the
model’s performance, we propose a confidence-
based GAT, which measures the confidence of the
graph adjacency matrix, helping the model distin-
guish reliable syntactic information from noise.

Similar to vanilla GAT, we first model the pair-
wise relationships. Two separate linear transfor-
mations are performed over the sentence represen-
tation H to obtain the role-aware representations.
The outputs are denoted as (9 and H™ respec-
tively, both of which have the size of (I x n'):

H(d) — 'HW(d); 1M — 20
Then, Biaffine attention (Dozat and Manning,
2016) are calculated on the role-aware represen-
tations for pair-wise relationship scoring:
St) — gy M™T

where U is an intermediate matrix with the size
of (n’ x n'). Confidence scores are calculated by
concatenating the pair-wise relationship scores and
the adjacency matrix and passing them through
processing as follows,

S(fuse) _ ReLU(FFNN(fuse)( S(bi) ® M(dep)] ))’
St — Sigmoid (FFNN () (S(fuse)y)

where FFNN (fuse) performs a linear transformation
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to fuse the two feature spaces along with an ReLLU
activation, and FFNN(™) is used to reduce the
dimension from 2/ to [, so that Sigmoid can be
applied to project the confidence features to the
same magnitude as the attention scores. With this
obtained confidence scores S, we can remedy
the original attention restrain process:

W(conf) _ Softmax(w(atm) + S(conf))’
H(conf) _ W(conf)Z.

In summary, cSEN alleviates the negative effect
of noise in graphs through a two-fold process. First,
¢SEN measures the confidence of the derived syn-
tax parses. This confidence score is then used to
soft-mask noisy arcs and highlight previously un-
detected ones. Second, considering the linguistic
characteristics of ancient Chinese, the Left-Right
Branch feature is incorporated to broaden the scope
of syntax graph encoding and smooth out noise
and incompatibility. The combined effect of these
aspects helps alleviate performance degradation
caused by noise.

3.3 Left-Right Branch Feature

Inspired by the ubiquity of local dependencies in
ancient Chinese, we introduce a novel straightfor-
ward and effective feature, left-right branch, to fur-
ther improve the GAT encoding. To model local
inter-token relations, we populate a matrix M (™)
of the same size as M (9P) following
wy 1, ifje{i—1,i4+1}
MU j] = { 0, otherwise.



This indicates that there exist arcs in the graph con-
necting the node and its close left and right neigh-
bors. The left-right branch features are encoded
using another GAT component, yielding a sequence
representation Z (%) and a positional-information-
introduced attention weight matrix WWU™)_ The out-
puts from M(9P) and M) are combined with a
gated mechanism to produce the final output:

fH(lrb) _ W(lrb)Z(lrb)‘
g= Sigmoid(FFNN(gate)( H(conf) D /H(lrb) ))’

H(output) =g x H(conf) + (1 o g) > H(lrb).

4 Experiments

We evaluate the effectiveness of ¢SEN module
using two typical ancient Chinese understanding
tasks: Thematic classification of ancient poetry and
ancient-modern Chinese translation. We build our
model by incorporating the cSEN module into exist-
ing solid baselines. For the classification task, we
follow the work of (Vaibhav et al., 2019) which has
a BERT-GAT-BiLSTM backbone architecture. And
for the translation task, our model is based on (Jin
et al., 2020) where dependency graphs are incor-
porated into neural sequence-to-sequence models
with a pointer network.

4.1 Data

To address the scarcity of annotated data for
thematic classification, we constructed a novel
dataset!. Two graduate students specializing in
Chinese literature study annotated 22,360 poems,
categorizing them into one of ten distinct themes
under the guidance of an experienced ancient Chi-
nese linguist. This meticulous process ensured
high-quality, reliable annotations. Any conflicted
labelling between the two annotators was resolved
through consultation with the supervisor, guarantee-
ing a consistent annotation standard. The dataset is
then randomly divided into a training set (20,360),
a development set (800), and a test set (1,200). The
distribution of themes in the dataset is detailed in
Table 1.

For the ancient-modern Chinese translation, we
adopt the ancient-modern Chinese parallel corpus
contributed by the open source NiuTrans project?.
The corpus contains 967,255 sentence pairs ex-
tracted from ancient Chinese books. We divided

1Upon publication of this paper, this dataset will be made

available for research purposes.
*https://github.com/NiuTrans/Classical-Modern

87

Train Dev  Test
#0Object-chanting 1129 47 66
#Landscape 1097 44 47
#Persons 2403 91 129
#History 1087 40 76
#Homesickness 9013 357 522
#Mourning 503 18 31
#War 1746 62 115
#Pastoral 1219 47 84
#Farewell 1460 60 83
#Boudoir-plaint 703 34 47
Total 20360 800 1200

Table 1: Data statistics of the ancient Chinese poetry
thematic classification dataset

the corpus into training, validation, and test sets
with corresponding sizes of 900,000, 60,000, and
7,255.

4.2 Syntax Parsing

We experiment with two settings — modern su-
pervised parsers and ancient unsupervised syntax
derivation. For modern supervised parsing, we
adopt the Biaffine dependency parse (Dozat and
Manning, 2016) and train it on CTB7 (Xue et al.,
2010). For unsupervised syntax derivation, we fol-
low the work of Wu et al. (2020), which utilizes
linguistic knowledge gained from pre-trained lan-
guage model BERT to infer syntactic dependency
structure without direct supervison. We attempt
two variants of BERT for syntax derivation and
backbone sentence encoder, BERT-wwm-ext (Cui
et al., 2021) and Anchi-BERT (Tian et al., 2021).
BERT-wwm-ext is trained on the modern Chinese
corpus containing 5.4B words, while Anchi-BERT
is trained upon a ancient Chinese corpus with the
size of 39.5M tokens. In addition, we treat the
left-right branch as a special kind of syntax parses.
Anchi-BERT is trained on a smaller ancient Chi-
nese corpus (39.5M tokens), while BERT-wwm-ext
is trained on a larger modern Chinese corpus (5.4B
tokens). We also treat left-right branch features as
a distinct class of syntax parses.

For clarity, the syntactic parses from the Biaffine
parser, BERT-wwm derivation, and Anchi-BERT
derivation are denoted as BiAF, WWMD, ANCD
respectively, in the following part.

4.3 Implementation and Hyper-parameters

For the thematic classification, our model is built by
stacking BERT, a graph encoder, and a single-layer
LSTM. For the baseline, we do not incorporate syn-



BERT-wwm Anchi-BERT

Methods Parses Micro F1 ~ Macro F1 Micro F1 ~ Macro F1
Baseline None 91.7 89.2 92.4 90.4
LRB 91.5 88.9 93.3 91.4
BIAF 92.3 89.7 93.3 91.2
WWMD 914 88.8 92.7 90.8
GAT ANCD 91.8 89.2 93.2 91.0
BiAF+LRB 92.7 90.4 93.3 91.2
WWMD+LRB 91.7 89.6 93.2 91.2
ANCD+LRB 90.8 88.2 92.8 90.7
BiIAF+ANCD+LRB 91.7 88.8 92.6 90.6
BIiAF+LRB 914 89.2 93.3 91.6
WWMD+LRB 92.8 90.7 93.6 91.9
cSEN ANCD+LRB 91.3 89.1 93.2 91.3
BiAF+ANCD+LRB 91.0 89.1 93.8 91.9

Table 2: Comparison with baseline model and syntax-aware methods on the thematic classification task.

Methods Parses BLEU RG-1 F-score RG-2 F-score RG-L F-score
Baseline None 37.14 69.71 46.24 67.62
LRB 37.42 69.86 46.36 67.72
BIAF 37.45 70.23 46.93 68.21
WWMD 37.46 70.20 46.89 68.14
GAT ANCD 37.55 69.90 46.53 67.85
BIAF+ANCD+LRB  34.62 69.20 45.15 67.15
¢SEN BiIAF+ANDC+LRB  37.73 70.27 47.09 68.23

Table 3: Experimental Results of the ancient and modern Chinese translation task.

tax parses, rendering the graph encoder ineffective
in shaping the attention scope. The graph encoder’s
node embedding dimension is set to 128, and the
hidden size in LSTM is set to 100. We adopt the
Adam optimizer with p = 5e — 5 and € = le — 8§,
using a batch size of 32. All classifiers are trained
for 10 epochs on the train set by default.

We mostly follow the parameter settings from
(Jin et al., 2020) for the ancient-modern Chinese
translation. The Adam optimizer is configured with
p = le —4and € = le — 8. And all models are
trained for 50 epochs with a batch size of 108.

4.4 Results
4.4.1 Ancient Poetry Thematic Classification

Table 2 presents the results of ancient poetry the-
matic classification. We report the results in Micro-
F1 and Macro-F1 scores. The table is divided into
three blocks, showing the results of the baseline
model, vanilla GAT, and the proposed cSEN. The
baseline model achieves 92.4 in Micro F1 and 90.4
in Macro F1, showing strong performance.

From the results in the first two blocks, it can be
found that incorporating syntactic trees with GAT
encoder brings substantial improvement, proving
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the value of syntactic information for enhancing an-
cient Chinese understanding. Through comparing
the results of employing Anchi-Bert as the sentence
encoder and those obtained employing Bert-wwm,
we can see that Anchi-Bert outperforms BERT-
wwm with a significant lead in all cases. Recall
that Anchi-Bert was pre-trained on a much smaller
corpus. Also, the performance of syntactic trees
derived by BERT-wwm is inferior to the other three.
This once more indicates the linguistic gap and syn-
tactic incompatibility between ancient and modern
Chinese.

Unsupervised syntax trees derived by Anchi-
BERT performs roughly the same as those pro-
duced by the Biaffine parser. Additionally, LRB
is the best-performing syntax parse among all, im-
proving the performance by 0.9 in Micro F1 and
1.0 in Macro F1. It can be partially explained by
the fact that ancient poems are comprised by a few
brief sentences, which are highly concise and struc-
turally compact. This results in fewer long-range
dependencies, and each token is closely dependent
on the immediate preceding or succeeding token.

From the third block, it can be seen that when us-
ing Anchi-BERT as sentence encoder, cSEN brings



Variants Micro F1 ~ Macro F1
c¢SEN 93.8 91.9
w/o Confidence 92.8 91.1
w/o Gate 93.0 91.0

Table 4: Ablation study results.

Syntax Trees Micro F1 ~ Macro F1
[ANCD] + (LRB) 93.2 91.3
[BiAF] + (LRB) 93.3 91.6
[BIAF + LRB] + (ANCD) 92.8 90.9
[ANCD + LRB] + (BiAF) 92.8 90.5
[BIAF + ANCD] + (LRB) 93.8 91.9

Table 5: Comparison of different combination config-
urations on syntactic parses. Parses in square brackets
are merged onto a single adjacency matrix and parses in
parentheses are incorporated by the gated mechanism

performance gains across all syntax trees setups,
raising the top Micro and Macro F1 scores to 93.8
and 91.9, respectively. This demonstrates that: (1)
¢SEN’s denoising capability is effective for utiliz-
ing noisy syntactic information to improve ancient
Chinese understanding; (2) cSEN can handle noise
introduced by different parses, whether it is from a
supervised modern Chinese parser or unsupervised
derivation.

4.4.2 Ancient-Modern Chinese Translation

Results of the ancient-modern Chinese translation
are shown in Table 3. We use BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004) scores for
performance evaluation. The baseline model with-
out syntax parses achieves 37.14 in BLEU score
and F-scores of 69.71, 46.24, 67.62 in ROUGE-
1, ROUGE-2, and ROUGE-L respectively. With
single syntactic parses incorporated, all models
achieve better performance in all metrics, prov-
ing that syntax can effectively improve ancient-
modern Chinese translation. LRB is relatively the
weakest one, slightly increasing BLEU score by
0.28, and ROUGE f-scores by 0.15, 0.12, 0.10.
This might be caused by that sentences from the
ancient books have more long-distance dependen-
cies and more complicated syntactic structures that
left right branch can not recover. Anchi-BERT de-
rived syntax parses have better performance with
an improvement of 0.41 in BLEU score, and 0.19,
0.29, and 0.23 in ROUGE scores. BERT-wwm de-
rived syntax trees and trees generated by Biaffine
parser have similar results. In contrast to Anchi-
BERT derived trees, their performance are inferior
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in BLEU scores but better in ROUGE F-scores.
Feeding multiple syntactic parses into the GAT-
based model simultaneously leads to a significant
performance drop. While replacing GAT with the
proposed cSEN increases performance in all met-
rices, with 37.73 in BLEU score and 70.27, 47.09,
68.23 in ROUGE F-scores. From the above results,
we conclude that syntax parses from unsupervised
derivation or modern Chinese syntax parsers intro-
duce noise and degrade model performance. With
our confidence learning, model is able to distin-
guish and separate informative syntactic informa-
tion from noise, thus alleviating its negative effect.

Table 6 shows three ancient-to-modern Chinese
translation examples produced by different models.
From generations for Sent 1, we can see a common
error: due to the lack of contextual information, all
three models assume the surname of "the father"
useing the most common Chinese surnames, such
as "Li" and "Zhang". For Sent 2, the generations
from the baseline model and vanilla GAT differ
significantly from the human-annotated reference.
They fail to recognize the relationship between the
characters,such as who "E.#" refers to, thus gen-
erating tranlations that did not correspond to the
facts. In contrast, with stronger denoising capa-
bility, cSEN is able to correctly encodes the infor-
mation in ancient Chinese texts, thus producing
higher-quality translations.

5 Exploration

In this section, we investigate the impact of differ-
ent cSEN components and analyze the nature of
different syntax parses.

First, we conduct ablation studies on cSEN. Re-
sults are reported in Table 4. Both the removal
of the confidence (equivalent to vanilla GAT) and
the removal of the gated mechanism lead to signifi-
cant performance degradation. This indicates that
both modules are crucial for effectively utilizing
syntactic information from noisy parses.

Second, we experiment with different syntax
tree combination setups. Table 5 lists the findings.
Combining two syntax parsers onto a single depen-
dency graph can provide richer syntactic informa-
tion and produce higher performance than using
alone syntax parses, no matter it is from unsuper-
vised derivation or a supervised parser. We also
explore the incorporation position of LRB features.
It can be observed that the model performance suf-
fers significantly if LRB features and graph parses



Sent  Ancient Chinese

sre: SCUE, /DBEES . ERER S OAMKATELH -
1 ref: SURFRUL, SFRAITEE, FEEKRE, HEIKRAHERH .

trl: His father, Chen Xian, was brave when he was young. He served Zhang Dabao, as an in-tent soldier.

sre: B WA, SRR DA - VAR RS . HIpE s T .

2 ref BFEMITIR, WABEIERSG LS, FEEET R, WARRET 25 .
trl: Jin state attacked Li Rong. Li Rong’s men presented Li Ji to Jin Xian Gong. After returning the state, Li Ji gave birth to Xi Qi, and her sister
gave birth to Zhuo Zi.
sre: MR, NH: W2, RAZEE =4 .
3 ref: FENERE, . BHEPRER, BRE=RIGLE.
trl: After the matter was over, he said: "The dismissal of Yang Cunzhong, made me unable to sleep for three days."
Baseline
| CUESRUL, DERBREE, EREAERT SR EEREIHH -
His father, Zhang Xian, was brave and good at fighting when he was young. He served as a soldier under the command of Zhang Dabao, and was
Zhang Dabao’s soldier.
2 EEVEEER, WA ER B, EEEET B, WAL T E T .
Jin state attacked Li Rong, and Li Rong’s men and women presented Li Ji, and after returning the state, they gave birth to Xi Qi, and Li Rong’s
sister gave birth to Zhuo Zi.
5 FETEAUESS, Xt BETHER, RERALE .
After completing the task, he said: "The dismissal of Yang Cunzhong, made me unable to sleep for three nights."
Vanilla GAT
| SUGEFUL, DEREREEE, (EERET MHE.
His father, Li Xian, was brave and good at fighting when he was young, and worked under Zhang Dabao.
o  HEVEREEE, SRR THRE, W4T R, RFTIRIRE TET .
Jin state attacked Li Rong. Li Rong’s men married Li Ji, married Xi Qi, and Xi Qi’s sister gave birth to Zhuo Zi.
5 HEIEL, X BETHERNE, JEEIAET HE=AHE.
After the work was finished, he said: I felt uneasy about Yang Cunzhong’s dismissal for three nights.
c¢SEN
| COERRIL, FREGEE, FREREEKAE -
trl: His father, Chen Xian, was brave when he was young. He served Zhang Dabao as an in-tent soldier.
,  HETOTH, WRATEMEESEE, FESE TR, WERRE T T
Jin state attacked Li Rong. Li Rong’s men presented Li Ji to Jin State. After returning the state, Li Ji gave birth to Xi Qi, and her sister gave birth
to Zhuo Zi.
5 SEISEEE, R BEFETHRER, RERILE-

trl: After the matter was over, he said: "The dismissal of Yang Cunzhong, made me unable to sleep for three days."

Table 6: Ancient-to-modern Chinese translation examples generated by the baseline model, vanilla GAT, and cSEN.
The first block shows the original ancient Chinese sentence (src), human-annotated modern Chinese reference (ref),

and corresponding English translations (trl).

are directly merged together. This again indicates
the necessity of our gated method for LRB feature
integration.

Third, as illustrated in Figure Figure 3, we com-
pare our model and baselines over different input
lengths. ¢SEN performs better in relative longer
sentences, according to the results. This supports
the hypothesis that syntax helps guide longer sen-
tence understanding as dependency reduces the dis-
tance. Because of the incompatibility between mod-
ern and ancient Chinese, unsupervised derivation is
more effective than supervised parsing when com-
pared to other syntax parsers. In most cases, cSEN
yeilding better performance due to its stronger de-
noising capabilities.

6 Conclusions

In this paper, we investigate the role of syntax in
improving ancient Chinese understanding. Due to
lack of syntax annotation, syntax trees are obtained
by unsupervised derivation and supervised modern
Chinese parser. To alleviate the negative effect of
noise, we propose a confidence-based syntax en-
coding network (cSEN). Experimental results on
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Figure 3: BLEU scores for different input sentence
lengths.

two typical ancient Chinese understanding tasks
show that our model can effectively distinguish
informative syntactic information from noise and
achieve better performance. The application of our
proposed cSEN can enhance the accessibility of
ancient Chinese resources by offering a scalable
and consistent solution for mining semantic infor-
mation of ancient Chinese texts.



Limitations

The main limitation of our study comes from the
extra parameters caused by confidence calculation,
in which two separate self-attention operations and
Biaffine transformation are performed. Incremen-
tal parameters results in a more time-consuming
training process, and a higher hardware demand for
storage. To address this issue, we plan to combine
parameters from different attentional transforma-
tions into shared weight matrices in our future work
to reduce the model size.
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Abstract

In this paper, we investigate the potential of
using large pre-trained language models to gen-
erate non-playable character (NPC) scripts in
video games. We introduce a novel pipeline
that automatically constructs believable NPC
scripts for various game genres and specifica-
tions using Transformer-based models. More-
over, we develop a self-diagnosis method, in-
spired by prior research, that is tailored to es-
sential NPC characteristics such as coherence,
believability, and variety in dialogue. To evalu-
ate our approach, we propose a new benchmark,
The Turing Quest, which demonstrates that our
pipeline, when applied to GPT-3, generates
NPC scripts across diverse game genres and
contexts that can successfully deceive judges
into believing they were written by humans.
Our findings hold significant implications for
the gaming industry and its global community,
as the current reliance on manually-curated
scripts is resource-intensive and can limit the
immersiveness and enjoyment of players.

1 Introduction

Over the past decade, there has been a growing in-
terest in applying deep learning models to Natural
Language Generation (NLG) for open-domain dia-
logue systems and conversational agents. In paral-
lel, the gaming industry has been striving to create
more immersive experiences for players by enhanc-
ing their interactions with non-playable characters
(NPCs). Howeyver, the potential of utilizing state-of-
the-art deep learning models, such as Transformer-
based models, to create NPC scripts remains largely
unexplored.

Pre-trained Transformer-based language mod-
els (PLMs) like OpenAI’s GPT-3 (Brown et al.,
2020) and ChatGPT (Schulman et al., 2022) have
demonstrated impressive conversational abilities
(Milne-Ives et al., 2020). In certain contexts, the
text generated by these models can be nearly indis-
tinguishable from human-written text (M Alshater,
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2022) without the aid of external tools or water-
marks (Gambini et al., 2022). The use of these
models in real-world applications has been expand-
ing in areas such as customer service automation
(Xu et al., 2017) (Zou et al., 2021), educational
conversational agents (Molnar and Sziits, 2018),
and mental health dialogue systems (Abd-Alrazaq
et al., 2019).

Despite their growing prevalence, the effective-
ness and generalization capabilities of PLMs in
various contexts remain uncertain. One such un-
charted domain is the creation of “non-playable
characters” or NPCs in video games.

When comparing chatbots to NPCs, the latter
can be considered as a narrative-driven variant of
goal-oriented chatbots. However, NPCs and chat-
bots serve different purposes and operate in distinct
environments. Generating NPC scripts presents
unique challenges, as the dialogue must be consis-
tent with the game’s plot, genre, and the NPC’s
character to maintain player immersion and suspen-
sion of disbelief (Kerr and Szafron, 2009). Accord-
ing to Lee and Heeter (2015), NPC believability
hinges on “the size and nature of the cognitive
gap between the [NPC that] players experience
and the [NPC] they expect”. Players anticipate
NPCs with individualized and possibly dynamic
traits, which should be reflected in their dialogue.
While incorporating personality into dialogue sys-
tems is well-studied (Qian et al., 2017) (Smestad
and Volden, 2019) (de Haan et al., 2018), the chal-
lenge of generating goal-oriented, believable NPC
scripts that align with a game’s narrative and the-
matic elements, while preserving player immersion,
remains substantial.

The ability to automatically generate contextu-
ally appropriate dialogue for a specified character
could have an effect on the design paradigms of
future video games. While manually scripted nar-
ratives and plot points will continue to hold their
value, developers could augment player immersion

Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics - Student Research Workshop, pages 93-103
July 10-12, 2023 ©2023 Association for Computational Linguistics
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Figure 1: A sample output of our NPC construction pipeline.

by allowing an array of NPCs to dynamically re-  prises three key modules: a) a Feature Charac-
spond to a player’s in-game progression. terization Schema that classifies NPCs based on
personality traits and world descriptions, b) an Au-
tomatic Prompt Creation process that employs the
schema to generate tailored prompts for condition-
ing language models, and c¢) a Dialogue Generation
phase that uses the customized prompts to generate
scripts with Transformer-based PLMs. Figure 1
provides an example of dialogue generated through
this pipeline. We also devise and automate an eval-
uation metric for NPC dialogue quality, drawing
inspiration from related literature (Brown et al.,
2020). Lastly, we propose the Turing Quest: a test
using human judges to assess the believability and
quality of generated NPC scripts.

Traditionally, game design involves scripted di-
alogues only for NPCs that contribute directly to
a quest or story line, thereby limiting the extent
of player interaction. It is not often possible for a
player to initiate a conversation with a companion
about an ongoing quest or solicit their views, creat-
ing an impression that, from an NPC’s perspective,
the player’s existence is confined to the quests they
undertake.

Simply implementing an interactive compan-
ion system necessitates writing dialogues for ev-
ery quest for all possible companions—a labor-
intensive task. Expanding this system to encom-
pass a majority of a game’s NPCs would fur- 2 Related Work
ther compound these challenges, increasing the
amount of labour to an unreasonable degree. The
vast amount of dialogue required for each narra-
tive stage would significantly exceed typical time
and resource constraints of most developers. De- for NPCs in video games, despite their similarities
spite the potential enrichment of the player ex- to chatbots, remains limited. Although most video

perience, the practicality of creating such an im- ~ £3mes in the past decade include NPC dialogue,
research on automating its creation using Artificial

In recent years, there has been a growing inter-
est in dialogue systems and conversational agents.
However, the exploration of dialogue generation

mersive, dialogue-rich environment using solely ) e Tt Mk
human-authored dialogue in game development re-  Intelligence (AI) is still in its infancy.

mains questionable. NPC Dialogue generation. In the early 2000s,

In this study, we investigate the application efforts in NLP to create better NPC dialogue re-
of Transformer-based models like GPT-3 to the lied on hand-crafted algorithms and manually au-
task of creating NPCs and generating believable  thored grammars (Schliinder and Klabunde, 2013)
scripts. To this end, we develop an NPC construc-  (Ryan et al., 2016). Schliinder and Klabunde (2013)
tion pipeline capable of generating dialogue based  succeeded in generating greetings that players per-
on the NPC’s attributes alone. Our pipeline com-  ceived as more polite and appropriate than in-game
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greetings. However, their rule-based method re-
lied on labor-intensive, discrete human-defined
steps that were difficult to scale into full branching
conversations. With recent advancements in goal-
oriented chatbots utilizing machine learning tech-
niques such as reinforcement learning (Liu et al.,
2020) and dialogue generation through deep re-
inforcement learning (Li et al., 2016) (Li, 2020),
automating NPC dialogue generation becomes in-
creasingly feasible.

The introduction of Al into games has led to
the application of various Al techniques and algo-
rithms to enhance gameplay experiences through
improved bots (Nareyek, 2004) and adaptive ex-
periences (Raifer et al., 2022). There has been
significant research into using machine learning to
create bots that provide challenging and entertain-
ing opponents for players (Hakansson and Froberg,
2021). However, this trend of applying machine
learning to different game design tasks does not
extend to dialogue generation for NPCs.

Although pre-trained language models such as
GPT-3 continue to expand their applicability, gen-
eralization remains an unsolved problem. While
PLMs like GPT-3 have shown natural language gen-
eration capabilities (Topal et al., 2021), research
into NLG with Transformer-based models trained
on NPC dialogue has revealed that the generated di-
alogue “compared rather poorly to human-written
[dialogue]” in terms of purpose and coherence
(Kalbiyev, 2022). Nevertheless, generalization dif-
ficulty for LMs is not unique to NPC dialogue (Ye
et al., 2021). We hypothesize that NPC dialogue
is not merely another generalization problem but a
distinct task. This hypothesis is supported by the
inadequacy of chatbot evaluation metrics (Peras,
2018) when applied to NPC dialogue.

NPC Dialogue Metrics. Metrics proposed for
chatbots do not directly translate to suitable metrics
for NPC dialogue. While chatbot success is often
determined by how “human” they sound and their
ability to maintain a conversation with a human
(Turing, 1950), NPC dialogue is always directed
and goal-oriented. Generating dialogue for NPCs
presents unique challenges compared to text gener-
ation in fictional settings. The generated dialogue
must be consistent with the game world and the
NPC'’s specific traits and personality, and it should
ensure coherence and contextual relevance in re-
lation to the player’s input. No test equivalent to
the Turing test or its alternatives, such as the Wino-
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grad schema (WSC) (Winograd, 1972; Levesque
et al., 2011) exists specifically for NPC dialogue.
To our knowledge, there is no standard metric to
evaluate the quality of generated NPC dialogue.
One suggested metric for NPC dialogue is “coher-
ence, relevance, human-likeness, and fittingness”
(Kalbiyev, 2022). While coherence, relevance, and
human-likeness can be applied to chatbots, fitting-
ness—defined by Kalbiyev (2022) as how well the
response fits the game world—is unique to NPCs.

3 NPC Construction Pipeline

The objective of the NPC construction pipeline
is to automatically generate coherent, contextu-
ally appropriate, and engaging utterances for an
NPC, given the dialogue history between the NPC
and a player, as well as the contextual informa-
tion about the NPC and the game. The pipeline
consists of three modules, which serve to a) char-
acterize the NPC according to a generalized rep-
resentation schema that captures crucial informa-
tion about the NPC’s role, personality, and game
context, b) generate short prompts based on the
characterization, providing contextually relevant
pretexts for the language model (LM), and c) gen-
erate utterances based on these prompts using an
LM optimized for NPC dialogue generation.

3.1 Module 1: Feature Characterization

Schema

The first module in the pipeline involves develop-
ing a schema that characterizes a given NPC ac-
cording to a number of game- and NPC-relevant
features. Identifying the most concise set of fea-
tures needed to define any NPC is a challenging
task, as NPCs not only exhibit vastly different per-
sonalities but can also serve different purposes for
the player and the game world. For example, in
the action role-playing game, “The Elder Scrolls
V: Skyrim” (Bethesda Game Studios, 2011), the
NPC Balgruuf the Greater is a Jarl, i.e., a king or
ruler who assigns quests to the player to maintain
peace. In contrast, a character like KL-E-0 from
“Fallout 4” (Bethesda Game Studios, 2015), a robot
arms dealer in a post-nuclear apocalyptic world,
has little concern for peace. Based on (Warpefelt,
2016), NPCs should possess both a ludic function
and a narrative framing for their actions to be coher-
ent and believable. That is, an NPC should fulfill
a gameplay or mechanical purpose—i.e., a ludic
function—while advancing the narrative through



their actions.

To develop a characterization of NPCs that cap-
tures their differences across various games and
genres, we should consider several important fea-
tures, such as their relationship and role with re-
spect to the player (e.g., buying and selling, pro-
viding quests, etc.) and their individual personality
and values. Taking into account narrative purpose,
ludic purposes, and the personality and character-
istic differences of NPCs, we propose five game-
specific features to characterize and distinguish
NPCs:

Narrative | Ludic
function
World Desc. v
NPC Role v
NPC Personality | v/
Game State v v
NPC Objective | v v

Table 1: The features and their purpose(s).

Each of these five features either fulfills a ludic
function or contributes to the game’s narrative, and
in some cases, a feature serves both purposes. This
schema enables us to classify NPCs based on their
in-game mechanics (Hunicke et al., 2004) while
also capturing their role in the game’s story. By
incorporating these features into the NPC construc-
tion pipeline, we can create NPCs that not only
adhere to the context and constraints of the game
world but also exhibit distinct and engaging per-
sonalities, which can significantly enhance players’
immersion and overall gaming experience.

World Description. A world description pro-
vides a summary of the story thus far, including
information about the game world and its unique
characteristics. Without this information, actions,
thoughts, and utterances may be incoherent or unfit-
ting, as they lack awareness of the setting and genre.
This may result in dialogue or actions that con-
flict with the player’s expectations. For instance,
if Balgruuf from the previous example, originat-
ing from a fantasy adventure game, were placed
in a sci-fi horror set in space, his actions, appear-
ance, and dialogue would clash with the rest of
the game. NPCs become “essentially incompre-
hensible if they are not framed according to the
narrative” (Warpefelt, 2016). Ignoring information
related to the setting, genre, and themes present
in the NPC’s world may affect the believability
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and fittingness of the NPC. More importantly, the
narrative dissonance generated could shatter the
willful suspension of disbelief—coined by Samuel
Taylor Coleridge (1971)—and break the player’s
immersion in the game’s world and story.

Role. Each unique NPC is created to fulfill
a purpose. Continuing from the previous ex-
ample, Balgruuf primarily functions as a quest-
giver—Aacilitating the player’s progression through
the main quest line and occasionally offering side
quests to enrich the narrative experience. Omitting
his role would fail to represent a critical function of
his character. Defining the role of an NPC, whether
as a vendor, quest giver, or storyteller, etc., is thus
crucial. We selected these roles based on the ty-
pology of NPCs and the NPC model proposed in
(Warpefelt, 2016). We adapted the types of NPCs
from (Warpefelt, 2016) and simplified the set of
NPC types to those that would feasibly have a con-
versation with the player while also merging entries
that were similar in their roles. This resulted in
eight types of NPCs, six neutral or friendly roles,
and two non-friendly roles, as shown below, in
Table 2.

Metatype \ Role
Vendor
Functional Service Provider
Questgiver
Providers Story teller
. Ally
Friendly Companion
. Enemy
Adversaries Villain

Table 2: Adapted NPC types.

The role an NPC occupies influences their ex-
pected dialogue. Although these roles are not mu-
tually exclusive within a single NPC (e.g., some
NPCs can be vendors at times while providing a
quest at another time), at any given point during a
dialogue with a player, the NPC occupies only one
of these roles.

Personality. To describe any given NPC, it is nec-
essary to elaborate on their personality and unique
characteristics that distinguish them from other
characters. These characteristics include physical
attributes and appearances, psychological and per-
sonality traits such as the strength of the OCEAN
personality traits proposed in (Digman, 1990), likes



and dislikes, etc. This feature focuses on the details
of the NPC’s character, such as their occupation,
beliefs, and other related details. NPCs are charac-
ters at their core, making it essential to incorporate
these details into their depiction.

Game State. This describes the progression of
the game and changes to the NPC’s location. The
NPC'’s dialogue may change based on the objec-
tives completed by the player and the current state
of the in-game world. The addition of this feature
allows us to focus on the NPC during any single
time frame during the course of the game. This
enables better classification of dynamic NPCs that
change over the course of the game and react to the
player’s actions. This feature also allows specify-
ing details such as the current location of the NPCs
and the scope of information the NPC possesses.
Game state serves both a narrative and ludic pur-
pose; for example, a shopkeeper may offer more
goods depending on the player’s actions, and the
NPC'’s location also aids in framing their actions
and dialogue, as a vendor may only offer certain
goods in specific towns.

Objective. The NPC Objective is the purpose of
the NPC apart from the player. According to Den-
nett Daniel (1981), personhood consists of six dif-
ferent themes: Rationality, Intentionality, Stance,
Reciprocity, Communication, and Consciousness.
Providing an NPC with a role satisfies intention-
ality, as each action should be motivated by what
the NPC was designed to achieve. However, giving
them goals and aspirations allows the NPC to have
a stance and perhaps even consciousness (Kalbiyev,
2022). If a blacksmith’s objective is to raise enough
money for their family, they should act and speak
accordingly. Their actions and dialogue should not
solely reflect their personality but also their objec-
tive. This feature allows the schema to capture
complex and dynamic NPCs with intricate values
and goals not fully represented by their role or per-
sonality. The addition of this feature enables the
NPC to have a greater purpose than merely serving
as an outlet for exposition or facilitating a game
function.

With these features, we propose that each unique
NPC can be encapsulated and represented wholly,
as shown in figure 2. Each one of these features
is independent of one another, allowing for mod-
ularity when designing NPCs. However, clashing
combinations may still exist regardless of the mod-
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World A fantasy world of Dragons and
magic; Skyrim
Role Questgiver
Personality Nord, Jarl of Whiterun, Loyal,
Noble, Blonde, reasonable
State Sitting on throne in dragonsreach.
Contemplating the war and re-
cent reports of dragons
Goal The safety and prosperity of the
people of whiterun and a solution
to the looming dragon threat.
Figure 2: Completed features for “Balgruuf the
Greater”.

ular nature of this schema.

3.2 Module 2: Prompt Creation

Prompt creation was designed with the feature rep-
resentation schema in mind. Providing the LM
with sufficient information about an NPC is cru-
cial to ensure that the generated dialogue remains
consistent with the character’s identity. These re-
quirements are akin to the challenges faced by the
feature representation schema. Consequently, the
prompt creation module integrates the various fea-
tures present in the schema and uses them as a
prompt. The first line of each prompt begins with
the sentence “You are an NPC in a game”, followed
by optional details such as a name, some details
about the world that the NPC inhabits, the role of
the NPC, basic personal characteristics, their cur-
rent state (e.g., sitting outside thinking about their
daughter), and finally their goal(s). Most of these
categories are optional, except for the NPC type
(i.e., their role), which must always be present. By
incorporating these features, the prompt creation
module empowers users to guide the LM in generat-
ing diverse NPCs with individualized personalities,
allowing for greater customization without the need
for prior fine-tuning or training.

NPC Header. Utilizing this prompt creation
method, we created the NPC header, a represen-
tative example is depicted in figure 3. This header
plays a pivotal role in dialogue generation by pro-
viding essential information about the character.
For our needs, we also created a player header us-
ing the same information used in the NPC header,
guiding the LM to mimic a player’s behavior and
facilitate automated dialogue generation. The gen-
erated player dialogue is less creative and more
prone to repetition compared to human-written dia-



You are an NPC in a game
Your name is [name]*

*= Exists only if name provided

World: A bustling town full of fresh adventurers and traders. A
world with magic and species such as elves, kobolds, and
dragons.

Role: Vendor

Personality: Retired adventurer, General store owner, helpful,
trustworthy, respected, energetic

State: behind the counter in the general store

Objective: To aid the new generation of adventurers and to live
a quiet life

Figure 3: Example of an NPC header.

logue. This issue is beyond the scope of this paper,
as our focus lies on NPC dialogue generation.

3.3 Module 3: Dialogue Generation

Dialogue generation was executed automatically
and iteratively. The prompt was structured as a
combination of the header and the current dialogue
history. The header section is continually swapped
depending on which agent’s dialogue—NPC or
player—is currently being generated. By placing
the header at the top of the prompt and swapping it
for the active agent, PLMs can generate dialogue
that is coherent with the current speaker and their
traits.

First Sentences. In early development-stage re-
sults, GPT-3 demonstrated difficulty in generating
effective first sentences. Combined with the inher-
ent challenge of generating human-like responses,
this led to a significant drop in the overall quality of
dialogue—often resulting in both NPC and player
generating blank lines or constantly repeating the
same responses. A workaround was developed by
employing a small set of hand-written first sen-
tences based on the genre and NPC type. This
workaround allowed the conversation to avoid im-
mediate repetition while minimizing interference
with dialogue generation.

Repetition. In our preliminary testing, we found
that PLMs struggle to avoid repetition when the
player dialogue is similar to a past query or sen-
tence. This often caused the NPC’s response to be
similar or even identical to its previous response.
To circumvent this issue, we implemented a dy-
namic frequency penalty. The dynamic frequency
penalty incrementally increases when the NPC or
player generates a response that already exists in
the conversation. After detecting a repetition and
incrementing the frequency penalty, the LM at-
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tempts to regenerate with the same prompt, exclud-
ing the repeated sentence. This process occurs up
to three times or until a new sentence is generated
before resetting the frequency penalty to the orig-
inal value before any increments. This technique
significantly reduced overall repetitions and drasti-
cally decreased the occurrence of loops appearing
early in the conversation.

4 Evaluation

To assess the performance of the NPC construction
pipeline and the resulting generated dialogue, we
designed a comprehensive evaluation metric that
examines dialogue quality based on coherency, be-
lievability, degree of repetition, alignment of the
NPC’s dialogue with their role, and fittingness of
the NPC’s dialogue within their world. These cat-
egories draw from and adapt Kalbiyev (2022)’s
metric for evaluating video game dialogue. Each
metric is assigned a score between one and five,
with the sum of these scores indicating the overall
quality of the dialogue.

Self-diagnosis harnesses the capacity of
Transformer-based language models to detect
patterns within text and their few-shot learning
performance to enable rapid, automated evaluation
of dialogue without prior fine-tuning. We con-
ducted a human evaluation of 66 different NPC
scripts to assess the accuracy and reliability of our
self-diagnosis approach. After each conversation
was evaluated and scored, we found a correlation
between parameters and their average score. By
including our full NPC header, we were able to
generate dialogue of higher quality. We then
conducted a single-blind test where human judges
were asked to determine whether an NPC script
was generated by Al or written manually by a
human.

4.1 Self-Diagnosis

We investigated the ability of pretrained language
models, such as GPT-3, to understand, evaluate,
and diagnose dialogue when given a specific non-
trivial query (e.g., “whether an NPC behaved co-
herently”). Schick et al. (2021) demonstrate that
PLMs can identify socially undesirable attributes in
text, such as racism and violence. We propose that
this self-diagnosis capability is not only applicable
to socially undesirable attributes but also enables
PLMs to self-diagnose a broader and more general
set of attributes, themes, and behaviors without fur-



ther fine-tuning. For simple questions, such as if a
genre was clearly distinguishable in text, PLMs per-
form accurately in a zero-shot environment without
examples and further guidance. This behavior is
supported by Sanh et al. (2022). However, this per-
formance does not hold when dealing with more
complicated and potentially subjective questions.

Dialogue

NPC: Greetings traveller!
Player: | would like to purchase a potion
NPC: We have many different potions, what are you looking for?

Query

From a scale of 1-5, how believable did the NPC act and behave?
Please answer the question using only a number, 1 to 5, with "1"
being least believable and "5" being most believable.

Answer

L4 |

Figure 4: Prompt structure of self-diagnosis.

Our self-diagnosis approach consists of provid-
ing examples of different scoring dialogue for each
metric that needed further clarification. By scoring
dialogue”, we mean, for example, giving the LM
a prompt like “What a perfect score looks like” or
“What a 3 should look like”. In preliminary tests,
we found that simply inputting a script and posing
a question led to relatively reliable results; however,
the output occasionally did not align with human
responses or logic. By formulating the question
more precisely and asking for a numeric response
rather than a free-form sentence response, we were
able to obtain a numeric answer more accurately.
To account for potential variability in the responses,
we set the temperature to 0 for each test, yielding a
deterministic model devoid of stochastic behavior.
We leveraged the PLM’s few-shot learning abili-
ties by adding three examples of different scoring
sample dialogue before the prompt. This approach
aligns scores obtained through self-diagnosis more
closely with human scores on queries that a PLM
would otherwise have difficulties with.

4.2 The Turing Quest

To evaluate the performance of our NPC Construc-
tion pipeline and the degree to which the resulting
generated dialogue appears human-written, we pro-
pose a test tailored to NPC dialogue—the Turing
Quest. Inspired by the Turin<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>