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Introduction

Welcome to the proceedings of the 1st edition of the Workshop on Text Simplification, Accessibility and
Readability (TSAR).

We have received 35 submissions to the workshop’s main track and 11 submissions describing the sy-
stems that participated in the shared task on lexical simplification for English, Spanish, and Portuguese,
held in conjunction with the TSAR workshop.

The submissions to the main track covered various topics: readability assessment, user studies, creation
of datasets for text simplification in several domains and languages, novel text simplification architectu-
res, use of complexity assessment in machine translation, as well as other related topics. Interestingly,
most submissions focussed on languages other than English. The lexical simplification systems that par-
ticipated in the shared task explored various architectures, ranging from non-neural (dictionary-based)
approaches to those using the latest GPT-3 models. The best systems outperformed the previous state-
of-the-art lexical simplification system on the shared task benchmark dataset.

All submissions were peer-reviewed by the members of the program committee which includes distin-
guished specialists in text simplification, accessibility, and readability. Out of the 35 submissions to the
workshop’s main track, one submission was withdrawn by the authors, 15 were rejected and 19 were
accepted. Out of 19 accepted papers, 8 were selected to be presented orally and 11 as posters. Out of 11
submissions submitted to the shared task system description track, one was desk-rejected, and 10 were
accepted.

The workshop is held fully virtually. The program encompasses two sessions with a total of 9 oral pre-
sentations, a poster session with 21 poster presentations, two invited talks, and a round table discussion.
The oral presentations feature 8 papers submitted to the workshop’s main track and one system demon-
stration paper which describes the winning system in the English track of the shared task. The poster
session features 12 papers from the workshop’s main track and 9 papers which describe the participating
systems of the shared task on lexical simplification for English, Spanish, and Portuguese.

We would like to thank the members of the program committee for their timely help in reviewing the
submissions, all the authors for submitting their papers to the workshop, and all teams that participated
in the shared task and submitted the outputs of their systems. We also thank Frontiers for sponsoring the
workshop.

TSAR Organizing Committee
Sanja Štajner, Horacio Saggion, Daniel Ferrés, Matthew Shardlow, Kim Cheng Sheang, Kai North, Mar-
cos Zampieri, and Wei Xu
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Keynote Talk: Human-Computer Interaction and Automatic
Text Simplification: Understanding the Perspective of Deaf

and Hard of Hearing Users
Matt Huenerfauth

Rochester Institute of Technology, New York

Abstract: While there have been major advances in automatic text simplification and other related na-
tural language processing technologies, there has been much less research conducted with direct parti-
cipation of users, to understand their needs for this technology nor how it can be best evaluated through
their participation in studies. In this talk, I will discuss how research methods from human-computer in-
teraction and computing accessibility for people with disabilities can illuminate the potential benefits of
this technology for a specific user group who has been the focus of research at our laboratory: Deaf and
Hard of Hearing adult readers. In prior research presented at the ACM CHI and ASSETS conferences,
we have learned that reading-assistance tools that incorporate lexical simplification benefit DHH adult
readers, and we have also found that these users prefer designs in which they have greater autonomy
over which portions of text have been simplified and transparency as to whether text has been modified.
Focusing specifically on DHH adults working in the computing and information technology professions,
we have also conducted research on users’ current reading practices, approaches they use when encoun-
tering difficult text, their interest in reading-assistance technologies, and specific design considerations
that would affect their interest (e.g., sense of autonomy, privacy, or social acceptability of this techno-
logy in the workplace). Finally, our most recent work has been methodological in nature, in which we
have identified specific types of questions that can be asked in studies with DHH adults, of various En-
glish literacy levels, to effectively measure the complexity and fluency of English texts that have been
simplified. Beyond our specific findings for DHH readers, our work illustrates how human-computer
interaction researchers can contribute to progress in the field of automatic text simplification and provide
useful guidance and methodological tools for other researchers.

Bio: Matt Huenerfauth is a Professor and Dean of the Golisano College of Computer and Information
Sciences at Rochester Institute of Technology (RIT). He studies the design of technology to benefit peo-
ple who are Deaf or Hard of Hearing or who have low written-language literacy, and his team of research
students operates bilingually in English and American Sign Language (ASL). He has secured $5.25 mil-
lion in external research funding since 2007, including a U.S. National Science Foundation CAREER
Award in 2008. He has authored over 115 peer-reviewed scientific journal articles, book chapters, and
conference papers, including at top venues in human-computer interaction and computing accessibility.
He is a five-time recipient of the Best Paper Award at the top computing research conference in the field
of computing accessibility, the ACM SIGACCESS Conference on Computers and Accessibility (ASSE-
TS), which is more than any other individual in the conference history. In 2021, he was elected Chair of
the ACM SIGACCESS special interest group on accessible computing for a three-year term, and in 2019,
he completed a maximum six-year term as editor-in-chief of the ACM Transactions on Accessible Com-
puting (TACCESS) journal. In 2018, RIT awarded him the Trustees Scholarship Award, the university’s
highest honor for faculty research.
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Keynote Talk: Beyond the state-of-the-art models: What is
complex text, and what are we simplifying?

Sowmya Vajjala
National Research Council, Canada

Abstract: We have seen over two decades of NLP research on readability assessment and text simpli-
fication by now. But, what do we really mean by “readability”, and how is a “simplified” text different
from an unsimplified one? In this talk, I will try to explore this question by looking into relevant li-
terature in education and psychology research, and attempt to connect them with NLP research. I will
also explore whether the current explainable AI research will help in addressing this question. Through
this **non-technical** talk, I hope to initiate a discussion on what else should we be doing apart from
building state of the art readability and simplification models with standard datasets.

Bio: Sowmya Vajjala is a researcher in the Multilingual Text Processing group , within the Digital
Technologies Research Center at National Research Council, Canada. She has worked extensively on
automatic readability assessment in the past, and is currently interested in developing and studying me-
thods to understand the generalizability of NLP systems. She is also a co-author of “Practical Natural
Language Processing”, published by O’Reilly Media (2020).
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The Fewer Splits are Better: Deconstructing Readability in Sentence
Splitting

Tadashi Nomoto
National Institute of Japanese Literature

Tachikawa, Tokyo 190-0014, Japan
nomoto@acm.org

Abstract

In this work, we focus on sentence splitting,
a subfield of text simplification, motivated
largely by an unproven idea that if you divide
a sentence in pieces, it should become easier
to understand. Our primary goal in this paper
is to find out whether this is true. In particu-
lar, we ask, does it matter whether we break a
sentence into two or three? We report on our
findings based on Amazon Mechanical Turk.

More specifically, we introduce a Bayesian
modeling framework to further investigate to
what degree a particular way of splitting the
complex sentence affects readability, along
with a number of other parameters adopted
from diverse perspectives, including clinical
linguistics, and cognitive linguistics. The
Bayesian modeling experiment provides clear
evidence that bisecting the sentence leads to
enhanced readability to a degree greater than
when we create simplification by trisection.

1 Introduction

In text simplification, one question people often
fail to ask is, whether the technology they are driv-
ing truly helps people better understand texts. This
curious indifference may reflect the tacit recog-
nition of the partiality of datasets covered by the
studies (Xu et al., 2015) or some murkiness that
surrounds the goal of text simplification.

As a way to address the situation, we examine
a role of simplification in text readability, with a
particular focus on sentence splitting. The goal of
sentence splitting is to break a sentence into small
pieces in a way that they collectively preserve the
original meaning. A primary question we ask in
this paper is, does a splitting of text affect read-
ability? In the face of a large effort spent in the
past on sentence splitting, it comes as a surprise
that none of the studies put this question directly
to people; in most cases, they ended up asking
whether generated texts ‘looked simpler’ than the

original unmodified versions (Zhang and Lapata,
2017), which of course does not say much about
their readability. We are not even sure whether
there was any agreement among people on what
constituted simplification.

Another related question is, how many pieces
should we break a sentence into? Two, three,
or more? In the paper, we focus on a partic-
ular setting where we ask whether there is any
difference in readability between two- and three-
sentence splits. We also report on how good or
bad sentence splits are that are generated by a fine-
tuned language model, compared to humans’.

A general strategy we follow in the paper is
to elicit judgments from people on whether sim-
plification made a text anyway readable for them
(Section 4), and do a Bayesian analysis of their
responses to identify factors that may have influ-
enced their decisions (Section 5).1

2 Related Work

Historically, there have been extensive efforts in
ESL (English as a Second Language) to explore
the use of simplification as a way to improve read-
ing performance of L2 (second language) students.
Crossley et al. (2014) presented an array of evi-
dence showing that simplifying text did lead to
an improved text comprehension by L2 learners
as measured by reading time and and accuracy of
their responses to associated questions. They also
noticed that simple texts had less lexical diver-
sity, greater word overlap, greater semantic sim-
ilarity among sentences than more complicated
texts. Crossley et al. (2011) argued for the impor-
tance of cohesiveness as a factor to influence the
readability. Meanwhile, an elaborative modifica-
tion of text was found to play a role in enhanc-
ing readability, which involves adding information

1We will make available on GitHub the data we created
for the study soon after the paper’s publication (they should
be found under https://github.com/tnomoto).
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to make the language less ambiguous and rhetor-
ically more explicit. Ross et al. (1991) reported
that despite the fact that it made a text longer, the
elaborative manipulation of a text produced pos-
itive results, with L2 students scoring higher in
comprehension questions on modified texts than
on the original unmodified versions.

While there have been concerted efforts in the
past in the NLP community to develop metrics
and corpora purported to serve studies in sim-
plification (Zhang and Lapata, 2017; Sulem et al.,
2018a; Narayan et al., 2017; Botha et al., 2018;
Niklaus et al., 2019; Kim et al., 2021; Xu et al.,
2015), they fell far short of addressing how their
work contributes to improving the text compre-
hensibility by readers. Part of our goal is to break
away from a prevailing view that relegates the
readability to a sideline.

3 Method

The data come from two sources, the Split and
Rephrase Benchmark (v1.0) (SRB, henceforth)
(Narayan et al., 2017) and WikiSplit (Botha et al.,
2018). SRB consists of complex sentences aligned
with a set of multi-sentence simplifications vary-
ing in size from two to four. WikiSplit follows
a similar format except that each complex sen-
tence is accompanied only by a two-sentence simi-
plification.2 We asked Amazon Mechanical Turk
workers (Turkers, henceforth) to score simplifica-
tions on linguistic qualities as well as to indicate
whether they have any preference between two-
sentence and three-sentence versions in terms of
readability.

We randomly sampled a portion of SRB, creat-
ing test data (call it H), which consisted of triplets
of the form: ⟨S0, A0, B0⟩, . . . , ⟨Si, Ai, Bi⟩, . . . ,
⟨Sm, Am, Bm⟩, where Si is a complex sentence,
Ai a corresponding two-sentence simplification,
and Bi its three-sentence version. While A al-
ternates between versions created by BART and
by human, B deals only with manual simplifica-
tions.3 See Table 1 for a further explanation.

2We used WikiSplit, together with part of SRB, exclu-
sively to fine tune BART to give a single split (bipartite) sim-
plification model, and SRB to develop test data to be adminis-
tered to humans for linguistic assessments. SRB was derived
from WebNLG (Gardent et al., 2017) by making use of RDFs
associated with textual snippets to assemble simplifications.

3HSplit (Sulem et al., 2018a) is another dataset (based on
Zhang and Lapata (2017)) that gives multi-split simplifica-
tions. We did not adopt it here as the data came with only
359 sentences with limited variations in splitting.

BART HUM

A (TWO-SENTENCE SPLIT) 113 108
B (THREE-SENTENCE SPLIT) − 221

Table 1: A break down of H. 113 of them are of type
A (bipartite split) generated by BART-large; 108 are
of type A created by humans. There were 221 of type
B (tripartite split), all of which were produced by hu-
mans.

TRAIN DEV

1,135,009 (989,944) 13,797(5,000)

Table 2: A training setup for BART. The data
comes from SRB (Narayan et al., 2017) and Wiki-
Split (Botha et al., 2018). The parenthetical numbers
indicate amounts of data that originate in WikiSplit
(Botha et al., 2018).

Separately, we extracted from WikiSplit and
SRB, another dataset B consisting of complex sen-
tences as a source and two-sentence simplifica-
tions as a target (Table 2) i.e. B = {⟨S′

0, A
′
0⟩, . . . ,

⟨S′
n, A

′
n⟩}, to use it to fine-tune a language model

(BART-large).4 The fine-tuning was done using a
code available at GitHub.5

A task (or a HIT in Amazon’s parlance) we
asked Turkers to do was to work on a three-part
language quiz. The initial problem section intro-
duced a worker to three short texts, corresponding
to a triplet ⟨Si, Ai, Bi⟩; the second section asked
about linguistic qualities of Ai and Bi along three
dimensions, meaning, grammar, and fluency; and
in the third, we asked two comparison questions:
(1) whether Ai and Bi are more readable than Si,
and (2) which of Ai and Bi is easier to understand.

Figure 1 gives a screen capture of an initial sec-
tion of the task. Shown Under Source is a com-
plex sentence or Si for some i . Text A and Text
B correspond to Ai and Bi, which were displayed
in a random order.

In total, there were 221 HITs (Table 1), each ad-
ministered to seven people. All of the participants
were self-reported native speakers of English with
a degree from college or above. The participation
was limited to residents in US, Canda, UK, Aus-
tralia, and New Zealand.

4https://huggingface.co/facebook/
bart-large

5https://github.com/huggingface/
transformers/blob/master/examples/
pytorch/translation/run_translation.
py
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Figure 1: A screen capture of HIT. This is what a Turker would be looking at when taking the test.

4 Preliminary Analysis

Table 3 summarizes results from comparison ques-
tions. A question, labelled ⟪S, BART-A⟫|q, asks a
Turker, which of Source and BART-A he or she
finds easier to understand, where BART-A is a
BART generated two-sentence simplification. We
had 791 (113×7) responses, out of which 32%
said they preferred Source, 67% liked BART bet-
ter, and 1% replied they were not sure. An-
other question, labelled ⟪S, HUM-A⟫|q, compares
Source to HUM-A, a two-sentence split by hu-
man. It got 756 responses (108×7). The result
is generally parallel to ⟪S, BART-A⟫|q. The ma-
jority of people favored a two-sentence split over
a complex sentence. The fact that three sentence
versions are also favored over complex sentences
suggests that breaking up a complex sentence im-
proves readability, regardless of how many pieces
it ends up with.

Table 4 gives a tally of responses to compari-

son questions on two- and three-sentence splits.
More people voted for bipartite over tripartite sim-
plifications. Tables 5 and 6 show scores on flu-
ency, grammar, and meaning retention of simplifi-
cations, comparing BART-A and HUM-B,6 on one
hand, and HUM-A and HUM-S, on another, on a
scale of 1 (poor) to 5 (excellent). In either case,
we did not see much divergence between A and
B in grammar and meaning, but they diverged the
most in fluency. A T-test found the divergence sta-
tistically significant. Two-sentence simplifications
generally scored higher on fluency (over 4.0) than
three sentence counterparts (below 4.0).

Table 7 gives an example showing what gener-
ated texts looked like in BART-A and HUM-A/B.

6As Tables 5 and 6 indicate, BART-A is generally compa-
rable to HUM-A in the quality of its outputs, suggesting that
what it generates is mostly indistinguishable from those by
humans.

3



QUESTION AVAILABLE CHOICES

S BART-A HUM-B NOT SURE TOTAL⟪S, BART-A⟫|q 254 (0.32) 527 (0.67) – 10 (0.01) 791⟪S, HUM-B⟫|q 290 (0.37) – 490 (0.62) 11 (0.01) 791
S HUM-A HUM-B NOT SURE TOTAL⟪S, HUM-A⟫|q 253 (0.33) 494 (0.65) – 9 (0.01) 756⟪S, HUM-B⟫|q 288 (0.38) – 463 (0.61) 5 (0.01) 756

Table 3: Results from the Comparison Section. We are showing how many Turkers went with each available choice.
S: source. BART-A: BART-generated two-sentence simplification. HUM-A: manual two-sentence simplification.
HUM-B: manual three-sentence simplification. ⟪S, BART-A⟫|q asked Turkers which of S and BART-A they found
easier to understand. 67% said they would favor BART-A, and 32% S, with 1% not sure. ⟪S, HUM-B⟫|q compares
S and HUM-B for readability. ⟪S, HUM-A⟫|q looks at S and HUM-A.

QUESTION AVAILABLE CHOICES

BART-A HUM-B NOT SURE TOTAL⟪BART-A, HUM-B⟫|q 460 (0.58) 316 (0.40) 15 (0.02) 791
HUM-A HUM-B NOT SURE TOTAL⟪HUM-A, HUM-B⟫|q 439 (0.58) 301 (0.40) 16 (0.02) 756

Table 4: Comparison of two- vs three-sentence simplifications. The majority went with two-sentence simplifica-
tions regardless of how they were generated.

category HUM-A HUM-B

**fluency 4.04 (0.39) 3.75 (0.38)
grammar 4.12 (0.32) 4.10 (0.32)
meaning 4.31 (0.36) 4.33 (0.28)

Table 5: Average scores and standard deviations for
HUM-A and HUM-B. HUM-A is more fluent than
HUM-B. Note: ** = p < 0.01.

category BART-A HUM-B

**fluency 4.04 (0.37) 3.72 (0.36)
grammar 4.07 (0.30) 4.05 (0.34)
meaning 4.21 (0.38) 4.25 (0.35)

Table 6: Average scores and standard deviations of
BART-A and the corresponding HUM-B. BART-A is
significantly more fluent than HUM-B. ‘**’ indicates
the two groups are distinct at the 0.01 level.

5 A Bayesian Perspective

A question we are curious about at this point is
what are the factors that led Turkers to decisions
that they made. We answer the question by way
of building a Bayesian model based on predictors
assembled from the past literature on readability
and in related fields.

5.1 Model
We consider a Bayesian logistic regression.7

Yj ∽ Ber(λ),

logit(λ) = β0 +
m∑

i

βiXi,

βi ∽ N (0, σi) (0 ≤ i ≤ m)

(1)

Ber(λ) is a Bernoulli distribution with a parame-
ter λ. βi represents a coefficient tied to a random
variable (predictor) Xi, where β0 is an intercept.
We assume that βi, including the intercept, follows
a normal distribution with the mean at 0 and the
variance at σi. Yi takes either 1 or 0. Y = 1 if
a Turker finds a two-sentence simplification more
readable, and Y = 0 if a three-sentence version is
preferred.

7Equally useful in explaining relationships between po-
tential causes and the outcome are Bayesian tree-based meth-
ods (Chipman et al., 2010; Linero, 2017; Nuti et al., 2019),
which we do not explore here. The latter could become a vi-
able choice when an extensive non-linearity exists between
predictors and the outcome.

8https://github.com/jasonyux/
FastKASSIM

9https://github.com/luozhouyang/
python-string-similarity

10https://github.com/shivam5992/
textstat
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TYPE TEXT
ORIGINAL The Alderney Airport serves the island of Alderney and its 1st runway is surfaced

with poaceae and has a 497 meters long runway .
BART-A Alderney Airport serves the island of Alderney . The 1st runway at Aarney Airport

is surfaced with poaceae and has 497 meters long .
HUM-A The runway length of Alderney Airport is 497.0 and the 1st runway has a poaceae

surface . The Alderney Airport serves Alderney .
HUM-B The surface of the 1st runway at Alderney airport is poaceae . Alderney Airport

has a runway length of 497.0 . The Alderney Airport serves Alderney .

Table 7: Original vs. Modified

CATEGORY VAR NAME DESCRIPTION VALUE

synthetic bart true if the simplification is generated by BART; false oth-
erwise.

categorical

cohesion

ted1 the tree edit distance (TED) between a source and its
proposed simplification.8 where TED represents the
number of editing operations (insert, delete, replace) re-
quired to turn one parse tree into another; the greater
the number, the less the similarity (Boghrati et al., 2018;
Zhang and Shasha, 1989).

continuous

ted2 TED across sentences contained in the simplification. continuous
subset Subset based Tree Kernel (Collins and Duffy, 2002;

Moschitti, 2006; Chen et al., 2022)8
continuous

subtree Subtree based Tree Kernel (Collins and Duffy, 2002;
Moschitti, 2006; Chen et al., 2022)8

continuous

overlap Szymkiewicz-Simpson coefficient, a normalized car-
dinality of an intersection of two sets of words
(Vijaymeena and Kavitha, 2016).9

continuous

cognitive

frazier the distance from a terminal to the root or the first ances-
tor that occurs leftmost (Frazier, 1985).

continuous

yngve per-token count of non-terminals that occur to the right
of a word in a derivation tree (Yngve, 1960).

continuous

dep length per-token count of dependencies in a parse (Magerman,
1995; Roark et al., 2007).

continuous

tnodes per-token count of nodes in a parse tree (Roark et al.,
2007)

continuous

classic
dale Dale-Chall readability score (Chall and Dale, 1995)10 continuous
ease Flesch Reading Ease (Flesch, 1979)10 continuous
fk grade Flesch-Kincaid Grade Level (Kincaid et al., 1975)10 continuous

perception
grammar grammatical integrity (manually coded) continuous
meaning semantic fidelity (manually coded) continuous
fluency language naturalness (manually coded) continuous

structural split true if the sentence is bisected; false otherwise. categorical
informational samsa measures how much of the original content is preserved

in the target (Sulem et al., 2018b).
continuous

Table 8: Predictors
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5.2 Predictors

We use predictors shown in Table 8. They come
in six categories: synthetic, cohesion, cognitive,
classic, perception and structural. A synthetic
feature indicates whether the simplification was
created with BART or not, taking true if it was
and false otherwise. Those found under cohe-
sion are our adaptions of SYNSTRUT and CR-
FCWO, which are among the diverse features
McNamara et al. (2014) created to measure cohe-
sion across sentences. SYSTRUCT gauges the
uniformity and consistency across sentences by
looking at their syntactic similarities, or by count-
ing nodes in a common subgraph shared by neigh-
boring sentences. We substituted SYSTRUCT
with tree edit distance (Boghrati et al., 2018), as
it allows us to handle multiple subgraphs, in con-
trast to SYSTRUCT, which only looks for a sin-
gle common subgraph. CRFCWO gives a normal-
ized count of tokens found in common between
two neighboring sentences. We emulated it here
with the Szymkiewicz-Simpson coefficient, given
as O(X,Y ) = |X∩Y |

min(|X|,|Y |) .
Predictors in the cognitive class are taken

from works in clinical and cognitive linguistics
(Roark et al., 2007; Boghrati et al., 2018). They
reflect various approaches to measuring the cogni-
tive complexity of a sentence. For example, yngve
scoring defines a cognitive demand of a word as
the number of non-terminals to its right in a deriva-
tion rule that are yet to be processed.

5.2.1 yngve

Consider Figure 2. yngve gives every edge in the
parse a number reflecting its cognitive cost. NP
gets ‘1’ because it has a sister node VP to its right.
The cognitive cost of a word is defined as the sum
of numbers on a path from the root to the word.
In Figure 2, ‘Vanya’ would get 1 + 0 + 0 = 1,
whereas ‘home’ 0. Averaging words’ costs gives
us an Yngve complexity.

S

NP

NNP

Vanya
0

0

1

VP

V

walks
0

1
ADVP

home
0

0

0

Figure 2: Yngve scoring

5.2.2 frazier
frazier scoring views the syntactic depth of a word
(the distance from a leaf to a first ancestor that oc-
curs leftmost in a derivation rule) as a most im-
portant factor to determining the sentence com-
plexity. If we run frazier on the sentence in
Figure 2, it will get the score like one shown in
Figure 3. ‘Vanya’ gets 1 + 1.5 = 2.5, ‘walks’
1 and ‘home’ 0 (which has no leftmost ances-
tor). Roark et al. (2007) reported that both yngve

S

NP

NNP

Vanya

1

1.5
VP

V

walks

1
ADVP

home

Figure 3: Frazier scoring

and frazier worked well in discriminating subjects
with mild memory impairement.

5.2.3 dep length
dep length (dependency length) and tnodes
(tree nodes) are also among the features that
Roark et al. (2007) found effective. The former
measures the number of dependencies in a depen-
dency parse, and the latter the number of nodes in
a phrase structure tree.

5.2.4 subset and subtree
subset and subtree are both measures based on
the idea of Tree Kernel (Collins and Duffy, 2002;
Moschitti, 2006; Chen et al., 2022).11 The former
considers how many subgraphs two parses share,
while the latter how many subtrees. Note that sub-
trees are those structures that end with terminal
nodes.

5.2.5 Classic readability features
We also included features that have long been es-
tablished in the readability literature as standard,
i.e. Dale-Chall Readability, Flesch Reading Ease,
and Flesch-Kincaid Grade Level (Chall and Dale,
1995; Flesch, 1979; Kincaid et al., 1975).

11Tree Kernel is a function defined as K(T1, T2) =∑
n1∈N(T1)

∑
n2∈N(T2)

∆(n1, n2) where

∆(a, b) =





0 if a ̸= b;
1 if a = b;∏C(a)

i (σ +∆(c
(i)
a , c

(i)
b )) otherwise.

C(a) = the number of children of a, c(i)a represents the i-th
child of a. We let σ > 0.
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5.2.6 Perceptual features
Those found in the perception category are from
judgments Turkers made on the quality of simpli-
fications we asked them to evaluate. We did not
provide any specific definition or instruction as to
what constitutes grammaticality, meaning, and flu-
ency during the task. So, it is most likely that their
responses were spontaneous and perceptual.

5.2.7 split and samsa
Finally, we have split, which records whether or
not the simplification is bipartite: it takes true if
it is, and false if not. samsa is a recent addi-
tion to a battery of simplification metrics, which
looks at how much of a propositional content
in the source remains after a sentence is split
(Sulem et al., 2018b). (The greater, the better.) We
standardized all of the features, except for bart
and split, by turning them into z-scores, where
z = x−x̄

σ .

5.3 Evaluation

We trained the model (Eqn. 1) using BAMBI

(Capretto et al., 2020),12 with the burn-in of
50,000 while making draws of 4,000, on 4 MCMC
chains (Hamiltonian). As a way to isolate the ef-
fect (or importance) of each predictor, we did two
things: one was to look at a posterior distribu-
tion of each factor, i.e. a coefficient β tied with
a predictor, and see how far it is removed from 0;
another was to conduct an ablation study where
we looked at how the absence of a feature af-
fected the model’s performance, which we mea-
sured with a metric known as ‘Watanabe-Akaike
Information Criterion’ (WAIC) (Watanabe, 2010;
Vehtari et al., 2016), a Bayesian incarnation of
AIC (Burnham and Anderson, 2003).13

Figure 4 shows what posterior distributions of
parameters associated with predictors looked like
after 4,000 draw iterations with MCMC. None
of the chains associated with the parameters ex-

12https://bambinos.github.io/bambi/
main/index.html

13WAIC is given as follows.

WAIC =
n∑

i

logE[p(yi|θ)]−
n∑

i

V[log p(yi|θ)]. (2)

E[p(yi|θ)] represents the average likelihood under the poste-
rior distribution of θ, and V[α] represents the sample variance
of α, i.e. V[α] = 1

S−1

∑S
1 (αs − ᾱ), where αs is a sam-

ple draw from p(α). A higher WAIC score indicates a better
model. n is the number of data points.

0.4 0.2 0.0 0.2 0.4 0.6 0.8
yngve
frazier

overlap
dale

split[True]
fluency

meaning
grammar

dep_length
ted2

tnodes
fk_grade

ease
bart[True]

subtree
subset

ted1
samsa

Figure 4: Posterior distributions of coefficients (β’s) in
the full model. The further the distribution moves away
from 0, the more relevant it becomes to predicting the
outcome.

hibited divergence. We achieved R̂ between
1.0 and 1.02, for all βi, a fairly solid stability
(Gelman and Rubin, 1992), indicating that all the
relevant parameters had successfully converged.14

At a first glance, it is a bit challenging what to
make of Figure 4, but a generally accepted rule of
thumb is to assume distributions that center around
0 as of less importance in terms of explaining ob-
servations, than those that appear away from zero.
If we go along with the rule, then the most likely
candidates that affected readability are: ease, sub-
set, fk grade, grammar, meaning, fluency, split,
and overlap. What remains unclear is, to what de-
gree the predictors affected readability.

One good way to find out is to do an ablation
study, a method to isolate the effects of an individ-
ual factor by examining how seriously its removal
from a model degrades its performance. The re-
sult of the study is shown in Table 9. Each row
represents performance in WAIC of a model with
a particular predictor removed. Thus, ‘ted1’ in Ta-
ble 9 represents a model that includes all the pre-
dictors in Table 8, except for ted1. A row in blue
represents a full model which had none of the fea-
tures disabled. Appearing above the base model
means that a removal of a feature had a positive
effect, i.e. the feature is redundant. Appearing be-
low means that the removal had a negative effect,
indicating that we should not forgo the feature. A

14R̂ = the ratio of within- and between-chain variances, a
standard tool to check for convergence (Lambert, 2018). The
closer the ratio is to the unity, the more likely MCMC chains
have converged.
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split[True]

fluency

meaning

grammar

fk_grade

ease

Figure 5: Posterior distributions of the coefficient pa-
rameters in the reduced model.

feature becomes more relevant as we go down, and
becomes less relevant as we go up the table. Thus
the most relevant is fluency, followed by mean-
ing, the least relevant is subtree, followed by dale,
and so forth. We can tell from Table 9 what pre-
dictors we need to keep to explain the readability:
they are grammar, split, fk grade, ease, mean-
ing and fluency (call them ‘select features’). Note
that bart is in the negative realm, meaning that
from a perspective of readability, people did not
care about whether the simplification was done by
human or machine. samsa was also found in the
negative domain, implying that for a perspective of
information, a two-sentence splitting carries just
as much information as a three way division of a
sentence.

To further nail down to what extent they are im-
portant, we ran another ablation experiment in-
volving the select features alone. The result is
shown in Table 10. At the bottom is fluency, the
second to the bottom is split, followed by mean-
ing, and so forth. As we go up the table, a fea-
ture becomes less and less important. The pos-
terior distributions of these features are shown in
Figure 5.15 Not surprisingly, they are found away
from zero, with fluency furtherest away. The re-
sult indicates that contrary to the popular wisdom
that classic readability metrics such as ease, and
fk grade, are of little use, they had a large sway
on decisions people made when they were asked
about readability.

6 Conclusions

In this work, we asked two questions: does cut-
ting up a sentence help the reader better under-
stand the text? and if so, does it matter how many

15We found that they had 1.0 ≤ R̂ ≤ 1.01, a near-perfect
stability. Settings for MCMC, i.e. the number of burn-ins and
that of draws, were set to the same as before.

pieces we break it into? We found that splitting
does allow the reader to better interact with the
text (Table 3) and moreover, two-sentence sim-
plifications are clearly favored over three-sentence
simplifications (Tables 3,9,10). Why two-sentence
splits make a better simplification is something of
a mystery. A possible answer may lie in a po-
tential disruption splitting may have caused in a
sentence-level discourse structure, whose integrity
Crossley et al. (2011, 2014) argued, constitutes a
critical part of simplification, a topic that we be-
lieve is worth a further exploration in the future.

7 Limitations

• We did not consider cases where a sentence
is split into more than three. This is mainly
due to our failure to find a dataset containing
manual simplifications of length greater than
three in a large number. While it is unlikely
that our claim in this work does not hold for
cases beyond three, testing the hypothesis on
cases that involve more than three sentences
would be desirable.

• A cohort of people we solicited for the cur-
rent work are generally well educated adults
who speak English as the first language.
Therefore, the results we found in this work
may not necessarily hold for L2-learners, mi-
nors, or those who do not have college level
education.
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Abstract

We propose a method of parallel corpus filter-
ing for Japanese text simplification. The paral-
lel corpus for this task contains some redundant
wording. In this study, we first identify the type
and size of noisy sentence pairs in the Japanese
text simplification corpus. We then propose a
method of parallel corpus filtering to remove
each type of noisy sentence pair. Experimental
results show that filtering the training paral-
lel corpus with the proposed method improves
simplification performance.

1 Introduction

The number of foreign residents in Japan is in-
creasing yearly due to government policies and
the progress of globalization. Iwata (2010) re-
ported that many of them can partially understand
Japanese, more than the number who can under-
stand other languages such as English or Chinese.
Therefore, many information such as disaster in-
formation and daily news (Tanaka et al., 2013) are
provided in “easy Japanese” in Japan today.

Recent research in text simplification has fo-
cused on data-driven approaches (Alva-Manchego
et al., 2020) based on parallel corpora (Coster and
Kauchak, 2011; Xu et al., 2015; Zhang and La-
pata, 2017; Jiang et al., 2020). For Japanese, a
parallel corpus with tens of thousands of sentence
pairs (Maruyama and Yamamoto, 2018; Katsuta
and Yamamoto, 2018) is available for the study
of text simplification. However, the Japanese text
simplification corpus contains 16% of noisy sen-
tence pairs, as shown in Table 1, which hinders the
simplification performance.

In this study, we first identify the type and size
of noisy sentence pairs in the Japanese text sim-
plification corpus. As shown in Table 1, there are
three main types of noise: sentence pairs with large
differences in sentence length, sentence pairs with
different meanings, and sentence pairs with low

Type of noise Ratio

large difference in sentence length 4% ( 20/500)
different meanings 8% ( 42/500)
low fluency 8% ( 41/500)
other noise 1% ( 2/500)
sentence pairs without noise 84% (419/500)

Table 1: Types of noisy sentence pairs and their ratios
in the Japanese text simplification corpus.

fluency. We then propose a method of parallel cor-
pus filtering to remove each type of noisy sentence
pair. For noisy sentence pairs with large differ-
ences in sentence length, we design methods of
parallel corpus filtering based on differences in the
number of tokens or Levenshtein distance. For
noisy sentence pairs with different meanings, we
design methods of parallel corpus filtering based
on word embeddings or sentence embeddings. For
noisy sentence pairs with low fluency, we design
methods of parallel corpus filtering based on the
perplexity of language models.

We conducted experiments to evaluate the
effectiveness of parallel corpus filtering for
Transformer- and BART-based text simplification
models (Vaswani et al., 2017; Lewis et al., 2020).
Experimental results show that our methods are
more effective for the BART-based text simplifica-
tion model. Specifically, parallel corpus filtering
based on differences in sentence lengths enables
BART to achieve the best simplification perfor-
mance for both metrics of BLEU (Papineni et al.,
2002) and SARI (Xu et al., 2016).

2 Related Work

Parallel corpus filtering (Koehn et al., 2020) is a
technique that has been studied primarily in ma-
chine translation tasks where a large parallel train-
ing corpus is available, and contributes to improv-
ing the quality of the generated text by removing
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Type of noise Original sentence Simplified sentence

large difference in
sentence length

それの代金を仕払うことによって 買う

確立する所有権
(You establish the property right by paying for it.)
このひもは強い この物を制限するための

(This string is strong.) 長いものは強い

洪水がおさまり始めた 水の量が増えて川から出る

(The flood began to subside.) 状態が静かになり始めた

different meanings

くじで誰が勝つか決めよう 勝ったか負けたか

(Let’s decide the winner by lot.) 決めることができない

熱はたいていの物を膨張させる あらゆる物は熱で増える
(Heat expands most things.)
彼女はみんなをうんざりさせます 彼女はみんなを飽きさせます
(She drives everybody up the wall.)

low fluency

豆腐は良い酒の肴になる 植物で作った白い柔らかい物を

(Tofu goes well with good sake.) 食べると，うまい酒が

たくさん飲むことができる

金融引き締めで金利が上昇するだろう 金の流れを厳しくすることで

(Interest rates will rise due to monetary tightening.) 金を借りる際に返す時につける

金が占める率のが上がるだろう

酸が金属を腐食した 酸っぱい特徴を持つ水が

(The acid ate into the metal.) 金属を腐らせた

Table 2: Examples of noisy sentence pairs in the Japanese text simplification corpus.

noisy sentence pairs from the training data. Text
simplification tasks use relatively small training
data. Therefore, parallel corpus mining (Hwang
et al., 2015; Kajiwara and Komachi, 2016; Jiang
et al., 2020) has been actively studied, but there
is no prior research on parallel corpus filtering for
text simplification.

3 Methodology

We propose a method of parallel corpus filtering for
noise in Japanese simplification corpus (Maruyama
and Yamamoto, 2018; Katsuta and Yamamoto,
2018) to improve the performance of Japanese
text simplification. Parallel corpus filtering is per-
formed on the training data using multiple meth-
ods, and the resulting subset of training data is
used to train the text simplification model. Trans-
former (Vaswani et al., 2017) and pre-trained
BART (Lewis et al., 2020) are used for the model,
and a text simplification model is constructed by
fine-tuning using a subset of the Japanese simpli-
fication corpus. First, in Section 3.1, we analyze
noise in the Japanese simplification corpus and
define three representative types of noise that we
target. In Sections 3.2 to 3.4, we then describe our
proposed method for detecting each of the noises.

3.1 Definition of Noise

We manually classified the noise type in 500 ran-
domly selected sentence pairs from the Japanese
simplification corpus, and the results are shown in
Table 1. The Japanese simplification corpus is a
parallel corpus in which given sentences are para-
phrased to make them simpler. Since these are
manually paraphrased, most of the sentence pairs
are expected to be noise-free.

Our analysis confirms that 84% of the sentence
pairs do not contain noise. We manually classi-
fied the noisy sentence pairs and found that the
three main types of noise were sentence pairs with
large sentence length differences, low synonymy,
and low fluency. Table 2 shows examples of these
noises. Sentence pairs with large differences in
sentence length often contain examples in which
complex phrases were replaced with expressions
similar to dictionary definitions. Sentence pairs
with low synonymy often contain errors in rewrit-
ing, in which related but non-synonymous expres-
sions are used. Sentence pairs with low fluency
often contain redundant expressions due to over-
simplification and simple errors such as incorrect
particles.
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3.2 Methods for Sentence Length Difference

This method performs parallel corpus filtering by
detecting noise with large sentence length dif-
ferences between complex and simple sentences.
These noise types include cases in which excessive
information is lost due to extreme simplification
and cases in which complex phrases are replaced
with dictionary definition-like expressions. To de-
termine the sentence length difference between sen-
tence pairs, we propose two methods: one is to use
the absolute value of the difference in the number
of tokens, and the other is to use the edit distance
per token. Three types of tokens are used: char-
acters, words, and subwords. In this paper, words
with the best performance are used as tokens. Sen-
tence pairs with a sentence length difference larger
than a threshold are detected as noise and removed
from the training data.

3.3 Methods for Sentence Meaning

This method performs parallel corpus filtering by
detecting noise with the small semantic similar-
ity between complex and simple sentences. These
noises include rewritings that use related but not
identical expressions, such as "most things" and
"all things". To estimate the semantic similar-
ity between sentences, we propose three meth-
ods based on word and sentence embeddings.
The method based on word embeddings uses the
Japanese model of fastText (Bojanowski et al.,
2017). The method based on sentence embeddings
uses mUSE (Chidambaram et al., 2019), which is
a multilingual version of Universal Sentence En-
coder (Cer et al., 2018). Sentence pairs whose se-
mantic similarity between sentences is lower than
a threshold are detected as noise and removed from
the training data.

First, we use a method (Shen et al., 2018) which
constructs sentence embeddings by mean pooling
of word embeddings. This method is also used
as a baseline method in the previous study (Kaji-
wara and Komachi, 2016). The cosine similarity
between the sentence variates obtained in this way
is used to estimate the semantic similarity between
sentences.

Second, we use the word variate alignment
method (Song and Roth, 2015), which is also
used in the previous study (Kajiwara and Komachi,
2016). This method considers the problem of word
alignment between sentences as a weighted com-
plete bipartite graph matching problem, where the

word variates are nodes and the edge weights are
the cosine similarity between the word variates, and
word alignment is obtained by maximum matching.
Then, the cosine similarity of the word embeddings
between the aligned words are averaged to estimate
the semantic similarity between the sentences.

Third, we use the cosine similarity of the
sentence embeddings by mUSE. Recent general-
purpose sentence encoders such as BERT (Devlin
et al., 2019) are difficult to properly estimate se-
mantic similarity between sentences without fine-
tuning. Since there is no labeled corpus available
for estimating semantic similarity between sen-
tences in Japanese, we use mUSE, which can esti-
mate semantic similarity between sentences with-
out fine-tuning.

3.4 Methods for Sentence Fluency

To estimate sentence fluency, we propose two meth-
ods based on language models. The method based
on the unidirectional language model uses the
Japanese model of GPT-2 (Radford et al., 2019).
The method based on the bidirectional language
model uses the Japanese model of BERT. Sentence
pairs containing sentences with perplexity higher
than a threshold are detected as noise and removed
from the training data.

First, we use perplexity based on a unidirec-
tional language model. While the N-gram language
model is used in the previous study (Zhang and La-
pata, 2017; Kriz et al., 2019), this study uses the
GPT-2 neural language model to consider all intra-
sentence contexts.

Second, we use pseudo perplexity (Salazar et al.,
2020) based on a bidirectional language model.
The perplexity based on the bidirectional language
model is the sum of the log-likelihoods of the con-
ditional probabilities of estimating a masked word
from surrounding words.

4 Experiments

To evaluate the effectiveness of the proposed
method, we conduct experiments on Japanese text
simplification. First, we describe the dataset and
evaluation metrics in Section 4.1, then our exper-
imental setup including models and hyperparam-
eters in Section 4.2, and threshold setting on the
validation set in Section 4.3. Finally, Section 4.4
presents our experimental results.
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Transformer BART

Method Threshold deleted sentence BLEU SARI BLEU SARI

Baseline (w/o parallel corpus filtering) - 0 75.29 64.17 81.56 62.88

Difference in the number of tokens 12 5,173 73.63 62.95 83.60 63.69
Levenshtein Distance 10 4,065 76.47 63.92 83.38 63.13

Average of Word Embeddings 0.85 1,553 75.90 63.41 80.68 59.80
Word Alignment 0.7 12,533 73.81 63.48 80.93 62.31
Sentence Embeddings 0.5 2,312 73.63 62.70 81.50 61.32

Unidirectional Language Model 60 894 77.26 64.19 82.34 63.00
Bidirectional Language Model 200 4,979 74.28 63.34 82.15 63.05

Table 3: Experimental results. The upper, middle, and lower rows are our parallel corpus filtering methods based on
differences in sentence length, synonymy, and fluency, respectively. Bolded letters indicate scores that outperform
the baseline model without parallel corpus filtering, and underlined letters indicate the best performance.

4.1 Dataset and Evaluation Metrics

In our experiments, we used the Japanese simplifi-
cation corpus1,2 (Maruyama and Yamamoto, 2018;
Katsuta and Yamamoto, 2018). The Japanese sim-
plification corpus consists of 85,000 manually para-
phrased sentence pairs of complex and simple sen-
tences. Among them, 50,000 sentence pairs were
annotated by university students who are native
speakers of Japanese. The other 35,000 sentence
pairs were annotated by native Japanese speakers
hired via a crowdsourcing service. We used multi-
reference 100-sentence pairs annotated with seven
types of reference sentences for testing. For val-
idation, 2,000 sentence pairs were randomly se-
lected from other sentence pairs annotated with a
single reference sentence. The other 82,300 sen-
tence pairs were for training and were targeted for
parallel corpus filtering.

The performance of the text simplification mod-
els is automatically evaluated by BLEU (Papineni
et al., 2002) and SARI (Xu et al., 2016), which
are commonly used in this task. These metrics are
implemented in EASSE3 (Alva-Manchego et al.,
2019). As a pre-processing step for automatic
evaluation, we performed word segmentation with
MeCab4 (Kudo et al., 2004). The effectiveness of
parallel corpus filtering is evaluated by compar-
ing the performance of text simplification models
trained on the entire training set and a subset of the
training corpus extracted by the proposed method,
using BLEU and SARI, respectively.

1https://www.jnlp.org/GengoHouse/snow/t15
2https://www.jnlp.org/GengoHouse/snow/t23
3https://github.com/feralvam/easse
4http://taku910.github.io/mecab/

4.2 Settings
For the text simplification model, we used Trans-
former (Vaswani et al., 2017) and BART5 (Lewis
et al., 2020), which was pre-trained Transformer
on Japanese Wikipedia. We implemented these
models using fairseq6 (Ott et al., 2019) and used
Adam (Kingma and Ba, 2015) as the optimiza-
tion method for fine-tuning, setting β1 = 0.9,
β2 = 0.99, and the learning rate as 5e-4. The batch
size was set to 4,096 tokens, and label smooth-
ing and dropout were used for regularization. The
dropout probability was set to 0.2. Training was
terminated when the cross-entropy loss in the vali-
dation set did not improve for five checkpoints.

As pre-processing for Transformer, we per-
formed word segmentation with MeCab. As pre-
processing for BART, we performed word segmen-
tation with Juman++7 (Morita et al., 2015) and
subword segmentation with SentencePiece8 (Kudo
and Richardson, 2018). The vocabulary size for
subword segmentation was set to 8,000.

Following models were used for parallel corpus
filtering of the proposed method. Japanese fast-
Text9 (Bojanowski et al., 2017) was used for word
embeddings. MeCab was used for word segmen-
tation. For sentence embeddings, we used mUSE,
a multilingual version of Universal Sentence En-
coder10 (Cer et al., 2018). For the unidirectional

5https://github.com/utanaka2000/fairseq/tree/
japanese_bart_pretrained_model

6https://github.com/pytorch/fairseq
7https://github.com/ku-nlp/jumanpp
8https://github.com/google/sentencepiece
9https://fasttext.cc/

10https://tfhub.dev/google/
universal-sentence-encoder-multilingual/3
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language model, we used Japanese GPT-2.11 For
the bidirectional language model, we used Japanese
BERT.12 The GPT-2 and BERT language models
were implemented using HuggingFace Transform-
ers (Wolf et al., 2020).

4.3 Thresholds

We set thresholds for each method for parallel cor-
pus filtering through the evaluation of simplifica-
tion performance on the validation set. In this ex-
periment, we set our thresholds with respect to
SARI, the primary automatic evaluation metric for
text simplification.

4.4 Results

Table 3 shows the experimental results. Trans-
former improved BLEU by parallel corpus filtering
on edit distance, and improved both BLEU and
SARI by parallel corpus filtering on unidirectional
language models. In BART, parallel corpus filter-
ing for sentence length difference and fluency im-
proved both BLEU and SARI. On the other hand,
parallel corpus filtering for synonymy worsened
both BLEU and SARI in both models.

5 Conclusion

To improve the performance of Japanese text sim-
plification, we proposed methods of parallel corpus
filtering to remove noisy sentence pairs from the
training dataset in terms of differences in sentence
length, synonymy, and fluency. Experiments on
text simplification models based on Transformer
and BART showed that parallel corpus filtering
based on differences in sentence length and per-
plexity of language models improved both metrics
of BLEU and SARI over the baseline model with-
out parallel corpus filtering.
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Abstract

Automatic text simplification can help patients
to better understand their own clinical notes. A
major hurdle for the development of clinical
text simplification methods is the lack of high
quality resources. We report ongoing efforts
in creating a parallel dataset of professionally
simplified clinical notes. Currently, this corpus
consists of 851 document-level simplifications
of German pathology reports. We highlight
characteristics of this dataset and establish first
baselines for paragraph-level simplification.

1 Introduction

Many hospitals worldwide give patients access to
their own clinical notes with the goal to strengthen
patient autonomy and increase transparency of the
care process (Delbanco et al., 2012). Yet, clinical
notes are seldomly written with the patient in mind.
Being a communication tool for doctors, clinical
notes must use a precise and unambiguous medi-
cal vocabulary. With limited health literacy, these
notes are therefore practically inaccessible to most
patients (Sørensen et al., 2015). The urgency of
making clinical notes accessible to patients is un-
derlined by initiatives like “What’s my diagnosis?”
where medical doctors and students volunteer to
translate patient notes into a simple language (Bit-
tner et al., 2015). Approaches to automatic text
simplification (TS) have the potential to assist with
this time consuming manual process (Shardlow,
2014; Alva-Manchego et al., 2020).

However, there is a lack of resources to develop
TS methods for clinical notes. Most commonly
used resources for TS include, on the one hand,
professionally simplified news articles such as
Newsela (Xu et al., 2015) and OneStopEnglish (Va-
jjala and Lučić, 2018), and on the other hand,
large scale but potentially noisy alignments of
Wikipedia (Zhu et al., 2010; Jiang et al., 2020).
In the medical domain, datasets cover consumer

health lexicons (Cao et al., 2020), laymen sum-
maries of scientific articles (Devaraj et al., 2021)
and medical subsets of Wikipedia (Grabar and
Cardon, 2018; van den Bercken et al., 2019; Van
et al., 2020). In addition, there is a lack of paral-
lel document-level TS datasets (with the notable
exception of Newsela and OneStopEnglish). This
makes it difficult to study document-level phenom-
ena of TS such as sentence reordering, deletion
and explanation generation (Alva-Manchego et al.,
2019b; Zhong et al., 2020; Srikanth and Li, 2021).

Contributions. As a response to the lack of re-
sources, we report initial results towards a parallel
dataset of patient-friendly clinical notes. Currently,
the dataset covers 851 German surgical pathol-
ogy reports with document-level simplifications by
medical professionals. We describe a lightweight
simplification protocol that encourages an intuitive
simplification style and medical correctness, while
not demanding linguistic training on the side of the
editors. Furthermore, we conduct first analyses of
the dataset and establish baselines for automatic
simplification. Overall, we find that the source text
is dense, with partly incomplete sentences and a
highly specialized vocabulary, while manually pro-
duced simplifications are on average longer with
a more constrained vocabulary. We observe a va-
riety of simplification operations in the references
including lexical substitution, syntactic simplifica-
tion, explanations and content selection. We be-
lieve that this dataset can be an interesting testbed
for research on document-level TS.

Our goal with this dataset is to increase the di-
versity of resources that TS research has available
in terms of the text types, domains and languages.
Sharing this dataset with the research community
while respecting ethical, legal and privacy stan-
dards is currently underway.1

1We share the experiment code and provide updates on the
dataset at github.com/jantrienes/simple-patho.
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Original (German) Translation (English)

1. Klinische Angaben 1. Background
Original: Unklare Raumforderung proximaler Oberschenkel links. V.a.
Lymphom, DD Weichteilsarkom. Entität?

Original: Undefined mass proximal thigh left. Suspicion of lymphoma,
DDx soft tissue sarcoma. Entity?

Human Reference: Bei der vorliegenden Gewebeentnahme handelt
es sich um eine unklare Gewebeneubildung des oberen linken Ober-
schenkels. Es wird die Frage nach einer Diagnose gestellt.

Human Reference: The present tissue sample is an undefined tissue
growth of the upper left thigh. The question of a diagnosis is raised.

System Output (mBART): Anhand der histologischen Untersuchungen
wurde die Diagnose gesichert und dabei geht es um eine unklare Raum-
forderung am oberen Anteil des linken Oberschenkels. Es besteht der
Verdacht auf ein Lymphom, ein Weichteilsarkom. Ein Weichteilsarkom
ist ein bösartiger Tumor des Weichteilgewebes, welcher Merkmale von
Fettzellen aufweist bzw. aus diesen hervorgeht.

System Output (mBART): By means of histological examinations the
diagnosis was confirmed and it is about an undefined mass on the upper
part of the left thigh. There is a suspicion of a lymphoma, a soft tissue
sarcoma. A soft tissue sarcoma is a malignant tumor of the soft tissue,
which has characteristics of fat cells or develops from them.

R-1/2/L: 33.33/11.43/30.56, BLEU: 7.25, SARI: 39.28

2. Makroskopie 2. Macroscopy
Original: Proximaler Oberschenkel ventral links: mehrteilig beige-
braunes, teils gelbliches Gewebe von zusammengelegt 2 x 2 bis 0,3
cm.

Original: Proximal thigh ventral left: several fragments of beige-brown,
partly yellowish tissue of 2 x 2 to 0.3 cm when put together.

Human Reference: Eine makroskopische Untersuchung wird mit
bloßem Auge durchgeführt und gibt eine erste Einschätzung über
krankhafte Veränderungen. Außerdem soll diese Untersuchung eine
Auswahl von Abschnitten für eine genauere Untersuchung mithilfe
des Mikroskops liefern. Es handelt sich um eine Gewebeentnahme
der Vorderseite des linken Oberschenkels. Das Präparat besteht aus
mehreren Teilen, die beige-braun bis gelblich gefärbt sind und zusam-
mengelegt 2 x 2 x 0,3 cm messen.

Human Reference: A macroscopic examination is done with the naked
eye and allows an initial assessment of pathological changes. In addition,
this examination shall provide a selection of slices suitable for a more
detailed examination under the microscope. It is a tissue sample of the
front of the left thigh. The specimen consists of several fragments that
are beige-brown to yellowish in color and measure 2 x 2 x 0.3 cm when
put together.

System Output (mBART): Die makroskopische Beurteilung beinhaltet
eine Untersuchung und Beurteilung von eingesandten Proben mit dem
bloßen Auge. Zur Untersuchung steht ein mehrereteilig beige-braunes,
teils gelbliches Gewebe von zusammengelegt 2 x 2 bis 0,3 cm.

System Output (mBART): The macroscopic assessment includes an
examination and assessment of submitted specimens with the naked
eye. The specimen to be examined is a several parts beige-brown, partly
yellowish tissue of 2 x 2 to 0.3 cm when put together.

R-1/2/L: 34.86/9.35/31.19, BLEU: 3.92, SARI: 36.56

Table 1: Example pathology report from the validation set including human reference and system output (mBART).
Reports typically consist of four sections (background, macroscopy, microscopy and conclusion) and each section is
one input for the paragraph-level simplification model. We color-code summarization/deletion, explanation and
lexical simplification/paraphrasing. For each section, we also give the ROUGE, BLEU and SARI scores. The example
is continued in Appendix Table 5.

2 Dataset Creation and Analysis

We describe our design decisions for the creation
of a parallel corpus of clinical notes. An example
report is given in Table 1.

2.1 Data Selection

We decided to focus on pathology reports of sar-
coma patients since clinicians noted particularly
high amounts of questions concerning these reports.
Sarcomas are a rare type of cancer with many sub-
types which can affect people of all ages. The
pathology report describes an analysis of tumor
tissue and establishes the main diagnosis.

We sample reports from the electronic health
records of the University Hospital Essen, a large
research hospital in Germany. Each year, about
60,000 pathology reports are written by the pathol-
ogy department. We identify suitable reports based
on clinical codings (ICD-O-M). A query for the
period of January 2019 until August 2021 yielded
1,644 reports on sarcoma patients. All reports were

fully anonymized and we received ethics approval
from our institutional review board.2

2.2 Simplification Protocol
To create a parallel corpus of original and simpli-
fied clinical notes, we ask medical experts how they
would intuitively explain a given report to a patient.
We take a decidedly inductive approach here: while
guidelines for simplified language exist,3 it is not
clear to what extent these are suitable for clinical
notes, and if annotators without formal linguistic
training could operationalize them. In the terminol-
ogy of Allen (2009), we use an intuitive rather than
a structural simplification process.

It is commonly accepted that a good simplifi-
cation depends on the target audience (Xu et al.,
2015; Bingel et al., 2018; Gooding, 2022). To
better define the audience and ensure a common
simplification goal among editors, we developed

2University of Duisburg-Essen; Reference: 21-10198-BO
3For example Basic English (Ogden, 1930); we refer to

Saggion (2017) and Štajner (2021) for more examples.
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Document-Level Paragraph-Level

Statistic Original Simplified Original Simplified

Documents 851 851 3,280 3,280
Sentences 23,554 28,155 22,191 26,551
Tokens 327,466 462,994 299,365 433,027
Types 10,292 11,229 9,843 10,798

Words/doc 385 544 91 132
Words/sent 14 16 13 16
Avg. TTR 0.47 0.42 0.69 0.63
Avg. FRE 32.90 40.30 27.65 40.05

Novelty 63/84/91% 70/87/92%
CMP 1.55 2.75

Table 2: Statistics for a document-level and paragraph-
level alignment of our dataset. TTR = type-token ratio,
FRE = Flesch Reading-Ease, CMP = average compres-
sion. Novelty is the average percentage of 1/2/3-grams
that appear in the simplified text but not in the original.

a patient persona. A persona is a rich descrip-
tion of a prototypical user of a software system,
a tool often used in human-computer interaction
research (Cooper, 1999). With this persona at hand,
editors were asked “What questions would this pa-
tient have about the report?” Additionally, we pro-
vided following simplification guidelines to further
increase consistency across editors: (i) preserve the
section structure of the reports, (ii) use the same
tense as the original report, and (iii) do not add any
interpretations that go beyond the stated facts.

We hired a team of 9 medical students in their
fourth year of studies. A senior pathologist pro-
vided guidance on clinical questions during regular
meetings and through email. All reports were sim-
plified by one editor at the document-level using
a plain text editor with grammar and spellcheck-
ing functionality. We implemented several quality
gates for consistency and medical correctness of
simplifications. First, we used an initial trial pe-
riod of 10 reports to refine the guidelines and to
allow editors to get familiar with the task. Second,
we held monthly meetings to discuss simplifica-
tion challenges and examples. A chat platform was
setup to resolve urgent questions in a timely man-
ner. Over the span of one year, we simplified 851
reports with a total effort of 812 hours (median 50
min./report). The students were compensated for
their work with 10.5C per hour corresponding to
the usual rate for student assistants in Germany.

2.3 Preprocessing

For studying the characteristics of our TS corpus,
we apply minimal pre-processing. We segment

each document into sentences and tokens using
NLTK. To establish a reliable vocabulary size, we
lemmatize the text using spaCy and replace tokens
that only consist of digits, punctuation or combina-
tions thereof with a special token.4

We found that most reports consist of four core
sections: background, microscopy, macroscopy,
and conclusion. Therefore, we also compile a
section-aligned version of the dataset where we
keep reports that have a one-to-one alignment for
all core sections (820 out of 851 reports). This
makes our dataset also amenable for paragraph-
level simplification (Devaraj et al., 2021) in addi-
tion to document-level simplification.

2.4 Dataset Characteristics
To better characterize the dataset, we analyze sev-
eral surface-level properties (see Table 2 for an
overview). We focus on measures that were com-
monly reported in prior work (Xu et al., 2015;
Dmitrieva and Tiedemann, 2021) including the
number of sentences and tokens, the vocabulary
size (types), the length of documents and sentences,
and the n-gram novelty. The type-token ratio (TTR)
is used as a measure of lexical diversity and the
Flesch Reading-Ease (FRE, Flesch, 1948) serves
as a first indication of changes in readability.5

Simplifications are on average 41% longer
than the original text (Table 2). Through man-
ual inspection, we identified two potential reasons.
First, the original reports tend to use a brief writ-
ing style with partly incomplete sentences. These
were expanded to full sentences by the editors. Sec-
ond, editors often added contextual information
and explanations (e.g., why an examination was
done, and what the result mean to a patient). The
most striking difference in length can be observed
for the background section (Figure 1). We assume
that simplifications are “setting the scene” in this
section by simplifying terminology and explaining
concepts which do not have to be repeated again in
the remainder of the report.

Simplifications select and summarize content.
While simplifications are longer than their origi-
nal counterpart, we also note a form of summa-
rization (see example in Table 1). In some cases,
particularly technical concepts were not included
in the simplification, presumably because there is
no simple explanation or because an explanation

4nltk.org and spacy.io
5We use constants adapted to German text (Amstad, 1978).

Implementation in github.com/textstat/textstat.
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Figure 1: Comparing section length in the number of tokens for the Original and Simplified text. We observe largest
expansion in the Background section. Simplifications for other sections follow the original length more closely.

would not help a user to better understand the re-
port. This is in line with prior work which argues
that document-level TS also requires summariza-
tion (Zhong et al., 2020; Aumiller and Gertz, 2022).

Simplifications have a different and more con-
strained vocabulary. While the simplified corpus
is substantially larger in the number of tokens, the
vocabulary size has only slightly increased. This
is reflected in the lexical diversity measure (TTR:
0.47→0.42, Table 2). A decrease in TTR indicates
that simplifications use a more constrained vocab-
ulary which might translate to better readability.
Furthermore, we observe a high average rate of
unigram novelty (around 63%), which signals that
large parts of the vocabulary are not shared.

Simplifications have a slightly higher readabil-
ity. We observe a small increase in the readability
measure (FRE: 32.9→40.3, Table 2). However, the
overall readability is low according to this mea-
sure. By means of comparison, Aumiller and Gertz
(2022) reported FRE values of 40 for the origi-
nal and 67 for the simplified parts of a document-
level TS dataset collected from German Wikipedia.
There are inherent limitations with readability mea-
sures like FRE, so this finding has to be interpreted
with care (Tanprasert and Kauchak, 2021).

3 Simplification Baselines

We next establish a first baseline for pathology re-
port simplification using paragraph-level sequence-
to-sequence methods (Devaraj et al., 2021).

3.1 Modeling Considerations

As discussed in Section 2.4, our dataset features
multiple simplification operations including lex-
ical simplification, paraphrasing, summarization
and explanation generation. Therefore, we focus
on monolingual neural machine translation mod-
els which can learn these operations simultane-

ously (Nisioi et al., 2017). Prior work on medical
text investigated lexical simplification (Abrahams-
son et al., 2014; Kloehn et al., 2018) or hybrid
systems that combine pre-trained translation mod-
els with domain-specific phrase tables (Shardlow
and Nawaz, 2019). With our parallel dataset, fine-
tuning large general-purpose language models be-
comes a realistic option (Rothe et al., 2020).

Inspired by Devaraj et al. (2021), we train a
paragraph-level simplification model. Compared
with sentence-level methods, a paragraph-level
model has the benefit that we do not need sentence
alignments (Štajner et al., 2018) and that we can
capture simplification phenomena like syntactic
simplification and summarization (Alva-Manchego
et al., 2019b). Our dataset has a natural paragraph-
level alignment in the form of four core sections,
so we consider this a suitable first baseline.

Methods. We experiment with four instantiations
of paragraph-level methods. (1) Identity: A sim-
ple baseline which outputs the original text as sim-
plification. (2) Bert2Bert: A transformer-based
encoder-decoder where both parts are initialized
with BERT (Devlin et al., 2019; Rothe et al., 2020).
(3) Bert2Share: Same as Bert2Bert, but weights of
the encoder and decoder are shared. (4) mBART:
A sequence-to-sequence transformer, pre-trained
on a sentence reconstruction objective (Liu et al.,
2020). We include hyperparameters and replication
details in Appendix A.

Evaluation. We report the standard TS metrics
SARI (Xu et al., 2016), BLEU (Papineni et al., 2002)
and ROUGE F1 (Lin, 2004) for unigram (R-1) and
bigram (R-2) matches, and the longest common
subsequence between the reference and system
output (R-L). To calculate SARI and BLEU, we
use the implementation in EASSE (Alva-Manchego
et al., 2019a) with default settings. For ROUGE,
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Model R-1 R-2 R-L BLEU SARI Len. Nov.

Identity 29.6 14.3 28.6 10.8 11.2 92 0%
Bert2Bert 26.5 8.3 25.0 7.3 41.4 103 79%
Bert2Share 28.3 9.5 26.6 8.2 42.7 102 78%
mBART 35.2 15.3 33.4 14.2 46.2 129 65%

Table 3: Automatic simplification results on paragraph-
aligned data. The identity baseline simply returns the
input as simplification. For the reference simplification,
the average length (Len.) is 132 tokens and the average
unigram novelty (Nov.) is 70% (cf. Table 2).

we use the rouge-score package with stemming
disabled. We randomly split reports into train-
ing/validation/test sets with an 80/10/10 ratio.

3.2 Results and Discussion

Quantitative Results. According to automatic
metrics, the generated simplifications have a sub-
stantially higher simplicity (SARI) but only slightly
higher adequacy (ROUGE and BLEU) than an iden-
tity baseline (Table 3). mBART provides best re-
sults with an average simplification length and nov-
elty close to the reference (129 vs. 132 tokens, and
65% vs. 70% novelty, Table 3). While not directly
comparable, metrics are in a similar range as the
paragraph-level simplification results on English
medical abstracts by Devaraj et al. (2021).

For a better intuition of where the models can
be improved, we report metrics by section type
in Table 4. We see that the background section
is most difficult to simplify. The low BLEU score
of the identity baseline (0.1 in Table 4) indicates
that there is little overlap between the original and
simplified vocabulary. We hypothesize that simpli-
fications for the background section include expla-
nations and contextual domain knowledge which
are difficult to generate with sequence-to-sequence
methods (Srikanth and Li, 2021).

Qualitative Observations. By manual inspec-
tion, we found that system outputs are mostly flu-
ent, grammatical and subjectively easier to read
(Table 1). Furthermore, we observe that models
generate elaborations and perform a certain degree
of content selection. We also found factual errors
in the automatically generated simplifications. In
the example in Table 5, a clinical result was re-
ported as positive in the original report but negative
in the generated simplification (STAT6 positive vs.
negative). The subsequently generated sentence
(“This combination of tumor markers is suggestive
of GIST”) is a clinically conceivable statement, but

Identity mBART

Section BLEU SARI Len. BLEU SARI Len.

Background 0.1 6.2 15 6.5 47.9 86
Macroscopy 17.2 12.5 136 18.0 48.2 131
Microscopy 8.7 10.7 146 13.0 44.3 213
Conclusion 13.9 10.5 72 13.6 43.6 88

Micro Avg. 10.8 11.2 92 14.2 46.2 129

Table 4: Evaluation by report section. Micro averaged
metrics over all sections are reproduced from Table 3.

in the context of this report wrong. We anticipate
that factual correctness will be of high importance
for any practical deployment of a TS system for
clinical notes and consider the evaluation of factual
correctness as a significant avenue for future work
on this dataset (Devaraj et al., 2022).

4 Conclusion and Future Work

We present ongoing work towards a dataset of pro-
fessionally simplified clinical notes. Currently, the
corpus consists of 851 parallel documents totaling
close to 790k tokens. Quantitative and qualitative
analyses show potential challenges for paragraph-
level and document-level TS research. Despite a
moderately sized training set, fine-tuning general
language models led to promising results.

In future work, we will increase the size of the
dataset and conduct a formal analysis of the simpli-
fication operations in the data to better understand
the challenges for TS on clinical notes. Human
evaluations with a focus on factual correctness, as
well as user studies with end-users such as patients
and patient advocacy groups are also envisioned.
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A Implementation Details

Hyperparameters. All simplification models
were trained for 25 epochs using the AdamW opti-
mizer with an initial learning rate of 3e−5 (Kingma
and Ba, 2015; Loshchilov and Hutter, 2019). We
use a learning rate schedule with an initial warmup
period of 10% of the training steps and a linear de-
cay afterwards. Checkpoints are taken every epoch
and the checkpoint with lowest validation loss is
kept. For Bert2Bert and Bert2Share, we set the
batch size to 16 and for mBART to 4. During infer-
ence, we use beam search decoding with 5 beams.
Generation ends when an end-of-sequence token
is generated. We did not perform any manual or
automatic hyperparameter tuning.

Implementation. To adapt mBART for the task
of monolingual translation, we follow recommen-
dations by Rios et al. (2021) and add a special
language token for the original text and for the
simplified text. We implement the models using
the Transformers library (Wolf et al., 2020). Mod-
els are initialized with the bert-base-multilingual-
cased and facebook/mbart-large-cc25 checkpoints.

Computation Cost. All models are trained on a
single NVIDIA RTX A6000 GPU with 48GB of
memory. Training duration is 2:45h for mBART,
1:30h for Bert2Bert and 1:16h for Bert2Share.
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Original (German) Translation (English)

3. Mikroskopie 3. Microscopy
Original: Mikroskopisch zeigt die Biopsie Anteile eines spindelzellig
gestalteten Tumors. Dieser zeigt ein relativ monomorphes Bild mit
einem hämangioperizytomartigem Gefäßmuster. Die Tumorzellen be-
sitzen vergrößerte, leicht vesikuläre Zellkerne. Mitosefiguren sind kaum
erkennbar (1/10 HPF). Das Stroma ist relativ fein und enthält einzelne
Kollagenfasern. Nekrosen sieht man nicht. Ergänzend wurden im-
munhistochemische Untersuchungen durchgeführt. Der Tumor zeigt
eine kräftige Positivität für CD34 und eine kräftige nukleäre Expres-
sion von STAT6. Die folgenden Antigene werden vom Tumor nicht
exprimiert: Aktin, Caldesmon, Panzytokeratin (CKplus), Desmin, EMA,
MUC4, S100, SOX10 und TLE1.

Original: Microscopically, the biopsy shows portions of a spindle-cell
shaped tumor. The tumor has a relatively monomorphic appearance,
with a hemangiopericytoma-like vascular pattern. The tumor cells have
enlarged, slightly vesicular nuclei. Mitotic figures are barely visible
(1/10 HPF). The stroma is relatively fine and contains single collagen
fibers. Necroses are not detectable. Additionally, immunohistochemi-
cal examinations were conducted. The tumor shows strong positivity
for CD34 and strong nuclear expression of STAT6. The following anti-
gens are not expressed by the tumor: Actin, caldesmon, pancytokeratin
(CKplus), desmin, EMA, MUC4, S100, SOX10, and TLE1.

Human Reference: Nachdem die Gewebeproben in schmale Schnitte
weiterverarbeitet wurden, können sie nach weiterer Aufarbeitung
(z.B Färbung) unter dem Mikroskop betrachtet werden. Unter dem
Mikroskop erkennt Anteile eines Tumors aus spindelförmigen Zellen.
Der Tumor zeigt in sich ein recht gleichartiges Bild. Die Blutge-
fäße wachsen in einem speziellen Muster. Man erkennt viele kleine,
verzweigte Gefäße. Die Tumorzellen weisen vergrößerte, leicht blasen-
förmige Zellkerne auf. Zellkerne sind der Ort in einer Zelle, in der das
Erbgut in Form von DNA gespeichert wird. Mitosefiguren stellen unter
dem Mikroskop sichtbare Chromosomenstrukturen dar, die während der
Zellteilung auftreten. Damit geben Sie Aufschluss über die Teilungs-
fähigkeit der Tumorzellen. Sie kommen nur vereinzelt vor. Das die
Zellen umgebende Gewebe ist fein und enthält einzelne Kollagenfasern.
Abgestorbene Gewebebereiche sind nicht sichtbar. Die Schnitte der
Gewebeproben wurden außerdem immunhistochemisch angefärbt. Dies
bedeutet, dass spezielle Stoffe genutzt wurden, welche eine Farbreak-
tion auslösen, sobald diese an bestimmte Strukturen an der Oberfläche
und im Inneren der Tumorzellen binden. Durch diese Anfärbemethode
kann die Art des Tumors weiter bestimmt werden. Es wurde CD34
und STAT6 nachgewiesen. Die Kombination aus diesen beiden Mark-
ern ist ein Kriterium für die Diagnose eines solitären fibrösen Tumors.
Dies bezeichnet einen bösartigen Tumor mit Bindegewebseigenschaften.
Bösartige Tumore unterscheiden sich von gutartigen vor allem in der
Fähigkeit Tochtertumore ausbilden zu können und über Gewebegren-
zen hinaus zu wachsen.

Human Reference: After being processed into narrow slices and further
preprocessing (e.g. staining), the tissue samples can be viewed under
the microscope. Under the microscope, parts of a tumor consisting
of spindle-shaped cells can be seen. The tumor itself shows a rather
homogeneous picture. The blood vessels grow in a particular pattern.
Many small, branched vessels are visible. The tumor cells show enlarged,
slightly vesicular nuclei. Nuclei are the place in a cell where genetic
material is stored as DNA. Mitotic figures are chromosome structures
that appear during cell division and are visible under the microscope.
They thus provide information about the ability of the tumor cells to
divide. There is only an isolated number of them. The tissue surround-
ing the cells is fine and contains single collagen fibers. Dead tissue
areas are not visible. Moreover, the slice of the tissue samples were
immunohistochemically stained. This means that special substances
were used which trigger a color reaction as soon as they bind to certain
structures on the surface and inner parts of tumor cells. This staining
method can further determine the type of tumor. CD34 and STAT6
were detected. The combination of these two markers is a criterion
for the diagnosis of a solitary fibrous tumor. This is a malignant tumor
characterized by connective tissue. Malignant tumors differ from benign
ones mainly in their ability to develop secondary tumors and to grow
beyond tissue boundaries.

System Output (mBART): Die präparierten Gewebeproben wurden
zur Aufklärung der Gewebeart und der Ausbreitung des Tumors
mikroskopisch untersucht. Es wurden zusätzlich Antikörperunter-
suchungen (Immunhistochemische Untersuchungen) für die weitere Bes-
timmung des Tumors durchgeführt. In der mikroskopischen Unter-
suchung zeigen sich Anteile eines Tumors aus spindelförmigen Zellen.
Die Tumorzellen sehen im Vergleich zu gesunden Zellen verändert aus
und weichen von der Norm ab. Es sind nur wenige Zellen im Prozess der
Zellteilung zu erkennen (1 Mitosefigur/ 10HPF), was für ein langsames
Wachstum des Tumors spricht. Ergänzend wurden immunhistochemis-
che Untersuchungen durchgeführt. Hierbei werden mithilfe von Antikör-
pern Zellbestandteile nachgewiesen, welche in Tumoren typischerweise
vorkommen und somit Informationen über die Art und Herkunft des
Tumors liefern. Von den getesteten Tumormarkern (CD34, STAT6, Ak-
tin, Caldesmon, Panzytokeratin (CKplus), Desmin, EMA, MUC4, S100,
SOX10 und TLE1) sind CD34 positiv ausgefallen und STAT6 negativ
ausgefallen. Diese Kombination aus Tumormarkern spricht für das Vor-
liegen eines Gastrointestinalen Stromatumors (GIST) oder einer Metas-
tase eines GIST.

System Output (mBART): The prepared tissue samples were exam-
ined microscopically to elucidate the type of tissue and the spread of
the tumor. Additionally, antibody examinations (immunohistochemical
examinations) were performed to further determine the tumor. A micro-
scopic examination revealed portions of a tumor consisting of spindle-
shaped cells. The tumor cells look altered compared to healthy cells
and deviate from the norm. Only a small number of cells are in the
process of cell division (1 mitotic figure/ 10HPF), suggesting that the
tumor grows slowly. In addition, immunohistochemical examinations
were performed. In these examinations, antibodies are used to detect
cellular components that are typically found in tumors and thus provide
information about the type and origin of the tumor. Of the tumor mark-
ers tested (CD34, STAT6, actin, caldesmon, pancytokeratin (CKplus),
desmin, EMA, MUC4, S100, SOX10 and TLE1), CD34 was positive
and STAT6 was negative. This combination of tumor markers is sug-
gestive of the presence of a gastrointestinal stromal tumor (GIST) or a
metastasis of GIST.

R-1/2/L: 30.92/9.02/27.93, BLEU: 5.12, SARI: 35.94

4. Epikritische Stellungnahme 4. Conclusion
Original: PE (proximaler Oberschenkel ventral links) mit einem
solitären fibrösen Tumor (SFT), klassischer Typ. Zur Validierung des
Befundes wurde ergänzend eine molekularpathologische Untersuchung
(Fusionspanel) eingeleitet. Diesbezüglich folgt ein Nachbericht.

Original: BX (proximal thigh ventral left) with a solitary fibrous tumor
(SFT), classic type. A supplementary molecular pathological examina-
tion (fusion panel) was initiated to validate the findings. There will be
a follow-up report on this topic.

Human Reference: Es handelt sich um eine Probenentnahme der Ober-
schenkelvorderseite mit einem solitären fibrösen Tumor. Zum Nachweis
dieser Diagnose wurden weitere Untersuchungen eingeleitet. Die Ergeb-
nisse werden in einem Nachbericht geliefert.

Human Reference: This is a tissue sample of the thigh front with a
solitary fibrous tumor. Further examinations were initiated to confirm
this diagnosis. The results will be provided in a follow-up report.

System Output (mBART): Anhand der histologischen Untersuchungen
wurde die Diagnose gesichert und dabei geht es um einen solitären fi-
brösen Tumor (SFT), klassischer Typ. Zur Validierung des Befundes
wurde ergänzend eine molekularpathologische Untersuchung (Fusion-
spanel) eingeleitet. Diesbezüglich folgt ein Nachbericht.

System Output (mBART): By means of histological examinations the
diagnosis was confirmed and it is about a solitary fibrous tumor (SFT),
classic type. A supplementary molecular pathological examination (fu-
sion panel) was initiated to validate the findings. There will be a follow-
up report on this topic.

R-1/2/L: 40.58/11.94/34.78, BLEU: 5.07, SARI: 20.59

Table 5: Example report (continued from Table 1).
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Abstract
Automatic text simplification aims to reduce
the linguistic complexity of a text in order to
make it easier to understand and more acces-
sible. However, simplified texts are consumed
by a diverse array of target audiences and what
might be appropriately simplified for one group
of readers may differ considerably for another.
In this work we investigate a novel formula-
tion of sentence simplification as paraphras-
ing with controlled decoding. This approach
aims to alleviate the major burden of relying
on large amounts of in-domain parallel training
data, while at the same time allowing for mod-
ular and adaptive simplification. According
to automatic metrics, our approach performs
competitively against baselines that prove more
difficult to adapt to the needs of different tar-
get audiences or require significant amounts of
complex-simple parallel aligned data.

1 Introduction

Automatic text simplification (ATS) aims to reduce
the linguistic complexity of a text while preserv-
ing its meaning in order to make it easier to un-
derstand and more accessible to a wider array of
potential readers (Bingel and Søgaard, 2016; Sikka
and Mago, 2020). These readers might include
children or adults with low literacy levels, cogni-
tive impairments, or a lack of specialist knowledge
in certain topics, as well as non-native language
learners (Štajner, 2021; Saggion, 2017). However,
the notion of exactly what constitutes ‘simplified’
text is highly subjective and can differ consider-
ably between different types of readers. Thus it
is important to tailor solutions appropriately in or-
der to accommodate the needs of specific target
audiences.

Research on ATS, or more specifically sentence
simplification (SS), has been spurred on by per-
formance gains in neural sequence-to-sequence
(seq2seq) language generation methods (Zhang and
Lapata, 2017; Scarton and Specia, 2018), which

aim to do away with complex hand-crafted rules
(De Belder and Moens, 2010; Siddharthan and
Mandya, 2014) and improve on earlier statistical
approaches (Wubben et al., 2012; Xu et al., 2016).
However, fully supervised seq2seq SS approaches
require a large amount of sentence-aligned parallel
training data (Koehn and Knowles, 2017), which
remains relatively scarce and difficult to attain.

For this reason, much work has focused on cer-
tain aspects of ATS such as lexical (Glavaš and
Štajner, 2015; Kriz et al., 2018) or structural sim-
plification (Niklaus et al., 2019; Garain et al., 2019;
Narayan et al., 2017; Gao et al., 2021). Others
have aimed to make better use of limited paral-
lel complex-simple training sentences by using
more sample-efficient modelling techniques that
aim to predict and execute in-place edit opera-
tions (Omelianchuk et al., 2021; Dong et al., 2019).
Meanwhile, despite considerable similarities be-
tween SS and paraphrasing, the task of reformu-
lating a sentence while maintaining an equivalent
meaning (Bhagat and Hovy, 2013), relatively few
works have aimed to exploit paraphrases to boot-
strap seq2seq-based simplification (Martin et al.,
2020; Maddela et al., 2021).

We investigate this last line of work and consider
an alternative framing of SS as the task of con-
trolled paraphrasing. We train a large-scale para-
phrase model capable of producing high-quality
and diverse paraphrases and combine it with future
discriminators for generation (FUDGE) (Yang and
Klein, 2021) to control decoding and steer the gen-
erated paraphrase towards a specific target level for
text simplification. Our experiments show that this
proves to be an effective approach for generating
simplified sentences for different target audiences
without requiring any parallel data in the form of
complex-simple aligned sentence pairs. The code
and model outputs from this work are made avail-
able at https://github.com/ZurichNLP/
SimpleFUDGE.
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2 Background & Motivation

Perhaps the largest hurdle for seq2seq-based sim-
plification is the collection of appropriately aligned
complex-simple parallel data required for training
robust and reliable systems (Laban et al., 2021).
Furthermore, as discussed by Štajner (2021), ATS
systems should be developed to support a variety
of target readers and would thus benefit from mod-
ular approaches that allow for easy customisation
and adaption. Recently, however, large pre-trained
generation models have continued to demonstrate
impressive performance when finetuned on condi-
tional language generation tasks (Raffel et al., 2020;
Lewis et al., 2020). Along with this, there has been
considerable work done on exploring ways to bet-
ter control the outputs of large generative models
in order to achieve certain communicative goals
(Dathathri et al., 2020; Krause et al., 2021; Liu
et al., 2021; Yang and Klein, 2021; Pascual et al.,
2021). We see a clear link between these recent de-
velopments and the challenges associated with SS
and set out to investigate a modular approach suit-
able for simplifying text for different target audi-
ences and that relaxes the need for complex-simple
parallel training data.

3 Method

Given a complex source sentence, our goal is
to transform it into a simplified target sequence1

that preserves its meaning. Under the tradi-
tional seq2seq framework, a target sequence y =
{y1, ..., yT ′} can be generated autoregressively as
a series of conditional probabilities over the vocab-
ulary, whereby each target token yi is conditioned
on the source sentence x = {x1, ..., xT } and any
preceding target tokens y1:i−1,

P (y) =
n∏

i=1

P (yi|x, y1:i−1). (1)

To ensure that the generated target sequence
is appropriately simplified, we employ FUDGE
(Yang and Klein, 2021), which has been shown to
be effective for various controlled generation tasks.
FUDGE introduces a lightweight classifier B to
control for a desired target attribute a during au-
toregressive generation with a model G. In essence,
it modifies the conditional probability in Equation
1 with the following Bayesian factorisation:

1Since an appropriate simplified formulation may consist
of multiple shorter sentences we refer to it as a sequence.

P (yi|x, y1:i−1, a) ∝ P (a|y1:i)P (yi|x, y1:i−1).
(2)

Here, the second term is the unmodified predic-
tion from G which is combined with the conditional
probability of a given all possible continuations at
the current timestep i according to B. For further
details on FUDGE, we refer the reader to Yang and
Klein (2021).

3.1 FUDGE for Target-Level Simplification
To leverage FUDGE for target-level SS, we train
a classifier for each target level, i.e. BSimp−l, and
combine them with the same underlying generator
model G. Following Yang and Klein (2021), each
classifier is trained as a binary predictor on labelled
subsequences of complex (Simp-0) and simple
(Simp-l) texts. Since SS often involves breaking
down a long complex sentence into smaller atomic
sentences (Honeyfield, 1977), we train each classi-
fier to predict labels on subsequences pertaining to
consecutive sentences within a paragraph. This en-
sures that the classifier’s predictions do not unduly
bias the generation of the end of sentence symbol
‘</S>’ after producing sentence-final punctuation.

For the underlying generator, G, we fine-tune
BART-large on approximately 1.4 million para-
phrase sentence pairs mined from the web.2 This
model has no explicit knowledge of complex
vs. simple language. To ensure a fair comparison to
previous work, we use the exact same training data
as Martin et al. (2021) and aim to keep training
hyperparameters as consistent as possible (detailed
in Appendix C).

In practice, combining the predictions from G
and B relies on a single weight parameter λ. For
our experiments, we derive suitable values for each
target-level by sweeping over possible whole num-
ber values in the range [0,10] and selecting the
best according to SARI on the validation set (see
Appendix D).

4 Experimental Setup

4.1 Data
We conduct our experiments on the Newsela corpus
of simplified news articles.3 In its current form, the

2In theory, given BART’s denoising autoencoding pre-
training, it could also be possible to avoid fine-tuning alto-
gether. However, initial experiments showed that the proba-
bility distribution of the off-the-shelf BART model is far too
peaked for the classifier’s predictions to have any effect.

3https://newsela.com/data/.
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# articles # manually aligned sentences
Simp-1 Simp-2 Simp-3 Simp-4

train 1,862 - - - -

train 35 1,341 1,245 1,042 841
test 10 365 353 309 256

valid 5 180 163 134 87

Table 1: Newsela English corpus articles and their manu-
ally aligned sentences from Jiang et al. (2020) for Simp-
0 to Simp-l.

corpus contains 1,912 English news articles that
have been professionally re-written according to
readability guidelines for children at multiple grade
levels (Xu et al., 2015). Article versions range from
Simp-0 to Simp-4, with the former referring to the
original, unsimplified article, suitable for upper
secondary school grades, and the latter indicating
the simplest versions, suitable for lower primary
school grades.4

While Newsela provides complex-simple align-
ments at the document level, it must be emphasised
that this alignment is not a requirement for our ap-
proach and thus training examples are randomly
shuffled each epoch. Nevertheless, we reason that
this type of alignment is beneficial since it ensures
that attribute classifiers are trained on compara-
ble examples covering the same domains. As a
consequence, each classifier must learn to distin-
guish between complex and simple text based on
relevant characteristics, such as the lexical choices
and grammatical structures for a target level, rather
than exploiting potentially misleading differences
in topical content (Kumar et al., 2019).

For automatic evaluation purposes, however,
sentence-level alignments are a must. To this end,
we make use of the manually aligned test and vali-
dation splits provided by Jiang et al. (2020). Setting
aside all sentence pairs from these splits ensures
that no unwanted data leakage occurs. An overview
of the corpus and manually aligned sentence pairs
is provided in Table 1.

4.2 Baselines

We compare our approach to two recently proposed
techniques for controlled SS and a naive baseline
that only uses paraphrasing.

4In this work, we assume that article versions (0-4) are
reliable indicators of level-appropriate simplifications and pro-
vide a detailed discussion on this assumption in Appendix
B.

MUSS Martin et al. (2021) leveraged large-scale
paraphrase data to fine-tune BART-large in combi-
nation with the ACCESS control method for sim-
plification (Martin et al., 2020). This method relies
on four control tokens which are prepended to the
source sequence and used to indicate the desired
length, edit distance, lexical complexity and syntac-
tic complexity as a ratio between the source and the
output sequence. At inference time, these special
tokens act as ‘control knobs’ for the simplification.
Following Martin et al. (2021), we derive optimal
control values through a parameter search on the
validation split (see Appendix C.4).

SUPER Following Scarton and Specia (2018),
we also train a level-aware supervised baseline with
a single special token indicating the target level
(e.g. <L3> = Simp-3) prepended to each source
sentence. For a fair comparison, we initialise this
model from the same BART-large checkpoint as
the other two models and fine-tune on the manually
aligned training sentences for all Newsela levels
simultaneously. This amounts to a low resource
setting with a total of 4,469 training instances.

PARA In addition, we also compare to a straight-
forward paraphrase generated by our underlying
generation model G with no controls or interven-
tion.

4.3 Evaluation Metrics

Reliably evaluating SS is an open challenge (Alva-
Manchego et al., 2021). However, a range of
both reference-based and reference-less automatic
metrics have been proposed (Martin et al., 2018).
We make use of the open-source EASSE package
(Alva-Manchego et al., 2019), which implements
relevant metrics such as SARI, BERTScore, Flesch-
Kincaid Grade Level (FKGL) and a host of quality
estimation measures for more fine-grained analysis
(these metrics are detailed in Appendix A).

5 Results & Discussion

Table 2 presents the results of our experiments on
the Newsela corpus. According to SARI, our pri-
mary metric, SS with FUDGE outperforms both
MUSS and the supervised baseline for all target lev-
els except for Simp-4. Our simplifications tend to
exhibit lower rates of compression and higher rates
of sentence splitting and additions, particularly as
the degree of simplification increases. This could
be considered advantageous for certain target au-
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Method SARI BERTScore FKGL Comp. ratio Sent. splits Lev. sim. Copies Add prop. Del prop.

Target Level: Simp-1 7.97 1.01 1.19 0.90 0.44 0.10 0.10

PARA 36.61 81.68 9.15 0.97 1.02 0.89 0.18 0.08 0.11
MUSS 35.69 75.95 7.75 0.81 1.00 0.84 0.01 0.07 0.24
SUPER 32.49 88.19 9.36 0.99 1.04 0.99 0.89 0.01 0.01
BSimp−1 36.10 80.45 8.81 0.94 1.01 0.88 0.13 0.07 0.13

Target Level: Simp-2 6.41 0.98 1.42 0.82 0.23 0.17 0.20

PARA 35.01 73.53 9.12 0.97 1.02 0.89 0.18 0.08 0.11
MUSS 36.57 65.91 7.27 0.78 1.03 0.75 0.00 0.15 0.35
SUPER 31.12 78.22 8.88 0.99 1.10 0.98 0.80 0.02 0.03
BSimp−2 38.32 70.75 7.42 0.96 1.25 0.84 0.08 0.12 0.17

Target Level: Simp-3 4.91 0.92 1.55 0.73 0.13 0.24 0.31

PARA 30.87 65.06 9.09 0.98 1.01 0.89 0.18 0.08 0.11
MUSS 38.05 56.03 5.19 0.62 1.01 0.68 0.00 0.12 0.45
SUPER 37.89 66.60 6.65 0.93 1.34 0.90 0.48 0.06 0.13
BSimp−3 39.56 61.46 6.44 1.00 1.45 0.81 0.02 0.20 0.20

Target Level: Simp-4 3.40 0.85 1.79 0.65 0.09 0.30 0.43

PARA 25.61 56.21 9.41 0.98 1.01 0.89 0.18 0.08 0.11
MUSS 39.63 51.73 5.61 0.65 1.04 0.68 0.00 0.13 0.44
SUPER 43.22 55.00 5.09 0.78 1.45 0.74 0.24 0.12 0.32
BSimp−4 37.03 49.60 4.60 1.02 2.14 0.76 0.00 0.28 0.28

Table 2: Target-level results on the manually aligned Newsela test set (Jiang et al., 2020). For reference-based
metrics (SARI, BERTScore), where higher values are better, we highlight systems according to their performance.
For FKGL and reference-less quality estimation metrics we embolden the systems that perform closest to the
level-specific references (provided in the intermediary rows).

diences and in settings where the loss of too much
information could be detrimental for the reader.
That said, it is also possible that not all additions
and sentence splits are warranted. For example,
degenerate repetitions or hallucinations could po-
tentially skew these results (see tables in Appendix
G for examples). Still, the positive influence of
FUDGE’s classifier is indeed most visible when
comparing against the paraphrase baseline, which
fails to generate more readable texts according to
FKGL.

We also note that the superior performance of
the fully supervised method for level Simp-4 is con-
sistent with the findings from Spring et al. (2021),
where a similar approach proved most effective
for simplifying ordinary German to A1-level Ger-
man, despite it being the target level with the least
amount of parallel data in both studies. For other
target levels, however, where the differences be-
tween source and target are perhaps more subtle,
this supervised model has a strong tendency to sim-
ply copy the input sentence.

While the MUSS baseline produces decent sim-
plifications according to SARI and FKGL, the

lower compression ratio and a higher proportion
of deleted N-grams indicate that this model also
tends to severely summarise the input. This infor-
mation loss causes model outputs to diverge from
the ground truth references and it is thus penalised
heavily by BERTScore.

FUDGE’s simplification operations are per-
formed actively during decoding by modifying the
generator’s prediction logits at each timestep, with
each decision being informed by the currently gen-
erated prefix and its potential continuations y1:i.
Therefore, this approach does not enforce a trans-
formation of the input text. This is an important
and desirable feature for SS as oftentimes not all
parts of a sentence need to be simplified (Garbacea
et al., 2021). Thus, assuming a well-trained classi-
fier B, simplification operations should occur only
when appropriate given the source sentence and the
generation context.5

Finally, using FUDGE for SS also makes use
of a single hyperparameter λ which controls the

5In an attempt to define ‘well-trained’, we demonstrate the
effect of the amount of classifier training data on simplification
performance in Appendix F.
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contribution from the classifier. In contrast, MUSS
requires setting an appropriate value for each of
the four control tokens to attain a suitable simpli-
fication. These are not only difficult to determine
for each target level (see Appendix E), but the way
in which these tokens interact with each other is
still unclear (Martin et al., 2020), making it diffi-
cult to set these values according to any underlying
intuition.

6 Conclusion & Future Work

We have explored a modular and adaptable ap-
proach to SS by reframing it as controlled para-
phrasing. We used FUDGE (Yang and Klein, 2021)
to steer the generation of paraphrastic sequences
toward different target levels. According to au-
tomatic metrics, this approach performs competi-
tively when compared to state-of-the-art methods.
In future work we aim to conduct a more detailed
analysis of the model outputs in order to better un-
derstand the qualitative differences and potential
shortcomings, as well as applying this method to
larger textual units beyond sentences.

Limitations

In this work we aimed to generate level-appropriate
sentence simplifications without the need for par-
allel aligned training data which is expensive to
produce and difficult to come by. Due to a lack of
existing work addressing simplification for specific
target levels, the number of comparable approaches
and relevant evaluation data sets are inherent limi-
tations of this work. While the approach proposed
by Martin et al. (2021) is not explicitly designed to
generate level-specific simplifications, we searched
for the most appropriate control tokens for each
target level and selected the best values accord-
ing to validation performance. To this end, we
used the code provided by Martin et al. (2021) but
note that we did not investigate potential improve-
ments to this parameter search. Secondly, to the
best of our knowledge, the Newsela English corpus
constitutes the only available resource containing
simplifications for readers at specific levels. Thus,
this current work does not seek to assess how well
this method generalises to other domains and lan-
guages.

Finally, our system evaluation relies on auto-
matic metrics. While we have strived to report met-
rics that cover the degree of simplification (SARI,
FKGL) and meaning preservation (BERTScore),

we acknowledge that extensive human evaluation
with the target audience is crucial in assessing the
viability and validity of any system intended to
adapt and rewrite text. On the one hand, degener-
ate outputs may lead to even more confusion and
less understandability, while, on the other hand, er-
roneous additions and deletions could be dangerous
in certain contexts (e.g. when applied to medical
or legal domain texts). Therefore, a thorough qual-
itative analysis of the proposed approach is still
required and planned for future work.
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A Evaluation Metrics for Sentence
Simplification

Simplicity SARI is intended to measure simplic-
ity by considering N-gram overlap between the
model output, source sentence and one or more
reference sentences. It rewards model outputs that
involve edit operations, such as deletions, additions
and copies, which correspond with the provided
references.

Fluency and meaning preservation BERTScore
uses BERT’s contextualised representations to com-
pute the similarity between tokens in the model
output and one or more references. It has been
shown to correlate better than BLEU for assessing
meaning preservation and fluency in SS (Scialom
et al., 2021).

Readability Flesch-Kincaid Grade Level
(FKGL) is often used as a proxy for estimating
text simplicity without a reference. Originally
developed for grading technical materials for
military personnel, it considers surface-level
statistics such as word and sentence length to
provide a single score. However, these scores
should be interpreted carefully as it has recently
been shown that this metric can be mislead by
degenerate and disfluent outputs (Tanprasert and
Kauchak, 2021).

Quality Estimation Measures For a more fine-
grained analysis of model outputs, we also report
quality estimation measures which are computed
between the source sentence and the model’s out-
put. These include the compression ratio, Leven-
shtein similarity, average number of sentence splits
performed, exact copies between source and target,
and the proportion of added and deleted N-grams.

B Target Levels in Newsela

Newsela contains articles written for different
graded reading levels (2-12) corresponding to pri-
mary and secondary school grades in the United
States. These grades can be considered true indi-
cators of an simplicity. However, assessing target-
level simplification for all available grades is chal-
lenging due to the sheer number of them and the
fact that not all of them are equally well represented
in the corpus. For example, there are 1,853 articles
for grade 12 but only 20 articles for grade 10 and 2
for grade 11.
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To simplify our target-level analysis, we follow
Xu et al. (2015) and assume that Newsela’s article
version IDs (0-4) are reliable indicators of a text’s
simplicity and thus adopt these as our target levels
(Simp-l). Figure 1 shows how the graded reading
levels are distributed over our target levels. As can
be seen, the article versions do not provide a clear
cut aggregation of all grades since there is a limited
degree of overlap, particularly between the lower
Simp-l levels. Nevertheless, a rough aggregation is
discernible; Simp-4 covers grades 2 to 4, Simp-3
consists predominately of grade 5, Simp-2 contains
grades 6 and 7, and Simp-1 covers grades 7 and
8. Finally, Simp-0 (the complex sources articles in
our study) is mostly restricted to grade 10 and up.

Figure 1: The distribution of graded reading levels
among article versions in Newsela. For simplicity, we
use as article versions our target levels for simplifica-
tion.

C Details on Model Training and
Inference

C.1 Resources
Model training and inference experiments were
performed on NVIDIA GeForce GTX TITAN X
GPUs with 12GB of memory.

C.2 Training Generation Models
For our underlying generator model G and the level-
aware supervised baseline, we fine-tuned BART-
large using Hugging Face’s Transformers library6

(Wolf et al., 2020). Training parameters used for
G aim to replicate the settings used by Martin et al.
(2021) who trained their models using Fairseq7

6https://github.com/huggingface/
transformers.

7https://github.com/facebookresearch/
fairseq.

(Ott et al., 2019). For the level-aware supervised
baseline, we aimed to replicate the settings used
by Spring et al. (2021) who trained their models
with Sockeye8. Note, in contrast to the paraphrase
model, the effective batch size and maximum train-
ing steps for this model are considerably smaller to
account for the differences in the size of the rele-
vant training data (1.4M paraphrase sentence pairs
vs. 4k aligned simplifications).

Paraphrase Model G
hyperparameter value

max src length 1024
max tgt length 256
eff. batch size 64
learning rate 3e-05
weight decay 0.01
optim adamw_hf
adam betas 0.9 - 0.999
adam epsilon 1e-8
lr scheduler polynomial
warmup steps 500
label smoothing 0.1
max steps 20000
num beams for pred 4
optim metric loss

Level-Aware Supervised Model

hyperparameter value

max src length 256
max tgt length 128
eff. batch size 16
learning rate 3e-05
weight decay 0.01
optim adamw_hf
adam betas 0.9 - 0.999
adam epsilon 1e-8
lr scheduler polynomial
warmup steps 500
label smoothing 0.1
max steps 5000
num beams for pred 4
optim metric rouge1

Table 3: Hyperparameters for training generation mod-
els.

C.3 Training FUDGE Classifiers

Our FUDGE classifiers Bsimp−l are unidirectional
three-layer LSTM-based RNNs with hidden layer
dimensionality of 512. These settings differ
slightly from the original implementation by Yang
and Klein (2021), who used smaller classifiers
for their tasks. The embedding matrix is con-
structed to cover the vocabulary of the underly-

8https://github.com/awslabs/sockeye.
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ing generator model (i.e. the tokenizer is shared
between G and B) and token embeddings are ini-
tialised using 300d pre-trained GloVe embeddings
(glove-wiki-gigaword-300) (Pennington
et al., 2014). For certain subwords and rare words
that are OOV in GloVe, we initialise their embed-
dings randomly.

C.4 Inference

For all models except MUSS we run inference with
beam search (k=5). A manual inspection of the
model outputs revealed that our underlying para-
phraser G showed a tendency to produce repetitions
in the target sequence. To counter this, we set the
repetition penalty equal to 1.2 when performing
inference with G. All other inference hyperparame-
ters use the default values set in Hugging Face. For
each source sentence in the test set, we generate the
top five model hypotheses according to the model
and select the first non-empty string as the final
model output.

For MUSS, we kept inference settings the same
as the default set by Martin et al. (2021). The only
differences are the control token values used for
performing inference on each of the Newsela sim-
plification levels, which we derive via a parameter
sweep on 50 items from the respective development
sets. Table 4 shows the relevant values used. Note
that these values are rounded up to the nearest 0.05
inside the model.

Comp.
Ratio

Leven-
shtein
Sim.

Word
Rank
Ratio

Dep.
Tree
Depth
Ratio

Simp-1 0.30 0.99 0.54 1.45
Simp-2 0.75 0.82 0.94 0.22
Simp-3 0.52 0.85 0.45 0.62
Simp-4 0.47 0.79 0.43 0.42

Table 4: Values used for target-level inference on the
Newsela English corpus with MUSS.

D Parameter Sweep for FUDGE

FUDGE has two hyperparameters which need to
be set at inference time. The first is a weight λ
that controls the strength of B’s contribution, while
the second aims to keep the cost associated with
classifying all possible continuations at each de-
coding timestep down by only considering the best
k predictions at each step (i.e. the most probable k
tokens according to the model). Initial experiments

showed that λ is indeed useful for controlling the
degree of simplification and finding a suitable λ is
essential. Meanwhile, using different pre-selection
k values (e.g. [50, 200]) had almost no effect on the
resulting generation sequence when using argmax
decoding techniques such as beam search. There-
fore, we followed the recommendation by Yang and
Klein (2021) and fixed the pre-selection k=200.

To get the best target-level simplifications, we
searched for the optimum λ value for each combi-
nation of Newsela simplification levels and each
target-level FUDGE on 50 sentences from the man-
ually aligned validation set (Jiang et al., 2020). Fig-
ure 2 shows the resulting SARI scores. For our
experiments, we selected the best scoring λ values
for each simplification level and its corresponding
FUDGE (i.e. plots along the diagonal). For cases
where more than one possible λ delivered good
results, we selected the lowest value > 0 (marked
with a vertical dotted line).

It is clear from Figure 2 that cross-matching tar-
get simplification levels with FUDGEs trained on a
different target level would also yield good, and in
some cases even better, results according to SARI
(e.g. target-level Simp-2 with BSimp−3). We hy-
pothesise that this is likely due to it being easier for
the classifier to correctly distinguish between the
positive (simple) and negative (complex) classes
when the stylistic differences between simplifica-
tion levels are larger. Indeed, ROC-AUC scores
for each target-level classifier on the respective test
sets increase from 0.67 to 0.96 going from Simp-
1 to Simp-4, indicating that FUDGEs trained on
higher simplification levels are better at distinguish-
ing between the classes.

E ACCESS Attributes on Newsela Corpus

While parameter sweeps are helpful, deciding on
optimal attribute values for target-level simplifi-
cation with ACCESS is non-trivial, especially if
limited validation data is on hand. Furthermore,
control values that might be suitable for one in-
put sentence, may not be suitable for another input
sentence. For example, it may not be possible to
reduce an already short input sentence to half of
its original length. To examine potentially suit-
able control values, we computed the ratio scores
on source-target pairs from the manually aligned
training split from Jiang et al. (2020) for all four
simplification levels of the Newsela English cor-
pus. Figure 3 shows that for most attributes the
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Figure 2: SARI scores from parameter sweep over different λ values for FUDGE at inference time.

largest density is on a value of 1.0, indicating no
difference between the source and target. For many
attribute values, the distributions are also relatively
wide and flat indicating that there could be many
potentially valid values, especially for the higher
simplification levels (e.g. Simp-2 - Simp-4).

F Ablation Experiment

Unlike a fully-supervised seq2seq approach,
FUDGE for SS does not require parallel complex-
simple sentence pairs for training. Instead, it relies
on contrastive instances to train its target-level clas-
sifiers. Such data is significantly easier to collect
from comparable corpus resources in many lan-
guages, e.g. language learning materials (Vajjala
and Lučić, 2018) or news articles produced specifi-

cally for certain target groups.9

However, an open question remains as to how
much data is required to train a suitable classifier.
While this may depend heavily on the target-level
simplified text both in topical and stylistic features,
we examined this question for Newsela’s Simp-4
target level. In contrast to our main experiments,
here, we fix the weighted contribution from the
classifier as λ = 1.0 (i.e. the minimum amount
of influence). Figure 4 depicts the relationship
between the amount of contrastive data used to train
BSimp−4 and the primary metrics for simplification
and quality estimation.

On these plots, a strong correlation is visible
between increasing the amount of contrastive data

9For example, Ligetil from the Danish Broadcasting Corpo-
ration (https://www.dr.dk/ligetil/) and Japan’s
News Web Easy (https://www3.nhk.or.jp/news/
easy/).
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Figure 3: Density of attribute values for the four control tokens used in the ACCESS simplification method (Martin
et al., 2020) and employed by MUSS (Martin et al., 2021).

and the degree to which the model simplifies the
input sentences. Clearly, while more data is helpful,
even small amounts of contrastive data (e.g. 500-
1000 examples) can already be effective in steering
the generations towards the target attribute.

G Model Output Examples

On closer inspection of the model outputs, we ob-
served some undesirable trends among all model
outputs. Firstly, the supervised approach (SUPER)
tends to keep edit operations to a minimum, result-
ing in model outputs that are very similar to the
input text. In cases where the ground truth simpli-
fication also happens to be a copy of the source,
overlap metrics are unduly maximised. Secondly,
MUSS tends to produce highly fluent simplifica-
tions yet these often resemble short summaries. For
longer sentences, outputs can be densely packed,
leading to even more complex sentences, or signif-
icant amounts of information are simply dropped
from the input. It remains an open question as to
whether or not this information loss is suitable for
simplifying towards a target level. Finally, we also

observed that FUDGE’s model outputs (Bsimp−l)
are more susceptible to disfluencies such as redun-
dant punctuation, subwords and phrases. This sug-
gests that the attribute classifier can unfortunately
have a negative impact on the generator in some
cases.

The tables below provide randomly sampled ex-
amples of model outputs for each target-level in
the Newsela English corpus. We colour parts of
the simplified texts based on the edit operations ap-
plied to the source text. Blue indicates additions or
explanations not in the source text. Green is used
to highlight lexical and punctuation substitutions.
Yellow shows operations on contractions (either
creating or deconstructing). Pink indicates phrases
that have been truncated or lexical deletions from
the source text. Violet is used for larger paraphras-
tic segments or positionally shuffled phrases. Unde-
sirable repetitions or hallucinations are italicised.
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Figure 4: Automatic simplification metrics for simplification as a function of the number of contrastive complex-
simple paragraphs from the Newsela English corpus used to train a FUDGE classifier BSimp−4.

Target Level: Simp-1

Simp-0 (source) They found that there was indeed a pattern in their motion — though it wasn’t
quite what they expected.

Simp-1 (reference) They found that there was indeed a pattern in their motion — though it was not
quite what they expected.

MUSS They found that there was a pattern in their motion - but it wasn’t what they
expected.

SUPER They found that there was indeed a pattern in their motion — though it wasn’t
quite what they expected.

Bsimp−1 They found that there was a pattern in their movement, though it wasn’t what
they expected.

Simp-0 (source) The tribes helped members of the expedition through the winter, bringing them
food and assisting with navigation.

Simp-1 (reference) The tribes helped members of the expedition through the winter, bringing them
food and assisting with navigation.

MUSS The tribes helped members of the expedition by bringing them food and helping
with navigation.

SUPER The tribes helped members of the expedition through the winter, bringing them
food and assisting with navigation.

Bsimp−1 The tribes helped members of the expedition through the winter, bringing food
and helping with navigation.
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Target Level: Simp-2

Simp-0 (source) The feat should be possible based on Einstein’s theory of general relativity, which
describes gravity as the warping of spacetime by energy and matter.

Simp-2 (reference) It should be possible based on Einstein’s theory of general relativity. His famous
theory describes gravity as the bending of space and time, which are one thing
called "spacetime."

MUSS Einstein’s theory, called general relativity, describes gravity as the warping of
spacetime by energy and matter.

SUPER The feat should be possible based on Einstein’s theory of general relativity, which
describes gravity as the warping of spacetime by energy and matter.

Bsimp−2 The feat is based on Einstein’s theory of general relativity. It describes gravity as
the warping of spacetime by matter and energy.

Simp-0 (source) Changes include moving the earliest date from which tribes must provide doc-
umentation of their existence into the 1930s and allowing tribes to reapply for
federal recognition under certain circumstances, something previously prohibited.

Simp-2 (reference) The revisions include establishing the 1930s as the earliest date from which tribes
must provide documentation of their existence. Also, tribes may reapply for
federal recognition under certain situations, something previously prohibited.

MUSS Changes include moving the earliest date for tribes to provide documentation
of existence into the 1930s, and allowing under certain circumstances tribes to
reapply for federal recognition.

SUPER Changes include moving the earliest date from which tribes must provide doc-
umentation of their existence into the 1930s and allowing tribes to reapply for
federal recognition under certain circumstances, something previously prohibited.

Bsimp−2 Changes include moving the earliest date from which tribes must provide docu-
mentation of their existence. Tribes will also be allowed to reapply for federal
recognition.

Target Level: Simp-3

Simp-0 (source) Cafes, restaurants and bakeries around the nation are feeling the pain from recent
outbreaks of bird flu, or avian influenza, expanding through the Midwest.

Simp-3 (reference) The rising prices is caused by recent outbreaks of bird flu.
MUSS Restaurants and bakeries around the nation are feeling the effects of the recent

bird flu outbreak in the Midwest.
SUPER Cafes, restaurants and bakeries around the nation are feeling the pain from recent

outbreaks of bird flu. The disease is spreading through the Midwest.
Bsimp−3 Cafes, restaurants and bakeries around the nation are feeling the pain of bird flu

outbreaks that have spread in the Midwest.

Simp-0 (source) "That is, a time traveler who emerges from a Deutschian CTC enters a universe
that has nothing to do with the one she exited in the future.

Simp-3 (reference) Lloyd says a time traveler coming from Deutsch’s CTC "enters a universe that
has nothing to do with the one she exited."

MUSS A Deutschian CTC traveler enters a universe that has nothing to do with the one
she left.

SUPER "That is, a time traveler who emerges from a Deutschian CTC enters a universe
that has nothing to do with the one she exited in the future.

Bsimp−3 "That is, a time traveler who emerges from a Deutschian CTC enters a universe.
This universe has nothing to do with the one she exited in the future. The universe
she enters into has nothing to do with the one she exited in the future.
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Target Level: Simp-4

Simp-0 (source) If the particle flips the switch, the machine emits a particle—the particle—back
into the CTC; if the switch isn’t flipped, the machine emits nothing.

Simp-4 (reference) If the particle flips the switch, the machine shoots a particle — the particle —
back into the CTC. If the switch isn’t flipped, the machine shoots out nothing.

MUSS If the particle turns, the machine sends a particle back to the CTC. If it doesn’t, it
sends nothing.

SUPER If the particle flips the switch, the machine emits a particle—the particle—back
into the CTC. If the switch isn’t flipped, the machine emits nothing.

Bsimp−4 If the switch is turned, the machine emits a particle-like stateBack into the CTC.
If the switch is not turned, the machine emits nothing.

Simp-0 (source) Deutsch’s insight was to postulate self-consistency in the quantum realm, to insist
that any particle entering one end of a CTC must emerge at the other end with
identical properties.

Simp-4 (reference) Deutsch assumes that tiny quantum particles are stable and fixed.
MUSS In quantum theory, Deutsch insisted that any particle entering one end of a CTC

must emerge at the other end with equal properties.
SUPER Deutsch’s idea was to show that any particle entering one end of a CTC must

emerge at the other end of a CTC must emerge at the other end with identical
properties.

Bsimp−4 Deutsch’s idea was to postulate a very nature. He was claiming that any particle
entering one end of a CTC must emerge at the other end with identical properties.
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Abstract

We report on novel investigations into training
models that make sentences concise. We de-
fine the task and show that it is different from
related tasks such as summarization and sim-
plification. For evaluation, we release two test
sets, consisting of 2000 sentences each, that
were annotated by two and five human anno-
tators, respectively. We demonstrate that con-
ciseness is a difficult task for which zero-shot
setups with large neural language models often
do not perform well. Given the limitations of
these approaches, we propose a synthetic data
generation method based on round-trip trans-
lations. Using this data to either train Trans-
formers from scratch or fine-tune T5 models
yields our strongest baselines that can be fur-
ther improved by fine-tuning on an artificial
conciseness dataset that we derived from multi-
annotator machine translation test sets.

1 Introduction

“Vigorous writing is concise. A sentence
should contain no unnecessary words, a
paragraph no unnecessary sentences, for
the same reason that a drawing should
have no unnecessary lines and a machine
no unnecessary parts.”

Strunk and White (1918)
The Elements of Style

Conciseness is a writing principle of removing
redundant information in text. Even though con-
ciseness is highly valued in expository English
writing and is often considered good writing style
(Brock and Walters, 1992; Zinsser, 2016), it is still
an understudied topic in the natural language pro-
cessing (NLP) community, mainly due to the lack
of annotated data sets. However, automatic meth-
ods for improving conciseness have the potential
to improve the writing experience even for native
speakers, or to provide useful tools for editorial

tasks. In this work we take initial steps towards con-
ciseness from an NLP perspective. We release1 two
hand-annotated test sets for conciseness – Concise-
Lite (2-way annotated) and Concise-Full (5-way
annotated). Concise-Lite annotators were asked
to make minimal changes to the original sentence,
whereas Concise-Full annotators were given the
option to make larger rewrites. Table 1 contains
examples from both test sets. For evaluation, we
compute F0.5-scores of edit spans, a metric that is
also commonly used for grammatical error correc-
tion (GEC) (Dahlmeier and Ng, 2012; Felice et al.,
2016; Bryant et al., 2017). Given that both the test
sets and the evaluation tool we employ are publicly
available, we hope our setup will encourage NLP
researchers to investigate models for conciseness.

We evaluate a range of models on our newly col-
lected conciseness test sets. Our initial approach
follows the recent paradigm of using massively pre-
trained neural models with either no or very little
task-specific training data. Inspired by Brown et al.
(2020) we report on zero-shot experiments with the
large language model LaMDA (Thoppilan et al.,
2022). We also fine-tune the large sequence model
T5 (Raffel et al., 2020) on small conciseness data
sets. We achieve our best results using an unsu-
pervised synthetic data generation method based
on round-trip translations, i.e. sentence pairs that
were generated by translating an English sentence
into another language (e.g. German) and back, a
technique that was previously proposed for GEC
pre-training (Lichtarge et al., 2019). We construct
additional data sets by creating mappings from the
longest to the shortest reference in multi-reference
machine translation (MT) test sets. Our experi-
ments suggest that conciseness is a hard task for
current NLP models. We conclude with a thorough
investigation into the similarities and differences
of our systems and map out the challenges ahead.

1https://github.com/google-research-datasets/
wiki-conciseness-dataset
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Input sentence Concise-Lite Concise-Full
Gemco had a version called Memco,
also owned by Lucky Stores, that oper-
ated stores in the Chicago and Washing-
ton, D.C., areas.

Gemco had a version called Memco,
owned by Lucky Stores, operating
stores in the Chicago and Washington,
D.C.

Memco was a version of Gemco oper-
ated by Lucky Stores in Chicago and
Washington, D.C.

The film was adapted from a best-
selling biography of the brothers, and
was well presented and well received.

The film was adapted from a best-
selling biography of the brothers, and
was well presented and received.

The film, adapted from the brothers’
best-selling biography, was well pre-
sented and received.

Table 1: Example sentences from our Concise-Lite and Concise-Full test sets.

Input sentence Abstractive sentence summarization Conciseness model output
Exxon corp. and Mobil corp. have held
discussions about combining their busi-
ness operations, a person involved in
the talks said Wednesday.

Exxon and Mobil discuss combining
business operations; possible merger.

Exxon Corp. and Mobil Corp. have dis-
cussed combining their business opera-
tions, a person involved in the talks said
Wednesday.

Chuck Knoblauch and Tino Martinez
were as popular as squeegee men a
week ago, the speculation rampant that
one or the other or both might be exiled
if the Yankees’ historic year crumbled
in the post-season.

Knoblauch and Martinez home run hits
cinch Yankee’s First World Series game

Chuck Knoblauch and Tino Martinez
were as popular as squeegee men a
week ago, the speculation rampant that
either or both could be exiled if the
Yankees’ historic year crumbled in the
postseason.

Table 2: Example outputs of one of our conciseness models on sentences from an abstractive sentence summariza-
tion data set (Over et al., 2007, DUC2004).

Input sentence Sentence simplification Conciseness model output
A mutant is a type of fictional character
that appears in comic books published
by Marvel comics.

A mutant is a form of imaginary char-
acter that is seen in comic books pub-
lished by Marvel comics.

A mutant is a fictional character that
appears in comics published by Marvel
comics.

It will then dislodge itself and sink back
to the river bed in order to digest its
food and wait for its next meal.

It will then get away from its place
and sink back into the river bed in order
to digest its food and wait for its next
meal.

It will then dislodge and return to the
riverbed to digest its food and wait for
the next meal.

Table 3: Example outputs of one of our conciseness models on sentences from a text simplification data set (Zhang
and Lapata, 2017, WikiLarge).

2 The conciseness task

In this work we define the conciseness task as ap-
plying the required edits to make a sentence less
wordy without changing its meaning, intent or sen-
timent. We will shed more light on the limitations
of this definition in Sec. 6. We expect conciseness
models to be useful mainly for native or advanced
non-native writers who wish to improve their writ-
ing style. Conciseness is related to several other
NLP tasks, but we argue below that each of these
tasks has a different focus and deserves an indepen-
dent treatment.

Summarization and sentence compression
Abstractive sentence summarization (Over et al.,
2007) attempts to produce a condensed version of
the input text. Summaries are similar to headlines
with a maximum length that is independent of the
input sentence length (Rush et al., 2015). Thus,
generating a summary often requires a much more
severe compression compared to conciseness.

Unlike summarization, conciseness is faithful
to the input and aims to avoid the loss of any
information – the goal is to generate a shorter
sentence that can replace the original sentence
within continuous text (see Table 2 for examples).
Furthermore, most work on summarization focuses
on the compression of entire documents or
paragraphs (Zhang et al., 2020) and not on single
sentences.

Similarly to sentence summarization, sentence
compression also aims to generate a shorter version
of the input text. Many sentence compression mod-
els only allow the deletion of words without the
ability to rephrase parts of the sentence (Knight and
Marcu, 2000; Jing, 2000; Filippova et al., 2015).
Perhaps closest to our work, Mallinson et al. (2018)
trained sentence compression models on round-trip
translations and thereby avoided this restriction.
The main difference to us is that we evaluate a
broader range of methods on human-annotated test
sets which we release for future research.
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Sentence simplification The task of reducing
the linguistic complexity of text to improve read-
ability is known as sentence simplification (Sag-
gion, 2017). It can be subdivided into lexical (e.g.
replacing uncommon words with synonyms) and
syntactic (e.g. changing passive to active) simpli-
fication (Devlin, 1999; Carroll et al., 1999). Most
forms of syntactic simplification result in concise
outputs,2 but lexical simplification may yield even
more verbose outputs. For example, replacing ‘to
portray’ with a simpler but verbose phrase such
as ‘to describe very vividly’ would be an instance
of lexical simplification but not of conciseness.
Conversely, a conciseness system may substitute a
phrase with another that is concise but less common
and thereby deteriorate readability. Another differ-
ence is that simplification often targets people with
cognitive disabilities (Devlin, 1999; Carroll et al.,
1999; Rello et al., 2013) or low literacy (Watanabe
et al., 2009) or second language learners (Petersen
and Ostendorf, 2007; Siddharthan, 2002; Xia et al.,
2016) whereas conciseness can be thought as writ-
ing assistance for proficient writers. Table 3 con-
trasts simplification and conciseness with the help
of example sentences.

Style transfer Text style is an important consid-
eration for several NLP tasks (Fu et al., 2018). For
example, it is desirable for MT output to match
the stylistic properties of the source sentence (Sen-
nrich et al., 2016; Lohar et al., 2017). Natural
language generation systems not only need to take
into account the content of generated utterances
but also other attributes such as style and sentiment
(Li et al., 2018). Text-to-text style transfer systems
have been used to change Shakespearean English
to modern English (Jhamtani et al., 2017). We con-
sider conciseness as a special case of style transfer
with a single source style (wordy) and one target
style (concise). However, while most style transfer
systems attempt to change attributes like sentiment
or political slant (Li et al., 2018; Fu et al., 2018;
Prabhumoye et al., 2018; Shen et al., 2017), our
conciseness models aim to keep them unchanged.

Paraphrasing Paraphrasing databases such as
PPDB (Ganitkevitch et al., 2013; Pavlick et al.,
2015) that store pairs of phrases with the same
meaning have proven useful for various NLP tasks
such as textual entailment (Bjerva et al., 2014) and

2An exception would be sentence splitting since it is a syn-
tactic simplification strategy that often makes the text longer.

semantic similarity (Han et al., 2013). In this work
we include a paraphrasing system for comparison.

3 Modeling conciseness

The approaches in this section cover a wide range
of NLP models to convey a better sense for the task.
They are intended to serve as baselines to compare
against, and as a starting point for future research.

3.1 Giant language models (LaMDA)

Large language models (LMs) such as OpenAI’s
GPT-3 (Radford et al., 2019), Google’s Meena
(Adiwardana et al., 2020) and PaLM (Chowdhery
et al., 2022) and Microsoft’s Turing NLG3 have
recently captured the interest of the general public
through their ability to generate text that is some-
times astonishingly difficult to distinguish from
text written by humans. While these models are
useful for building open-domain dialog agents, they
also have the potential to solve specific NLP prob-
lems when provided with an appropriate preamble
(LM history) (Brown et al., 2020). We expect gen-
eral dialog agents to understand the nuances of
language such as grammar, conciseness, etc. Thus,
we explored using the large LM LaMDA (Thop-
pilan et al., 2022) with a zero-shot preamble that
steers the model towards making a sentence more
concise. We use the following template to provide
the LM context:

Here is some text:
“[INPUT_SENTENCE]”. Rewrite it to be
more concise.

where [INPUT_SENTENCE] is replaced by the
source sentence.4 We post-process the output to
a) discard any additional comment that the model
generated besides the rewrite, and b) retain only the
first suggestion if multiple rewrites are generated.

3.2 Transformers pre-trained on round-trip
translations

This method employs synthetic training data gener-
ated using MT. Fig. 1 illustrates the approach. First,
we translate an English sentence into a pivot lan-
guage such as German, and then translate it back

3https://msturing.org/
4This prompt was best among a small number of zero-

shot and few-shot prompts we explored. Systematic prompt
engineering could potentially improve LaMDA results at a sig-
nificantly higher computational cost, but we have not explored
this option in this work since we focus on conciseness as an
NLP task.
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Figure 1: Synthetic pre-training data generation using round-trip translations.

Name Number of Average source sentence Average target sentence Compression
sentence pairs length in words length in words ratio

Pre-training and fine-tuning data sets
RoundTrip-French 169M 20.6 19.4 0.94
RoundTrip-German 169M 20.4 19.4 0.95
RoundTrip-Japanese 169M 20.4 17.9 0.88
RoundTrip-Russian 169M 20.9 19.5 0.93
MultiRefMT-FineTune 9K 31.9 26.1 0.82
Development sets
MultiRefMT-Dev 820 33.3 25.8 0.77
Hand-annotated test sets
Concise-Lite 2K 23.7 21.2 0.89
Concise-Full 2K 23.7 20.1 0.85

Table 4: Data set statistics. The compression ratio is the number of target words divided by the number of source
words.

into English. This idea of generating sentence pairs
via round-trip translation was initially proposed by
Lichtarge et al. (2019) to pre-train GEC systems.
In this work, we construct synthetic parallel data
for conciseness by using the longer sentence as the
source and the shorter sentence as the target sen-
tence. We then train a standard neural sequence-to-
sequence Transformer (Vaswani et al., 2017) on the
synthetic data until convergence.5 This approach is
simple and enables us to generate large quantities
of data, but the resulting data set contains noise.
For example, round-trip translation pairs often con-
tain synonym substitutions (see the replacement of
almost with nearly in the second sentence in Fig.
1) that do not help conciseness. Furthermore, MT
may fail to translate the sentence properly, resulting
in an undesirable change of meaning (see the third
sentence in Fig. 1). Another problem is that it is
hard to control the compression ratio in the data set.
Despite these limitations we show in Sec. 5 that

5More details about the Transformer model implementa-
tion are provided in Appendix A.

round-trip translations are useful for pre-training.

3.3 Fine-tuning T5
The final method considered in this work employs
T5 (Raffel et al., 2020). Very large sequence-to-
sequence models have been found to be extremely
powerful, even for challenging language tasks with
a limited amount of training data. We fine-tuned
the publicly available 11B parameter version (xxl)
of T56, with a batch size of 1,024 sentences and a
learning rate of 10−4.

4 Data sets

Table 4 lists the data sets used in this work. Table
5 contains information about their provenance.

Round-trip translations (RoundTrip-*) Our
Transformer system is pre-trained on round-trip
translations of sentences crawled from news web-
sites following the recipe of Lichtarge et al. (2019)

6https://github.com/google-research/
text-to-text-transfer-transformer/blob/main/
released_checkpoints.md
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Name Reference Type
RoundTrip-* Lichtarge et al. (2019) Round-trip translations (news)
MultiRefMT-FineTune LDC2010T10, LDC2010T11, 4-annotator MT test sets (Arabic-English,

LDC2010T12, LDC2010T14 Chinese-English)
MultiRefMT-Dev LDC2013T03 4-annotator MT test set (Chinese-English)
Concise-Lite This work 2-way hand-annotated conciseness test set
Concise-Full This work 5-way hand-annotated conciseness test set

Table 5: Synthetic and hand-annotated conciseness data sets used in this work.

Figure 2: Fine-tuning data generation using multi-reference MT test sets.

that were prepared as described in Sec. 3.2. For
fine-tuning T5 on round-trip translations we ran-
domly sample 1M sentence pairs from the full data
set to limit computation.

OpenMT-based fine-tuning and development
sets (MultiRefMT-*) We derive fine-tuning and
development sets from existing publicly available
MT test sets. It is common practice in several NLP
areas to collect reference sentences from multiple
annotators to increase the trustworthiness of auto-
matic evaluation measures, for example in gram-
matical error correction (Ng et al., 2014; Bryant
and Ng, 2015; Napoles et al., 2017), MT (Fre-
itag et al., 2020), and image caption generation
(Zheng et al., 2018). Multi-reference MT test sets
have been used in the past to evaluate paraphras-
ing or sentence compression systems (Ganitkevitch
et al., 2011; Pang et al., 2003). We make use
of these multi-annotator test sets by selecting the
longest reference sentence as the (wordy) source
sentence and the shortest reference sentence as
the golden (concise) target sentence (Fig. 2). Our
MultiRefMT-FineTune set uses all Arabic-English
and Chinese-English NIST Open Machine Trans-
lation (OpenMT) evaluation sets from 2002-2005.
The MultiRefMT-Dev set is based on the Chinese-
English 2012 OpenMT evaluation set.

Hand-annotated test sets (Concise-*) Deriving
conciseness test sets from multi-reference MT eval-
uation sets is viable as a first approximation given

that all references have similar meaning, intent, and
sentiment by design (apart from annotation errors).
However, it does not allow us to determine how
wordy the sentence is in the first place. If all MT
references agreed, it would suggest that the original
source sentence has a single obvious translation,
not that the references are already concise.

Therefore, we collected two new data sets, con-
sisting of 2000 sentences each, that were explic-
itly annotated for conciseness – Concise-Lite and
Concise-Full. Both data sets used the same set of
source sentences drawn from Wikipedia. Sentences
that a) were ungrammatical, b) contained fewer
than 15 words or c) included mismatched quota-
tion marks were not selected. While Concise-Lite
annotators were asked to make minimal changes to
the original sentence, Concise-Full annotators were
given the flexibility to make larger changes to the
original sentence. The exact annotator guidelines
are listed in Appendix B.

We will make the test sets publicly available to
establish a benchmark for researchers to evaluate
conciseness models.

5 Results

We use the GEC evaluation toolkit ERRANT
(Bryant et al., 2017; Felice et al., 2016) to com-
pute F0.5-scores on spaCy7-tokenized text. Like in
GEC, precision is weighted twice as high as recall
using the F0.5-score, which matches our intuition

7https://spacy.io/
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System Concise-Lite Concise-Full
P R F0.5 P R F0.5

Other NLP tasks
a Summarization: Pegasus 0.8 1.4 0.9 2.0 3.9 2.2
b Summarization: Long-T5 1.7 6.3 2.0 3.5 11.7 4.1
c Simplification: T5 7.4 5.4 6.9 13.8 9.9 12.8
d Paraphrasing: ParaNMT 9.3 21.4 10.4 15.4 25.1 16.7

Conciseness models
e Giant-LM (zero-shot LaMDA) 4.4 13.5 5.1 8.5 20.0 9.6
f Transformer (RT) 13.6 21.3 14.6 21.1 25.5 21.9
g Transformer (RT→MT) 15.0 25.8 16.4 24.4 29.6 25.2
h T5 (RT) 18.4 19.5 18.6 29.1 24.2 28.0
i T5 (RT→MT) 16.0 26.8 17.4 26.6 30.6 27.3

Table 6: System comparison on our two conciseness test sets. “RT” denotes models trained on round-trip transla-
tions. “RT→MT” configurations are subsequently fine-tuned on MultiRefMT-FineTune.

System Number of parameters
Giant-LM (LaMDA) 137B
T5 11B
Transformer 313M

Table 7: Number of model parameters.

0% 3% 6% 9% 12% 15% 18% 21%

Concise-Lite

Concise-Full

F0.5

Figure 3: Transformer models trained from scratch on
round-trip translations via different pivot languages.

that a conciseness system should act as a minimally
intrusive writing assistant for which false positives
are far worse than false negatives.

5.1 System comparison

Table 6 compares all approaches from Sec. 3 and
the following baselines from other NLP tasks:

• Summarization: Long-T5 (Guo et al., 2022)
and Pegasus (Zhang et al., 2020).

• Simplification: T5 fine-tuned on the Wiki-
Large simplification dataset (Zhang and La-
pata, 2017) using a procedure similar to our
T5-conciseness system from Sec. 3.3.8

• Paraphrasing: A Transformer model trained
on the full ParaNMT-50M (Wieting and

8Our simplification baseline achieves 33.1 SARI on the
WikiLarge test set.

Gimpel, 2018) training set using the hyper-
parameters in Appendix A.

The summarization baselines (rows a and b) per-
form poorly since they are mostly trained on full
documents. The simplification system achieves
a slightly higher performance but is weaker than
the paraphrasing or the Transformer/T5 based con-
ciseness systems. The paraphrasing system (row
d) achieved a recall of over 20% on both test
sets, but the precision is relatively low because
the ParaNMT training set contains various types
of edits such as synonym replacements or word re-
orderings that do not necessarily help conciseness.

The zero shot Giant-LM (LaMDA) setup (row e)
was not able to match either the precision or recall
of the other conciseness systems. Round-trip trans-
lations are useful for both training a Transformer
model from scratch (row f) and fine-tuning T5
(row h). Subsequent fine-tuning on MultiRefMT-
FineTune yields large precision and recall gains
for the Transformer model (row g). MultiRefMT-
FineTune also improves the recall for T5, but the
precision suffers (row i).9 T5 outperforms the
Transformers in terms of F0.5-score by achieving
higher precision on both sets but has many more
parameters (Table 7).

5.2 Ablation studies and analyses

The following analyses were carried out on the
Concise-Lite and Concise-Full test sets.

Round-trip translation languages Our final
models in Table 6 use round-trip translations from
four different pivot languages: French, German,

9T5 is fine-tuned for 4K steps on the 1M round-trip trans-
lations and for 1K steps on the smaller MultiRefMT-FineTune
set.
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Figure 4: Trade-off between semantic similarity and
the sentence compression ratio.

Japanese, and Russian. Fig. 3 shows that combin-
ing all languages yields consistent gains on both
test sets over using any single language.

Preserving semantics To measure how well our
systems retain the meaning of the original sentence
we computed semantic similarity scores between
the input and the output sentences using the models
provided by the Semantic Reactor toolkit (Yang
et al., 2018; Cer et al., 2018). Systems and annota-
tors trade off compression against semantic similar-
ity differently (Figure 4). There is a large variabil-
ity in compression ratio (i.e. the number of target
words divided by the number of source words) and
semantic similarity between the Concise-Full an-
notators (dark purple). The Giant-LM (blue) is
more prone to meaning change than other systems,
and is not effective in reducing the sentence length.
Fine-tuning on MultiRefMT-FineTune (empty vs.
filled circle/square) improves the compression ratio
but hurts semantic similarity. T5 (red) preserves
semantics better than the Transformer but outputs
slightly longer sentences.

Readability Fig. 5 shows that our systems often
improve the readability of the sentence, in partic-
ular the Giant-LM system. The Giant-LM prefers
simpler language as it was originally designed for
dialog applications (Thoppilan et al., 2022). In con-
trast, the Concise-Full annotators tend to achieve
concision using longer and more complex words,
resulting in a decline in readability (dark purple).

Annotator (Concise-Full)

Annotator (Concise-Lite)

T5 (RT->MT)

T5 (RT)

Transformer (RT->MT)

Transformer (RT)

ParaNMT

Giant-LM (zero-shot)

-5% 0% 5% 10%15%20%

Rel. change in FK score

Figure 5: Relative change in Flesch–Kincaid readabil-
ity scores (Kincaid et al., 1975).

Annotator (Concise-Full)

Annotator (Concise-Lite)

T5 (RT->MT)

T5 (RT)

Transformer (RT->MT)

Transformer (RT)

ParaNMT

Giant-LM (zero-shot)

-2% 0% 2% 4% 6%

Rel. change in per-token IDF

Figure 6: Relative change in information density.

Information density We expect the outputs of a
high-performing conciseness system to have a high
information content per word. This information
density can be measured using per-token inverse
document frequency (Jones, 1973):

idf(t) = log
N

|{d ∈ D : t ∈ d}| ,

where t is the token, N is the total number of doc-
uments, and D is the document collection. In our
case, the document frequencies are derived from
the C4 corpus (Raffel et al., 2020). Fig. 6 shows
that the reference sentences from the Concise-Lite
and Concise-Full annotators indeed have a higher
per-token IDF than the input sentences (pink and
dark purple bars). The results on the system out-
puts are mixed, but fine-tuning on MultiRefMT-
FineTune improves the per-token IDF for the Trans-
former and T5 (“RT” vs. “RT→MT”).

Synonym substitutions One problem with us-
ing round-trip translations for training and multi-
reference test sets for evaluation is that both may
contain synonym substitutions that do not help
conciseness. We counted synonym substitutions
by extracting all 1:1 substitutions and checking
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Without A1 Without A2 Without A3 Without A4 Without A5
P R F0.5 P R F0.5 P R F0.5 P R F0.5 P R F0.5

Annotator A1 45.8 52.0 46.9
Annotator A2 16.3 32.0 18.1
Annotator A3 51.5 48.4 50.9
Annotator A4 23.1 32.6 24.5
Annotator A5 33.5 27.1 32.0
Transformer 22.7 27.6 23.5 19.7 28.6 21.0 23.6 27.7 24.3 20.8 26.8 21.8 23.0 25.9 23.6
T5 25.3 28.9 26.0 20.7 29.2 22.0 25.7 28.9 26.3 23.1 28.0 23.9 25.4 27.0 25.7

Table 8: Measuring annotator agreement on Concise-Full by evaluating each single annotator using the other four
annotations as references. We list the Transformer and T5 system outputs (“RT→MT”) for comparison.

Annotator (Concise-Full)

Annotator (Concise-Lite)

T5 (RT->MT)

T5 (RT)

Transformer (RT->MT)

Transformer (RT)

ParaNMT

Giant-LM (zero-shot)

 0  0.04  0.08  0.12

Synonym repl. per sentence

Figure 7: Number of 1:1 synonym substitutions.

whether these were marked as synonyms in Word-
Net (Miller, 1995). Fig. 7 shows that most of our
systems replace synonyms on an average in every
10th sentence. Fine-tuning the Transformer or T5
on MultiRefMT-FineTune reduces the number of
synonym substitutions. Synonyms are much less
of a problem with the Giant-LM (blue bar) which
was not trained on round-trip translations.

6 Limitations

In terms of both information density (Fig. 6) and
number of unnecessary synonym replacements (Fig.
7), the annotators are clearly separated from most
of our automatic systems, illustrating the gap to
human performance on this task.

Our experiments showed that the Giant-LM
(zero-shot) underperformed the other approaches.
Preliminary experiments using few-shot learning
did not yield improvements over the zero-shot set-
ting. We expect the performance of Giant-LM to
improve via systematic prompt engineering.

Another challenge lies in the intrinsic uncer-
tainty (Ott et al., 2018; Stahlberg et al., 2022) of
the conciseness task, i.e. the existence of multi-
ple viable ways to make a sentence more concise.
Table 8 demonstrates that the five Concise-Full an-
notators usually did not agree on a single concise

version of a sentence, leading to great variability
in F0.5-scores when evaluated against each other.10

Therefore, adequate system outputs may get penal-
ized if they do not agree with one of the human
references. We mitigate this concern by using mul-
tiple annotators, but – like in other intrinsically
uncertain NLP tasks such as MT – a certain level
of noise remains in our evaluation.

Limitations of our task definition We acknowl-
edge that there are various aspects of conciseness
that are not covered by our definition in Sec. 2
(“applying the required edits to make a sentence
less wordy without changing its meaning, intent
or sentiment”). First, we intentionally did not in-
clude the use of context in our definition. In prac-
tice, however, appropriate levels of conciseness
can be highly context dependent. Treating the prob-
lem on the sentence-level is limiting because using
inter-sentential cross-references for conciseness re-
quires access to the document-level context such as
the previous sentence. Furthermore, the sentence-
level restriction prevents the systems from improv-
ing conciseness through sentence splitting (Botha
et al., 2018) or merging (Geva et al., 2019). In real-
life situations, the context may also be provided
through other channels such as physical medium
(e.g. pointing to things) or social factors (e.g. does
person B know person A?). We also noticed that
our Concise-Full annotators occasionally relied on
common knowledge to shorten sentences (see Ap-
pendix C for examples), a strategy that is not cov-
ered by our definition and thus makes our evalu-
ation slightly more noisy. Exploring the various
forms of context for conciseness is a promising
potential direction for future research.

Another limitation of our definition is that it does
10On some of the setups in Table 8 (e.g. “Without A2” or

“Without A4”), T5 achieves scores comparable to the human
annotators. We emphasize that this is a sign of low inter-
annotator agreement and does not allow us to claim human
parity since this pattern is not consistent across annotators.
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not allow for a change of semantics, intent, or senti-
ment. In practice, however, conciseness or the lack
of it may reflect the intent of the speaker, for exam-
ple in indicating emergency situations (signalling
urgency through brevity) or in detecting lying (Vrij,
2005). Another manner in which conciseness can
carry meaning is when used as a rhetorical device
to persuade or inspire the audience, a well-known
strategy in legal writing (Osbeck, 2011) that was
perhaps most famously demonstrated by Abraham
Lincoln in the Gettysburg Address (Oseid, 2009).
Furthermore, our ablation studies in Sec. 5.2 re-
vealed that systems and human annotators alike
sometimes accepted a minor loss of (irrelevant) in-
formation to achieve better compression, which,
despite being contrary to our definition, may be
acceptable in practice.

7 Conclusion

Our work is an initial exploration of conciseness
from an NLP point of view. We compared a variety
of approaches to the problem using popular tech-
niques based on synthetic data generation or giant
pre-trained sequence models. Round-trip trans-
lations provide a useful data source for training
conciseness models but can introduce undesirable
synonym substitutions.11 Our analyses show that
our systems trade off the objectives in conciseness
differently (e.g. reducing the sentence length vs.
preserving semantics vs. improving readability vs.
increasing information density). Further experi-
ments are necessary to understand how these trade-
offs would impact the user experience or potential
downstream NLP tasks. We expect our study and
our annotated test sets to provide impetus for re-
searchers to explore this field further.
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Parameter Value
Attention dropout rate 0.1
Attention layer size 1,024
Batch size 256
Beam size 10
Dropout rate 0.1
Embedding size 1,536
Learning rate 0.4
MLP dimension 4,096
Number of attention heads 4
Number of layers 6
Number of fine-tuning iterations 100-2,000

(early stopping)
Number of pre-training iterations 100,000
TPU topology 4x4

Table 9: Transformer hyper-parameters.

A Transformer hyper-parameters

Our round-trip translation based models (Sec. 3.2) are trained on TPUs with the LAMB optimizer (You et al.,
2020) in JAX (Bradbury et al., 2021). We used the Transformer (Vaswani et al., 2017) implementation
from the MT example in Flax12 with the 32K SentencePiece vocabulary (Kudo and Richardson, 2018)
from T5 (Raffel et al., 2020). Model hyper-parameters are listed in Table 9.

B Annotator instructions

The Concise-Lite annotators received the following instructions:

Rewrite the sentence to make it more concise, without changing the sentence structure. By
sentence structure, we mean the general order of words in the sentence should not change, some
sub-phrases could be rewritten/replaced/deleted (3-5 words). These should be relatively minor
rewrites, such that you can replace a phrase with a shorter alternative without reorganizing the
entire sentence. The sentences should be annotated in isolation without any assumptions on
preceding or succeeding sentences.

The Concise-Full instructions are:

Rewrite the sentence to achieve maximum conciseness. These can be major rewrites that alter
the sentence structure to make it as concise as possible. The annotator needs to make sure
that the sentence stays the same semantically (meaning, intent & sentiment) and there is no
loss of any critical information. The sentences should be annotated in isolation without any
assumptions on preceding or succeeding sentences.

C Example outputs

Table 10 shows some example outputs of our systems and the baselines. The summarization (Long T5)
system frequently changes the meaning of the source sentence. The simplification (Simplify T5) system
performs slightly better but still changes the meaning in some instances (example c). The T5 system
is mostly faithful to the meaning of the source sentence. We observe occasional slight meaning shifts
with the Transformer and ParaNMT systems (see e.g. examples b) and g)). The Giant-LM often changes
or expands the information in the source sentence (e.g. examples b) and d), f)) or adds certain artefacts
(e.g. “Here is a revision: ‘. . . ’ ” in example a)) that stem from its main use case as a user-facing dialog
agent. Being a paraphrasing system, ParaNMT often falls short of actually improving the conciseness
(examples c) and f)), and often uses unnecessary synonyms. Synonym replacements can also be found
sometimes in Transformer and T5 outputs (examples a) and c)), but not in Giant-LM and human-annotated
sentences. The pre-trained models Giant-LM and T5 are sometimes able to compress sentences by relying

12https://github.com/google/flax/tree/master/examples/wmt/
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Example a)
Source A few other men fell and sneaked back, but I don’t know their names.
Long T5 A few other men fell and sneaked back.
Simplify T5 A few other men fell and sneaked back, but I don’t know their names.
Giant-LM Here is a revision: Other men fell and snuck back, but their names I do not know.
ParaNMT several other men fell and crept back, but I don’t know their names.
Transformer Some other men fell and sneaked, but I do not know their names.
T5 A few other men fell and escaped, but I do not know their names.
Human (C.-Lite) Some other men fell and sneaked back, but I don’t know their names.
Human (C.-Full) Others fell and snuck back, but I don’t know their names.
Example b)
Source "Helplessly Hoping" is a 1969 song by the American folk rock group Crosby, Stills, and Nash.
Long T5 Helplessly Hoping is a 1969 song by the American folk rock group Crosby, Stills and Nash.
Simplify T5 Helplessly Hoping is a song by the American folk rock group Crosby, Stills & Nash .
Giant-LM "Helplessly Hoping" is a 1969 song by the American folk rock group Crosby, Stills, and Nash. The song was written for Stephen Stills’

wife.
ParaNMT "helpless Hoping" is a 1969 song from the American rock band Crosby, Stills and Nash.
Transformer "Helpless Hoping" is a 1969 song by American folk rock group Crosby, Stills and Nash.
T5 "Helplessly Hoping" is a 1969 song by the American folk rock group Crosby, Stills and Nash.
Human (C.-Lite) "Helplessly Hoping" is a 1969 song by American folk rock group Crosby, Stills, and Nash.
Human (C.-Full) Crosby, Stills, and Nash’s "Helplessly Hoping" was released in 1969.
Example c)
Source The NLA Tower, Britain’s 88th tallest tower, is an example of original 1970s architecture in the town.
Long T5 The NLA Tower, Britain’s 88th tallest tower, is an example of original 1970s architecture in the town.
Simplify T5 The NLA Tower is an example of original 1970s architecture in the town .
Giant-LM NLA Tower, Britain’s 88th tallest tower, is a 1970s example of architecture in the town.
ParaNMT the NLA Tower, the 88th highest British tower, is an example of the architecture of the 1970s in the city.
Transformer The NLA Tower, Britain’s 88th tallest tower, is an example of the city’s original 1970s architecture.
T5 The NLA Tower, Britain’s 88th tallest building, is an example of the town’s original 1970s architecture.
Human (C.-Lite) The NLA Tower, Britain’s 88th tallest tower, is an original 1970s architecture in town.
Human (C.-Full) Britain’s 88th tallest tower, the NLA Tower, is an original 1970s architecture.
Example d)
Source There are some claims that even the kaiser had been amused by the incident.
Long T5 Police say the kaiser used a special case kaiser to cover the snafu on a McDonald’s breakfast.
Simplify T5 There are some claims that even the kaiser had been amused by the incident.
Giant-LM the kaiser was reportedly amused by the incident – This is a pretty vague phrase, in fact. Was the kaiser laughing? Grinning?
ParaNMT there are some claims that even the kaiser was amused by the incident.
Transformer There are some claims that even Kaiser was amused by the incident.
T5 Some claim that even the Kaiser was amused by the incident.
Human (C.-Lite) There are claims that even the Kaiser was amused by the incident.
Human (C.-Full) Some claim that the incident amused even the kaiser.
Example e)
Source Approximately 50% of viewers spend between one and three hours watching TV per day.
Long T5 TV Viewership Up to 50%.
Simplify T5 Approximately 50% of viewers spend between one and three hours watching TV per day.
Giant-LM About half of viewers watch TV for 1 to 3 hours each day.
ParaNMT approximately 50% of viewers spend one to three hours watching TV every day.
Transformer About 50% of viewers spend between one and three hours watching TV a day.
T5 About 50% of viewers watch TV for one to three hours a day.
Human (C.-Lite) Approximately 50% of viewers spend between one and three hours watching TV daily.
Human (C.-Full) 50% of viewers spend 1-3 hours watching TV daily.
Example f)
Source He studied at Tübingen, Freiburg, Berlin, and Heidelberg, where he earned his medical degree in 1910.
Long T5 German Doctor Emil Henckel von Donnersmarck Dies at 87
Simplify T5 He studied at Tübingen, Freiburg, Berlin, and Heidelberg, where he earned his medical degree in 1910.
Giant-LM He studied medicine in Tübingen, Freiburg, Berlin and Heidelberg.
ParaNMT he studied at Tübingen, Freiburg, Berlin, and Heidelberg, where he earned a medical degree in 1910.
Transformer He studied in Tübingen, Freiburg, Berlin and Heidelberg, where he graduated in medicine in 1910.
T5 He studied in Tübingen, Freiburg, Berlin and Heidelberg, where he received his medical degree in 1910.
Human (C.-Lite) He studied at Tübingen, Freiburg, Berlin, and Heidelberg, where he earned his medical degree in 1910.
Human (C.-Full) He studied at Tübingen, Freiburg, Berlin, and Heidelberg, earning his medical degree in 1910.
Example g)
Source Almost without exception, the Keetoowahs sided with the Northern States during the Civil War.
Long T5 Keetoowahs Speak Out on Civil War.
Simplify T5 Almost without exception, the Keetoowahs sided with the Northern States during the Civil War.
Giant-LM Almost without exception, the Keetoowahs sided with the Union.
ParaNMT almost without exception, Keetoowah sailed with the Northern States during the Civil War.
Transformer Almost without exception, the Keetoowahs joined the northern states during the civil war.
T5 Almost without exception, the Keetoowahs sided with the North during the Civil War.
Human (C.-Lite) The Keetoowahs sided with the Northern States during the Civil War.
Human (C.-Full) During the Civil War, the Keetoowahs sided with the North.

Table 10: Example sentences from our conciseness systems and other baselines (summarization: Long T5, simpli-
fication: Simplify T5, ParaNMT). We use the “RT→ MT” setups for the Transformer and T5 systems. We show
one Concise-Lite and one Concise-Full human reference.

on background knowledge, e.g. by replacing “the Northern States” with “the Union” or “the North” in
example g).
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Abstract

Academic writing should be concise as con-
cise sentences better keep the readers’ attention
and convey meaning clearly. Writing concisely
is challenging, for writers often struggle to re-
vise their drafts. We introduce and formulate
revising for concision as a natural language pro-
cessing task at the sentence level. Revising for
concision requires algorithms to use only neces-
sary words to rewrite a sentence while preserv-
ing its meaning. The revised sentence should
be evaluated according to its word choice, sen-
tence structure, and organization. The revised
sentence also needs to fulfil semantic retention
and syntactic soundness. To aide these efforts,
we curate and make available a benchmark par-
allel dataset that can depict revising for con-
cision. The dataset contains 536 pairs of sen-
tences before and after revising, and all pairs
are collected from college writing centres. We
also present and evaluate the approaches to this
problem, which may assist researchers in this
area.

1 Introduction

Concision and clarity1 are important in academic
writing as wordy sentences will obscure good ideas
(Figure 1). Concise writing encourages writers
to choose words deliberately and precisely, con-
struct sentences carefully to eliminate deadword,
and use grammar properly (Stanford University),
which often requires experience and time. A first
draft often contains far more words than neces-
sary, and achieving concise writing requires revi-
sions (MON, 2020). As far as we know, currently
this revision process can only be done manually, or
semi-manually with the help of some rule-based
wordiness detectors (Adam and Long, 2013). We
therefore introduce and formulate revising for con-
cision as a natural language processing (NLP) task

1We treat concision and conciseness as equivalent, and
clarity as part of concision

Wordy

Concise

Wordy

Concise

As you carefully read what you have written to 
improve your wording and catch small errors of 
spelling, punctuation, and so on, the thing to do 
before you do anything else is to try to see 
where a series of words expressing action could 
replace the ideas found in nouns rather than 
verbs.

For example, in the field of image recognition, 
experimental results on some standard test sets 
indicate that the recognition capabilities of deep 
learning models can already reach the level of 
human intelligence.

As you edit, first find nominalizations that you 
can replace with verb phrases.

For example, in the field of image recognition, 
test results show that deep learning models can 
already reach human intelligence.

Figure 1: Wordy sentences are more boring to read than
concise sentences. But how do we turn lengthy sen-
tences into concise ones? We show two examples. The
above sentence pair is taken from the Purdue Writing
Lab, which suggests how college students should suc-
cinctly revise their writing (PU). In the other example,
the wordy sentence comes from a scientific paper (Chen
et al., 2020), and its concise counterpart is predicted
from the concise revisioner we developed (Section 5).
In each pair, text with the same colour delivers the same
information.

and address it. In this study, we make the following
contributions:

1. We formulate the revising for concision NLP
task at the sentence level, which reflects the
revising task in academic writing. We also
survey the differences between this task and
sentence compression, paraphrasing, etc.

2. We release a corpus of 536 sentence pairs,
curated from 72 writing centres and addition-
ally coded with the various linguistic rules for
concise sentence revision.

3. We propose an gloss-based Seq2Seq approach
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to this problem, and conduct automatic and
human evaluations. We observed promising
preliminary results and we believe that our
findings will be useful for researchers working
in this area.

2 Problem Statement

2.1 Revision as an English Writing Task
Concise writing itself is a lesson that is often em-
phasized in colleges, and revision is crucial in writ-
ing. The following definitions are helpful when we
set out to formulate the task.
Definition 2.1 (Concise). Marked by brevity of
expression or statement: free from all elaboration
and superfluous detail (Merriam-Webster).
Definition 2.2 (Concise writing, English). Writing
that is clear and does not include unnecessary or
vague/unclear words or language (UOA).

Revising for concision at paragraph level, or
even article level, may be the best practice. How-
ever, sentence-level revising usually suffices. We
focus on revising for concision at the sentence level
now. Indeed, in many college academic writing tu-
torials, revisions for concision are for individual
sentences, and this process is defined as follows.
Definition 2.3 (Revise for concision at the sentence
level, English2). Study a sentence in draft, use
specific strategies3 to edit the sentence concisely
without losing meaning.

If someone, such as a college student, wants
to concisely modify a sentence, specific strategies
(e.g., delete weak modifiers, replace phrasal verbs
with single verbs, or rewrite in active voice, etc.)
tell us how to locate wordiness and how to edit
it (PU; WU; UALR; UNZ; MON, 2020). The rule
is to repeatedly detect wordiness and revise it until
no wordiness is detected or it cannot be removed
without adding new wordiness. The final product
serves as a concise version of the original sentence,
if it does not lose its meaning.

2.2 Task Definition in NLP
Now that we know how humans can revise a sen-
tence, what about programs? Each strategy is clear
to a trained college student, but not clear enough
to program in code. On the one hand, existing ver-
bosity detectors may suggest which part of a sen-
tence is too "dense" (Adam and Long, 2013), but

2Adapted from notes of PU Writing Lab and Rambo (2019)
3Presented in Appendix (Table 4) as a periphery of this

study.

fail to expose fine-grained wordiness details. On
the other hand, how programs can edit sentences
without losing their meaning remains challenging.
In short, no existing program can generate well-
modified sentences in terms of concision.

Eager for a program that revises sentences nicely
and concisely, we set out to formulate this modifica-
tion process as a sequence-to-sequence (Seq2Seq)
NLP task. In this task, the input is any English sen-
tence and the output should be its concise version.
We define it as follows.

Definition 2.4 (Revise for concision at the sentence
level, NLP). Produce a sentence where minimum
wordiness can be identified. (And,) the produced
sentence delivers the same information as input
does. (And,) the produced sentence is syntactically
correct.

As many other NLP tasks, e.g., machine transla-
tion, named-entity recognition, etc., Definition 2.4
describes the product (text) of a process, not the
process itself, i.e., how the text is produced. This
perspective is different from that of Definition 2.3.

Among the three components in Definition 2.4,
both the first and the third are clear and self-
contained. They are related to syntax; hence, at
least human experts would think it straightforward
to determine the soundness of a sentence on both.
For example, the syntax correctness of an English
sentence will not be judged differently by different
experts, unless the syntax itself changes. Unfor-
tunately, the second component is neither clear
nor self-contained. This component asks for in-
formation retention, which is a rule inherited from
Definition 2.3. Determining the semantic similarity
between texts has long been challenging, even for
human experts (Rus et al., 2014).

We then clarify the definition by assuming that
combining the second and third components in Def-
inition 2.4 meet the definition of the paraphrase
generation task (Rus et al., 2014). Henceforth, Def-
inition 2.4 can be simplified to Definition 2.5.

Definition 2.5 (Revise for concision at the sen-
tence level, NLP, simplified). Produce a para-
phrase where minimum wordiness can be iden-
tified.

The revising4 task is well-defined, as long as
"paraphrase generation" is well-defined. It is a
paraphrase generation task with a syntactic con-
straint.

4stands for (machine) revising for concision if not other-
wise specified, so does revision
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2.3 Task Performance Indicator
How does one approximately measure revision per-
formance? In principle, Definition 2.4 should be
used as a checklist. A good sample requires cor-
rect grammar (γ), complete information (ρ) and
reduced wordiness (1 − ω), assuming each com-
ponent as a float number between 0 and 1. The
overall assessment (χ) of the three components is
as follows,

χ = α2 · (γ − 1) + α · (ρ− 1) + (1− ω), (1)

where α ∈ R>1 is a large enough number, as we
believe that γ and ρ overweigh 1−ω. Intuitively, if
a revised sentence does not paraphrase the original
one, assessing the reduction of wordiness makes
little sense. Concision χ would always be negative
if γ < 1 or ρ < 1.

Corresponding to the three components is a mix
of three tasks, including grammatical error correc-
tion for g, textual semantic similarity for r, and
wordiness detection for w. Unfortunately, both a
reference-free metric good enough to characterize
the paraphrase and a robust wordiness detector are
rare. Therefore, such assessment of concision is
now only feasible through human evaluation.

To enable automatic evaluation for faster feed-
back, we currently follow Papineni’s viewpoint (Pa-
pineni et al., 2002). The closer a machine revision
is to a professional human revision, the better it
is. To judge the quality of a machine revision, one
measures its closeness to one or more reference
human revisions according to a numerical metric.
Thus, our revising evaluation system requires two
main components:

1. A numerical "revision closeness" metric.

2. A corpus of good quality human reference
revisions.

Different from days when Papineni needed to
propose a closeness metric, we can adopt various
metrics from machine translation and summariza-
tion community (Lin, 2004; Banerjee and Lavie,
2005). Since it is certain which criterion corre-
lates best, we take multiple relevant and reasonable
metrics into account to estimate quality of revi-
sion. These metrics include those measuring higher
order n-grams precision (BLEU, Papineni et al.,
2002), explicit Word-matching, stem-matching,
or synonym-matching (METEOR, Banerjee and
Lavie, 2005), surface bigram units overlapping

(ROUGE-2-F1, Lin, 2004), cosine similarity be-
tween matched contextual words embeddings
(BERTScore-F1, Zhang et al., 2020b), edit distance
with single-word insertion, deletion, or replace-
ment (word error rate, Su et al., 1992), edit dis-
tance with block insertion, deletion, or replacement
(translation edit rate, Snover et al., 2006), and ex-
plicit goodness of words editing against reference
and source (SARI, Xu et al., 2016). In short, BLEU,
METEOR, ROUGE-2-F1, SARI, word error rate
and translation edit rate estimate sentence well-
formedness lexically; METEOR and BERTScore-
F1 consider semantic equivalence. Comparing
grammatical relations found in prediction with
those found in references can also measure seman-
tic similarity (Clarke and Lapata, 2006b; Riezler
et al., 2003; Toutanova et al., 2016). Grammatical
relations are extracted from dependency parsing,
and F1 scores can then be used to measure overlap.

In contrast, the lack of good parallel corpus im-
pedes (machine) revising for concision. To address
this limitation, we curate and make available such
a corpus as benchmark. Each sample in the cor-
pus contains a wordy sentence, and at least one
sentence revised for concision. Samples are from
English writing centres of 57 universities, ten col-
leges, four community colleges, and a postgraduate
school.

3 Related Work

Manual revision operations include delete, replace,
and rewrite. Intuitively, a revising program should
do similar jobs, too. In fact, these actions are imple-
mented individually in various NLP tasks. For ex-
ample, sentence compression requires programs to
delete unnecessary words, and paraphrasing itself
is a matter of replacement. Machine revision for
concision could also share traits with them. Prac-
tically, when a neural model learns in a Seq2Seq
manner, the difference among these tasks is the
parallel dataset. We are also interested in whether
programs developed for these tasks can work in
machine revision.

3.1 Deleting as in Sentence Compression

When revising, deleting redundant words is com-
mon. For example, we can revise "research is
increasing in the field of nutrition and food sci-
ence" to "research is increasing in nutrition and
food science" (URI, 2019), simply by deleting "the
field of ". Deleting is canonical in sentence com-
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pression, a task aiming to reduce sentence length
from source sentences while retaining basic mean-
ing (Jing, 2000; Knight and Marcu, 2000; McDon-
ald, 2006). For example, the compression task
has been formulated as integer linear programming
optimization using syntactic trees (Clarke and La-
pata, 2006a), or as a sequence labelling optimiza-
tion problem using the recurrent neural networks
(RNN) (Filippova et al., 2015; Klerke et al., 2016;
Kamigaito et al., 2018). They explicitly or im-
plicitly use dependency grammar. Pre-trained lan-
guage models such as ELMo (Peters et al., 2018)
and BERT (Devlin et al., 2019) can encode fea-
tures apart from dependency parsing (Kamigaito
and Okumura, 2020), bringing prediction and ref-
erence sentences closer.

All methods rely on parallel datasets labelling
parts to be deleted. However, the deleting part
in sentence compression differs from that in revi-
sion. Filippova and Altun (2013) created Google
dataset from titles and first sentence of news arti-
cles. The information retained in the first sentence
depends on the title. While this creation is useful
for reducing excessive information, the deleted part
is probably not wordiness.

Deleting does not solve everything in revision.
We can revise "in this report I will conduct a study
of ants and the setup of their colonies" to "in this
report I will study ants and their colonies", tak-
ing advantage of noun-and-verb homograph. How-
ever, a more concise version "this report stud-
ies ants" (Commnet) requires changing "study" to
third-person singular.

3.2 Replacing as in Paraphrase Generation

Word choice matters as well, thus we revise by
paraphrasing to stronger words. Paraphrase gen-
eration changes a sentence grammatically and re-
selects words, while retaining meaning. Paraphras-
ing matters in academic writing, for it helps avoid
plagiarism. Rule-based or statistical machine para-
phrasing substitutes words by finding synonyms
from lexical databases, and decodes syntax accord-
ing to template sentences. This rigid method may
undermine creativity (Bui et al., 2021). Pre-trained
neural language models like GPT (Radford et al.,
2019) or BART (Lewis et al., 2020) paraphrase
more accurately (Hegde and Patil, 2020). Through
paraphrasing, we can replace verb phrase "con-
duct a study" to verb "study" in the example above,
rather than delete and rely on noun-and-verb homo-

graphs to keep the sentence syntactically correct.
Machine revision is a kind of paraphrase gen-

eration, and vice versa is not true. Current para-
phrase generation does not require concision in gen-
erated sentences. Automatically annotated datasets
for paraphrasing include ParaNMT (Wieting and
Gimpel, 2018), Twitter (Lan et al., 2017), or re-
purposed noisy datasets such as MSCOCO (Lin
et al., 2014) and WikiAnswers (Fader et al., 2013).
We may adapt paraphrase parallel datasets to train
revising models, as investigated in Section 5.

3.3 Other related tasks

Summarization produces a shorter text of one or
several documents, while retaining most of mean-
ing (Paulus et al., 2018). This is similar to sen-
tence compression. In practice, summarization
welcomes novel words, allows specifying output
length (Kikuchi et al., 2016), and removes much
more information than sentence compression does.
Datasets include XSum (Narayan et al., 2018) , CN-
N/DM (Hermann et al., 2015), WikiHow (Koupaee
and Wang, 2018), NYT (Sandhaus, 2008), DUC-
2004 (Over et al., 2007), and Gigaword (Rush et al.,
2015), where summaries are generally shorter than
one-tenth of documents. On the other hand, sen-
tence summarization (Chopra et al., 2016) uses
summarization methods on sentence compression
datasets, retaining more information and possibly
generating new words.

Text simplification modifies vocabulary and syn-
tax for easier reading, while retaining approxi-
mate meaning (Omelianchuk et al., 2021). Hand-
crafted syntactic rules (Siddharthan, 2006; Car-
roll et al., 1999; Chandrasekar et al., 1996) and
aligned sentences-driven simplification (Yatskar
et al., 2010) have been explored. Corpora such
as Turk (Xu et al., 2016) and PWKP (Zhu et al.,
2010) are compiled from Wikipedia and Simple
English Wikipedia (Coster and Kauchak, 2011).
Rules for simplification may deviate from that for
revision, e.g., text simplification sometimes encour-
ages prepositional phrases (Xu et al., 2016). Still,
adapting these approaches may benefit academic
revising for concision.

Fluency editing (Napoles et al., 2017) not only
corrects grammatical errors but paraphrases text to
be more native sounding as well. Its paraphrasing
section is constrained such that outputs represent a
higher level of English proficiency than inputs. As
a constrained paraphrase task, fluency editing may
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alleviate ill-posed problems in paraphrase genera-
tion (Cao et al., 2020; Rus et al., 2014). However,
such constraints may not be consistent with those
required for concision.

In general, machine revision for academic writ-
ing requires new methods. Rules for revision can
be adapted from these related tasks, so do training
strategies.

4 Benchmark Corpus

The collated corpus, named Concise-536, contains
536 pairs of sentences. This is a fair starting size,
comparable with 385 of RST-DT (semantic pars-
ing, Carlson et al., 2003), 500 of DUC 2004 (sum-
marization5), or 575 by Cohn and Lapata (2008)
(sentence compression). Each concise sentence
is revised from its wordy counterpart by English
specialists from the 72 universities, colleges, or
community colleges. Sentence ID, category and
original link are available for each data point6, and
a 120-point validation split from other sources is
attached.

Revising different sentences can go through a
completely different process. As seen below, sim-
ply crossing out a few words revises Example 4.1;
a new word is needed in revising Example 4.2;
and even the sentence structure needs changing in
Example 4.3.
Corpus Example 4.1 (Delete). Any particular type
of dessert is fine with me. (PU)
Corpus Example 4.2 (Replace). She has the ability
to can influence the outcome. (PU)
Corpus Example 4.3 (Rewrite). The 1780 con-
stitution of Massachusetts was written by John
Adams. John Adams wrote the 1780 Massachusetts
Constitution. (UNC, 2021)

In Concise-536, we do not identify fine-grained
wordiness because a phrase can have more than one
type of verbosity at the same time. For instance,
we can revise "Her poverty also helped in the for-
mation of her character." to "Her poverty also
helped form her character." (George Mason Univer-
sity, 2021), treating "in the formation of " as either
a wordy prepositional phrase, or nominalization.
Rather, we focus on editing.

In editing, the three actions are not complemen-
tary, and instead have varying degrees of power.
Deleting can be covered by replacing (See Sec-
tion 3.1), which could be again covered by rewrit-

5https://duc.nist.gov/duc2004/
6https://huggingface.co/datasets

ing, i.e., rewriting is the most flexible. However,
Occam’s razor pushes us to prioritize the actions
requiring lower effort to complete, i.e., delete <
replace < rewrite. Supposedly, the difficulty for im-
plement each action with programs shares the same
trend. In addition, some sentences contain multiple
wordiness occurrences, each of which may need a
different action, e.g., delete + replace.

Interested in how well a revising algorithm re-
sembles each action, we label revisions in each
sentence pair and divide them into seven categories.
Revisions that require the same set of actions will
be assigned to the same category. Each revision is
assigned to one of seven categories in Table 1.

For convenience, we standardize categorizing
rules as follows where each sentence is a word-
level sequence. For each pair, we have a wordy
sequence (w) and a concise sequence (c).

1. If c is a (not necessarily consecutive) subse-
quence of w, we consider revision only re-
quires deletion (category I).

2. If not, we only delete redundancy from w to
get w′, i.e., w′ paraphrases w, and w′ is a
subsequence of w. Then, we make local7 re-
placement(s) to w′ to get w∗, and every in-
dividual state from w′ to w∗ (i.e., after each
local replacement) paraphrases w′. If w∗ = c
and w′ = w, we consider revision only re-
quires replacement (category II). If w∗ = c
and w′ ̸= w, we consider revision only re-
quires deletion and replacement (category IV).

3. If w∗ = w, we consider revision relies solely
on rewriting (category III).

Corpus Example 4.4 (category I). There are four
rules that should be observed. (PU)
Corpus Example 4.5 (category III). Regular re-
views of online content should be scheduled re-
viewed regularly. (MON, 2020)
Corpus Example 4.6 (category IV). She fell down
due to the fact that because she hurried. (PU)

Example 4.4 used to be wordy in the running
start, but deleting suffices in revision. Therefore,
although counter intuitive, it belongs to category
I. An adjective-noun pair is the wordiness in Ex-
ample 4.5, yet its revision is more complex than re-
placing a verb. Usually, revision involves multiple

7Empirically, in a sentence or clause, we do not replace
the subject and predicate verb together.
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Category Action # sents. Mean words wordy sent. Mean words concise sent. Translation Edit Rate
I Delete 169 13.16 9.17 4.72
II Replace 116 12.37 9.02 5.1
III Rewrite 153 14.43 9.73 9.54
IV Delete + Replace 42 23.81 11.57 15.16
V Replace + Rewrite 33 21.52 12.85 14.88
VI Delete + Rewrite 14 24.5 11.36 17.71
VII Delete + Replace + Rewrite 9 32.56 14.56 25.56
All - 536 15.32 9.86 8.31

Table 1: Revising a sentence can involve either one of the three strategies (category I, II, III), or a combination
of them (category IV, V, VI, VII). Sample sizes, average word counts before and after revisions, and average edit
distance (translate edit rate, TER) for revision are listed.

strategies, as seen in Example 4.6 (delete "down" +
replace "due to the fact that with" with "because").

Human annotators implement the rules, as we
need to check whether the meaning is still the same
at each step.

Usually, category III sentences are the hardest
to revise as the easier strategies of deleting and
replacing are not applicable. In fact, revising cate-
gory V, VI, and VII sentences are more challenging,
as these sentences are longer, more complex, and
more deliberate than category III sentences (Fig-
ure 4, Table 9, 10), which is a bias in this corpus.

5 Approaches to Revisions

We approach the raised problem in this study. So-
lutions to machine revision for concision can be
diverse. Neural model solutions include tree-to-
tree transduction models (Cohn and Lapata, 2008),
or general Seq2Seq models. We present a Seq2Seq
approach, for it is flexible and straightforward. The
model architecture is BART (Lewis et al., 2020).

Ideally, training corpora tune statistical models
or neural models, such that we can test tuned mod-
els on the benchmark corpus. However, lacking
authoritative revisions prompted us to let models
fit relevant task data. We also use public external
knowledge, e.g., WordNet (Fellbaum, 2010). This
section describes how we build an ad hoc training
corpus to initiate this task.

The BART base model (124,058,116 parame-
ters) is then used to fit each training set in this
section. Training settings are fixed (batch size at
32, PyTorch Adam optimizer (Paszke et al., 2019;
Kingma and Ba, 2015) with initial learning rate at
5 × 10−5, validated every 5,000 iterations). We
then evaluate trained models on Concise-536.

5.1 Baselines

We prepare training samples by adjusting data
from paraphrase generation (ParaNMT, Wieting
and Gimpel, 2018), sentence simplification (Wik-

iSmall, Zhang and Lapata, 2017), or sentence com-
pression (Gigaword, Rush et al., 2015; Google
News datasets, Filippova and Altun, 2013; MSR
Abstractive Text Compression Dataset, Toutanova
et al., 2016).

5.2 Approach 1: WordNet as Booster

Baseline methods are useful, but they are not de-
veloped for revision tasks after all. To replace a
verb or noun phrase with a single word, we lever-
age word glosses in public dictionaries, i.e., Word-
Net (Fellbaum, 2010). Word semantics are close
to semantics in their glosses. This feature is usu-
ally used to improve word embedding (Bosc and
Vincent, 2018) or evaluate analogy of word embed-
ding (Mikolov et al., 2013). We use this feature to
replace a verb or noun phrase with a single word.

We create data samples using WordNet and a
language modelling corpus. For each sentence s in
the corpus, we use WordNet vocabulary glosses to
inflate it and obtain s′. Resulted parallel data ap-
proximate phrase replacement in sentence revision.

We first pick a unigram u, one of nouns, verbs,
adjectives, or adverbs in s. At the same time,
we avoid common words, e.g., "old", or colloca-
tions and compounds, e.g., "united" in "United
Kingdom". Next, we apply Lesk’s dictionary-
based word sense disambiguation (WSD) algo-
rithm (Lesk, 1986) on u and s to get gloss g. Then,
we parse s and g to obtain respective dependency
trees Ts and Tg; rg denotes root node in Tg. Usu-
ally, if u is a noun, rg is a noun, and if u is an
adjective, rg is a verb. Eight u → rg patterns ac-
count for over 90% of the WordNet vocabulary
(Table 5). In Algorithm 1, we modify dependency
trees (Ts and Tg) according to the eight patterns.
The remaining six patterns are NOUN→VERB,
ADJ(-S) → ADJ, ADJ → ADP, ADJ → VERB,
and ADV→ ADP.

Finally, we filter and post-process synthesized
sentences. We parse s′ again and compare it with
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Algorithm 1 Rule-based Gloss Substitution
Require: Ts, Tg return s′

Copy-children(from u, to rg)
Locate hu ▷ head node of u
Delete (u with children, from Ts)
if u ∈ NOUN then

Insert-child-node (rg with children, to hu)
if rg ∈ VERB then

u← Gerund(u)
end if
Correct inflections (singular and plural forms)
Remove duplicate determiners

else if u ∈ VERB then
Insert-child-node (rg with children, to hu)
Correct inflections (person and tense)
Add/Remove prepositions according to verb transitivity

else
Insert-right-child-node (rg with children, to hu) ▷ Post

attributive
end if
s′ ← Linearize(Ts)

the dependency tree from which s′ is linearized.
We drop those with more than three mismatches,
or with accuracy lower than 0.9. We "smooth"
synthesized sentences with parroting8, to mitigate
overfitting. We also drop those sharing low seman-
tic similarity (BERTScore ≤ 0.82) with original
s.

We take the first 0.2 million sentences from
WikiText-103 corpus (Merity et al., 2017) and
around 71 thousand data points after filtration are
available to train the BART base model.

5.3 Approach 2: Multi-Task Learning

Each dataset in baselines and Approach 1 han-
dles part of task. However, sentence compression
or simplification does not emphasize complete in-
formation retention; paraphrase generation hardly
encourages deletion; synthetic data limit editing
scope because word glosses are limited. We hy-
pothesize that mixing the good samples among
these datasets could more closely approximate
the revision task. Therefore, we adjust datasets
again. We keep every sample in MSR as it is
small (21,145, see Appendix). Semantic similarity
lower bound for sentence compression and simpli-
fication datasets is set at BERTScore = 0.9. For
ParaNMT, we discard samples with less than 10
words. As a result, ablation of mixed and shuffled
data samples shows that a mixture of MSR, filtered
ParaNMT, and synthetic WordNet dataset leads to
the strongest approach. This approach uses transfer
learning from multiple datasets to learn revising

8https://huggingface.co/prithivida/
parrot_paraphraser_on_T5

strategies such as deletion and phrase replacement.

5.4 Experiment and Result

Table 2 shows test results in each category. Our ap-
proach 2 has the highest overall score and is more
robust than baseline models on category I, IV, and
VII. The same architecture trained only on MSR
outperforms any other baseline for deletion (cate-
gory I) and ranks second for replacement (category
II). The top-ranked baseline for replacement (cate-
gory II) is trained on ParaNMT. In category V, the
model trained on WordNet scores highest, slightly
outperforming other baselines. Trends in category
III, IV, VI, VII are less clear. Datasets Gigaword,
Google News, and WikiSmall may be quite differ-
ent from the benchmark corpus, and thus models
trained on these datasets do not score well.

Our approach 2 suffers from two shortcomings
common to all baselines. First, the model relies
on transfer learning from MSR and ParaNMT and
struggle to rewrite (category III) or to handle com-
posite wordiness (category V, VI, VII). Second,
the approach 2 outputs score worse than the in-
put text on many metrics in many categories, es-
pecially on category III. These shortcomings sug-
gest challenges in revision. We take the 5th and
95th percentile from all 536 samples to qualita-
tively illustrate the best proposed approach in Ta-
ble 3. Apart from samples in Concise-536, Figure 1
shows an arbitrary sentence by non-English native
speakers (Chen et al., 2020). The proposed revi-
sioner removes repetition and unnecessary preposi-
tional phrases, illustrating its potential in academic
writing.

For human evaluation, we adopt an approach
similar to Hsu et al. (2018); Zhang et al. (2020a);
Ravaut et al. (2022). We (1) rank the samples by
overall automatic evaluation on the model in de-
scending order; (2) divide the examples in each
category into two buckets; (3) randomly pick one
example from each bucket. For each picked sample,
we ask three graduate students (IELTS 7.0 or equiv-
alent) to rank the predictions of seven systems, and
the average ranking of each system is shown in H
column in Table 2.

For top three systems, human evaluators then
assess information retention (ρ) and wordiness (ω),
since system outputs are in good syntax. Particu-
larly, human assessment on wordiness engages the
Paramedic Method (Lanham and Stodel, 1992) to
highlight the wordy part and ω = (# wordy words)
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Methods I II III IV V VI VII All H ρ ω
ParaNMT (Wieting and Gimpel, 2018) 0.46 0.62 0.46 0.53 0.44 0.45 0.38 0.55 3.40
MSR (Toutanova et al., 2016) 0.74 0.58 0.44 0.51 0.41 0.44 0.37 0.57 2.79 0.78 0.40
G. News (Filippova and Altun, 2013) 0.61 0.46 0.39 0.40 0.35 0.39 0.33 0.48 5.74
Gigaword (Rush et al., 2015) 0.30 0.29 0.28 0.31 0.25 0.29 0.23 0.29 6.74
WikiSmall (Zhang and Lapata, 2017) 0.70 0.59 0.48 0.52 0.44 0.46 0.38 0.57 3.31
Our Approach 1 0.70 0.60 0.47 0.52 0.46 0.45 0.37 0.58 2.79 0.99 0.47
Our Approach 2 0.75 0.60 0.47 0.55 0.40 0.45 0.41 0.59 2.62 0.82 0.41

Table 2: We average BLEU, METEOR, ROUGE-2-F1, SARI, Parsed relation F1, BERTScore-F1, and (negative)
translation edit rate of (pre-)baseline methods. The most favorable score in each column is in bold, the second most
favorable in italics. This table estimates the strengths and weaknesses of each variants. System ranking from human
evaluation (H), information retention (ρ), and wordiness (ω) are presented in the right-most columns.

Category Reference(s) Prediction
5th percentile Bob provided an explanation of explained the com-

puter to his grandmother.
Bob provided an explanation of explained the com-
puter to his grandmother.

95th percentile Rather than taking the bull by the horns, she was
quiet as a church mouse avoided confrontation by
remaining silent.

Rather than taking the bull by the horns, she was
quiet as a church mouse.

Table 3: Well/poorly revised samples in the corpus. Shorter sentences that require simpler actions are perfectly
revised. Rewriting clichés is difficult, in which case the approach tends to use deletion.

/ (# all words). The model trained adapted Word-
Net data preserves information better, which also
accounts for its good human ranking.

We observe general correlation between auto-
matic score ranking and human evaluation rank-
ing. However, information retention is not suffi-
ciently represented by semantic similarity scores
like BERTScore. These findings suggest further
investigation on the evaluation scheme of this task.

6 Discussion

Comparing the proposed revisioner’s effectiveness
for different categories, we understand deleting and
replacing are much easier sub-tasks than rewriting
is. The former two actions, especially deletion,
are less ill-posed, while rewriting is open. Still,
revision for concision requires an algorithm that is
able to use all three actions in combination. Its goal
is to resolve all seven categories of cases, marking
distinction between revision and other tasks such
as sentence compression.

We use seven metrics to estimate a revisioner’s
effectiveness, since each metric has its shortcom-
ings. For example, METEOR does not adequately
penalize nominalization, and thus wordy input texts
typically score higher on METEOR than algorithm
outputs. More targeted metrics for this task, in-
cluding reference-free structural metrics (Sulem
et al., 2018), might help. We do not include word
counts. Although concision is marked by brevity
and wordiness often correlates to high word count,
concise writing does not always require the fewest

words (PU). Optimizing a lower word count may
be misleading even if it is constrained to zero in-
formation loss (Siddharthan, 2006). For example,
abusing pronouns and ellipses can result in shorter
sentences that are harder to read.

Transferring knowledge from other tasks to ap-
proximate revising is a stopgap measure. Special-
ized revising methods exist, e.g., the Paramedic
Method (Lanham and Stodel, 1992). Automated
specialized methods may be more efficient.

7 Conclusion

We formulate sentence-level revision for concision
as a constrained paraphrase generation task. The
revision task not only requires semantics preserva-
tion as in usual paraphrasing tasks, but also speci-
fies syntactic changes. A revised sentence is free
of wordiness and as informative. Revising sen-
tences is challenging and requires coordinated use
of delete, replace, and rewrite. To benchmark re-
vising algorithms, we collect 536 sentence pairs
before and after revising from 72 college writing
centres. We then propose a Seq2Seq revising model
and evaluate it on this benchmark. Despite scarcity
of training data, the proposed approaches offer
promising results for revising academic texts. We
believe this corpus will drive specialized revision
algorithms that benefit both authors and readers.
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Ethical considerations

The release of Concise-536 is intended only for
"not-for-profit" educational purposes or private re-
search and study in accordance with the Copyright
Act 1994; all original text content is acknowledged
as the property of each educational institution. All
text content in Concise-536 (and the 120-point vali-
dation split) are public, and our release details their
original links, thus making the release no different
from a list of outbound links.

Limitations

The transfer of knowledge from other tasks to the
rough revision is an emergency solution. There
are specialised revision methods. For example,
automating the Paramedic method (Lanham and
Stodel, 1992) could possibly lead to a more effi-
cient revisioner.
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A Linguistic Rules in Revising for
Concision

We collate and present a set of practical linguis-
tic rules for concise sentence revision, which we
synthesize based on guidelines from writing cen-
tres at numerous major universities and educational
institutes. Table 4 illustrates how wordiness can
be fine-grained, and what action is required once
a wordiness is identified (UNC, 2021; PU; MON,
2020).

B Technical Difficulties in Reference-free
Revision Evaluation

Had we chosen not to follow Papineni’s viewpoint,
reference-free evaluation is the way to go. How-
ever, it is technically not trivial to use programs
to detect wordiness or syntax errors these days
(See Section 2.3), let alone detect semantic simi-
larity. Progress in sentence embedding (Lin et al.,
2017) and semantic textual similarity (Yang et al.,
2019) enables meaning comparison between sen-
tences, but relying on one developing system to
evaluate another is risky. Moreover, information
delivered by a sentence is sometimes beyond its
textual meaning. Concise writing can suggest elim-
inating first-person narratives; e.g., "I feel that the
study is significant" is revised to "The study is sig-
nificant" (WU). Here, the first-person statement

Wordiness identified Action
Weak modifiers Delete
(qualifiers / intensifiers)

Redundant pairs
Grouped synonyms
Stock phrases
Unnecessary hedging
Implied information
Yourself
Informal language Replace
Vague pronoun references
Possessive constructions using "of"
Prepositional phrases
All-purpose nouns
Vague Swamp
Fancy words
Helping verbs
("to be" verbs, "be" + adjective)

Adjective-noun pairs
Phrasal verbs
Verb-adverb pairs
Nominalisation / noun strings
Cliches and Euphemisms
Empty phrases
Expletive constructions
long sentences (>25 words) Rewrite
Running starts
(with "there / it" + "be")

Long opening phrases / clauses
Needless transitions
Interrupted subjects and verbs
Interrupted verbs and objects
Negatives (opposite to affirmatives)

and anything violating:
A blend of active and passive verbs
Elliptical constructions / parallelism
Only one main idea per sentence

Table 4: Revising rules collated from college writing
centers. Three actions are available. Redundancy can
be deleted; short, specific, concrete and stronger ex-
pressions shall replace vague ones; sentences should be
rewritten if neither deleting nor replacing helps.

used to be the main clause, and removing it will
shift sentence embedding. Nevertheless, in aca-
demic writing, these two sentences deliver identical
information.

C Balance between Syntax, Information,
and Wordiness

The coefficient α tells how much syntax over-
weighs information, or information overweighs re-
duced wordiness. Empirically, minimum of α can
be around the word count in a standard sentence.
In other words, even if a single key word is miss-
ing, the decrease in ρ is bigger than the increase in
1− ω.
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Figure 2: Revising a sentence can involve either one of
the three strategies (category I, II, III), or a combination
of them (category IV, V, VI, VII).

D Explaining Categories in the Corpus

There are seven categories, as seen in Figure 2.
Note that although three actions (delete, replace,
rewrite) are put side-by-side, they are with different
levels of flexibility. In fact, every revision made
with deleting can be done through replace, e.g., the
fourth example in Table 9, "fell down" could be
replaced to "fell", but we would simply consider
the cheapest revision, which is to delete "down"9.
Similarly, rewriting is even more expensive and
ambiguous. Therefore, our rule of Occam’s razor
is that only when a cheaper revision fails, will we
use a more expensive one.

Here, we give examples of which category a
revision corresponds to. Indeed, many sentence
revisions are categorized in original websites. See
the two examples from Purdue Writing Lab (PU)
below. The strategies applied are to "eliminate
words that explain the obvious or provide excessive
detail" (category I) and to "replace several vague
words with more powerful and specific words" (cat-
egory II), respectively.
Corpus Example D.1 (category I). Imagine a men-
tal picture of someone engaged in the intellectual
activity of trying to learn what the rules are for how
to play the game of chess.
Corpus Example D.2 (category II). The politician
talked about several of the merits of touted after-
school programs in his speech

For revisions not categorized in sources, we
first align the segments of a pair of sentences by
their meaning, as seen in Figure 1. This is intu-
itively straightforward when the revised sentence

9"fell" means "fell down", as one never "fell up".

is given10.
Then, we determine the actions to revise. For

example, in the fourth example (category IV) in
Table 9, we find that we cannot delete any words in
"due to the fact that" without violating the second
and third components in Definition 2.4. Thus, we
have to put some more concise conjunction to take
its place, i.e., "because".

Another example is the sixth one (category IV)
in Table 10. Though it looks that the entire wordy
sentence can only be written to reach the concise
form, a cheaper revision is actually to first delete
some redundancy, e.g., "sent to you by us", and
then rewrite the necessary part.

Whether the subject and predicate of a sentence
(clause) is changed together determines the border
between replacing and rewriting. In the fifth ex-
ample (category IV) in Table 9, "it was necessary"
is aligned to "had to", and "us" to "we". However,
we cannot change either of them individually with-
out violating the third component in Definition 2.4.
Therefore, when two or more replacements inter-
twine, we rewrite.

E Explaining Rule-based Gloss
Substitution

A demonstration of Algorithm 1 is shown in Fig.3,
where a verb that appears in the past participle is
replaced. By running this rule-based gloss replace-
ment multiple times, we can recursively expand a
sentence because the words used in a gloss have
their associated glosses (Bosc and Vincent, 2018).
Table 5 describes u→ rg in the WordNet vocabu-
lary.

F Details in Datasets Used to Train
baselines

We prepare training samples by adjusting data
from paraphrase generation, sentence simplifica-
tion, or sentence compression. ParaNMT (Wiet-
ing and Gimpel, 2018) contains over five million
paraphrase pairs annotated from machine transla-
tion tasks; we sort each pair by sentence length.
This is a rough approximation, since shorter sen-
tences are not necessarily more concise. Google
News datasets (News, Filippova and Altun, 2013)
contains 0.2 million pairs of sentences, where the
longer one is the leading sentence of each arti-
cle, and the shorter one is a subsequence of the

10If the revised sentences were not from a trustworthy site,
this process could have been less intuitive.
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Several reviews have been published
ADJ NOUN AUX AUX VERB

root

amod

nsubjpass

aux

auxpass

(a) Sentence "Several reviews have been published" and its dependency tree. We expand the word "publish" below.

have ( one ’s work) issued for publication
VERB PRON PART NOUN VERB ADP NOUN

root
dobj

poss

case acl prep pobj

(b) Gloss of "publish" from WordNet(Fellbaum, 2010); the root node is the verb "have".

Several reviews have been had issued for publication
ADJ NOUN AUX AUX AUX VERB ADP NOUN

root

amod

nsubjpass

aux

auxpass

aux prep pobj

(c) Synthesized sentence with the first stage of our approach; rg node "have/had" is grafted onto the original sentence in (a).

Figure 3: Demonstration of dependency tree grafting in sentence synthesis. The dependency in (c) is obtained
by re-parsing the synthesized sentence. As we can see, the POS tag of "have/had" has changed from a verb to
an auxiliary word, and the synthesized sentence is still syntactically and semantically correct, which shows that
dependency changes may be unavoidable in the process of sentence synthesis. We also dealt with inflections to
reduce grammatical errors.

longer one. Gigaword (Rush et al., 2015) con-
tains four million pairs of article headline and the
first sentence. Although these datasets are mainly
for generating news headlines (P.V.S and Meyer,
2019), they approximate the deletion aspect of sen-
tence revision. MSR Abstractive Text Compression
Dataset (Toutanova et al., 2016) contains six thou-
sand sentence pairs from business letters, newswire,
journals, and technical documents sampled from
the Open American National Corpus11; humans
rewrite sentences at a fixed compression ratio. Wik-
iSmall (Zhang and Lapata, 2017) contains sentence
pairs from Wikipedia articles and corresponding
Simple English Wikipedia. We adopt training splits
of these datasets, and Table 6 lists their sizes.

G Random Sample Selection in Human
Evaluation

i m p o r t random

11https://www.anc.org/data/oanc

random . seed ( 0 )
f o r k i n [ 1 6 9 , 116 , 153 , 42 , 33 , 14 , 9 ] :

p r i n t ( random . r a n d i n t ( 0 , k / / 2 ) )
p r i n t ( random . r a n d i n t ( k / / 2 , k ) )

H Evaluation on Individual Metrics
For each sample in the benchmark corpus, we compute indi-
vidual metric score for its best-revised sentence and average
the corpus ranking of its individual metric scores to obtain the
final ranking for that sample. Table 9 lists the well-treated
samples (at the third percentile) in each category. Table 10 lists
the cases that were not well resolved (at the 97th percentile).

Figure 4 shows the difficulty of revising sentences for each
category. The data in Figure 4, while demonstrating strengths
and weaknesses of the proposed approach, can also serve as
an approximation of the difficulty of the corpus itself. The
proposed approach is better at deleting and replacing than
rewriting due to heavy reliance on transfer learning.
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POS ADJ ADJS ADV NOUN VERB
VERB 3627 6354 221 3349 11586
DET 1 6 4 1594 0
ADJ 1053 2825 50 544 316
NOUN 155 405 57 73527 1739
CCONJ 0 0 0 24 0
PUNCT 0 1 0 6 0
PART 0 5 4 4 6
ADV 10 84 235 37 52
ADP 2615 972 3019 222 29
AUX 5 5 4 108 1
PRON 0 3 2 1516 1
SCONJ 4 10 14 3 10
PROPN 0 6 0 534 15
X 2 2 2 16 19
NUM 1 16 8 658 0
INTJ 1 1 3 13 12
SYM 0 0 0 0 0

Table 5: Part-of-speech (POS) tags for a word w and its
corresponding rg. Representation of POS tags follows
the Stanford typed dependencies manual (De Marneffe
and Manning, 2008) (except for ADJ-S, which stands
for ’adjective satellite’ in WordNet (Fellbaum, 2010)).
POS tags of rg are closely related to the POS tags of
w, and we bold the pairs that appear frequently. In
particular, among nearly 117,000 word-gloss (w → rg)
pairs, NOUN→ NOUN is most frequent, accounting
for more than three fifths. We have now studied the
eight most frequently occurring pairs.

Dataset Size
MSR ( 2016) 21,145
ParaNMT ( 2018) 5,306,522
Google News (G. News 2013) 200,000
Gigaword ( 2015) 3,803,957
WikiSmall ( 2017) 89,042
Approach 2 fine-tuning set (Section 5.3) 182,330

Table 6: Sample numbers of training sets. MSR dataset
has multiple references, we take each reference as a
sample point. The mixed fine-tuning set in Section 5.3
is composed of 89,712 samples from ParaNMT, 21,145
from MSR, and 71,473 from our synthesized dataset
from WordNet.

0.0 0.2 0.4 0.6 0.8 1.0
Relative Difficulty

Sa
m

pl
e 

D
en

si
ty

Category

VII

VI

V

IV

III

II

I

Figure 4: Difficulty faced by the proposed approachs
when dealing with sentences from different categories.
This difficulty is relative to other samples in the corpus
of 536 sentences. Deletion (category I) is the least
challenging. The most challenging samples are most
likely from category III. Handling sentences requiring
more than one revising strategies (category IV-VII) is
usually more challenging.
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BL M R S P BS T
ParaNMT .40 .78 .56 .49 .55 .96 .53
MSR .55 .86 .69 .62 .73 .97 .39
News .36 .67 .56 .52 .62 .95 .51
Gigaword .04 .27 .19 .25 .16 .89 .92
WikiSmall .47 .91 .65 .59 .63 .95 .82
Approach 1 .48 .90 .65 .59 .66 .94 .82
Approach 2 .57 .87 .71 .66 .74 .97 .37

(a) Category I, 169 / 536, Delete

BL M R S P BS T
.38 .75 .54 .54 .51 .97 .50
.33 .73 .51 .45 .47 .96 .56
.17 .56 .39 .35 .37 .94 .64
.01 .26 .17 .28 .15 .89 .92
.33 .80 .51 .48 .44 .95 .92
.36 .80 .54 .51 .46 .95 .91
.36 .76 .53 .50 .50 .96 .53

(b) Category II, 116 / 536, Replace

ParaNMT .16 .60 .33 .44 .28 .94 .94
MSR .15 .56 .31 .38 .28 .93 .92
News .10 .44 .26 .37 .25 .92 .85
Gigaword .03 .20 .12 .38 .09 .88 1.00
WikiSmall .19 .66 .35 .45 .29 .93 1.26
Approach 1 .17 .65 .36 .43 .29 .93 1.27
Approach 2 .18 .60 .35 .42 .30 .94 .91

(c) Category III, 153 / 536, Rewrite

.27 .68 .40 .48 .41 .94 1.22

.26 .63 .39 .44 .39 .94 1.09

.12 .41 .29 .37 .31 .92 .77

.03 .24 .16 .35 .16 .89 .86

.24 .71 .39 .46 .37 .93 1.69

.23 .72 .39 .44 .39 .92 1.70

.32 .67 .44 .47 .43 .95 .94

(d) Category IV, 42 / 536, Delete + Replace

ParaNMT .16 .55 .27 .44 .26 .94 1.18
MSR .14 .49 .28 .37 .24 .93 1.05
News .08 .34 .21 .35 .22 .92 .85
Gigaword .01 .15 .09 .34 .06 .87 .90
WikiSmall .17 .58 .30 .40 .27 .93 1.40
Approach 1 .20 .59 .31 .43 .29 .93 1.37
Approach 2 .14 .49 .26 .35 .25 .93 1.04

(e) Category V, 33 / 536, Replace + Rewrite

.21 .56 .30 .43 .27 .93 1.35

.19 .53 .30 .40 .30 .93 1.23

.12 .39 .26 .37 .25 .92 .81

.04 .20 .12 .38 .10 .87 .87

.17 .62 .31 .43 .30 .92 1.92

.16 .62 .31 .41 .29 .92 1.96

.22 .55 .31 .41 .30 .93 1.23

(f) Category VI, 14 / 536, Delete + Rewrite

ParaNMT .06 .50 .17 .40 .20 .92 1.61
MSR .06 .49 .17 .39 .17 .92 1.34
News .03 .28 .15 .38 .21 .91 .79
Gigaword .00 .11 .04 .36 .02 .86 .95
WikiSmall .08 .54 .20 .38 .18 .91 2.02
Approach 1 .04 .53 .18 .39 .17 .91 1.96
Approach 2 .08 .55 .23 .43 .24 .93 1.18

(g) Category VII, 9 / 536, Delete + Replace + Rewrite

.29 .69 .44 .48 .42 .95 .77

.32 .69 .48 .48 .47 .95 .71

.20 .53 .38 .41 .40 .93 .69

.03 .23 .15 .31 .13 .88 .94

.31 .76 .48 .49 .43 .94 1.12

.31 .76 .49 .50 .45 .94 1.12

.35 .72 .50 .51 .49 .95 .68
(h) Overall

Table 7: BLEU (BL), METEOR (M) , ROUGE-2-F1 (R), SARI (S), Parsed relation F1 (P), BERTScore-F1 (BS),
and translation edit rate (T) of pre-Approach 2s and Approach 2 method. Numbers are shown in categories. Smaller
edit distance is more favorable. The most favorable score(s) in each column is bold. In category V, the model trained
on Approach 1 has the highest scores on three metrics, slightly outperforming other pre-Approach 2s. In category
III,IV, VI, VII, no particular pre-Approach 2 scores well on all metrics.
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W R1 RL
ParaNMT .65 .75 .71
MSR .43 .85 .8
News .54 .73 .7
Gigaword .97 .39 .37
WikiSmall .89 .82 .77
Approach 1 .96 .82 .77
Approach 2 .42 .86 .81

(a) Category I, 169 / 536, Delete

W R1 RL
.61 .73 .72
.58 .71 .7
.66 .6 .59
.98 .37 .35
.93 .71 .7
1.03 .73 .72
.54 .73 .72

(b) Category II, 116 / 536, Replace

ParaNMT 1.04 .61 .50
MSR .99 .60 .48
News .88 .52 .43
Gigaword 1.03 .32 .29
WikiSmall 1.35 .63 .50
Approach 1 1.40 .63 .50
Approach 2 .97 .63 .51
(c) Category III, 153 / 536, Rewrite

1.28 .59 .58
1.14 .59 .57
.81 .48 .46
.90 .37 .32
1.74 .58 .56
1.79 .59 .56
.97 .63 .62

(d) Category IV, 42 / 536, Delete + Replace

ParaNMT 1.36 .52 .45
MSR 1.17 .51 .43
News .91 .42 .36
Gigaword .96 .28 .24
WikiSmall 1.58 .53 .44
Approach 1 1.59 .55 .46
Approach 2 1.15 .52 .43

(e) Category V, 33 / 536, Replace + Rewrite

1.54 .49 .41
1.37 .51 .41
.87 .45 .38
.89 .30 .30
2.04 .51 .43
2.10 .51 .43
1.39 .54 .45

(f) Category VI, 14 / 536, Delete + Rewrite

ParaNMT 1.64 .44 .35
MSR 1.38 .47 .35
News .81 .38 .34
Gigaword .97 .25 .20
WikiSmall 2.04 .44 .33
Approach 1 1.98 .45 .34
Approach 2 1.24 .53 .43

(g) Category VII, 9 / 536, Delete + Replace + Rewrite

.88 .66 .61

.76 .69 .63

.72 .59 .55

.98 .35 .33
1.19 .69 .63
1.25 .70 .63
.73 .71 .65

(h) Overall

Table 8: Other metrics include word error rate (W), ROUGE-1-F1 (R1), and ROUGE-L-F1 (RL) . Numbers are
shown in categories. Smaller edit distance is more favorable. The most favorable score(s) in each column is bold.
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Category Reference(s) Prediction
I The reason she moved is because she was

offered a better position.
The reason she moved is because she was
offered a better position.

II We outlined the letters for the banner in a
careful way carefully.

We outlined the letters for the banner in a
careful way carefully.

III The current focus of the medical profession
is The medical profession currently focuses
on disease prevention.

The current focus of the medical profession
is The medical profession focuses on dis-
ease prevention.

IV She fell down due to the fact that because
she hurried.

She fell down due to the fact that because
she hurried.

V We didn’t renew the contract with our sup-
plier on account of the fact that because it
was necessary for us to we had to find a
cheaper supplier one.

We didn’t renew the contract with our sup-
plier on account of the fact that because
it was necessary for us to find a cheaper
supplier.

VI Research is increasing in the field of nutri-
tion and food science. OR Research within
nutrition and food science is increasing the
field of nutrition and food science.

Research is increasing in the field of nutri-
tion and food science.

VII Joe found that the fictional novel by Al-
cott’s book, Little Women, conveyed a sense
of emotion and feeling both delightful and
tragic.

Joe found that the fictional novel by Alcott’s
novel, Little Women, conveyed a sense of
emotion and feeling.

Table 9: Well-revised samples in each category (about the third percentile). Shorter sentences that require simpler
actions are perfectly revised. When sentence length increases, not all wordiness can be resolved. The baseline
method tends to delete and replace, even if sentences need to be rewritten.
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Category Reference(s) Prediction
I I would call your attention to the fact that

our President, who was formerly the Gover-
nor of Arkansas, is basically a Southerner.

I would call your attention to the fact that
our President , who was formerly the Gover-
nor of Arkansas, is a basically Southerner.

II We have conducted an investigation inves-
tigated and arrived at the conclusion con-
cluded.

We have conducted an investigation and ar-
rived at the conclusion.

III As far as my professor is concerned, the
problem of wordiness is the thing she’d re-
ally like to see us involved with actually
eliminating. My professor wants us to focus
on eliminating wordiness.

As far as my professor is concerned, the
problem of wordiness is the thing she’d re-
ally like to see us involved with actually
eliminating.

IV The existence of computers and computer
technology has have improved commer-
cial enterprise business and information ex-
change communication.

The existence of computers and computer
technology has greatly influenced commer-
cial enterprise and information exchange.

V It has come to my attention that I have no-
ticed there is a vast proliferation of unde-
sirable vegetation many weeds growing sur-
rounding the periphery of around this facil-
ity the building

It has come to my attention that there is a
vast proliferation of undesirable vegetation
surrounding the periphery of this facility.

VI Your statement in your letter that has the
contention that the information submitted
and sent to you by us contained certain in-
accuracies and errors has prompted us to
embark on a careful and thorough reevalua-
tion of the information submitted, with the
result that the original informative data has
been determined to be accurate and correct
in all instances and aspects of the informa-
tion. As you suggested, we have checked
our information and confirmed its accuracy.

Your statement in your letter that has the
contention that the information submitted
and sent to you by us contained certain some
inaccuracies and errors has prompted us to
embark on a careful and thorough reevalua-
tion of the information submitted, with the
result that the original informative data has
been determined to be accurate and correct
in all instances and aspects of the informa-
tion.

VII In the event that If you get some any infor-
mation concerning about Mr. Smith should
be brought to your attention, it should be for-
warded via mail or courier or telephone to
us please contact us in view of the possibil-
ity that in case the information may reveal
any attempt on the part of Mr. Smith to de-
part from the United States he tries to leave
the country.

In the event that If some any information
concerning Mr. Smith should be brought to
your attention, it should be forwarded via
mail or courier or telephone to us in view
of the possibility that the information may
reveal any attempt on the part of Mr. Smith
to depart from the United States.

Table 10: Badly-revised samples in each category (about the 97th percentile). These sentences are longer than
sentences in Table 9. Informative part may be trimmed. Replacing nominalizations with verbs is hard. For severely
wordy sentences (category VI, VII), the model fails to rewrite, and resorts to deletion. A lot of improvement is
needed.
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Abstract

In Neural Machine Translation (NMT) systems,
there is generally little control over the lexicon
of the output. Consequently, the translated out-
put may be too difficult for certain audiences.
For example, for people with limited knowl-
edge of the language, vocabulary is a major
impediment to understanding a text.

In this work, we build a complexity-
controllable NMT for English-to-Japanese
translations. More particularly, we aim to mod-
ulate the difficulty of the translation in terms
of not only the vocabulary but also the use of
kanji. For achieving this, we follow a sentence-
tagging approach to influence the output.

1 Introduction

In the Natural Language Processing research, text
simplification aims to find variants of a text which
convey the same meaning but are expressed in a
simpler form. This process includes modifications
such as reducing the length, decreasing the use
of infrequent words, etc. Simplification systems
are useful for helping certain populations such as
children, non-native speakers, and people with a
low level of literacy or language disorders (Štajner
and Popović, 2016).

In this work, we apply simplification to the trans-
lation task. In particular, we aim to control the
lexicon complexity of English-to-Japanese Neural
Machine Translation (NMT) models. The output
generated by an NMT system in Japanese may be
too difficult to understand for a person with more
limited knowledge of the language. An example
of this is the use of kanji ideograms. Certain kanji
are learned in the later stages of education1, which
causes some people not to be entirely familiarized
with all of them. This implies that both vocabulary
and kanji may represent an accessibility problem.

1https://en.wikipedia.org/wiki/Ky%C5%8Diku_
kanji

Accordingly, we focus on influencing the output
of an NMT system to control whether it should
produce more or less difficult words. This can be
measured based on the vocabulary lists provided
for different levels of the Japanese Language Pro-
ficiency Test (JLPT). A more detailed explanation
of this can be found in Section 2.

For modulating the translation, our approach is
inspired by other works consisting of influencing
the generation of sentences for certain domains or
languages. This can be achieved by including a
tag at the beginning of each sentence stating how
the output should be. For our approach, we use
tags to indicate the level of lexicon complexity
expected in the output. We first insert a token at
the beginning of each training sentence according
to the complexity of the Japanese target side. Then,
at decoding time, we can influence the output by
using such tags.

This paper describes such an approach, and ex-
plores the following Research Questions (RQ):

RQ1: Can the vocabulary complexity of the
output be controlled adding tags in the source
sentences?

The addition of tags in the source sentences to
control the output of the NMT models has been
explored not only for different domains (Chu et al.,
2017) but also for different languages (Johnson
et al., 2017). We want to explore these techniques
for Japanese translation and investigate how could
it be used to control the complexity level of the
output.

RQ2: How much does the output level agree
with the complexity level indicated in the input?

Although adding tags could bias the complexity
of the translation, it has limitations. For example,
some translations may require the use of complex
vocabulary despite the restrictions. We analyze to
what extent the complexity of the sentences gener-
ated by the NMT corresponds to those indicated in
the input.
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RQ3: How much does the restrictions in com-
plexity impact the translation quality?

Introducing tags to restrict the complexity could
lead also to degradation of the performance of the
NMT in terms of adequacy. Our third research
question aims to investigate how much these re-
strictions impact the translation.

2 Japanese Language and JLPT

The Japanese language has three writing systems2:
hiragana (46 characters); katakana (46 characters);
and kanji (more than 2000 characters).

Hiragana is mainly used for native Japanese
words whereas katakana is used for foreign words
or onomatopoeia. For example, the translation for
the word “hat” isぼうし (read as “boushi”) which
is written in hiragana. Alternatively, some people
may use the term borrowed from English “ハット”
(“hatto”) which is a transliteration of “hat”. As it is
a loanword, it is written in the katakana syllabary.

Despite that, native Japanese speakers would use
more frequently the kanji ideogram帽子 (which is
also read as “boushi”) for “hat”.

Although it is possible to fully express in
Japanese using hiragana or katakana exclusively,
kanji is usually used. Despite that, as there exists
more than 2000 kanji, a Japanese learner would
assimilate them gradually, and therefore be more
comfortable using hiragana for writing or reading
certain words.

A popular criterion to measure the level of pro-
ficiency in Japanese for non-native speakers is the
Japanese Language Proficiency Test (JLPT). It is a
five-level grading system that ranges from JLPT 5
(the most basic) to JLPT 1 (the most advanced).
These five levels are also referred to as N5, N4, N3,
N2, and N1.3

In this work we use both notations, “JLPT” or
“N” , indistinctly. Additionally, we may refer to
higher levels to those JLPT levels closer to N1, and
lower levels to those closer to N5.

3 Related Work

In the text simplification field, several approaches
alter the complexity of the lexicon. For example,
Glavaš and Štajner (2015) propose replacing diffi-
cult words with a simpler synonym. Furthermore,

2https://en.wikipedia.org/wiki/Japanese_
writing_system

3This notation comes from the first letter of Japanese name
of the JLPT, “Nihongo Nōryoku Shiken”

Hading et al. (2016) perform the complex-word
replacement applied for Japanese language.

Alternatively, Wang et al. (2016) build a mono-
lingual NMT system to transform sentences into a
simplified version in the same language.

Nishihara et al. (2019) propose a similar mono-
lingual sequence-to-sequence system with several
levels of complexity in English. These are based on
the grade level of US education system. Similarly
to our work, they control the complexity by using
special tokens for each grade.

Performing text simplification in combination
with translation has also been explored by Štajner
and Popović (2019). They focus on using automat-
ically simplified sentences as the input of an NMT
model.

Regarding the complexity-controllable transla-
tion, Spring et al. (2021) aim to produce transla-
tions based on different levels established by the
Common European Framework of Reference for
Languages (CEFR).

Shardlow and Alva-Manchego (2022) also per-
forms combinations of simplification and transla-
tion (Translate then Simplify, Simplify then Trans-
late and Direct) to generate simplified translations.

There are previous works that use tags to control
the output. Martin et al. (2020) extract different
characteristics that measure the complexity and in-
clude them as tags in the source to condition the
output. Similarly, Agrawal and Carpuat (2019) also
use a tagging system, training the model with a
dataset where the same sentences have been rewrit-
ten at different complexity level. Finally, Marchisio
et al. (2019) use two tags (i.e. “simple” and “com-
plex”) to classify the sentences by difficulty.

Some difference with our research is that we use
a five-tag system based on the JLPT framework.
In addition, as we explore the Japanese language,
the definition of complexity also considers spelling.
Therefore, depending on the writing system, some
words may have different complexity levels.

4 Complexity-Controllable Translation

Our proposal consists of building an English-to-
Japanese NMT model with a controllable lexicon
complexity. In this work, the complexity is mea-
sured based solely on the vocabulary of the differ-
ent JLPT levels.

There are two main processes involved: (i) de-
termine the JLPT level of a sentence (Section 4.1);
and (ii), include the complexity level in the training
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Word JLPT level
友達 3
ともだち 5

Table 1: Example of the word mapping. Each word is
assigned a JLPT level. Although both words convey the
same meaning, they belong to different JLPT levels due
to the writing system.

process of the NMT model (Section 4.2).

4.1 Sentence Classification

Initially, we build a classifier to estimate what is
the JLPT level of a sentence. Following the pro-
posal of Ramkissoon, a sentence can be classified
with the level of that of the most difficult (high-
est level) word of the sentence. This approach
assumes that one can understand a sentence if one
is capable of understanding each word. This is not
necessarily true, as usually there are other compo-
nents involved such as the length of the sentence,
the grammar, or the number of clauses. For future
work, we propose to expand this assumption of
complexity and include a more detailed classifica-
tion.

Deciding the level of a word can be done based
on the vocabulary lists of JLPT levels. We use the
resources from Waller (2010)4.

For each JLPT level, we obtain a list of words
and a list of kanji that a Japanese student should be
familiar with. We combine this information to build
a mapping between each word and its JLPT level as
in Table 1. This map also takes into consideration
the spelling of the words as follows:

• The word is spelled using hiragana: Its corre-
sponding JLPT level will be that of the vocab-
ulary list.

• The word is spelled using kanji: The JLPT
level of this word is that of the level of the
most difficult kanji.

Note that the same word can be classified as two
different levels depending on the spelling. For ex-
ample, the words we see in Table 1,友達 andとも
だち, are both the same word (“tomodachi”, which
means “friend” in English). They have different
JLPT levels because ともだち only contains hi-
ragana which is readable by the lowest levels of
fluency (JLPT 5) whereas the word友達 is formed

4https://www.tanos.co.uk/jlpt/

by the kanji 友 (JLPT 5) and 達 (JLPT 3), and
therefore that word is categorized as JLPT 3.

Considering a sentence t a sequence of words
(t1, ..., t|t|), the JLPT level of the sentence will be
that of the word ti with the highest difficulty accord-
ing to the mapping. If a word is not in the mapping,
such as an English or an out-of-vocabulary term,
we assume it is a proper name and it will be ig-
nored (equivalent to assuming that it is in the level
JLPT 5).

4.2 Machine Translation Training

The models we build should generate translations
biased towards the complexity levels established
in the input. The method we follow is by adding a
complexity tag to the sentences.

Including a special token in the source to con-
trol the output of an NMT technique has demon-
strated good results for translating into different
domains (Chu et al., 2017) or even into different
languages (Johnson et al., 2017).

This technique consists of preprocessing each
sentence pair (s, t) in the training and dev set as
follows:

1. Classify the Japanese sentence t as described
in Section 4.1 and retrieve the JLPT level l.

2. Build a token Nl according to the level l. To
avoid using just numeric values our tag con-
sists of concatenating the letter N with the
level together. For example, the token Nl for
JLPT 1 we build would be “N1”.

3. Expand the English source-side sentence by
adding the token in the beginning s′ =
(Nl, s1, ..., s|s|).

4. Retrieve the pair with the expanded source
(s′, t).

The processed data is used to train an NMT
model. By doing this, the system should learn
the relation between the first token in the source
and the vocabulary on the target side. Later, at
decoding time, we include a tag with the desired
JLPT level so the model should generate sentences
including the vocabulary of such level.

5 Experiments

We build NMT models in the English-to-Japanese
direction using Marian NMT (Junczys-Dowmunt
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et al., 2018). These models consist of a trans-
former (Vaswani et al., 2017) model with 6 layers
both in the encoder and 6 in the decoder. We train
it for a maximum of 500K steps (18 epochs).

We use one of the biggest English-Japanese cor-
pus, JParaCrawl v3.0 (Morishita et al., 2020), as
train set (25.7M sentences) and 10K randomly-
selected sentences from Tatoeba (Tiedemann,
2012) as dev set.

For the experiments, we build two models. One
model is built with plain data without any modi-
fication that serves as a reference for comparison
purposes. The second model is built by including
tags as described in Section 4.2. We use kytea (Neu-
big et al., 2011) to split sentences and extract the
vocabulary of the Japanese side.

For testing the models, we randomly selected
5000 sentences from Tatoeba (from those not in-
cluded in the dev set). This dataset is built for edu-
cational purposes and therefore there are sentences
of different complexities.

First, we translate these sentences with the plain
model. Then, for the model that uses tags, we repli-
cated each sentence five times and added a different
tag (from N1 to N5) to each of them. By doing this
we encourage the model to produce translations of
different levels for each input.

This means that we generate six alternative trans-
lations from a single test set. One output is the
translation of the plain NMT model trained with-
out tags (“no-tag” output). The other five outputs
correspond to the translation when one of the tags
is added at the beginning of the sentence. In the
following, we name each output with the tag added
in the source. For example, we refer as N2 output
to the translations when the tag “N2” was added in
the input sentences.

6 Experimental Results

We divide the analysis of the results of the experi-
ments into four different sections: (i) Section 6.1,
where we explore the simplification capabilities
of the NMT model (RQ1); (ii) Section 6.2, where
we analyze the agreement between the output level
and that stated in the input (RQ2); (iii) Section 6.3,
where we investigate the translation quality (RQ3);
and (iv), Section 6.4, where we provide translation
examples that illustrate the effect of constraining
complexity in the output.

Figure 1: Average percentage of kanji

6.1 RQ1: Can the vocabulary complexity of
the output be controlled adding tags in the
source sentences?

The tags used to modulate the complexity are based
on the vocabulary and kanji in Japanese. Accord-
ingly, we explore whether the outputs of the model
are simplified in terms of these.

First, we explore the usage of kanji. For some-
one with limited knowledge of Japanese, it is ex-
pected the kanji comprehension to be lower also.
Therefore, the outputs in the lower levels should
contain a smaller proportion of kanji. In Figure 1
we present what is the proportion of kanji in the
outputs. In the reference 27.5% of the characters
are kanji, which is similar to the output of the NMT
model with no tags. This is also the proportion in
the outputs of higher levels of JLPT (in fact, the N1
output has a slightly higher usage of kanji than the
plain model).

The proportion of kanji decreases gradually as
lower JLPT levels are stated in the input. For the
N5 output, the percentage of characters that are
kanji is just 14.8%. Therefore we can say that
in terms of kanji usage, the inclusion of tags is
beneficial to decrease the complexity.

In addition to that, we compare the vocabulary
sizes of the translations. In general, the more re-
stricted the generation is, the lower the size of the
vocabulary is expected to be. In Figure 2 we present
the number of distinct words in each output.

In the plot, we see that the size of the vocabulary
for the model with no tags is similar to those of
higher levels such as N1 or N2. The number of
words tends to decrease the more restricted the
complexity is.

The N5 output seems to be an exception to that,
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Figure 2: Vocabulary size of the output.

Figure 3: Confusion matrix of the classification of the
output

as the vocabulary size exceeds that of the N1 out-
put. However, upon inspection of the translations,
we discovered that many words were just copied di-
rectly from the source instead of being a translation.
We decided to include in that plot the size of vocab-
ulary after removing the alphanumeric terms (e.g.
English words, numbers) from the output as it may
distort the analysis. Under these circumstances, we
observe that the number of words also decreases
for the N5 output. In this case, the vocabularies of
the translations range from 4400 words (for less
restricted outputs such as no-tag or N1) to 3800
words (for N5 output).

Consequently, the sizes of the vocabularies also
indicate that the complexity tag is useful to limit
the diversity of words.

6.2 RQ2: How much does the output level
agree with the complexity level indicated
in the input?

For answering the second RQ, we want to estimate
whether the outputs match the levels stated on the

Figure 4: Proportion of sentences of each JLPT level
(output file).

test set. Therefore, we classified the outputs of the
model (25000 sentences) and compare them to the
level that was prepended as a tag on the source
side. In Figure 3 we present the heatmap of the
confusion matrix.

We found that only 38% of the sentences in the
output had an exact match with the proposed tag
on their source side. Most of the sentences in the
output of the model are predicted to be JLPT 3
level as can be seen in Figure 4.

In addition, we also see that many disagreements
occur in sentences where lower complexity is ex-
pected. Many sentences in the N5 output include
kanji of more advanced levels. We find two main
reasons for that.

One reason is that certain terms may not exist in
the vocabulary of lower JLPT levels. For example,
even when attaching an N5 tag to a sentence, the
model may not be able to translate difficult con-
cepts such as “monopolize” or “corruption” that do
not exist in the vocabulary of such a low level.

Another reason is that the model does not have
enough information to generate an adequate trans-
lation. For example, the word “window” is a basic
word that would be categorized as JLPT 5 (lowest
complexity level) if it is spelled in hiragana as “ま
ど”. However, in the N5 output, this was spelled
using the kanji “窓” instead, which is considered
to be in level JLPT 3. This occurs because it is
unlikely to find the hiragana spelling in most texts.
Upon the inspection of the training data, we did
not find any occurrence of translation of “window”
spelled in hiragana.

Answering this RQ, we find that the model is not
very accurate in terms of generating translation in
the JLPT level as expected in the input.
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Added
tag

BLEU
(full)

BLEU
(hiragana)

no-tag 23.3 24.8
N1 22.4 23.8
N2 21.8 23.1
N3 21.8 22.8
N4 18.9 20.8
N5 13.8 15.2

Table 2: Translation quality of the outputs measured
with BLEU metric. The column BLEU (full) presents
the scores of the output when compared to the original
reference. The column BLEU (hiragana) presents the
scores after both output and reference have been con-
verted into a single writing system (i.e. hiragana).

Alternatively, one may consider that the knowl-
edge of vocabulary should be cumulative. In the
experiments, we used the hardest word to tag the
sentence, which implies that sentences classified as
JLPT 1 or 2, also contain the vocabulary of lower
levels. This is coherent with the problem of dif-
ferent literacy levels, as an advanced reader is also
capable of reading sentences with simpler vocab-
ulary. In such a case, we could consider that the
output should be at either the same or lower level
than that stated in the input. Then, the number
of correctly classified sentences ascends to 62%.
Despite that, the problem of lower-level sentences
containing difficult kanji remains.

6.3 RQ3: How much does the restrictions in
complexity impact the translation quality?

On top of the simplification capabilities of the
model, also the adequacy of the translations is im-
portant. In this section, we investigate the transla-
tion quality of the model. We expect that the more
we limit the complexity, the less accurate the trans-
lation will be. To measure the quality, we use the
BLEU (Papineni et al., 2002) metric to compare
the output sentences with those in the reference.
We present the results in Table 2.

According to the scores, the model trained with-
out tags achieved the highest translation quality.
This indicates that it is preferable not to limit the
complexity of the output at all. Even the less re-
stricted output (i.e. the N1 output) does not outper-
form the model with no tags.

Additionally, we validate our hypothesis that
constraining the output deteriorates the quality. In
the table, the lower the JLPT level is the lower the
BLEU scores are. Moreover, we find a significant

difference, 9.5 BLEU points, between the highest
and lowest level outputs.

As BLEU is an n-gram matching metric, some
sentences may convey the same meaning of the ref-
erence although they use different spellings (such
as the two spellings of “friend” mentioned before).
We understand that the reference uses the spelling
that is the most comfortable for a Japanese native
speaker. However, in the table, we have also in-
cluded the BLEU scores when both the set of out-
puts and the reference were converted into hira-
gana (i.e. column BLEU (hiragana) to avoid mixed
spelling.

By doing this, the BLEU scores are higher as
there is a higher n-gram overlap with the reference.
However, the conclusions are the same: the model
without tags performs the best, and the lower the
JLPT level the lower the quality is (with 8.6 BLEU
points difference between N1 and N5).

6.4 Translation Examples

In the previous section, we introduced that a rea-
son for lower-level outputs to have poor translation
quality is due to the lack of information to correctly
translate certain terms. For example, as the vocab-
ulary of N5 is more limited, in several sentences
of N5 output we find translation mistakes such as
wrong translations, or even terms copied directly
from the source. We provide examples of these
in the following section. Here we present some
sentences that illustrate some of the advantages
and disadvantages of using tags to control the com-
plexity of the vocabulary. These are included in
Table 3.

We see that the word “hat” is translated as “ハッ
ト” which is read as “hatto” and corresponds to
a transliteration from English using katakana al-
phabet. For upper levels (i.e. N3 to N1) the terms
generated is “帽子” (read as “bōshi”) which is writ-
ten in kanji.

Something similar can be seen with “noses and
cheeks”. This is translated as “ノーズとチーク”
(“Nōzu to chı̄ku”) by the N5 output, and it is also
closer to a transliteration of the English terms. In
the other outputs, this is translated as “鼻と頬”,
which contain kanji.

Regarding the translation of “companions”, in
the outputs of upper levels we found “仲間” which
is the same as in the reference. The N3 output
produces “同行者”, which is also spelled in kanji.

Interestingly, the N4 output we find “友だち”
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Source My companions, who weren’t wearing hats, apparently had their noses and cheeks turn red.
Ref 帽子をかぶってなかった仲間は、鼻とほっぺが赤くなっているようでした。

no-tag 帽子を被っていない仲間は、鼻や頬が赤くなっていたそうです。
N1 帽子をかぶっていない仲間は、鼻や頬が赤くなったそうです。
N2 帽子をかぶっていない仲間は、鼻や頬が赤くなったそうです。
N3 帽子をかぶっていなかった私の同行者は、見たところ、彼らの鼻と頬が赤くなり

ました。
N4 ハットをかぶっていなかった私のお友だちは、鼻と頬が赤くなったようです。
N5 ハットをかぶっていなかったお姉さんは、ノーズとチークが赤くなっていたそう

です。

Source Tom and Mary have gone hunting
Ref トムとメアリーは狩りに行ったよ。

no-tag トムとメアリーは狩りに行きました
N1 トムとメアリーは狩りに行った。
N2 トムとメアリーはハンティングに行きました。
N3 トムとメアリーはハンティングに行った。
N4 トムとメアリーはハンティングに行きました。
N5 TomとMaryメアリー have gone行った huntingハンティング

Table 3: Translation Examples.

which means “friend”. As seen in Section 4.1, this
word could be written as “友達”. However, only
the kanji友 belongs to N4. The other kanji, “達”,
belongs to a higher level than that stated in the
input. Therefore, the model produced the hiragana
spelling of that part.

In the N5 output, as the tag is the most restric-
tive, the word “companions” is too complex to be
translated. In this case, the word generated is “お
姉さん” which means “older sister”, and do not
convey the same meaning.

In the second example, we present different ways
of how the word “hunting” has been translated by
the models. First, “no-tag” and N1 outputs cor-
rectly produce the kanji “狩”. This kanji belongs to
the N1 level, therefore these are the outputs where
we find it. The rest of the outputs produce the
term “ハンティング” which is a transliteration, in
katakana, of the English term.

Regarding the N5 output, this is another example
of how limiting the complexity could harm the
translation. Many words have been copied from the
source instead of being translated. In this sentence,
the word “hunting” has been generated twice: one
copied from the English side, and the other one as
transliteration.

7 Conclusion and Future Work

In this work, we have used the addition of tags to
control the complexity of the output of an English-

to-Japanese MT model. The complexity has been
established based on the vocabulary and kanji of
JLPT exams.

Our results show that the complexity of the lexi-
con in the translation can be modulated with these
tags. Despite that, although it can be influenced to
a certain extent, the output may contain vocabulary
of higher levels than that stated. This is not only
because in the lower levels the vocabulary is too
limited, but also because of the lack of translation
occurrences in the train data.

We have also shown that restricting the output
harms the translation quality. None of the outputs
obtained using a complexity tag was better than
that of a model trained without any restriction. In
addition, enforcing too much simplicity causes the
model not to be able to translate accurately and
in some cases, it ends up copying words from the
source.

One limitation of this work is that the classifi-
cation of difficulty is decided solely based on the
vocabulary. In future work, we want to expand this
to also consider other factors such as the grammar
or length of the sentences.

Another aspect that we want to investigate is us-
ing alternative configurations. For example, text
simplification or paraphrasing models (Maddela
et al., 2021) could be included to change the distri-
bution of the complexity in the training data.
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Abstract

Automatic Text simplification (ATS) seeks to
reduce the complexity of a text for a general or
a target audience. In the last years, deep learn-
ing methods have become the most used sys-
tems in ATS research, but these systems need
large and good-quality datasets to be evaluated.
Moreover, these data are available on a large
scale only for English and in some cases with
restrictive licenses. In this paper, we present
IrekiaLF_es, an open-license benchmark for
Spanish text simplification. It consists of a
document-level corpus and a sentence-level test
set that has been manually aligned. We also
conduct a neurolinguistically-based evaluation
of the corpus in order to reveal its suitability for
text simplification. This evaluation follows the
Lexicon-Unification-Linearity (LeULi) model
of neurolinguistic complexity assessment. Fi-
nally, we present a set of experiments and base-
lines of ATS systems in a zero-shot scenario.

1 Introduction

According to the UN, illiteracy affects 16 per cent
of the world population (759 million adults)1 and
the number of children experiencing reading dif-
ficulties has increased from 460 million to 584
million after the COVID-19 pandemic.2 Moreover,
in the OECD countries, between 4.9 % and 27.7 %
of adults only has proficiency at the lowest levels
in literacy (OECD, 2013) and regarding the young
people 10 % of new graduates have low literacy
skills (OECD, 2015).

Due to these facts, plain language3 and easy-to-
read initiatives4 give some guidelines to make texts
more accessible. Basically, their recommendations

1https://www.un.org/en/chronicle/
article/education-all-rising-challenge

2https://news.un.org/en/story/2021/03/
1088392

3https://www.plainlanguage.gov/
4https://www.inclusion-europe.eu/

easy-to-read/

can be summarised in writing for the audience, or-
ganising the information, using short and positive
sentences, using active instead of passive voice,
choosing words carefully, being concise, employ-
ing an appropriate design for smooth reading and,
in the case of online communication, following the
web standards.

In this line, text simplification seeks to reduce
the complexity of texts (at the lexical, syntactic
and discourse levels) for a general public or a tar-
get audience. As adapting the texts manually is
a hard-working task, researchers in Natural Lan-
guage Processing (NLP) have tried to automatise it
since the mid 90s. The pioneers were Chandrasekar
et al. (1996) and their main motivation was related
to the problems that long and complex sentences
caused in advanced NLP applications. Nowadays,
however, most of the research on Automatic Text
Simplification (ATS) focuses on human target au-
dience (Štajner, 2021).

As other NLP tasks, ATS has evolved from rule-
based systems, statistic systems, hybrid systems
mixing hand-crafted rules and machine learning, to
the present deep learning paradigm. The interested
reader is referred to the following state-of-the-art
reports for more information about the evolution of
ATS (Gonzalez-Dios et al., 2013; Shardlow, 2014;
Siddharthan, 2014; Saggion, 2017; Alva-Manchego
et al., 2020b).

Current deep learning techniques, however, need
extensive data and these data are mainly available
for English. Moreover, some corpora do not have
open licenses. There are NLP techniques to alle-
viate this problem such as transfer learning and
cross-lingual learning, but, even in these cases,
high-quality evaluation benchmarks are needed.

In this paper, we present IrekiaLF_es, an open
corpus and benchmark for Spanish ATS sys-
tems. IrekiaLF_es compiles texts published by the
Basque Government in both original and easy-to-
read format. The corpus is divided in a document-
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level version containing 288 documents, and a
sentence-level version, where 35 of them have been
manually aligned. The corpus is available with an
open license.5 Furthermore, in order to reveal its
quality and suitability for ATS, we have evaluated
neurolinguistic complexity of the corpus following
the Lexicon-Unification-Linearity (LeULi) model
(Gutiérrez-Fandiño, 2022). This model of neurolin-
guistic complexity assessment is entirely inspired
by Hagoort (2005, 2013, 2014, 2017, 2019, 2020)’s
Memory, Unification, Control (MUC) model of lan-
guage neurobiology. Finally, we have evaluated
three different systems that will serve as baselines
for future research in this corpus.

This paper is structured as follows: right after
this introduction (Section 2), we present the related
work on simplified corpora; in Section 3 we de-
scribe the methodology to build the IrekiaLF_es
corpus; in Section 4 we summarise the LeULi
model and provide the rationale for its use; in
Section 5 we carry out a LeULi-based complex-
ity evaluation of the corpus; in Section 6 we show
the experiments with the three baseline systems;
and we conclude with the take-home messages and
outline the future work in Section 7.

2 Related work

Corpora or datasets for ATS are built with two
main objectives: on the one hand, to study the
process and operations carried out when simplify-
ing texts e.g. by annotating the operations (Caseli
et al., 2009; Bott and Saggion, 2014; Brunato et al.,
2015; Gonzalez-Dios et al., 2018), and, on the other
hand, to use them as resources to build and evalu-
ate machine learning systems (see next paragraph
for references). When creating and compiling cor-
pora of simplified texts, the strategies (intuitive or
structural) and the target audiences can be different
(Gonzalez-Dios et al., 2018). Hence, there is no
unique answer or simplified correct sentence for
a given complex or original sentence. A recent
overview on the creation of ATS corpora can be
found in Brunato et al. (2022).

The main research in text simplification, both
from an educational perspective and from an NLP
perspective, has focused on English and, there-
fore, the majority of corpora as well as the largest
ones are in such language (Petersen and Osten-
dorf, 2007; Pellow and Eskenazi, 2014; Vajjala and
Lučić, 2018). The most used datasets for NLP

5https://github.com/itziargd/IrekiaLF

are i) those derived from Wikipedia and Simple
Wikipedia (and therefore with open licences): Wik-
iSmall, originally created by Zhu et al. (2010) and
adapted by Zhang and Lapata (2017), WikiLarge,
compiled by Zhang and Lapata (2017) and usually
used for training, TurkCorpus (Xu et al., 2016) and
Asset (Alva-Manchego et al., 2020a) used for eval-
uation and ii) Newsela (Xu et al., 2015), which has
proprietary licence but can be obtained for research.
In order to study the document level simplification,
D-Wikipedia dataset has been proposed (Sun et al.,
2021).

However, there are also corpora for other lan-
guages such as Brazilian Portuguese (Caseli et al.,
2009; Hartmann et al., 2018, 2020), Danish (Klerke
and Søgaard, 2012), German (Klaper et al., 2013;
Battisti et al., 2020; Säuberli et al., 2020), Italian
(Brunato et al., 2015; Tonelli et al., 2016; Brunato
et al., 2016), Basque (Gonzalez-Dios et al., 2018)
and French (Gala et al., 2020). Recently, a mul-
tilingual corpus of news has been compiled that
includes Finnish, French, Italian, Swedish, English
and German (Hauser et al., 2022).

Regarding Spanish, the first ATS corpus was de-
veloped in Saggion et al. (2011)’s project, which
aimed to build an ATS system guided by the so-
called easy-to-read principles. The corpus, named
Simplext, was created manually by trained experts
and the target audience were students with Down
Syndrome. An analysis of the operations needed
to simplify the original text revealed that the most
frequent operations in Simplext were change (trans-
formation), delete, insert and split (Bott and Sag-
gion, 2011, 2014). This corpus is available upon
request from the authors. The Newsela corpus (Xu
et al., 2015), which is also available upon request,
contains a portion in Spanish, but there is no in-
formation about the particulars of the Spanish sub-
set. There are three resources for Spanish focus-
ing on lexical simplification: the LexSiS corpus
(Bott et al., 2012) (obtained upon request), and
the EASIER corpus (Alarcón García, 2022) (avail-
able at GitHub, but without explicit license), and
ALEXSIS (Ferrés and Saggion, 2022), which will
be available after what the authors call embargo pe-
riod (but so far there is no explicit license). Finally,
a bilingual (EN/ES) dataset about Covid-19 texts
(Simple TICO-19) has been released (Shardlow and
Alva-Manchego, 2022) and a corpus for Spanish
medical text simplification, the CLARA-MeD com-
parable corpus, is made up of 24 298 pairs of pro-
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orig e2r
Word number 185,070 135,659
Token number 231,332 177,402

Sentence number 5,389 2,408

Table 1: Basic statistics of the document level corpus.

fessional and simplified texts (Campillos-Llanos
et al., 2022).

3 Building IrekiaLF_es

Irekia is the open-government communication
channel of the Basque Government. This web
site contains, among others, news about the Gov-
ernment, written in a non-administrative language,
both in Spanish and Basque. Some of the news are
adapted to the easy-to-read format, thereby mak-
ing the site very valuable as a source to compile
complex-simple parallel texts, which, moreover,
can be bilingual. The portal has CC-BY license,
so that its content can be used to derive research
datasets.6 Based on this resource, the aim of this
work is to create a good-quality corpus of Spanish,
IrekiaLF_es, with original and adapted/simplified
texts. We release the corpus under an open license,
thus expanding the options for ATS researchers to
train and test systems for Spanish.

IrekiaLF_es is built by crawling all the Spanish
news that have an easy-to-read counterpart until
17/11/2021 (unfortunately the last adapted version
was published in 28/12/2021). The first document’s
date is 1/04/2017. After removing the duplicates,
we have compiled a document-level corpus com-
prising 288 parallel documents. The dataset is pub-
licly available7 under CC BY-SA 4.0 license.

Table 1 shows the number of words, tokens and
sentences of the complex and simple parts of the
corpus.8 As it can be seen, the orig texts are much
longer than the e2r. This is in line with what is
found for example in English corpora (Amancio
and Specia, 2014), where simplified texts have also
fewer words.9

As in the original web site, some complex and
6We are not aware of other governmental initiatives that

could serve as data source under the same conditions. Re-
search should be done at local and regional levels to consider
the possibility of adding other data sources to augment the
dataset.

7https://github.com/itziargd/IrekiaLF
8In this paper, we will call orig to the original, complex

text and e2r to the simplified, easy-to-read counterpart.
9We do not have the data of the other Spanish corpora to

make this comparison.

unfamiliar words in the documents are linked to
their definitions (see Figure 1). We keep these
definitions at the document level dataset so that they
can serve for both complex word identification and
generation of explanations (elaboration). There are
1624 definitions in the corpus that explain complex
legal denominations, named entities, and complex
words.

In addition to the document-level corpus, we
have created a subcorpus, a part of the document-
level corpus, that is manually aligned at a sen-
tence level,10 and which comprises 705 aligned
sentences from 35 documents.11 We have followed
this methodology to align the sentences:

1. Preliminary alignment: As a preliminary step,
two persons (a computational linguist expert
in ATS and a linguistics student) aligned the
sentences in five documents and discussed the
doubts and unclear cases. As a result, the
following guidelines were defined:

• Align sentences according to information
preservation.

• Do not manipulate easy-to-read texts to
improve the simplifications.

• Regarding sentence boundaries: periods
(.) and ellipses (...) indicate the end of a
declarative sentence; exclamation marks
(!) indicate the end of an exclamative
or imperative sentence; question marks
(?) indicate the end of an interrogative
sentence. Colons (:) are also sentence
boundaries, but only when they are used
to introduce new paragraphs, not when
they link two clauses in a subordinate
relationship.

2. Agreement alignment: once the guidelines
were fixed, the annotators aligned ten ad-
ditional documents, so that inter-annotator
agreement could be calculated. The resulting
percentage of agreement (or observed agree-
ment) was 80.5 % and Cohen’s kappa was 0.7.
We considered this as a substantial agreement
and, therefore, as a good basis to align the rest
of the corpus.

10We have also assessed the possibility of using ATS align-
ment tools for an automatic alignment, but none of them was
good enough to maintain the quality of the alignments.

11The definitions of complex words are not considered
when aligning the sentences.
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Figure 1: Example of words with hyperlinks to defini-
tions.

3. General alignment: one of the annotators
has aligned the rest of the documents in the
sentence-aligned subcorpus (20 documents).

In Table 2 we present an example of two sen-
tences aligned to their e2r counterparts. The trans-
lations of the examples are provided in Table 7
(Appendix A).

In Table 3 we present the number and percent-
age of the alignment scales, that is, how many
sentences have been created/removed out of the
original one. The percentage of merge operations
is remarkable, close to the Italian Teacher subcor-
pus (Brunato et al., 2015), but high in comparison
to the Basque CBST (Gonzalez-Dios et al., 2018)
and the Italian Terence subcorpus (Brunato et al.,
2015).12 Most alignments are at scale 1:1, that is,
when no splitting is performed, followed by 1:0,
where the sentence has no equivalent e2r version.
In the vast majority of splitting cases, the original
sentence has been split into two (1:2), or into three
(1:3) e2r sentences. Splitting into more than three
sentences is residual.

4 LeULi model of complexity assessment

Evaluation of simplified corpora and ATS systems
is more often than not largely based on formal,
purely linguistic complexity metrics. However,
determining the so-called readability can only be
achieved in terms of neurolinguistic complexity:
text comprehension takes place in the brain, and as
such it requires a cognitive assessment.

On the basis of Hagoort (2005, 2013, 2014,
2017, 2019, 2020)’s Memory, Unification, Control
(MUC) model of language neurobiology, Gutiérrez-
Fandiño (2022)13 proposes a model of three cate-

12We compare the alignments to these works because they
are the only available to our knowledge. We show the statistics
of the other datasets in the Appendix, in Table 8.

13This project will be soon publicly available at https://
dkh.deusto.es/en/community/learning/tfg.
Yet, anyone interested can obtain it in advance upon request
to the author via email (ikergutierrez@opendeusto.es).

gories of neurolinguistic complexity assessment:
Lexicon-Unification-Linearity (LeULi). Complex-
ity assessment of IrekiaLF_es has therefore been
conducted according to the LeULi model, which is
synthesised in Table 4.

Regarding Lexical complexity, it has been shown
that the less frequent a word is, the more effortful
it is retrieve from long-term memory (LTM), result-
ing in higher levels of neural activation (Fiebach
et al., 2002; Nakic et al., 2006). Infrequent words
are not just more difficult to access, they are also
more likely to be unknown to the reader, in which
case they do not even exist in the mental lexicon
and are hence impossible to retrieve from LTM.

The Unification of information from different
language modules of the brain is a costly operation
in language processing. Accordingly, to lighten
complexity of the Unification category, linguistic
phenomena involving several language modules
should be strongly avoided in ATS: for instance,
coreference (principally measured by pronoun in-
cidence) demands the integration of information
from the syntactic and semantic language mod-
ules.14 Similarly, the large presence of elements
that help avoid the presence of coreference is also
an indicator of the lack of Unification complexity:
the ratio of proper nouns for all nouns and content
word overlap, for example, are metrics showing
how often referents are repeated, instead of being
pronominalised, coreferenced.

Lastly, linearity affects sentence comprehension
as it determines both the temporal separation of
chunks provisionally stored in working memory
(WM) and the number of chunks stored in such
temporary buffer during the processing of a
sentence. It is primarily measured by sentence
length, but also by non-selected constituents
(adjunction and coordination), since selected
constituents such as complements are effortlessly
retrieved from LTM as part of the syntactic
template of any lexical item.

5 Complexity assessment of IrekiaLF_es

In this section we present the results of the complex-
ity evaluation of the whole IrekiaLF_es (document-
level corpus). As explained in Section 4, we wanted

14The present analysis focuses on the syntactic-semantic
Unification, since phenomena involving the remaining phono-
logical module seem to have no significant presence in text
processing.
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orig e2r
La Consejera de Empleo y Políticas Sociales,
Beatriz Artolazabal, y el Consejero de Hacienda y
Economía, Pedro Azpiazu, se han reunido con los
responsables de EHLABE-Euskal Herriko Lan
Babestuaren Elkartea-Asociación vasca de enti-
dades no lucrativas que fomentan la inclusión so-
ciolaboral de las personas con discapacidad, en la
sede de Lantegi Batuak, en Loiu, Bizkaia.

Beatriz Artolazabal es la Consejera de Empleo
y Políticas Sociales del Gobierno Vasco. Pedro
Azpiazu es el Consejero de Hacienda y Economía
del Gobierno Vasco. Euskal Herriko Lan Babestu-
aren Elkartea (EHLABE) es una asociación que
impulsa la inclusión en la sociedad y en el trabajo
de las personas con discapacidad. Beatriz Arto-
lazabal y Pedro Azpiazu se han reunido con los
responsables de EHLABE en la sede de Lantegi
Batuak, en Bizkaia.

En el encuentro se ha analizado el trabajo de estas
empresas y se han propuesto nuevas fórmulas de
colaboración.

En la reunión han estudiado el trabajo de estas
empresas y se han propuesto nuevas maneras de
colaborar.

Table 2: Examples of aligned sentences (English translations in Table 7 in the Appendix).

Alignment scale Sentences Percentage
Merge (2:1) 53 7.6%
1:0 154 22.0%
1:1 310 44.0%
1:2 123 17.5%
1:3 50 7.1%
1:4 14 2.0%
1:5 1 0.1%

Table 3: Statistics of the alignment scales (the sentences
created/removed out of the original sentences).

to base our complexity evaluation on recent evi-
dence on sentence and text processing complexity,
and thus we have decided to follow the metrics
provided by the LeULi model (Gutiérrez-Fandiño,
2022). For the automatic measurement of com-
plexity metrics, we have employed MultiAzterTest
(Bengoetxea and Gonzalez-Dios, 2021), an open-
source multilingual text analysis tool which ex-
amines more than 130 features at various lin-
guistic levels. To calculate word frequencies we
have used Python’s wordfreq package (Speer et al.,
2018). Specifically, we have grouped words in
eight bins according to the logarithm of their fre-
quencies.15 Next, we present histograms and vi-
olin plots (Hintze and Nelson, 1998) comparing
the scores of orig and e2r texts according to the
neurolinguistic complexity metrics of the LeULi
model.

Regarding the Lexicon category, there are sub-
stantially more infrequent words (0-4 levels) in orig

15Which corresponds to the zipf_frequency of the
wordfreq package.

Figure 2: Histograms of word frequencies, grouped in
eight bins according to the frequency logarithm.

than in e2r texts (Figure 2), where words around
frequency level 6 are more regularly distributed, as
a result of the conscious, purposeful use of frequent
words.

When it comes to the Unification category, in
Figure 3 it can be observed that there is a posi-
tive but too slight difference in the incidence of
pronouns: e2r texts should have a markedly lower
score than orig in this metric. The higher the pro-
noun incidence, the higher the Unification com-
plexity.

Figure 3: Incidence of pronouns.

As previously explained, the ratio of proper
nouns for all nouns and content word overlap are
metrics that show the extent to which coreference
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Category Constrainer Constrainee Metrics

Lexicon LTM Infrequent words: hard to access
or not stored

Word frequency

Unification WM The integration of information
from different modules

Multi-module phenomena
(mainly coreference in syntactic-
semantic Unification)

Linearity WM Time and volume of temporary
storage

Sentence length mainly, but also
adjunction and coordination

Table 4: Constrainers and constrainees of the LeULi categories of neurolinguistic complexity and their metrics.

is being avoided. Ratio/Mean scores in these met-
rics should therefore be notably higher in e2r than
in orig texts (contrary to pronoun incidence), and
standard deviation should be the lowest possible
(as in any e2r metric). Thus, coreference would be
avoided in a consistent manner and the easy-to-read
principle “use the same word for the same term"
would be observed.

Figure 4: Plots of the ratio of proper nouns for all nouns
(mean).

In this corpus, the ratio of proper nouns for
all nouns is just slightly and hence insufficiently
higher in e2r texts (Figure 4). Content word over-
lap (c.f. Figure 5) should not have a higher mean in
e2r than in orig texts. Besides, it should not have a
higher standard deviation in e2r than in orig texts.

Figure 5: Plot of the content word overlap: mean (left)
and standard deviation (right).

With respect to the Linearity category, Figure 6
displays the plots of sentence length and sentence

depth. In both cases, there are lower mean scores
in e2r texts and the difference between orig and e2r
texts is similarly large for both metrics. These two
are highly correlated metrics (Gutiérrez-Fandiño,
2022) and their plots are accordingly similar, but
only sentence length actually contributes to pro-
cessing complexity. This is because hierarchical
structures (sentence depth, subordinate clauses) are
effortlessly processed whereas linear phenomena
that contribute to sentence length (number of words
per sentence, coordination) are costly: WM con-
sumption occurs in the horizontal extension of the
syntactic tree, not in the vertical one.

Figure 6: Plots of sentence depth (mean) (left) and
words per sentence (mean) (right).

In Figure 7, it is shown that there is a large dif-
ference between orig and e2r texts in propositions
per sentence than in subordinate clauses. Such
difference accords with neurolinguistic simplicity
since coordinated clauses should always be split
into different sentences, to lighten the processing
load, whereas subordinate clauses are not a prob-
lem themselves, as long as they do not include
coreference.

In Figure 8, we see that there is a bigger dif-
ference in NP decendents (adjuncts+complements)
than in NP modifiers (adjuncts) between orig and
e2r. In terms of neurolinguistic simplicity, how-
ever, such difference should be bigger in adjuncts,
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Figure 7: Plots of propositions per sentence (mean) (left)
and subordinate clauses (incidence) (right).

which are non-selected constituents incurring an
extra processing cost.

Figure 8: Plots of decendents per NP (mean) (left) and
modifiers per NP (mean) (right).

In sum, taking into account the LeULi frame-
work (Table 5), results on the word frequency met-
ric are positive and hence the IrekiaLF_es corpus
harmonises with neurolinguistic simplification as
regards the Lexicon category of complexity. Re-
garding the Unification category, results are con-
siderably worse: scores on 2 out of 3 metrics are
halfway —not negative but highly improvable—
and scores on the remaining metric are negative.
Finally, results of the LeULi-based evaluation show
positive scores in 2 out of 3 metrics of the Linear-
ity category and negative scores on the remaining
metric. Consequently, the text simplifications of
the IrekiaLF_es corpus are good at the lexical and
sentence level, but not at the discourse level owing
to the substantial presence of multi-module phe-
nomena (Unification category).

6 Experiments

In this section we report the results of three neural-
based ATS systems when evaluated in the sentence-
level IrekiaLF_es dataset. Given its small size, we
followed a zero-shot scenario where the neural ATS
systems are trained using Simplext (Saggion et al.,
2015), and tested on IrekiaLF_es. Simplext com-
prises 200 manually simplified news texts from

Category Metric Assessment
Lexicon Word frequency POSITIVE
Unification Ratio of proper

nouns per all nouns
HALFWAY

Pronouns (inci-
dence)

HALFWAY

Content word over-
lap (mean)

NEGATIVE

Linearity Words per sentence POSITIVE
Coordination POSITIVE
NP adjunction NEGATIVE

Table 5: Results of the LeULi-based evaluation of
IrekiaLF_es.

different domains in Spanish. We have decided to
train the baseline systems on Simplext because the
text genre and the Spanish variety (peninsular Span-
ish) are similar. We followed Martin et al. (2020)
and split the corpus in 574 sentences for training,
143 for development, and 693 for testing. We used
the training set for finetuning, and the development
set for model selection (the test split of Simplext
was not used). Regarding IrekiaLF_es, we dis-
carded the 1:0 alignments as well as the merge
operations (29.3 % of the sentence level corpus),
which results in a test set with 498 sentence pairs.
The ATS systems are the following:

Edit+Synt is an edit-based seq2seq system that
adds syntactic information at the word level
(Cumbicus-Pineda et al., 2021). In the prepro-
cessing stage, the training dataset was lowercased
and the sentences were tokenised and parsed with
SpaCy,16 using the large model. The model was
trained for 50 epochs, with a batch size of 64, a
learning rate of 10−3, a hidden dimension of 200,
a decay factor of 10−6.

mBART is a multilingual encoder-decoder
model based on the transformers architecture,
which is pretrained on 25 languages using the cc5
corpus (Liu et al., 2020). We used mBART-large,
and fine-tuned it on Simplext (train set) for 50
epochs following default hyperparameters.17

mT5 is an encoder-decoder system similar to
mBART but pre-trained using a different learning
function and corpora (Xue et al., 2021). We used

16https://spacy.io/
17Learning rate of 5−5, number of beams for beam search

of 4, number of steps between val check of 500, number of
steps between logs of 50, batch size of 2
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System BLUE SARI
Edit+synt 5.44 37.95
mBART 4.38 38.90

mT5 7.12 42.19

Table 6: Results of the baseline systems.

the large version of mT5, and pretrained it on Sim-
plext train using the same hyperparameters used in
mBART.

We used default values for the hyperparame-
ters, and did not perform any hyperparameter tun-
ing. Regarding model selection, we selected the
checkpoints that obtained the best SARI (Xu et al.,
2016) score in the Simplext development test. To
evaluate the models, we followed usual practice18

and computed the BLUE (Papineni et al., 2002)
and SARI metrics, using EASSE (Alva-Manchego
et al., 2019).

In Table 6 we present the results obtained by
the ATS systems. In general, all systems obtain
SARI values that are similar to other ATS datasets,
and in particular, to Simplext (Cumbicus-Pineda
et al., 2021), with mT5 yielding the best results.
While comparing figures across datasets cannot be
used to draw meaningful conclusions, the relatively
high SARI values might suggest the suitability of
IrekiaLF_es for evaluating Spanish ATS systems.
BLUE scores are however low in all systems, which
we attribute to the followed zero-shot approach.
Because Simplext simplifications are very short
and highly compressed, the ATS systems produce
sentences that are much shorter than the reference
simplifications of IrekiaLS_es.

7 Conclusion and future work

In this paper, we have presented IrekiaLF_es, a new
open corpus for Automatic Text Simplification in
Spanish. The corpus compiles a document-level
version with 288 parallel original and easy-to-read
texts and a sentence-level version, where 35 of the
documents have been manually aligned to create a
test set of 705 sentences. The aim of this test set is
to serve as a benchmark to evaluate ATS systems
at the sentence level.

We have evaluated the neurolinguistic com-
plexity of the corpus by following the Lexicon-

18We are aware that these metrics are flawed and may not be
suitable for the quality evaluation of automatic simplifications
but they are used as reference by the community (Sulem et al.,
2018; Alva-Manchego et al., 2021).

Unification-Linearity (LeULi) model. The evalua-
tion yields positive results regarding the Lexicon
category of complexity, mostly negative regarding
the Unification category and mostly positive re-
garding the Linearity category. Therefore, we can
conclude that this corpus is suitable for ATS train-
ing and evaluation regarding lexical simplification
and sentence simplification, but it may hinder end
users’ comprehension when it comes to discourse
simplification due to the significant presence of
multi-module phenomena (Unification category).
This important drawback should be considered for
future work. A specific quantitative benchmark for
establishing the boundaries of the qualitative as-
sessment (positive/halfway/negative) of the LeULi-
based evaluation results should also be addressed
in future work.

We have also evaluated three different systems
that will serve as baselines for future research with
this corpus. Results show good SARI values for all
systems, but very low BLUE scores, which we at-
tribute to the used zero-shot approach. Such results
suggest the need of simplification datasets in Span-
ish where ATS systems can be trained or finetuned
on.

In the future, we plan to align automatically the
rest of the corpus by developing/adapting specific
tools. From a linguistic point of view, we also fore-
see to study the operations carried out to simplify
the texts. From an experimental point of view, we
would like to carry out crosslingual experiments
and test them in this corpus. Finally, we plan to
create the Basque version of the corpus.
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Dios et al. (2018) respectively.
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orig e2r
The Councilor for Employment and Social Poli-
cies, Beatriz Artolazabal, and the Councilor for Fi-
nance and Economy, Pedro Azpiazu, met with the
heads of EHLABE-Euskal Herriko Lan Babestu-
aren Elkartea-Basque Association of non-profit
organisations that promote the social and labor
inclusion of people with disabilities, at the head-
quarters of Lantegi Batuak, in Loiu, Bizkaia.

Beatriz Artolazabal is the Councilor of Employ-
ment and Social Policies of the Basque Govern-
ment. Pedro Azpiazu is the Councilor of Finance
and Economy of the Basque Government. Euskal
Herriko Lan Babestuaren Elkartea (EHLABE) is
an association that promotes the inclusion of peo-
ple with disabilities in society and at work. Beat-
riz Artolazabal and Pedro Azpiazu met with the
heads of EHLABE at the headquarters of Lantegi
Batuak, in Bizkaia.

During the meeting, the work of these companies
was analyzed and new formulas for collaboration
were proposed.

At the meeting they studied the work of these
companies and proposed new ways to collaborate.

Table 7: English translations of the examples of aligned sentences in Table 2.

Alignment scale Terence (IT) Teacher (IT) CBST- structural (EU) CBST- intuitive (EU)
Merge (2:1) 2.88 13.74 0.88 0.44
1:0 0.67 1.15 - -
1:1 92.1 68.32 76.21 73.25
1:2 3.75 11.45 18.50 19.74
1:3 0.19 0.76 3.52 4.39
Other 0.38 - 0.88 2.19

Table 8: Statistics (percentage) of the alignment scales of the Italian and Basque corpora.
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Abstract 

This study presents a lexical simplification 
(LS) methodology for foreign language 
(FL) learning purposes, a barely explored 
area of automatic text simplification (TS). 
The method, targeted at Spanish as a 
foreign language (SFL), includes a 
customised complex word identification 
(CWI) classifier and generates substitutions 
based on masked language modelling. 
Performance is calculated on a custom 
dataset by means of a new, pedagogically-
oriented evaluation. With 43% of the top 
simplifications being found suitable, the 
method shows potential for simplifying 
sentences to be used in FL learning 
activities. The evaluation also suggests that, 
though still crucial, meaning preservation is 
not always a prerequisite for successful LS. 
To arrive at grammatically correct and more 
idiomatic simplifications, future research 
could study the integration of association 
measures based on co-occurrence data. 

1 Introduction 

The rise of digital corpora has been steadily 
transforming the FL learning domain. As corpora 
are an easy-to-compile source of natural text which 
can be consulted in a highly efficient fashion 
(Granger et al., 2007; Pilán et al., 2016), they are 
arriving at a stage of being seamlessly embedded 
in several aspects of the everyday language 
learning practice (Chambers, 2019). This 
“normalisation” (Bax, 2003) of corpora is 
especially evidenced in the growing interest in 
data-driven learning (DDL; Johns, 1990). In its 
broadest sense, this area refers to both teachers and 
learners “using the tools and techniques of corpus 
linguistics for pedagogical purposes” (Gilquin and 
Granger, 2010, p. 359). While learner-led DDL 
activities tend to consist in analysing concordance 
lines (e.g. to discover collocations), teacher-
focused DDL usually corresponds to accessing 

corpora directly in order to generate resources such 
as vocabulary lists and fill-the-gap exercises, 
which has led to the concept of “corpus-informed 
language teaching” (Jablonkai and Csomay, 2022). 

However, working with corpora also entails 
challenges and limitations, for instance with regard 
to learner proficiency levels. To begin with, DDL 
has been found to be beneficial for intermediate 
and advanced learners (Boulton and Cobb, 2017), 
but with lower levels the credentials of using 
corpora still have to be established (Boulton and 
Vyatkina, 2021). Furthermore, also between 
intermediate and advanced learners considerable 
differences can exist, for example with respect to 
vocabulary knowledge: the lower one’s language 
proficiency, the less extensive one’s vocabulary 
will be (Laufer and Nation, 1995). In DDL, this can 
lead to the following scenario: while preparing a 
language for specific purposes (LSP) class on 
economics, an SFL teacher is using a corpus query 
tool to create a fill-the-gap exercise for the target 
item arancel and finds sentence (a) below in the 
query output. However, if this sentence were to be 
included in the final exercise, low- or intermediate-
proficiency learners could find themselves unable 
to solve it, as their limited vocabulary knowledge 
might prevent them from understanding essential 
parts of the context, such as the word esquivar. 

(a) La planta local también permitirá esquivar 
los aranceles. (‘The local plant will also 
allow evading tariffs.’) 

To overcome this limitation, (part of) the corpus 
data can be simplified according to the needs of the 
target audience (Gilquin and Granger, 2010). As 
manual simplification constitutes a time-
consuming task, automating the simplification 
procedure could provide a more viable solution, 
especially when large corpora are involved. This 
study aims to contribute to this barely explored area 
of automatic TS for FL learning purposes (Section 
2.1). We specifically focus on the natural language 
processing (NLP) technique of lexical 
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simplification (Section 2.2), which will be used to 
adapt DDL activities to the needs of Dutch-
speaking B2-level SFL learners. Apart from 
presenting this novel LS method (Section 3), the 
study also introduces a new type of human-based 
evaluation, distinguished by its particular 
pedagogical focus (Section 4). 

2 Related Research 

2.1 Text Simplification 

Automatic TS, usually subdivided into syntactic 
and lexical simplification, is the computer-driven 
operation of “transforming a text into another text 
which, ideally conveying the same message, will 
be easier to read and understand by a broader 
audience” (Saggion, 2017). TS methods have been 
applied in a wide range of areas, where they have 
been proven useful for developing reading aids for 
children and people with cognitive disabilities 
(Rello et al., 2013; Watanabe et al., 2009), and for 
improving NLP tasks such as information 
extraction and machine translation in the form of a 
preprocessing step (Evans, 2011; Štajner and 
Popović, 2016). 

The field of FL learning, however, has seen little 
attention being devoted to automatic TS, despite 
having a long tradition in manual TS (Shardlow, 
2014a; Siddharthan, 2014). As one of the few 
existing studies related to automatic TS, Paetzold 
and Specia (2016) focus on unsupervised word 
embedding-based LS for non-native English 
speakers. Their aim is to satisfy the needs of this 
target audience by constructing a custom 
evaluation dataset based on a user study. Uchida et 
al. (2018) also present a language learning-oriented 
dataset for English, containing sentences taken 
from university textbooks. All B2+ words in those 
sentences were marked as complex, and 
substitution candidates were identified after 
manually revising a thesaurus-based selection of 
possible replacements. Finally, Martin et al. (2020) 
propose a controllable sentence simplification 
system based on Sequence-to-Sequence models, in 
which attributes such as sentence length and lexical 
complexity can be conditioned by the user. 
Although they do not specifically target FL 
learners, the controllable nature of their system can 
enable adjusting the simplification procedure to 
this target audience. 

Even though TS is sometimes tackled as a 
generic task with a one-size-fits-all simplified 

output, it is agreed that different user groups often 
require different simplification methodologies 
(Martin et al., 2020; Shardlow, 2014a; Uchida et 
al., 2018). Datasets annotated by native speakers, 
for instance, have shown to be unsuitable for 
evaluating a TS system for non-native speakers, 
since word complexity as perceived by mother-
tongue speakers does not correspond to word 
complexity for non-natives (Paetzold and Specia, 
2016). Moreover, to further define this “non-native 
word complexity” (and to identify the 
simplification needs of FL learners in general), 
linguistic and pedagogical insights could be taken 
into account, such as Krashen’s (1985) theory that 
learners acquire language when the input they are 
exposed to is comprehensible, but just somewhat 
beyond their current knowledge. It is, however, 
also important to highlight that manipulating 
corpus data is an intervention which needs to be 
undertaken with caution, since it may jeopardise 
the authentic character of the DDL activities 
(Boulton, 2009; Siddharthan, 2014). 

Finally, by choosing Spanish as the target 
language, this study aims to continue the line of TS 
research which focuses on languages other than 
English. Since LexSis (the first implemented LS 
system for Spanish; Bott et al., 2012), Spanish has 
been included in more and more studies (Alarcón 
et al., 2021; Sheang, 2019; Saggion et al., 2015) 
and shared tasks (Yimam et al., 2018). The 
methodology and models presented in this study 
will contribute to further developing the Spanish 
TS domain. 

2.2 Lexical Simplification 

In LS, the goal is to replace “words in a given 
sentence in order to make it simple, without 
applying any modifications to its syntactic 
structure” (Paetzold and Specia, 2017, p. 549). LS 
systems can have different types of architectures, 
ranging from rule-based pipelines in which a 
predefined set of complex words is linked to 
synonyms (Devlin and Tait, 1998), over systems 
which exploit parallel corpora and the 
corresponding edit information (Biran et al. 2011), 
to word embedding approaches, which are 
designed to be less resource-dependent (Glavaš 
and Štajner, 2015). The LS process typically 
consists of four steps, presented below. 
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2.2.1 Complex Word Identification 

A first important step within the CWI process is the 
definition of “complexity”, as this concept may 
refer to absolute/objective or relative/agent-related 
complexity (North et al., 2022). While the former 
type refers to the linguistic properties of a word 
(e.g. word length, number of diphthongs and 
number of senses), the latter reports how 
individuals perceive a word based on their 
individual experiences or psycholinguistic factors 
(e.g. cognitive load and level of familiarity with a 
particular typography). In the field of CWI, 
however, a more general definition is adopted 
which combines elements from both complexity 
types. Therefore, when using the terms “complex” 
and “complexity” in this paper, we refer to the 
difficulty an individual may have in understanding 
a particular target word as a result of the target 
word’s linguistic properties as well as factors 
belonging to the individual (North et al., 2022). 

As for types of CWI methods, four categories 
can be discerned: threshold-based, lexicon-based, 
implicit and machine-learning assisted CWI. In 
threshold-based strategies, words are usually 
categorised as simple or complex based on word 
frequency. However, despite being intuitive and 
easy to implement, they lead to many simple words 
being unnecessarily labelled as complex 
(Shardlow, 2014b). Next, lexicon-based 
approaches look up words in human-curated 
lexicons, a strategy which yields good results but 
suffers from low coverage. Third, implicit CWI 
integrates this step into later stages of the 
simplification process, for example by only 
replacing words for which the top substitution 
candidate has a higher frequency (Glavaš and 
Štajner, 2015). In machine learning strategies, 
finally, classifiers such as support vector machines 
(Shardlow, 2013) or convolutional neural networks 
(Sheang, 2019) are trained based on training data 
with word embeddings, morphological data (word 
frequency, word length, number of syllables, etc.) 
and (psycho)linguistic information (age-of-
acquisition value, part-of-speech [POS] tag, 
dependency relation, etc.) as features. As can be 
concluded from the 2018 CWI shared task (Yimam 
et al., 2018), of all strategies machine-learning 
assisted approaches obtain the best results. 

Finally, it should be highlighted that as an 
alternative for CWI, the task of lexical complexity 
prediction (LCP) is also attracting more attention, 
as appears from the corresponding SemEval 2021 

task (Shardlow et al., 2021). In LCP, a word’s 
complexity is evaluated by assigning a value from 
a continuous scale, instead of providing a binary 
complex versus non-complex judgement as in 
CWI. 

2.2.2 Substitution Generation 

In the substitution generation step, candidate 
substitutions for the complex words are proposed. 
The generation can take two forms: linguistic 
database querying or automatic generation 
(Paetzold and Specia, 2017). In the former 
scenario, synonyms and/or other related words are 
looked up in human-curated databases such as 
WordNet (Fellbaum, 1998). Although the approach 
generally leads to suitable substitution candidates, 
both its coverage and potential to be extended to 
other languages are limited, since building such 
databases constitutes an expensive and time-
consuming process (Shardlow, 2014b). 

As for automatic generation, parallel resources 
such as English Wikipedia and Simple English 
Wikipedia can be exploited to automatically 
generate simplification pairs. Recently, the 
introduction of first static word embedding models 
such as word2vec (Mikolov et al., 2013) and later 
contextualised word embedding models such as 
BERT (Devlin et al., 2019) opened a whole new 
range of opportunities for the automatic generation 
of substitution candidates. Especially the masked 
language modelling feature of BERT and other 
models with transformer-based architectures has 
proven to bear great potential (Qiang et al., 2021; 
Zhou et al., 2019), as it is able to predict a masked 
word in a sentence such as (b) below while 
attending to both its left and right context. 
Introducing this sequence into the base, cased 
version of RoBERTa-BNE (Gutiérrez-Fandiño et 
al., 2021) results in reducir (0.09 probability; ‘to 
reduce’), cobrar (0.05; ‘to collect’) and bajar 
(0.05; ‘to decrease’) as the top predictions. Finally, 
it should be noted that a hybrid approach, which 
combines embeddings with database information, 
can further improve performance (Paetzold and 
Specia, 2017). 

(b) La planta local también permitirá <mask> 
los aranceles. 

2.2.3 Substitution Selection 

To determine which candidate substitutions fit the 
sentence context, a selection process needs to be 
carried out. The most common approaches to 
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substitute selection are sense labelling (Baeza-
Yates et al., 2015), POS tag filtering (Aluísio and 
Gasperin, 2010) and semantic similarity filtering 
(Biran et al., 2011). In the resource-dependent 
sense labelling approach, substitution selection is 
modelled as a word sense disambiguation task, in 
which classification methods are used to check 
which candidates have the same sense label as the 
original complex word in a given database. Next, 
POS tag filtering consists in excluding all 
substitution candidates which do not have the same 
POS as the word to be simplified. For semantic 
similarity filtering, finally, the similarity between 
the substitution candidate and the word to be 
simplified is measured, after which all candidates 
which do not pass a certain threshold are removed. 

2.2.4 Substitution Ranking 

The fourth and final LS step encompasses ranking 
the selected candidates, for which three main 
strategies can be adopted: frequency-based, 
simplicity-based or machine learning-assisted 
(Paetzold and Specia, 2017). The first approach 
draws on the notion that the more frequent the 
word, the more familiar it will be to readers. 
Ranking from highest to lowest frequency is a very 
intuitive and straightforward operation, but the 
calculation of the frequency values can take many 
forms (token-based vs. lemma-based, raw 
frequencies vs. “transformed” logarithmic 
frequencies, extracting frequencies from different 
corpora, etc.). Simplicity measures and machine 
learning-assisted approaches expand on this 
frequency-based strategy by incorporating word 
frequency together with other features such as 
word length into, respectively, handcrafted metrics 
(Biran et al., 2011) or machine learning methods 
(Horn et al., 2014). The output of these metrics or 
machine learning models are designed to capture 
the complexity of words, after which candidates are 
ranked from lowest to highest complexity. Finally, 
substitution ranking can also be obtained by 
combining several ranking strategies and 
calculating one single average ranking score in the 
end (Glavaš and Štajner, 2015). In this case, aspects 
of the substitution selection stage (e.g. cosine 
similarity scores) can also be used as an additional 
ranker, instead of serving as a threshold-based 
selection parameter (Qiang et al., 2021). 

3 Methodology 

3.1 Setting 

As mentioned in the introduction, a DDL-flavoured 
Spanish LSP course for Dutch-speaking B2-level 
learners is taken as the target setting, with business 
vocabulary as the specific purpose. The DDL 
character of the course is twofold: on the one hand, 
it includes a series of DDL activities in which 
learners analyse concordance lines of a selection of 
target vocabulary items they have to learn. On the 
other, the teacher of the course uses a corpus to 
create fill-the-gap exercises for another series of 
target vocabulary items. We specifically adopt a 
teacher-focused perspective on DDL, meaning that 
the goal of this study is to tailor the corpus data (i.e. 
the concordance lines and the sentences used for 
the fill-the-gap exercises) to the (lexical) needs of 
the B2-level target audience as perceived by the 
teacher. However, it is important to highlight that, 
in an ideal scenario, this operation is 
complemented by data on how SFL learners 
themselves perceive their lexical needs. 

3.2 Datasets 

Given the specific FL learning setting, we cannot 
make use of general benchmarking datasets such as 
ALEXSIS (Ferrés and Saggion, 2022). Instead, we 
generate datasets from a 11M tokenised, POS-
tagged and lemmatised corpus containing 
newspaper articles on economics available within 
the pedagogically-oriented Spanish Corpus 
Annotation Project (SCAP; scap.ugent.be; 
Goethals, 2018). To arrive at the selection of target 
vocabulary items to be learned in the DDL 
activities, we first extract all candidate key 
vocabulary items from the corpus by means of a 
keyness calculation methodology (Gabrielatos, 
2018). We use the Log Ratio metric (Hardie, 2014) 
to compare the frequency of each lemma in the 
economic corpus with its frequency in a 94M 
reference corpus and calculate the effect size of the 
difference in frequencies. Next, only the candidate 
items with a statistically significant effect size 
according to the Bayesian Information Criterion 
(values ≥2; Wilson, 2013) are maintained. Finally, 
the resulting list is ranked from highest to lowest 
keyness and all items are assigned a difficulty level 
by the dictionary-based difficulty level classifier of 
SCAP, after which the top 25 nouns of a C1 level 
(i.e. the proficiency level to be acquired) are 
selected as the final set of target vocabulary items. 
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For each of the 25 selected target items, all 
sentences in which the lemma of the item occurs 
are then extracted from the 11M economic corpus. 

3.3 Example Selection 

Prior to performing LS on them, the datasets can 
already be brought one step closer to the needs of 
FL learners by filtering out unsuitable sentences, an 
intervention which has often been neglected in 
previous research (Pilán et al., 2016). This filtering 
consists in applying a series of criteria sentences 
need to comply with in order to be comprehensible 
in isolation (Kilgarriff, 2009). To perform this 
automatic sentence selection for FL learning 
purposes, we develop an example sentence 
selection methodology based on the HitEx 
framework for Swedish (Pilán et al., 2016). A 
complete overview of the criteria and the definition 
of the corresponding parameters is to be found in 
Appendix A. Table 1 presents the dataset sizes 
before (“Original”) and after (“Selection”) 
applying the example selection methodology. 

3.4 Lexical Simplification 

3.4.1 Complex Word Identification 

To tailor the CWI strategy to the teacher-focused 
DDL setting, we build a classifier which is able to 
predict, for all words in a given sentence, different 
complexity labels based on the proficiency levels 
described in the Common European Framework of 
Reference (CEFR). To this end, we first build a 
lexicon based on the PortaVoces (Buyse et al., 
2005) and Thematische Woordenschat (Navarro 
and Navarro Ramil, 2010) SFL vocabulary 
learning resources for Dutch-speaking learners, 
whose contents we combine into a single lexicon of 
2823 A-level lemmas, 1557 B1 lemmas, 1998 B2 
lemmas and 3584 C lemmas. Drawing on insights 
from FL learning research and taking into account 
criteria ranging from frequency to learner-specific 
features such as familiarity, these vocabulary 
learning resources are often taken as reference 
points in many SFL curricula for Dutch-speaking 
learners, and can thus serve as an indicator for the 
lexical needs of SFL students at a given stage of 
their language learning careers. In other words, the 
output of the classifier can help teachers identify 

Lemma (Log Ratio) Original Selection ≥1 CW 1 CW (noun/verb) Changed 
Arancel (7.72) 837 65 46 16 16 

Desaceleración (7.68) 272 39 23 3 3 
Competitividad (7.34) 699 83 58 16 14 
Depreciación (7.31) 258 36 26 12 12 
Competidor (6.61) 1272 113 67 27 25 

Revalorización (6.34) 313 58 24 12 12 
Liberalización (5.71) 347 25 15 3 3 

Puja (5.59) 311 51 27 11 11 
Remuneración (559) 645 93 57 23 21 

Robótica (5.47) 150 24 12 3 3 
Carburante (5.22) 173 25 14 10 10 
Anunciante (5.14) 169 27 20 6 6 

Canje (5.11) 232 31 24 13 13 
Cancelación (4.73) 364 37 21 11 11 
Emprendedor (4.62) 389 49 25 9 8 

Encarecimiento (4.57) 128 16 13 4 4 
Fomento (4.52) 167 19 15 5 5 

Dígito (4.5) 353 44 18 12 12 
Solvencia (4.23) 673 67 48 16 14 
Factoría (4.17) 331 24 16 8 8 
Plusvalía (4.1) 412 45 25 12 11 

Homologación (4.05) 140 15 12 3 3 
Normativa (3.73) 1680 148 112 31 29 
Captación (3.71) 274 45 29 16 15 
Provisión (3.59) 881 117 83 23 22 

 11 470 1296 830 305 291 

Table 1: Dataset statistics. 
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potentially complex words for a B2 target 
audience. 

To train the classifier, we fine-tune the base, 
cased version of RoBERTa-BNE for token 
classification, thus adopting a machine learning-
assisted approach. Apart from the pretrained model 
weights, training the token classifier also requires 
labelled sequences as input. To obtain this labelled 
data, all sentences from the SCAP corpora in which 
every content word has a matching entry in the 
previously elaborated lexicon are gathered (all non-
content words receive the A label) and split into a 
training (1 511 387 sentences), validation and test 
set (both 188 924 sentences). We train the token 
classifier for 3 epochs with a learning rate of 2e-5, 
AdamW as the optimiser and a weight decay of 
0.01, and obtain a 0.9983 macro F1 score on the 
test set. 

The classifier 1 , which thus offers unlimited 
coverage, is then applied to the 25 datasets. Every 
C-labelled token is identified as complex, unless it 
has a Dutch cognate2  or appears amongst the 25 
target items. As cognates have shown to be easily 
processed and learned by foreign language learners 
(De Groot and Keijzer, 2000), they usually possess 
low lexical complexity and thus should not be 
identified as such. In total, 64% of the selected 
sentences contain one or more potentially complex 

                                                            
1 huggingface.co/JasperD-UGent/roberta-
base-bne-complexity-classifier-v1 

content words for a B2 target audience (see “≥1 
CW” in Table 1), which highlights the need for LS 
in a FL learning setting. Next, the column “1 CW 
(noun/verb)” presents the number of sentences in 
which exactly one complex noun or verb was 
found: these sentences constitute the final dataset 
to be used in this study, as a one-per-sentence setup 
is most suitable to measure the exact impact of the 
simplification procedure. 

3.4.2 Substitution Generation 

To generate substitution candidates, we build upon 
the line of research of Qiang et al. (2021). Their 
automatic generation method, which offers 
potentially unlimited coverage, exploits the 
masked language modelling and next sentence 
prediction features of BERT models to get the 
probability distribution of the model’s vocabulary 
p(·|S\{w}) corresponding to the masked word w in 
sentence S. The input introduced into the BERT 
model is a sequence pair: the original sequence 
with the complex word being masked, preceded by 
the exact same sequence, but now with the complex 
word unmasked and a given percentage of the 
remaining tokens randomly masked (see Figure 1). 

In this study we use RoBERTa-BNE, apply 0.3 
as the ratio for randomly masking tokens in the 
prepended sequence, and bring the top 25 

2 A pair of words in different languages which are related 
and look similar, or which have the same origin. Spanish – 
Dutch example: ‘proyecto’ – ‘project’ (EN ‘project’). 

 
Figure 1: Illustration of masked language modelling using next sentence prediction (the special “<cls>” and 
“<sep>” tokens are used to initiate the input sequence and separate the items of the sentence pair, 
respectively). For the masked complex word esquivar in the original sentence, the top candidates from the 
probability distribution of the model’s vocabulary (50 262 entries) are collected. For the randomly masked 
tokens in the prepended sentence no predictions are generated. 
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candidates from the probability distribution to the 
substitution selection phase. As a novel aspect, we 
also add contextual information to the sequence in 
the form of the previous and following sentence of 
the corpus text from which the target sentence was 
taken. This adjustment is particularly useful in 
cases where the complex word is situated at the 
sentence-final position. In fact, when the previous 
and following sentence are not added, for 17 of the 
25 target sentences with the complex word at the 
sentence-final position no suitable substitution 
candidate is found, because almost all of the 25 
suggestions appeared to be punctuation marks. 
With the extra contextual information being added, 
this number decreases to 7 out of 25. 

3.4.3 Substitution Selection 

The first component of our substitution selection 
strategy is a POS filter, which excludes every 
candidate whose POS tag does not correspond to 
the POS tag of the complex word. Next, given the 
morphological richness of the Spanish language, an 
additional filter is applied: using spaCy’s (spacy.io) 
v3.3.1 morphologiser (“es_core_news_lg” model), 
the morphological features of the complex word 
are determined, after which all substitution 
candidates without matching features are 
discarded. The feature set consists of gender 
(masculine, feminine) and number (singular, 
plural) for nouns, and mood (indicative, 
subjunctive, imperative), person (1, 2, 3), number 
(singular, plural) and verb form (finite, infinitive, 

past participle, gerund) for verbs. To tailor the 
selection strategy to our FL learning context, a third 
component replaces the complex word by the 
substitution candidates, introduces each of these 
modified sentences into the CWI classifier (see 
Section 3.4.1) and eliminates every candidate for 
which the classifier predicted C as the complexity 
label. Finally, all morphological variants of the 
complex word are also excluded, as well as words 
whose lemma appears in the target sentence. 

3.4.4 Substitution Ranking 

In the last phase, all remaining substitution 
candidates are ranked based on the criteria 
described in Table 2. The six individual rankings 
are averaged to obtain one single final ranking. 

4 Results 

4.1 Evaluation of Suitability 

The LS method changed 291 of the 305 complex 
words included in the final datasets (see “Changed” 
in Table 1), corresponding to a 95.41% score on the 
“changed” metric (Horn et al., 2014). Apart from 
the 7 sentence-final cases mentioned earlier, the 
main reason for which no candidates are found is 
that the morphological filter appears to be too strict 
for, amongst others, sentence structures which 
allow both singular and plural replacements for a 
complex noun. If in such case none of the generated 
candidates shares the number of the complex noun, 
no candidates pass the selection phase. 

To evaluate the 291 simplified sentences, a novel 
evaluation method with SFL teachers as evaluators 
is applied, which is in line with the teacher-focused 
DDL perspective we adopted. After presenting 
them the background information explained in 
Section 3.1, we ask them to indicate, for each of the 
3 top-ranked substitution candidates of a given 
sentence, if replacing the complex word by the 
candidate results in a better, similar or worse 
example sentence (see Table 3). For each sentence, 
responses from 3 different teachers are collected 
(2619 annotations in total). Importantly, in the 
instructions we explicitly mention that changes in 

Number Criterion 

1 Probability value obtained from masked 
language modelling 

2 Language model score (Qiang et al., 2021) 
3 Lemma frequency in SCAP corpora 

4 Token frequency in SUBTLEX-ESP 
(Cuetos et al., 2011) 

5 
Cosine similarity with complex word using 

word2vec and fastText (fasttext.cc) 
pretrained static word embeddings 

6 
Cosine similarity with complex word using 

RoBERTa-BNE contextualised word 
embeddings 

Table 2: Substitution ranking criteria. 

Sentence Substitution Better Similar Worse 

La planta local también permitirá esquivar los aranceles. 
evitar    

escapar    
olvidar    

Table 3: Illustration of the annotation task, with aranceles as the vocabulary item to be learned. Teachers are 
asked to indicate if the substitutions for the complex word esquivar result in a more (“Better”), equally 
(“Similar”) or less (“Worse”) suitable example sentence to be used in the setting described in Section 3.1. 
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meaning should not be taken into account during 
evaluation, as long as the end result is a 
pedagogically suitable example sentence. This 
enabled us to analyse if FL learning as the target 
setting affects the importance of the meaning 
preservation criterion (see Section 4.2). 

Table 4 presents the main descriptive statistics 
taken from the experiment, with the “All” column 
reporting the results for all annotations combined 
and the three “R” columns showing the results 
broken down according to ranking position. 
Overall, the results show moderate agreement 
between the teachers (IAA of 0.26 and 35.4% of the 
sentences annotated equally by all 3 annotators), 
without any considerable differences between the 
ranking groups. Although these statistics suggest 
that evaluating the added value of LS for FL 
learning purposes is not a straightforward task, we 
consider the number of times in which at least two 
of the three teachers coincide (90.15% across all 

labels in “All”) as an indication that agreement is 
sufficiently high to draw valuable conclusions. 

First of all, the statistics reveal mixed 
performance results: when converting the 
annotations into a binary classification, 42.96% of 
the “R1” simplifications come out as suitable, a 
score which highlights both the potential of the 
method and its room for improvement. Next, the 
ranking component seems to perform well, as the 
first-ranked substitutions are considerably more 
annotated as better and considerably less as worse 
compared to “R3”. Third, the CWI classifier can 
still be improved: despite being found 
pedagogically suitable, 11.57% of the sentences are 
not evaluated as more simple compared to the 
original text, which indicates that the classifier 
labelled an equally complex word as more simple. 

4.2 Evaluation of Meaning Preservation 

For this supplementary analysis, we annotate all 
substitutions according to meaning preservation 
(see Table 5). The results suggest that meaning 
preservation is not a sine qua non for successful LS 
in a FL learning context, as replacing the complex 
word by an unrelated or even opposite concept 
does not prevent 45 sentences from being found 
suitable. However, meaning preservation does 
remain a key criterion, as is evidenced by the 
majority of the suitable sentences having the same 
meaning as the original word (189 sentences), or at 
least being related to it (106 sentences). Finally, it 
should be noted that substitutions which share the 
meaning of the complex word do not necessarily 
result in better example sentences. Many of those 
cases can be linked to the “idiomaticity” of the 
simplified sentence, which comes to the fore as an 
additional important criterion. This is evidenced in 
the results for sentence (c) in Table 5: despite being 
semantically equal to aliviar, none of the 3 teachers 

Metric All R1 R2 R3 
IAA .26 .28 .24 .26 

% 3/3 
agreement 35.4 36.08 32.65 37.46 

% better 
(≥2/3) 33.68 37.46 35.74 27.84 

% similar 
(≥2/3) 11.57 12.37 12.37 9.97 

% worse 
(≥2/3) 44.9 40.21 42.96 51.55 

% suitable 
(binary) 38.95 42.96 40.89 32.99 

Table 4: Performance results. “IAA” reports the 
inter-annotator agreement as measured by Fleiss’ 
Kappa, “≥2/3” refers to agreement between at least 
2 participants, and “binary” refers to the results of 
classifying the annotations into suitable (at least 2 
“better” annotations or 1 “better” and 2 “similar” 
annotations) and non-suitable (all other cases) 
simplifications. Percentages for “binary” correspond 
to the precision metric of Horn et al. (2014). 

Label Total Suitable 
(binary) Example 

Preserved 311 189 (c) Los aranceles pueden aliviar la presión que sufren los fabricantes. (‘Tariffs 
can alleviate pressure on manufacturers.’)  reducir (‘to reduce’) 

Related 258 106 
(d) Estoy muy contento con los 100.000 millones de dólares en aranceles que 

llenan nuestras arcas. (‘I am very happy with the $100 billion in tariffs that 
fill our treasury.’)  cuentas (‘bank accounts’) 

Unrelated 257 42 
(e) Las importaciones de baldosas chinas se cargarán con aranceles del 30% al 

69%. (‘Chinese tile imports will be charged tariffs from 30% to 69%.’)  
alfombras (‘carpets’) 

Opposite 47 3 
(f)  Sus principales competidores presentan retrocesos anuales muy fuertes. 

(‘Its main competitors show very strong annual declines.’)  incremento 
(‘increase’) 

Table 5: Overview of meaning preservation annotations. 
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annotated the substitution candidate relajar (‘to 
relax’) as “better”, because relajar la presión is a 
rather uncommon collocation. A similar case is that 
of multiword expressions, in which often only one 
formulation sounds idiomatic (e.g. agrupación de 
acciones  ?unión de acciones; ‘consolidation of 
shares  ?union of shares’). 

4.3 Evaluation of Grammaticality 

Finally, a manual grammaticality check of the 
output reveals that 50 simplifications result in 
incorrect sentences, with preposition issues being 
the main cause. The escapar prediction in Table 3 
is such an example, as this verb needs to be 
followed by the preposition de. Non-surprisingly, 
virtually all of these substitutions were annotated 
as “worse”, which suggests that, in a future version 
of the method, excluding non-grammatical 
simplifications alone can lead to considerable 
increases in performance. 

5 Discussion and Conclusion 

In this study, we presented a Spanish LS method 
tailored to FL learning as the target setting. By 
simplifying all potentially complex words except 
the vocabulary item to be studied, the method 
adapts DDL activities to a given proficiency level 
while also taking into account the language 
acquisition theory of providing comprehensible 
input which is just somewhat beyond the current 
knowledge of the target audience (Krashen, 1985). 
As we specifically focused on SFL learners with 
Dutch as their mother tongue, the findings of this 
study primarily contribute to LS for this particular 
language combination. However, if equivalent 
resources (graded vocabulary learning resources, 
language models, etc.) are available, the 
methodological design of the LS pipeline can be 
applied to any language. 

To analyse performance, a new type of human-
based evaluation was carried out, which revealed 
the potential of the system (43% of the top-ranked 
predictions being found suitable) and suggested 
that meaning preservation is an important though 
not always necessary condition for obtaining both 
successfully simplified and pedagogically suitable 
example sentences. However, the results also 
showed that the custom-made CWI classifier 
leaves room for improvement, that many 
simplifications lack idiomaticity and that the 
substitution selection component is not yet able to 
exclude all non-grammatical replacements. 

To overcome these limitations in the future, we 
first of all aim to further develop the CWI classifier 
and evaluate it in a separate experiment. Next, to 
arrive at grammatically correct and more idiomatic 
substitution candidates, we also plan to implement 
“typicality”-related measures (e.g. association 
measures based on co-occurrence data; Gries, 
2013) into the substitution selection and ranking 
components. Finally, we will study the addition of 
weights to the ranking calculation, in order to 
balance the relative importance of the criteria. 

As a final observation, it should be highlighted 
that the teacher-focused DDL perspective adopted 
in this study also comes with its limitations. The 
expert knowledge of teachers and the contents of 
scientifically grounded vocabulary learning 
resources (as the ones used in this study to train the 
CWI classifier) can be valuable indicators of 
lexical complexity, but they often exhibit a lack of 
systematicity and do not capture how FL learners 
perceive lexical complexity themselves (Tack et 
al., 2021). Therefore, in future research we will 
also collect “non-native data” and integrate them 
into the LS methodology. The pedagogically 
oriented evaluation, for instance, could be 
performed by SFL learners in the form of a best-
worst scaling experiment in which learners have to 
indicate the best and worst item in a set of four 
versions of the same sentence (the original 
sentence plus three sentences with the complex 
word being replaced by the three top-ranked 
substitution candidates). 
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Appendix A. Example Selection Criteria 
Table 6 in this appendix includes the criteria and 
values applied in the example sentence selection 
methodology (Section 3.3). Custom criteria which 
have been added to take into account the 
particularities of Spanish as the target language are 
indicated as “(CUSTOM)”. The tools used to 
process the corpus are the SCAP tokeniser, POS 
tagger (list of POS tags available at 
scap.ugent.be/static/SCAP_POS-tags_details.pdf) 
and lemmatiser, as well as spaCy’s v3.3.1 
dependency parser (“es_core_news_lg” model). 
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Criterion Values applied 
Search term  

Number of matches = 1 
Position of search term Anywhere in the sentence 

Well-formedness  
Dependency root = 1 

Ellipsis Not allowed: sentence has to contain a finite verb, a subject and a verbal root 
Incompleteness Sentence has to start with a capital letter and end with a punctuation mark 

Non-lemmatised tokens ≤ 5% of the tokens (non-lemmatised tokens are identified as tokens without a matching 
entry in the SCAP lemma list) 

Non-alphabetical tokens ≤ 5% of the tokens (non-alphabetical tokens are identified as tokens which have been 
assigned the “SYM” POS tag) 

Subject type (CUSTOM) Sentence has to contain an explicit subject, not an implicit subject integrated into the verb 
form 

Context independence  
Structural connective in 

isolation 
Not allowed: sentence cannot contain connectives in sentence-initial position unless it 

consists of more than one clause 
Pronominal anaphora Not allowed: sentence cannot contain tokens which have been assigned the “DM” tag or 

which have eso, esto, aquello or tal as their lemma 
Adverbial anaphora Not allowed: sentence cannot contain time or location adverbs which behave anaphorically, 

such as entonces (‘then’) 
L2 complexity  

L2 complexity in CEFR 
level 

This criterion is excluded, as complex words are supposed to be identified in the CWI step 
and replaced by simpler alternatives 

Additional structural 
criteria 

 

Negative formulations Not allowed: sentence cannot contain tokens which have been assigned the “CCNEG” or 
“NEG” tag 

Interrogative sentence Not allowed: sentence cannot contain question marks 
Direct speech Allowed 

Answer to closed 
questions 

Not allowed: sentence cannot start with adverbs or interjections such as sí (‘yes’) or no 
(‘no’) preceded and followed by delimiters such as commas 

Modal verbs Allowed 
Sentence length ≤ 40 tokens 

Additional lexical criteria  
Difficult vocabulary This criterion is excluded, as complex words are supposed to be identified in the CWI step 

and replaced by simpler alternatives 
Word frequency No limitations 

Sensitive vocabulary Not allowed: sentence cannot contain tokens which appear in a self-compiled list of swear 
words 

Typicality No limitations 
Proper names Not allowed: sentence cannot contain tokens which have been assigned the “XP” tag 
Abbreviations Not allowed: sentence cannot contain tokens which have been assigned the “ACRNM” or 

“UMMX” tag 

Table 6: Example selection criteria. 

110



Proceedings of the Workshop on Text Simplification, Accessibility, and Readability (TSAR-2022), pages 111 - 118
December 8, 2022 ©2022 Association for Computational Linguistics

Eye-tracking based classification of Mandarin Chinese readers with and
without dyslexia using neural sequence models
Patrick Haller1, Andreas Säuberli1, Sarah E. Kiener1

Jinger Pan3, Ming Yan4, Lena A. Jäger1,2
1University of Zurich 2University of Potsdam

3The Education University of Hong Kong 4University of Macau
haller@cl.uzh.ch andreas@cl.uzh.ch sarahelisabeth.kiener@uzh.ch

jpan@eduhk.hk mingyan@um.edu.mo jaeger@cl.uzh.ch

Abstract

Eye movements are known to reflect cogni-
tive processes in reading, and psychological
reading research has shown that eye gaze pat-
terns differ between readers with and without
dyslexia. In recent years, researchers have at-
tempted to classify readers with dyslexia based
on their eye movements using Support Vector
Machines (SVMs). However, these approaches
(i) are based on highly aggregated features av-
eraged over all words read by a participant,
thus disregarding the sequential nature of the
eye movements, and (ii) do not consider the
linguistic stimulus and its interaction with the
reader’s eye movements. In the present work,
we propose two simple sequence models that
process eye movements on the entire stimu-
lus without the need of aggregating features
across the sentence. Additionally, we incorpo-
rate the linguistic stimulus into the model in
two ways—contextualized word embeddings
and manually extracted linguistic features. The
models are evaluated on a Mandarin Chinese
dataset containing eye movements from chil-
dren with and without dyslexia. Our results
show that (i) even for a logographic script such
as Chinese, sequence models are able to clas-
sify dyslexia on eye gaze sequences, reaching
state-of-the-art performance, and (ii) incorpo-
rating the linguistic stimulus does not help to
improve classification performance.1

1 Introduction

Reading effortlessly constitutes a key skill in mod-
ern society. Individuals suffering from develop-
mental dyslexia are characterized by specific and
persistent reading problems. Global prevalence es-
timates range from 3 to 7% (Landerl et al., 2013;
Peterson and Pennington, 2012). Previous research
has consistently shown that early diagnosis and in-
tervention is key to mitigate the resulting long-term
consequences (Vaughn et al., 2010).

1Model code is publicly available and can be found under
https://github.com/hallerp/dyslexia-seqmod.

Figure 1: Proposed approach. Each eye-movement read-
ing measure vector is concatenated with contextualized
word embeddings and used as input for the sequence
models to infer whether a reader suffers from dyslexia.

Psychological and clinical research on eye move-
ment patterns has revealed that individuals with
dyslexia exhibit gaze patterns that differ signifi-
cantly from the patterns observed in individuals
without dyslexia (Rayner, 1998; Pan et al., 2014).
In particular, scanpaths of individuals with dyslexia
are characterized by longer fixation durations, more
fixations, decreased saccade durations and a higher
proportion of regressions. In recent years, increas-
ing effort has been spent on utilizing these find-
ings and applying supervised classification meth-
ods such as SVMs and Random Forests on eye
movement data (see Kaisar 2020 for an overview)
to infer the presence or absence of dyslexia. There
are several reasons why automatized approaches
for assistance in dyslexia detection are desirable.
Currently, paper-pencil diagnostic tools are con-
ducted by trained speech therapists. These tools
are time-intensive and are typically only consid-
ered after a suspected case has been reported by
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observant educational staff, leaving many cases
overlooked. Eye-movement-based diagnostic tools
have the potential to be deployed in schools in a
relatively inexpensive manner and as part of a stan-
dard procedure aimed at early and comprehensive
detection of dyslexia; making an important contri-
bution to educational equity.
Although the aforementioned approaches provide
promising results, they suffer from specific draw-
backs: (i) The model input consists of eye move-
ment features, aggregated for each subject over the
presented stimulus material (text), thus disregard-
ing the sequential nature of the eye movements; (ii)
both the linguistic stimulus and its interaction with
the reader’s eye movements are not considered. For
classification purposes, this does not pose a prob-
lem per se. However, it does not allow us to inves-
tigate questions such as: Which words (or, more
specifically, what linguistic properties of the stim-
ulus) are particularly informative to discriminate
between individuals with and without dyslexia?
In the present work, we propose two neural se-
quence models, depicted in Figure 1, that process
the eye movements on the entire stimulus without
the necessity of feature aggregation over the sen-
tence. To incorporate the linguistic stimulus into
the model, we use pre-trained contextualized word
embeddings. We evaluate our model on an eye-
tracking-while-reading dataset from children with
and without dyslexia reading Mandarin Chinese
sentences by Pan et al. (2014).

2 Related Work

2.1 ML-based detection of dyslexia

To date, various data types and signals have been
utilized to solve the task of automated detection of
dyslexia such as text, MRI scans (Cui et al., 2016),
EEG recordings (Frid and Breznitz, 2012), student
engagement data (Abdul Hamid et al., 2018) as
well as eye-tracking data (Rello and Ballesteros,
2015; Raatikainen et al., 2021; Benfatto et al.,
2016). Benfatto et al. (2016) train a Support Vector
Machine with recursive feature elimination (SVM-
RFE) on 168 eye-tracking features obtained from
an eye-tracking-while-reading dataset from 185
Swedish children (aged 9-10 years). Their best
SVM-RFE model selected 48 features and achieved
an accuracy score of 95.6% ± 4.5% (sic!) on a bal-
anced dataset. We reimplement this method and
use it as a reference method (cf. 4.1). Jothi Prabha
and Bhargavi (2020), using the same dataset as Ben-

fatto et al. (2016), experiment with various feature
selection algorithms and machine learning mod-
els. They find that feature selection via Principle
Component Analysis (PCA) in combination with a
Particle Swarm Optimization based Hybrid Kernel
SVM classifier yields the best accuracy.
Raatikainen et al. (2021) combine a Random For-
est classifier for feature selection with an SVM,
achieving an accuracy of 89.7%. They expand their
feature space with transition matrices that represent
the number of transitions between the different seg-
ments (question, answer selection) in a trial as well
as the number of gaze shifts within one segment.

2.2 Modeling eye-tracking data with deep
neural sequence models

Eye movement data for task inference. Deep
neural sequence models have been deployed to
solve inference tasks based on eye movements such
as reader (Jäger et al., 2019) and viewer identifi-
cation (Lohr et al., 2020; Makowski et al., 2020,
2021), ADHD detection (Deng et al., 2022) as well
as the prediction of reading comprehension (Reich
et al., 2022).

Integrating the linguistic stimulus. There has
been growing interest in combining language and
eye movement models to predict gaze patterns dur-
ing naturalistic reading (Hollenstein et al., 2021;
Merkx and Frank, 2021; Hollenstein et al., 2022).
Wiechmann et al. (2022) investigate the role of
general text features and their interaction with eye
movement patterns in predicting human reading
behavior and find that models incorporating the
linguistic stimulus improves prediction accuracy.

3 Problem Setting

We investigate the two closely related tasks of
classifying (i) whether a given eye gaze sequence
on one sentence is from a reader with or with-
out dyslexia and (ii) whether a given eye gaze
sequence on a set of sentences is from a reader
with or without dyslexia. Formally, our train-
ing data can be represented as a set D =
{(W11, y1), . . . , (WNM , yN )}, where Wij =
⟨wij1 . . .wijK⟩ is a sequence of reading measure
vectors2 for each word k ∈ 1 . . .Kj obtained from
subject i reading sentence j, where N is the num-
ber of participants, M is the number of stimulus
sentences read by each of the participants and Kj

2Cf. the list of reading measures in Appendix B.
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the number of words in a given sentence j. Each
reading measure vector consists of R reading mea-
sures, i.e., wijk = (rijk1 . . . rijkR). The binary
target label yi denotes whether participant i is a
reader with or without dyslexia. For (i), our goal is
to train a binary classifier gθ such that

ŷi =

{
1, if gθ(Wij) ≥ δ

0, else,

where δ denotes the decision threshold and θ

the set of hyperparameters. Accordingly, for (ii),
ŷi = 1, if 1

M

∑M
j=1 gθ(Wij) ≥ δ.

The performance of a binary model can be charac-
terized by a false-positive and a true-positive rate.
By altering the decision threshold δ, a receiver op-
erator characteristic (ROC) curve can be derived,
with the area under the curve providing an aggre-
gated measure for all possible values of δ.

4 Methods

4.1 Reference method

As a baseline method, we train an SVM-RFE, fol-
lowing the procedure described by Benfatto et al.
(2016). We use the scikit-learn implementation (Pe-
dregosa et al., 2011) of the SVM-RFE with a linear
kernel. In the subject-prediction setting, we use eye
movement features from each subject aggregated
(mean and standard deviation) across trials and sen-
tences as input vectors. In the sentence-prediction
setting, we use aggregates of each sentence over all
trials, yielding 2 × 12 = 24 features per instance
in both settings.3

4.2 Proposed neural sequence models

Both models take as input an enriched reading mea-
sure vector rij (cf. Section 4.2.1) of a sentence j
read by participant i, normalized for each train/test
set separately, and predict a label yi. We tune both
models using random search.

LSTM. We implement a bidirectional recurrent
neural network with LSTM cells. The mean of the
hidden states is fed into a linear layer projecting it
down to a single sigmoid output to represent the
label prediction. Optimized hyperparameters and
search space are reported in Appendix 2.

3We also experimented with training random forests as
baseline, however, they were outperformed by the SVM-RFE.

CNN. We implement a CNN that convolves the
input accross the word sequence axis. It consists of
two convolutional layers, each followed by a pool-
ing layer, two dense layers, and a sigmoid output
unit. Hyperparameters are listed in Appendix 2.

4.2.1 Incorporating the linguistic stimulus

Using contextualized word embeddings. To in-
corporate the linguistic stimulus (the words oc-
curring in the current sentence), we first extract
768-dimensional BERT embeddings ejk for each
word w in a given sentence j, using the pre-trained
BERTBASE-embeddings, provided by Hugging Face
(Wolf et al., 2020), and concatenate them with the
reading measure vector wijk, resulting in an en-
riched reading measure vector rijk. Concatenat-
ing the full embedding to the feature vectors results
in 768 + R dimensions, resulting in a substantial
increase in parameters to be estimated. Given the
small amount of available training data, we test
two methods of dimensionality reduction: (i) We
perform PCA on the word embeddings and use the
first 20 principal components. (ii) Mean-difference-
encoding: In order to capture domain-specific in-
formation from the word embeddings relating to
differences in reading behaviour exhibited by indi-
viduals with and without dyslexia, we propose an
alternative method, which we call mean-difference-
encoding: We train a feed-forward neural network
with one hidden layer of size 20 to predict differ-
ences between the mean values of each eye move-
ment feature between the two groups for each word
based on its original word embedding. The values
of the hidden layer are a compressed representa-
tion of the original embedding that is optimized
to encode information that discriminates between
children with and without dyslexia. In order to
avoid train-test data leakage, in each fold, the mean-
difference-encoder is trained from scratch on the
respective training set.

Using manually extracted features. As an alter-
native way to incorporate the linguistic stimulus,
we add a range of manually extracted linguistic fea-
tures for each token wjk in sentence j: Surprisal,
i.e., − log p(wjk | wj<k), estimated with GPT-
2 (Radford et al., 2019), part of speech, dependency
relation type, distance to syntactic head, extracted
using spaCy (Honnibal et al., 2020), mean charac-
ter frequency and lexical frequency extracted from
SUBTLEX-CH (Cai and Brysbaert, 2010).
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5 Experiments

Data. We employ eye-tracking-while-reading
data from 62 Mandarin Chinese children (33 with
dyslexia) provided by Pan et al. (2014). Partic-
ipants were instructed to read 60 sentences out
loud while their eye movements were recorded.
40 sentences were selected from fifth grade text-
books and 20 additional control sentences were
extracted from the Beijing Sentence Corpus (Pan
et al., 2022). The dyslexia label had been assigned
when a child scored at least 1.5 standard deviations
below their corresponding age mean in standard
character recognition test (Shu et al., 2003).

5.1 Evaluation procedure
We evaluate our models using 10-fold nested cross-
validation in two settings. In the sentence predic-
tion setting, we predict the label from a single sen-
tence, read by a given subject. In the subject predic-
tion setting, we average the sigmoid outputs from
all sentences read by a given subject in order to
obtain a subject-level prediction. In both settings,
sentences are stratified over 10 folds, balanced by
group. Data from the same subject is always con-
strained to one fold, thus, the model always makes
predictions for unseen subjects.

Hyperparameter tuning. For each test fold, we
iterate through 9 validation folds, training 50
LSTM and 100 CNN models using randomly sam-
pled parameter combinations for each fold. We
select the highest scoring parameter set over all
9 validation folds and train a final model using 8
training folds. We use one left-out fold for early
stopping and evaluate it on the test fold.

5.2 Results
For all methods, we report AUC as well as accuracy,
recall, precision and the harmonic precision-recall
mean F1 for a decision threshold of 0.5 on subject-
and sentence-level. As can be seen in Table 1, our
proposed models reach but do not outperform state-
of-the art performance. While on subject-level,
the CNN architecture enriched with PCA-reduced
word embeddings achieves the highest AUC, on
sentence-level, the best results are obtained by the
LSTM that solely includes eye-movement features.
Overall, we note that classification performance
on subject-level is higher than on sentence-level
and that adding the linguistic stimulus does not aid
classification performance, neither as contextual-
ized word embeddings nor as manually-extracted

Figure 2: ROC curves over all test sets for best
performing model (LSTM with no linguistic stimulus
representation) on sentence-level.

features. Furthermore, as can be seen in Figure 2,
performance varies considerably with respect to dif-
ferent test sets. We also observe that the variance
in AUC for models enriched with the linguistic
stimulus is larger for LSTMs compared to CNNs.
Lastly, our domain-specific dimensionality reduc-
tion method (cf. Section 4.2.1) has no advantage
over PCA, although the former is explicitly trained
on differences between the two groups.

6 Discussion

Our proposed neural sequence models reach state-
of-the-art performance on solving the task of detect-
ing dyslexia from eye gaze sequences, for the first
time investigated for a logographic script such as
Chinese. Our results suggest that for our dataset, (i)
neural architectures processing eye-movement se-
quences along the sentence have no advantage over
the parsimonious SVM-baseline where features are
aggregated over the sentence, and (ii) enabling the
interaction between stimulus input and eye move-
ments does not improve classification performance.
However, after having shown that our approach is
able to reach SOTA performance, we aim to exploit
its properties to investigate the informativeness of
particular sentences, words, and other linguistic
sub-units for dyslexia detection in the future.
Furthermore, for all investigated models, the over-
all performance appears to be driven by a small
subset of individuals who presumably exhibit less
typical reading behavior among their group and
were more difficult to classify. Given that dyslexia
is a spectrum disorder—not binary as it is often
perceived—it is to be expected that individuals that
are not located at the two extremes (clearly dyslexic
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Architecture Evaluation Metrics
Model Stimulus representation AUC Accuracy Recall Precision F1

S
U

B
JE

C
T-

L
E

V
E

L

Baseline 0.93 (±0.03) 0.90 (±0.03) 0.87 (±0.04) 0.97 (±0.03) 0.91 (±0.03)

LSTM

None 0.91 (±0.03) 0.90 (±0.03) 0.88 (±0.05) 0.98 (±0.02) 0.92 (±0.03)

BERT meandiff 0.88 (±0.03) 0.80 (±0.06) 0.78 (±0.06) 0.93 (±0.06) 0.83 (±0.06)

BERT PCA 0.90 (±0.03) 0.83 (±0.05) 0.81 (±0.06) 0.97 (±0.03) 0.87 (±0.04)

Manually extracted 0.87 (±0.04) 0.87 (±0.05) 0.84 (±0.05) 0.97 (±0.03) 0.89 (±0.04)

CNN

None 0.91 (±0.04) 0.90 (±0.03) 0.86 (±0.04) 1.00 (±0.00) 0.92 (±0.02)

BERT meandiff 0.91 (±0.03) 0.90 (±0.03) 0.88 (±0.04) 0.97 (±0.03) 0.91 (±0.02)

BERT PCA 0.93 (±0.03) 0.87 (±0.02) 0.86 (±0.04) 0.93 (±0.04) 0.88 (±0.02)

Manually extracted 0.89 (±0.04) 0.83 (±0.04) 0.80 (±0.05) 0.97 (±0.03) 0.86 (±0.03)

S
E

N
T

E
N

C
E

-L
E

V
E

L

Baseline 0.85 (±0.03) 0.78 (±0.02) 0.79 (±0.04) 0.76 (±0.02) 0.77 (±0.02)

LSTM

None 0.85 (±0.03) 0.77 (±0.03) 0.74 (±0.04) 0.83 (±0.03) 0.78 (±0.03)

BERT meandiff 0.81 (±0.04) 0.68 (±0.04) 0.65 (±0.04) 0.86 (±0.05) 0.72 (±0.03)

BERT PCA 0.79 (±0.04) 0.66 (±0.04) 0.64 (±0.04) 0.85 (±0.05) 0.71 (±0.03)

Manually extracted 0.77 (±0.05) 0.71 (±0.03) 0.67 (±0.03) 0.85 (±0.05) 0.74 (±0.03)

CNN

None 0.84 (±0.02) 0.76 (±0.02) 0.73 (±0.02) 0.83 (±0.04) 0.77 (±0.02)

BERT meandiff 0.82 (±0.03) 0.75 (±0.02) 0.72 (±0.02) 0.82 (±0.04) 0.76 (±0.02)

BERT PCA 0.82 (±0.03) 0.74 (±0.02) 0.70 (±0.02) 0.85 (±0.04) 0.76 (±0.02)

Manually extracted 0.82 (±0.03) 0.74 (±0.02) 0.69 (±0.02) 0.86 (±0.03) 0.76 (±0.02)

Table 1: Classification results using 10-fold cross validation on subject- and sentence-level. We report AUC, accuracy,
recall, precision and F1 [results ± standard error]. The latter four were computed for a decision threshold of 0.5.

or clearly not dyslexic) are more difficult to classify
in a binary environment.
Our study was able to show that an SVM-based ap-
proach, previously applied to alphabetic languages
such as Swedish and Spanish, also works well on a
logographic script such as Chinese. In future work,
we would like to test our approach on alphabetic
language data sets. This is particularly interesting
given the fact that young Chinese readers are faced
with different challenges, e.g., the absence of or-
thographic word boundaries, therefore requiring
word segmentation, and the much larger number of
characters required to be memorized.

Limitations. It should be noted that our dataset
contained very little data. Considering that the
number of parameters of our sequence models ex-
ceeded the one of the baseline model by orders of
magnitude, it might be worth comparing the ap-
proaches again, once more data is available. The
problem of data scarcity might be alleviated by pre-
training on domain general eye-tracking datasets
or with data augmentation methods4. Furthermore,
we did not have access to the raw scores of the char-
acter recognition task. While our methods did not
outperform the baseline in this binary environment,
it would be interesting to assess their performance
on a regression task.

4In a preliminary experiment, we pre-trained our models
on the Beijing Sentence Corpus (Pan et al., 2022) and found
that it did not increase classification performance.

7 Conclusion

For the first time, we deploy models to detect
dyslexia from eye gaze sequences on data from
Mandarin Chinese readers. We propose two se-
quence classification approaches that (i) take as
input the full, non-aggregated linguistic stimulus
and (ii) model the interaction of the stimulus with
the eye movements. As a comparison, we adapt
a previously proposed SVM-based approach for
Mandarin Chinese. We find that all models reach
SOTA performance for data based on a logographic
script such as Chinese. In addition, we find that
incorporating the linguistic stimulus does not im-
prove the models’ performance. Given that we
reach SOTA performance on a very small dataset,
our approach has proven worthwhile to be pursued,
expanded, and further tested (e.g., on alphabetic
language data sets). It has the potential to be suc-
cessfully deployed in the context of automatized
approaches for dyslexia detection with the final
objective being the improvement of educational
equity.
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A Pan et al.’s (2014) dataset

Each sentence was composed of seven to 13 words
and each word consisted out of one to three char-
acters, with 38 one-character words, 372 two-
character words and 22 three-character words. Sen-
tences in which a child blinked while reading a
word, except the first and last one, are not included
in the final dataset. The set therefore contains the
data for between 24 up to 59 sentences for each
child.

B Reading Measures

Word-level reading measures used as input for both
the baseline models (aggregated over text or sub-
ject, respectively) and the neural models. All dura-
tions are in ms. Saccade distances refer to distances
with respect to x/y-axis coordinates. Landing posi-
tion refers to character index within a fixated word.

• Horizontal location of fixation on screen
• Total gaze duration (sum of all fixations landing

on the word before moving away from it)
• Landing position of first fixation within the word
• Landing position of last fixation within the word
• Duration of first fixation
• Duration of outgoing saccade
• Horizontal distance of outgoing saccade
• Vertical distance of outgoing saccade
• Total distance of outgoing saccade
• Duration of incoming saccade
• Horizontal distance of incoming saccade
• Vertical distance of incoming saccade

C Hyperparameter tuning

Model Hyperparameter Range

Both
Batch size [8, 16, 32, 64, 128]
Learning rate 15× U ∼ (1e−5, 1e−1)
Decision boundary 20× U ∼ (0.35, 0.65)

LSTM Hidden layer size [10, 20, . . . , 70]

CNN

C1 # channels [5, 10, . . . , 30]
C1 kernel [3, 5]
C1 pooling [average, max]
C2 # channels [10, 20, . . . , 50]
C2 kernel [3, 5]
C2 pooling [average, max]
L1 size [10, 20, . . . , 60]
dropout [0.1, 0.2, . . . 0.7]

Table 2: Hyperparameter space for LSTMs and CNNs.
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Abstract 
Research has explored the use of automatic text 
simplifcation (ATS), which consists of tech-
niques to make text simpler to read, to provide 
reading assistance to Deaf and Hard-of-hearing 
(DHH) adults with various literacy levels. Prior 
work in this area has identifed interest in and 
benefts from ATS-based reading assistance 
tools. However, no prior work on ATS has 
gathered judgements from DHH adults as to 
what constitutes complex text. Thus, following 
approaches in prior NLP work, this paper con-
tributes new word-complexity judgements from 
11 DHH adults on a dataset of 15,000 English 
words that had been previously annotated by L2 
speakers, which we also augmented to include 
automatic annotations of linguistic character-
istics of the words. Additionally, we conduct 
a supplementary analysis of the interaction ef-
fect between the linguistic characteristics of 
the words and the groups of annotators. This 
analysis highlights the importance of collecting 
judgements from DHH adults for training ATS 
systems, as it revealed statistically signifcant 
interaction effects for nearly all of the linguistic 
characteristics of the words. 

Introduction 

Automatic text simplifcation (ATS) consists of 
computing techniques that make text simpler to 
read, while preserving the meaning of the origi-
nal text (Shardlow, 2014; Siddharthan, 2014; Al-
Thanyyan and Azmi, 2021). ATS can be applied at 
the lexical level by replacing complex words with 
simpler synonyms, at the syntactic level by rewrit-
ing sentences to reduce their syntactic complexity, 
or by doing both at the same time (Shardlow, 2014; 
Siddharthan, 2014; Al-Thanyyan and Azmi, 2021). 
Prior work has explored the use of ATS to pro-
vide reading assistance to different user groups, 

including non-native speakers (henceforth referred 
to as L2 speakers) and Deaf and Hard-of-hearing 
(DHH) adults because of their diversity in literacy 
skill (e.g., Azab et al., 2015; Alonzo et al., 2020; 
Kushalnagar et al., 2018; Ehara et al., 2010). 

While there have been many efforts into the use 
of ATS for assistive applications, most ATS re-
search from a natural language processing (NLP) 
perspective focuses on improving the machine 
learning models supporting those applications. 
However, training data for these models is scarce 
as texts are not usually written at various levels 
of linguistic complexity and thus the access to the 
needed corpora is limited (e.g., Simple Wikipedia 
or Newsela) (Coster and Kauchak, 2011; Xu et al., 
2015). 

In recent work, researchers created a dataset of 
15,000 English words from a general lexicon, ob-
taining word-complexity judgement on all 15,000 
words from adult L2 speakers (Maddela and Xu, 
2018). Using this dataset to train simplifcation 
models provided promising results (Maddela and 
Xu, 2018). However, considering that research 
has identifed that various linguistic characteristics 
may affect text complexity differently for differ-
ent reader groups (Paetzold and Specia, 2016b), 
researchers have called for the creation of datasets 
with judgements from intended target audiences 
(Gooding, 2022; Maddela and Xu, 2018). Prior 
work identifed benefts from lexical simplifca-
tion among DHH adults (Alonzo et al., 2020); 
thus, we collect judgements from DHH adults on 
the lexicon previously created in Maddela and Xu 
(2018). Then, to understand whether there is in-
deed value in gathering these judgements from an-
notators from target reader groups, we conduct an 
analysis of complexity judgements, to determine 
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whether there was an interaction effect between the 
annotator groups and various linguistic characteris-
tics of words, which had been identifed as relevant 
for word complexity in prior work. 

As the main contribution of this paper, we collect 
and publicly release1 word-complexity judgements 
from DHH adults (and automatically-computed lin-
guistic characteristics) on a set of 15,000 words, 
which had previously been annotated by L2 speak-
ers in prior work. As a supplementary contribution, 
we provide an additional analysis of the interac-
tion effects between the groups of annotators and 
the linguistic characteristics identifed, which high-
light the importance of collecting word-complexity 
judgements with annotators from different reader 
groups. 

2 Related Work 

Advances in ATS have motivated research into its 
use to support the reading tasks of various groups 
of people, including people with disabilities such 
as dyslexia or aphasia (e.g., Rello et al., 2013a; 
Devlin and Unthank, 2006) , or people who are 
DHH (e.g., Alonzo et al., 2020), as well as children 
(e.g., De Belder and Moens, 2010; Xu et al., 2015) 
or foreign language learners (e.g., Azab et al., 2015; 
Ehara et al., 2010.) A key challenge in the feld, 
however, is obtaining access to datasets (Xu et al., 
2015) and there have been calls in the community 
for the collection of datasets from people from the 
intended audiences for the systems (Paetzold and 
Specia, 2016b; Maddela and Xu, 2018; Gooding, 
2022). In the next section, we summarize work 
on obtaining datasets for ATS and motivate our 
approach. 

2.1 Datasets for Automatic Text Simplifcation 

As mentioned in the introduction, there are var-
ious approaches to automatic text simplifcation, 
including lexical and syntactic approaches (Shard-
low, 2014; Al-Thanyyan and Azmi, 2021), and 
there have been efforts to create datasets for both 
of these tasks (Xu et al., 2015; Al-Thanyyan and 
Azmi, 2021). When it comes to syntactic simplif-
cation, most approaches require sentence-aligned 
training data. Thus, researchers have typically cre-
ated datasets based on aligning the sentences of ex-
isting resources that provide texts at different levels 
of complexity. These include the articles provided 

1https://github.com/oliveralonzo/ 
DHH-lexical-dataset 

in Simple English in Wikipedia (Kauchak, 2013; 
Jiang et al., 2020), as well as news articles from 
Newsela, a website that provides news articles with 
human-produced simplifcations (Xu et al., 2015). 

When it comes to lexical simplifcation, the two 
main tasks that require the use of datasets are the 
complex word identifcation (CWI) stage, where 
systems identify potential words to simplify, and 
the substitution generation (SG) stage, where sys-
tems identify potential synonyms to replace a com-
plex word (Shardlow, 2014; Paetzold and Spe-
cia, 2016b). While sentence-aligned datasets can 
also be used for lexical simplifcation by identify-
ing complex words that have been replaced, most 
datasets created specifcally for lexical simplifca-
tion are obtained by having readers judge individ-
ual isolated word forms (e.g., Maddela and Xu, 
2018; Gooding and Tragut, 2022) or identify com-
plex words in sentences (e.g., Paetzold and Specia, 
2016b). There are trade-offs with these approaches, 
including the fact that judging individual words 
is less time consuming, but identifying complex 
words in sentences may also provide insights into 
how a reader may judge a particular word in con-
text, which is especially relevant for polysemous 
words. 

As prior work has highlighted, many of the 
datasets presented in the literature are not targeted 
to any specifc group (Xu et al., 2015; Gooding, 
2022). However, evidence supports the need for 
collecting datasets with people from specifc tar-
get audiences for ATS, including the fact that what 
makes text complex may vary depending on various 
characteristics of a reader group (Paetzold and Spe-
cia, 2016b). While prior work has identifed bene-
fts from both syntactic and lexical simplifcation 
for people who are DHH (Kushalnagar et al., 2018; 
Alonzo et al., 2020), to the best of our knowledge 
no prior work has gathered datasets of judgements 
from DHH adults. 

3 The Dataset 

Our dataset was originally gathered by researchers 
in Maddela and Xu (2018) by selecting the 15,000 
most frequent words in Google’s IT Ngram Corpus. 
Word-complexity judgements on all 15,000 words 
were also obtained from 11 L2 English speakers 
using a 6-point scale, going from “very simple” (1) 
to “very complex” (6), and using 6 points to avoid a 
neutral choice (Maddela and Xu, 2018). In this new 
work, we expand this dataset by obtaining word-
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complexity judgements from 11 DHH annotators 
following that prior approach, and we also com-
pute several linguistic characteristics of the words. 
The selection of these linguistic characteristics was 
based on prior work, which had identifed linguistic 
characteristics (e.g., word length or number of syl-
lables) that had affected text complexity for various 
reader groups (Paetzold and Specia, 2016b). 

3.1 Annotators and Annotation Process 
Our 11 annotators were hired as part-time research 
assistants over 3 academic years at the Rochester 
Institute of Technology. All annotators identifed as 
DHH, and their reported frst languages included: 
ASL alone, English alone, ASL and English, and 
Chinese. At the beginning of their employment, our 
annotators completed the sentence-comprehension 
sub-test from the Wide Range Achievement Test 4 
(WRAT-4), which had previously been validated as 
a measure of DHH’s adults literacy skill. Their av-
erage WRAT-4 scores were 81 (SD = 11.62, range 
= 73 - 111), which is slightly below the U.S. aver-
age of 100. 

Following the approach of Maddela and Xu 
(2018), we provided our annotators with the list of 
individual words, and asked them to provide a com-
plexity judgement for each word using a 6-point 
scale where 1 meant "very simple" and 6 meant 
"very complex." A 6-point scale was employed to 
avoid a neutral choice. Furthermore, participants 
were instructed to rate a word as -1 if they consid-
ered that it was not a word. 

3.2 Linguistic Characteristics 
Prior work (Paetzold and Specia, 2016b) had identi-
fed that the relationship between various linguistic 
characteristics of words and their perceived com-
plexity for a reader may vary depending upon the 
reader group. Thus, to investigate whether per-
ceptions of word complexity among DHH anno-
tators differed from those of non-DHH annotators 
in prior work (Maddela and Xu, 2018), we com-
puted various linguistic characteristics for each 
word in the dataset. Notably, these characteris-
tics were computed separately from the annotation 
process, so our annotators did not see those char-
acteristics during the annotation process described 
above in section 3.1. Similar to linguistic proper-
ties investigated in prior work (e.g., Paetzold and 
Specia, 2016b), our characteristics were grouped 
into three categories: morphological, semantic and 
lexical features. These characteristics were com-

puted using a Python script and employing publicly-
available libraries as detailed below. 

3.2.1 Morphological Features 
The morphological features included word length 
and the number of syllables. Word length was 
computed using Python’s built-in function for 
string variables, while the number of syllables was 
computed using the ‘pronouncing’ Python mod-
ule2, which provides an interface for the CMU 
Pronouncing Dictionary. 

3.2.2 Semantic Features 
The semantic features included the number of 
senses (possible meanings for a word), synonyms 
(words with the same meaning), hypernyms 
(words that a specifc word is a type of, e.g., ‘num-
ber’ is a hypernym of ‘fve’) and hyponyms (words 
that are a type of a specifc word, e.g., ‘fve’ is a 
hyponym of ‘number’). All of these semantic fea-
tures were computed using the Natural Language 
ToolKit (NLTK) implementation of WordNet3. 

3.2.3 Lexical Features 
These lexical features consisted of unigram log-
probabilities based on their frequency on three cor-
pora used in: SubIMDB, a dataset comprised of 
38,102 subtitles obtained from OpenSubtitles and 
IMDB (Paetzold and Specia, 2016a); Subtlex, a 
dataset of 50 million English words containing their 
word frequencies based on American movies and 
TV shows (Brysbaert and New, 2009); and Simple 
Wikipedia, a dataset of articles from Wikipedia 
written in the Simple English language (Kauchak, 
2013). The unigram log-probabilities were com-
puted using the NLTK toolkit. 

4 Dataset Analysis and Results 

4.1 Descriptive Statistics 
When combining all the data from all of the DHH 
annotators, their average word-complexity judge-
ments were 2.2 (SD = 0.67), where 1 meant "very 
simple" and 6, "very complex." The average word-
complexity judgements previously obtained from 
L2 speakers in Maddela and Xu (2018), in turn, 
were 2.7 (SD = 0.83). Table 1a provides descriptive 
statistics for each of the linguistic characteristics. 

Following the approach of Maddela and Xu 
(2018) and Agirre et al. (2014), we computed the 
average of the Pearson correlation between each 

2https://pronouncing.readthedocs.io/en/latest/ 
3https://www.nltk.org/howto/wordnet.html 
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a) Descriptive Statistics b) Interaction Effect 
Linguistic Characteristics Average SD Range F Value Statistical Signifcance 
Length 7.1 2.4 1 to 18 15.42 Yes; p < 0.001 
Syllables 2.3 1 0 to 7 26.64 Yes; p < 0.001 
Senses 4.5 5.5 0 to 75 1.84 Yes; p < 0.001 
Synonyms 6.9 8.9 0 to 100 0.82 No; p = 0.87 
Hyponyms 3.4 4.6 0 to 59 0.55 No; p = 1 
Hypernyms 11.5 28.7 0 to 693 1.81 Yes; p < 0.001 
SubIMDB Unigram Log-probability -17.5 3.2 -26.4 to -6.5 3.01 Yes; p < 0.001 
Subtlex Unigram Log-probability -17.6 3.5 -24.4 to -6.2 2.85 Yes; p < 0.001 
Simple Wikipedia Unigram Log-probability -16.5 2.6 -22.2 to -7.5 2.18 Yes; p < 0.001 

Table 1: A summary of a) the descriptive statistics for each of the linguistic characteristics for all words in the 
dataset of the 15,000 most frequent English words (Maddela and Xu, 2018), and b) the results of the interaction 
effect between the group of annotators (DHH or L2 speakers) and each linguistic characteristic. 

annotator’s annotations and the average of the rest 
of the annotators, to assess the quality of the an-
notations. The average inter-annotator agreement 
for the annotations was 0.53, which is in line with 
the agreement observed in Maddela and Xu (2018) 
before removing outliers. Following their approach 
to identify outliers (i.e. defning an outlier as an an-
notation that had an absolute difference ≥ 2 from 
the average of the rest of the annotators) resulted 
in 11.2% of the annotations being identifed as out-
liers. After removing those, the average agreement 
was 0.55. However, we release our dataset and 
present our results without removing any outliers 
as the defnition of an outlier may vary depending 
on the application. 

4.2 Interaction Effects 

While it is possible to conduct signifcant difference 
testing between the overall judgements of DHH 
and L2 annotators (which, in fact, revealed signif-
icant differences), it may not be meaningful as it 
may simply suggest that the way the two groups 
of annotators calibrated to the scale was different. 
Furthermore, we were not concerned with identi-
fying exactly what features correlate with word 
complexity in our dataset as those would be better 
identifed through machine-learning models trained 
using this dataset. Instead, we were interested in 
whether, when conducting a two-factor analysis of 
the average judgements obtained from both groups, 
there is an interaction effect between the group and 
the linguistic characteristics outlined above. An 
interaction effect occurs when the effect of one 
independent variable on a dependent variable de-
pends on another independent variable. Thus, an 
interaction effect would suggest that the way these 
various linguistic characteristics affect word com-
plexity may be different for these two groups of 

annotators, thereby further motivating the need to 
collect datasets from specifc groups of annotators 
who, in our case, were DHH adults. 

Thus, we conducted two-way analyses of vari-
ance (ANOVA) where the dependent variable was 
the average judgements from annotators, and the 
independent variables were each of the linguistic 
characteristics of the words and the group of an-
notators. Overall, we observed interaction effects 
between the group of annotators and nearly all of 
the linguistic characteristics, with the exception of 
the number of synonyms and hyponyms. Table 1b 
provides the detailed results for these analyses. 

5 Discussion and Conclusion 

Our results provide further evidence for the impor-
tance of gathering judgments from intended audi-
ences to train systems using datasets based on those 
judgements. Prior work had suggested that the 
linguistic characteristics that affect text complex-
ity for different user groups may vary (e.g. word 
length may affect word complexity for people with 
dyslexia but less so for L2 speakers) (Rello et al., 
2013b; Paetzold and Specia, 2016b). Through 
our analysis of interaction effects, we observed 
that the way several linguistic characteristics affect 
word-complexity judgements depends indeed on 
the group of annotators that provide those judge-
ments. Thus, it is important to gather judgements 
from target audiences and build models based on 
those judgements, which may better capture the 
nuanced relations between how these different fea-
tures impact word complexity for target audiences. 

Limitations and Future Work 

Our work presented in this paper had various limi-
tations, and opens several avenues for future work: 
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1. There are different approaches to gather word-
complexity judgements. Our dataset is limited 
in that it provides out-of-context judgements 
from DHH annotators. Thus, it may miss the 
infuence of context on word complexity. Fu-
ture work should gather additional datasets 
that obtain in-context judgements. 

2. Our supplementary analysis focused mainly 
on whether the group of annotators affected 
how the various linguistic characteristics af-
fect word complexity, which served to validate 
the importance of our dataset. However, we 
do not discuss why or how those relationships 
work (e.g., why synonyms or hyponyms did 
not reveal signifcant differences) as our anal-
ysis did not provide insights into these aspects 
and thus our discussion would involve specu-
lation. Future work based on our dataset can 
focus on providing further insights into these 
issues. 

3. Our annotators were recruited from a univer-
sity campus. While we still observed diversity 
in their literacy skills, as measured by their 
WRAT-4 scores, future work should expand 
our dataset by collecting judgements from a 
broader group of DHH adults with varying 
levels of education. 

4. The main contribution of this paper consists 
of the release of the word-complexity dataset. 
However, future work should explore the util-
ity of this dataset for the various stages of 
lexical simplifcation (e.g. CWI, or substitu-
tion generation and ranking). Furthermore, 
future work should explore how the use of 
this dataset to train ATS systems may impact 
the utility of these systems for DHH adults. 
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Abstract

State-of-the-art text simplification (TS) systems
adopt end-to-end neural network models to di-
rectly generate the simplified version of the
input text, and usually function as a black-
box. Moreover, TS is usually treated as an
all-purpose generic task under the assumption
of homogeneity, where the same simplification
is suitable for all. In recent years, however,
there has been increasing recognition of the
need to adapt the simplification techniques to
the specific needs of different target groups.
In this work, we aim to advance current re-
search on explainable and controllable TS in
two ways: First, building on recently proposed
work to increase the transparency of TS sys-
tems (Garbacea et al., 2021), we use a large
set of (psycho-)linguistic features in combina-
tion with pre-trained language models to im-
prove explainable complexity prediction. Sec-
ond, based on the results of this preliminary
task, we extend a state-of-the-art Seq2Seq TS
model, ACCESS (Martin et al., 2020), to en-
able explicit control of ten attributes. The re-
sults of experiments show (1) that our approach
improves the performance of state-of-the-art
models for predicting explainable complexity
and (2) that explicitly conditioning the Seq2Seq
model on ten attributes leads to a significant
improvement in performance in both within-
domain and out-of-domain settings.

1 Introduction

Text simplification (henceforth TS) is a natural
language generation task aimed at transforming
a text into an equivalent that is more readable
and understandable for a target audience, while
preserving the original information and underly-
ing meaning. It involves a number of transforma-
tions applied at different linguistic levels, includ-
ing lexical, syntactic and discourse aimed at re-
ducing the complexity of content for the purpose
of accessibility and readability (see Siddharthan,
2011; Shardlow, 2014; Alva-Manchego et al., 2020;

Al-Thanyyan and Azmi, 2021; Jin et al., 2022,
for overviews). Simplification techniques have
been shown to be beneficial as reading supports
across a wide range of populations, from chil-
dren (De Belder and Moens, 2010; Kajiwara et al.,
2013), individuals with language disorders such as
aphasia (Carroll et al., 1999; Devlin and Unthank,
2006), dyslexia (Rello et al., 2013a,b) or autism
(Evans et al., 2014); language learners and non-
native English speakers (Petersen and Ostendorf,
2007; Paetzold and Specia, 2016), and people with
low literacy skills (Max, 2006; Candido Jr et al.,
2009; Watanabe et al., 2009). Moreover, TS tech-
niques have also been successfully employed as
a preprocessing step to improve the performance
of various downstream NLP tasks such as pars-
ing (Chandrasekar et al., 1996), machine transla-
tion (Gerber and Hovy, 1998; Hasler et al., 2017),
summarization (Beigman Klebanov et al., 2004;
Silveira and Branco, 2012), semantic role label-
ing (Vickrey and Koller, 2008), and information
extraction (Miwa et al., 2010). TS approaches typ-
ically learn simplification transformations using
parallel corpora of matched original and simpli-
fied sentences and can be classified into six cate-
gories (for recent overviews see Alva-Manchego
et al., 2020; Al-Thanyyan and Azmi, 2021): Early
approaches relied on either (1) manually gener-
ated rules for splitting and reordering sentences
(Candido Jr et al., 2009; Siddharthan, 2011) or
(2) learned simple lexical simplifications, i.e., one-
word substitutions (Devlin, 1998; Carroll et al.,
1998). Subsequent work has introduced (3) phrase-
based and syntax-based statistical machine trans-
lation techniques (Wubben et al., 2012; Xu et al.,
2016), (4) grammar induction (Paetzold and Spe-
cia, 2013; Feblowitz and Kauchak, 2013), and (5)
semantics-assistance, i.e., obtaining semantic rep-
resentations of the original sentences (Narayan and
Gardent, 2014; Štajner and Glavaš, 2017). More re-
cently, TS tasks have been approached with (6)
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neural machine translation methods, in particu-
lar sequence-to-sequence (Seq2Seq) models using
an attention-based encoder-decoder architecture
(Nisioi et al., 2017; Alva-Manchego et al., 2017;
Zhang et al., 2017). While the performance of
Seq2Seq TS models is impressive, most of these
models are black-box models characterized by the
lack of interpretability of their procedures (Alva-
Manchego et al., 2020). In recent years, there have
been growing calls to a move away from black-
box models toward explainable (white-box) models
(Loyola-Gonzalez, 2019; Qiao et al., 2020; Aguilar
et al., 2022). Moreover, recent work in TS suggests
that the performance of state-of-the-art TS systems
can be improved by conducting explainable com-
plexity prediction as a preliminary step (Garbacea
et al., 2021).

Another important trend in current TS research
is the growing recognition that the concept of ‘text
complexity’ is not homogeneous for different target
populations (Gooding et al., 2021). That is, rather
than viewing TS as a general task where the same
simplification is appropriate for everyone (one-fits-
all approach), researchers are placing a greater em-
phasis on the need to develop TS systems that can
flexibly adapt to the needs of different audiences:
For example, while second language learners might
struggle with texts with rare or register-specific vo-
cabulary, aphasic patients might be overwhelmed
by a high cognitive load associated with long, syn-
tactically complex sentence structures. In response,
recent TS research has begun to adopt methods
proposed in controllable text generation research
(see the 2 section for further discussion). Control-
lable text generation refers to the task of generating
text according to a given controlled property of a
text. More generally, the development of control-
lable text generation systems makes an important
contribution to the general development of ethical
AI applications. This requires the ability to avoid
biased content such as gender bias, racial discrim-
ination, and toxic words. In addition, it is widely
seen as critical to the development of advanced text
generation technologies that better address specific
needs in real-world applications (Prabhumoye et al.,
2020; Zhang et al., 2022). For example, the task of
dialog response generation requires effective con-
trol over text attributes associated with emotions
(Li et al., 2021) and persona (Zhang et al., 2018).
In the context of TS, the relevant attributes involve
various linguistic aspects of text complexity (Sid-
dharthan, 2011). By combining multiple attributes,

a natural language generation system can theoret-
ically achieve not only greater controllability but
also greater interpretability. This requires the inclu-
sion not only of surface features, but also of more
sophisticated features. Traditionally, TS has used
readability measures that consider only surface fea-
tures. For example, the Flesch Reading Ease Score
(Flesch, 1948), a commonly used surface feature,
measures the length of words (in syllables) and
sentences (in words). While readability has been
shown to correlate to some degree with such fea-
tures (Just and Carpenter, 1980), there is general
consensus that they are insufficient to capture the
full complexity of a text.

In a nutshell, despite significant progress in data-
driven text simplification, the development of ex-
plainable and controllable models for automatic
text simplification remains a challenge. In this pa-
per, we advance current research on explainable
and controllable text simplification in two ways:

1. First, we use what is, to our knowledge, the
most comprehensive set of (psycho-)linguistic
features that goes beyond traditional surface
measures and includes features introduced in
the recent literature on human (native and
non-native) language learning and processing.
These encompass lexical, syntactic, register-
specific ngram, readability and psycholinguis-
tic features and are used in combination with
pre-trained language models to improve ex-
plainable complexity prediction proposed in
Garbacea et al. (2021).

2. Second, based on the results of this pre-
liminary task, we extend a state-of-the-art
Seq2Seq TS model, ACCESS (Martin et al.,
2020), to provide explicit control over ten at-
tributes so that simplifications can be adapted
to the linguistic needs of different audiences.

The remainder of the paper is organized as fol-
lows: Section 2 provides a concise overview of
related work in the field of explainable and control-
lable text generation with a focus on TS. Section
3 outlines the experimental setup including the de-
scription of three benchmark datasets used (Sec-
tion 3.1), the type of features extracted from these
datasets (Section 3.2), and the models performed
to improve explainable and controllable TS (Sec-
tions 3.3-3.5). Section 4 presents and discusses the
results of our experiments before presenting con-
clusions and future work in Section 5. Sections 6
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and 7 address the limitations of the study and point
out ethical considerations.

2 Related work
State-of-the-art systems for controllable text gen-
eration typically use a Sequence-to-Sequence
(Seq2Seq) architecture. These systems follow ei-
ther a learning-based or a decoding-based approach:
In the learning-based approaches, the Seq2Seq
model is conditioned on the attribute under con-
sideration at training time and then used to control
the output at inference time. Within this approach,
controlled text generation can be achieved by disen-
tangling the latent space representations of a vari-
ational autoencoder between the text representa-
tion and the controlled attributes (Hu et al., 2017).
Decoding-based methods, on the other hand, are
based on a Seq2Seq training setup that is modi-
fied to control specific attributes of the output text
(Kikuchi et al., 2016; Scarton and Specia, 2018).
For instance, Kikuchi et al. (2016) controlled the
length of the text output in the encoder-decoder
framework by preventing the decoder from gen-
erating the end-of-sentence token before the de-
sired length was reached, or by selecting only
hypotheses of a certain length during the beam
search. Recently, Martin et al. (2020) adapted a
discrete parameterization mechanism to the task
of sentence simplification by conditioning on rel-
evant attributes. Building on the earlier work of
TS (Scarton and Specia, 2018), their model, called
ACCESS – short for AudienCe-CEntric Sentence
Simplification – provides explicit control of TS
by conditioning the output returned by the model
on specific attributes. These attributes and their
values are prepended as additional inputs to the
source sentences at train time as plain text ‘param-
eter tokens’. Results of experiments on the Wiki-
Large corpus (Zhang and Lapata, 2017) show that
with carefully chosen values of three attributes -
(i) character length ratio between source sentence
and target sentence, (ii) normalized character-level
Levenshtein similarity between source and target,
and (iii) WordRank, a proxy to lexical complex-
ity, the ACCESS model outperformed previous TS
systems on simplification benchmarks, achieving
state-of-the-art at 41.87 SARI, corresponding to
a +1.42 improvement over the best previously re-
ported score.

Another recently introduced line of research, on
which the present work builds, explores how the
transparency and explainability of the TS process

can be facilitated by decomposing the task into sev-
eral carefully designed subtasks. More specifically,
Garbacea et al. (2021) propose that TS benefits
from a preparatory task aimed at the explainable
prediction of text complexity, which in turn is di-
vided into two subtasks: (1) classifying whether
a given text needs to be simplified or not (com-
plexity prediction) and (2) highlighting the part
of the text that needs to be simplified (complex-
ity explanation). Garbacea et al. (2021) focuses
on empirical analysis of the two subtasks of expli-
cable prediction of text complexity. Specifically,
they conduct experiments using a broad portfolio
of deep and shallow classification models in combi-
nation with model-agnostic explanatory techniques,
in particular LIME (Ribeiro et al., 2016) and SHAP
(Lundberg and Lee, 2017). The results of their ex-
periment show that a combination of a Long Short-
Term Memory network at the word level and LIME
explanations can achieve strong performance on
datasets. As a next step, they conduct follow-up
experiments with state-of-the-art controllable end-
to-end text generation systems, including ACCESS.
The results of these experiments suggest that the
performance of state-of-the-art TS models can be
significantly improved in out-of-sample text simpli-
fication simply by applying explainable complexity
prediction as a preliminary step.

3 Experimental Setup
In this section, we first introduce the three datasets
used in our experiments (Section 3.1) and the type
of (psycho-)linguistic features used in our models
(Section 3.2). We then describe the methods used
to address the three subtasks, i.e., (1) complex-
ity prediction, (2) complexity explanation, and (3)
simplification generation. For subtask (1), we per-
form experiments with five complexity prediction
models described in Section 3.3: (1) A word-level
Long Short-Term Memory (LSTM) network, (2) a
fine-tuned pre-trained BERT-based model, (3) and
(4) two hybrid Bidirectional Long-Term Memory
(BLSTM) classifiers that integrate GloVe word em-
beddings with (psycho-)linguistic features using
different fusion methods, and (5) A hybrid classi-
fier that integrates the those features with BERT
representations. In subtask (2), we apply these five
models to identify the complex parts of a given in-
put set to facilitate model validation and evaluation
(section 3.4). In Section 3.5, we turn to subtask (3)
and introduce an extended ACCESS model, which
we refer to as ACCESS-XL, containing a total of
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ten control features (parameter tokens) covering
several dimensions of linguistic complexity.

3.1 Datasets
We conducted our experiments with three bench-
mark datasets and ground truth complexity labels
that were also used in Garbacea et al. (2021):
(1) the WikiLarge corpus Zhang et al. (2017),
composed of parallel-aligned "Wikipedia-simple-
Wikipedia" sentence pairs, (2) the Newsela cor-
pus (Xu et al., 2015), comprised of news articles
simplified by professional news editors, and (3)
the Biendata dataset, comprising matches of re-
search papers from different scientific disciplines
with press releases describing them1. The size of
the three datasets and their distribution among train-
ing, validation, testing datasets are shown in Table
1.

Dataset Training Validation Test
Newsela 94,944 1,131 1,079
WiKiLarge 207,480 30,632 59,639
Biendata 29,710 4,244 8,490

Table 1: Number of aligned complex-simple sentence
pairs by dataset

3.2 (Psycho-)Linguistic Features
The textual data of the three datasets were auto-
matically analyzed using CoCoGen (short for Com-
plexity Contour Generator), a computational tool
that implements a sliding window technique to cal-
culate sentence-level measurements for a given fea-
ture (for recent applications of the tool, see Kerz
et al., 2020, 2022; Wiechmann et al., 2022). We
extracted 107 features that fall into five categories:
(1) measures of syntactic complexity (N=16), (2)
measures of lexical richness (N=14), (3) register-
based n-gram frequency measures (N=25), (4) read-
ability measures (N=14), and (5) psycholinguistic
measures (N=38). The first category comprises (i)
surface measures that concern the length of produc-
tion units, such as the mean length clauses and sen-
tences, or (ii) measures of the type and incidence of
embeddings, such as dependent clauses per T-Unit
or verb phrases per sentence. These features are
implemented based on descriptions in Lu (2010)
using the Tregex tree pattern matching tool (Levy
and Andrew, 2006) with syntactic parse trees for
extracting specific patterns. The second category
comprise several distinct sub-types, including (i)

1https://www.biendata.com/competition/ hackathon

measures of lexical variation, i.e. the range of vo-
cabulary as displayed in language use, captured by
text-size corrected type-token ratio and (ii) lexical
sophistication, i.e. the proportion of relatively un-
usual or advanced words in the learner’s text. The
operationalizations of these measures follow those
described in Lu (2012) and Ströbel et al. (2016).
The register-based n-gram frequency measures of
the third category are derived from the five register
sub-components of the Contemporary Corpus of
American English (COCA, Davies, 2009): spoken,
magazine, fiction, news and academic language
(see Kerz et al., 2020, for details). The fourth cate-
gory combine a word familiarity variable defined
by pre-specified vocabulary resource to estimate
semantic difficulty together with a syntactic vari-
able, such as average sentence length. Examples
of these measures are the Fry index (Fry, 1968)
or the SMOG formula (McLaughlin, 1969). The
psycholinguistic measures of the fifth category cap-
ture cognitive aspects of human language process-
ing not directly addressed by the surface vocab-
ulary and syntax features of traditional formulas.
These measures include a word’s average age-of-
acquisition (Kuperman et al., 2012) or prevalence,
which refers to the number of people knowing the
word (Brysbaert et al., 2019; Johns et al., 2020).
For an overview of all features, see Table 3 in the
Appendix. Tokenization, sentence splitting, part-of-
speech tagging, lemmatization and syntactic PCFG
parsing were performed using Stanford CoreNLP
(Manning et al., 2014).

3.3 Complexity prediction
For complexity prediction, i.e. the preliminary task
of classifying whether a given text needs to be sim-
plified or not, we performed experiments with five
(hybrid) deep neural network architectures. Two
of these prediction models are reimplementations
of models used in Garbacea et al. (2021) and serve
as baselines: The first model, LSTM, is a 2-layer
word-level BLSTM classifier that uses GloVe word
embeddings as input. The second baseline model is
a 12-layer BERT model for sequence classification
using a pre-trained BERT, with the first 8 layers
frozen during fine-tuning.

We also conducted experiments with three hy-
brid models that integrate the (psycho-)linguistic
features described in Section 3.2 into neural net-
works. GloVe-PSYLING A and GloVe-PSYLING
B are hybrid BLSTM with attention models (Wu
et al., 2019) that differ in how the integration was
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performed: In model A, the linguistic features were
concatenated with word embeddings before being
fed into a BLSTM. In the B model, the linguistic
features were concatenated with the last layer hid-
den state of the BLSTM. In the third hybrid model,
referred to as BERT-PSYLING, we concatenated
the linguistic features with the last layer output for
[CLS] token from BERT. The vector representation
of a sentence was then fed into a MLP classifier
with ReLu as activation function. For all classifiers,
Best hyperparameters were found by grid search:
For BERT on WiKiLarge, the best results were ob-
tained with a learning rate of 3× 10−5 and a batch
size of 64. For LSTM on Newsela, the learning rate
was 2×10−4 and the batch size was 32. For BERT-
PYSLING on Biendata, the learning rate was 2e-5
and the batch size was 32. We used Adam as the
optimizer with β = (0.9, 0.999) and ϵ = 10−8.
Early stopping, where accuracy did not increase for
more than 4 epochs, was used as the stopping cri-
terion. All models were evaluated using precision,
recall, F1, and classification accuracy on balanced
training, validation, and testing datasets.

3.4 Complexity Explanation
The objective of the complexity explanation sub-
task is to highlight the part of the text that needs
to be simplified. In Garbacea et al. (2021) this
was achieved by quantifying the relative impor-
tance of the features in the of complexity predic-
tion models (unigrams, bigrams, trigrams, GloVe
word embeddings) using model-agnostic explana-
tory techniques, in particular LIME (Ribeiro et al.,
2016) and SHAP (Lundberg and Lee, 2017). To
afford complexity explanation of the five complex-
ity prediction models described in section 3.3, we
utilized BERT attention outputs: Since BERT uses
byte-pair tokenization, we converted token atten-
tions to word attentions by averaging the token
attention weights per word. For a given attention
head, the attention weights from the [CLS] token
to other words at the first layer were considered as
weights of those words for a given sentence. For
each individual word, its final weight was the av-
erage of the weights from the 12 heads of BERT.
The decision whether or not to highlight a partic-
ular word was based on a comparison of its final
weight and the average of the final weights of all
words in a given sentence: a word was considered
complex, and thus highlighted, if its final weight
fell below sentence average (see Figure 2 in the Ap-
pendix). We compare these complexity explanatory

approaches with LSTM-LIME, random highlight-
ing, and lexicon-based highlighting based on words
that appear in the Age-of-Acquisition (AoA) lexi-
con Garbacea et al. (see 2021, for details on these
basic methods). Following Garbacea et al. (2021),
we evaluated the models using token-wise preci-
sion (P), recall (R), and translation edit rate (TER)
(Snover et al., 2006), which assesses the minimum
number of edits needed to the unhighlighted part
of a source sentence so that it exactly matches the
target sentence.

3.5 Simplification Generation
The original AudienCe-CEntric Sentence Simpli-
fication (ACCESS) model, introduced by Martin
et al. (2020), provides explicit control of TS by
conditioning the output returned by the model
on specific attributes. The ACCESS model used
four such parameter tokens as control features:
(1) NbChars, the character length ratio between
source sentence and target sentence, (2) LevSim,
the normalized character-level Levenshtein similar-
ity between source and target, which quantifies the
amount of modification operated on the source sen-
tence, (3) WordRank, a proxy to lexical complexity
measured as the third-quartile of log-ranks of all
words in a sentence. To get a ratio the WordRank
of the target was divided by that of the source. The
Seq2Seq model is parametrized on the control fea-
tures by prepending a these attributes and their
values as additional inputs to the source sentences
as plain text ‘parameter tokens’. The special token
values are the ratio of this parameter token calcu-
lated on the target sentence with respect to its value
on the source sentence. For example to control the
number of characters of a generated simplification,
the compression ratio between the number of char-
acters in the source and the number of characters
in the target sentence is computed. Ratios are dis-
cretized into bins of fixed width of 0.05 and capped
to a maximum ratio of 2. Special tokens are then in-
cluded in the vocabulary. At inference time, we the
ratio is set a fixed value for all samples. For exam-
ple, to generate simplifications that are 80% of the
length of the source sentence, the token <NbChars
0.8> is prepended to each source sentence. As
the Seq2Seq model, a Transformer model with a
base architecture (Vaswani et al., 2017) was trained
utilizing FairSeq toolkit (Ott et al., 2019a).

Our extended model, referred to here as
ACCESS-XL, integrates ten of the 107 features
examined in the complexity prediction step. These
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ten measures were selected to cover all feature
groups. Within the lexical richness group, which
is the largest of the five groups, features were
selected to represent all subcategories of the group,
i.e. length of production unit, lexical diversity,
lexical sophistication, n-gram frequency, and both
crowdsourcing-based and corpus-based word
prevalence. Figure 4 in the Appendix shows
the differences in mean standardized feature
scores between ‘normal’ and ‘simple’ sentences
in Wikipedia, highlighting in blue the features
selected in our model. Following (Martin et al.,
2020), we then trained a base transformer (Vaswani
et al., 2017) using the FairSeq toolkit (Ott et al.,
2019b). Both encoder and decoder consist of
6 layers. For the encoder, each of the 6 layers
consists of an 8-head self-attention sub-layer and
a position-wise fully connected sub-layer with a
dimensionality of 2048. Each decoder layer has
a similar structure, but with an additional 8-head
self-attention layer that performs multi-head
attention over the output of the encoder stack.
The embedding size is 512. Dropout with a rate
0.2 was used for regularization. The optimizer
used is the Adam optimizer with a learning rate
of 0.00011, β = (0.9, 0.999), ϵ = 10−8. Label
smoothing with a uniform prior distribution of
ϵ = 0.54 was applied. Early stopping was used
to prevent overfitting, with non-increasement of
SARI score for more than 5 epochs as the stopping
criterion. Sentencepiece with a vocabulary size
of 10k was used as the tokenizer (Kudo and
Richardson, 2018). Beam search with a beam size
of 8 for searching for the best possible simplified
sentence. A fixed combination of control tokens
(a control feature along with its binned value)
was used in text generation. To find the best
combination, we applied the greedy forward select
algorithm; we progressively added the control
token from a candidate set that, in combination
with the previously added control tokens, leads to
the largest performance improvement in terms of
SARI score on the validation set of WiKiLarge.
After adding a control token to the combination,
all control tokens sharing the same control feature
with the newly added token were removed from
the candidate set. The algorithm stopped when no
control token led to an improvement in SARI score
or no control token was left in the candidate set.
The 5 most frequent control tokens from the WiKi-
Large training set were used as the initial candidate

set for each control feature, resulting in a reduction
of the total search space from about 4010 to 510.
We evaluated the output of the text simplification
models using the FKGL (Flesch-Kincaid Grade
Level) readability metric (Kincaid et al., 1975) to
evaluate simplicity and SARI (Xu et al., 2016) as
an overall performance metric, since FKGL does
not take into account grammaticality and meaning
preservation (Wubben et al., 2012)2. All scores
were calculated using the EASSE python package
for sentence simplification (Alva-Manchego et al.,
2019)3. We selected the model with the best SARI
on the validation set and report its score on the
test set. The best combination of control tokens
was as follows: MLS0.50, Fry0.85, FORCAST0.90,
WPCorp0.95, WPCrowd0.90, BigramNews2.00,
ANC0.85, AoA1.00, MLWs0.90, CTTR0.85.

4 Results
An overview of the results of the three subtasks –
complexity prediction, complexity explanation and
simplification generation – is presented in Table 2.
We discuss the results of each subtask in turn.

Complexity prediction: Our best-performing
models outperformed the classification accuracy of
explainable model – the word-level LSTM - pre-
dicting complexity in all three benchmark datasets
reported in Garbacea et al. (2021). Since the
pattern of results is consistent across all evalua-
tion metrics, we focus here on classification ac-
curacy: On WikiLarge, we improve on the word-
level LSTM presented in Garbacea et al. (2021) by
+8.08% by extracting attention weights from the
pre-trained BERT model. On Newsela, our GloVe-
based LSTM model outperforms the word-level
LSTM by +6.68%. On the Biendata dataset, our
hybrid model that integrates BERT representations
with linguistic features leads to an improvement
of +4.43%. Overall, our results replicate the gen-
eral pattern of results reported in Garbacea et al.
(2021) in that the best-performing models achieve
approximately 80% accuracy on the WikiLarge
and Newsela datasets and much higher – approx-
imately 95% accuracy – on the Biendata dataset.
These results support the conclusion drawn in Gar-
bacea et al. (2021) that complexity prediction is
influenced by the application domain, with the dis-
tinction between scientific content and public do-
main press releases (Biendata) being much easier

2See Appendix for definitions and more details on these
evaluation metrics.

3https://github.com/feralvam/easse
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Complexity Prediction
WikiLarge Newsela Biendata

Model P R F1 Acc P R F1 Acc P R F1 Acc
LSTM (Garbacea et al., 2021) - - - 0.716 - - - 0.733 - - - 0.898
BLSTM GloVe 0.731 0.710 0.721 0.725 0.867 0.703 0.776 0.797 0.923 0.889 0.906 0.907
BERT 0.794 0.807 0.800 0.799 0.973 0.572 0.720 0.778 0.934 0.947 0.940 0.940
GloVe-PSYLING A (ours) 0.766 0.781 0.773 0.771 0.929 0.609 0.736 0.781 0.930 0.915 0.922 0.923
GloVe-PSYLING B (ours) 0.762 0.783 0.772 0.769 0.925 0.604 0.731 0.778 0.924 0.928 0.926 0.926
BERT-PYSLING (ours) 0.779 0.807 0.793 0.789 0.972 0.580 0.727 0.782 0.942 0.945 0.943 0.943

Complexity Explanation
WikiLarge Newsela Biendata

P R F1 TER↓ P R F1 TER↓ P R F1 TER↓
Random highlighting 0.410 0.463 0.457 1.084 0.550 0.488 0.504 1.029 0.803 0.424 0.550 1.011
AoA lexicon 0.407 0.549 0.500 1.026 0.550 0.620 0.572 0.858 0.770 0.629 0.678 0.989
LSTM+LIME 0.404 0.639 0.419 0.997 0.520 0.615 0.506 1.062 0.805 0.826 0.796 0.983
BERT 0.405 0.660 0.434 0.936 0.542 0.729 0.597 0.817 0.784 0.635 0.688 0.965
GloVe-PSYLING A (ours) 0.454 0.596 0.426 1.010 0.579 0.481 0.501 0.827 0.806 0.552 0.641 0.959
GloVe-PSYLING B (ours) 0.453 0.643 0.440 0.999 0.544 0.554 0.524 0.816 0.813 0.556 0.646 0.951
BERT-PSYLING (ours) 0.400 0.619 0.419 0.949 0.540 0.701 0.586 0.818 0.781 0.638 0.688 0.966

Simplification Generation
WikiLarge (wd) Newsela (OOD) Biendata (OOD)

SARI↑ FK↓ SARI↑ FK↓ SARI↑ FK↓
ACCESS 41.87 7.22 29.44 6.45 20.21 12.53
ACCESS-XL (ours) 43.34 4.39 34.91 3.96 27.25 10.71

Table 2: Prediction: Scores represent out-of-sample precision (P), recall (R), F1 and accuracy (Acc) scores.
Explanation: P, R, and and F1 values represent token-level scores. TER scores represent Translation Edit Rates
(Snover et al., 2006) Simplification: Scores represent out-of-sample SARI and Flesch-Kinkaid Grade Level (FK)

than the distinction between regular and simpli-
fied news articles (Newsela) or Wikepedia articles
(WikiLarge).

On the WikiLarge dataset, the BERT model per-
formed the best, with a +7.4% performance in-
crease over the LSTM. On the Newsela dataset,
however, the LSTM achieved the highest accuracy,
outperforming both the BERT and BERT-HYBRID
models by +1.9% and +1.5%, respectively. On
the Biendata dataset, the highest performance was
achieved by our BERT-HYBRID model, which im-
proved the already high performance of the LSTM
by +3.6%. Across all datasets, the GloVe word
embedding-based models consistently ranked be-
tween the LSTM and BERT-based models, suggest-
ing that the use of contextualized word embeddings
of the BERT-based model may reduce the gener-
alizability of the model, leading to variations in
model performance across datasets.

Complexity explanation: The second part of
Table 2 presents the results of the subtask designed
to evaluate how well complexity classification can
be explained, as measured by how accurately the
complex parts of a sentence can be identified (high-
lighted). In general, all of our models showed better
recall than precision, meaning that they were bet-
ter at identifying words that were removed in the
simplified version of a pair than words that were
truly removed from the complex version. This pat-

tern is opposite to what is reported in Garbacea
et al. (2021), where precision is strongly favoured
over recall. This may indicate that using average
attention as a threshold may not be optimal: While
this approach is the de facto standard in text style
transfer research, recent work has pointed out the
limitations of this approach, such as its inability
of handling flat attention distributions (Lee et al.,
2021)4. Future research may address this issue. As
in the case of complexity prediction, we found that
the performance of the models is dataset-specific
and also varies with respect to the rank order across
evaluation metrics: For WikiLarge, the BERT
model achieved the best recall and TER scores,
while precision was highest for the GloVE-based
hybrid models (+4.5% compared to BERT). For
Newsela, the BERT-based models outperformed
the other models in terms of recall and F1, while the
GloVe-based hybrid models achieved higher preci-
sion. All of our models significantly outperformed
the three base models in terms of TER values, with
the best performing model, Glove-PSYLING B,
reducing the TER of the AoA method by 4.2%
and that of the LSTM by as much as -24.4%. For
Biendata, Glove-PSYLING B achieved the best
values for precision and TER. However, the LSTM
dominated the ranking in terms of recall and F1

4Figure 2 in the Appendix illustrates the differences in
attention weight distributions among our models.
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with improvements of the next best model (BERT-
PSYLING) by up to 18%.

Simplification Generation We establish the
state-of-the-art at 43.34 SARI on the WikiLarge
test set, an improvement of +1.47 over the best
previously reported result. Our ACCESS-XL text
simplification model consistently outperforms the
original ACCESS model (Martin et al., 2020) on
all datasets and performance metrics. The per-
formance improvement was even greater in the
out-of-domain settings – with a +5.47% increase
in SARI in the Newsela dataset and +7.04% in
the Biendata dataset – suggesting that increased
controllability also leads to increased model ro-
bustness and generalizability. For FK readability,
the performance gain is even more pronounced:
in the within-domain setting (WikiLarge), the
ACCESS-XL model achieves a Flesch-Kinkaid
score of 4.39, an improvement of -2.88. To put
this number in perspective, the original ACCESS
model improved previous state-of-the-art models,
SBMT+PPDB+SARI (Xu et al., 2016) and PBMT-
R (Wubben et al., 2012), by only -0.07 and -1.11,
respectively. As in the case of SARI, the improve-
ment in FK performance extends to both out-of-
domain settings with an improvement of -2.49 for
Newsela and -1.82 for Biendata. To shed more
light on the textual characteristics of the outputs of
the two text simplification models, we compared
their average scores on the ten parameter tokens.
A visualization of the results along with the scores
obtained for the target and source sentences of the
testset for each dataset is shown in Figure 3 in the
Appendix. The comparisons revealed several im-
portant facts about the behavior of the models as
well as the training data: (1) For the WikiLarge
dataset, on which the model was trained, we found
that the differences in average scores between the
‘complex’ source sentences and the ‘simple’ target
sentences varied in magnitude: On some measures,
such as mean sentence length (MLS) – a proxy
of syntactic complexity, the difference between
simple and complex sentences is very pronounced
(MLSsimple=14.9 words, MLScomplex=22.4 words).
For others, e.g. LS.ANC – a measure of lexical
sophistication, the difference between the standard
versions and their simplified counterparts is mini-
mal (LS.ANCsimple=0.411, LS.ANCcomplex=0.414).
These results are consistent with previous indica-
tions of limitations in the WikiLarge dataset related
to the high proportion of inappropriate simplifica-

tions (Xu et al., 2016). We further observed (2)
that the ACCESS-XL model successfully learned
to control the attributes and achieved the desired ef-
fect on the generated simplifications: For example,
its outputs are characterized by much lower MLS
values (MLSACCESS-XL = 10.8 words) compared
to the source. We note that shorter MLS values
were achieved by splitting the sentence (rather than
simply deleting content), which has been shown
to be a weakness of current seq2seq TS models
(Maddela et al., 2020). This is illustrated in the sen-
tence set in Table 5 in the Appendix. And (3) we
found that the ACCESS-XL model was able to suc-
cessfully generalize its ability to control the target
attributes to out-of-domain settings. For example,
the learned control over the MLS parameter led
to the generation of Newsela simplifications that
almost matched almost perfectly the mean value of
the simple sentence targets in this dataset.

Lastly, we address the question of whether ex-
plainable prediction of text complexity is still a
necessary preliminary step in the pipeline when us-
ing a strong, end-to-end simplification system. We
found that for all datasets – and for both the origi-
nal ACCESS model and the extended ACCESS-XL
model – using of preliminary complexity predic-
tion did not improve simplification performance
(see Figure 6 in the Appendix): For both SARI
and FKGL evaluation metrics the best performance
was invariably achieved by a model without prior
indication of what sentences should undergo sim-
plification. These results stand in stark contrast to
the results reported in Garbacea et al. (2021), where
prior complexity prediction was found to improve
the performance of the original ACCESS model.
Rather than evaluating performance using SARI
and FKGL, as was the case here and in the original
ACCESS publication (Martin et al., 2020), Gar-
bacea et al. (2021) evaluated model performance
using edit distance (ED), TER, and Frechet Em-
bedding Distance. For ED alone, the reported im-
provements ranged from 30% to 50%. Follow up
experiments based on ED, conducted to determine
if the discrepancy was related to the choice of eval-
uation metric only confirmed the pattern of results
reported here for SARI and FKGL (see Tables 7
and 8 in the Appendix). Follow-up experiments
based on ED, conducted to determine if the dis-
crepancy was related to the choice of scoring met-
ric, only confirmed the pattern of results reported
here for SARI and FKGL (see Tables 7 and 8 in
the Appendix). Garbacea et al. (2021) conclude
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that the ACCESS model – and also the DMLMTL
presented in (Guo et al., 2018), which had the high-
est performance for Newsela (33.22 SARI) – tends
to simplify even simple inputs. Moreover, (Gar-
bacea et al., 2021) report that over 70% of the ‘sim-
ple’ sentences in the test data were modified (and
thus oversimplified) by the ACCESS model. Note,
however, that ‘simple’ here means that the input
sentence in question was classified as such by a
preliminary complexity prediction model. Since
these classifiers in WikiLarge only achieve a clas-
sification accuracy of 80%, the true percentage of
oversimplification cannot be accurately estimated.

5 Conclusion and Future Work
In this work, we have advanced research on ex-
plainable and controllable text simplification in two
ways: First, we have shown that performance on a
prior task of explainable complexity prediction can
be significantly improved by the combined use of
(psycho-)linguistic features and pre-trained neural
language models. And second, by extending the
AudienCe-CEntric sentence simplification model
to explicitly control ten text attributes, we have
achieved a new state of the art in text simplification
in both within-domain and out-of domain settings.
In future work, we plan to apply our modeling ap-
proach to another key text style transfer task, that
of formality transfer, and evaluate it on existing
benchmark datasets such as the GYAFC dataset
(Rao and Tetreault, 2018). Moreover, we intend
to explore the role of (psycho-)linguistic features
for controllable TS in unsupervised settings using
a variational auto-encoder and a content predictor
in combination with attribute predictors (Liu et al.,
2020).

6 Limitations

The current work relies exclusively on automatic
evaluation metrics for text simplification. While
such metrics provide a cost-effective, reproducible,
and scalable way to gauge the quality of text gener-
ation results, they also have their own weaknesses.
Human scoring is necessary to address some of the
inherent weaknesses of automatic evaluation (for
more details, see Jin et al., 2022)

Furthermore, the performance of the proposed
text simplification methods was tested on infor-
mational texts in English. While we assume that
the methods can be applied to other domains and
languages, we have not tested this assumption ex-
perimentally and limit our conclusions to English

and the types of language registers represented in
the three datasets used in this work.

References
Diana Laura Aguilar, Miguel Angel Medina Perez, Oc-

tavio Loyola-Gonzalez, Kim-Kwang Raymond Choo,
and Edoardo Bucheli-Susarrey. 2022. Towards an
interpretable autoencoder: a decision tree-based au-
toencoder and its application in anomaly detection.
IEEE Transactions on Dependable and Secure Com-
puting.

Suha S Al-Thanyyan and Aqil M Azmi. 2021. Auto-
mated text simplification: A survey. ACM Computing
Surveys (CSUR), 54(2):1–36.

Fernando Alva-Manchego, Joachim Bingel, Gustavo
Paetzold, Carolina Scarton, and Lucia Specia. 2017.
Learning how to simplify from explicit labeling of
complex-simplified text pairs. In Proceedings of
the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 295–305.

Fernando Alva-Manchego, Louis Martin, Carolina Scar-
ton, and Lucia Specia. 2019. EASSE: Easier auto-
matic sentence simplification evaluation. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP): System Demonstrations,
pages 49–54, Hong Kong, China. Association for
Computational Linguistics.

Fernando Alva-Manchego, Carolina Scarton, and Lucia
Specia. 2020. Data-driven sentence simplification:
Survey and benchmark. Computational Linguistics,
46(1):135–187.

Beata Beigman Klebanov, Kevin Knight, and Daniel
Marcu. 2004. Text simplification for information-
seeking applications. In OTM Confederated Inter-
national Conferences" On the Move to Meaningful
Internet Systems", pages 735–747. Springer.

Marc Brysbaert, Paweł Mandera, Samantha F Mc-
Cormick, and Emmanuel Keuleers. 2019. Word
prevalence norms for 62,000 english lemmas. Be-
havior research methods, 51(2):467–479.

Arnaldo Candido Jr, Erick Galani Maziero, Lucia Spe-
cia, Caroline Gasperin, Thiago Pardo, and Sandra
Aluisio. 2009. Supporting the adaptation of texts for
poor literacy readers: a text simplification editor for
brazilian portuguese. In Proceedings of the Fourth
Workshop on Innovative Use of NLP for Building
Educational Applications, pages 34–42.

John Carroll, Guido Minnen, Yvonne Canning, Siobhan
Devlin, and John Tait. 1998. Practical simplification
of english newspaper text to assist aphasic readers.
In Proceedings of the AAAI-98 Workshop on Integrat-
ing Artificial Intelligence and Assistive Technology,
pages 7–10. Citeseer.

133



John A Carroll, Guido Minnen, Darren Pearce, Yvonne
Canning, Siobhan Devlin, and John Tait. 1999. Sim-
plifying text for language-impaired readers. In Ninth
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 269–270.

Raman Chandrasekar, Christine Doran, and Srinivas
Bangalore. 1996. Motivations and methods for text
simplification. In COLING 1996 Volume 2: The 16th
International Conference on Computational Linguis-
tics.

Mark Davies. 2009. The 385+ million word corpus of
contemporary american english (1990–2008+): De-
sign, architecture, and linguistic insights. Interna-
tional journal of corpus linguistics, 14(2):159–190.

Jan De Belder and Marie-Francine Moens. 2010. Text
simplification for children. In Prroceedings of the
SIGIR workshop on accessible search systems, pages
19–26. ACM; New York.

Siobhan Devlin. 1998. The use of a psycholinguistic
database in the simplification of text for aphasic read-
ers. Linguistic databases.

Siobhan Devlin and Gary Unthank. 2006. Helping
aphasic people process online information. In Pro-
ceedings of the 8th International ACM SIGACCESS
Conference on Computers and Accessibility, pages
225–226.

Richard Evans, Constantin Orasan, and Iustin Dornescu.
2014. An evaluation of syntactic simplification rules
for people with autism. Association for Computa-
tional Linguistics.

Dan Feblowitz and David Kauchak. 2013. Sentence
simplification as tree transduction. In Proceedings
of the second workshop on predicting and improving
text readability for target reader populations, pages
1–10.

Rudolph Flesch. 1948. A new readability yardstick.
Journal of applied psychology, 32(3):221.

Edward Fry. 1968. A readability formula that saves
time. Journal of reading, 11(7):513–578.

Cristina Garbacea, Mengtian Guo, Samuel Carton, and
Qiaozhu Mei. 2021. Explainable prediction of text
complexity: The missing preliminaries for text sim-
plification. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1086–1097, Online. Association for Computa-
tional Linguistics.

Laurie Gerber and Eduard Hovy. 1998. Improving trans-
lation quality by manipulating sentence length. In
Conference of the Association for Machine Transla-
tion in the Americas, pages 448–460. Springer.

Sian Gooding, Ekaterina Kochmar, Seid Muhie Yimam,
and Chris Biemann. 2021. Word complexity is in
the eye of the beholder. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 4439–4449. Associa-
tion for Computational Linguistics.

Han Guo, Ramakanth Pasunuru, and Mohit Bansal.
2018. Dynamic multi-level multi-task learn-
ing for sentence simplification. arXiv preprint
arXiv:1806.07304.

Eva Hasler, Adrià de Gispert, Felix Stahlberg, Aurelien
Waite, and Bill Byrne. 2017. Source sentence simpli-
fication for statistical machine translation. Computer
Speech & Language, 45:221–235.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Toward con-
trolled generation of text. In International conference
on machine learning, pages 1587–1596. PMLR.

Di Jin, Zhijing Jin, Zhiting Hu, Olga Vechtomova,
and Rada Mihalcea. 2022. Deep learning for text
style transfer: A survey. Computational Linguistics,
48(1):155–205.

Brendan T Johns, Melody Dye, and Michael N Jones.
2020. Estimating the prevalence and diversity of
words in written language. Quarterly Journal of
Experimental Psychology, 73(6):841–855.

Marcel A Just and Patricia A Carpenter. 1980. A the-
ory of reading: from eye fixations to comprehension.
Psychological review, 87(4):329.

Tomoyuki Kajiwara, Hiroshi Matsumoto, and Kazuhide
Yamamoto. 2013. Selecting proper lexical para-
phrase for children. In Proceedings of the 25th Con-
ference on Computational Linguistics and Speech
Processing (ROCLING 2013), pages 59–73.

Elma Kerz, Yu Qiao, Daniel Wiechmann, and Marcus
Ströbel. 2020. Becoming linguistically mature: Mod-
eling English and German children’s writing devel-
opment across school grades. In Proceedings of the
Fifteenth Workshop on Innovative Use of NLP for
Building Educational Applications. Association for
Computational Linguistics.

Elma Kerz, Yu Qiao, Sourabh Zanwar, and Daniel
Wiechmann. 2022. Pushing on personality detec-
tion from verbal behavior: A transformer meets text
contours of psycholinguistic features. arXiv preprint
arXiv:2204.04629.

Yuta Kikuchi, Graham Neubig, Ryohei Sasano, Hiroya
Takamura, and Manabu Okumura. 2016. Control-
ling output length in neural encoder-decoders. arXiv
preprint arXiv:1609.09552.

J Peter Kincaid, Robert P Fishburne Jr, Richard L
Rogers, and Brad S Chissom. 1975. Derivation of
new readability formulas (automated readability in-
dex, fog count and flesch reading ease formula) for

134

https://doi.org/10.18653/v1/2021.acl-long.88
https://doi.org/10.18653/v1/2021.acl-long.88
https://doi.org/10.18653/v1/2021.acl-long.88


navy enlisted personnel. Technical report, Naval
Technical Training Command Millington TN Re-
search Branch.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.
arXiv preprint arXiv:1808.06226.

Victor Kuperman, Hans Stadthagen-Gonzalez, and
Marc Brysbaert. 2012. Age-of-acquisition ratings
for 30,000 english words. Behavior research meth-
ods, 44(4):978–990.

Dongkyu Lee, Zhiliang Tian, Lanqing Xue, and Nevin L
Zhang. 2021. Enhancing content preservation
in text style transfer using reverse attention and
conditional layer normalization. arXiv preprint
arXiv:2108.00449.

Roger Levy and Galen Andrew. 2006. Tregex and tsur-
geon: Tools for querying and manipulating tree data
structures. In LREC, pages 2231–2234. Citeseer.

Shifeng Li, Shi Feng, Daling Wang, Kaisong Song,
Yifei Zhang, and Weichao Wang. 2021. Emoelicitor:
an open domain response generation model with user
emotional reaction awareness. In Proceedings of the
Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence,
pages 3637–3643.

Dayiheng Liu, Jie Fu, Yidan Zhang, Chris Pal, and
Jiancheng Lv. 2020. Revision in continuous space:
Unsupervised text style transfer without adversarial
learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pages 8376–8383.

Octavio Loyola-Gonzalez. 2019. Black-box vs. white-
box: Understanding their advantages and weak-
nesses from a practical point of view. IEEE Access,
7:154096–154113.

Xiaofei Lu. 2010. Automatic analysis of syntactic com-
plexity in second language writing. International
journal of corpus linguistics, 15(4):474–496.

Xiaofei Lu. 2012. The relationship of lexical richness
to the quality of esl learners’ oral narratives. The
Modern Language Journal, 96(2):190–208.

Scott M Lundberg and Su-In Lee. 2017. A unified ap-
proach to interpreting model predictions. Advances
in neural information processing systems, 30.

Mounica Maddela, Fernando Alva-Manchego, and
Wei Xu. 2020. Controllable text simplifica-
tion with explicit paraphrasing. arXiv preprint
arXiv:2010.11004.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proceedings of 52nd annual
meeting of the association for computational linguis-
tics: system demonstrations, pages 55–60.

Louis Martin, Éric de la Clergerie, Benoît Sagot, and An-
toine Bordes. 2020. Controllable sentence simplifica-
tion. In Proceedings of the 12th Language Resources
and Evaluation Conference, pages 4689–4698, Mar-
seille, France. European Language Resources Asso-
ciation.

Aurélien Max. 2006. Writing for language-impaired
readers. In International Conference on Intelli-
gent Text Processing and Computational Linguistics,
pages 567–570. Springer.

G Harry McLaughlin. 1969. Clearing the smog. J
Reading.

Makoto Miwa, Rune Saetre, Yusuke Miyao, and
Jun’ichi Tsujii. 2010. Entity-focused sentence sim-
plification for relation extraction. In Proceedings of
the 23rd International Conference on Computational
Linguistics (Coling 2010), pages 788–796.

Shashi Narayan and Claire Gardent. 2014. Hybrid sim-
plification using deep semantics and machine transla-
tion. In The 52nd annual meeting of the association
for computational linguistics, pages 435–445.

Sergiu Nisioi, Sanja Štajner, Simone Paolo Ponzetto,
and Liviu P Dinu. 2017. Exploring neural text simpli-
fication models. In Proceedings of the 55th annual
meeting of the association for computational linguis-
tics (volume 2: Short papers), pages 85–91.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019a. fairseq: A fast, extensible toolkit for
sequence modeling. In NAACL.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019b. fairseq: A fast, extensible toolkit for
sequence modeling.

Gustavo Paetzold and Lucia Specia. 2013. Text simpli-
fication as tree transduction. In Proceedings of the
9th Brazilian Symposium in Information and Human
Language Technology.

Gustavo Paetzold and Lucia Specia. 2016. Unsuper-
vised lexical simplification for non-native speakers.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 30.

Sarah E Petersen and Mari Ostendorf. 2007. Text sim-
plification for language learners: a corpus analysis.
In Workshop on speech and language technology in
education. Citeseer.

Shrimai Prabhumoye, Alan W Black, and Rus-
lan Salakhutdinov. 2020. Exploring control-
lable text generation techniques. arXiv preprint
arXiv:2005.01822.

Yu Qiao, Daniel Wiechmann, and Elma Kerz. 2020.
A language-based approach to fake news detection
through interpretable features and brnn. In Proceed-
ings of the 3rd international workshop on rumours
and deception in social media (RDSM), pages 14–31.

135

https://doi.org/10.48550/ARXIV.1904.01038
https://doi.org/10.48550/ARXIV.1904.01038


Sudha Rao and Joel Tetreault. 2018. Dear sir or madam,
may i introduce the gyafc dataset: Corpus, bench-
marks and metrics for formality style transfer. arXiv
preprint arXiv:1803.06535.

Luz Rello, Ricardo Baeza-Yates, Stefan Bott, and Ho-
racio Saggion. 2013a. Simplify or help? text simpli-
fication strategies for people with dyslexia. In Pro-
ceedings of the 10th International Cross-Disciplinary
Conference on Web Accessibility, pages 1–10.

Luz Rello, Ricardo Baeza-Yates, and Horacio Saggion.
2013b. The impact of lexical simplification by verbal
paraphrases for people with and without dyslexia. In
International Conference on Intelligent Text Process-
ing and Computational Linguistics, pages 501–512.
Springer.

Marco Tulio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. Model-agnostic interpretability of
machine learning. arXiv preprint arXiv:1606.05386.

Carolina Scarton and Lucia Specia. 2018. Learning
simplifications for specific target audiences. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 712–718.

Matthew Shardlow. 2014. A survey of automated text
simplification. International Journal of Advanced
Computer Science and Applications, 4(1):58–70.

Advaith Siddharthan. 2011. Text simplification using
typed dependencies: A comparision of the robustness
of different generation strategies. In Proceedings of
the 13th European Workshop on Natural Language
Generation, pages 2–11.

Sara Botelho Silveira and António Branco. 2012. Com-
bining a double clustering approach with sentence
simplification to produce highly informative multi-
document summaries. In 2012 IEEE 13th Interna-
tional Conference on Information Reuse & Integra-
tion (IRI), pages 482–489. IEEE.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study
of translation edit rate with targeted human annota-
tion. In Proceedings of the 7th Conference of the
Association for Machine Translation in the Americas:
Technical Papers, pages 223–231.

Sanja Štajner and Goran Glavaš. 2017. Leveraging
event-based semantics for automated text simplifica-
tion. Expert systems with applications, 82:383–395.

Marcus Ströbel, Elma Kerz, Daniel Wiechmann, and
Stella Neumann. 2016. CoCoGen - complexity con-
tour generator: Automatic assessment of linguistic
complexity using a sliding-window technique. In
Proceedings of the Workshop on Computational Lin-
guistics for Linguistic Complexity (CL4LC), pages
23–31, Osaka, Japan. The COLING 2016 Organizing
Committee.

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. ArXiv, abs/1706.03762.

David Vickrey and Daphne Koller. 2008. Sentence sim-
plification for semantic role labeling. In Proceedings
of ACL-08: HLT, pages 344–352.

Willian Massami Watanabe, Arnaldo Candido Junior,
Vinícius Rodriguez Uzêda, Renata Pontin de Mat-
tos Fortes, Thiago Alexandre Salgueiro Pardo, and
Sandra Maria Aluísio. 2009. Facilita: reading as-
sistance for low-literacy readers. In Proceedings of
the 27th ACM international conference on Design of
communication, pages 29–36.

Daniel Wiechmann, Yu Qiao, Elma Kerz, and Justus
Mattern. 2022. Measuring the impact of (psycho-)
linguistic and readability features and their spill over
effects on the prediction of eye movement patterns.
arXiv preprint arXiv:2203.08085.

Xing Wu, Tao Zhang, Liangjun Zang, Jizhong Han,
and Songlin Hu. 2019. "mask and infill" : Applying
masked language model to sentiment transfer.

Sander Wubben, Antal Van Den Bosch, and Emiel Krah-
mer. 2012. Sentence simplification by monolingual
machine translation. In Proceedings of the 50th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1015–
1024.

Wei Xu, Chris Callison-Burch, and Courtney Napoles.
2015. Problems in current text simplification re-
search: New data can help. Transactions of the Asso-
ciation for Computational Linguistics, 3:283–297.

Wei Xu, Courtney Napoles, Ellie Pavlick, Quanze Chen,
and Chris Callison-Burch. 2016. Optimizing sta-
tistical machine translation for text simplification.
Transactions of the Association for Computational
Linguistics, 4:401–415.

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou,
and Dawei Song. 2022. A survey of controllable
text generation using transformer-based pre-trained
language models. arXiv preprint arXiv:2201.05337.

Saizheng Zhang, Emily Dinan, Jack Urbanek, Arthur
Szlam, Douwe Kiela, and Jason Weston. 2018. Per-
sonalizing dialogue agents: I have a dog, do you have
pets too? arXiv preprint arXiv:1801.07243.

Xingxing Zhang and Mirella Lapata. 2017. Sen-
tence simplification with deep reinforcement learning.
arXiv preprint arXiv:1703.10931.

Yaoyuan Zhang, Zhenxu Ye, Yansong Feng, Dongyan
Zhao, and Rui Yan. 2017. A constrained sequence-
to-sequence neural model for sentence simplification.
ArXiv, abs/1704.02312.

136

https://doi.org/10.48550/ARXIV.1908.08039
https://doi.org/10.48550/ARXIV.1908.08039


7 Appendix

Table 3: Overview of the 107 features investigated in the work

Feature group Number Features Example/Description
of features

Syntactic complexity 16 MLC Mean length of clause (words)
MLS Mean length of sentence (words)
MLT Mean length of T-unit (words)
C/S Clauses per sentence
C/T Clauses per T-unit
DepC/C Dependent clauses per clause
T/S T-units per sentence
CompT/T Complex T-unit per T-unit
DepC/T Dependent Clause per T-unit
CoordP/C Coordinate phrases per clause
CoordP/T Coordinate phrases per T-unit
NP.PostMod NP post-mod (word)
NP.PreMod NP pre-mod (word)
CompN/C Complex nominals per clause
CompN/T Complex nominals per T-unit
VP/T Verb phrases per T-unit

Lexical richness 14 MLWc Mean length per word (characters)
MLWs Mean length per word (sylables)
LD Lexical density
NDW Number of different words
CNDW NDW corrected by Number of words
TTR Type-Token Ration (TTR)
cTTR Corrected TTR
rTTR Root TTR
AFL Sequences Academic Formula List
ANC LS (ANC) (top 2000, inverted)
BNC LS (BNC) (top 2000, inverted)
NAWL LS New Academic Word List
NGSL LS (General Service List) (inverted)
NonStopWordsRate Ratio of words in NLTK non-stopword list

Register-based 25 Spoken (n ∈ [1, 5]) Frequencies of uni-, bi-
Fiction (n ∈ [1, 5]) tri-, four-, five-grams
Magazine (n ∈ [1, 5]) from the five sub-components
News (n ∈ [1, 5]) (genres) of the COCA
Academic (n ∈ [1, 5])
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Feature group Number Features Example/Description
of features

Readability 14 ARI Automated Readability Index
ColemanLiau Coleman-Liau Index
DaleChall Dale-Chall readability score
FleshKincaidGradeLevel Flesch-Kincaid Grade Level
FleshKincaidReadingEase Flesch Reading Ease score
Fry-x x coord. on Fry Readability Graph
Fry-y y coord. on Fry Readability Graph
Lix Lix readability score
SMOG Simple Measure of Gobbledygook
GunningFog Gunning Fog Index readability score
DaleChallPSK Powers-Sumner-Kearl Variation of

the Dale and Chall Readability score
FORCAST FORCAST readability score
Rix Rix readability score
Spache Spache readability score

Psycholinguistic 38 WordPrevalence See Brysbaert et al. (2019)
Prevalence Word prevalence list

incl. 35 categories
(Johns et al. (2020))

AoA-mean avg. age of acquisition
(Kuperman et al. (2012))

AoA-max max. age of acquisition
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Table 4: Means and standard deviations of all engineered languge features across the ‘normal’ and ‘simple’ sentences
in the three benchmark datasets

Biendata Newsela WikiLarge
normal simple normal simple normal simple

Feature M SD M SD M SD M SD M SD M SD
LexDens 0.73 0.1 0.76 0.12 0.58 0.1 0.58 0.11 0.58 0.12 0.6 0.17
CTTR 3.9 0.66 3.53 0.56 4.69 0.83 3.94 0.67 4.33 0.92 3.71 1.06
RTTR 2.65 0.42 2.39 0.37 3.21 0.57 2.69 0.44 2.96 0.63 2.54 0.7
TTR 0.97 0.05 0.99 0.04 0.91 0.07 0.95 0.06 0.88 0.1 0.92 0.1
MLWc 6.59 1.09 5.87 1.03 4.89 0.61 4.67 0.67 4.98 0.83 4.95 1.19
MLWs 2.02 0.36 1.73 0.35 1.47 0.2 1.39 0.21 1.52 0.25 1.49 0.37
Prev.AllAP 6.25 1.07 7.12 0.74 7.3 0.59 7.38 0.68 6.54 1.25 6.51 1.5
Prev.AllBP 7.48 1.31 8.58 0.95 8.98 0.75 9.11 0.87 8 1.56 7.96 1.86
Prev.AllCD 9.43 1.73 10.65 1.4 11.98 1.13 12.25 1.3 10.66 2.14 10.6 2.59
Prev.AllSD 7.55 1.35 8.79 1 9.14 0.77 9.32 0.89 8.14 1.57 8.14 1.89
Prev.AllSDAP 3.63 0.69 4.23 0.5 4.44 0.38 4.51 0.44 3.95 0.77 3.93 0.93
Prev.AllSDBP 5.06 0.98 5.91 0.75 6.34 0.57 6.47 0.66 5.61 1.12 5.59 1.36
Prev.AllWF 10.03 1.85 11.18 1.51 12.74 1.22 13.01 1.41 11.39 2.3 11.31 2.79
Prev.FemAP 5.58 1.02 6.45 0.71 6.67 0.55 6.75 0.64 5.95 1.15 5.93 1.38
Prev.FemBP 6.72 1.26 7.81 0.92 8.26 0.71 8.4 0.83 7.32 1.45 7.3 1.74
Prev.FemCD 8.79 1.69 9.98 1.39 11.37 1.1 11.65 1.27 10.09 2.05 10.04 2.49
Prev.FemSD 6.96 1.31 8.18 0.99 8.6 0.74 8.79 0.86 7.64 1.49 7.64 1.8
Prev.FemSDAP 3.01 0.62 3.56 0.46 3.79 0.34 3.86 0.39 3.34 0.67 3.33 0.81
Prev.FemSDBP 4.35 0.91 5.16 0.72 5.63 0.53 5.76 0.61 4.94 1.02 4.93 1.24
Prev.FemWF 9.2 1.78 10.32 1.48 11.91 1.18 12.19 1.36 10.62 2.18 10.55 2.66
Prev.MaleAP 5.69 0.97 6.47 0.67 6.63 0.53 6.7 0.62 5.95 1.13 5.92 1.36
Prev.MaleBP 6.99 1.23 8.01 0.89 8.38 0.7 8.51 0.81 7.48 1.45 7.45 1.74
Prev.MaleCD 9.01 1.67 10.18 1.36 11.5 1.09 11.76 1.26 10.23 2.06 10.18 2.5
Prev.MaleSD 7.23 1.3 8.41 0.97 8.79 0.74 8.96 0.86 7.82 1.51 7.82 1.82
Prev.MaleSDAP 2.92 0.56 3.39 0.4 3.57 0.3 3.62 0.35 3.18 0.62 3.16 0.75
Prev.MaleSDBP 4.45 0.87 5.18 0.66 5.59 0.51 5.7 0.58 4.95 0.99 4.93 1.2
Prev.MaleWF 9.48 1.78 10.56 1.46 12.11 1.18 12.37 1.36 10.84 2.2 10.75 2.68
Prev.UKAP 4.97 0.9 5.73 0.63 5.93 0.49 6 0.56 5.31 1.02 5.29 1.23
Prev.UKBP 6.22 1.16 7.2 0.85 7.61 0.66 7.73 0.76 6.78 1.33 6.75 1.6
Prev.UKCD 8.26 1.59 9.38 1.33 10.72 1.05 10.99 1.21 9.52 1.94 9.47 2.36
Prev.UKSD 6.46 1.22 7.6 0.93 7.97 0.69 8.15 0.81 7.07 1.38 7.08 1.67
Prev.UKSDAP 2.42 0.5 2.85 0.38 3.05 0.28 3.1 0.32 2.71 0.54 2.7 0.66
Prev.UKSDBP 3.79 0.79 4.47 0.63 4.89 0.47 5.01 0.54 4.32 0.89 4.31 1.08
Prev.UKWF 8.72 1.7 9.75 1.43 11.33 1.14 11.59 1.31 10.11 2.09 10.03 2.55
Prev.USAAP 5.84 1.01 6.68 0.7 6.86 0.55 6.94 0.64 6.14 1.18 6.11 1.41
Prev.USABP 7.08 1.27 8.15 0.92 8.56 0.72 8.69 0.84 7.61 1.49 7.58 1.78
Prev.USACD 9.12 1.7 10.33 1.39 11.67 1.11 11.95 1.29 10.38 2.09 10.33 2.54
Prev.USASD 7.25 1.33 8.49 0.99 8.86 0.75 9.04 0.88 7.87 1.52 7.88 1.84
Prev.USASDAP 3.24 0.63 3.8 0.46 4.01 0.35 4.07 0.4 3.54 0.7 3.53 0.85
Prev.USASDBP 4.67 0.93 5.49 0.72 5.94 0.54 6.06 0.63 5.23 1.06 5.21 1.28
Prev.USAWF 9.55 1.81 10.68 1.48 12.24 1.19 12.51 1.38 10.93 2.23 10.85 2.71
AFL 0 0 0 0.01 0 0.01 0 0.01 0 0.01 0 0.01
ANC 0.53 0.15 0.46 0.17 0.32 0.12 0.29 0.14 0.42 0.16 0.42 0.22
BNC 0.7 0.12 0.67 0.14 0.53 0.11 0.51 0.14 0.6 0.14 0.62 0.18
NAWL 0.07 0.08 0.05 0.08 0.01 0.03 0.01 0.03 0.02 0.04 0.01 0.05
NGSL 0.43 0.16 0.29 0.16 0.22 0.12 0.19 0.13 0.35 0.18 0.35 0.23
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Biendata Newsela WikiLarge
normal simple normal simple normal simple

Feature M SD M SD M SD M SD M SD M SD
ngram1acad 100.3 45.99 82.6 30.9 218.21 97.56 134.33 54.24 191.58 106.77 134.35 89.59
ngram1fic 80.26 39.83 73.47 29.2 211.26 93.65 132.17 53.26 179.99 101.04 127.55 85.76
ngram1mag 94.13 43.86 82.86 30.58 222.63 98.35 137.77 54.8 191.85 106.55 135.32 89.95
ngram1news 86.11 43.24 78.63 30.42 222.82 98.5 137.91 54.84 190.63 105.75 134.58 89.44
ngram1spok 84.23 42.43 77.21 30.28 218.49 97.09 136.38 54.85 183.53 103.33 130.18 87.59
ngram2acad 11.07 12.58 8.13 9.15 41.46 30.02 27.72 21.32 32.37 28.85 24.59 24.74
ngram2fic 3.55 5.37 4.26 6.69 33.83 25.95 25.47 20.46 22.31 21.55 18.68 19.98
ngram2mag 7.87 9.44 8.24 9.36 45.95 31.26 31.95 22.9 32.18 27.69 25.37 24.67
ngram2news 6.25 8.25 6.35 8.02 47.49 32.39 32.88 23.57 31.52 27.44 24.99 24.53
ngram2spok 5.45 7.44 6.04 7.99 42.87 31 31.11 23.43 26.57 24.46 22.08 22.77
ngram3acad 0.82 1.97 0.56 1.5 3.81 5.23 2.89 4.53 3.12 5.06 2.72 4.67
ngram3fic 0.15 0.65 0.24 0.96 2.58 4.17 2.37 4.07 1.4 2.68 1.44 2.88
ngram3mag 0.47 1.3 0.58 1.57 4.52 5.8 3.65 5.25 2.87 4.53 2.67 4.41
ngram3news 0.36 1.12 0.42 1.26 4.91 6.19 3.96 5.61 2.85 4.62 2.68 4.53
ngram3spok 0.28 1 0.36 1.22 3.87 5.68 3.41 5.33 1.95 3.58 2.05 3.86
ngram4acad 0.09 0.42 0.06 0.32 0.41 1.06 0.34 1.02 0.35 1.04 0.32 0.97
ngram4fic 0.01 0.13 0.02 0.2 0.24 0.76 0.24 0.82 0.12 0.42 0.13 0.5
ngram4mag 0.05 0.26 0.07 0.35 0.52 1.21 0.45 1.21 0.31 0.89 0.31 0.91
ngram4news 0.04 0.23 0.04 0.26 0.57 1.29 0.5 1.28 0.3 0.92 0.29 0.94
ngram4spok 0.03 0.19 0.04 0.25 0.41 1.13 0.4 1.17 0.19 0.69 0.21 0.79
ngram5acad 0.01 0.16 0.01 0.09 0.07 0.33 0.05 0.35 0.05 0.3 0.05 0.29
ngram5fic 0 0.03 0 0.06 0.03 0.18 0.03 0.2 0.01 0.1 0.02 0.14
ngram5mag 0.01 0.09 0.01 0.1 0.09 0.38 0.07 0.38 0.05 0.25 0.04 0.24
ngram5news 0 0.07 0.01 0.08 0.09 0.37 0.08 0.38 0.05 0.28 0.04 0.28
ngram5spok 0 0.06 0 0.07 0.06 0.31 0.06 0.32 0.03 0.18 0.03 0.21
NonStopW 0.74 0.1 0.78 0.12 0.6 0.1 0.59 0.12 0.63 0.12 0.64 0.17
AoA.max 12.64 2.47 10.89 2.53 10.19 2.33 8.4 2.16 10.36 2.78 8.96 3.25
AoA.mean 7.43 1.34 6.8 1.31 5.55 0.72 5.22 0.74 5.73 1.16 5.45 1.68
WordPrev 1.62 0.42 2.04 0.29 1.99 0.28 2.01 0.33 1.62 0.49 1.59 0.58
KolDef 0.85 0.12 0.93 0.12 0.77 0.12 0.89 0.13 0.8 0.23 0.93 0.35
NPPostMod 6.41 5.6 2.8 3.3 3.99 5.76 2.03 3.17 5.64 6.44 3.58 4.73
NPPreMod 1.27 1.14 1.02 0.88 1.03 0.86 0.91 0.73 1.21 1.01 1.04 0.87
CpS 0.31 0.5 0.77 0.69 2.11 1.23 1.58 0.86 1.45 1.01 1.19 0.93
CpT 0.27 0.47 0.66 0.66 1.88 1.07 1.49 0.8 1.28 0.8 1.08 0.77
CompNompC 0.67 1.23 1.01 1.08 1.57 1.2 1.09 0.9 1.97 1.51 1.3 1.24
CompNompT 0.8 1.29 1.15 1.13 2.65 1.85 1.52 1.18 2.5 1.85 1.61 1.52
CompTpT 0.02 0.13 0.1 0.3 0.53 0.49 0.37 0.48 0.27 0.44 0.2 0.39
CoordPpC 0.12 0.36 0.06 0.24 0.32 0.52 0.18 0.39 0.45 0.68 0.28 0.52
CoordPpT 0.15 0.41 0.07 0.26 0.51 0.72 0.23 0.47 0.56 0.79 0.34 0.61
DCpC 0.04 0.17 0.12 0.29 0.3 0.29 0.2 0.27 0.16 0.27 0.12 0.24
DCpT 0.02 0.14 0.1 0.32 0.77 0.9 0.45 0.66 0.34 0.62 0.24 0.53
MLC 3.71 6.28 5.83 4.96 12.23 6.89 9.4 4.45 14.63 8.87 10.5 7.5
MLS 12.76 4.46 9.62 2.86 22.76 9.77 13.74 5.12 21.13 10.6 14.67 9.03
MLT 4.62 6.69 6.67 5.02 20.54 10.24 12.96 5.47 18.77 11.09 12.95 9.35
TpS 0.36 0.48 0.7 0.48 1.06 0.39 1 0.27 0.99 0.44 0.88 0.47
VPpT 0.41 0.64 0.93 0.82 2.46 1.42 1.87 1.04 1.56 1.08 1.26 0.98
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Biendata Newsela WikiLarge
normal simple normal simple normal simple

Feature M SD M SD M SD M SD M SD M SD
ARI 15.98 5.01 11.02 4.62 12.98 5.66 7.45 3.85 12.63 6.14 9.27 6.19
Coleman 54.6 26.05 35.59 16.63 111.87 57.51 58.53 30.06 102.55 62.16 64.31 52.94
DaleChall 10.16 2.13 8.9 2.7 6.2 1.96 5.44 2.3 7.58 2.49 7.48 3.37
DC.PSK 11.41 1.53 10.31 1.95 9.06 1.53 8.01 1.68 9.99 1.8 9.56 2.37
FK Grade 13.23 4.27 8.53 4.05 10.61 4.55 6.16 3.15 10.56 4.97 7.72 5.16
FK Read 22.95 30.03 51.06 29.3 59.52 19.89 75.39 18.56 56.99 23.43 65.85 31.32
FORCAST 13.23 2.14 11.86 2.62 9.79 1.67 9.23 1.96 10.2 1.93 10.08 2.91
Fry.x 202.05 36.22 172.58 35.25 146.84 19.97 138.88 21.31 151.77 25.29 149.05 37.25
Gunning 510.4 178.2 385.0 114.4 910.4 390.9 549.6 204.7 846.5 423.0 587.4 361.1
Lix 61.4 14.53 48.27 16.85 48.26 14.61 35.23 12.96 48.96 15.67 41.45 19.55
Rix 5.9 2.98 5.33 2.51 15.49 6.96 9.91 4.12 13.96 7.55 10.08 6.6
SMOG 8.78 1.64 7.18 2.18 6.26 1.55 5.49 1.86 6.45 1.71 5.88 2.23
Spache 2.25 0.54 1.86 0.34 3.41 1.17 2.33 0.61 3.24 1.27 2.47 1.08
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Figure 2: Complexity explanation: Distributions of attention weights over words in a randomly selected sentence.
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Table 5: Simplification Generation: Example pair from WikiLarge corpus (normal, simplified) and source sentence
simplified by ACCESS model (including four parameter tokens) and ACCESS-XL (including ten parameter tokens).

Type Sentence
Source (Wikipedia) One side of the armed conflicts is composed mainly of the Sudanese military and

the Janjaweed, a Sudanese militia group recruited mostly from the Afro-Arab
Abbala tribes of the northern Rizeigat region in Sudan.

Target (WikiSimple) One side of the armed conflicts is made of Sudanese military and the Janjaweed,
a Sudanese militia recruited from the Afro-Arab Abbala tribes of the northern
Rizeigat region in Sudan.

ACCESS One side of the armed conflict is made up of the Sudanese military and the
Janjaweed, a Sudanese militia group brought mostly from the Afro-Arab Abbala
tribes of the northern Rizeigat region in Sudan.

ACCESS-XL The army of the armed conflicts is mainly made of the Sudanese military and the
Janjaweed, a Sudanese militia group. They recruited mostly from the Afro-Arab
Abbala tribes of the northern Rizeigat region in Sudan.
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Figure 3: Simplification Generation: Mean values of the ten parameter tokens (engineered language features)
across sentences sets.
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Table 6: ACCESS model performance with prior complexity prediction using different complexity prediction
models.

ACCESS
Ours Martin

Dataset Filter SARI FKGL SARI FKGL

WiKiLarge

BERT 43.01 5.14 40.97 7.21
BERT_PSYLING 42.84 5.06 40.97 7.17
GloVe-PSYLING-a 41.38 5.19 39.54 7.24
GloVe-PSYLING-b 41.53 5.03 39.72 7.22

Biendata

BERT 26.92 10.85 19.93 12.61
BERT_PSYLING 26.87 10.86 19.87 12.63
GloVe-PSYLING-a 26.16 11.17 19.31 12.78
GloVe-PSYLING-b 26.87 10.90 19.89 12.62

Newsela

bert 33.44 5.27 27.33 6.78
BERT_PSYLING 33.13 5.19 27.30 6.75
GloVe-PSYLING-a 34.88 3.96 29.41 6.45
GloVe-PSYLING-b 34.90 3.96 29.43 6.45

lexical morphosyntactic readability

0.0 0.5 1.0 1.5 2.0 0.0 0.2 0.4 0.6 0.8 0.0 0.5 1.0 1.5 2.0

Spache

Rix

FleshKincaidReadingEase

GunningFog

ColemanLiau

ARI

FleshKincaidGradeLevel

DaleChall

Lix

SMOG

DaleChallPSK

FORCAST

Fry.x

NP_PreMod

DCpC

DCpT

CompTpT

NP_PostMod

CoordPpC

CoordPpT

CpS

VPpT

CpT

MLC

CompNompC

CompNompT

MLT

MLS

TpS

KolDef

ngram_5_acad
ngram_4_acad
ngram_4_mag
ngram_4_spok
ngram_3_spok
ngram_4_news

ngram_3_fic
ngram_5_spok
ngram_3_news

ngram_4_fic
ngram_3_mag
ngram_5_mag
ngram_3_acad
ngram_5_news

ngram_5_fic
ngram_2_fic

ngram_2_spok
ngram_2_acad
ngram_2_news
ngram_2_mag
ngram_1_spok

ngram_1_fic
ngram_1_acad
ngram_1_mag

ngram_1_news
NAWL
NGSL

WordPrev
ANC
BNC

Prev.AllBP
Prev.USABP

Prev.FemaleBP
Prev.UKSDBP

Prev.USASDBP
Prev.FemaleSDBP

Prev.USAAP
Prev.FemaleSDAP

Prev.FemaleAP
Prev.MaleBP

Prev.AllSD
Prev.UKBP

Prev.MaleSD
Prev.FemaleSD

Prev.UKSD
Prev.AllCD

Prev.FemaleCD
Prev.MaleSDBP

Prev.AllAP
Prev.MaleCD

Prev.UKCD
Prev.USASD
Prev.USAWF

Prev.AllWF
Prev.AllSDBP
Prev.USACD
Prev.UKWF

Prev.AllSDAP
Prev.USASDAP

Prev.UKAP
Prev.FemaleWF

Prev.MaleAP
Prev.MaleSDAP

Prev.MaleWF
Prev.UKSDAP

AoA.max
RTTR
CTTR

LexDens
NonStopWordsRate

AoA.mean
MLWc
MLWs

Standardized feature difference score 
 in WikiLarge corpus (training set)

C
an

di
da

te
 fe

at
ur

e 
fo

r 
st

yl
e 

co
nt

ro
l 

 (
A

C
C

E
S

S
: E

xp
lic

it 
pa

ra
m

et
er

 to
ke

ns
)

Selected

no

yes

Delta Wiki Norm − Wiki Simple 
 All values are absolute values in SD units (M/SD)

Figure 4: Simplification Generation: Differences in mean feature scores (standardized) between ‘normal’ and
‘simple’ sentences in WikiLarge corpus. Features in blue were selected for controllable sentence simplification in
the ACCESS-XL model.
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Table 7: Average ED between simple sentences and
original ACCESS output predictions with and without
complexity prediction. ED are calculated using the
tseval library, which EASSE relies on.

Dataset Filter ED

WiKiLarge

none 15.641
BERT 15.566
BERT_PSYLING 15.590
GloVe-PSYLING_a 15.717
GloVe-PSYLING_b 15.771
LSTM 15.705

biendata

none 13.298
BERT 13.269
BERT_PSYLING 13.267
GloVe-PSYLING_a 13.240
GloVe-PSYLING_b 13.281
LSTM 13.220

newsela

none 16.378
BERT 15.958
BERT_PSYLING 15.957
GloVe-PSYLING_a 16.377
GloVe-PSYLING_b 16.376
LSTM 16.008

Table 8: Avg ED between complex sentences and origi-
nal ACCESS outputs with/without complexity predic-
tion

Dataset Filter ED

WiKiLarge

none 6.684
BERT 5.916
BERT_PSYLING 5.979
GloVe-PSYLING_a 5.639
GloVe-PSYLING_b 5.765
LSTM 4.516

biendata

none 2.823
bert 2.719
BERT_PSYLING 2.699
GloVe-PSYLING_a 2.529
GloVe-PSYLING_b 2.723
LSTM 1.585

newsela

none 5.368
BERT 3.918
BERT_PSYLING 3.960
GloVe-PSYLING_a 5.358
GloVe-PSYLING_b 5.363
LSTM 3.022

Table 9: Simplification Generation: Proportion of sen-
tences retained after complexity prediction after com-
plexity prediction (step 1) across prediction model and
dataset

Complexity prediction model
Dataset BERT PsyBERT PsyGloVea PsyGloVeb

Biendata 0.947 0.945 0.881 0.961
Newsela 0.572 0.578 0.959 0.991
WiKiLarge 0.807 0.805 0.675 0.764

Evaluation metrics for simplification generation
FKGL is computed as a linear combination of the
number of words per simple sentence and the
number of syllables per word:

FKGL = 0.39
N word

N sent
+ 11.8

N syl

N word
− 15.59

SARI compares the predicted simplification with
both the source and the target reference. It is an
average of F1 scores for three n-gram operations:
additions (add), keeps (keep) and deletions (del).
For each operation, these scores are then averaged
for all n-gram orders (from 1 to 4) to get the
overall F1 score.

fope(n) =
2× pope(n)× rope(n)

pope(n) + rope(n)

Fope =
1

k

∑

n=[1,...,k]

fope(n)

SARI =
Fadd + Fkeep + Fdel

3

SARI thus rewards models for adding n-grams that
occur in the reference but not in the input, for keep-
ing n-grams both in the output and in the reference,
and for not over-deleting n-grams. Xu et al. (2016)
show that SARI correlates with human judgments
of simplicity gain.
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Abstract
Controllable text simplification assists lan-
guage learners by automatically rewriting com-
plex sentences into simpler forms of a tar-
get level. However, existing methods tend
to perform conservative edits that keep com-
plex words intact. To address this problem, we
employ lexically constrained decoding to en-
courage rewriting. Specifically, the proposed
method predicts edit operations conditioned to
a target level and creates positive/negative con-
straints for words that should/should not appear
in an output sentence. The experimental results
confirm that our method significantly outper-
forms previous methods and demonstrates a
new state-of-the-art performance.

1 Introduction

Text simplification (Shardlow, 2014) paraphrases
complex sentences into simpler forms. Control-
lable text simplification (Scarton and Specia, 2018;
Nishihara et al., 2019; Agrawal et al., 2021) is a
task in text simplification that aims to rewrite a
sentence for an audience of a specific level. It is
a crucial technique in assisting children and non-
native speakers with language learning (Watanabe
et al., 2009; Allen, 2009).

Text simplification can be performed based on
three approaches: (1) translation-based, (2) edit-
based, and (3) hybrid approaches. The translation-
based approach, e.g., (Nisioi et al., 2017; Zhang
and Lapata, 2017; Kriz et al., 2019; Surya et al.,
2019; Martin et al., 2022), formalizes text simpli-
fication as monolingual machine translation from
complex to simple sentences. This approach can
rewrite a sentence flexibly; however, it implicitly
learns simplification operations through transla-
tion. The infrequent nature of simplification op-
erations hinders a model from learning necessary
operations, which makes the model conservative to
maintain complex words intact (Zhao et al., 2018;
Kajiwara, 2019). In contrast, the edit-based ap-
proach (Alva-Manchego et al., 2017; Dong et al.,

2019; Kumar et al., 2020; Mallinson et al., 2020;
Omelianchuk et al., 2021) rewrites an input by ap-
plying edit operations of add or replace, keep,
and delete to words. This approach can address
the conservativeness problem owing to explicit
word-by-word edits. However, it lacks the flexi-
bility to rewrite an entire sentence to drastically
change its syntactic structure.

Finally, the hybrid approach takes advantages
of the above two by applying lexical constraints
to translation-based models. Nishihara et al.
(2019) added weights to a loss function to bias
a sequence-to-sequence (seq2seq) model to output
certain words. Agrawal et al. (2021) biased a non-
autoregressive simplification model by setting an
initial state of decoding, considering the lexical
complexity of a source sentence. The constraints
in these studies were soft; in contrast, Kajiwara
(2019) and Dehghan et al. (2022) applied a hard
constraint using lexically constrained decoding to
avoid outputting complex words. In spite of their
success, these two methods lack flexibility in their
constraints. They only use negative constraints to
avoid outputting specified words. However, pos-
itive constraints, which encourage the output of
specified words, are also valuable for text simplifi-
cation.

In this study, we propose a hybrid method for
controllable text simplification with flexible com-
binations of positive and negative constraints us-
ing NeuroLogic decoding (Lu et al., 2021). The
proposed method predicts edit operations condi-
tioned on a target level to generate positive and
negative lexical constraints sensible to a target
level. Experiments on Newsela (Xu et al., 2015)
and Newsela-Auto (Jiang et al., 2020) reveal that
the proposed method outperforms previous meth-
ods and achieves a new state-of-the-art perfor-
mance. The codes and outputs of the proposed
method will be released at https://github.com/
t-zetsu/ConstrainedTS.
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Figure 1: Overview of the proposed method

2 Proposed Method

Figure 1 illustrates an overview of the proposed
method, in which generated constraints are applied
to a seq2seq model via NeuroLogic decoding.

2.1 Word Level Lexicon
We create word level lexicons to generate con-
straints sensible to a target level. We assign word
levels based on their frequency in sentences of a cer-
tain level, assuming that higher-level words would
frequently appear in higher-level sentences. The
frequency of a word w in sentences of a level ℓ is
as follows: f(w, ℓ) = nℓ(w)∑

ŵ∈Vℓ
nℓ(ŵ) , where nℓ(w)

denotes the number of occurrences of w in ℓ-level
sentences, and Vℓ denotes a set of unique words
in those sentences. A word level k is determined
as k = argmaxℓ f(w, ℓ). Finally, we collect all
ℓ-level words as a lexicon Dℓ for each level.

2.2 Constraint Generation
Constraints are generated in three steps. The pro-
posed method first predicts all edit operations in
an input conditioned on a target level. Following
this, it identifies lexical paraphrases for replacing
higher-level words. Finally, positive and negative
constraints are assembled based on these edit opera-
tions, lexical paraphrases, and word level lexicons.

Edit Operation Prediction The proposed
method uses a pre-trained language model to
predict an edit operation among replace, keep,
and delete for each word. These edit operations
should depend on a target level. Therefore, the
input sentence is tagged with a special token
representing the target level, e.g., “sentence <3>.”

Manual annotation of these edit operations is
costly. Thus, we synthesize a fine-tuning corpus
using a state-of-the-art word alignment model (Lan
et al., 2021). Specifically, we obtain word align-
ments between parallel sentences in a simplifica-
tion corpus. Words with null-alignments are as-

target level: ℓ replace keep delete

word level ≤ ℓ — P —
word level > ℓ N, P — N

Table 1: Assembling positive (P) and negative (N) con-
straints relevant to controlling output levels

signed delete labels. Among the aligned words,
words aligned with identical counterparts are as-
signed keep labels, and the ones aligned to words
with different surfaces are assigned replace labels.
This pseudo-labelled corpus is used for fine-tuning.

Replacement Word Identification The pro-
posed method identifies a word ŵ that should re-
place another word w whose predicted label is
replace. Given the target level ℓ of simplifica-
tion, it computes the semantic similarity between
w and words in {Dk|k ≤ ℓ} and identifies the
replacement word ŵ as the one with the highest
similarity. For similarity estimation, we fine-tune a
pre-trained language model.

Constraint Assembling Finally, we generate
positive and negative constraints based on the pre-
dicted edit operations and the replacement words.
We focus on the edit operations that are relevant to
controlling output levels. Note that the predicted
edit operations should be a mixture of various edits,
including general lexical paraphrasing and omis-
sions. Therefore, we use the word level lexicons
to select operations relevant to controlling output
levels as summarized in Table 1.

Specifically, words with the delete label trans-
form into negative constraints if their levels are
higher than the target level ℓ. Words with keep
labels transform into positive constraints if their
levels are lower than or equal to ℓ. Finally, words
with replace labels transform into negative con-
straints and their replacement words transform into
positive constraints if their levels are higher than ℓ.

The cases where the edit operations and the word
level lexicons conflict, i.e., words whose levels are
lower than or equal to ℓ but predicted replace and
delete operations, are expected to be independent
for controlling output levels and correspond to gen-
eral lexical paraphrasing and omissions. Therefore,
we exclude these operations from the constraints
and rely on the seq2seq model for their handling.
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3 Experiments

3.1 Dataset

To evaluate the proposed method on the control-
lable text simplification task, we used Newsela and
Newsela-Auto, which provide pairs of complex and
simple sentences with K-12 grade levels. These
are the only corpora providing fine-grained levels,
which makes them standard datasets for evaluat-
ing controllable text simplification models. While
Newsela-Auto preserves higher quality sentence
alignments, we also experimented on Newsela for
comprehensive comparison to previous studies. For
Newsela, we used the data-split by Zhang and La-
pata (2017) consisting of 94, 208 training, 1, 129
validation, and 1, 077 test sentences. For Newsela-
Auto, we used the official split of 394, 300 training,
43, 317 validation, and 44, 067 test sentences.

3.2 Implementation Details

We implemented the proposed method using Py-
torch1 and Transformers (Wolf et al., 2020)2. All
experiments were conducted on an NVIDIA A6000
GPU with a 48 GB memory. Appendix A presents
details regarding the fine-tuning settings.

Edit Operation Prediction Model We fine-
tuned pre-trained BERT (Devlin et al., 2019) mod-
els for an edit operation prediction using the
pseudo-labelled corpora created using Newsela and
Newsela-Auto, respectively. Table 2 depicts the
precision, recall, and F1 of the operation prediction
on the test sets. The results indicate that replace
operations are difficult to predict owing to their
infrequency; however, the results confirm that the
proposed method improves text simplification even
though the edit operation prediction is imperfect.

Lexical Similarity Estimation Model We fine-
tuned a pre-trained RoBERTa (Liu et al., 2019) for
a lexical similarity estimation using a corpus that
provides human assessment of semantic similari-
ties for 26.5k word pairs on a 5-point scale (Pavlick
et al., 2015)3. Specifically, we concatenate a pair
of words w and ŵ with start and separator sym-
bols as “<s>w</s></s>ŵ</s>” and input it in the
model. The hidden output of the <s> symbol is
then input into a linear layer to predict the simi-
larity. Finally, we obtain a symmetric similarity

1https://pytorch.org/
2https://huggingface.co/docs/transformers/
3http://www.seas.upenn.edu/~nlp/resources/

ppdb-2.0-human-labels.tgz

Newsela Newsela-Auto

Edit Operation P R F1 P R F1

replace 0.28 0.21 0.24 0.28 0.15 0.19
keep 0.58 0.57 0.57 0.58 0.57 0.58
delete 0.70 0.73 0.72 0.73 0.77 0.75

Table 2: Performance of edit operation prediction on the
test sets of Newsela and Newsela-Auto

score based on (sim(w, ŵ) + sim(ŵ, w))/2. We
randomly split the corpus into 72% for training,
8% for validation, and 20% for testing. The fine-
tuned model achieved a sufficiently high Pearson
correlation coefficient of 0.86 on the test set. For
a comparison, the correlation coefficient of cosine
similarities computed using FastText (Bojanowski
et al., 2017) was found to be 0.50.

Seq2seq Model As a seq2seq model to employ
NeuroLogic decoding (Lu et al., 2021), we fine-
tuned two pre-trained BART-Base (Lewis et al.,
2020) models separately for Newsela and Newsela-
Auto corpora. The batch size was 64, and the opti-
mizer used was Adam (Kingma and Ba, 2015) with
a learning rate of 1e−5. The fine-tuning continued
for 20 epochs, and a checkpoint with the highest
SARI (Xu et al., 2016) score on the validation set
was used as the final model.

3.3 Comparison

The proposed method is the hybrid of translation-
based and edit-based approaches, hence, we com-
pare it with existing methods in these categories.
As translation-based methods, We compare our
method to DRESS (Zhang and Lapata, 2017),
which uses reinforcement learning for maximiz-
ing SARI score, as a conventional method. We
also compare to MUSS (Martin et al., 2022), which
also uses the pre-trained BART and hods the state-
of-the-art measured on the Newsela corpus. From
strong edit-based methods, we compare the pro-
posed method to EditNTS (Dong et al., 2019)
that explicitly learns edit operations using a neu-
ral programmer-interpreter model and the model
proposed by Kumar et al. (2020) that conducts it-
erative edits of input sentences. As existing hy-
brid methods, we compare our method to the mod-
els proposed by Kajiwara (2019)4 and Dehghan
et al. (2022), both of which employ negative con-

4For a fair comparison, we employed a fine-tuned BART
in (Kajiwara, 2019), which resulted in a higher SARI score.
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Model SARI Add Keep Delete FKGL PCC MSE ACC Len

Source 12.24 0.00 36.72 0.00 9.18 0.338 47.2 15.5 23.06
Reference 100.0 100.0 100.0 100.0 3.96 1.000 0.0 100.0 12.75

DRESS (Zhang and Lapata, 2017)† 38.03 2.43 42.20 69.47 4.97 0.388 13.0 24.3 14.37
MUSS (Martin et al., 2022)† 41.20 6.02 35.88 81.70 2.43 0.362 13.3 20.9 9.23
BART 38.54 3.64 40.59 71.40 4.63 0.350 13.6 26.2 11.26

EditNTS (Dong et al., 2019)⋆ 37.05 1.23 36.55 73.37 3.82 0.266 16.1 21.4 13.25
(Kumar et al., 2020)† 38.37 1.01 36.51 77.58 2.95 0.334 12.6 25.5 9.61

(Kajiwara, 2019) 38.48 ⋆ 4.55 43.41 67.47 5.01 0.417 12.2 28.1 14.27
(Dehghan et al., 2022)‡ 40.01 3.06 36.53 80.43 3.20 − − − 11.72
Proposed 42.65 4.55 42.49 80.90 3.74 0.420 11.1 27.9 12.01
Proposed (Oracle) 54.73 10.98 66.07 87.14 4.07 0.591 8.0 37.3 12.47

Table 3: Results on the Newsela test set: † indicates that a score was recomputed with EASSE using outputs shared
by the authors, ⋆ indicates that a model was trained in this study using the released implementation, and ‡ presents
that a score was borrowed from the original papers with the same settings as this experiment.

Model SARI Add Keep Delete FKGL PCC MSE ACC Len

Source 12.04 0.00 36.12 0.00 10.11 0.393 57.7 13.9 24.82
Reference 100.0 100.0 100.0 100.0 4.34 1.000 0.0 100.0 13.34

BART 39.66 4.16 39.17 75.65 4.38 0.342 16.4 26.9 10.33

EditNTS (Dong et al., 2019) 37.43 0.97 34.78 76.53 3.12 0.215 20.4 23.2 11.24

(Kajiwara, 2019) 38.30 4.42 40.51 69.96 5.03 0.371 16.0 26.8 13.79
Proposed 43.09 4.41 42.74 82.13 3.89 0.391 15.1 26.8 11.85
Proposed (Oracle) 51.75 7.45 61.14 86.66 4.64 0.611 9.9 34.5 12.90

Table 4: Results on the Newsela-Auto test set, where all models were trained and evaluated in this study.

straints.5 In contrast, our method employs both
positive and negative constraints on a translation-
based model.

3.4 Evaluation Metrics

Following previous studies, we measured the SARI
(with F1 scores of Add, Keep, and Delete opera-
tions) and FKGL using EASSE (Alva-Manchego
et al., 2019), as well as the average output lengths
(Len). Note that the FKGL and Len should be
closer to those of references. Furthermore, to evalu-
ate simplification controllablity, we measured Pear-
son’s correlation coefficient (PCC), Mean Squared
Error (MSE), and Accuracy (ACC) between FKGL
scores of outputs and references (Agrawal et al.,
2021). The Accuracy represents the percentage of
outputs whose grades are within 1-grade difference
from those of references.

5Due to the heavy dependence on Google Translate to
prepare a training corpus, we could not replicate (Agrawal
et al., 2021) in this study.

Src The rest would be preserved as open
space.

Ref The rest would be saved as open space.
BART The rest would be preserved as open

space.
Prop. The rest would be kept as open space.

- PC rest, be, kept, open, space
- NC preserved

Table 5: Example outputs: “PC” and “NC” represent
positive and negative constraints, respectively.

3.5 Results

The experimental results on the test sets of Newsela
and Newsela-Auto are presented in Tables 3 and 4,
respectively. The tables present the performance
of representative translation-based (the second set
of rows), edit-based (the third set of rows), and
hybrid (the last set of rows) methods. The tables
also present the performance of source and ref-
erence sentences (the first set of rows). “BART”
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Src So Yan, a widow since her husband’s death nearly a decade ago, spends every
weekday at a modest community center near her home, where she plays mahjong
and eats meals prepared by a volunteer staff.

Prop. (Grade 8) She spends every weekday at a community center near her home.
- PC husband, at, community, near, staff
- NC widow, a

Prop. (Grade 5) Yan’s husband died almost 10 years ago.
- PC –
- NC widow, nearly, a, every, community, center, and, meals, prepared, by, staff

Prop. (Grade 2) Yan is a widow.
- PC –
- NC widow, husband, nearly, a, ago, at, community, center, near, and, meals, prepared,

by, staff

Table 6: Example outputs of controllable simplification; an input sentence of grade-12 was simplified to the grade-8,
5, and 2, respectively.

corresponds to the fine-tuned BART in this study,
and “Proposed” represents the proposed method
applying our lexical constraint on “BART.”

The proposed method achieved the highest SARI
and MSE scores with the highest and second-
highest PCC scores on Newsela and Newsela-auto,
respectively.6 Furthermore, its output lengths are
closest and second-closest to those of the refer-
ences. A comparison with hybrid methods indi-
cates the effectiveness of the flexible constraints
of the proposed method, in spite of the imperfect
nature of the edit operation prediction, as shown
in Table 2. Among the previous methods, MUSS
presents the highest SARI score, which fine-tunes
BART using a large-scale data augmentation. The
proposed method outperforms it using only the
Newsela training set. Finally, a comparison of the
Add, Keep, and Delete scores against BART con-
firms that our lexical constraint successfully im-
proves all of these operations.

Oracle Performance The last rows in Tables 3
and 4 show the proposed method with oracle lexi-
cal constraints created using reference sentences as
described in Section 2.2. The significantly higher
SARI scores indicate that the proposed method can
be further enhanced by improved constraint gener-
ation, in particular, by more precise edit operation
prediction.

Example Outputs Table 5 presents example out-
puts where the input of grade-5 was simplified to

6The highest PCC score of source in Newsela is due to the
positive correlation between grades of the source and reference
sentences.

grade-3. The proposed method successfully re-
placed preserved with kept owing to the lexical
constraints. By contrast, BART ended up preserv-
ing it in the output. Table 6 shows example outputs
where the input of grade-12 was simplified to the
grade-8, 5 and 2, respectively. These outputs indi-
cate that the proposed method can adjust sentence
structures while considering lexical complexities
according to the target levels.

4 Conclusion

We proposed a hybrid method for controllable
text simplification that takes both advantages of
translation- and edit-based methods using the flex-
ible lexically constrained decoding. The experi-
mental results showed that the proposed method
conducts high-quality controllable text simplifica-
tion on Newsela and Newsela-Auto. We expect that
the proposed method also works for text simplifica-
tion in general, i.e., the binary transformation from
complex to simple sentences. This investigation
is left for our future work. We will also explore
complex combinations of constraints allowed by
NeuroLogic decoding in the future.
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Abstract
Recent work on text simplification has focused
on the use of control tokens to further the state
of the art. However, it is not easy to further
improve without an in-depth comprehension
of the mechanisms underlying control tokens.
One unexplored factor is the tokenization strat-
egy, which we also explore. In this paper, we
(1) reimplemented ACCESS, (2) explored the
effects of varying control tokens, (3) tested the
influences of different tokenization strategies,
and (4) demonstrated how separate control to-
kens affect performance. We show variations
of performance in the four control tokens sep-
arately. We also uncover how the design of
control tokens could influence the performance
and propose some suggestions for designing
control tokens, which also reaches into other
controllable text generation tasks.

1 Introduction

Text simplification (TS) refers to reducing linguis-
tic complexity at both syntactic and lexical levels
without losing the main content (Alva-Manchego
et al., 2020b). It is commonly used to increase
the readability of documents intended for children
(De Belder and Moens, 2010), non-native speak-
ers (Petersen and Ostendorf, 2007) and people
with dyslexia. The requirements for simplified
outcomes may vary among audiences (Xu et al.,
2015), for instance, depending on the characteris-
tics of the dataset. The task can be roughly divided
into sentence-level simplification (Nishihara et al.,
2019; Martin et al., 2020a) and paragraph-level sim-
plification (Sun et al., 2020; Devaraj et al., 2021).
The two types of tasks may have different focuses,
and this paper only involves sentence-level simpli-
fication.

In order to fit the requirements of different user
groups, some projects introduced explicit discrete
prompts as control tokens to assist the model in
learning from datasets and adjusting the simplifica-
tions (Martin et al., 2020a; Agrawal et al., 2021).

Figure 1: Example of input and output

By adjusting the value in different control tokens,
researchers can manually adjust the characteristics
of the output, such as length, syntactic and lexical
difficulties, etc.

The control tokens are added to the beginning
of the complex sentences and represent a relation-
ship between that sentence and the desired input
(such as the desired compression ratio). In addi-
tion, the numerical value also changes with the
demands of the outcome. The format of the control
token is: <Token_value>, where Token is a novel
extra-vocabulary token with human interpretable
meaning, and value is a numerical value indicat-
ing some relationship between the given input and
output as shown in Figure 1 and Appendix A. The
design of the control tokens is based on the need for
adjustment. Multiple control tokens can be applied
simultaneously, and four control tokens are used in
this project.

Although the control tokens are manually
crafted, how the control tokens change the out-
come remains unstudied. To explore the mecha-
nisms of control tokens in simplification, this paper
proposes the following: (1) Verify the importance
of control tokens in Section 4.2. (2) Reimplement
the ACCESS (Martin et al., 2020a) used in the
current state-of-the-art (SOTA) in Section 3.3. (3)
Explore the influence of the variation of control
tokens in the format in Section 4.1. And finally (4)
investigate the effects of the tokenization method
in Section 4.2.
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2 Literature Review

Natural language generation (NLG) is a sub-task
in natural language processing. There have been
attempts to build an NLG system based on hand-
crafted rules and to define the problem and fea-
tures based on knowledge in the last century (Hovy,
1990; Reiter and Dale, 1997). With the develop-
ment of computation power and the introduction of
neural networks, more neural-network-based sta-
tistical methods were applied (Wen et al., 2015;
Dušek and Jurčíček, 2016; Lebret et al., 2016; Mei
et al., 2016). One important change happened
with the publishing of the transformer architecture
(Vaswani et al., 2017), which inspired the “pre-train
and fine-tune” paradigm. Later, due to the new
architecture outperforming existing ones in both
performance and computation consumption, the
transformer architecture and its derivatives occu-
pied a dominant position in the NLG domain (Yang
et al., 2019; Floridi and Chiriatti, 2020; Lewis et al.,
2020). As a sub-task of NLG, text simplification
can also be regarded as monolingual machine trans-
lation (Wubben et al., 2012). With the development
of sequence-to-sequence machine translation, text
simplification also drew more attention (Guo et al.,
2018; Surya et al., 2019; Omelianchuk et al., 2021)

In recent years, researchers tried to introduce
explicit parameters to control the simplified out-
put (Nishihara et al., 2019; Martin et al., 2020a;
Agrawal et al., 2021). Martin et al. (2020a) in-
troduced four hyper-parameters in the AudienCe-
CEntric Sentence Simplification (ACCESS): the
number of characters, Levenshtein similarity (Lev-
enshtein et al., 1966), word rank and dependency
tree depth, which are used to control the length,
similarity, lexical complexity and syntactic com-
plexity respectively. With the help of the param-
eters, users can modify the generated simplifica-
tion based on their needs. However, these parame-
ters may be less straightforward for lay users, and
Agrawal et al. ( 2021) replaced the detailed parame-
ters with simplification grades. In addition, a minor
change in these parameters may significantly affect
the readability and fluency of output. Although the
value set that maximises the benchmark scores can
be given, it may be of little help to the end-users
with specific requirements. Further exploration of
the effect and proper parameter preferences needs
to be made to guide and help lay users adjust these
parameters based on their needs.

Another novel research on the training datasets is

multilingual unsupervised sentence simplification
(MUSS) (Martin et al., 2020b). They fine-tuned
BART (Lewis et al., 2020) on their mined para-
phrases datasets instead of complex-simple parallel
corpora and found that with the help of ACCESS,
the unsupervised model outperformed the other un-
supervised text simplification models and became
the latest SOTA. As an extension of ACCESS, the
authors improved the design of control tokens and
changed the tokenization strategy. They showed
that performance differences between the two types
of datasets might be acceptable only if the mined
paraphrase dataset is good enough. Training on
paraphrase datasets provides more options than
training solely on the supervised datasets and there
is a nearly unlimited amount of unlabelled data.
They also found that the performance of the combi-
nation of unsupervised and supervised training is
the best, which is very similar to the pre-train and
fine-tune paradigm. Although multilingual tests
were made in the MUSS, they were delivered sep-
arately and had little interference with the aim of
this project. Thus, there is little need to focus on
their research in French and Spanish.

The metrics also play a vital role in evaluating
the performance of models. Although current met-
rics can hardly compete with human evaluations,
they can still partially reflect the performance in
certain indexes. Among the popular metrics, there
are reference-based metrics like Bilingual evalua-
tion understudy (BLEU) (Papineni et al., 2002) and
Recall-Oriented Understudy for Gisting Evaluation
(ROUGE) (Lin, 2004) and non-reference-based
metrics like Flesch-Kincaid Grade Level (FKGL)
(Flesch, 1948). Currently, the most popular metric
for text simplification is the system output against
references and against the input sentence (SARI)
(Xu et al., 2016). SARI is designed especially for
text simplification tasks, which evaluates the out-
puts in aspects of adding, keeping and deleting.
Although it is found to have some deviation from
human judgement, SARI is still a valuable met-
ric to evaluate simplicity (Alva-Manchego et al.,
2021). As for the non-reference-based metrics, the
BERT score is a BERT-based metric that evaluates
the similarity between input and output by calculat-
ing the correlation in the embedding space (Zhang
et al., 2019). It is found to have a high correla-
tion with human judgement (Scialom et al., 2021).
By combining the metrics, the performance can be
evaluated more comprehensively.

155



Strategy Raw Input ’<DEPENDENCYTREEDEPTHRATIO_0.6>’

Default
IDs [0, 41552, 41372, 9309, 23451, . . . , 2571, 6454, 1215, 288, 4, . . . ]

tokenization [’<s>’, ’<’, ’DEP’, ’END’, ’ENCY’, . . . , ’_’, ’0’, ’.’, ’6’, ’>’, . . . ]

Joint
IDs [0, 50265, . . . ]

tokenization [’<s>’, ’<DEPENDENCYTREEDEPTHRATIO_0.6>’, . . . ]

Separate
IDs [0, 50265, 50266, 15698, . . . ]

tokenization [’<s>’, ’<DEPENDENCYTREEDEPTHRATIO_’, ’0.6’, ’>’, . . . ]

Table 1: Tokenization under differing strategies for the input starting with: ’<DEPENDENCYTREEDEPTH-
RATIO_0.6>’

3 Experiments

3.1 Quantisation differences
As mentioned in the literature review, there
are 4 types of control tokens: <DEPENDEN-
CYTREEDEPTH_x> (DTD), <WORDRANK_x>
(WR), <REPLACEONLYLEVENSHTEIN_x>
(LV) and <LENGTHRATIO_x> (LR). In the
preprocessing step, they are calculated and added
to the beginning of complex sentences in the
complex dataset. As an augmentation to the
control tokens, the calculated values are rounded
to the nearest 0.05. However, in the original
optimisation process, the calculated values by
the algorithm provided by the Nevergrad (Rapin
and Teytaud, 2018) API have high precision and
verbose digits, just like the first line in Table 2.
During the reimplementation, we found that only
the first one or two digits are recognised as input
values and the remaining digits didn’t provide
any meaningful instruction. On the contrary, it
brought unnecessary information to the system and
even lowered the performance of the model. Thus
we replaced the continuous values with discrete
ones like 0.2, 0.25, 0.3, ..., 1.0 and changed to the
corresponding discrete algorithm in Nevergrad
(Rapin and Teytaud, 2018).

3.2 Tokenization Strategies
One of the aims of this project is to explore the ef-
fects of tokenization strategies. As shown in Table
1, the default tokenization method in the MUSS
project is regarding the control tokens as plain
text. In comparison, we added 2 more tokeniza-
tion strategies: One is to regard the whole control
token as one token in the tokenizer; the other is to
break the control token into a combination of type
and value and add them separately to the tokenizer.
These 2 strategies are achieved by manually adding
all possible control tokens to the dictionary of the
tokenizer. This will affect not only the evaluation

and optimisation process but also the training pro-
cess, thus each tokenization strategy requires an
independent fine-tuned model.

3.3 Reimplementation of ACCESS

One of the goals of this project is to reimplement
and verify the effect of control tokens in the cur-
rent SOTA. However, since the main focus of this
project is on the control tokens, instead of training
on both supervised and unsupervised datasets, it
would be more practical to claim the reimplemen-
tation of ACCESS rather than MUSS. In order to
build a unified baseline, this project also applied
the BART model (Lewis et al., 2020), which is
adopted in the MUSS project. The original project
can be divided into the following sections: data
mining, preprocessing, training, evaluation and op-
timisation.

Since the goal is verification, there is no need
to rewrite the code for all sections. Thus only the
codes related to training and some other periph-
eral functions have been altered to achieve similar
results. The other functions, such as preprocess-
ing and optimisation, still kept most of the original
code. The original core API used for training is
fairseq. This project replaced it with another open-
source API — Huggingface. Huggingface provides
a collection of the most popular pre-trained mod-
els and datasets, including the BART (Lewis et al.,
2020) and a unified, advanced and user-friendly
API to achieve the most common applications,
which made it easier for future upgrading and mod-
ification. The hyper-parameters of models in the
reimplementation, including the learning rate and
weight decay, are set to be identical to the original
project so that the influence of irrelevant factors
can be lowered. The last difference between the
reimplementation and the original project is the
tokeniser. The tokeniser in the reimplementation is
the BART-base byte-pair encoding(BPE) tokeniser
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instead of the GPT2 BPE tokeniser (Radford et al.,
2019). Both tokenisers serve the same purpose and
perform very similarly to each other. The new one
consumes fewer computer resources, which pre-
sumably causes only a little effect on the results.
Due to the variation of control tokens, the optimi-
sation algorithm has also changed. The original al-
gorithm is the OneplusOne provided by Nevergrad
(Rapin and Teytaud, 2018), and the current one is
the PortfolioDiscreteOnePlusOne, which fits the
discrete values better. As for the metrics, the SARI
score is kept as the primary evaluation method (Xu
et al., 2016), and the BERT score is introduced as
a co-reference.

However, due to the limitation of computation
resources and mass fine-tuning demands of models
with different tokenization strategies, this project
also downgraded the training scale and limited
the epochs in both baseline and reimplementation.
Here are the changes applied to both the reimple-
mentation and the baseline as follows:

• All results are from models trained in BART-
base instead of BART-large.

• All training processes are set to 10 epochs
only.

• All models are trained on Wikilarge (Zhang
and Lapata, 2017) only.

As explained earlier, each tokenization strategies is
corresponding to one model and there is a total of
16 models that need to be fine-tuned. This is why
only BART-base is applied and the training epochs
are limited. As for the reason for choosing 10 as the
targeting epoch number, it is because the training
loss for models with combined control tokens has
reached 0.85 and decreased very slowly between
epochs, while the validation loss started increasing.
If continuing training, the over-fitting problem may
occur. The results of the baseline shown in the next
section can also partially prove the training process
is probably long enough.

3.4 Training process

General NLP tasks can be divided into three steps:
data preprocessing, training and evaluation. The
preprocessing step followed the MUSS project
(Martin et al., 2020b). In this project, there is one
more step: optimisation. The authors defined four
types of prompts used as control tokens to ma-
nipulate the features of the outputs. Each control

token is designed to represent one character of the
sentence. The <DEPENDENCYTREEDEPTH_x>
represents the syntactic complexity; The <WOR-
DRANK_x> represents the lexical complexity; The
<REPLACEONLYLEVENSHTEIN_x> represents
the inverse similarity of input and output at the
letter level; The <LENGTHRATIO_x> represents
the length ratio of input and output. The value of
each control token is calculated based on the refer-
ence complex-simple pairs in the training dataset,
which is Wikilarge in this project (Zhang and La-
pata, 2017). After the calculation, these control
tokens will be added to the beginning of complex
sentences, and the model will be trained on this
preprocessed dataset. In addition to the combined
control tokens, this project also explored the effects
of a single control token; only the corresponding
control tokens are kept in that dataset.

The next step is training. It follows the majority
of fine-tuning processes for pretrained language
models. By feeding the preprocessed complex-
simple sentence pairs to the model, the model is
expected to learn how to simplify texts and the
meaning of each control token. As explained in
the tokenization strategy, each tokenization method
demands a separate model. To compare the perfor-
mance of different tokenization methods, except
the baseline, 15 models are fine-tuned in the exper-
iment: 3 models with full control tokens and 12
models with only one control token. The models
with one control token are used to verify the im-
portance of combined control tokens and provide
supportive evidence for the assumption.

The following step is evaluation. Thanks to
Easier Automatic Sentence Simplification Evalua-
tion(EASSE), multiple evaluation metrics can be
applied at the same time easily (Alva-Manchego
et al., 2019). The SARI score is adopted as the
primary metric to compare with the current SOTA,
while the BERT score is added as a second refer-
ence. Different from the common applications in
other projects, the BERT score in this project is the
correlation between the output and references. One
coefficient array can be used to combine different
evaluation metrics and give a weighted score. How-
ever, in this project, we also follow the operations
in MUSS and maximise the SARI score, so only
the SARI score is taken into account, and the cor-
responding coefficient is set to 1. The models will
be evaluated on the ASSET (Alva-Manchego et al.,
2020a) test dataset, which contains 359 complex-
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Prompts SARI BERT DTD WR LV LR
Baseline 43.83 — 0.249. . . 0.814. . . 0.758. . . 0.858. . .
Default 44.00±0.05 0.754 0.25 0.8 0.75 0.85

Joint tokens 44.02±0.05 0.769 0.25 0.8 0.75 0.85
Separate tokens 44.04±0.05 0.754 0.25 0.8 0.75 0.85

Default 44.36±0.05 0.733 0.6 0.7 0.65 0.85
Joint tokens 44.58±0.05 0.794 0.35 0.85 0.8 0.85

Separate tokens 44.53±0.05 0.784 0.35 0.75 0.8 0.85
Default 43.34±0.06 0.827 0.6 0.85 0.85 0.85

Joint tokens 43.83±0.06 0.829 0.6 0.85 0.85 0.85
Separate tokens 43.99±0.06 0.828 0.6 0.85 0.85 0.85

Table 2: Results on SARI and BERT score under differing tokenization strategies, with comparison to the baseline
(top 4 rows of results), optimised parameter values (middle 3 rows) and values reported on unified parameters (last
3 rows).

simple pairs, and each complex sentence has ten
reference simplifications.

The last step is optimisation. As mentioned in
previous sections, the value of control tokens is lim-
ited to a small range. All options fall between 0.2 to
1.5 except the Levenshtein, whose upper boundary
is limited to 1 due to the calculation method that
divides the minimum replacement steps to change
from the original sentence to the target sentence by
the maximum possible steps of replacement. Only
these options are provided during optimisation, and
the optimisation problem is reduced to finding the
best value combination of control tokens within
the range. Even though only finite combinations
can be applied to the model, the optimisation al-
gorithm is still supported by the Nevergrad (Rapin
and Teytaud, 2018) API to compare with the cur-
rent SOTA. With a budget of limitation to repeat
the optimisation process 64 times, the algorithm
can find a relatively optimised result. In order to
ensure the reliability of the score under the opti-
mised combination, a bootstrapping on the ASSET
(Alva-Manchego et al., 2020a) test dataset will be
executed by resampling the dataset 200 times and
hence generate a 95% confidence interval.

4 Results

4.1 Overall performance

Following the setting in reimplementation, the base-
line from the original code of the current SOTA is
43.83 on the ASSET (Alva-Manchego et al., 2020a)
test dataset, which is consistent with the reported
score in the MUSS in the corresponding scenario,
which is 43.63±0.71. There is no confidence in-
terval and BERT score in the baseline because

the baseline is generated by rerunning the code in
MUSS by altering specific settings only. The actual
output lacks these 2 features. As shown in the top
4 rows in the table2, the SARI score with 95% con-
fidence in the reimplementation is slightly higher
than the baseline. The middle 3 rows show the
best SARI score with optimised options of control
tokens. Among the 3 methods, the joint tokens had
the highest SARI score. Interestingly, the BERT
score is not always proportional to the SARI score,
but the BERT score of optimal value is still quite
high. The optimised values of control tokens are
pretty close in all situations except the DTD. The
bottom 3 rows show the performance difference
under a unified value of control tokens. The unified
value is the average value of all possible values
for each control token. Under the unified condi-
tion, the separated one outperformed the other two,
and the default tokenization method still performs
worst. As for the BERT score, the joint tokeniza-
tion method still outperforms the other two.

4.2 Effects of single control tokens
In order to verify the effects of each single control
token, a more detailed investigation of the SARI
score was done on control tokens respectively and
the results are shown in Figure 2. Except for the
Figure 2(b), all 3 tokenization methods show a
high consistency in the curves and have a common
minimum at the value of 1. As shown in Table 4, it
is mainly caused by the low score in both deletion
and adding operations.

In addition to the curves, the differences in to-
kenization methods have marginal effects on the
scores while the value of control tokens can change
the performance significantly. In Figure 2(a) and
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Figure 2: The effect of varying control tokens with different tokenization strategies on SARI Score.

Prompts SARI BERT DTD

Default
40.82 ±0.05 0.805 0.55
40.54 ±0.05 0.799 0.6

Separate
40.68±0.06 0.804 0.55
40.87±0.05 0.801 0.6

Joint
40.71±0.06 0.812 0.55
40.43±0.06 0.800 0.6

Prompts SARI BERT WR

Default
40.61±0.06 0.720 0.75
40.80±0.06 0.776 0.8

Separate
41.08±0.06 0.738 0.75
40.32±0.05 0.797 0.8

Joint
41.42±0.06 0.733 0.75
40.43±0.06 0.782 0.8

Prompts SARI BERT LV

Default
42.52±0.06 0.750 0.65
42.26±0.08 0.785 0.7

Separate
42.55±0.06 0.747 0.65
42.86±0.06 0.782 0.7

Joint
42.63±0.06 0.761 0.65
42.31±0.07 0.787 0.7

Prompts SARI BERT LR

Default
40.15±0.06 0.758 0.6
39.91±0.05 0.782 0.65

Separate
40.25±0.06 0.760 0.6
40.27±0.05 0.781 0.55

Joint
40.46±0.05 0.758 0.6
40.64±0.05 0.785 0.65

Table 3: Results on SARI and BERT scores of peak points in different control tokens.

Control Token Value SARI_add SARI_keep SARI_del SARI

DTD_joint

0.2 2.71 27.03 69.32 33.02
0.6 5.24 58.50 57.51 40.41
1.0 3.30 62.64 26.68 30.87
1.5 4.41 62.66 27.82 31.63

WR_joint

0.5 5.10 37.47 68.54 37.04
0.75 6.65 54.91 62.57 41.37
1.0 3.38 62.04 29.90 31.77

1.25 4.19 54.88 58.35 39.14

LV_joint
0.2 7.15 50.83 63.83 40.60
0.7 9.14 60.15 57.60 42.30
1.0 2.25 61.62 32.17 32.01

LR_joint

0.2 1.80 19.27 69.46 30.18
0.65 5.54 56.84 59.36 40.56
1.0 2.43 62.42 15.26 26.70
1.2 5.80 61.46 26.03 31.10

Table 4: SARI score by operation at turning points in Figure 2.

159



DependencyTreeDepth Ratio

B
E

R
TS

co
re

0.2

0.4

0.6

0.8

1.0

0.25 0.50 0.75 1.00 1.25 1.50

Default Separate Joint

(a) DependencyTreeDepth
Ratio

WordRank Ratio

B
E

R
TS

co
re

0.2

0.4

0.6

0.8

1.0

0.25 0.50 0.75 1.00 1.25 1.50

Default Separate Joint

(b) WordRank Ratio

ReplaceOnlyLevenshtein Ratio

B
E

R
TS

co
re

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Default Separate Joint

(c) ReplaceOnlyLevenshtein
Ratio

Length Ratio

B
E

R
TS

co
re

0.2

0.4

0.6

0.8

1.0

0.25 0.50 0.75 1.00 1.25 1.50

Default Separate Joint

(d) Length Ratio

Figure 3: The effect of varying control tokens with different tokenization strategies on BERT score.

2(c), the separate tokenization method shows the
highest peak point, while in Figure 2(b) and Figure
2(d), the joint tokenization method has the best per-
formance. The corresponding Table 3 also shows
the scores in pairs under a unified value. Although
the advantage is not as clear as the combined con-
trol tokens, the optimised SARI score of either sep-
arate or joint tokenization methods is still slightly
higher than the default tokenization method.

The Table 4 is designed to help readers better
understand the reason for variations in Figure 2. It
shows some local minimum or maximum points
within the domain and the corresponding SARI
score by operations. The addition score is much
lower than the keeping and deletion. It is because
there is only limited adding operation in the refer-
ences and much more expression options to carry
a similar meaning, which leads to a low hit rate of
the addition operation. At the same time, the keep
and deletion are chosen from the existing input and
thus have a much bigger hit rate and score.

As for the BERT score, as shown in Figure 3,
nearly all 3 tokenization strategies show high simi-
larity to each other except Figure 3(b). The figures
show that near all models have the highest BERT
score around 1. Since the BERT score calculates
the correlation between the output and references,
when the control token is set to 1, the model pro-
cesses nothing, and the output is very similar to the
input. Under this situation, as shown in Table 4,
the SARI_keep reaches the top. However, the peak
of BERT score in 3(c) slightly deviates to the left,
which shows that the references and input are not
identical.

5 Discussion and Future Directions

One phenomenon found during the optimisation
section in the original project is that the score of
recommended optimisation is even lower than the

default values of control tokens at 0.8. A hypothe-
sis emerged that continuous optimisation is not an
ideal option to maximise the score. As shown in
the first four rows in Table 2, the score in reimple-
mentation is higher even in similar values. There
are several reasons: the algorithm is not working
as expected or the optimisation budget is not large
enough to find better optimisations. The default to-
kenization method in the MUSS project that breaks
the control tokens into pieces brings more noise
and probably lowers the performance. Apart from
the verbosity in optimal values, the long tokeniza-
tion of the control token is another concern of noisy
input. Although the results above shows sign of
such problem, it may become more serious with the
increasing of control tokens, especially for short
sentences. It would be wiser to limit the unneces-
sary noise in the input to a lower level.

Figure 2 and Table 4 expose the reason for vari-
ation with the control token and provide a good
illustration of nature in each control token. In sin-
gle control tokens, the peak points mainly fall be-
tween 0.6 and 0.7, and the score decreases with
the value deviating from the peak point. How-
ever, there are still some differences among the
control tokens. In the DependencyTreeDepth Ratio
and Length Ratio, the reduction is more dramatic
than the other 2. In both graphs, the SARI_add
decreases with the value deviating from the peak
point and increases slowly when the value is bigger
than 1. The SARI_keep and SARI_del fluctuate
in the form of 2 half-phase shifted sine functions
and the maximum sum is found in between the
peaks. The graph of the WordRank Ratio shows
some diversity in both Figure 2(b) and 3(b) among
the tokenization methods. Although there is no
explanation for the deviations, the deviations show
the potential of combining different tokenization
methods. When focusing on the main section from
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0.5 to 1, the graph shows characteristics similar
to the graphs in the previous 2 control tokens. As
for the ReplaceOnlyLevenshtein Ratio, the slope
is milder on the left side and it seems to have less
effect on the SARI score. Unlike the other 3 con-
trol tokens, this control token can only indicate the
intensity of change but not the direction of change.
Although the combined effects are still under re-
search, a more effective control token could be a
better solution.

As for the optimal value, the most significant
variation between single and combined control to-
kens is in DependencyTreeDepth Ratio. The opti-
mal value in combined control tokens in the joint
and separate tokenization method is 0.35 instead of
0.6. Although no direct comparison is listed in Ta-
ble 2, comparing the middle and bottom three rows
makes it pretty clear that 0.35 has a better SARI
score. The correlation among the control tokens
presumably causes this variation. There are also
deviations in the other three control tokens. If the
four control tokens can be designed to work inde-
pendently, the graph on a single control token can
be directly used to find the optimal value. However,
the graph of combined control tokens is bound to
have some distortions for now. Based on the de-
tailed graph, it is also clear that the value of control
tokens can significantly affect the performance of
the models trained in this way and should be treated
carefully.

Another interesting finding between SARI and
BERT in this paper is that most BERT score for
optimal value is around 0.78 to 0.8. However, as
shown in Figure 3(b) and 3(d), there are more than
1 points that have such value, so the BERT score
alone cannot be used to evaluate the text simplifica-
tion results. It may be a necessary but not sufficient
condition for a good simplification. Since the SARI
score is not perfect and relies on references, it is
important to build non-reference-based metrics to
evaluate the model on a different genre of corpora.
The BERT score may play a role in these new met-
rics. Thus, this guess is worth further verification
in future work.

In addition to the values, as shown in Table 3, the
tokenization methods can also affect the peak score.
In the curves, there are different optimised methods
for each certain point. Although the performance
differences may be caused by the fine-tuned mod-
els on a lower training scale, they may still imply
performance variations between tokenization meth-

ods. Considering the various requirements of lay
users, a mixed tokenization method based on the
performance curve may maximise the model’s per-
formance at different points better than a fixed one.
Although it remains unclear whether there will be
the same effects in the combined control tokens,
the mixed tokenizations method can be still promis-
ing with the appearance of more different control
tokens. However, a more lightweight and efficient
training method should be introduced to solve the
problem of balancing cost and effect.

5.1 Future Work
In the future, one of the main tasks is to reim-
plement control tokens in different models or
learning strategies so that training can be more
lightweight and less time-consumed. Another goal
is to build new non-reference-based metrics and
replace SARI, which will significantly contribute
to the development. However, it is not easy to un-
derstand the relationship between the performance
and control tokens. A further investigation of the
complex relationship between SARI and combined
control tokens is also worth doing. Although the
five-dimension graph may be less visualised, it can
still provide some guidance on how to apply the
control tokens. Designing and introducing new
control tokens is another novel direction. The con-
trol tokens may be further simplified or optimised
with a deeper inspection of the control tokens and
SARI score. In addition to that, current optimisa-
tion procedure works only on the dataset level and
needs more precise prediction on sentence level.
A sentence level prediction model to the optimal
value of control token may be worth considering.
Lastly, whether there is a similar phenomenon of
control tokens in other controllable text generation
tasks is also an important question.

5.2 Concluding Remarks
In the investigation, we have shown the results
and importance of control tokens with different
values and tokenization methods, which can be
used to balance user intention and performance.
We proposed some improvements in quantisation,
compared the influences of different tokenization
strategies of control tokens and proposed possible
further improvement means. Although the pro-
posed suggestions may improve text simplification
tasks marginally, they may also be generalised to
prompts designing on other controllable NLP tasks.
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Appendices
A

Source Reflection nebulae are usually blue because the scattering is more efficient for
blue light than red (this is the same scattering process that gives us blue skies
and red sunsets).

LR_1.2 Reflection nebulae are usually blue because the scattering is more efficient for
blue light than red (this is the same scattering process that gives us blue skies
and red sunsets) and because the light reflects off of them.

LR_1.0 Reflection nebulae are usually blue because the scattering is more efficient for
blue light than red (this is the same scattering process that gives us blue skies
and red sunsets).

LR_0.8 Reflection nebulae are usually blue because the scattering is more efficient for
blue light than red (this is the same scattering process that gives us blue skies).

LR_0.6 Reflection nebulae are usually blue because the scattering is more efficient
for blue light than red.

LR_0.4 Reflection nebulae are usually blue because the scattering is more efficient.
LR_0.2 Reflection nebulae are usually blue in color.

Table 5: Effect of varying Length ratio with the others remain 1.0.

Source Moderate to severe damage extended up the Atlantic coastline and as far inland
as West Virginia.

LV_0.8 Moderate to severe damage happened along the Atlantic coast and as far inland
as West Virginia.

LV_0.6 Moderate to severe damage happened along the Atlantic coast and as far inland
as West Virginia.

LV_0.4 In West Virginia, the storm caused moderate to severe damage along the Atlantic
coast and inland.

LV_0.2 The National Hurricane Center (NHC) said that the storm was a "major hurri-
cane" and not a tropical storm.

Table 6: Effect of varying ReplaceOnlyLevenshtein ratio with the others remain 1.0.

Source He will abjure his allegiance to the king.
WR_0.8 LV_1.0 He will abjure his allegiance to the king.
WR_0.6 LV_1.0 He will abjure his allegiance to the king.
WR_0.8 LV_0.8 He will not give up his allegiance to the king.
WR_0.6 LV_0.8 He will not give up his power to the king.
WR_0.4 LV_0.8 He will not follow the orders of the king.
WR_0.2 LV_0.8 He will abjure his loyalty to the king.
WR_0.6 LV_0.8
LR_0.75

He will not follow the king anymore.

Table 7: Effect of varying WordRank ratio and some other ratios with the others remain 1.0.
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Source The four canonical texts are the Gospel of Matthew, Gospel of Mark, Gospel of
Luke and Gospel of John, probably written between AD 65 and 100 (see also
the Gospel according to the Hebrews).

DTD_1.2 The four canonical texts are the Gospel of Matthew, Gospel of Mark and Gospel
of Luke , probably written between AD 65 and AD 100 (see also the Gospel
according to the Hebrews).

DTD_0.8 The four canonical texts are the Gospel of Matthew, Gospel of Mark and Gospel
of Luke. They are probably written between AD 65 and 100 (see also the Gospel
according to the Hebrews).

DTD_0.6 The four canonical texts are the Gospel of Matthew, Gospel of Mark and Gospel
of Luke. The Gospel of John was probably written between AD 65 and 100 (see
also the Gospel according to the Hebrews).

DTD_0.4 The four canonical texts are the Gospel of Matthew, Gospel of Mark and Gospel
of Luke. The Gospel of John was probably written between AD 65 and 100 (see
also the Gospel according to the Hebrews).

Table 8: Effect of varying DependencyTreeDepth ratio with the others remain 1.0.
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Abstract
Text simplification, whose aim is to reduce
reading difficulty, can be decomposed into
four discrete rewriting operations: substitu-
tion, deletion, reordering, and splitting. How-
ever, due to a large distribution discrepancy
between existing training data and human-
annotated data, models may learn improper
operations, thus lead to poor generalization
capabilities. In order to bridge this gap, we
propose a novel data enhancement method,
SimSim, that generates training pairs by sim-
ulating specific simplification operations. Ex-
periments show that the models trained with
SimSim outperform multiple strong baselines
and achieve the better SARI on the Turk and
ASSET datasets. The newly constructed dataset
SimSim is available at https://github.com/
Sanqiang/sent_simplicaition_data.

1 Introduction & Related Work

Text simplification is a task to reduce the com-
plexity of a text while retain its original meaning.
It can facilitate people with low-literacy skills or
language impairments, such as children and indi-
viduals with dyslexia (Rello et al., 2013) and apha-
sia (Carroll et al., 1999), to read and understand
complicated materials (Watanabe et al., 2009). Nor-
mally, substitution, deletion, reordering, and split-
ting are considered as four core operations for per-
forming text simplification (Zhu et al., 2010). Thus
an ideal model should be capable of executing these
operations appropriately to simplify a text. How-
ever, by examining the degree that each operation is
exerted in different datasets, we observe that there
is an salient discrepancy between the human an-
notation and existing training data that is widely
used for training simplification models. To allevi-
ate this discrepancy, we propose an unsupervised
data construction method that distills each simpli-
fying operation into data via different automatic

∗work was done at University of Pittsburgh
†work was done at University of Pittsburgh

data enhancement measures. The empirical results
demonstrate that the resulting dataset SimSim can
support models to achieve better performance by
performing all operations properly.

2 Inspecting Simplification Datasets

At its essence, sentence simplification paraphrases
a sentence for better readability. It often involves a
subset of four rewriting operations/transformations:
splitting, dropping, reordering, and substitu-
tion (Zhu et al., 2010; Zhang and Lapata, 2017). A
high-quality sentence simplfication training dataset,
which contains many complex-simple sentence
pairs, should be well-aligned to provide a wide
coverage of different operations, so that the trained
models can have good generalizability. Most neu-
ral simplification models rely on training with
large datasets such as Newela (Xu et al., 2015)
and WikiLarge (Zhang and Lapata, 2017), which
are automatically collated with paired documents
written in different readability levels. The qual-
ity of auto-collated data has been questioned in
prior work (Jiang et al., 2020), however, it remains
unanswered on how well they represent the real
simplification distribution and on which aspects
they fall short. This motivated us to propose the
following five metrics to quantitatively examine
common training datasets:

2.1 Measuring Simplification Operations
Alignment between the pair of com-
plex/simplified sentence is a fundamental
property since the latter should preserve the
meaning of the former. Most datasets are collated
from paired complex-simple documents using
automatic alignment algorithms (Zhu et al., 2010;
Xu et al., 2015), their sentence pairs can be poorly
aligned. This is because editors may restructure the
words, sentences, or even paragraphs drastically
when rewriting a text into different readability
level. In consequence, sentences in a paraphrased
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document may not accurately pair with the original
ones. We adopt BERTScore (Zhang* et al., 2020)
to measure the semantic alignment between a
complex and a simple sentence.

Substitution denotes replacing complicated
words or phrases with simplified synonyms. We
adopt PPDB (Pavlick et al., 2015) to measure the
amount of substitutions between two sentences.
PPDB provides extensive substitution rules (see
examples in Table 1) and we measure the degree
of substitution by checking the ratio of simplified
tokens in a sentence pair (normalized by the length
of ssimp)).

Weight Type Rule
0.99623 [VP] recipient→ have receive
0.75530 [NN] recipient→ winner
0.58694 [NN] recipient→ receiver

Table 1: Example of simplifying rules in PPDB

Dropping refers to the rewriting transformation
by removing unimportant or redundant parts from
a sentence. To measure the degree of dropping, we
calculate the ratio of the tokens being discarded
from a complex sentence.

Reordering denotes the rearrangement of parts
in a sentence to simplify its syntax and structure.
To measure the reordering, we extract the syntactic
structure of each sentence and compare the syntac-
tical change between each pair of sentences.

Concretely, following the method proposed
by Xu et al., we use a dependency parser (Hon-
nibal et al., 2020) to extract dependency relations
from a sentence. Then Jaccard similarity between
the two sets of relations is calculated to measure
the degree of reordering transformation.

Splitting divides a long sentence into several
shorter ones to reduce syntactic complexity. We
count the number of sentences on both sides, and a
help from the split is observed when the number of
sentences at the simplified side is larger.

2.2 Studies on Existing Datasets

We conducted quantitatively inspections using the
five proposed metrics on four mainstream datasets:
WikiLarge and Newela, which are commonly used
as training data in prior work, as well as the valida-
tion set of Turk (Xu et al., 2016) and ASSET (Alva-
Manchego et al., 2020). The latter two were an-
notated by human and are representative of real
distribution of text simplification. Figure 1 shows

Figure 1: The histograms and density estimates of four
property measures in simplification data.

the results on four metrics. On alignment, Turk
and ASSET contain most aligned sentence pairs
and almost all sentence pairs are of high similarity
(larger than 0.9), whereas WikiLarge and Newela
have a large proportion of poorly aligned pairs with
WikiLarge is more problematic. Turk and ASSET
also present more substitution than the two other
datasets, and WikiLarge exhibits a very different
distribution of dropping from the others, where
it discards more words and in certain extreme
cases only retains a few words at the simplified
side. Lastly, Turk and ASSET contain less reorder-
ing (leaning towards 1.0), whereas WikiLarge and
Newela contain sentences with drastic syntactic
changes. Table 2 shows the proportion of sentence
pairs contribute to splitting. A large proportion of
sentence pairs in ASSET help to split, which indi-
cates the splitting cannot be ignored but all other
datasets rarely help to split.

Corpus Proportion
Wikipedia 0.102
Newsela 0.002
Turk 0.044
ASSET 0.310
SimSim 0.399

Table 2: Proportion of sentence pairs helps to split

Overall, a large discrepancy in the rewriting dis-
tributions is shown between Turk, ASSET and the
two training datasets, which makes us wonder the
validity of the models trained with such biased
data. This motivates us to develop novel training
data that can better transfer real knowledge of text
simplification to models.
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3 SimSim: Data Enhancement by
Simulating Simplification

We think that a well-generalizable simplification
model needs to be trained on high quality training
pairs and simplification knowledge. we propose a
method to automatically refine/construct existing
training pairs and inject knowledge of simplifica-
tion by simulating various rewriting transforma-
tions. Unlike previous datasets (i.e. WikiLarge
and Newela) that heavily rely on paired documents
of different readabilities and can hardly scale up,
our method is capable of exploiting any text data
on the Internet as seed thus avoid those limitations.
We name the resulting dataset SimSim.

Overview Our method starts with a set of seed
sentences, then a series of enhancement steps are
performed on each seed sentence to generate a new
sentence so that the original seed sentence and the
new resulting sentence form a complex-simple pair.
Note that this method not only can enhance original
training pairs, it can also construct new pairs solely
using complex sentences. This method works on
other corpora too, but we leave it for future work.
To build seed sentences, we apply BERTScore on
each sentence pair in WikiLarge and Newela to
check their semantic alignment between the com-
plex and simple sentences. For those badly aligned
pairs, we remove their simple sentences to elimi-
nate the noise led by the misalignment. We take
the rest sentences as seeds for enhancement.

Constructing Paraphrastic Sentences by Back-
Translation The bottom line of simplifying a
sentence is to paraphrase it without alternating its
meaning. Rather than retrieving aligned sentences
from paired documents, we propose to create such
pairs with the help of back-translation. We expect
that the back-translated sentences should preserve
the meaning of the original sentences, meanwhile
demonstrate more linguistic diversity. The idea
has been proven effective for paraphrasing sen-
tences (Wieting et al., 2017) and improving transla-
tion with monolingual data (Sennrich et al., 2016).

We employ Google’s Neural Machine Transla-
tion System (GNMT) (Wu et al., 2016) for this
purpose, on account of its overall translation qual-
ity and the support of a large number of languages.
We translated each seed sentence into 103 pivot
languages and translated it back to English. Some
examples are shown in Table 3.
Candidate Selection with GPT-2. Paraphras-

tic sentences generated through back-translation
can contain language errors and unnatural expres-
sions. GPT-2, as a powerful neural language model
trained with open-domain text (Radford et al.,
2019), can help us to evaluate the quality of can-
didate sentences. GPT-2 gives a score (negative
log-likelihood) to a sentence, and we assume that
a better GPT-2 score means that the sentence is
more likely to be in high quality. Thus among all
103 candidates, we select the best one as the tar-
get sentence for further enhancement. Particularly,
if GPT-2 deems the back-translated sentence less
natural than the original one, it will be discarded.
Although, the remaining candidate sentences after
GPT-2 scoring can be considered to be well-aligned
and natural, they are not ready for training a sim-
plification model since most of them have not been
simplified yet. They therefore go through a set of
simulating steps as presented below:

Simulating Substitution In order to impose sub-
stitution knowledge into the candidate sentences,
we applied the paraphrasing rules in PPDB. To en-
sure the applied rules are proper, we use GPT-2
again to evaluate the quality of the resulting sen-
tences.

Simulating Dropping To distill the dropping op-
eration into data, we follow previous approach (Fil-
ippova and Altun, 2013) and augment the data by
randomly removing prepositional, adjective or ad-
verb phrases.

Simulating Splitting We find that back-
translation rarely splits a sentence into multiple
shorter ones. Thus we propose to include
WikiSplit (Botha et al., 2018) to incorporate
the splitting operation into our data. We put
WikiSplit sentence pairs into the seed bank and
we apply the above process to the target-side
sentences so as to mix the splitting transformation
with others.

SimSim Dataset By simulating different opera-
tions with the above steps, we present a new cor-
pus SimSim for the task of text simplification. As
shown in Figure 1 and Table 2, SimSim demon-
strates a closer distribution to the human-annotated
Turk and ASSET, from multiple rewriting aspects.
This suggests that SimSim may serve as a better
dataset for training simplification models.

4 Experiments
Setup We train Transformer-based vanilla
Encoder-Decoder models with five datasets. The
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Pivot Sentence NLL

Original It is situated at the coast of the Baltic sea , where it encloses the city of stralsund . 3.8020

Chinese It is located on the coast of the Baltic Sea and surrounds the city of Stralsund . 2.8642
Greek It is located on the shores of the Baltic Sea, where it encloses the city of Stralsund . 2.8379
Italy It is located on the Baltic Sea coast, where the city of Stralsund is located . 2.9493

Japanese It is located on the Baltic Sea coast and surrounds the city of Stralsund . 3.1864
Hindi It is situated on the banks of the Baltic sea, where it surrounds the town of Stralsund . 3.0487

Table 3: Examples of back-translation with GNMT. The rightmost column shows the Negative log-likelihood (NLL)
scores estimated by GPT-2.

first two are WikiLarge and Wiki-Auto, two
common training datasets. WikiLarge (Zhang
and Lapata, 2017) is constructed by automati-
cally aligning sentences in Simple Wikipedia
and Wikipedia, with the help of lexical-based
features, such as the Jaccard coefficient and
TF-IDF. It has 296k complex-simple sentence
pairs. Wiki-Auto (Jiang et al., 2020) uses a
neural CRF model in order to achieve a better
auto-alignment than the rule-based method used
in WikiLarge, which contains 488k pairs. The
remaining three datasets are the three variants of
SimSim dataset: (1) SimSim-S1, constructed by
directly applying 103-language back-translation
on candidate sentences, resulting millions of
pairs; (2) SimSim-S2, constructed by selecting the
most natural sentence from translated sentences
with GPT-2 (1.67M pairs); (3) SimSim-S3 further
improves SimSim-S2 by simulating different
rewriting operations (1.67M pairs). We use
Turk (Xu et al., 2016) and ASSET (Alva-Manchego
et al., 2020) for validation and testing. SARI (Xu
et al., 2016) is used as the evaluation measure
since it is widely used in the literature.

Train Data SARI↑
Score Add Delete Keep

SBMT-SARI
(Xu et al., 2016) 39.96 5.96 41.42 72.52
DMASS-DCSS

(Zhao et al., 2018) 40.45 5.72 42.23 73.41
EditNTS

(Dong et al., 2019) 38.23 3.36 39.15 72.13
Edit-Unsup-TS

(Kumar et al., 2020) 37.85 2.31 43.65 67.59

WikiLarge 38.84 4.78 41.19 70.53
Wiki-Auto 39.64 5.18 41.61 72.13

SimSim-S1 36.33 4.53 32.79 71.66
SimSim-S2 40.15 7.52 38.64 74.32
SimSim-S3 41.07 8.33 41.97 72.89

Table 4: Performance of vanilla Encoder-Decoder mod-
els and some other baselines tested on WikiTurk dataset.

Results The experiment results are presented in
Table 4 and 5. Between two models trained with

Train Data SARI↑
Score Add Delete Keep

Wiki-Auto 50.79 16.65 69.58 66.16

SimSim-S1 49.34 17.10 66.48 64.44
SimSim-S2 52.20 19.34 69.89 67.38
SimSim-S3 52.37 19.18 71.01 66.92

Table 5: Performance of vanilla Encoder-Decoder mod-
els tested on ASSET dataset.

Wiki-Auto and WikiLarge respectively, the one
on Wiki-Auto achieved better scores than that
of WikiLarge, which is helped by the improved
aligning algorithm. However, Wiki-Auto is still
limited to the contents in Wikipedia and contains
much noise. In comparison, models trained with
SimSim outperform WikiLarge and Wiki-Auto
consistently. Because SimSim is constructed in a
more controlled way, the sentences in each pair
are more aligned and more rewriting operations
are included. Among the three SimSim variants,
SimSim-S1, constructed by only back-translation,
performs the worst among the three, and worse than
two baselines. Back-translation itself can boost
the diversity of sentence pairs, nevertheless it also
introduces much noise in language. By utilizing
GPT-2 to select the most natural ones from back-
translated pairs, the model using SimSim-S2 out-
performs SimSim-S1 by a large margin. Moreover,
the SARI performance can be further boosted with
SimSim-S3, which applied multiple rewriting op-
erations on each training pair to simulate the real
simplification process.

5 Conclusion

In this study, we observe a significant discrepancy
exists between the human simplified sentences and
common training data and propose an unsupervised
data enhancement method, SimSim, to explicitly
teach the model appropriate operations by distilling
the knowledge into training data. The empirical
results show that the resulting dataset SimSim can
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support models to achieve better performance by
performing all operations properly.
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A Training Details

Our Transformer architecture uses an embedding
dimension of 512, fully connected layers of dimen-
sion 2048, 8 attention heads, 6 layers in the encoder
and 6 layers in the decoder. we used beam search
with a beam size of 8. For optimization, model
updates use a batch size of 400 and a LAMB op-
timizer with learning rate 0.001 (You et al., 2019)
and all the models were trained by 250,000 steps
(takes around 2-3 days). Training was done on a
single Cloud TPU V2.

B Evaluation Details

We computed SARI using the code provided at
https://github.com/cocoxu/simplification
and we mainly compare our results with studies
using the same evaluation protocal (Xu et al., 2016;
Zhang and Lapata, 2017; Zhao et al., 2018; Dong
et al., 2019; Kumar et al., 2020). Note that most
studies reported ASSET scores using a different
evaluation code and therefore we cannot include
their scores for the sake of fair comparison.

C Implementation Details

Our model implementation is based on Tensorflow
1.15 and Tensor2Tensor library https://github.
com/tensorflow/tensor2tensor.
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Abstract

In the past few years, the field of text simplifica-
tion has been dominated by supervised learning
approaches thanks to the appearance of large
parallel datasets such as Wikilarge and Newsela.
However, these datasets suffer from sentence
pairs with factuality errors which compromise
the models’ performance. In this study we pro-
posed a model-independent factuality error de-
tection mechanism, considering bad simplifica-
tion and bad alignment, to refine the Wikilarge
dataset through reducing the weight of these
samples during training. We demonstrated that
this approach improved the performance of the
state-of-the-art text simplification model TST5
by an FKGL reduction of 0.33 and 0.29 on the
TurkCorpus and ASSET testing datasets respec-
tively. Our study illustrates the impact of erro-
neous samples in TS datasets and highlights the
need for automatic methods to improve their
quality.

1 Introduction

Text simplification (TS) is a Natural Language Pro-
cessing (NLP) task that considers the reduction of
text’s complexity towards increasing its readability
and understandability while retaining its original
meaning. TS can increase the accessibility of in-
formation to a wider audience, including young-
sters, those with little literacy, people who are not
native speakers, the elderly, and people with dis-
abilities (Inui et al., 2003; Petersen and Ostendorf,
2007; De Belder and Moens, 2010; Suominen et al.,
2013). Additionally, numerous studies have also
demonstrated that TS can support other NLP tasks
as a preprocessing step (Chen et al., 2012; Chatter-
jee and Agarwal, 2022).

The current TS domain (Zhang and Lapata,
2017; Martin et al., 2020; Omelianchuk et al.,
2021) is dominated by fine tuning large sequence-
to-sequence language models on existing parallel
datasets, the main ones being Wikilarge (Zhang

and Lapata, 2017) and Newsela (Xu et al., 2015).
However, several studies have revealed that these
training datasets suffer from factuality errors. (Xu
et al., 2015; Devaraj et al., 2022) Factuality errors
occur when the samples provided do not accurately
or properly represent the task. In the TS context,
two main sources of factuality errors are bad align-
ment, i.e., loss of content preservation, and bad
simplification, i.e., the target sentence is not sim-
pler than the source (Xu et al., 2015). The existence
of parallel training samples with factuality errors
can impact significantly the performance of the TS
models.

In this study, we investigated methods to detect
parallel samples with factuality errors in the Wiki-
large dataset. We explored the impact of decreasing
the loss weight of the detected samples during train-
ing in the TS task performance. We re-trained the
state-of-the-art (SOTA) TS model TST5 (Sheang
and Saggion, 2021) using the modified Wikilarge
dataset and observed a significant performance im-
provement when tested on the TurkCorpus and AS-
SET datasets.

2 Related Work

2.1 Text simplification

Text simplification is mostly treated as a monolin-
gual translation problem based on existing parallel
datasets including Wikilarge and Newsela. While
previous models focused on using statistical ma-
chine translation (SMT) approaches (Coster and
Kauchak, 2011; Wubben et al., 2012; Štajner et al.,
2015), current work focuses on using neural ma-
chine translation (NMT) approaches (Nisioi et al.,
2017; Shen et al., 2017; Zhao et al., 2018; Martin
et al., 2020). The Neural Text Simplification (NTS)
model proposed by Nisioi et al. (2017) is one of the
earliest attempts to apply NMT on TS and showed
better performance than other SMT models at that
time. After the release of transformers, Zhao et al.
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Bad Alignment Complex: They take up oxygen in the lungs or gills and release it while
squeezing through the body ’s capillaries .
Simple: Red blood cells are very large in number ; in women , there are
4.8 million red blood cells per microliter of blood .

Bad Simplification Complex: He travelled to Brittany in 1928 to study stone crosses and
publish As Cruces de Pedra na Bretaña .
Simple: Two years later he published Cousas , and in 1929 he travelled
to Brittany to study its stone crosses and publish As Cruces de Pedra na
Bretaña .

Real Simplification Complex: In September 1869 , O’Reilly escaped and was rescued by an
American ship .
Simple: In September 1869 , O’Reilly escaped with help from an Ameri-
can ship .

Table 1: Examples of bad alignment, bad simplification and real simplification in Wikilarge.

(2018) implemented it in their model DCSS and
achieved the SOTA performance, highlighting the
promising capability of the transformers framework
for TS.

Recently, the addition of control tokens was
shown to significantly improve the TS models.
Martin et al. (2020) proposed one of the currently
benchmark models, named ACCESS. Their model
included four tokens to control the amount of com-
pression, paraphrase, lexical, and syntactical com-
plexity separately. Later, Sheang and Saggion
(2021) improved this method by adding one more
token to control the change of sentence length and
fine tuning on the pretrained language model T5
(Raffel et al., 2020), resulting in the TST5 model
which has achieved the highest reported SARI
score on TurkCorpus dataset until now. These
works have shown that adding control tokens can
significantly improve the performance of TS mod-
els.

2.2 Factuality errors

Factuality errors happen when sample pairings do
not accurately represent the job. They can be di-
vided into two categories: bad simplification and
bad alignment (Xu et al., 2015). Bad simplifica-
tion is identified when the target sentence does not
simplify the source sentence, while, when the con-
tents of the source sentence and the target sentence
disagree, this corresponds to bad alignment. The
topic of factuality errors was addressed by Xu et al.
(2015) where, through manual examination of 200
sentence pairs from the Parallel Wikipedia Simpli-
fication corpus, they found that 33% of sentence
pairs were not simplified, and 17% of sentence

pairs were not aligned. Thus, they suggested that
Simple Wikipedia was a poor training resource and
advised using the Newsela dataset instead. How-
ever, Devaraj et al. (2022) recently performed a
manual quantitative analysis on both Newsela and
Wikilarge and demonstrated that, although Newsela
dataset made more proactive simplification oper-
ations, it faced a more serious problem with bad
simplification error.

3 Factuality error detection

In this study, we implemented a rule-based algo-
rithm to detect factuality errors in the Wikilarge
dataset. For the detected samples, the loss of the
TS model was subsequently scaled down during
training to reduce their impact on the model’s learn-
ing performance.

To detect bad simplification, we utilized the
Flesch–Kincaid grade level (FKGL) metric (Kin-
caid et al., 1975), which was designed for eval-
uating text readability and has also been used as
an evaluation metric in multiple previous works
(Martin et al., 2020; Sheang and Saggion, 2021;
Omelianchuk et al., 2021). FKGL was originally
calculated at the paragraph level based on the av-
erage length of the sentence ( Nwords

Nsentences
) and the

number of syllables (Nsyllables

Nwords
). To apply FKGL

to the sentence level, instead of calculating the av-
erage length, the length of the sentence itself was
used (Eq. 1). With the assumption that readability
reflected simplicity, any sentence pairs for which
the source sentence y had higher FKGL score than
its target counterpart x were marked as bad simpli-
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fication pairs.

FKGL = 0.39Nwords + 11.8
Nsyllables

Nwords
− 15.59

(1)
Bad alignment was recognized based on named
entity recognition. Named entity refers to a phrase
that clearly identifies one item from a set of other
items that have similar attribute. We identified lo-
cations, name, time, and organization in both target
and source sentences. This was performed through
a pretrained classifier provided by the NLTK li-
brary1(Bird and Loper, 2009). Here, we assumed
that simplification might reduce but should not add
entities. According to this, we calculated the cosine
similarity between all the entities in source sen-
tences and target sentences. Because each named
entity may contain different number of words, we
used a contextual embedding model based on trans-
formers to create embeddings for each named entity
rather than a word level encoder such as word2vec
(Mikolov et al., 2013). Bad alignment was rec-
ognized if there existed an entity et in the target
sentence that did not have a corresponding entity es
in the source sentence with cosine similarity higher
than a predefined threshold T .

For the pairs marked with factuality error, their
corresponding weights were scaled down during
training as shown in Eq. 2 and 3 for the bad sim-
plification and bad alignment respectively. The
effect of the factuality error samples suppression
was explored by experimenting with different scal-
ing parameters α1 and α2.

w1 =

{
α1 if FKGL(x)<FKGL(y)

1
(2)

w2 =

{
1 if ∀et∃escos(et, es) > T

α2
(3)

The resulting weights of bad simplification and
bad alignment were multiplied together, and the
outcome was then normalized by the total weight.
Thus, sentence pairs that were found to be both un-
aligned and unsimplified were further suppressed.

loss =

∑
CrossEntropy(output, label)w1w2∑

w1 ∗ w2
.

(4)

1https://www.nltk.org

4 Experiment

4.1 Model

We used the TST5 model to evaluate the efficiency
of our approach (Sheang and Saggion, 2021). All
the training details were unchanged. The T5-
based pretrained model was used as the backbone.
Huggingface Transformers library2 and Pytorch-
lighting3 were used to train the model. NLTK li-
brary was used for named entity recognition. Hug-
gingface’s sentence encoder all-MiniLM-L6-v24

was used to create embeddings for named entities.
For comparing cosine similarities, the threshold T
was set to 0.6, which was selected after experiment-
ing with different threshold values.

In order to enable controllable simplicity,
four control tokens were implemented, including
NBChars, LevSim, WordRank, and DepTreeDepth,
which were identical to ACCESS (Martin et al.,
2020). During testing, the control tokens that pro-
duced the highest SARI score in the validation set
were used.

We investigated different values for the param-
eters α1 and α2 to explore the impact of the error
samples suppression in the model’s performance.
Specifically, we assessed the model’s performance
when bad simplification or bad alignment detection
was considered with 50% suppression (α1/α2 =
0.5), 80% suppression (α1/α2 = 0.2), 98% suppres-
sion (α1/α2 = 0.02), and 100% suppression (α1/α2

= 0).

4.2 Datasets

We used WikiLarge for training and TurkCorpus
and ASSET for validation and testing. The three
datasets are described below.

WikiLarge (Zhang and Lapata, 2017): Contains
29, 6402 sentence pairs from Simple Wikipedia and
normal Wikipedia. It is the largest and the most
commonly used TS dataset.

TurkCorpus (Xu et al., 2016): Contains 2, 000
sentence pairs for validation and 359 sentence pairs
for testing. Each sentence has 8 references manu-
ally simplified by different people.

ASSET (Alva-Manchego et al., 2020): Contains
2, 000 sentence pairs for validation and 359 sen-
tence pairs for testing with 10 references.

2https://huggingface.co/transformers/model_
doc/t5.html

3https://pytorchlightning.ai
4https://huggingface.co/sentence-transformers/

all-MiniLM-L6-v2
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TurkCorpus ASSET
SARI↑ FKGL↓BLEU↑ SARI↑ FKGL↓BLEU↑

TST5(Sheang and Saggion, 2021) 42.46 6.28 64.26 45.17 6.31 70.04
+ bad simplification detection (α1 = 0.2) 43.06 6.12 66.07 44.75 6.19 70.87
+ bad simplification detection (α1 = 0.02) 42.87 6.08 65.50 45.10 6.29 71.42
+ bad alignment detection (α2 = 0.2) 42.84 6.38 65.93 45.17 6.27 71.04
+ bad alignment detection (α2 = 0.02) 42.90 6.15 64.91 45.03 6.23 69.42
+ both (α1, α2 = 0.5) 42.89 6.17 64.48 44.96 6.33 70.23
+ both (α1, α2 = 0.2) 43.03 5.95 64.97 45.51 6.01 70.03
+ both (α1, α2 = 0.02) 43.25 5.95 68.32 45.12 6.02 74.03
+ both (α1, α2 = 0) 43.25 6.19 67.74 45.23 6.28 72.55

Table 2: Performance of the TST5 model trained on the original and modified versions of the Wikilarge and tested
on TurkCorpus and ASSET datasets.

To the best of our knowledge, all three datasets
were created ethically and are publicly available.
No new text data were collected or created as part
of this study.

4.3 Evaluation metrics
We evaluated the TST5 model’s performance using
the SARI, FKGL, and BLEU metrics described
below.

SARI (Xu et al., 2016): Averages F1 scores
for addition, keep, and deletion operations with
references.

FKGL (Kincaid et al., 1975): Evaluates the read-
ability of a sentence.

BLEU (Papineni et al., 2002): Assesses how
well one sentence matches multiple references.

As SARI is the most adopted metric for TS we
used it as our primary metric while FKGL was used
to evaluate the simplicity of our output. Although
research has shown that BLEU is not suitable for
the TS task (Sulem et al., 2018), we included it in
our analysis for comparison with previous works.
The Wilcoxon signed-rank test (Wilcoxon, 1992)
was used to assess the statistical significance of our
results.

4.4 Results
Our proposed factuality error detection algorithm
identified 68, 237 (23 %) samples with bad sim-
plification and 93, 030 (31 %) samples with bad
alignment. In total, 45% of the total samples of
Wikilarge were identified as factuality errors. The
proposed dataset modification with the suppression
of both bad simplification and bad alignment sam-
ples by factors of α1, α2 = 0.02 resulted in the best
statistically significant improvement of the SARI

and FKGL scores by 0.79 and 0.33 respectively on
TurkCorpus and improvement of FKGL by 0.29
on ASSET (p<0.05). The SARI score on ASSET
showed an inconsistent variation, in most of the
cases without statistically significant change.

It should be noted that TST5 reported a higher
SARI score in the original study(Sheang and Sag-
gion, 2021), but we were unable to reproduce the
same results using the code provided by the au-
thors.

5 Discussion

Our factuality detection rate was aligned with the
work of Xu et al. (2015)’s experiment on the bad
simplification case (23% and 33% respectively),
however, it identified a higher number of bad align-
ment samples (31% in comparison to 17%). This
could be due to sensitivity differences between the
two approaches.

Our TS results (Table 2) demonstrated that the
TST5 model’s performance could be enhanced by
both bad simplification and bad alignment detec-
tion. The combination of both factuality errors
detection led to improved results. We observed a
significant improvement of SARI on TurkCorpus,
but not in ASSET, where the SARI score showed
an inconsistent but not statistically significant varia-
tion. The reason might be due to the SARI score on
ASSET being so close to the reference that it was
difficult to improve. These results indicate that that
the TST5 model trained on the modified Wikilarge
was able to generate simpler sentences compared
to the original TST5.

From Table 2, it can also be seen that the model’s
performance improved as the factuality error sam-
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ple weights decreased. This indicates that the im-
pact of the erroneous samples in the training perfor-
mance might be more significant than the reduction
of the dataset size.

Our results illustrate that the existence of fac-
tuality errors in the training datasets used for TS,
can induce a significant impact in the performance
of the TS models. This indicates a general need
for new reliable datasets exploration. Better error
detection methods, including more thorough tun-
ing, and further validation is needed with other TS
models and other parallel datasets such as Newsela,
which is part of our future work. The trade-off
between error detection sensitivity and dataset size
reduction is crucial and needs further investigation.

6 Conclusion

In this paper, we designed a model-independent
factuality error detection mechanism to support TS
model training. We demonstrated that our mecha-
nism could significantly improve the performance
of the SOTA TS model (TST5) based on recog-
nized TS metrics. Our study raises the need for
high quality parallel datasets, as well as automated
factuality error detecton methods to improve the
performance of TS models.

7 Limitations

We focused on the Wikilarge dataset and did not
include investigation on the Newsela dataset due to
lack of access to it at the time of the study. Addi-
tionally, we tested our approach on the SOTA TS
model TST5 only. However, more models should
be tested to assess the generalization of the pro-
posed method. Due to time and resource limita-
tions, we only analyzed our model based on es-
tablished TS metrics and did not conduct a human
evaluation.
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Abstract

The user-dependency of Text Simplification
makes its evaluation obscure. A targeted evalu-
ation dataset clarifies the purpose of simplifica-
tion, though its specification is hard to define.
We built JADES (JApanese Dataset for the Eval-
uation of Simplification), a text simplification
dataset targeted at non-native Japanese speak-
ers, according to public vocabulary and gram-
mar profiles. JADES comprises 3,907 complex-
simple sentence pairs annotated by an expert.
Analysis of JADES shows that wide and multi-
ple rewriting operations were applied through
simplification. Furthermore, we analyzed out-
puts on JADES from several benchmark sys-
tems and automatic and manual scores of them.
Results of these analyses highlight differences
between English and Japanese in operations
and evaluations.

1 Introduction

Text Simplification (TS) aims to rewrite texts for
easier understanding. Simplified texts can bene-
fit children (Smith et al., 1989), non-native speak-
ers (Paetzold and Specia, 2016), non-specialists
(Devaraj et al., 2021; Ivchenko and Grabar, 2022),
and people with cognitive disabilities (Rello et al.,
2013; Alonzo et al., 2020).

Given the diverse users in various domains, auto-
matic TS has been regarded as an important re-
search area these years (Alva-Manchego et al.,
2020b). However, the diversity, in turn, makes
the evaluation of TS obscure. As Xu et al. (2015)
stated, an appropriate simplification for one type
of users will not be appropriate for another. There-
fore, the ideal TS system and evaluation is user-
dependent, but its specification is difficult to define.

One step to the user-dependent TS could be fo-
cusing on a specific population. The validity of
the simplification for a specific population can be
evaluated using a targeted dataset. Newsela (Xu
et al., 2015), available in English and Spanish, can

be used in this way when using information about
targeted grades on each article. Japanese lacks
such a dataset. SNOW (Maruyama and Yamamoto,
2018; Katsuta and Yamamoto, 2018) is a Japanese
dataset for TS and limits vocabulary, which com-
prises the top 2000 words required to understand
Japanese. However, this criteria differs from target-
ing in that no specific populations are considered.
For instance, they gave no simplification instruc-
tions on grammar to annotators. With a strictly
limited vocabulary, this settings causes lengthy ex-
pressions. In addition, SNOW is problematic in
that its original sentences are already short and
simple. Therefore, SNOW may not be suitable for
simplifying daily texts such as news articles.

Building a targeted dataset requires criteria
for specific populations. In Japanese, Japanese-
Language Proficiency Test (JLPT) published vocab-
ulary and grammar profiles for grasping Japanese
on each level (Japan-Foundation, 2002). These
materials alleviate the difficulties in defining the
specification and building a targeted dataset.

In this paper, we introduce a new Japanese
TS dataset, JADES1 (JApanese Dataset for the
Evaluation of Simplification). JADES is targeted
at non-native Japanese speakers capable of every-
day communications, following the specification of
vocabulary and grammar. JADES comprises 3,907
complex-simple parallel sentence pairs, which an
expert of Easy Japanese manually simplifies. Since
obtaining manual simplification are costly, JADES
is oriented towards tuning and evaluation in size.

We also implemented models as baselines on
JADES and rated their outputs automatically and
manually. The contributions of this work include:
(1) a dataset for TS in Japanese targeted at non-
native speakers; (2) analysis of complex-simple
text pairs in Japanese; (3) manual scores on simpli-
fied sentences.

1Our dataset will be available at http://github.
com/naist-nlp/jades
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Figure 1: An example sentence pair in JADES with simplification operations.

2 Related Work

2.1 Simplification Dataset for Evaluation

While early works on TS use a subset of a large
corpus for evaluation, Xu et al. (2015) pointed out
the low quality of automatically aligned sentence
pairs. Based on this report, using human-made
sentence pairs has become a standard practice for
TS evaluation. TurkCorpus (Xu et al., 2016) and
ASSET (Alva-Manchego et al., 2020a) are standard
datasets for the task comprising multiple reference
sentences created by crowdworkers.

Although crowd-sourcing diversifies reference
sentences, complex instructions can be difficult for
crowdworkers. On the other hand, sentence pairs in
Newsela are more valuable in that simplification is
done by experts under reliable criteria for multiple
levels, though its details are not disclosed. It should
be noted that sentence pairs in Newsela dataset are
automatically aligned and contains some misalign-
ments.

2.2 Japanese Text Simplification

In addition to works on the typical lexical simpli-
fication (Kajiwara and Yamamoto, 2015; Hading
et al., 2016), there have been several works for TS
in Japanese. Goto et al. (2015) analyzed simplified
Japanese news sentences and revealed that more
than half of the sentences were reordered through
simplification. Kato et al. (2020) focused on simpli-
fying Japanese sentence-ending predicates, which
are usually a source of confusion to readers due
to their complexity. Each of these works built a
dataset for training and evaluation, but unfortu-
nately, they are not publicly available.

For a publicly available corpus, SNOW T15
(Maruyama and Yamamoto, 2018) and SNOW T23
(Katsuta and Yamamoto, 2018) are the largest in
size (In the following, we denote them together as
SNOW). SNOW extracted 84,400 sentences from
Tanaka Corpus2 and were manually simplified by

2http://www.edrdg.org/wiki/index.php/
Tanaka_Corpus

non-experts. Original sentences in SNOW are
mainly from textbooks, and the lengths of those
are no more than 16 words, shorter than typical
sentences in news and articles.

3 Our New Dataset JADES

We create a new dataset, JADES, for TS in
Japanese. JADES contains manually simplified sen-
tences targeted at independent non-native Japanese
speakers. JADES comprises 3,907 complex-simple
parallel sentence pairs and will help tune and eval-
uate TS models.

3.1 Simplification Criteria

To build a targeted dataset, we set criteria for the
difficulty of simplified sentences. We chose for-
mer Level 3 of JLPT as a target level and adopted
its vocabulary and grammar profiles as the criteria.
Non-native speakers on this level are supposed to
understand basic Japanese for everyday commu-
nication, which is almost equivalent to CEFR B1.
The vocabulary profile contains 1,409 words, but
we allowed using named entities and words at the
same level as those in the profile. The grammar
profile contains basic conjugations and sentence
patterns. There is also a profile about Kanji char-
acters, but we ignored it because rewriting Kanji
to Hiragana or Katakana can cause misses in tok-
enization.

Since simplifying sentences based on the strict
criteria can require some expertise, we employed
an external person with specialized knowledge of
Japanese simplification as an annotator. The an-
notator was asked to simplify sentences according
to the criteria and exclude fairly simple sentences
with no need for simplification. We asked the an-
notator to preserve the meaning of sentences on
simplification but allowed deletion and addition of
words for easier understanding of the main idea of
sentences.
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SNOW JADES
# Sentences 84,400 3,907

# Vocab
complex 2,610 12,382

simple 1,607 5,633
Avg. # Tokens

complex 10.89 32.09
simple 11.99 31.51

Avg. Compression Rate 111.03 101.14
% of Identical 25.55 0.00

Table 1: Statistics of SNOW and JADES. Compression
rate is calculated by # tokens of a simple sentence / #
tokens of a complex sentence.

3.2 Data Source
Complex sentences in JADES were originally ex-
tracted from the Japanese-English development and
test subsets in WMT20 news translation task (Bar-
rault et al., 2020). These subsets include 3,991 sen-
tences, about half of them are originally Japanese,
and the rest are manually translated.

Through simplification under the criteria in Sec-
tion 3.1, we obtained 3,907 complex-simple sen-
tence pairs. We split these pairs into 2,959/448/500
for a train/valid/test subset, respectively. As multi-
ple sentences in this dataset are originally from a
single article, we assigned multiple sentences from
the same article to the same subset. Meanwhile,
the annotator was asked to treat one sentence as
independent of the other sentences.

3.3 Analysis of Corpora
Table 1 shows the statistics of sentences in SNOW
and JADES. We tokenized sentences with Sudachi
(Takaoka et al., 2018) and calculated the vocabu-
lary size, the number of tokens, and compression
rates. The compression rates were calculated by di-
viding the number of tokens of a complex sentence
by that of a simple sentence. One major differ-
ence between these two is in the number of tokens,
which can derive from the difference in the domain
of the original text: SNOW is from textbooks, and
JADES is from news articles. The difference is also
apparent in the vocabulary size as JADES contains
broader topics and many named entities. The ratio
of identical simplification, namely the exact match
between a complex and a simple sentence, indi-
cates that complex sentences in SNOW are fairly
simple already.

We also analyzed how sentences were rewritten.
The guideline for Easy Japanese3, which is a

3https://www.bunka.go.jp/seisaku/
kokugo_nihongo/kyoiku/92484001.html

N S J
REPLACE 38.4 80.0 97.0
SIMPLE REWRITE 26.0 30.0 76.0
DELETE 40.0 3.0 68.0
STRONG REWRITE 11.2 19.0 61.0
ADD 20.0 25.0 31.0
REORDER 11.2 2.0 20.0
SPLIT 17.2 1.0 14.0

Table 2: % of sentences from SNOW (S) and JADES
(J) in which each operations was performed. Result of
Newsela (N) are extracted from Alva Manchego (2020).

guideline for simplifying Japanese texts published
by the Japanese government, includes lexical
simplification, syntactic simplification, deletion,
and splitting, similar to well-discussed simpli-
fication operations in English (Xu et al., 2015;
Alva Manchego, 2020). We manually identified
the simplification operations applied to the
original sentence from each randomly picked 100
sentence pair from SNOW and JADES, excluding
identical pairs. We considered seven major
simplification operations from Alva Manchego
(2020), including DELETE, ADD, SPLIT,
REPLACE, SIMPLE REWRITE, STRONG
REWRITE, and REORDER.

The result of manual operation identification in
Table 2 indicates that the majority of sentence pairs
in JADES have multiple operations. On the other
hand, only a few sentence pairs in SNOW have
deletion and splitting since sentences are short in
length. Compared to Newsela, SNOW and JADES
include much more REPLACE, which can derive
from the vocabulary limitation. On the other hand,
JADES include outstanding number of SIMPLE
REWRITEs and STRONG REWRITEs, which im-
plies the large difference in simplicity between sen-
tence pairs. See Appendix A for examples of sim-
plification and operations.

4 Evaluations

We conducted TS in Japanese with several models
to investigate the characteristics of our dataset. We
also evaluated models automatically and manually.

4.1 Baseline Models

We chose BART (Lewis et al., 2020) and Edit-
NTS (Dong et al., 2019) for model architectures
and trained them with sentences from SNOW and
JADES.

For BART, we built three models by fine-tuning
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Train / Fine-tune Automatic Manual

SNOW JADES
SNOW JADES JADES

System Model Name BLEU SARI BS BLEU SARI BS F M S
Reference Reference - - - - - - - - 3.17 3.09 2.45

Identical Identical - - 57.27 22.58 89.59 29.10 16.27 80.93 - - -

BART
BART-S ✓ - 75.85 61.06 93.25 26.34 41.21 80.75 - - -
BART-J - ✓ 55.58 42.85 88.76 32.50 49.97 82.81 - - -
BART-SJ ✓ ✓ 68.14 59.59 90.18 36.03 58.12 83.90 2.84 2.38 1.95

EditNTS
EditNTS-S ✓ - 59.60 47.28 88.97 25.05 36.67 78.38 - - -
EditNTS-SJ ✓ ✓ 51.79 46.86 86.92 30.52 44.30 80.78 2.76 2.36 1.45

Table 3: Automatic and manual evaluation on simplified sentences. In SNOW, multiple references were used for
evaluation. F, M, and S stand for Fluency, Meaning Preservation, and Simplicity, respectively.

the Japanese pre-trained model4. Two of them were
fine-tuned on SNOW and JADES, respectively, and
the other was first fine-tuned on SNOW and then
fine-tuned again on JADES. For EditNTS, we built
two models. One was trained only on SNOW
from scratch, and the other was then fine-tuned
on JADES. We used the first 80,000 sentence pairs
as a training set in SNOW. All models used JADES
for their validation.

Subsequently, we generated simplified sentences
on the test subset of JADES and SNOW.

In addition to these TS models, we set the iden-
tical system, which outputs the input sentences
exactly as they are.

4.2 Automatic and Manual Evaluation

Since there are few discussions on suitable auto-
matic metrics for TS in Japanese, we evaluated the
outputs of the baseline models with the most com-
monly used metrics in TS, BLEU (Papineni et al.,
2002), SARI (Xu et al., 2016), and BERTScore
(Zhang et al., 2020).

In addition to automatic scores, we assessed
simplified sentences on JADES by manual scores.
We randomly sampled 600 simplified sentences on
each of the valid and test subsets, from reference,
BART, and EditNTS. We chose the best BART and
EditNTS model by automatic evaluation.

Following (Alva-Manchego et al., 2020b), sam-
pled sentences are scored on fluency, meaning
preservation, and simplicity. We hired six in-house
native Japanese speakers as annotators and asked
them to score 300 sentences each from valid and
test subsets, respectively. As a result, each sampled
sentence was scored by three annotators. Scoring
was based on 1-4 Likert scale; see Appendix B for

4https://github.com/utanaka2000/
fairseq/blob/japanese_bart_pretrained_
model/JAPANESE_BART_README.md

F M S
w/ Reference

BLEU 0.308 0.411 0.459
SARI 0.300 0.385 0.493

BERTScore 0.335 0.429 0.474
w/o Reference

BLEU 0.167 0.228 0.177
SARI 0.157 0.142 0.294

BERTScore 0.230 0.275 0.246

Table 4: Correlation between automatic and manual
scores on valid/test subsets of JADES.

detailed instruction.

4.3 Results

Table 3 shows the automatic and manual evalua-
tion of simplified sentences as well as identical
outputs. On both SNOW and JADES, fine-tuned
BART models are superior to EditNTS models.
The best model among BART differs in a test
dataset. BART-SJ outperforms the other models
for JADES and is slightly inferior to BART-S for
SNOW. This performance implies that two-step
fine-tuning works even though the first dataset is
rough to some extent.

For manual scores, BART-SJ seems able to gen-
erate fluent sentences, but lacks the ability to sim-
plify sentences compared to Reference. Mean-
while, even Reference shows lower scores than
expected on simplicity. This result may be because
simplification rewritings sometimes euphemize ex-
pressions and vocabulary, which are easy to un-
derstand for native speakers. Thus, scores by tar-
geted audiences will differ from scores by native
Japanese speakers. We calculated Cohen’s κ (Co-
hen, 1960) between each pair of annotators and
took the weighted average. κ on fluency, meaning
preservation, and simplicity is 0.255, 0.231, and
0.250, respectively. All these values can be as-
sumed as fair agreement (Landis and Koch, 1977).
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We also calculated Pearson’s correlation co-
efficients between automatic and manual scores,
shown in Table 4. Since Reference almost
always gains perfect automatic scores, correla-
tion is calculated with and without Reference
sentences. Although correlations are not much
high in all aspects, notably without Reference,
BERTScore shows the highest correlation in flu-
ency and meaning preservation, while SARI
shows the highest in simplicity. The function of
SARI differs from Alva-Manchego et al. (2021),
which shows that SARI is inferior to BLEU and
BERTScore on simplicity for the evaluation of
multi-operational simplification.

Focusing on absolute values of automatic scores,
Identical gains a low score for JADES and
a high score for SNOW, which supports that
JADES has drastic rewriting. For SARI, although
BART-SJ and EditNTS-SJ show low manual
scores, their SARI scores are quite high compared
to the fact that state-of-the-art TS models in En-
glish, which can outperform even humans, gain
just around 45 in SARI (Martin et al., 2020). We
found these differences in evaluation between En-
glish and Japanese datasets, and will leave them to
further research.

5 Conclusion

We have introduced JADES, a new dataset mainly
for the evaluation of TS in Japanese. Simplified sen-
tences in JADES are targeted at non-native speakers
and made by an expert. This setting may make op-
erations more variant and induce drastic rewriting,
as the manual operation identification shows.

We can see the difference between English and
Japanese in operations and evaluation metrics,
which emphasizes the need for manual datasets
in diverse languages.

Since manual scores on automatic TS models
are low, TS in Japanese still has room for growth.
With manual scores, JADES can also be useful for
investigating new evaluation metrics. We believe
that JADES facilitates TS in Japanese and its appli-
cation.

Limitation

JADES has only one reference sentences, which
might introduce some biases in simplified sen-
tences since they are created by a single annotator.
The heavy workload and quantity of annotation
might also impact the overall quality. However,

only a few annotators have the expertise to handle
such a difficult targeting task. In order to miti-
gate the current limitations of this work, we are
planning to investigate better instructions with de-
tail granularities so that it is easier to expand this
task with more annotators. Furthermore, the cur-
rent dataset is limited in that the qualities are not
double-checked by the actual targeted users, and
we will leave it as our future studies.
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jar, Marta R. Costa-jussà, Christian Federmann,
Yvette Graham, Roman Grundkiewicz, Barry Had-
dow, Matthias Huck, Eric Joanis, Tom Kocmi,
Philipp Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof
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A Simplification Example

Figure 2: Examples of simplification in JADES.
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B Instruction for Manual Scoring

We set 1-4 Likert scale for each of fluency, meaning
preservation, and simplicity. Below is a translation
of the specific instructions.

Fluency
• (Presenting a simplified sentence) Is the fol-

lowing sentence fluent?

1. Obviously not fluent
2. Lack in fluency, and the main idea is hard

to understand
3. Slightly less fluent, but conveys the main

idea
4. Fluent

Meaning Preservation
• (Presenting an original sentence as A and a

simplified sentence as B) How much of the
meaning of sentence A is retained in sentence
B?

1. Hardly retained (the main idea com-
pletely changed)

2. Not much retained (the main idea
changed somewhat)

3. Largely retained (the main idea is re-
tained)

4. Almost completely retained

Simplicity
• (Presenting an original sentence as A and a

simplified sentence as B) Is sentence B is eas-
ier to understand compared to sentence A?

1. Harder to understand
2. Almost equal
3. Slightly easier to understand
4. Easier to understand
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Abstract

We release a new benchmark for Automated
Readability Assessment (ARA) of texts in
Spanish. We combined existing corpora with
suitable texts collected from the Web, thus cre-
ating the largest available dataset for ARA of
Spanish texts. All data was pre-processed and
categorised to allow experimenting with ARA
models that make predictions at two (simple
and complex) or three (basic, intermediate, and
advanced) readability levels, and at two text
granularities (paragraphs and sentences). An
analysis based on readability indices shows that
our proposed datasets groupings are suitable for
their designated readability level. We use our
benchmark to train neural ARA models based
on BERT in zero-shot, few-shot, and cross-
lingual settings. Results show that either a
monolingual or multilingual pre-trained model
can achieve good results when fine-tuned in
language-specific data. In addition, all mod-
els decrease their performance when predicting
three classes instead of two, showing opportuni-
ties for the development of better ARA models
for Spanish with existing resources.

1 Introduction

The readability of a text refers to the aggregation
of all its elements that affect the reader’s under-
standing, reading speed, and interest in the con-
tent (Dale and Chall, 1949). Some of these ele-
ments are the words in the text, the grammatical
structure of its sentences, and its writing style (Xia
et al., 2016). For example, a newspaper article
may be more readable than a scientific paper or a
novel. Automated Readability Assessment (ARA)
aims to exploit these textual elements to predict
how “difficult” or comprehensible a text is (Collins-
Thompson, 2014). For texts in English, several
techniques have been developed, ranging from for-
mulae that relies on surface characteristics such as

average word and sentence lengths (Gunning et al.,
1952; Kincaid et al., 1975) to machine learning ap-
proaches based on feature engineering (François
and Miltsakaki, 2012; Vajjala and Meurers, 2012;
Howcroft and Demberg, 2017) and, more recently,
neural networks and deep learning models (Martinc
et al., 2021; Imperial, 2021; Qiu et al., 2021).1

Similar to English, some work on ARA for
texts in Spanish has developed methods that rely
on surface features (Fernández-Huerta, 1959; Szi-
griszt Pazos, 2001). Others have implemented tools
that extract readability indices (e.g. lexical diver-
sity, word information, syntactic complexity) and
used them as features to train standard machine
learning classifiers to estimate a text’s readability
(Quispesaravia et al., 2016; López-Anguita et al.,
2018; Bengoetxea and Gonzalez-Dios, 2021).

However, these studies were performed on small
corpora of at most 300 texts (for both training and
testing), limiting its generalisability. In addition, it
is unknown to what extend modern neural models
are able perform the task for texts in Spanish.

To mitigate the aforementioned issues, we intro-
duce a new benchmark for training and evaluating
models for ARA of texts in Spanish. Our bench-
mark includes the following contributions:2

• A collection of 6 datasets aimed to different
audiences (e.g. children, Spanish learners as a
second language, or people with learning dis-
abilities) and with several “natural” levels of
readability. With a total of 31,894 documents,
this is the largest collection of texts in Spanish
that has been used for ARA research.

• A simple baseline based on TF-IDF and Lo-
gistic Regression.

1See (Vajjala, 2022) for an up-to-date survey.
2Our datasets, models and code are available at: https:

//github.com/lmvasque/readability-es-benchmark
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• Neural models resulting from fine-tuning
BERT (Devlin et al., 2019)-based pre-trained
language models in monolingual and multilin-
gual settings. We experimented with classi-
fying texts at two (“simple” and “complex”)
and three (“basic”, “intermediate” and “ad-
vanced”) readability levels, as well as con-
sidering two text granularities (sentence-level
and paragraph-level). We have demonstrated
a better performance in a 2-class setting and
also explain the limitations of working with a
3-class readability.

• An analysis of the performance of the neural
models in different settings including zero-
shot (no training, test with Spanish), cross-
lingual zero-shot (training with English data,
test with Spanish), monolingual few-shot
(training with Spanish data) and cross-lingual
few-shot (training with English and Spanish
data, test with Spanish). Our study shows that
multilingual models perform better at the para-
graph level, while Spanish-specific models are
the best at sentence level.

We expect to contribute to the development of
ARA models that can help tailor relevant content
for wider populations, and even benefit downstream
NLP tasks, such as Text Simplification.

2 Related Work

Earlier readability studies focused on readers’ back-
ground since audiences may have specific needs,
and hence individual difficulties when reading
a text. These audiences included people with
dyslexia who struggle with long and uncommon
words (Rello et al., 2013); or second-language
learners, who are more affected by grammatical
aspects than the content itself (Xia et al., 2016).
Other studies focused on methods for readability
assessment that relied on surface features, such
as character and sentence counts (Dale and Chall,
1949; Collins-Thompson, 2014).

In recent years, researchers have explored al-
ternative methods based on user-oriented studies
where scroll interactions are captured to determine
a document’s easiness to read (Gooding et al.,
2021). ARA has also been used in the evaluation
of downstream NLP tasks, such as text simplifica-
tion (Dell’Orletta et al., 2011) and word complexity
analysis (Maddela and Xu, 2018).

Readability assessment itself has been ap-
proached in multiple ways, including through su-
pervised and unsupervised methodologies (Martinc
et al., 2021). The simplest approach is to use tra-
ditional metrics such as Gunning Fog Index (GFI,
Gunning et al., 1952), Flesch Reading Ease (FRE)
and Flesch-Kincaid Grade Level (FKGL, Kincaid
et al., 1975), which evaluated the readability of a
document based on its characters, words, syllables,
and sentences.

While most ARA work is done for texts in En-
glish, there is research for other languages such
as Portuguese (Evaldo Leal et al., 2020; Scar-
ton and Aluísio, 2010; Scarton et al., 2010), Ger-
man (Hancke et al., 2012), French (François and
Fairon, 2012), Italian (Dell’Orletta et al., 2011;
Miliani et al., 2022), Russian (Reynolds, 2016),
Vietnamise (Luong et al., 2017) and Swedish (Lu-
ong et al., 2017). However, these studies tend to be
language and/or domain specific and thus, sparse
without benchmarking multiple models.

Recent readability studies in Spanish are focused
on specific audiences. These applications include
the evaluation of the readability of e-government
websites (Morato et al., 2021), the evaluation of
the suitability of hearing aid user guides in Span-
ish (Gaeta et al., 2021) or in more specialised do-
main such as medical (Rodriguez and Singh, 2018).
These studies mostly use traditional metrics (e.g.,
number of syllables, words, sentences), rather than
neural approaches.

Finally, there are limited resources for readabil-
ity in Spanish and most of them are shared within
the domain of Text Simplification (Xu et al., 2015;
Saggion et al., 2011; Štajner and Saggion, 2013)
and Text Complexity analysis (Quispesaravia et al.,
2016). We contribute with the collection of the pro-
posed readability datasets (Section 3) and a bench-
mark of neural models (Section 4) to this growing
field of research in Spanish.

3 Dataset Collection

We describe the data sources and characteristics
of each dataset (Section 3.1) in our benchmark, as
well as the standardisation process applied to each
that allows for ARA experimentation (Section 3.2).
We also analyse the readability of the documents
and text groupings in our benchmark using read-
ability metrics (Section 3.3), and comment on the
datasets limitations (Section 3.4).
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Dataset Documents Paragraphs Paragraph/Doc Sent. Sent./Paragraph Words Words/Sent

CAES 30,935 30,935 1 325,135 11 5,154,567 15.85
Coh-Metrix-Esp 100 100 1 3,066 31 57,459 18.74
Hablacultura.com 217 713 3 2,607 4 62,582 24.01
Kwiziq 206 206 1 3,172 15 61,364 19.35
Newsela-es 243 5,444 22 53,470 10 1,079,921 20.20
Simplext 193 386 2 2,733 7 64,383 23.56

Total 31,894 37,784 31 390,183 77 6,480,276 121.70

Table 1: Datasets statistics including paragraphs and sentences.

3.1 Data Sources
Our benchmark includes resources scraped from
the web, as well as datasets previously used for
research in ARA and Text Simplification. Table 1
presents some statistics of the datasets, with more
detailed descriptions below.

• Newsela (Xu et al., 2015): professional trans-
lators rewrote news articles (called version 0)
to comply with multiple school grade levels
(called versions 1 to 4, with higher versions
being more readable). Our benchmark consid-
ers the Spanish portion of this dataset.

• Simplext (Saggion et al., 2011): collection
of 200 short news articles that were rewritten
following easy-to-read guidelines for wider
audiences. While this corpus has been mostly
used for Text Simplification research, it natu-
rally provides documents in two levels (“com-
plex” and “simple”), making it suitable for
ARA studies.

• Coh-Metrix-Esp (Cuentos) (Quispesaravia
et al., 2016): collection of 100 documents con-
sisting of 50 children fables (“simple” texts)
and 50 stories for adults (“complex” texts)
scrapped from the web.

• CAES3 (Parodi, 2015): the “Corpus de Apren-
dices del Español” (CAES) is a collection
of texts created by Spanish L2 learners from
Spanish learning centres and universities. Stu-
dents had different learning levels, different
backgrounds (11 native languages) and var-
ious levels of experience with the language.
We used web scraping techniques to download
a portion of the full dataset since its current
website only provides content filtered by cate-
gories that have to be manually selected. The
readability level of each text in CAES follows

3http://galvan.usc.es/caes/

the Common European Framework of Ref-
erence for Languages (CEFR, Uchida et al.,
2018). The corpus also includes information
about the learners and the type of assignments
with which they were assigned to create each
text.

• Other Language Learners Resources: we
collected articles from kwiziq,4 a website ded-
icated to aid Spanish learning through auto-
mated methods. It also provides articles in dif-
ferent CEFR-based levels. We also collected
texts from HablaCultura,5 a website with re-
sources for Spanish students, labeled by in-
structors following the CEFR. We scraped the
freely available articles from both websites
for our benchmark.

These datasets were selected since they inher-
ently provide information about the readability lev-
els of their texts. Although other resources exist (es-
pecially aimed at learners of Spanish L2), they have
strict data-agreement licenses that prevent their use,
or they are not publicly available.

3.2 Data Preprocessing
We used most of the documents from the datasets
described in Section 3.1, without discarding any
content. Since the documents have different types
of readability labels (“complex” and “simple”,
school grade levels, or CEFR levels), we mapped
them into two groups to allow easier and more stan-
dardised experimentation. Table 2 summarises this
mapping, with further details given below.6

• 2-class (simple, complex): when CEFR in-
formation was available, we split texts into
“simple” for levels [A1, A2, B1], and “com-
plex” for levels [B2, C1, C2]. For Newsela

4https://www.kwiziq.com/
5https://hablacultura.com/
6In Table 4 we show an example for each of our proposed

classifications (2-class and 3-class.)
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Group Readability Label Newsela CAES kwiziq HablaCultura Coh Cuentos Simplext

2-class simple versions 3-4 A1, A2, B1 simple
complex versions 0-1 B2, C1, C2 complex

3-class
basic grades 2-5 A1, A2 simple

intermediate grades 6-8 B1, B2 -
advanced grades 9-12 C1, C2 complex

Table 2: Mapping between the original readability labels of each dataset in the benchmark to 2-class and 3-class
groups for ARA experimentation.

Text Granularity Group Readability Labels fernandez-huerta↑ szigriszt-pazos ↑ gutierrez-polini↑ crawford ↓

paragraph

2-class simple 98.049 94.682 43.614 2.647
complex 83.959 80.698 38.927 3.686

3-class
basic 99.971 96.588 44.270 2.491

intermediate 89.273 85.949 40.759 3.420
advanced 82.909 79.673 38.545 3.746

sentence

2-class simple 98.700 95.228 43.628 2.542
complex 81.969 78.495 37.884 3.650

3-class
basic 99.180 95.729 43.810 2.481

intermediate 88.527 84.955 40.008 3.417
advanced 80.953 77.495 37.460 3.689

Table 3: Readability indices for texts in each proposed readability level (2-class or 3-class) and granularity (paragraph
or sentence). Arrows indicate if higher (↑) or lower (↓) values can be interpreted as more readable texts.

(with school grade levels), we classified en-
tries as “simple” for simplification degrees
[3-4], and “complex” for [0-1]. We skipped
level 2 due to its close similarity with texts
from versions 1 and 3. Datasets that already
had binary labels (i.e. “simple” or “complex”)
were not modified.

• 3-class (basic, intermediate and advanced):
when school grade levels were available,
grades [2-5] were considered as “basic”, lev-
els [6-8] as “intermediate”, and levels [9-12]
as “advanced”. For datasets with CEFR infor-
mation, we considered [A1, A2] as “basic”,
[B1, B2] as “intermediate”, and [C1, C2] as
“advanced”. We only considered levels “ba-
sic” and “advanced” for datasets with only
“simple” and “complex” labels, respectively.

We expect our benchmark to be used to develop
neural-based ARA models, which are mostly based
on BERT (Martinc et al., 2021; Imperial, 2021).
As such, due to the input size limitations of BERT-
based models, it would be difficult for them to
handle full documents from some datasets in the
benchmark. Previous work in English dealt with
this by chunking documents by a certain number of
sentences (Martinc et al., 2021). Instead, we rely

on the natural boundaries or structure of documents
to split them into paragraphs and sentences. This
allows us to implement ARA models at different
granularities. For Newsela and HablaCultura, para-
graphs could be easily identified, since each one
appears as a single line in the files. Documents
with no clear paragraph-level divisions (e.g. from
CAES, kwiziq and Coh Cuentos) were treated as
having a single paragraph. Paragraphs were later
split into sentences using NLTK (Bird et al., 2009).

3.3 Readability Assessment
We computed multiple readability indices for Span-
ish texts in order to validate the splitting of the data
into the proposed 2-class and 3-class groups. We
used textstat to calculate the following indices:7

Fernandez-Huerta (Fernández-Huerta, 1959):
proposes the implementation of the Flesch Reading
Ease (FRE) score for Spanish.8 This score is given
by Equation 1 where P is the number of syllables
and F the number of sentences. The values range
from 0 to 100, where the lower values correspond
to university-level texts.

Score = 206.84− (0.60 ∗ P )− (1.02 ∗ F ) (1)
7https://github.com/textstat/textstat
8We have used the corrected formula as proposed in https:

//linguistlist.org/issues/22/22-2332/#1.
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Granularity Text Readability

Paragraph
(2-class)

Sevilla es una ciudad de tradiciones, que las celebra con gran devoción y orgullo. Una de
estas tradiciones es la ronda de las tunas a la “Inmaculada". Cada siete de diciembre por la
noche, diferentes tunas se reúnen en la Plaza del Triunfo, en el centro de la ciudad, para entonar
canciones tradicionales que se han cantado durante décadas. [..]

simple

Paragraph
(2-class)

Voz de la guitarra mía, al despertar la mañana, quiere cantar su alegría a mi tierra mexicana. Yo
le canto a sus volcanes, a sus praderas y flores, que son como talismanes del amor de mis amores.
[..]

complex

Paragraph
(3-class)

En Nochebuena, 24 de diciembre, cenamos en familia. En la cena típica hay gambas, langostinos,
cordero o pavo, vino y champán o cava. Pero lo más típico son los dulces: el turrón, los
polvorones, los mantecados y el mazapán.

basic

Paragraph
(3-class)

Unos 15 kilómetros al sur de Sidi Ifni, en una de las playas vírgenes que baña el Océano Atlántico
en esta parte de la costa, hay un viejo barco encallado. Se trata de una enorme mole oxidada de
origen incierto, abandonada en este despoblado punto de la costa. [..]

intermediate

Paragraph
(3-class)

Existen artistas con un don, seres únicos elegidos para trasmitir emociones e inquietudes de
una manera diferente y a la vez familiar. De aquel niño que escudriñaba a su madre mientras
ella interpretaba cartas de amor y de muerte a las vecinas del pueblo, queda la mirada pícara y
luminosa del visionario, de aquel que antes de inventar la fábula ya ha imaginado el final. [..]

complex

Table 4: Examples from HablaCultura and Kwiziq paragraph datasets.

Szigriszt-Pazos (Szigriszt Pazos, 1993): mea-
sures the “perspicuity” (i.e. intelligibility) of texts
using Equation 2, where S is the total of syllables,
P is the total of words, and F is the number of
sentences.

Score = 206.835− 62.3 ∗ S
P

− P

F
(2)

Gutierrez-Polini (Gutiérrez de Polini, 1972): a
readability metric designed directly for Spanish,
without adapting existing English readability mea-
sures. Its value is given by Equation 3, where L is
the number of characters, P the number of words,
and F the number of sentences.

Score = 92.5− 9.7 ∗ L
P

− 0.35P

F
(3)

Crawford (Crawford, 1989): this index is lim-
ited to measure the difficulty for children at primary
school to learn a text. Its value is given by Equation
4, where OP is the number of sentences for every
100 words, and SP the number of syllables for ev-
ery 100 words. The output refers to the years in
primary school needed to understand a text. There-
fore, the higher the number of years at school, the
less readable the text will be. We are interested in
lower values for more legible texts.

Score = −0.205OP + 0.049SP − 3.407 (4)

Table 3 shows these readability indices for each
of the proposed dataset splits for sentences and
paragraphs. For both granularities, all scores for

texts in each group differ significantly between
readability levels. For example, for paragraphs,
in the 3-class group, the corresponding fernandez-
huerta index for “basic” texts is more than 10 points
higher than for “intermerdiate” texts, which in turn
is around 7 points higher than for “advanced” texts.
Since for this index higher scores indicate more
readable texts, this indicates that the split is ade-
quate. In general, these results support our pro-
posed mapping summarised in Table 2.

3.4 Datasets Limitations

Texts from the the Spanish portion of the Newsela
dataset are translations from the original English
articles.9 This may impact the quality and gen-
eralisation capabilities of the models we created
compared to Newsela-based studies in English.

Texts in CAES were written by learners of Span-
ish with different backgrounds and levels of ex-
perience. Therefore, there are grammatical and
syntactical errors in their construction. Also, the
topics of each text depend on the CEFR levels of
the students. For example, A1 students mostly
write emails, while B1 students write essays. This
could bias the ARA classifiers to learn to identify
topics rather than readability levels. For this rea-
son, we did not include CAES in our experiments
(Sec. 6). However, this dataset will still be avail-
able for further studies where these limitations are
not relevant or actually want to be explored.

9https://newsela.com/about/blog/how-to-use-s
panish-texts-on-newsela/
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Group Subset Readability Labels OneStopEnglish Paragraphs (ES) Sentences (ES)

2-class

train complex - 2,470 9,532
simple - 2,096 7,708

valid complex - 313 1,181
simple - 258 974

test complex - 317 1,249
simple - 254 908

3-class

train
basic 145 1,603 6,147

intermediate 150 1,975 6,187
advanced 158 1,512 6,424

valid
basic 24 201 804

intermediate 17 256 770
advanced 16 179 770

test
basic 20 199 748

intermediate 22 271 818
advanced 15 167 779

Table 5: Number of samples for each dataset, stratified by split and readability labels and levels

For our experiments in the next section, we used
all the datasets in the benchmark. However, our
final release will include only those that are freely
available. Researchers would need to request the
specific licenses for Newsela and Simplext before
we could share with them our specific data splits.

4 Neural ARA Models

Considering the characteristics of our dataset, we
treated ARA as a classification task, and used the
datasets in our benchmark to implement neural
supervised models. Following previous work (Mar-
tinc et al., 2021; Lee and Vajjala, 2022), we used
BERT (Devlin et al., 2019) models with fully con-
nected layers and softmax outputs. As base BERT
models, we experimented with:

• BERTIN (De la Rosa et al., 2022): a
RoBERTa-based (Liu et al., 2019) pretrained
model using Spanish corpora and a perplexity
sampling that allowed its fine-tuning with a
reduced training time and data.

• mBERT (Devlin et al., 2019): a BERT-based
model, trained over 102 languages, including
Spanish. This model will determine whether a
multilingual, general-purpose model is appro-
priate for this task, in comparison to a dedi-
cated model for Spanish. Also, previous work
has relied on these models for multilingual
readability assessment in English, French and
Spanish (Lee and Vajjala, 2022).

We used the BERTIN10 and mBERT11 check-
points available in HuggingFace (Wolf et al., 2020)
to implement six models in the following settings:

Zero-shot. Models based on BERTIN and
mBERT are not trained in any task-specific data
and are used directly to make predictions in the
test set. This aims to explore if pre-trained models
(monolingual or multilingual) are by default capa-
ble of performing ARA without any fine-tuning.
We refer to these models as BERTIN (Zero) and
mBERT (Zero).

Cross-lingual Zero-shot. We study if a multi-
lingual model is able to perform ARA after be-
ing fine-tuned using task specific data but from
a different language. In particular, we fine-tune
mBERT using the OneStopEnglish corpus (Vaj-
jala and Lučić, 2018), which includes articles from
newspapers rewritten by teachers of English as a
second language. Texts in this dataset are divided
into elementary, intermediate, and advanced levels.
As such, we limit our experiments to the evaluation
of the 3-class groups since OneStopEnglish does
not have a predefined alignment for 2 levels. Using
the intermediate corpus in any of the other cate-
gories could be unreliable. In addition, removing
the intermediate level to evaluate the 2-class groups
would result in a very small dataset. We refer to
this model as mBERT (EN).

10https://huggingface.co/bertin-project/berti
n-roberta-base-spanish

11https://huggingface.co/bert-base-multilingua
l-uncased
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2-class 3-class

Granularity Model F1–Score Precision Recall F1–Score Precision Recall

Paragraph

Baseline (TF-IDF+LR) 0.829 0.832 0.827 0.556 0.563 0.550
BERTIN (Zero) 0.308 0.222 0.500 0.227 0.284 0.338
BERTIN (ES) 0.924 0.923 0.925 0.772 0.776 0.768
mBERT (Zero) 0.308 0.222 0.500 0.253 0.312 0.368
mBERT (EN) - - - 0.505 0.560 0.552
mBERT (ES) 0.933 0.932 0.936 0.776 0.777 0.778
mBERT (EN+ES) - - - 0.779 0.783 0.779

Sentence

Baseline (TF-IDF+LR) 0.811 0.814 0.808 0.525 0.531 0.521
BERTIN (Zero) 0.367 0.290 0.500 0.188 0.232 0.335
BERTIN (ES) 0.900 0.900 0.900 0.699 0.701 0.698
mBERT (Zero) 0.367 0.290 0.500 0.278 0.329 0.351
mBERT (EN) - - - 0.521 0.565 0.539
mBERT (ES) 0.893 0.891 0.896 0.688 0.686 0.691
mBERT (EN+ES) - - - 0.679 0.676 0.682

Table 6: F1–score, precision, and recall scores for readability baselines. In bold we select the best model for each
combination of granularity in a group of readability levels.

Monolingual Few-shot. This is the standard su-
pervised setting where BERTIN and mBERT are
fine-tuned using the training data from our bench-
mark. We consider this setting as few-show since
the Spanish corpora is not large. We refer to these
models as BERTIN (ES) and mBERT (ES).

Cross-lingual Few-shot. We experiment with
further fine-tuning the cross-lingual mBERT (EN)
model with the language-specific training data from
our benchmark (few-shot). We refer to this model
as mBERT (EN+ES).

Each of these settings is applied to the two text
granularities (paragraph and sentence) and the two
groups of readability labels (2-class and 3-class).

5 Experimental Setting

Baseline. We implemented a simple approach
based on Logistic Regression and TF-IDF.12 We
extracted the features for each text using TF-IDF
algorithm.13. Then, we trained a Linear Regression
classifier14 using these features in splits (train/dev).

Data Splits. We randomly split all data into 80%
for training, 10% for validation and 10% for testing,
consistently across all experiments. We show the
data distribution in Table 5.

12https://www.kaggle.com/code/kashnitsky/logis
tic-regression-tf-idf-baseline/notebook

13https://scikit-learn.org/stable/modules/gene
rated/sklearn.feature_extraction.text.TfidfVecto
rizer.html

14https://scikit-learn.org/stable/modules/gene
rated/sklearn.linear_model.LogisticRegression.ht
ml

Training Details. We performed hyper-
parameter optimisation and observed training
behaviour to select the most stable models (i.e.
less variability of the validation loss) as the best
for the task. We selected AdamW optimizer,
using a beta value of 0.9. For our 2-class and
3-class experiments we used a learning rate of
3e-6, weight_decay of 0.02, batch size of 16
and a number of epochs equal to 10. Once the
models were trained, we evaluated the models in
the held-out test set. We trained with a 1 Nvidia
v100 GPUs (16GB GPU RAM) and training
time was about 4 hours for the biggest dataset
(sentence-level).

6 Results

Table 6 shows the performance in the test set of
the baseline and neural models in all the training
settings previously described. In addition, Fig-
ure 1 presents representative confusion matrices
for our baseline and best performing models. Due
to space constraints, we only include matrices for
the paragraph-based corpus in the 3-class group
and the sentence-based corpus in the 2-class group.

Most BERT-based models are consistently better
than the TF-IDF baseline, for all text granularities
and readability labels. An exception are mBERT
(Zero) and BERTIN (Zero) who had the lowest
performance in all cases. This implies that pre-
trained models by themselves are unable to perform
ARA for Spanish texts in our benchmark.

All models dropped their performance when
trained in the 3-class setting compared to the
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(a) TF-IDF (paragraph, 3-class) (b) BERTIN (ES) (paragraph, 3-class) (c) mBERT (ES) (paragraph, 3-class)

(d) TF-IDF (sentence, 2-class) (e) BERTIN (ES) (sentence, 2-class) (f) mBERT (ES) (sentence, 2-class)

Figure 1: Confusion matrices for LR-TF-IDF, BERTIN (ES) and mBERT (ES) in 2-class and 3-class task setting
(paragraphs and sentences).

2-class one, including in the zero-shot models.
As shown in Figure 1a, Figure 1b and Figure
1c, an “intermediate” class makes it more dif-
ficult to classify the samples, especially in the
boundaries (“basic”/“intermediate” and “intermedi-
ate”/“advanced”). We can observe that it is easier
to distinguish between “basic” and “advanced”, ev-
idenced by just having a few misclassified samples
(see the matrices corner values). In contrast, there
is a significant number of incorrect samples be-
tween the “intermediate”-“advanced” boundaries
in the 3 models.

The cross-lingual mBERT (EN) models per-
formed comparably to or worse than the baseline
in the 3-class group for text granularities. Adding
language-specific data, makes the model perform
better, making mBERT (EN+ES) comparable to the
mBERT (ES) model in all cases. While BERTIN
(ES) is still the best in the 3-class paragraph setting,
these results suggest that a multilingual pre-trained
model can be leveraged for ARA in Spanish is no
language-specific model is available.

Overall, we can observe that fine-tuning either
BERTIN or mBERT with language-specific data

would result in a good performing model for the
task, for all the settings we considered. As such,
these serve as strong baselines for future research.

7 Discussion

Our zero-shot (cross-lingual) experiments demon-
strate that the readability task is not trivial to learn
to perform ARA, and that it is directly transfer-
able between languages in the settings we studied.
For BERTIN (Zero) and mBERT (Zero), the mod-
els were not previously trained for the readability
classification task resulting in poor performance.

The decrease in performance between models in
the paragraph-based and sentence-based datasets
could be attributed to multiple reasons. First, not
all texts in the datasets could be mapped to three
classes, resulting in fewer instances for training
and evaluation. In addition, it may be easier for a
model to distinguish between extremes (“simple”
or “complex”) than to also consider an “intermedi-
ate” class. This effect is clearer in the analysis of
the confusion matrices in Figure 1.

Regarding our best models, we benefited from
the fact that the BERTIN model was trained on
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Spanish texts, which contributes for a better “un-
derstanding" of readability in this specific language.
The multilingual model (mBERT) was trained in
multiple languages beside Spanish, which could
have contributed to the improvement of its results.

While our results may be encouraging, we state
the limitations of our experiments. When short
and simple texts are used for training, readability
results can easily be related to short sentences and
words. However, texts can also be readable in other
scenarios, such as using active voice, instead of
passive voice, being consistent in the narrative (e.g.
following on the same topic) and the use of simpler
words, which are not necessarily shorter. These
features are harder to learn, as shown in our 3-class
experiments, but with the use of more corpora from
multiple domains, it may be possible to obtain more
robust ARA models. Regarding the models, we
could consider that BERTIN model is not uncased,
whereas the multilingual model is; this could also
be a limitation and a variability factor in the models
performance. Overall, current datasets are scarce,
and it is advisable to train in wider corpora for the
generalisation in multiple domains.

8 Conclusion and Future Work

In this paper, we have introduced a new benchmark
for ARA of texts in Spanish. We combined existing
datasets for research in ARA and Text Simplifica-
tion, with other resources scraped from the web.
With these data, we trained neural ARA models
based on BERT to classify texts into “simple” and
“complex” (2-class), or “basic”, “intermediate” and
“advanced” (3-class), at two levels of text granulari-
ties (paragraph and sentence). The neural models
proved to be better than simple baselines.

In the future, we plan to include more datasets
to the benchmark, such the one used in (López-
Anguita et al., 2018). In addition, we plan on train-
ing feature-based models for a more comprehensive
evaluation of our neural models. Finally, it would
be interesting to study the effect that larger multi-
lingual pre-trained models, like XLM-R (Conneau
et al., 2020), could have on the performance of
neural models.

All of our models are publicly available, as well
as demo that showcases their performances. We
expect that research communities in Spanish speak-
ing countries will benefit from this effort towards
the further development of the field.
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Abstract

Fine-tuning Transformer-based approaches
have recently shown exciting results on sen-
tence simplification task. However, so far, no
research has applied similar approaches to the
Lexical Simplification (LS) task. In this pa-
per, we present ConLS, a Controllable Lexi-
cal Simplification system fine-tuned with T5
(a Transformer-based model pre-trained with a
BERT-style approach and several other tasks).
The evaluation results on three datasets (LexM-
Turk, BenchLS, and NNSeval) have shown that
our model performs comparable to LSBert (the
current state-of-the-art) and even outperforms
it in some cases. We also conducted a detailed
comparison on the effectiveness of control to-
kens to give a clear view of how each token
contributes to the model.

1 Introduction

Lexical Simplification (LS) is a Natural Language
Processing task that modifies texts by substitut-
ing difficult words with easier words (or phrases)
while keeping the original information and mean-
ing (Shardlow, 2014). Table 1 shows an example of
a lexical simplification. On the other hand, Syntac-
tic Simplification (SS) is a similar task that reduces
the syntactic complexity of a text. Both LS and
SS tasks can be seen as sub-tasks of the broader
task of Automatic Text Simplification (Saggion,
2017), which reduces both the lexical and syntactic
complexity of texts. Lexical Simplification systems
(Paetzold and Specia, 2017a) usually have compo-
nents for 1) identification of complex words; 2)
generation of substitution words; 3) selection of
the substitutes that can fit in the context; 4) ranking
substitutes by their simplicity; and 5) morphologi-
cal and contextual adaptation (if necessary). The
systems evaluated in this paper do not perform com-
plex word identification. We use datasets that al-
ready had a complex word tagged for each instance.
Moreover, we do not address the morphological

and context adaptation task because neural-based
language models usually return a correct inflected
candidate.

Complex Sentence:
The Hush Sound is currently on hiatus.
Simplified Sentence:
The Hush Sound is currently on break.

Table 1: A lexical simplification example taken from the
LexMTurk dataset (Horn et al., 2014) with the complex
word and the substitute word in bold.

The contributions of this paper are:

• To the best of our knowledge, we are the first
to introduce a controllable mechanism for LS
and to fine-tune a Transformer-based model
for LS. 1

• We have conducted an extensive evaluation
of several metrics. This allows us to better
understand the system when applied to real-
world scenarios.

The rest of the paper is organized as follows:
in Section 2, we describe related work on Lexical
Simplification focusing on neural-based systems.
Section 3 presents the ConLS approach. Section 4
describes the evaluation metrics and presents the
experimental results. Section 5 discusses the results
of the experiments, while Section 6 concludes the
paper and presents future work.

2 Related Work

Early Lexical Simplification approaches with un-
supervised models used: Latent Words Language
Models (De Belder and Moens, 2010), Wikipedia-
based models/rules (Biran et al., 2011; Yatskar
et al., 2010; Horn et al., 2014) and distributional

1The code and data are available at https://github.com/
KimChengSHEANG/ConLS
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lexical semantics (Glavaš and Štajner, 2015). (Paet-
zold and Specia, 2017b) started the use of neural
networks for the task combined with a retrofitted
context-aware word embedding model.

(Qiang et al., 2020, 2021) presented LSBert,
a Lexical Simplification system that uses a pre-
trained BERT (Devlin et al., 2019) model for En-
glish to generate substitution candidates. LSBert
has two main phases: 1) Substitution Generation
with the BERT Masked Language Model, and 2)
Substitution Filtering and Ranking with several fea-
tures: BERT prediction order, a BERT language
model, PPDB database, corpus-based word fre-
quency, and FastText similarity.

Martin et al. (2020) presented ACCESS a con-
trollable Text Simplification system based on
Sequence-to-Sequence models. This system allows
explicit control of simplification conditions such as
length, amount of paraphrasing, lexical complex-
ity, and syntactic complexity. ACCESS achieved
SOTA results in Text Simplification benchmarks
on the WikiLarge test set. Later on, Martin et al.
(2022) introduced MUSS (an extended version) by
fine-tuning BART (Lewis et al., 2019) with AC-
CESS, and the results were improved. In addi-
tion, Sheang and Saggion (2021) took a similar
approach, adding another control token (number
of words) and fine-tuning it with T5 (Raffel et al.,
2020).

3 System Description

Following recent works of Martin et al. (2020),
Martin et al. (2022), Sheang and Saggion (2021),
and Štajner et al. (2022b), we are inspired to apply
a similar approach in lexical simplification task.
Specifically, our model is based on Sheang and
Saggion (2021), a model originally developed for
sentence simplification2. We propose a control-
lable mechanism for LS because we believe that
the embedded token values extracted from train-
ing data could give additional information to the
model about the relations between the source and
the target word; so that at inference, we could de-
fine different token values that fulfill our objectives,
which in this case is to find the best candidates. In
the following paragraphs, we describe all the de-
tails about each token and the reason why they are
chosen.

2https://github.com/KimChengSHEANG/TS_T5

Word Length (WL) is the character length ratio
between the complex word and the target word.
It is the number of characters of the target word
divided by the number of characters of the complex
word. Based on our analysis of the training dataset
(TSAR-EN), 65.71% of the time complex word is
longer than the best candidate, 21.30% the complex
word is shorter than the best candidate, and 12.99%
both are the same length.

Word Rank (WR) is the inverse frequency of the
target word divided by that of the complex word.
The inverse frequency order is extracted from the
FastText pre-trained model. Based on our analy-
sis of the TSAR-EN dataset, 85.45% of the time,
the complex word has a lower frequency than the
best candidate. Therefore, this token is a good in-
dicator to help guide the model to predict simpler
candidates.

Candidate Ranking (CR) is the ranking order
extracted from the training data. The values are
given to candidates by the ranking order. E.g., the
best-ranking candidate is given the value 1.00, the
second 0.75, the third 0.50, the fourth 0.25, and
starting from the fifth, it is given 0.00. We used
only five different values to avoid overloading the
model, as the training data is relatively small. In
addition, the rationale behind using these values is
that we want the model to learn candidates rank-
ing from data through the training process rather
than injecting additional information or doing post-
processing.

4 Experiments

In our experiments, we compare our model with the
current state-of-the-art model LSBert (Qiang et al.,
2020). We used the original LSBert configurations
and resources, and we made the following changes
to have a detailed comparison with our model. By
default, LSBert returns only a single best candidate
for each complex word, so we made the changes to
return the 10 best-ranked candidates. We changed
the number of BERT mask selections from 10 to
15 so that after removing duplicate candidates, we
still have around 10 candidates. Moreover, we
filtered out all the candidates that were equal to the
complex word. Due to the fact that all the used
datasets have gold annotated simpler substitutions
in all instances, we could assume that returning the
complex word would be incorrect.
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4.1 Datasets
This subsection describes all the Lexical Simplifi-
cation datasets for English that we used in our ex-
periments. We used LexMTurk (Horn et al., 2014),
BenchLS3 (Paetzold and Specia, 2016a), and NN-
Seval 4 (Paetzold and Specia, 2016b) for testing and
TSAR-EN (Štajner et al., 2022a) dataset for train-
ing and validation. LexMTurk has 500 sentences
that were obtained from Wikipedia. This dataset
contains the marked complex words and their re-
placements suggested by 50 English-speaking an-
notators. The BenchLS dataset is a union of the
LSeval (De Belder and Moens, 2012) and LexM-
Turk datasets in which spelling and inflection er-
rors were automatically corrected. The NNSeval
dataset is a filtered version of the BenchLS adapted
to evaluate LS for non-native English speakers.

Sentence

European Union foreign ministers agreed Mon-
day to impose fresh sanctions on Syria as a U.N.-
backed peace plan – along with all other diplo-
matic efforts – has yet to stop the carnage that
mounts every day.

Simpler Substitutes

destruction:6, bloodshed:3, massacre:3, slaugh-
ter:3, carnage:2, brutality:1, butchering:1, butch-
ery:1, damage:1, death:1, slaying:1, violence:1,
war:1

Table 2: An example taken from the TSAR-EN dataset
Štajner et al. (2012) with the target word in bold. The
numbers after ’:’ represents the number of workers
that suggested the substitution. Each instance has 25
substitutes suggested by 25 crowd-sourced workers.

TSAR-EN dataset has 386 instances with 25
gold-annotated substitutions. Table 2 shows an
example. The instances and their target complex
words were extracted from the Complex Word Iden-
tification shared task 2018 (Yimam et al., 2018).
The instances were annotated using Amazon’s Me-
chanical Turk by 25 annotators. A native English
annotator reviewed all suggestions.

4.2 Evaluation Metrics
We evaluated the systems with several metrics that
could take into account the results for different

3https://doi.org/10.5281/zenodo.2552393
4https://doi.org/10.5281/zenodo.2552381

numbers of K candidates (from 1 up to 10). The
metrics used are the following:

• Accuracy@1: is the ratio of instances with the
top-ranked candidate in the gold standard list
of annotated candidates.

• Accuracy@K@top1: The ratio of instances
where at least one of the top K predicted can-
didates matches the most frequently suggested
synonym/s5 in the gold list of annotated can-
didates.

• Potential@K: the percentage of instances for
which at least one of the top K substitutes pre-
dicted is present in the set of gold annotations.

• Mean Average Precision@K (MAP@K): This
metric evaluates the relevance and ranking of
the top K predicted substitutes.

• Precision@K: the percentage of top K gener-
ated candidates that are in the gold standard.

• Recall@K: the percentage of gold-standard
substitutions that are included in the top K
generated substitutions.

4.3 Experimental Setup

In this section, we describe how the data are pre-
processed, the training details of the model, and
finally, the generation of candidates.

4.3.1 Data Preprocessing
For each instance, we have a sentence, a complex
word, and a list of ranked candidates. We compute
all the ratios and the ranking, then prepend it to
the source sentence. We also use special tokens
[T] and [/T] to mark the boundary of the complex
word in the source sentence and the simple word
in the target sentence. Moreover, these special
tokens help us identify the candidates during the
inference. Table 3 shows an example of source and
target sentences embedded with token values and
boundary tokens.

4.3.2 Training
For our experiments, we fine-tuned T5-Large on
the TSAR-EN dataset. We also compared the dif-
ferences of T5 models; the results are in Table 6.
We split the dataset to 90% for training and 10%
for validation. This 10% validation set is also used

5Ties in the most repeated gold-annotated candidates are
taken into account.
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Source: <CR_1.00> <WL_0.54> <WR_0.90>
The Obama administration has seen what The
New York Times calls an [T]unprecedented[/T]
crackdown on leaks of government secrets.

Target: The Obama administration has
seen what The New York Times calls an
[T]unusual[/T] crackdown on leaks of govern-
ment secrets.

Table 3: A training example. The control token values
are extracted from the complex word (unprecedented)
and one substitute word (unusual). The word unusual is
the best-ranked candidate suggested by annotators, so
the CR value is 1.00. We used all the candidates in each
instance to generate parallel sentences for training. One
candidate per training example.

in the token values search at the inference, as de-
scribed in the following section. For the training
data, we preprocessed by extracting and adding
control tokens to the source sentence along with
the boundary tokens to the complex word and sub-
stitute word, as shown in Table 3. We set the maxi-
mum sequence length (number of tokens) to 128,
as all our datasets contain less than 128 in tokens
length. We used Optuna (Akiba et al., 2019) for
hyper-parameters search. For more details about
the implementation and hyperparameters, please
check Appendix A.

4.3.3 Inference
First, we performed token values search on the val-
idation set that maximizes the Accuracy@1@top1
score using Optuna (Akiba et al., 2019). We
searched the values ranging between 0.5 and 1.25;
at each iteration, we changed the value by 0.05. We
searched only WL and WR, whereas for CR, we
set it to 1.00 because we already knew that the best-
ranking candidates were given the value of 1.00.
Then we kept these values fixed for all sentences
at the inference. Finally, at the inference, we set
the beam search to 15 and the number of return
sequences to 15 so that after filtering out some du-
plicate candidates, the remaining would be around
10. The ranking order of the candidates is chosen
from the return orders of sequences produced by
the model.

5 Results and Discussion

In Table 4 we present the results for the metrics: Ac-
curacy@1, Accuracy@k@Top1, and Potential@K.

In Table 5 we present the results for the metrics:
MAP@K, Precision@K, and Recall@K. The re-
sults of ConLS presented here are based T5-Large.

Our experiments show that the modified LSBert
had improved its Accuracy@1 metric results with
respect to the ones seen in the original LSBert paper
(Qiang et al., 2021): Accuracy@1 has improved
from 79.20 to 84.80 for LexMTurk, from 61.60
to 67.59 for BenchLS, and from 43.60 to 44.76
for NNSeval. On the other hand, for the Accu-
racy@1 metric the ConLS system does not improve
the results of the modified LSBert system but im-
proves the results of the original LSBert for the
LexMturk and BenchLS datasets. The results of
the Accuracy@k@Top1 metric show that the modi-
fied LSBert achieves better results at K={1,2} and
the ConLS achieves better results at K={3,4,5} for
all datasets. This indicates that with more candi-
dates allowed (3, 4, and 5 candidates) the ConLS
is able to generate more instances with candidates
within the top-1(s) gold annotated substitution(s)
with respect to LSBert. The results of the Poten-
tial@K metric show these facts: 1) in LexMturk
and BenchLS, the ConLS is outperforming LSBert
gradually and increasingly from k=3 to k=10; 2)
in NNSeval, ConLS improves the potential of LS-
Bert only at K=10. For the MAP@K metric, we
show that ConLS is able to improve the results of
the metric at K={4,5,10} in all the datasets with
respect to the modified LSBert. Finally, the re-
sults of the Precision@K and Recall@K metrics
show the same pattern: 1) for LexMTurk, ConLS
outperforms the LSBert in all K={3,5,10}; 2) for
BenchLS and NNSEval, ConLS outperforms the
LSBert only in K={5,10}.

We also conducted a comparison on the effect
of different T5 models trained with TSAR-EN and
evaluated with LexMTurk. Table 6 shows that the
T5-Large model performs a lot better than the T5-
Base and the T5-Small models in all metrics (Ac-
curacy@1, Accuracy@k@Top1). Therefore, we
believe that the performance of our model would
improve if we could go with larger model, for ex-
ample, T5-3b or T5-11b. We have tried with T5-3b
model, but unfortunately it was unable to fit into
our GPU memory (NVidia RTX 3090) even though
we had set the batch size to as small as one.

To evaluate the effectiveness of the control to-
kens, we conducted further experiments with differ-
ent set of combinations. We trained and evaluated
each set of tokens using T5-Large with TSAR-EN
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Dataset System ACC@1
ACC@k@Top1 Potential@k

@1 @2 @3 @4 @5 @2 @3 @4 @5 @10

BenchLS
LSBert 67.59 40.68 51.45 57.37 59.84 61.57 77.07 81.27 83.32 84.28 85.47
ConLS 62.00 37.99 51.34 59.31 64.90 68.46 74.92 81.27 84.82 87.08 90.31

NNSeval
LSBert 44.76 28.03 38.49 43.93 46.86 49.79 59.00 64.85 67.78 71.55 74.48
ConLS 41.00 26.77 34.30 45.18 50.20 52.71 53.14 61.09 65.69 69.87 79.08

LexMTurk
LSBert 84.80 44.00 54.80 60.40 61.80 62.80 91.00 93.20 94.60 95.00 95.80
ConLS 80.60 43.80 56.39 65.40 71.20 76.60 90.00 95.60 97.40 98.20 99.60

Table 4: The results of LSBert and ConLS for the metrics: Accuracy@1, Accuracy@k@Top1, and Potential@K.

Dataset System
MAP@k Precision@k Recall@k

@2 @3 @4 @5 @10 @3 @5 @10 @3 @5 @10

BenchLS
LSBert 52.26 42.29 34.79 29.25 15.74 46.46 34.62 24.90 25.74 29.80 32.41
ConLS 49.73 41.37 35.01 30.54 18.84 46.34 37.11 26.20 25.59 32.25 41.89

NNSeval
LSBert 34.93 27.84 23.18 19.97 10.73 32.84 26.16 18.78 19.55 23.40 26.14
ConLS 31.69 27.31 23.23 20.30 12.53 32.91 27.02 19.51 18.80 23.80 32.08

LexMTurk
LSBert 67.05 54.41 45.83 39.01 21.29 58.03 45.25 33.43 20.52 24.61 27.52
ConLS 65.45 55.45 48.04 42.52 27.59 60.16 49.89 36.94 21.32 27.51 37.15

Table 5: The results of LSBert and ConLS for the metrics: MAP@K, Precision@K, and Recall@K.

T5 Model ACC@1
ACC@k@Top1

@1 @2 @3
T5-Small 23.40 7.80 11.80 15.40
T5-Base 60.00 28.80 40.40 48.40
T5-Large 80.60 43.80 56.39 65.40

Table 6: The results of ConLS trained all tokens using
different T5 models. The models were trained with
TSAR-EN and evaluated with LexMTurk.

for training and LexMTurk for evaluation. The re-
sults on Table 7 have shown that the model trained
with no tokens performs lower than the model with
all tokens in all metrics, especially for the Accu-
racy@1@Top1 metric, the model with all tokens
perform +2 points higher. Moreover, the all tokens
model performs better than all other models in all
metrics. This indicates that each token contributes
to the selection and the ranking of the candidates
that leads to better performance.

6 Conclusions and Future Work

This paper presents ConLS, the first approach for
Controllable Lexical Simplification. The paper also
describes the evaluation of LSBert and ConLS for
English with the LexMTurk, BenchLS, and NNSe-
val datasets for testing and the TSAR-EN dataset
for training. The results of our evaluation show
that the modified LSBert improves the Accuracy@1
metric results with respect to the ones seen in the
original LSBert paper in all three datasets. ConLS

Tokens ACC@1
ACC@k@Top1

@1 @2 @3
No Tokens 79.20 41.80 55.20 62.60
CR 79.00 41.00 54.40 62.60
WL 79.40 43.00 55.20 65.00
WR 78.60 41.20 54.60 63.20
CR+WL 78.40 41.40 54.40 62.40
CR+WR 78.60 42.80 54.60 62.20
WL+WR 78.60 41.00 54.20 62.20
All Tokens 80.60 43.80 56.39 65.40

Table 7: The results of ConLS trained with different set
of tokens. Each model was trained with TSAR-EN and
evaluated with LexMTurk.

also improves it for the LexMturk and BenchLS
datasets. Moreover, the ConLS system is able to
achieve: 1) more potential to capture correct an-
swers at K={3,4,5,10} for BenchLS and LexMturk
and at K=10 for NNSeval with respect to LSBert,
2) with more candidates retrieved (4 or 5) is able
to generate more candidates within the top-1 more
frequent gold-annotated suggestions with respect
to LSBert, 3) with K={5,10} candidates is able to
generate (according to the gold-annotations) more
correct and different candidates.

For future work, we plan to build a custom model
to predict the best control token values from a given
input instance. Having instance-customized con-
trol token values seems more adequate, as humans
usually select the best candidate based on context.
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Limitations

We describe in this Section the limitation of our
work. The most probable limiting features are:

• The size of training dataset: the TSAR-EN
dataset has 386 instances. Obviously, training
with datasets with a large number of instances
would be recommended to create better mod-
els.

• Quality of the training dataset: although dur-
ing the creation of the TSAR-EN dataset, it
was inspected and the unsuitable substitutions
were removed and replaced with suitable ones
(Štajner et al., 2022a), it is possible that the
dataset quality could be improved by includ-
ing substitutions not reported by the annota-
tors.

• Quality of the testing datasets: it is also pos-
sible that these datasets could be improved
by including substitutions not reported by the
annotators.

• Successful adaptation to other languages: we
could have possible difficulties in achieving
similar adaptations and results in non-English
languages due to the difficulties in availability
of similar resources for other languages and
specifically for low-resource languages.

Ethics Statement

We have described the limitations of the proposed
method in the previous Section. All the scientific
datasets and algorithms used are properly cited.
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A Implementation Details

Our implementation is based on Huggingface
Transformers (Wolf et al., 2020) and Pytorch-
lightning6. We trained the model using T5-Large
for 8 epochs. For the optimization, we used
AdamW (Loshchilov and Hutter, 2019) optimizer
with the learning rate of 1e-5 and adam epsilon
of 1e-8. We set the batch size of 8 for both train-
ing and testing. For the inference, we used beam
search with the size of 15 to get around 10 candi-
dates after filtering out duplicate candidates or the
candidates that are the same as the complex word.
We trained the model on a machine with an NVidia
RTX 3090, Intel core i9 CPU, with 32G of RAM.
It took around 2 hours for the whole process: the
training and the evaluation on the three datasets.

6https://www.pytorchlightning.ai
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Abstract

Lexical simplification — which aims to sim-
plify complex text through the replacement of
difficult words using simpler alternatives while
maintaining the meaning of the given text — is
popular as a way of improving text accessibility
for both people and computers. First, lexical
simplification through substitution can improve
the understandability of complex text for, for
example, non-native speakers, second language
learners, and people with low literacy. Second,
its usefulness has been demonstrated in many
natural language processing problems like data
augmentation, paraphrase generation, or word
sense induction. In this paper, we investigated
the applicability of existing unsupervised lexi-
cal substitution methods based on pre-trained
contextual embedding models and WordNet,
which incorporate Context Information, for
Lexical Simplification (CILS). Although the
performance of this CILS approach has been
outstanding in lexical substitution tasks, its use-
fulness was limited at the TSAR-2022 shared
task on lexical simplification. Consequently,
a minimally supervised approach with careful
tuning to a given simplification task may work
better than unsupervised methods. Our investi-
gation also encouraged further work on evalu-
ating the simplicity of potential candidates and
incorporating them into the lexical simplifica-
tion methods.

1 Introduction

Lexical simplification — which aims to simplify
complex words and phrases in text while main-
taining the meaning of the original text — is an
important natural language processing (NLP) prob-
lem to improve the understandability of text for,
for example, non-native speakers, second language
learners, and people with low literacy skills (Good-
ing and Kochmar, 2019). Due to its importance in
achieving complete text simplification with simpler
and easier-to-read content, lexical simplification
has received rising interest over the years.

Shardlow (2014) has introduced a lexical sim-
plification pipeline, which consists of several sub-
problems, including, for instance, complex word
identification, simpler substitution generation, sub-
stitution selection, and substitution ranking. Out
of these four sub-problems, the latter three entirely
focus on the generation of relevant and simpler
substitutes for better understandability.

Underpinned by Shardlow (2014) among oth-
ers, over the years researchers have introduced a
wide range of methods for simpler substitution
generation for the complex words identified in
text. Earlier approaches to substitution generation
have relied on rule-based methods and lexical re-
sources like WordNet (Miller, 1995) or paraphrase
databases (Pavlick and Callison-Burch, 2016). Lex-
ical substitution research has advanced to the use of
word embedding models (e.g., word2vec (Mikolov
et al., 2013), Glove (Pennington et al., 2014), Em-
beddings from Language Models (ELMo) (Peters
et al., 2018)) to remove the requirement of lexical
resources and obtain potential candidates through
the cosine similarity of word embeddings.

The introduction of Transformers (Vaswani et al.,
2017) has resulted in advanced contextual word and
sentence embedding models like Bidirectional En-
coder Representations from Transformers (BERT)
(Devlin et al., 2019), robustly optimised BERT
(RoBERTa) (Liu et al., 2019), and XLNet (Yang
et al., 2019) which have been extensively used for
NLP, including, but not limited to, lexical sim-
plification and lexical substitution. These mod-
els have been useful in generating potential can-
didates for simplification given a target word and
the context, taking the meaning preservation aspect
into account; researchers have introduced methods
and frameworks for lexical simplification, some
of which rely entirely on contextual embeddings
(Qiang et al., 2021) whereas some others incorpo-
rate lexical resources alongside contextual embed-
ding models (Gooding and Kochmar, 2019).
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Lexical substitution can be identified as a
broader problem, which aims to generate alter-
native substitutes for a target word (McCarthy
and Navigli, 2007) whereas lexical simplification
specifically focuses on generating simpler substi-
tutes (Shardlow, 2014). Although not identical, the
two problems are coupled; both aim to generate
substitutes for an identified target word. Hence,
also the proposed, studied, and adopted solution
techniques have similarities.

In our work, we investigated the applicability
of lexical substitution methods for simpler sub-
stitution generation in lexical simplification. We
applied the CILex solution proposed in our pre-
vious work (Seneviratne et al., 2022) on Context
Information for Lexical substitution to lexical sim-
plification1. The objective of the research was
to evaluate the usefulness of existing substitution
methods in a given text simplification task and to
identify how these methods can be improved.

2 Related Work

Researchers have used different techniques to
achieve lexical simplification; this problem aims to
simplify complex content in text while maintaining
the meaning, for better understandability.

Earliest lexical simplification approaches relied
on rule-based methods and lexical resources (De-
vlin, 1998) where a set of rules was defined to
extract simpler substitutes from lexical resources
like WordNet (Miller, 1995) and rank them based
on a simplicity metric. Extending beyond these
linguistic databases, researchers also used parallel
corpora that consisted of complex and simpler sen-
tences to identify simpler substitutes for a target
word (Biran et al., 2011; Yatskar et al., 2010). How-
ever, given both these approaches were dependent
on linguistic databases and parallel corpora, they
had limitations with respect to the availability and
coverage of simpler alternatives.

To address the limitations of lexical resources, re-
searchers adopted word embedding models for lex-
ical simplification (Glavaš and Štajner, 2015). Fur-
ther improving on the word embedding models, re-
searchers introduced context-aware lexical simplifi-
cation methods (Paetzold and Specia, 2016; Good-
ing and Kochmar, 2019) which also incorporated
linguistic features and information from lexical re-
sources. The introduction of Transformer-based

1The implementation is available at https://github.
com/sandaruSen/CILex under the MIT license.

language models like BERT, RoBERTa, and XLNet
resulted in widely adopting them for downstream
NLP problems. To illustrate, Qiang et al. (2020)
introduced a recursive simplification method called
LSBert based on BERT.

Similar techniques have been used for lexical
substitution, which is a broader problem aiming to
generate alternative words for a given target word.
Early methods, which relied on rule-based systems
and lexical resources, have evolved to the meth-
ods that use word embeddings (Melamud et al.,
2016), contextual embeddings (Zhou et al., 2019;
Arefyev et al., 2020) and methods that incorpo-
rate additional information from lexical resources
(Michalopoulos et al., 2022).

Given the similarities in lexical substitution and
simplification problems, we investigated the appli-
cability of the CILex lexical substitution solution
also for lexical simplification. This investigation
was part of the Text Simplification, Accessibility,
and Readability (TSAR) shared task on lexical sim-
plification in 2022 (Saggion et al., 2022).

3 Experiments

3.1 Method
We used the CILex solution proposed in our pre-
vious work (Seneviratne et al., 2022) for our ex-
periments, which focused on lexical substitution
methods. We based our experiments on pre-trained
contextual word embedding models, contextual sen-
tence embedding models, and WordNet. We then
defined several metrics to obtain the final set of
relevant substitutes and rank them to filter out the
most suitable substitutes.

The initial set of substitutes was obtained us-
ing the combination of i) a model prediction score
P (w|c) computed using the XLNet model given
the context c and target word x with any word
w in the vocabulary of XLNet and ii) an em-
bedding similarity score P (w|x) by computing
the inner product of the embedding of the target
word and the embedding of the respective word
(embeddingx · embedding⊤w ). This followed the
approach by Arefyev et al. (2020).

For each word in the XLNet vocabulary, these
scores were combined to obtain SXLNet score with
α and β being parameters that can be fine-tuned:

SXLNet = αP (w|c) + βP (w|x). (1)

The scoring was then used to rank all the words to
filter out the top 20 words.
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For the filtered-out set of potential candidates,
we computed a sentence similarity score

Ssent = cos(s, s′) (2)

using the cosine similarity between the original
and updated sentences (s, s′) obtained by replac-
ing the target word using each potential candidate
(Michalopoulos et al., 2022).

We also used the gloss sentence similarity score
Sgloss proposed by Michalopoulos et al. (2022)
which integrated additional context information
from WordNet and BERT (bert-large-uncased).
We computed the score as follows: first, we ob-
tained lists of potential definitions for target words
and possible substitutes from WordNet. Second,
for each target word and substitute, we formulated
the most suitable definition by computing the co-
sine similarity between the given sentence and the
definition. Third, for each substitute, we calculated
the gloss sentence similarity score

Sgloss = cos(dt, dw) (3)

using the cosine similarity between the most suit-
able definition embedding of the target word dt
and the most suitable definition embedding of the
substitute dw.

Similarly to Sgloss, we computed

Swordnet = cos(dt, s
′) (4)

where lists of potential definitions were obtained
only for the possible candidates and the cosine sim-
ilarity was computed using the updated sentence
and the most suitable definition of each substitute.

Additionally, we computed the validation score
Sval (Zhou et al., 2019) using the cosine similar-
ities of the BERT-based contextual embeddings
(bert-large-uncased) of the top four layers of ev-
ery token in the original sentence and the modified
sentence was used.

Using these scores, we defined three CILex solu-
tions as

CILex_1 = γSXLNet + δSsent, (5)

CILex_2 = γSXLNet + δSsent

+ θSwordnet + ωSval, and (6)

CILex_3 = γSXLNet + δSsent

+ θSgloss + ωSval (7)

by interpolating them together using γ and δ as the
weights for SXLNet and Ssent scores, respectively,
for all three CILex solutions. For CILex_2 and
CILex_3, ω was used as the weight for Sval while
θ was used as the weight for Swordnet and Sgloss

in CILex_2 and CILex_3, respectively. The CILex
solutions were specifically proposed for lexical sub-
stitution which is a broader problem compared to
lexical simplification.

3.2 Datasets
We tested the CILex solution on the trial and test-
ing datasets of the English dataset provided at the
TSAR-2022 shared task (Štajner et al., 2022). The
English dataset was created by manually selecting
400 instances from the 2018 Complex Word Identi-
fication Shared task dataset. This set of instances
was further filtered based on the quality of the an-
notations provided by the annotators to obtain the
final set of 386 instances with their average number
of unique simpler substitutes per instance provided
by the annotators being 10.55. The dataset con-
sisted of 10 trial instances and 373 instances in the
testing dataset.

3.3 Evaluation metrics
We based our evaluation on the metrics used in
the TSAR-2022 shared task (Saggion et al., 2022).
MeanAveragePrecision@K (MAP@K) score
with K ∈ {1, 3, 5, 10} evaluated if the predicted
substitutes by the system were relevant and if they
were ranked in the top positions. Potential@K
and Accuracy@K metrics evaluated the percent-
age of instances for which at least one of the sub-
stitutions predicted was present in the set of gold
annotations and the ratio of instances where at least
one of the K top predicted candidates matched the
most frequently suggested synonym(s) in the gold
list of annotated candidates, respectively.

3.4 Experimental Setup
Following Arefyev et al. (2020), we used the XL-
Net model (Yang et al., 2019) to obtain the initial
set of substitutes, RoBERTa (stsb-roberta-large)
model (Reimers et al., 2019) to obtain the sen-
tence similarity score, and BERT model (bert-
large-uncased) to obtain the WordNet similarity,
gloss sentence similarity, and validation scores. We
used the same hyper-parameters introduced in our
previous work (Seneviratne et al., 2022) for our
experiments without further tuning to the TSAR-
2022 shared task. We conducted our experiments
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Method ACC@1 ACC@1@Top1 ACC@3@Top1 MAP@3 MAP@10 Potential@3 Potential@10
LSBert 0.5978 0.3029 0.5308 0.4079 0.1755 0.823 0.9463
CILex_3 0.386 0.1957 0.3083 0.2603 0.1267 0.5656 0.638
CILex_2 0.3806 0.1903 0.3083 0.2597 0.1262 0.563 0.6434
CILex_1 0.3753 0.201 0.3109 0.2555 0.1235 0.5361 0.63
TUNER 0.3404 0.142 0.1823 0.1706 0.0546 0.4343 0.445

Table 1: Results of our proposed three CILex solutions and the LSBert and TUNER baselines for the test subset of
the English dataset provided at the TSAR-2022 shared task.

on a RTX 3090 graphics card with 24 GB memory
and CUDA 11.4.

3.5 Results

The proposed three solutions outperformed the
TUNER-baseline (Table 1). However, they did
not perform as well as the LSBert baseline.

Although the performance of our CILex ap-
proach has been outstanding in lexical substitution
tasks, its usefulness was limited at the TSAR-2022
shared task on lexical simplification. Remember-
ing that lexical substitution and simplification prob-
lems are not identical and that also text datasets
and their respective annotations have their unique
characteristics, a minimally supervised approach
with some careful tuning to this specific simplifica-
tion task could have worked better at TSAR-2022
than our unsupervised lexical substitution methods
with pre-trained models.

4 Discussion

In this paper, we have adopted our previous work
on lexical substitution for the TSAR-2022 shared
task on lexical simplification and experimented
with the use of different methods that provide con-
text information. The three methods used for our
experiments have not performed as well as the LS-
Bert baseline. However, they have outperformed
TUNER-baseline at TSAR-2022 (Štajner et al.,
2022) and our approach has excelled in lexical
substitution as evidenced by its evaluation using
two annotated lexical substitution datasets that are
widely used for the broader problem (Seneviratne
et al., 2022).

The observed performance difference for lexical
simplification and lexical substitution can be ex-
plained by the problem differences. The methods
used in our experiments were developed to target
lexical substitution, which can be identified as a
substantially broader problem than lexical simpli-
fication. Lexical substitution generally focuses on
generating similar rather than simpler substitutes
— the narrower focus of lexical simplification. In

order to tackle this issue of our lexical substitu-
tion approach for lexical simplification, identifying
metrics, which can evaluate the simplicity of the
potential candidates and using them to rank the
potential candidates can be done.

5 Conclusion

We have applied our previous work on lexical sub-
stitution for lexical simplification, focusing on the
added value of context information for the lexi-
cal simplification problem. The results from our
methods indicate, that even though the proposed
approach has performed well in lexical substitu-
tion more broadly, their usefulness in the narrower
lexical simplification problem at the TSAR-2022
shared task was limited; a minimally supervised
approach with some careful tuning to a given sim-
plification task may have worked better at TSAR-
2022 than unsupervised lexical substitution meth-
ods with pre-trained models.

Our investigation encourages further work on
evaluating the simplicity of potential substitution
candidates and incorporating them into lexical sub-
stitution methods. This approach should extend
these broader methods to lexical simplification by
targeting the more specific constraints for substi-
tutes in the narrower text simplification problem.
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Abstract

In this paper, we describe our system, Pre-
siUniv, to generate and rank candidate simpli-
fications using publicly available pre-trained
language models (BERT, BETO, and BERTim-
beau), word embeddings (Eg. FastText, NILC),
and part-of-speech taggers (NLTK PoS Tag-
ger, Stanford PoS Tagger and Mac-Morpho),
to generate and rank candidate contextual sim-
plifications for a given complex word. In this
shared task, our system was placed first in the
Spanish track, 5th in the Brazilian-Portuguese
track, and 10th in the English track. We up-
load our codes and data for this project to aid
in replication of our results. We also analyze
some of the errors and describe design deci-
sions which we took while writing the paper.

1 Introduction

Lexical Simplification (LS) is a task of natural lan-
guage generation that aims to substitute difficult
words and phrases in a sentence for simpler ones
that convey the same information (Paetzold and
Specia, 2017). This is a challenging task because
not only must the substitution retain the original
meaning while still adhering to the grammatical re-
quirements of the sentence that is being simplified,
but different people may have different needs for
simplification (Alva-Manchego et al., 2020). Fig-
ure 1 shows the pipeline for lexical simplification
(Shardlow, 2014).

In light of this, the TSAR 2022 Workshop orga-
nized a shared task on lexical simplification, where
participating teams have to generate and rank sim-
plifications for a given complex word (Saggion
et al., 2022). Each team is allowed to submit three
runs for their system. This paper describes the per-
formance of our team, PresiUniv1 at this shared
task.

1Code:http://www.github.com/lwsam/
TSAR-2022/

Figure 1: Pipeline of Lexical Simplification

2 Problem Statement

Our problem is defined as follows:

“Given a context and a possible complex word,
we need to generate a ranked list of candidate

simplifications.”

Hence, our task is divided into two sub-tasks.
The first sub-task involves generating words that
would replace a complex word in the target sen-
tence, which would simplify it. The second sub-
task consists of ranking the top 10 most suitable
words.

3 Related Work

Lexical simplification must identify complex words
and choose the optimal replacement (Shardlow,
2014; Paetzold and Specia, 2017). Previous shared
tasks have already been done as a part of SemEval
2016 (Paetzold and Specia, 2016) and BEA 2018
(Yimam et al., 2018). While the first shared task
dealt with a single training and test set in English
alone, the second shared task dealt with complex
word identification in multiple languages (English,
German, and Spanish), as well as a multilingual
scenario (where the system is tested in a fourth
language, French).
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Figure 2: The method that we used for simplification

Language Pre-trained Language Model Word Vectors Part-of-Speech Tagger
English BERT FastText NLTK PoS Tagger
Spanish BETO FastText Stanford PoS Tagger
Brazilian Portuguese BERTimbeau NILC Embeddings Mac-Morpho

Table 1: Resources used for each language

4 Method

Figure 2 shows the different steps that we take to
generate and select our candidates. It consists of
the following steps:

1. Generation of candidate tokens

2. Candidate word selection

3. Candidate word pruning

Consider the following input sentence: “A Span-
ish government source, however, later said that
banks able to cover by themselves losses on their
toxic property assets will not be forced to remove
them from their books while it will be compulsory
for those receiving public help.” Let the target word
(the one being replaced) be “compulsory”2.

4.1 Candidate Token Generation
We first generate a list of the top k tokens using
a pre-trained language model (Eg. BERT-base-
uncased (Devlin et al., 2019)). The pre-trained lan-
guage model generally selects the most probable
word to replace the masked token3. Since simpler
words are more probable than more complex words
(Leroy and Kauchak, 2014), we consider that the
words generated are already ranked in order of dif-
ficulty from simplest to hardest.

Hence the above example sentence becomes “A
Spanish government source, however, later said that
banks able to cover by themselves losses on their

2This example is taken from the trial dataset of the shared
task.

3We trim out tokens which are not completely alphabetic,
like “##ching”

toxic property assets will not be forced to remove
them from their books while it will be [MASK] for
those receiving public help.” The generated tokens
(in order of probability) are: “available”, “easier”,
“safe”, “beneficial”, “provided”, “safer”, “better”,
“convenient”, “appropriate”, “done”, “mandatory”,
...

4.2 Candidate Word Selection
The next step is to select only the words which
are suitable in meaning to the complex word. For
example, the word “done” is not exactly a syn-
onym for the word “compulsory”4. On the other
hand, the word “mandatory” is a synonym5. In or-
der to do that, we select words whose similarity is
above a threshold value but less than 1 (because a
cosine similarity of 1 would imply that the replace-
ment is the same as the original complex word).
For a threshold value of 0.50, we select the words
“mandatory”, “obligatory”, “voluntary” and “man-
dated”.

4.3 Candidate Word Pruning
Finally, we prune the selected words selected using
a part-of-speech tagger to ensure that the chosen
words with the correct inflexion as the complex
word are chosen. From the above four words, we
see that the word “mandated” is not of the same
part of speech as “compulsory” (verb vs adjec-
tive)6, and hence, the final ranked list of words is

4The cosine similarity using our word embeddings between
done and compulsory is 0.119

5The cosine similarity using our word embeddings between
mandatory and compulsory is 0.767

6In the given context, “mandated” would behave as an
adjectival.
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Rank English Spanish Brazilian-Portuguese
Team Acc@1 Team Acc@1 Team Acc@1

1 UniHD 0.8096 PresiUniv 0.3695 GMU-WLV 0.4812
2 MANTIS 0.6568 UoM&MMU 0.3668 Cental 0.3689
3 UoM&MMU 0.6353 PolyU-CBS 0.3586 PolyU-CBS 0.3262
4 LSBert 0.5978 GMU-WLV 0.3532 LSBert 0.3262
5 RCML 0.5442 Cental 0.3097 PresiUniv 0.3074
6 GMU-WLV 0.5174 LSBert 0.2880 TUNER 0.2219
7 CL Lab PICT 0.5067 TUNER 0.1195 UoM&MMU 0.1711
8 teamPN 0.4664 OEG_UPM 0.1032 - -
9 PolyU-CBS 0.4316 - - - -
10 PresiUniv 0.4021 - - - -
11 CILS 0.3860 - - - -
12 Cental 0.3619 - - - -
13 TUNER 0.3404 - - - -
14 twinfalls 0.1957 - - - -
15 NU HLT 0.1447 - - - -

Table 2: Comparison of our system with other systems. The ranking of the systems is as per the Accuracy@1 values
of the best run submitted by the team. The results also include the performances by a pair of baseline systems -
LSBert and TUNER (Štajner et al., 2022).

“mandatory”, “obligatory” and “voluntary”.
The solution from the gold file (without ties

and space separated) is “mandatory required es-
sential forced important necessary obligatory un-
avoidable”.

5 Dataset

There is no training dataset for the TSAR-2022
Shared Task. A sample of 10 or 12 instances with
gold standard annotations is provided here as the
trial dataset. For the testing data, between 368
to 374 instances were given, with the annotations
released upon the completion of the competition.

5.1 Trial dataset

The trial dataset consists of a set of 10 instances
(for English and Portuguese) and 12 instances (for
Spanish) of a sentence, a target complex word. The
trial_none files contain only the sentences and the
complex word, while the trial_gold files contain
the sentences, the complex word and a set of gold
simplifications.

5.2 Test dataset

The test_none files (used for the evaluation bench-
mark) contain the instances with the sentences
and target complex words. The English test_none
file had 373 instances, the Spanish test_none file
had 368 instances, and the Brazilian Portuguese

test_none file had 374 instances. The test_gold
files contain the sentences, target complex words,
and gold annotations for each of the test_none files.

6 Experimental Setup

6.1 Resources Used
In our experiments, we used the following re-
sources:

• A pre-trained language model to generate a
list of contextual candidate words to replace
the complex word.

• A set of dense word vectors to find out which
words that were generated earlier are similar
in meaning to the complex word.

• A part-of-speech tagger to tag the sentence
with the replacement and verify that the re-
placement word is of the same inflexion as the
original complex word.

Due to the language requirements, we use a dif-
ferent set of resources for each language. Table
1 shows the different resources used for each lan-
guage. For English, we used the BERT (Devlin
et al., 2019) pre-trained language model, 300 di-
mension FastText (Grave et al., 2018) word vectors,
and the default NLTK Part-of-Speech tagger with
the Penn Treebank Tagset (Marcus et al., 1994).
For Spanish, we used the BETO (Cañete et al.,
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2020) pre-trained language model, 300 dimension
FastText (Grave et al., 2018) word vectors, and the
Stanford Part-of-Speech tagger (Toutanova et al.,
2003). For Portuguese, we used the BERTim-
beau (Souza et al., 2020) pre-trained language
model, 300 dimension NILC Embeddings (Hart-
mann et al., 2017) and the Mac-Morpho part-of-
speech tagger (Aluísio et al., 2003).

We set the value of k (the number of candidates
generated) at 1000, and we run our experiments for
thresholds of similarity as 0.40, 0.50, and 0.60.

6.2 Evaluation Metric
The following evaluation metrics are used for our
experiments:

• Mean Accurate Precision - MAP@K
[K=1,3,5,10]. MAP@K for Lexical Simplifi-
cation evaluates the following aspects

– Are the predicted substitutes relevant?
– Are the top-ranked predicted substitutes

at the top positions?

• Potential@K [K=1,3,5,10] - The percentage
of instances for which at least one of the sub-
stitutions predicted is present in the set of gold
annotations.

• Accuracy@K [K=1,3,5,10] - The ratio of in-
stances where at least one of the K top pre-
dicted candidates matches the most frequently
suggested synonym/s in the gold list of anno-
tated candidates.

7 Results and Analysis

The results of our experiments on the testing dataset
are given in Table 2. These results denote the
best performance of a given team based on the
MAP@1 for their three runs. While our system
performed admirably in the Spanish lexical simpli-
fication ranking task (coming first overall), we did
not do as well overall in the other languages.

7.1 Error Analysis
As we saw in the example in Section 4, antonyms
can also be selected as candidates. For instance,
let us consider the words good and bad, which
have a high cosine similarity7. Both the words are
antonyms, yet they would be selected as a replace-
ment for the other because they have a high cosine
similarity and the same part of speech.

7The cosine similarity between good and bad is 0.752.

7.2 Discussion

In this section, we discuss a couple of important
design decisions which we made for our experi-
ments. The first decision that we took was the
order of the approaches. One of the approaches
which we considered was to first select a similar
word and then compute the language model score
and rank the output words by the most probable
sentences. However, this does not work out be-
cause the most similar words are usually different
forms of the original word. For example, the top 5
most similar words for “compulsory” are: “Com-
pulsory”, “mandatory”, “non-compulsory”, “com-
pulsary”, and “complusory”. As we can see, the
most common words are either different forms of
“compulsory”, or they are spelling mistakes (Eg.
“compulsary” and “compulusory”), with very few
good candidate words (like “mandatory”).

The next design decision is the values of the
thresholds for cosine similarity, which we selected.
Selecting a very low threshold for candidate se-
lection will ensure that almost all the candidates
generated will be selected, while a high thresh-
old will eliminate almost all candidates (Eg. if we
had a threshold of 0.8, then even candidates like
“mandatory” won’t be selected for “compulsory”).
This is also why we selected threshold values of
0.40, 0.50 and 0.60 for our experiments.

8 Conclusion and Future Work

In this paper, we describe the participation of our
team, PresiUniv, in the TSAR 2022 Shared Task
on the generation and ranking of lexical simplifi-
cation substitutes. Overall, we achieved the best
performance in the Spanish track but finished 5th in
the Portuguese track and 10th in the English track.

In the future, we plan to extend our work towards
document-level simplification as well as person-
alized text simplification (Alva-Manchego et al.,
2020).

Acknowledgements

We would like to thank the anonymous reviewers
of the shared task for their constructive feedback
which helped us improve our paper. We would
also like to acknowledge The Presidency University
Faculty Seed Grant Award (Ref: ACC/26/08/2021-
2), dated Autust 26, 2021 for funding this research.

216



References
Sandra Aluísio, Jorge Pelizzoni, Ana Raquel Marchi,

Lucélia de Oliveira, Regiana Manenti, and Vanessa
Marquiafável. 2003. An account of the challenge of
tagging a reference corpus for brazilian portuguese.
In International Workshop on Computational Pro-
cessing of the Portuguese Language, pages 110–117.
Springer.

Fernando Alva-Manchego, Carolina Scarton, and Lucia
Specia. 2020. Data-driven sentence simplification:
Survey and benchmark. Computational Linguistics,
46(1):135–187.

José Cañete, Gabriel Chaperon, Rodrigo Fuentes, Jou-
Hui Ho, Hojin Kang, and Jorge Pérez. 2020. Span-
ish pre-trained bert model and evaluation data. In
PML4DC at ICLR 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Nathan Hartmann, Erick Fonseca, Christopher Shulby,
Marcos Treviso, Jéssica Silva, and Sandra Aluísio.
2017. Portuguese word embeddings: Evaluating
on word analogies and natural language tasks. In
Proceedings of the 11th Brazilian Symposium in In-
formation and Human Language Technology, pages
122–131, Uberlândia, Brazil. Sociedade Brasileira de
Computação.

Gondy Leroy and David Kauchak. 2014. The effect of
word familiarity on actual and perceived text diffi-
culty. Journal of the American Medical Informatics
Association, 21(e1):e169–e172.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyre, Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger.
1994. The Penn Treebank: Annotating predicate ar-
gument structure. In Human Language Technology:
Proceedings of a Workshop held at Plainsboro, New
Jersey, March 8-11, 1994.

Gustavo Paetzold and Lucia Specia. 2016. SemEval
2016 task 11: Complex word identification. In Pro-
ceedings of the 10th International Workshop on Se-
mantic Evaluation (SemEval-2016), pages 560–569,
San Diego, California. Association for Computa-
tional Linguistics.

Gustavo H Paetzold and Lucia Specia. 2017. A sur-
vey on lexical simplification. Journal of Artificial
Intelligence Research, 60:549–593.

Horacio Saggion, Sanja Štajner, Daniel Ferrés,
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Abstract

We present PromptLS, a method for fine-tuning
large pre-trained Language Models (LM) to per-
form the task of Lexical Simplification. We use
a predefined template to attain appropriate re-
placements for a term, and fine-tune a LM using
this template on language specific datasets. We
filter candidate lists in post-processing to im-
prove accuracy. We demonstrate that our model
can work in a) a zero shot setting (where we
only require a pre-trained LM), b) a fine-tuned
setting (where language-specific data is re-
quired), and c) a multilingual setting (where the
model is pre-trained across multiple languages
and fine-tuned in an specific language). Experi-
mental results show that, although the zero-shot
setting is competitive, its performance is still
far from the fine-tuned setting. Also, the mul-
tilingual is unsurprisingly worse than the fine-
tuned model. Among all TSAR-2022 Shared
Task participants, our team was ranked second
in Spanish and third in English.

1 Introduction

We present our system submission for the TSAR-
2022 Shared Task (ST) on Lexical Simplifica-
tion (Saggion et al., 2022). The task required par-
ticipants to develop a lexical simplification system
capable of taking a word in context and return-
ing a list of candidate substitutions. The task pro-
vided test data in English (EN), Spanish (ES) and
Brazilian Portuguese (PT). We chose to submit for
all three tracks a system based on the concept of
Prompt Learning. Whereas the previous state of the
art for Lexical Simplification, LSBert (Qiang et al.,
2020), masked the token in context, our approach,
namely PromptLS, injects prompts within the con-
text that forces the model to generate appropriate
substitutions as in Table 1. We experimented with
multiple prompts, varying the syntax and lexicon of
the prompt, selecting the best-performing variants.

Context Training sentences

No
a simple word for classified is
[MASK] .

5 words
(left
and
right)

triangles can also be classified
(a simple word for classified is
[MASK]) according to their inter-
nal angles

All
context

triangles can also be classified
(a simple word for classified is
[MASK]) according to their internal
angles , measured here in degrees .

Table 1: Data examples generated for fine tuning the
LMs for the prompt template: “a simple word for
[MASK] is”. We show the complex word in bold.

To fine-tune a language model using prompts, we
firstly collected labelled data from different sources
corresponding to the three languages. We then
combined them and split the data into training and
validation subsets. We also tested our prompts with
a zero-shot and multilingual settings. As a result,
PromptLS performed the best fine-tuned, compared
to the multilingual and zero-shot settings.

We finally selected the best configurations to
run on the official testing sets. Hence, we could
observe the same pattern in the testing set as in our
validation subsets, i.e., the fine-tuned setting still
produced the best performance across languages.

2 Related Work

Lexical simplification arose as a form of assistive
technology (Devlin, 1999; Carroll et al., 1999) for
people with aphasia. Early systems used dictionary
based replacement methods (Bott et al., 2012), with
disambiguation methods to improve the selection
of candidates (Paetzold and Specia, 2015).

Recently, simplification systems have focused
on the use of transformer architecture to identify
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appropriate replacements for a given word (Qiang
et al., 2021). This can be applied at a single or
multi-word level (Przybyła and Shardlow, 2020).

Prompt learning is a method of leveraging the
learnt probabilities in a large pre-trained language
model to solve NLP tasks (Brown et al., 2020; Liu
et al., 2022). This can be done in a zero shot (Sun
et al., 2021; Ni and Kao, 2022), or fine-tuned set-
ting (Jiang et al., 2020). Prompt learning requires
the design of a prompt (Ding et al., 2022), which
can be engineered (Ding et al., 2021), or generated
(Shin et al., 2020).

3 Methodology

In this section, we start by the description of our
selected datasets (Section 3.1) and the design of
our prompts (Section 3.2). We then describe our
proposed method PromptLS that consists of three
modules: 1) a large language model (LM) that gen-
erates candidates based on a given prompt (Section
3.3), 2) a fine-tuning module that guides the LM
to select more appropriate substitutes (Section 3.4)
and 3) a candidate filtering module which removes
incorrect or inappropriate candidates (Section 3.5).

3.1 Data Collection
In this section we describe our collected state-of-
the-art Lexical Simplification (LS) datasets for EN,
ES and PT. We include a summary in Table 2.

• (EN) LexMTurk (Horn et al., 2014): a dataset
obtained from the alignment of 137K sen-
tences from English Wikipedia and Simple
English Wikipedia. The LexMTurk corpus
represents a random sample of 500 candidates,
where each sentence was manually annotated
by 50 MTurk1 workers.

• (EN) NNSEval (Paetzold and Specia, 2016b):
a dataset based on an user study of 400 non-
native speakers who judged simplification
samples from Wikipedia, LSEval and LexM-
Turk. The NNSEval datasets is a subset of
239 instances from LSEval (De Belder and
Moens, 2012) and LexMTurk, which was im-
proved and refined for LS using complexity
annotations.

• (EN) BenchLS (Paetzold and Specia, 2016a):
is a combined dataset of 929 instances based
on LexMTurk and LSeval. All lexical can-
didates were improved and ranked by native
speakers from the United States.

1https://www.mturk.com/

Language Datasets Instances

EN

LexMTurk 500
NNSEval 239
BenchLS 929

CEFR 414
ES EASIER 5,130
PT SIMPLEX-PB-3.0 1,582

Table 2: All labelled datasets used in this work.

• (EN) CEFR dataset (Uchida et al., 2018): a
dataset of 414 instances based on the Common
European Framework of References for Lan-
guages (CEFR).2 Sentences were extracted
from university textbooks and words were
filtered with the corresponding level based
on words lists. Candidates were selected and
ranked with the support online thesaurus and
CEFR levels annotations.

• (ES) EASIER corpus (Alarcon et al., 2021):
a collection 260 documents annotated by a
linguist and verified by experts and a target
audience. As a result, a LS Spanish dataset of
5130 instances was created, with at least one
candidate per target word.

• (PT) SIMPLEX-PB-3.0 (Hartmann and
Aluisio, 2021): a Brazilian Portuguese cor-
pus of 1582 instances which has been itera-
tive improved from SIMPLEX-PB (Hartmann
et al., 2018) and SIMPLEX-PB 2.0 (Hartmann
et al., 2020) with manual annotations adapted
to children needs as a main audience. These
annotations include 52 different features in-
cluding complex words definitions and lin-
guistic information.

3.2 Template Design
For the implementation of prompt-learning in Lex-
ical Simplification we have designed a template
using equivalent keywords or substitutes appropri-
ate for each language. For example, in English,
we used a template composed by two prompts as
follows:

A(n) <Prompt1> <Prompt2> for <target_word>

The templates for Spanish and Portuguese are
translations of the English template, which resulted
better with performance in comparison with other
alternatives evaluated. The selected prompts for
each language are listed in Table 3.

2https://www.coe.int/en/web/
common-european-framework-reference-languages

219

https://www.mturk.com/
https://www.coe.int/en/web/common-european-framework-reference-languages
https://www.coe.int/en/web/common-european-framework-reference-languages


LN Prompt1 Prompt2
EN easier, simple word, synonym
ES palabra, sinónimo fácil, simple
PT palavra, sinônimo fácil, simples

Table 3: All prompts used in our work. Notice that for
ES and PT, the equivalent prompts has to be inverted
with respect to English due to grammar rules.

We used the masked token tailored to each model
(e.g., [MASK] token) to predict less complex words
instead. We also investigate the impact of context
around a target word on the model by adding con-
text words into the training sentences. Table 1 illus-
trates our selected prompts in English for 3 defined
scenarios: no context, context within a window
size (delimited by a number of characters on each
side) and all context, where all the sentence is con-
sidered. We selected the best-performing prompts
after experimenting with multiple templates.

3.3 Language Models

We selected our models based on their language,
size and performance to evaluate a prompt-learning
setting. These models were trained for Masked
language modeling (MLM) objective.3

• (multiL4) mBERT (Devlin et al., 2019): a
BERT-based model trained over a large mul-
tilingual corpus using Wikipedia in 102 lan-
guages in a unsupervised way.

• (EN) RoBERTa-large (Liu et al., 2019): an
improved version of BERT (Devlin et al.,
2019) model, trained in a large English corpus
(160GB of uncompressed data) with no labels
(i.e., unsupervised).

• (ES) BERTIN (De la Rosa et al., 2022): a
RoBERTa-based model trained in a the Span-
ish portion of mC4 dataset (Raffel et al., 2022),
which has 1 TB of uncompressed data. Due
to the difficulties of using such a large corpus,
a subsection of the dataset was selected using
perplexity sampling.

• (PT) BR_BERTo5: a roBERTa-based model
trained on 6.9M of sentences in PT.

3.4 Fine Tuning

To fine tune our LMs, given a sentence from the
original dataset and its target word (i.e., complex),

3Please refer to the Appendix A for additional systems that
we considered for our benchmarks.

4We refer to our multilingual models as multiL.
5https://huggingface.co/rdenadai/BR_BERTo

we generate a source sentence by masking the
target word in our prompt. Then, we generate
the target sentence by replacing the masked token
([MASK]) in the source sentence with its top-k
simplified candidates. As a result, for each sen-
tence containing a complex word, we have k target
sentences. For example, with the training sentence
in the first row of Table 1, with k = 3 we have the
following target sentences:

a simple word for classified is grouped .
a simple word for classified is organized .
a simple word for classified is categorized .

We performed similarly with the other scenarios
(n-words context, all-context). Then, we repeated
this generation process with all our templates (see
Section 3.2) and across the three languages.

3.5 Candidate Filtering
To maximise the accuracy of our model, we imple-
mented a post-processing step to remove unsuitable
candidates. To decide best on the filtering strate-
gies, we performed a manual analysis of the results
from the trial data provided by the ST.6 For all three
languages, we remove characters that could repre-
sent an undefined candidate such as “unknown” or
“[UNK]”. Also, we removed the complex candi-
date and any non-words that could be suggested by
the model. For Spanish and Portuguese, we lower-
cased all candidates and kept only those words
of length higher than 2. We also removed dupli-
cated candidates. Finally, for English, we filtered
antonyms using Wordnet.7

4 Experiments

4.1 Datasets
For English, we concatenated all the datasets and
removed duplicates in the combined corpus. For
Spanish and Portuguese, we used the EASIER and
SIMPLEX corpora, respectively. In all languages,
the corpus was split in two portions: 90% for train-
ing and 10% for validation, using a random sam-
pling. We used the official release of the gold-
standard from the ST as the testing set.

4.2 Training Settings
We test PromptLS in three different settings:

1. Zero-shot: we input the source sentences tem-
plates with the complex candidate into the
MLM and obtain top-k simple candidates.

6https://github.com/LaSTUS-TALN-UPF/
TSAR-2022-Shared-Task/tree/main/datasets

7https://www.nltk.org/howto/wordnet.html
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LN Model Setting Prompt1 Prompt2 w k Acc@1 A@3 M@3 P@3

EN
RoBERTa-L

zero-shot
easier word all 0 0.378 0.303 0.251 0.606
easier word 10 0 0.356 0.553 0.251 0.612

fine-tune
simple word 5 5 0.830 0.899 0.644 0.941
easier word 5 5 0.803 0.904 0.644 0.941

mBERT multiL
easier word 10 10 0.681 0.718 0.503 0.824
easier synonym 5 7 0.644 0.739 0.510 0.840

ES

BETO zero-shot
palabra simple 10 10 0.064 0.115 0.031 0.115
palabra fácil 10 2 0.053 0.103 0.030 0.103

BERTIN
fine-tune

sinónimo fácil all 3 0.396 0.589 0.191 0.589
palabra simple all 3 0.402 0.559 0.184 0.559

XLM-
RoBERTa-L multiL

sinónimo fácil 5 10 0.304 0.409 0.136 0.409
sinónimo simple 10 10 0.302 0.404 0.135 0.406

PT

ALBERT-pt zero-shot
sinônimo fácil 5 1 0.013 0.045 0.010 0.045
sinônimo simples 10 3 0.013 0.039 0.008 0.039

BR_BERTo
fine-tune

palavra simples all 8 0.497 0.594 0.420 0.600
sinônimo fácil all 10 0.516 0.574 0.433 0.594

XLM-
RoBERTa-L

multiL
sinônimo sinônimo 10 5 0.271 0.406 0.180 0.439
sinônimo simples 5 5 0.277 0.419 0.188 0.452

Table 4: Best-performing configurations on the validation set for each model. LN refers to “Language”, w to the
number of tokens in the context window, k is the number of candidates used to augment the training data, Acc@1
refers to MAP@1/Potential@1/Precision@1, A@3 to Accuracy@3@top_gold_1, M@3 to MAP@3, and P@3 to
Potential@3.

2. Fine-tuned MLM: we train the model with
the augmented source sentences and their cor-
responding labels to fine-tune the MLM. At
inference step, the steps are similar to the zero-
shot setting.

3. Multilingual: We run both (i) and (ii) scenar-
ios using multilingual MLMs.

We also combine the three settings with different
sizes of the window context including 5, 10, and
all context. The performance of PromptLS was
additionally evaluated with different k numbers of
top-k candidates used to generate the training data
(k = 1, 3, 5, 7, 10).

In all experiments, we used the evaluation script
provided by the organiser (Saggion et al., 2022) to
calculate the following metrics: MAP@K (Mean
Average Precision @ K) with K=1,3,5,10; Poten-
tial@K with K=1,3,5,10; Accuracy@K@top1
with K=1,2,3.

4.3 Training Details

We performed our training using 2 NVIDIA v100
GPU (16GB RAM) using the HuggingFace (Wolf
et al., 2020) framework for the implementation of
our models. Our models were trained for 5 epochs,

with a learning rate of 5e-5 using AdamW opti-
mizer, a batch size of 8, a linear scheduler with
no warm-up steps and a Cross Entropy loss. We
did not perform further variations on these hyper-
parameters due to the increased variability of our
prompt-based experiments.8

5 Results

For English, we executed 48 runs in a zero-shot
setting, 240 for the fine-tuned MLM, and 192 for
the multilingual settings. For Spanish, we executed
160 runs for the zero-shot and fine-tuned model
and 140 for the multilingual setting. Similarly, for
Portuguese, we ran 106 runs for zero-shot, 169
for fine-tuned setting and 144 for our multilingual
setting.

Overall, we ran more than 600 experiments
for each language with multiple combinations of
prompts, context windows, number of candidates
for data augmentation, models and settings for the
selection of our submitted system.9 In Table 4, we
include the best two configurations of each model

8Our code is available on Github: https://github.com/
lmvasque/ls-prompt-tsar2022

9We publish our settings selection scripts on Github:
https://github.com/lmvasque/ls-prompt-tsar2022/
tree/main/scripts/benchmark
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LN # Model Setup Prompt1 Prompt2 w k Acc@1 A@3 M@3 P@3

EN
1 RoBERTa-L fine simple word 5 5 0.6353 0.5308 0.4244 0.8739
2 mBERT multi easier word 10 10 0.4959 0.4235 0.3273 0.7560
3 RoBERTa-L zero easier word 5 0 0.2654 0.268 0.1820 0.4906

ES
1

BERTIN fine
sinónimo fácil 0 3 0.3451 0.2907 0.2238 0.5543

2 palabra simple 0 10 0.3614 0.2907 0.2225 0.538
3 sinónimo fácil 10 10 0.3668 0.269 0.2128 0.5326

PT
1

BR_BERTo fine
palavra simples 0 8 0.1711 0.1096 0.1011 0.2486

2 sinônimo fácil 0 10 0.1363 0.0962 0.0944 0.2379
3 sinônimo simples 5 10 0.1577 0.1283 0.1071 0.2834

Table 5: Results on the official testing set. “LN" refers to Language, “#” to the number of submission, “fine" to
fine-tune and “zero" to zero-shot.

in the benchmark for each language. Neverthe-
less, for our ST submission, we selected the three
best-performing runs in the development set using
a ranking of all the models results. We show our
final systems in Table 5.

6 Discussion

In Table 4, we showed that in the case of English,
using zero-shot combined with context produced a
relatively reasonable performance. Meanwhile, it
is not the case for Spanish and Portuguese, which
scored significantly lower. Such performance can
be attributed to the size of the MLMs. In contrast,
the fine-tuning setting led to a higher performance
although we used small annotated corpora to fine-
tune the MLMs. The performance gap between
zero-shot and fine-tuning ones is between 0.3 and
0.4 across metrics and languages. It is unsurprising
that the multilingual LMs did not outperform the
monolingual ones.

Candidates for the prompts (e.g., “easier”,
“word”) affected the performance of PromptLS. In
the English language, the best prompts are com-
posed by “easier word” and “simple word”. Mean-
while, it was more suitable to use “palabra sim-
ple” and “palabra fácil” for the Spanish model and
“palavra simples” and “sinônimo simples” for the
Portuguese model. Our selections in Portuguese
were done based on the knowledge of a second-
language learner without the support of a native
Brazilian Portuguese speaker. Therefore, there
might be space for improvement on the selected
settings of this model.

In addition, we observed that context words
around a complex word are important in this task.
In all the settings reported in Table 4, we had to use
at least a window of 5 words to obtain good perfor-

mance. Using multiple candidates for a complex
word to augment the training data helps improve
the performance as well. Finally, we selected the
best settings and applied them to the official testing
set. The results (Saggion et al., 2022) of our three
runs in each language are reported in Table 5.

Concerning the model selection, it is noted that
T5 model (Raffel et al., 2022) is also a suitable base-
line for a prompt-based setting. However, unlike
the experimental MLMs, T5 has a decoder, which
requires additional effort to apply it to Lexical Sim-
plification. We therefore leave this implementation
for future work.

7 Conclusion

In this paper, we presented the implementation of
a prompt-learning system for LS. Our experiments
indicate we can obtain reasonable results even in
zero-shot settings, especially for full resourced lan-
guages such as English. We demonstrate that by
fine-tuning our prompt templates, we obtain com-
petitive results in all languages. As future work, we
intend to experiment with better datasets, including
better filtering and ranking methods for LS.
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Abstract

In this paper, we describe the system we present
at the Workshop on Text Simplification, Acces-
sibility, and Readability (TSAR-2022) regard-
ing the shared task on Lexical Simplification
for English, Portuguese, and Spanish. We pro-
posed an unsupervised approach in two steps:
First, we used a masked language model with
word masking for each language to extract pos-
sible candidates for the replacement of a dif-
ficult word; second, we ranked the candidates
according to three different Transformer-based
metrics. Finally, we determined our list of can-
didates based on the lowest average rank across
different metrics. The results show that our
method, based on two simple steps and rank-
ings, can effectively improve the scores among
datasets for the task of lexical simplification.

1 Introduction

The notion of linguistic complexity has been widely
debated in both theoretical and computational lin-
guistics, and has been interpreted very differently
depending on the discipline. Specifically, in the
field of natural language processing (NLP), com-
plexity has often been associated with the difficul-
ties that language users encounter while processing
concrete linguistic productions (e.g., sentences, ut-
terances, etc.) (Blache, 2011; Chersoni et al., 2016,
2017, 2021; Sarti et al., 2021; Iavarone et al., 2021),
with research focusing on applications that aim to
simplify challenging texts and to make them more
easily readable for a wider variety of users (North
et al., 2022b).

Previously, NLP shared tasks focused on the
problem of identifying a complex word in a sen-
tence, or assigning a difficulty score to it (Yimam
et al., 2018; Shardlow et al., 2021). The TSAR-
2022 shared task (Saggion et al., 2022) instead fo-
cused on the next step; that is, how to find simpler
words as replacement candidates for a given target
word in a multilingual setting. Consequently, the

task can be seen as similar to lexical substitution in
context (McCarthy and Navigli, 2009).

In this paper, we describe our contribution to
the TSAR-2022 shared task, which is a system
for English, Portuguese, and Spanish that i) gener-
ates replacement candidates for a given word via
masked language modeling, and ii) assigns scores
to the candidates by averaging the ranks assigned
by different Transformer-based metrics.

2 Related Work

The goal of the previous shared tasks regarding
lexical complexity was to identify complex words
in a sentence context, and complexity was defined
as a binary variable (Paetzold and Specia, 2016b;
Yimam et al., 2018). However, these tasks were
oversimplified because there is no clear-cut choice
in many contexts, and human annotators prefer
to assign a score based on a continuous scale of
difficulty. Shardlow et al. (2020) introduced the
CompLex corpus, a gold-standard benchmark for
lexical complexity in English, in which words and
multiword expressions are extracted from different
text genres (legal, religious, and biomedical gen-
res) and are annotated with continuous scores that
reflect their difficulty in the sentence context. The
same corpus was then used as the source material
for the SemEval-2021 shared task regarding lexical
complexity in context (Shardlow et al., 2021).

The estimation of lexical complexity is only one
component in the lexical simplification pipeline,
which also involves generating candidates for sub-
stitution, ranking them, and assessing their degree
of fitness in the given sentence context. Datasets fo-
cusing on the latter parts of the pipeline have been
published for English (Specia et al., 2012; Horn
et al., 2014; Paetzold and Specia, 2016a; Štajner
et al., 2022), Japanese (Kajiwara and Yamamoto,
2015; Hading et al., 2016), Portuguese (Hartmann
and Aluísio, 2020; North et al., 2022a; Štajner et al.,
2022), French (Rolin et al., 2021), Spanish (Alar-
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Language Sentence Target Substitutes

English (EN)
Brevard County was the scene

of six homicides in 2011, Goodyear said.
homicides

murders
deaths
killings

Portuguese (PT)
o nosso é brasileiro colorido é um menino alegre com

pontos de melancolia
melancolia

tristeza
tédio

abatimento

Spanish (ES)
Antes de aquello, el estadio albergaba una

capacidad para más de 130.000 espectadores.
albergaba

alojaba
tiene
aloja

Table 1: Dataset examples for each of the three languages.

con, 2021; Ferrés and Saggion, 2022; Štajner et al.,
2022), and Chinese (Qiang et al., 2021).

The current state-of-the-art system for English,
LSBert, was introduced by Qiang et al. (2020). The
system first generates a list of possible replacement
candidates via the masked language modeling func-
tion of BERT (Devlin et al., 2019) by being fed
the original sentence concatenated with a copy of
the sentence in which the original word has been
masked. The system then performs a re-ranking
using different features, e.g. frequency, vector-
based semantic similarity, and/or language model
probability. Studies using LSBert (Przybyła and
Shardlow, 2020; Štajner et al., 2022) have shown
that the approach could easily be adapted to other
languages and still achieve state-of-the-art results.

3 Experimental Settings

3.1 Datasets
The shared task organizers provided a testing
dataset (Štajner et al., 2022) with a combined num-
ber of 1115 instances: 373 for English, 374 for
Portuguese, and 368 for Spanish. Each instance
consisted of a sentence, a target word, and a list
with a variable number of gold replacement words,
all obtained from human native speakers on Ama-
zon Mechanical Turk. Each instance was annotated
by 25 different annotators, and each annotator had
to simplify the sentence by proposing a simpler
candidate word for substitution. An example for
each target language is displayed in Table 1.

3.2 Methodology
3.2.1 Candidate Generation
For each of the three target languages, we masked
each target word in the dataset instances and used
a masked language model – a variant of the BERT
Base model (Devlin et al., 2019) – to generate a list

of candidate words (the original word itself was fil-
tered out). For English, we simply used the original
BERT Base;1 for Portuguese, we used the BERT
Base BERTimbau model by Souza et al. (2020);2

for Spanish, we used the BETO model by Canete
et al. (2020).3 For our experiments, the number
n of generated candidates was used as a system
parameter, and was fixed at n = 30. Importantly,
for each candidate word we saved the rank; that
is, the position that the word occupies in the list of
candidates sorted by decreasing probability score.
We refer to this method, before any re-ranking step,
as the Base and used it as a baseline method.

3.2.2 Candidate Re-Ranking
Using the n candidate words identified in the
candidate generation step, we extracted three
Transformer-based metrics for re-ranking. The
idea behind our approach is that words that achieve
higher scores and lower rankings for multiple met-
rics are strong candidates for replacement.

We considered three metrics, which we extracted
via the minicons library (Misra, 2022):

• Sentence probability via autoregressive lan-
guage modeling. For each item, we replaced
the target word with a candidate substitute
word, and computed a probability for the
whole sentence via a variant of the GPT2
model (Radford et al., 2019). For English, we
used the original GPT2-Base;4 for Portuguese,
the GPorTuguese-2 Small (Guillou, 2020);5

1https://huggingface.co/
bert-base-uncased

2https://huggingface.co/neuralmind/
bert-base-portuguese-cased

3https://huggingface.co/dccuchile/
bert-base-spanish-wwm-uncased

4https://huggingface.co/gpt2
5https://huggingface.co/pierreguillou/

gpt2-small-portuguese
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Method Acc@1 Acc(1,2,3)@Top1 Pot(3,5,10) MAP(3,5,10)
Base 0.27 0.12 / 0.19 / 0.22 0.49 / 0.57 / 0.68 0.17 / 0.13 / 0.08
Base + LMProb * 0.32 0.14 / 0.20 / 0.26 0.51 / 0.60 / 0.71 0.19 / 0.15 / 0.09
Base + PLL 0.29 0.12 / 0.17 / 0.22 0.5 / 0.6 / 0.72 0.18 / 0.14 / 0.08
Base + cosSim * 0.43 0.2 / 0.28 / 0.33 0.61 /0.7 / 0.77 0.27 / 0.2 / 0.11
Base + All * 0.4 0.18 / 0.26 / 0.3 0.59 / 0.68 / 0.75 0.25 / 0.18 / 0.11
TUNER 0.34 0.14 / 0.17 / 0.18 0.43 / 0.44 / 0.44 0.17 / 0.1 / 0.05
LSBert 0.6 0.3 / 0.44 / 0.53 0.82 / 0.87 / 0.94 0.40 / 0.29 / 0.17

Table 2: Scores for the English dataset. * indicates the systems submitted to the shared task.

and for Spanish, a GPT2 Base model trained
on the BETO corpus (Canete et al., 2020).6

• Sentence probability via masked language
modeling. Similar to the previous metric, we
computed the probability of the sentence via
estimating the pseudo-log-likelihood (PLL)
with a masked language model (the scores
were obtained by masking the tokens one-by-
one) (Salazar et al., 2020). For this metric,
we adopted the same versions of BERT Base
used in the step of candidate generation.

• Contextualized embedding similarity. By al-
ways using the same BERT Base models, we
measured the cosine similarity of i) the con-
textualized embedding of the target word in
the context of the original sentence, and ii)
the contextualized embedding of each candi-
date word after replacing the target word in
the original sentence.

score(w) =
rankBase(w) + rankmetric(w)

2
(1)

After computing the scores for each of the three
metrics in our pool of n candidates, we sorted them
to obtain their respective rankings. We call these
rankings, respectively, LMProb, PLL and cosSim.
Then, for each candidate word w, we computed
its score by averaging the rank in the Base model
and the rank in one of the metrics (see Equation 1).
This resulted in three different scores: 1) Base +
LMProb; 2) Base + PLL; and 3) Base + cosSim.
We then computed one last score, which averaged
the ranks of the four rankings together for each
candidate word. We call this score Base + All. The
scores of the candidate words are finally sorted in
ascending order (the ones with the lowest ranks are
the top candidates for replacement).

6https://huggingface.co/mrm8488/
spanish-gpt2

3.3 Baselines and State-of-the-Art

We presented the scores for a simple baseline
method, based on the mere candidate generation
by a BERT masked language model, without any
further re-ranking (Base). Moreover, the scores for
two state-of-the-art systems were provided by the
shared task organizers for comparison:

• TUNER, an unsupervised system introduced
by Ferrés et al. (2017) for Spanish, and fur-
ther adapted to English and Portuguese. The
system relies on the identification of a list of
candidate synonyms via a word sense disam-
biguation algorithm and a distributional the-
saurus.7 Candidates are then re-ranked based
on their frequencies in the Wikipedia of each
language. Finally, a morphological generator
component ensures that the correct form of
the word is selected for the final replacement;

• The above-mentioned LSBert system (Qiang
et al., 2020), with its adaptations to Spanish
and Portuguese.

3.4 Evaluation

Evaluation metrics for lexical simplification were
introduced by Paetzold and Specia (2016a):

• Accuracy (Acc): Acc@1 is the ratio of in-
stances for which the top substitute is in the
gold standard, regardless of the order, and it
is the main metric for ranking the shared task
systems; AccK measures instead the ratio of
instances for which at least one of the top
K predicted candidates matches the most fre-
quently suggested candidate synonym in the
gold standard (we made our system return up
to 10 candidates per instance);

7Both tools rely on the Freeling text analysis tool (Padró
and Stanilovsky, 2012), available at: https://nlp.lsi.
upc.edu/freeling/index.php/node/1.
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Method Acc@1 Acc(1,2,3)@Top1 Pot(3,5,10) MAP(3,5,10)
Base 0.23 0.1 / 0.12 / 0.15 0.34 / 0.39 / 0.49 0.12 / 0.08 / 0.05

Base + LMProb * 0.22 0.09 / 0.12 / 0.15 0.33 / 0.38 / 0.49 0.11 / 0.08 / 0.05
Base + PLL 0.22 0.09 / 0.13 / 0.14 0.34 / 0.4 / 0.48 0.12 / 0.08 / 0.05

Base + cosSim * 0.32 0.14 / 0.19 / 0.21 0.45 / 0.51 / 0.57 0.17 / 0.12 / 0.07
Base + All * 0.28 0.11 / 0.14 / 0.17 0.4 / 0.47 / 0.55 0.15 / 0.1 / 0.06

TUNER 0.22 0.13 / 0.16 / 0.16 0.27 / 0.27 / 0.27 0.1 / 0.06 / 0.03
LSBert 0.32 0.16 / 0.23 / 0.28 0.49 / 0.58 / 0.67 0.19 / 0.13 / 0.07

Table 3: Scores for the Portuguese dataset. * indicates the systems submitted to the shared task.

Method Acc@1 Acc(1,2,3)@Top1 Pot(3,5,10) MAP(3,5,10)
Base 0.24 0.1 / 0.14 / 0.18 0.45 / 0.53 / 0.62 0.15 / 0.11 / 0.06

Base + LMProb * 0.2 0.08 / 0.13 / 0.17 0.41 / 0.5 / 0.64 0.14 / 0.1 / 0.06
Base + PLL 0.23 0.08 / 0.15 / 0.2 0.44 / 0.54 / 0.64 0.16 / 0.11 / 0.06

Base + cosSim * 0.36 0.16 / 0.2 / 0.23 0.52 / 0.6 / 0.68 0.2 / 0.14 / 0.08
Base + All * 0.28 0.11 / 0.18 / 0.22 0.5 / 0.6 / 0.68 0.18 / 0.13 / 0.07

TUNER 0.12 0.06 / 0.08 / 0.08 0.14 / 0.14 / 0.15 0.06 / 0.03 / 0.02
LSBert 0.28 0.09 / 0.14 / 0.18 0.49 / 0.61 / 0.74 0.19 / 0.13 / 0.07

Table 4: Scores for the Spanish dataset. * indicates the systems submitted to the shared task.

• Potential (Pot): the ratio of instances for
which at least one of the generated candidates
is present in the gold standard.

• Mean Average Precision (MAP): a commonly-
used metric in information retrieval, which
assesses how many of the predicted candi-
dates are relevant (i.e., how many of them
are present in the gold standard annotations).

In the official results, the metrics are computed
based on different values of K: for Accuracy, K =
1, 2, 3, while for Potential and MAP, K = 3, 5, 10.

4 Results and Conclusion

The results for English, Portuguese and Spanish
can be seen, respectively, in Table 2, 3 and 4. On
the basis of preliminary results on the trial dataset,
we submitted the scores for Base + All, Base +
LMProb, and Base + cosSim in all the three lan-
guage tracks. At a glance, it can be seen that the
combination of the Base ranking with the ranking
based on cosine similarity is the only one that con-
sistently improves over the baseline performance.
A possible reason is that the initial selection of
the candidates is already based on a Transformer
language model, so it could be the case that the in-
formation coming from the language model-based
rankings is redundant, or tend to suggest the same
subset of candidates. On the other hand, the cosine
metric between the contextualized embeddings is
assessing a paradigmatic type of similarity between
the target and the candidate word: this is not nec-
essarily taken into account by the other metrics,
which are more focused on the syntagmatic axis.

Our method relying on Base + cosSim, which
was submitted as PolyU-CBS3, was the one report-
ing the best scores on all the three datasets (15th
overall on English, 5th on Spanish, 3rd on Por-
tuguese). It is noticeable that our methods always
outperform TUNER on the metrics of Potential and
MAP. The LSBert is the best performing method
on English and Portuguese datasets, although our
Base + cosSim is a close match to the latter. Fi-
nally, Base + cosSim outperforms both TUNER
and LSBert on Spanish. We take the results as a
preliminary evidence that our method, based on
two simple steps and ranking, can be highly effec-
tive for the task of lexical simplification. A possible
way to further improve the methodology will be to
introduce different methods of extracting candidate
words. In our preliminary experiments, we found
that a similarity ranking based on traditional, static
embedding model alone can lead to improvements
of the performance on English. However, for lan-
guages with a richer morphology like the Romance
ones, a morphological adapter would be needed
to generate the form that best fits the target sen-
tence. Another possible direction could be using a
generative model treating the task as a text-to-text
problem (Raffel et al., 2020), which could be fine-
tuned on supervised lexical substitution data and
combined with a frequency filter to ensure that the
proposed replacement is actually a simpler word.
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Abstract

Lexical simplification is the task of substitut-
ing a difficult word with a simpler equivalent
for a target audience. This is currently com-
monly done by modeling lexical complexity on
a continuous scale to identify simpler alterna-
tives to difficult words. In the TSAR shared
task, the organizers call for systems capable
of generating substitutions in a zero-shot-task
context, for English, Spanish and Portuguese.
In this paper, we present the solution we (the
CENTAL team) proposed for the task. We ex-
plore the ability of BERT-like models to gen-
erate substitution words by masking the diffi-
cult word. To do so, we investigate various
context enhancement strategies, that we com-
bined into an ensemble method. We also ex-
plore different substitution ranking methods.
We report on a post-submission analysis of the
results and present our insights for potential
improvements. The code for all our exper-
iments is available at https://gitlab.com/
Cental-FR/cental-tsar2022.

1 Introduction

Lexical Simplification (LS) aims at identifying
words that are considered too difficult for a given
audience and replacing them with simpler substi-
tutes.1 Following Housen and Simoens (2016, 166),
we distinguish the notion of absolute complexity
that refers to “inherent linguistic properties of a lan-
guage feature” from the notion of difficulty, which
depends on “how costly, demanding, or difficult
a given language feature is for a given language
learner in a given learning context, particularly in
terms of the mental resources allocated and cogni-
tive mechanisms.”

The TSAR shared task (Saggion et al., 2022)
asks for solutions generating and ranking substi-
tutes for predefined difficult words in sentences
in English, Spanish and Portuguese. This paper

1For a recent description of Text Simplification and Lexical
Complexity, see North et al. (2022).

describes the CENTAL team solution to the TSAR
shared task, which takes advantage of pretrained
neural language models and is easy to use in any
language for which such models exist. Our solution
has two steps: Substitution Generation (SG) and
Substitution Ranking (SR). For SG, we use an en-
semble of BERT-like models to generate candidate
words to replace the difficult word. We assume
language models can produce correct substitutes
but are noisy (i.e., they also produce wrong substi-
tutes). We try to mitigate this issue by combining
the output of different language models in an SR
step. We explore three strategies for combining
and ranking the output of our SG methods. We pro-
pose a simple voting strategy for the substitutions
generated by each model. We also use a standard
ranking method, assuming that the ensemble of
models can generate relevant substitution words,
but the models do not agree on them. The third
strategy uses a model trained for one language and
ranks in the other two. It assumes we have poor
resources for a given language and explores the use
of cross-lingual transfer learning.

The remainder of this paper is organized as fol-
lows: Section 2 describes the task proposed in the
TSAR shared task, their corpora and the additional
corpora that we use. Section 3 details the proposed
solution for generating and ranking substitutions
while their results are shown in Section 4. Finally,
in Section 5, we present the error analysis and pos-
sible solutions for improving the performance of
the proposed methods.

2 Task and Corpora

The TSAR shared task proposes a zero-shot task,
where a trial set composed of only 10 trial sen-
tences with difficult words and their substitutions
and later assessed the systems on a test corpus for
English, Spanish and Portuguese. The corpus con-
sists of sentences with one difficult word per sen-
tence to be substituted. The TSAR corpus is consti-
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tuted of 1,115 sentences with target words (373 for
English, 368 for Spanish and 374 for Portuguese)
annotated by 25 crowdsourced workers, whose so-
ciodemographics are not provided. They proposed
simpler substitutions for the difficult words, taking
the sentence as context. An expert later selected
the proposals and only non-multiword expressions
were kept (Saggion et al., 2022).2

We used additional corpora for parameter opti-
mization and hyperparameter tuning of the classi-
fication algorithm used in our ranking approach,
given the zero-shot nature of the task. For En-
glish, we used a monolingual lexical simplification
corpus (Specia et al., 2012) constituted of 2,010
English sentences annotated with difficult words
and their ranked substitute words or phrases. For
Spanish, we selected a cross-lingual lexical substi-
tution corpus (Mihalcea et al., 2010) constituted
of 1,300 English sentences, which are a subset of
the monolingual corpus, in which the substitutes
are in Spanish. To obtain both sentences and sub-
stitutions in Spanish and Portuguese, we used the
Google Vision Translation API to translate the En-
glish sentences from the cross-lingual corpus to
Spanish and the sentences and substitutions from
the monolingual corpus to Portuguese. After trans-
lating the corpora, we automatically marked the dif-
ficult words using the list of substitutions (i.e., sim-
pler words).3 We divided this corpus into 80% for
training and hyperparameter tuning (using cross-
validation) and 20% for testing. The testing part
is used for internal comparison of the methods de-
scribed in Sections 3.1 and 3.2 and the training part
is used in the ranking method (Section 3.2).

3 Our Approach

We detail here the runs submitted (2 for English
and 3 for Spanish and Portuguese each). Figure 1
illustrates our pipeline, and Table 6, in Appendix
A, shows outputs of the different strategies.

3.1 Substitution Generation

For this step, we explored whether masked BERT
as a word-level “generative” model – i.e., pre-
trained BERT – is able to produce a suitable list
of substitution candidates. Simply masking the

2The original sentences came from three different datasets:
the PorSimplesSent dataset for Portuguese (Leal et al., 2018)
and the CWI Shared Task 2018 dataset for Spanish and English
(Yimam et al., 2017).

3The sentences in which the difficult word could no longer
be isolated in translation were dropped.

difficult word gave unsatisfactory results in our pre-
liminary tests. We thus investigated different ways
of providing context to help the model generate ad-
equate substitutions. All runs had words proposed
by a BERT-like model, which was fed the original
sentence with a mask replacing the difficult word,
preceded by more context. We truncated the num-
ber of contexts generated when the concatenation
of the context and the original sentence is longer
than BERT models’ input size limit (512 tokens).
To generate that context, we explored three strate-
gies: Copy, Query Expansion, and Paraphrase.

The Copy strategy is inspired by LSBERT
(Qiang et al., 2021). The extra context preced-
ing the sentence is simply a copy of the sentence
itself. In this approach, we tested using the [SEP]
token for splitting the sentences, but our experi-
ments showed that using it led to worse results.

The Query Expansion (QE) strategy consists in
applying the technique with the same name from
the Information Retrieval domain. In our case, we
produced 5 related words for the difficult word
using FastText models in addition to the original
sentence. We explored two variations: (1) repeating
the entire sentence for each alternative, using the
generated word instead of the original word, and
(2) only using the proposed words.

The Paraphrase strategy generates a context
composed of paraphrases of the original sentence.
We generated up to 10 paraphrases for each sen-
tence. The number of paraphrases is limited so that
the entire prompt fits within the limit of 512 tokens
imposed by BERT. This method was only applied
to the English part of the shared task because, to
our knowledge, there is no equivalent of the applied
model for Portuguese and Spanish.

In our experiments, we compared various models
available on HuggingFace4 and observed different
behaviors depending on the strategy.5 For the offi-
cial submission, we chose those that produced the
best results on the test corpus. Thus, we combined
the Large and Base models in the QE strategy and
employed only Large models in the Copy strategy,6

4https://huggingface.co/
5We tested the following models in addition to those we

submitted: bert-base-multilingual-cased, skimai/spanberta-
base-cased, PlanTL-GOB-ES/roberta-base-bne, josu/roberta-
pt-br and rdenadai/BR_BERTo.

6The Large and Base models used are bert-large-uncased,
bert-base-uncased, roberta-large and roberta-base for English,
dccuchile/bert-base-spanish-wwm-cased and dccuchile/bert-
base-spanish-wwm-uncased for Spanish, and neuralmind_bert-
large-portuguese-cased and neuralmind_bert-base-portuguese-
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Figure 1: Pipeline of the proposed solutions.

while we used a specialized model7 (i.e., (Zhang
et al., 2020)) for the Paraphrase strategy. For the
Paraphrase strategy, we used 10 beams: as we gen-
erated up to 10 paraphrases, the number of beams
cannot be below 10, and there was not much differ-
ence between 10 beams and more.

The three substitution generation strategies
yielded 20 items for each model. Predictions that
contained non-alphabetic characters (e.g., BERT
subtokens) were automatically discarded.

3.2 Substitution Ranking

All substitutions generated by the substitution gen-
eration strategies must be grouped into a single
sorted list of 10 words, following the shared task
guidelines. We thus combined and ranked the sub-
stitutions, selecting the top 10.

The first ranking method is a simple vote (Vote):
we count the number of methods that generated
a given substitution and rank them from most fre-
quently proposed to least frequently proposed. This
method is exemplified in Table 6.

The two other ranking methods we explored use
a model of lexical complexity. High word fre-
quency is a generally good predictor of simplic-
ity (Brysbaert et al., 2018). However, frequencies
from corpus- and list-based lookups suffer from the
out-of-vocabulary (OOV) problem; instead, we use
character-based n-gram language models to repre-
sent words (Wieting et al., 2016; Bojanowski et al.,
2017). For each language, we create a character-
based n-gram language model with 1 ≤ n ≤ 4.

cased for Portuguese.
7google/pegasus-xsum model

The English model was trained on the British Na-
tional Corpus (BNC Consortium, 2007). The Span-
ish model was trained on Corpus lingüístico de
referencia de la lengua española en Chile (Mar-
cos Marín, 1991). The Portuguese model was
trained on PorPopular (Silva, 2010). We use the
probabilities of each n-gram model to represent
words as input for the model.

In the second ranking method (Ranking), we
train a binary classifier on the SemEval train cor-
pus (Section 2) predicting which one of two words
is easier. For training, we concatenate the vector
representations (n-gram probabilities) of two words.
We opted for XGBoost (Chen and Guestrin, 2016)
– with hyperparameter tuning – as the classification
algorithm. We tested RandomForest, ExtraTrees,
MLP, DecisionTree, AdaBoost, and Bagging clas-
sifier, all from the scikit-learn package (Pedregosa
et al., 2011), including hyperparameter tuning, and
found that XGBoost outperformed the other algo-
rithms. It calculates scores based on pairwise com-
parisons between words and produces a ranking
over a list of substitution words.

As a third ranking method (RankingCL), we ex-
plore the cross-linguistic applicability of the En-
glish classifier model. In this setup, Spanish and
Portuguese words are vectorized by their respec-
tive language model (similarly to the monolingual
ranking method), but the ranking is performed by
the English ranking model.

For all rankings, if the difficult word itself is
found within the final list of ten substitutions, the
list is truncated up to the difficult word, otherwise
we take the top 10 substitutions. In a ranking in-
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cluding the difficult word, all words ranked after
the difficult word are considered more difficult than
the original difficult word itself, and are thus not
good substitutions for simplification.

4 Evaluation

Our evaluation of the 8 runs submitted (one for each
ranking method8) focuses on the MAP/Potential@1
metric (@1 in our tables). All official metrics
adopted by the shared task are in Appendix A.

Lang Method @1 Rank

EN
QEBERTL 1 .4155 21
QEBERTL 2 .5281 8

ES
QERoBERTaL 1 .3109 10
QERoBERTaL 2 .4477 1

PT
QEBERT 1 .4090 5
QEBERT 2 .4759 2

EN

CopyB U .4959 12
CopyL U .5040 11
CopyRoBERTaB .4772 14
CopyRoBERTaL .3994 23

ES
CopyC .4211 2
CopyU .2989 12

PT
CopyB .4331 4
CopyL .4705 3

EN Paraphrase .2171 36

Table 1: MAP/Potential@1 of our substitution genera-
tion techniques (U: uncased, C: cased, B: base, L: large;
1 and 2 refer to the first and second variations of QE)

Table 1 shows the MAP/Potential@1 of each sub-
stitution generation strategy. Paraphrase gives the
worst result. This method did not provide many cor-
rect substitutions (see the potential in Appendix A,
Table 4). Still, the proportion between the scores is
similar to the other prompt-based methods (i.e., the
value of potential is about twice as high as other
metrics). Overall QE achieved better results than
Copy. In addition, only using the words from Fast-
Text (ignoring the sentence) as additional context
(i.e., variant 2) outperforms the use of the entire
sentence. In general, large (L) models tend to out-
perform base (B) models.9 For the three languages,

8The cross-lingual ranking method is not used for English
because we only use this language as a pivot.

9The superior performance of the large models is in line
with our experiments. However, we note that we identify

QE achieved the best results in terms of @1 and
MAP scoring methods. It also reached the best
potential for Spanish and Portuguese.

Table 2 shows the results of each run. Inter-
estingly, Vote tends to provide the best results for
Spanish and Portuguese. It implies that the models
tend to propose the correct words. For English,
the ranking method achieved the best results. It
is likely due to a strong disagreement between the
models for this language.

Lang Method @1 Rank

EN
Vote .2761 28
Ranking .3619 23

ES
Vote .3097 8
Ranking .1983 17
RankingCL .2201 14

PT
Vote .3689 2
Ranking .2058 15
RankingCL .2245 10

Table 2: Official results

5 Error analysis

To better understand our results, we evaluated the
substitution generation and the ranking strategies.
We also measure the gap between our best ranking
model (Vote) and a perfect substitution generation
step (i.e., an oracle).

For the SG step, our methods rely on providing
BERT models with a single mask, but they cannot
produce multiword expressions. To identify the
impact of this limitation, we calculated their pro-
portion in the gold standard: 3.35% for English,
6.27% for Spanish, and 2.97% for Portuguese.

We also studied the extent to which substitu-
tions generated by our methods were grammatically
correct regarding the context. To do so, we com-
pared the morpho-syntactic information of each
candidate against its respective difficult word, af-
ter analyzing the sentences with Stanza (Qi et al.,
2020), assuming the parser output is correct. Out
of all the candidates present in our submitted runs,
there was a mismatch in 10.68% of the cases for
English, 6.09% for Spanish, and 12.28% for Por-
tuguese. We corrected those mismatches by using
DELA dictionaries (Courtois, 1990).10 Whenever

exceptions such as RepeatB U for English.
10https://github.com/UnitexGramLab/
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a mismatch was detected, we converted the Stanza
information to the DELA format. Using the can-
didate’s lemma, we checked whether an inflected
form with the same morpho-syntactic information
existed. If it did, we replaced the candidate with
the correct form, otherwise, we deleted the candi-
date from the list. We can see that there is a slight
improvement (up to .03 on MAP/Potential@1), in-
dicating that while it solves issues, inflection is not
the main shortcoming of the submitted lists.11 In
future work, we would like to apply this correction
phase to each individual model’s output in order to
apply the ranking to morpho-syntactically correct
candidates. In Table 6, the impact of the parser
combined with the dictionary-based correction is
illustrated in the line “POS filtered out”, which in-
dicates the percentage of reduction in the number
of responses.

As for the ranking methods, we see that for Span-
ish and Portuguese, voting produces better results
than ranking, while for English, ranking produces
better results than voting. We hypothesize that
voting prioritizes frequent and contextually suit-
able words that are generated by multiple methods,
while ranking performs better on the tail end of the
distribution. To test it, we used the ranking system
exclusively to break ties created by the vote. This
produces slightly better results than a full ranking
in all cases, indicating that the ranking does indeed
learn about simple words, yet does not have enough
information on its own to rank a full list in the order
given by the gold standard.

We also explored the importance of a substitu-
tion selection method, instead of a simple filter.
To do so, we analyze the best possible results us-
ing all the generated substitutions for the voting
method. So, we drop all generated words that are
not in the gold standard and apply the same voting
method. This substitution selection is exemplified
in the line “Oracle+SS” in Table 6. This showed
a considerable increase in voting performance (a
gain of 0.7212 for English, 0.5544 for Spanish and
0.5268 for Portuguese).12 This improvement points
out the need for substitution selection methods and
improvement of the ranking.

It is interesting to note that the results of the sub-
stitution generation methods outperform our rank-
ing methods, including Vote, which only counts the

unitex-lingua/tree/master/
11Table 5 shows the results obtained for our submitted runs

after applying this method.
12See Table 4 for all metrics.

agreement between the models. However, the pre-
vious analysis showed that the different strategies
produce the correct words. This apparent contra-
diction is mostly due to the fact that the models
can individually predict some of the correct words,
but they also predict several unrelated words at the
same time. Moreover, the proposed strategies share
common key elements (e.g., the BERT-like model),
and the Copy strategy, our worst result, is also
present in the other two strategies. Therefore, the
models’ ensemble, despite agreeing on the correct
words, also agree on the incorrect words. This ef-
fect is illustrated in the line “Oracle SS step filter”,
which indicates the percentage of removed words
when applying the oracle substitution selection.

6 Conclusion

This paper presented the solution proposed by the
CENTAL team in the TSAR shared task on lexi-
cal simplification. We proposed three substitution
generation strategies, where we saw that Query
Expansion is superior. Moreover, generation strate-
gies can produce and sort suggestions with good
performance. The Query Expansion strategy could
achieve 8th, 1st and 2nd positions for English, Span-
ish and Portuguese respectively by itself. We also
identified that the voting method might produce
promising results, but a good substitution selection
step is required. This step would improve morpho-
logically incorrect substitutions and remove seman-
tically/contextually inappropriate substitutions. In
addition, the ranking methods can be useful for
breaking ties in voting.13
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A Appendix

The Appendix presents a complete version of the results, which have been shortened in the main text due
to space constraints. Table 3 shows the results from the Substitution Generation strategies discussed in
Section 3. Table 4 shows the results of the submitted runs, as presented in Section 4, as well as the value
we would obtain with a perfect substitution filtering step before ranking. This upper bound is calculated
by removing all words that are not in the gold standard before the ranking. Table 5 shows the results after
automatically correcting the results presented in Table 4. In these tables, the best results of each language
are in bold (the statistical significance is not calculated). We also indicate the rank of each method (based
on the @1 column) in comparison with the official results. Moreover, the MAP/Potential@1 is titled
“@1”.

In addition, Table 6 presents some examples of outputs of the different strategies and the results of the
voting method presented in Section 3. It also illustrates the impact of the substitution selection method
discussed in Sections 4 and 5.

MAP Potential Accuracy
Lang Method @1 @3 @5 @10 @3 @5 @10 @1 @2 @3 Rank

EN QEBertL 1 .4155 .2752 .2142 .1365 .7050 .7855 .8873 .1903 .3029 .3753 21
QEBertL 2 .5281 .3431 .2554 .1640 .7640 .8659 .9195 .2627 .3914 .4611 8

ES QERobertaL 1 .3109 .2397 .1867 .1208 .5898 .7345 .8632 .1179 .2091 .2868 10
QERobertaL 2 .4477 .2983 .2222 .1410 .7265 .8364 .9383 .2037 .3029 .3860 1

PT QEBert 1 .4090 .2473 .1794 .1041 .6577 .7433 .8101 .2112 .3235 .3716 5
QEBert 2 .4759 .2892 .2055 .1189 .7139 .7727 .8422 .2540 .3609 .4090 2

EN

RepeatB U .4959 .3296 .2496 .1587 .7479 .8525 .9276 .2627 .3833 .4611 12
RepeatL U .5040 .3245 .2466 .1579 .7506 .8552 .9302 .2520 .3619 .4450 11
RepeatRobertB .4772 .3263 .2497 .1604 .7962 .8793 .9490 .2359 .3753 .4745 14
RepeatRobertaL .3994 .2634 .1996 .1216 .7131 .8069 .8981 .1581 .2654 .3565 23

ES RepeatC .4211 .2601 .1952 .1111 .6467 .7255 .7880 .1956 .2744 .3396 2
RepeatU .2989 .1840 .1298 .0744 .4809 .5489 .6250 .1413 .2092 .2364 12

PT RepeatB .4331 .2693 .1985 .1176 .6925 .7513 .8208 .2513 .3342 .3957 4
RepeatL .4705 .2843 .1984 .1158 .7032 .7807 .8395 .2513 .3689 .4144 3

EN Paraphrase .2171 .1407 .1069 .0650 .3833 .4638 .5603 .0938 .1581 .1849 36

Table 3: Results of each candidate generation strategy. @1 indicates the MAP/Potential@1 (U: uncased, C: cased,
B: base, L: large; 1 and 2 refer to the first and second variations of QE)

MAP Potential Accuracy
Lang Method @1 @3 @5 @10 @3 @5 @10 @1 @2 @3 Rank

EN
SS+Vote .9973 .9678 .8643 .5182 .9973 .9973 .9973 .3833 .6219 .7372 1
Vote .2761 .1635 .1183 .0707 .3780 .4021 .4182 .1313 .1930 .2117 29
Ranking .3619 .2573 .2056 .1271 .6541 .7667 .8418 .1152 .2091 .2788 24

ES

SS+Vote .8641 .7083 .5103 .2649 .8641 .8641 .8641 .9097 .4211 .5244 1
Vote .3097 .1826 .1327 .0779 .5000 .5923 .6358 .1467 .2092 .2391 9
Ranking .1983 .1265 .0979 .0695 .4184 .5570 .7282 .0652 .1114 .1657 18
RankingCL .2201 .1416 .1122 .0745 .4646 .6086 .7581 .0407 .0896 .1331 15

PT

SS+Vote .8957 .7103 .5235 .2737 .8957 .8957 .8957 .3101 .4786 .5401 1
Vote .3689 .1983 .1344 .0766 .5240 .5641 .6096 .1737 .2433 .2673 3
Ranking .2058 .1470 .1103 .0726 .4786 .6016 .7673 .0641 .1203 .1898 16
RankingCL .2245 .1478 .1143 .0769 .4705 .6096 .8021 .0614 .1310 .1925 11

Table 4: Results of the candidate ranking strategies. @1 indicates the MAP/Potential@1 Official results (CL:
cross-language). SS+Vote refers to the study of an oracle substitution selection combined with voting.
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MAP Potential Accuracy
Lang Method @1 @3 @5 @10 @3 @5 @10 @1 @2 @3

EN
Vote .2815 .165 .1204 .0708 .3753 .3994 .4128 .1367 .193 .2117
Ranking .3646 .2622 .2084 .1267 .6541 .764 .8257 .1152 .2091 .2815

ES
Vote .3179 .1911 .1389 .0815 .5135 .6086 .6603 .1467 .2119 .25
Ranking .2201 .1394 .1061 .0741 .451 .5788 .7527 .076 .1222 .182
RankingCL .2282 .1493 .118 .078 .4864 .6304 .7826 .0489 .1005 .1467

PT
Vote .3877 .2039 .1401 .0792 .5427 .5775 .6229 .1818 .254 .2754
Ranking .2192 .1552 .1175 .0758 .4946 .6256 .7807 .0721 .1336 .2058
RankingCL .2326 .1555 .1206 .0799 .4973 .6417 .8155 .0721 .147 .2112

Table 5: Results obtained by applying the DELA correction method to the submitted runs (Table 2). @1 indicates
the MAP/Potential@1 (CL: cross-language).

Lebanon is sharply split along sectarian lines,
with 18 religious sects.

The motive for the killings was not known.

QE BERTL 1 religious sunni secular islamist islamic [. . . ] shia motive reason motivation motives purpose [. . . ]
impetus

QE BERTL 2 religious ideological ethnic regional national
[. . . ] tribal

motive reason motivation motives purpose [. . . ]
plan

CopyU religious ethnic secular national islamic [. . . ]
shia

motive reason motivation cause motives [. . . ]
blame

CopyRoBERTa L sectarian religious theological spiritual sunni
[. . . ] dramatic

motive reason rationale motives cause [. . . ] tar-
get

Paraphrase religious ethnic ideological cultural religion
[. . . ] many

the punishment location a information [. . . ] rea-
sons

Non-word filtered - . " (

Vote religious (5) secular (5) ethnic (4) regional (4)
protestant (4)

motive (5) reason (5) motivation (4) motives (4)
purpose (4)

POS filtered out 80% of words removed 98% of words removed
Vote after POS filter religious (5) secular (5) ethnic (4) regional (4)

political (4)
reason (5) motive (4) cause (4) intention (2) in-
spiration (1)

Oracle SS step filter 92% of words removed 90% of words removed
Oracle SS+Vote religious (5) sectarian (1) provincial (1) party (1) criminals (4)

Table 6: Outputs of the substitution generation (SG) methods and the Vote ranking strategy (Section 3) for two
examples, as well as the evaluation and analysis performed in Sections 4 and 5. We give the top 5 candidates and
the last for each SG method.
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Abstract

Lexical Simplification is the process of reduc-
ing the lexical complexity of a text by replacing
difficult words with easier to read (or under-
stand) expressions while preserving the origi-
nal information and meaning. This paper ex-
plains the work done by our team "teamPN" for
English track of TSAR 2022 Shared Task of
Lexical Simplification. We created a modular
pipeline which combines transformers based
models with traditional NLP methods like para-
phrasing and verb sense disambiguation. We
created a multi level and modular pipeline
where the target text is treated according to
its semantics (Part of Speech Tag). Pipeline is
multi level as we utilize multiple source models
to find potential candidates for replacement. It
is modular as we can switch the source models
and their weighting in the final re-ranking.

1 Introduction

As per TSAR-2022 Workshop Shared Task the
problem definition is: "Given a sentence containing
a complex word, systems should return an ordered
list of simpler valid substitutes for the complex
word in its original context. The list of simpler
words (up to a maximum of 10) returned by the
system should be ordered by the confidence the
system has in its prediction (best predictions first)
and it must not contain ties." One example is shown
in Table 1. The English data-set consists of 373
sentences, with 1 complex word per sentence. No
training data was provided and the teams were free
to create supervised or unsupervised model. We
found that majority of the complex words were
verbs or nouns (see Table 2). If not noun or verb,
we consider the POS to be of "Others" type. This
motivated us to build a pipeline where we first dis-
ambiguate the words and then find optimal substi-
tutes. Verbs and nouns are generally more ambigu-
ous in the senses which they are used when com-
pared to other Part of Speech tags. We based our

Sentence Substitutes
That prompted the mili-
tary to deploy its largest
warship, the BRP Grego-
rio del Pilar.

send, post, use, position,
employ, extend, launch

Table 1: Example sentence with complex word (in red)
and substitutes (in teal).

whole idea on this assumption and hence treated
verbs and nouns with an additional module. Other
than verb/noun only module we have 2 modules
which we use for all the POS tags. First common to
all module uses Distil BERT based word prediction,
while the second one uses Paraphrase Database to
do a standard lookup for finding potential substi-
tute candidates. Verb only module is based around
Verbnet where we do verb sense disambiguation
and then as per predicted verb class we collect po-
tential substitute candidates.
Noun only module first grounds the noun entity to a
standard knowledge graph. Once entity is grounded
we parse the surrounding neighbours from the KG
and collect potential substitute candidates.
Once all modules individually run, all potential can-
didates are combined and re-ranked using Trans-
former based model.

Nouns Verbs Others
162 145 66

Table 2: POS tags of complex words in TSAR 2022
Shared Task en evaluation data.

2 Approach

We parse the sentence using spacy (Honnibal and
Montani, 2017) and run different sets of modules
for verb, noun and others respectively. Our mod-
ules are explained in in detail as follows. See Al-
gorithm 1 for pseudo code of the pipeline.

239

tab:algo


2.1 Potential Candidate Collection
2.1.1 Verb Sense Disambiguation
Verbnet is a lexicon which is an extension to
Levin’s original verb classifications (Levin, 1993)
in 1993. Semantically similar verbs are placed in
same class. We use Verbnet 3.1 (Schuler, 2005) to
ground the verb and get possible classes. For class
prediction we do not rely on traditional VSD work
(Abend et al., 2008; Dligach and Palmer, 2008;
Kawahara and Palmer, 2014) as the data which is
used in model training is Wall Street Journal histor-
ical text data (Loper et al., 2007) which is biased to-
wards fintech domain. For instance the verb "rise"
has 6 possible classes in verbnet, but in WSJ data
93 percent of the examples have "rise" related to
"calibration" class, as in "Stocks rise from 10 to 12".
There have been related research where efficiency
of BERT (Devlin et al., 2018) model to capture
English syntactic phenomena is studied (Goldberg,
2019), this motivated us to instead do transformer
based VSD (see Figure 1) . We first mask the target
word and use FitBERT (Havens and Stal, 2019)
to rank the top possible words among all possible
classes member verbs. As per the work1 "FitBERT
is trained to look at a sentence with a blank, and
output an ordered list of every possible word that
could fill in that blank, and a score indicating how
likely that word is". We choose the verbnet class
with maximum representations in top k predicted
words. Once the class is fixed we return the class
members as potential candidates.

2.1.2 Paraphrase DataBase
We directly query PPDB (Ganitkevitch et al., 2013)
and return the retrieved result list as potential can-
didates. We use lexical version and small size dic-
tionary of PPDB as it contains the highest quality
paraphrases. We use PPDB python library2 for
loading and querying the database.

2.1.3 Distil BERT
DistilBERT (Sanh et al., 2019) is a transform-
ers model which is smaller and faster than BERT,
which was pretrained on the same corpus in a self-
supervised manner. It is based on Knowledge distil-
lation (teacher student) (Bucila et al., 2006; Hinton
et al., 2015) method. Rather than training with a
cross-entropy over the hard targets (one-hot encod-
ing of the gold class), knowledge is transfered from

1https://medium.com/@samhavens/
introducing-fitbert-4b047af860fd

2https://github.com/erickrf/ppdb

Figure 1: Verb Sense Disambiguation Module. Left
part explains overall flow. Right part shows how one
example passes through the module.

the teacher (BERT) to the student (DistilBERT)
with a cross-entropy over the soft targets (probabil-
ities of the teacher). We mask the complex word
in the context and then use DistilBERT model to
predict the words (fill-mask pipeline) then return
the result list as the potential candidates. Due to
computational resource restrictions we were not
able to use complex Transformer models.

2.1.4 Knowledge Graph

We use Multi Modal Knowledge Graph VisualSem
(Alberts et al., 2020) to do text entity extraction and
grounding to KG for the target complex word. For
entity extraction, CLIP textual embedding (Rad-
ford et al., 2021) were used as defined in original
paper. Retrieval is implemented with k nearest
neighbour where the dot-product between the sen-
tence vector and all nodes’ gloss matrix for Vi-
sualSem graph is calculated. Top-k unique nodes
associated to the most relevant glosses are retrieved
and if they are same as complex word, the corre-
sponding synonym neighbours are added to the
potential candidate list.
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2.2 Aggregation and re-ranking
See Table 3 for usage of modules as per POS tags.
Once all potential candidate list is created first we
combine all together, then we adjust all the inflec-
tions. For inflection correction we use pattern3

library. We inflect the all candidate words with
same tense and quantity (singular/plural) as com-
plex word. Then we again use FitBERT (Havens
and Stal, 2019) to rank the combined candidates.
For the submissions we used 5 top words.

Algorithm 1 teamPN: Text Simplification
Require: m1 = vsdModule
Require: m2 = PPDBModule
Require: m3 = distilBertModule
Require: m4 = kgModule

for each sentence and complexWord do
pos = getPos(complexWord)
if pos == verb then

candidates = m1 + m2 + m3 + m4
end if
if pos == noun then

candidates = m2 + m3 + m4
end if
if pos == Others then

candidates = m2 + m3
end if
candidates = fixInflection(candidates)
rankCandidates = rerankUsingFitBERT

end for

POS/Module VSD PPDB distil BERT KG
VERB Y Y Y N
NOUN N Y Y Y
Others N Y Y N

Table 3: Use of Candidate collection modules as per
part of Speech of complex word.

3 Results

As per TSAR definition (Štajner et al., 2022) The
evaluation metrics to be applied in the TSAR-2022
Shared Task are the following:
MAP@K (Mean Average Precision @ K):
K=1,3,5,10. The MAP@K metric is used to
check whether the predicted word can be matched
(relevant) or not matched (irrelevant) against the
set of the gold-standard annotations for evaluation.

3https://github.com/clips/pattern

MAP@K for Lexical Simplification evaluates the
following aspects: 1) are the predicted substitutes
relevant?, and 2) are the predicted substitutes at
the top positions?

Potential@K: K=1,3,5,10. The percentage of
instances for which at least one of the substitutions
predicted is present in the set of gold annotations.

Accuracy@K@top1: K=1,2,3. The ratio of
instances where at least one of the K top predicted
candidates matches the most frequently suggested
synonym/s in the gold list of annotated candidates.

We stand 12th, on the official results4 (Saggion
et al., 2022) of TSAR-2022 Shared Task. We out-
perform one of the baseline models TUNER (Šta-
jner et al., 2022). See Table 4 for our scores. We
submitted output from 3 different runs, the only
difference between the 3 versions was the value for
threshold for DistilBERT unmasker module. This
threshold corresponds for the minimum confidence
cut off for the words predicted. See Table 5 for the
threshold values used.

Metric Run 1 Run 2 Run 3
ACC@1 0.4477 0.4664 0.4504
ACC@1@Top1 0.1769 0.1823 0.1769
ACC@2@Top1 0.2815 0.3056 0.2841
ACC@3@Top1 0.3297 0.3378 0.3297
MAP@3 0.2666 0.2743 0.2676
MAP@5 0.1874 0.195 0.1872
MAP@10 0.0937 0.0975 0.0936
Potential@3 0.6621 0.6729 0.6648
Potential@5 0.7453 0.7506 0.7399
Potential@10 0.7453 0.7506 0.7399

Table 4: Our scores for TSAR 2022 Shared Task -EN
track

Run 1 Run 2 Run 3
0.02 0.03 0.01

Table 5: DitilBERT Threshold values for 3 runs.

4https://taln.upf.edu/pages/
tsar2022-st/#results
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4 Conclusion and Future Work

We presented a novel approach where we combine
power of transformer based models with traditional
NLP. Our work was restricted by computing re-
sources. We would further like to improve on using
more modules built out from complex transform-
ers. Also apart from PPDB we did not work with
any other synonym dictionaries, adding more open
source dictionary modules will bring on more vari-
ety. All of our code and documentation is available
on Github5.
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Abstract

In this paper we present our contribution to
the TSAR-2022 Shared Task on Lexical Sim-
plification of the EMNLP 2022 Workshop on
Text Simplification, Accessibility, and Read-
ability. Our approach builds on and extends
the unsupervised lexical simplification system
with pretrained encoders (LSBert) system in-
troduced in Qiang et al. (2020) in the following
ways: For the subtask of simplification can-
didate selection, it utilizes a RoBERTa trans-
former language model and expands the size
of the generated candidate list. For subsequent
substitution ranking, it introduces a new fea-
ture weighting scheme and adopts a candidate
filtering method based on textual entailment
to maximize semantic similarity between the
target word and its simplification. Our best-
performing system improves LSBert by 5.9%
accuracy and achieves second place out of 33
ranked solutions.

1 Introduction

Lexical simplification (LS) is a natural language
processing (NLP) task that involves automatically
reducing the lexical complexity of a given text,
while retaining its original meaning (Shardlow,
2014; Paetzold and Specia, 2017b). Since LS has
a high potential for social benefit and improving
social inclusion for many people, it has attracted
increasing attention in the NLP community (Šta-
jner, 2021). LS systems are commonly framed as a
pipeline of three main steps (Paetzold and Specia,
2017a): (1) Complex Word Identification (CWI),
(2) Substitute Generation (SG), and (3) Substitute
Ranking (SR), with CWI often being treated as an
independent task.

In this paper, we present our contributions to the
English track of the TSAR-2022 Shared Task on LS
(Saggion et al., 2022). Focusing on steps (2) and (3)
in the pipeline above, the task was defined as fol-
lows: Given a sentence containing a complex word,
systems should return an ordered list of “simpler”

valid substitutes for the complex word in its origi-
nal context. The list of simpler words (up to a max-
imum of 10) returned by the system should be or-
dered by the confidence the system has in its predic-
tion (best predictions first). The ordered list must
not contain ties. The task employed a new bench-
mark dataset for lexical simplification in English,
Spanish, and (Brazilian) Portuguese. The gold an-
notations consists of all simpler substitutes sug-
gested by crowdsourced workers and checked for
quality by at least one computational linguist who
is native speaker of the respective language (for de-
tails, see Štajner et al. (2022)). Contributing teams
were provided with a small sample with gold stan-
dard annotations as a trial dataset. For English, this
trial dataset consists of 10 instances of a sentence,
a target complex word and a list of substitution can-
didates. The English test dataset consisted of 373
instances of sentence/complex word pairs. Submis-
sion were evaluated in terms of ten performance
metrics that fall into three groups: (1) MAP@K
(Mean Average Precision@K) for K = 1, 3, 5, 10
candidate words. This metric evaluates a ranked
list of predicted substitutes that is matched (rele-
vant) and not matched (irrelevant) terms against
the set of the gold-standard annotations for eval-
uation. (2) Potential@K: K = 1, 3, 5, 10. Po-
tential scores quantify the percentage of instances
for which at least one of the substitutions pre-
dicted is present in the set of gold annotations and
(3) Accuracy@K@top1: K = 1, 2, 3. Accuracy
scores represent the ratio of instances where at least
one of the K top predicted candidates matches the
most frequently suggested synonym/s in the gold
list of annotated candidates.

2 System Description

Our contributions to the TSAR shared task builds
on and extends the approach to unsupervised lex-
ical simplification with pretrained encoders – LS-
Bert – described in Qiang et al. (2020) and Qiang
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et al. (2021). This approach leverages a pretrained
transformer language models to generate context-
aware simplifications for complex words. The
LSBert simplification algorithm addresses two of
three principal subtasks of LS: simplification can-
didate generation and substitution ranking.

Our approach extends LSBert in the following
ways: (1) It utilizes a RoBERTa transformer lan-
guage model for simplification candidate genera-
tion and expands the size of the generated candi-
date list. (2) It introduces new substitution ranking
methods that involve (i) a re-weighting of the rank-
ing features used by LSBert and (ii) the adoption
of equivalence scores based on textual entailment
to maximize semantic similarity between the tar-
get word and its simplification. In submissions
(runs) 2 and 3, we further explore the utility of
crowdsourcing- and corpus-based measure of word
prevalence for substitution ranking. The simplifi-
cation algorithm underlying the three submissions
described in this paper is shown in Algorithm 1. In
the following we describe the details of simplifica-
tion candidate generation (2.1), substitution rank-
ing (2.2) and obtaining equivalence scores (2.3).

Algorithm 1 Lexical Simplification
Input: sentence S, Complex word w
Output: sorted suggestion list word_list
1: Replace word w of S into <mask> as S′

2: Concatenate S and S′ using <s> and </s>
3: p(·|S, S′ \ {w})← RoBERTa(S, S′)
4: scs← top_probability(p(·|S, S′ \ {w}))
5: all_ranks← ∅
6: for each feature f and its weight cf do
7: scores← ∅
8: for each sc ∈ scs do
9: scores← scores ∪ f(sc)

10: end for
11: rank ← cf × rank_numbers(scores)
12: all_ranks← all_ranks ∪ rank
13: end for
14: tot_rank ← sum(all_ranks)
15: word_list′ ← sort_ascending(tot_rank)
16: word_list← postproc(word_list′)
17: return word_list

2.1 Simplification Candidate Generation
During candidate generation, for each pair of sen-
tence S and complex word w, the LSBert algo-
rithm first generates new sequence S′ in which w
is masked. The two sentences S and S′ are then

concatenated and fed into a pretrained transformer
language model (PTLM) to obtain the probabil-
ity distribution of the vocabulary that can fill the
masked position, p(·|S, S\{w}). The top 10 words
from this distribution are considered as the list of
simplification candidates.1 Our simplification can-
didate generation method differs from the one used
in LSBert in two ways: (1) the choice of PTLM
and (2) the size of the candidate list. Qiang et al.
(2021) performed experiments with three BERT
models: (i) BERT-based, uncased: 12-layer, 768-
hidden, 12-heads, 110 M parameters. (ii) BERT-
large, uncased: 24-layer, 1024-hidden, 16-heads,
340 M parameters, and (iii) BERT-large, uncased,
Whole Word Masking (WWM): 24-layer, 1024-
hidden, 16-heads, 340 M parameters. The results of
their experiments indicated that the WWM model
obtains the highest accuracy and precision. Here
we extended these PTLM-experiments to include
RoBERTa models (Liu et al., 2019) and also ex-
perimented with the combined use of BERT and
RoBERTa to enlarge the list of substitution candi-
dates. The results of our experiments indicated that
optimal results are obtained using the RoBERTa-
md: 12-layer, 768-hidden, 12-heads, 125M param-
eters. To maximize the chance of obtaining at least
ten suitable substitution candidates after rigorous
filtering based on semantic criteria (see below), we
increased the size of the candidate list generated in
this step from 10 to 30 candidates.

2.2 Substitution Ranking

In LSBert, candidate substitutions are ranked based
on four features each of which is designed to cap-
ture one aspect of the suitability of the candidate
word to replace the complex word. These features
are rank orders of candidate substitutions based
on four scores: (1) ‘Pretrained LM (PTLM) pre-
diction’ (BPTLM (sc), in LSBert, PTLM = Bert)
representing the probability derived from PTLM
that the candidate substitution word sc presents
at the masked position given the rest of a sen-
tence. (2) ‘Language model feature’ (LPLM (sc))
representing the average loss of the context of sc,
wm
−m = (w−m, w−m+1, . . . , w0, . . . , wm−1, wm),

where w0 = sc. (3) ‘Semantic similarity’ (S(sc))
expressed as the cosine similarity between the fast-
Text vector of the original word and the that of
the sc. (4) ‘Word frequency’ (F (sc)) as estimated
from the top 12 million texts from Wikipedia and

1Morphological derivations of w are excluded.
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the Children’s Book Test corpus.2 In LSBert, the
rank of a sc,R(sc), is based on an equal weighting
of these four features, as shown in equation (1) and
(2).

Score(sc) =
1

4

∑

f∈{BBert,−LBert,S,F}
rankf (sc)

(1)

R(sc) = rankScore(sc) (2)

where rankf : SCS → Z:

sc 7→ |{w ∈ SCS|f(w) > f(sc)}|+ 1

and SCS is the set of all substitution candidates.
In our three submissions to the shared task, we

considered three different strategies to derive the
above Score(sc): In the first submission (Man-
tis_1), we adapted the ranking method as shown in
equation (3). cf is the feature weight for feature f
and cBRoberta

= cF = 1, cS = 3.

Scorerun1(sc) =
∑

f∈{BRoberta,S,F}
cf · rankf (sc)

(3)

This ranking method introduces a re-weighting
of the features so as to (i) increase the relative im-
portance of the semantic similarity between the
target word w and a substitute candidate sc and (ii)
decrease the relative importance of the probability-
based PTLM prediction. With regard to the former,
the value of S(sc), corresponding to ranked cosine
similarity, was increased by a factor of 3 to penalize
candidates with low similarity to the target word.
With regard to the latter, we decided to drop the lan-
guage model feature LPTLM (sc) as its correlation
with BPTLM (sc) would yield an up-weighting of
the importance assigned to the probability of sc to
appear in the masked position.

In the second and third submissions (Mantis_2
and Mantis_3), we experimented with alternative
features for substitution ranking: To this end, we
first computed lexical complexity scores for the
sentences in the trial data for each substitution can-
didate using 77 indicators (see Table 2 in the ap-
pendix). All scores were obtained using an auto-
mated text analysis system developed by our group
(for its recent applications, see e.g. Wiechmann
et al. (2022) or Kerz et al. (2022)). Tokenization,
sentence splitting, part-of-speech tagging, lemmati-
zation and syntactic PCFG parsing were performed
using Stanford CoreNLP (Manning et al., 2014).

2https://github.com/google-research/
bert

We then used each feature to obtain a rank order of
substitution candidates and correlated reach rank-
ing with the rank order of substitution candidates
provided in the trial data. The top-2 lexical features
yielding the largest correlations with the gold stan-
dard ranking were selected for substitution ranking
for Mantis_2 and Mantis_3, respectively. Both
of these lexical features concern word prevalence
(WP), i.e. they refer to the number of people who
know the word: WPcrowd estimates the proportion
of the population that knows a given word based
on a crowdsourcing study involving over 220,000
people (Brysbaert et al., 2019). WPcorp.SDBP is an
corpus-derived estimate of the number of books
that a word appears in (Johns et al., 2020). The
corresponding rankings were obtained as shown in
equations (4) and (5):

Scorerun2(sc) =
∑

f∈{WPcrowd,Eq}
rankf (sc) (4)

Scorerun2(sc) =
∑

f∈{WPcorp.SDBP ,Eq}
rankf (sc)

(5)
Apart from these WP-features, the substitution

ranking in runs 2 and 3 was determined by a seman-
tic feature, referred to as the ‘equivalence score’
Eq(sc) (see section 2.3). This score was evoked
based on the consideration that semantic similar-
ity measured by cosine similarity of embeddings
is not expressive enough (Kim et al., 2016): Any
two words that are frequently used in similar con-
texts will have a low cosine similarity between
the embeddings. Thus cosine similarity often fails
to recognize antonyms, such as "fast" and "slow".
The next section will provide more details on how
equivalence score were obtained.

2.3 Obtaining Equivalence Scores
Lexical simplification needs to preserve the original
meaning of the target word. As cosine similarity
between embedding vectors can be too permissive,
we introduced a stricter criterion based on textual
entailment. To achieve this we utilized a language
model explicitly trained to the natural language
inference (NLI) task of evaluating logical connec-
tions between sentences. The central idea is to com-
pute for each substitute word sc a score that quanti-
fies the textual entailment of the original sentence
S and its variant S‘ that contains sc. Textual entail-
ment is a directional relation between text fragment
that holds whenever the truth of one text fragment
follows from another text. The entailing and en-
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Figure 1: Performance ranking based on Accuracy, Mean Average Precision, and Potential scores (k=10). Vertical
lines represent the median performance across the 33 submission for each metric.

tailed texts are termed premise (p) and hypothesis
(h), respectively. The relation between p and h can
be one of entailment, contradictory or neutral (nei-
ther entailment nor contradictory). To the extent
that p and h mutually entail each other, they are
considered equivalent. In this paper, the entailment
scores were obtained from the ‘roberta-large-mnli’
model from the Hugginface transformer library.3

Roberta-large-mnli is a RoBERTa large model fine-
tuned on the Multi-Genre Natural Language Infer-
ence corpus using a masked language modeling
objective (Williams et al., 2018). The entailment
score is defined as the probability that p entails h:

En(p, h) = Probθ(entailment | p, h) (6)

where θ is the parameters of trained roberta-
large-mnli. We quantify the degree of equivalence
of two sentences (equivalence score) as the product
of the entailment scores in both directions. For a
given sentence S and the corresponding simplified
sentence S′, the equivalence score is defined as:

Eq(S, S′) = En(S, S′) · En(S′, S) (7)

Apart from their use in the substitution ranking
in Mantis_2 and Mantis_3, equivalent scores were
also used in a postprocessing step in Mantis_1:
Here the list of substitution candidates was pruned
after ranking by removing candidates whose equiv-
alence scores were smaller than the mean equiva-
lence score of all candidates.

3https://huggingface.co/
roberta-large-mnli

3 End-to-end System Performance

The official results across seven performance met-
rics4 are presented in Table 1 in the appendix (for
details, see Saggion et al. (2022)). As the perfor-
mance metrics are strongly intercorrelated (mean
correlation across all metrics = 0.920, sd = 0.071,
see also Figure 2 in the appendix), we focus our dis-
cussion here on the results of one metric from each
of the three groups: (1) Accuracy.1, (2) MAP.10
and (3) Potential.10 (see Figure 1). Our best-
performing system was ‘Mantis_1’. This system
reached 2nd rank on both MAP.10 and Potential.10
and 3rd rank on accuracy. Mantis_1 displayed
an improvement over the median performance of
+25.56% on accuracy, +24.13% on potential.10
and +9.93% MAP.10. It outperformed the LSBert
baseline by +5.9% accuracy, +4.38 MAP.10 and
3.49% Potential.10. The two systems whose sub-
stitution ranking was based solely on word preva-
lence and an equivalence score lagged behind the
LSBert baseline on two of the performance metrics
shown here, suggesting that the improvements of
our system over LSBert was mainly due to better
substitution ranking, rather than candidate selec-
tion. However, Mantis_2 outperformed LSBert on
the Potential.10 metric, suggesting that the inclu-
sion of word prevalence can be fruitfully employed
to improve LS systems. In future work, we intend
to explore the role these and additional indicators
of lexical sophistication for substitution ranking.

4Four of the ten performance metrics, Acc@1, MAP@1,
Potential@1, and Precision@1, give the same results as per
their definitions.
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A Appendix

Table 1: Official results across 7 performance metrics (Acc@1, MAP@1, Potential@1, and Precision@1 give the
same results as per their definitions)

Rank Team Run ACC@1 ACC@1.1 ACC@3.1 MAP@3 MAP@10 Pot@3 Pot@10
1 UniHD 2 0.8096 0.4289 0.6863 0.5834 0.2812 0.9624 0.9946
2 UniHD 1 0.7721 0.4262 0.571 0.509 0.2092 0.89 0.9436
3 MANTIS 1 0.6568 0.319 0.5388 0.473 0.2193 0.8766 0.9785
4 UoM&MMU 1 0.6353 0.2895 0.5308 0.4244 0.1951 0.8739 0.949
5 LSBert-baseline 1 0.5978 0.3029 0.5308 0.4079 0.1755 0.823 0.9463
6 RCML 2 0.5442 0.2359 0.4664 0.3823 0.1887 0.831 0.9436
7 RCML 1 0.5415 0.2466 0.4691 0.3716 0.1799 0.8016 0.9115
8 GMU-WLV 1 0.5174 0.2493 0.4477 0.3522 0.16 0.7533 0.8981
9 CLLabPICT 1 0.5067 0.2064 0.4021 0.3278 0.1369 0.7265 0.8042

10 UoM&MMU 3 0.4959 0.2439 0.4235 0.3273 0.1461 0.756 0.9088
11 teamPN 2 0.4664 0.1823 0.3378 0.2743 0.0975 0.6729 0.7506
12 MANTIS 3 0.4611 0.2117 0.4235 0.3227 0.1673 0.7747 0.9436
13 teamPN 3 0.4504 0.1769 0.3297 0.2676 0.0936 0.6648 0.7399
14 teamPN 1 0.4477 0.1769 0.3297 0.2666 0.0937 0.6621 0.7453
15 PolyU-CBS 3 0.4316 0.2064 0.3297 0.2683 0.1178 0.6139 0.7747
16 MANTIS 2 0.4209 0.1662 0.3565 0.2745 0.1507 0.7131 0.9517
17 PresiUniv 1 0.4021 0.1581 0.3002 0.2603 0.1136 0.6568 0.7962
18 PolyU-CBS 1 0.3914 0.1823 0.3002 0.2576 0.1113 0.5924 0.7533
19 CILS 3 0.386 0.1957 0.3083 0.2603 0.1267 0.5656 0.638
20 CILS 2 0.3806 0.1903 0.3083 0.2597 0.1262 0.563 0.6434
21 PresiUniv 3 0.378 0.1474 0.2573 0.2277 0.0897 0.5656 0.6327
22 CILS 1 0.3753 0.201 0.3109 0.2555 0.1235 0.5361 0.63
23 Cental 2 0.3619 0.1152 0.2788 0.2573 0.1271 0.6541 0.8418
24 TUNER-baseline 1 0.3404 0.142 0.1823 0.1706 0.0546 0.4343 0.445
25 PolyU-CBS 2 0.319 0.1447 0.2573 0.1973 0.0901 0.512 0.7104
26 GMU-WLV 2 0.2815 0.0804 0.2493 0.1899 0.12 0.563 0.8981
27 Cental 1 0.2761 0.1313 0.2117 0.1635 0.0707 0.378 0.4182
28 UoM&MMU 2 0.2654 0.1367 0.268 0.182 0.0794 0.4906 0.6756
29 PresiUniv 2 0.26 0.1018 0.1554 0.135 0.0439 0.3136 0.3163
30 twinfalls 1 0.1957 0.0509 0.1233 0.1175 0.0535 0.3485 0.5067
31 twinfalls 2 0.1849 0.0643 0.1367 0.1182 0.0514 0.3565 0.4664
32 NUHLT 1 0.1447 0.067 0.1179 0.0902 0.0301 0.26 0.2895
33 twinfalls 3 0.0455 0.0107 0.0455 0.037 0.0182 0.1474 0.3619
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Table 2: An example instance from the trial dataset with gold annotation candidate list provided by the organizers

Sentence A Spanish government source, however,
later said that banks able to cover by
themselves losses on their toxic property
assets will not be forced to remove them
from their books while it will be com-
pulsory for those receiving public help.

Complex word compulsory

Gold annota-
tions

mandatory, mandatory, mandatory,
mandatory, mandatory, mandatory,
mandatory, mandatory, mandatory,
mandatory, mandatory, required, re-
quired, required, required, required,
required, required, essential, forced,
important, manadatory, necessary,
obligatory, unavoidable

Table 3: Overview of the 77 features considered for Substitution Ranking

Feature group N Examples/description
Lexical Sophistication 14 Mean length/word,
Density and Diversity N Words on NGSL,

Corrected TTR
Register-based 25 N-gram freq.
N-gram Frequency (N = 1-5)

five subcorpora
from COCA
(Davies, 2008)

Psycholinguistic 38 Age of Acquisition,
Word Prevalence
(corpus-based),
Word Prevalence
(crowdsourced)
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Figure 2: Heatplot of intercorrelations (Pearson r) of evaluation metrics (ns=50). Mean r = 0.920, sd = 0.071. Ranks
of the three runs submitted were constant across metrics (run1 = 3, run2 = 12, run3 = 16).
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Abstract

Previous state-of-the-art models for lexical
simplification consist of complex pipelines
with several components, each of which re-
quires deep technical knowledge and fine-
tuned interaction to achieve its full potential.
As an alternative, we describe a frustratingly
simple pipeline based on prompted GPT-3 re-
sponses, beating competing approaches by a
wide margin in settings with few training in-
stances. Our best-performing submission to
the English language track of the TSAR-2022
shared task consists of an “ensemble” of six
different prompt templates with varying con-
text levels. As a late-breaking result, we fur-
ther detail a language transfer technique that
allows simplification in languages other than
English. Applied to the Spanish and Por-
tuguese subset, we achieve state-of-the-art re-
sults with only minor modification to the orig-
inal prompts. Aside from detailing the imple-
mentation and setup, we spend the remainder
of this work discussing the particularities of
prompting and implications for future work.
Code for the experiments is available online.1

1 Introduction

With recent advancements in Machine Learning
(ML) research coming largely from increasing
compute budgets, Richard Sutton coined the idea
of a “bitter lesson”, wherein more computational
power will ultimately supersede a hand-crafted
solution (Sutton, 2019). More recently, increas-
ing compute power on a general purpose archi-
tecture has also shown to be wildly successful in
the Natural Language Processing (NLP) commu-
nity (Vaswani et al., 2017; Wei et al., 2022). In
particular, emergent capabilities in very large lan-
guage models (vLLMs) have made it possible to
approach a variety of tasks wherein only few (if
any) samples are labeled, and no further fine-tuning

1https://github.com/dennlinger/
TSAR-2022-Shared-Task

on task-specific data is required at all.
In stark contrast to the complex pipelines in modern
lexical simplification systems (Ferrés et al., 2017;
Qiang et al., 2020; Štajner et al., 2022), we present
a simplistic approach utilizing few-shot prompts
based on a vLLM with basic instructions on sim-
plification, which returns frustratingly good results
considering the overall complexity of the approach,
which utilizes a grand total of four hand-labeled in-
stances. We present our results on the TSAR-2022
shared task (Saggion et al., 2022), which evaluates
lexical simplification systems in three available lan-
guages (English, Spanish and Portuguese), with
ten labeled instances and around 350 unlabeled
test samples provided per language. For the En-
glish subset, official results rank our model as the
best-performing submission, indicating that this ap-
proach may be another instance of the bitter lesson.
While the initial findings are indeed promising, we
want to carefully evaluate erroneous instances on
the test set to analyze potential pitfalls, and further
detail some of our experiences in hand-crafting
prompts. We also acknowledge the technical chal-
lenges in reproducing (and deploying) systems
based on vLLMs, especially given that suitable
models exceed traditional computing budgets.

2 Prompt-based Lexical Simplification

With the public release of the GPT-3 language
model (Brown et al., 2020), OpenAI has started the
run on a series of now-available vLLMs for general-
purpose text generation (Thoppilan et al., 2022;
BigScience, 2022; Zhang et al., 2022). Across
these models, a general trend in scaling beyond a
particular parameter size can be observed, while
keeping the underlying architectural design close to
existing smaller models. Through exhibiting zero-
shot transfer capabilities, such models have also
become more attractive for lower-resourced tasks;
oftentimes, models are able to answer questions
formulated in natural language with somewhat sen-
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sible results. Particular template patterns (so-called
prompts) are frequently used to guide models to-
wards predicting a particularly desirable output or
answer format, without requiring a dedicated train-
ing on labeled examples.
Utilizing this paradigm shift, we experimented
with different prompts issued to OpenAI’s largest
available model, text-davinici-002, which to-
tals 176B parameters. Our first approach uses a
singular prompt template in a zero-shot setting to
obtain predictions for the shared task; we further
improve upon these results by combining predic-
tions from different prompt templates later on.

2.1 Run 1: Zero-shot Prediction
Upon inspecting the provided trial data, we noted
that the simplification operations required a vastly
different contextualization within the provided sam-
ple sentence. Whereas some instances can be
solved with pure synonym look-ups (e.g., “com-
pulsory” and “mandatory”), others require a more
nuanced look at the context sentence (e.g., replac-
ing “disguised” with “dressed”). To avoid bias-
ing system predictions by providing samples as
a prompt template, we provide a baseline that is
entirely based on a single zero-shot query; it pro-
vides the context sentence and identifies the com-
plex word, asking the model for ten simplified syn-
onyms of the complex word in the given context.
Given that no additional knowledge is provided
to the model, the zero-shot contextual query also
provides a reasonable lower-bound for the task set-
ting. A secondary advantage of minimal provided
context in zero-shot settings is the reduced com-
putational cost, which will be discussed in more
detail in Section 3.4.

2.2 Filtering Predictions
Model suggestions are returned as free-form text
predictions, generally in the form of comma-
separated lists or enumerations. This requires the
additional step of parsing the output prediction into
the more structured ranked predictions required for
the shared task, which varies between the mod-
els used. In our experience, no clear pattern can
be expected from the model and seems to be non-
deterministic even with set template structures. We
additionally employ a list of simple filters to en-
sure the quality of predictions, as detailed in Ap-
pendix C. The resulting model suggestions are con-
sidered in ranked order, and no prediction confi-
dence scores or similar information was used to

re-rank single-prompt predictions.

2.3 Run 2: Ensemble Predictions
Upon inspecting the results from the first run,
we noticed that in some instances, predictions
were almost fully discarded due to filtering. Si-
multaneously, we had already previously encoun-
tered strong variability in system generations when
changing the prompt template or altering the con-
text setting. To this extent, an ensemble of pre-
dictions from multiple different prompt templates
was utilized to broaden the spectrum of possible
generations, as well as ensuring that a minimum
number of suggestions survives the filtering step.

2.3.1 Prompt Variations
The exact prompts are detailed in Table 3. Utilized
variations can be grouped into with context (the
context sentence is provided), or without context
(synonyms are generated from the complex word
alone). Simultaneously, different prompts also con-
tain between zero and two examples taken from the
trial data, including their expected outputs. This
can be interpreted as a few-shot setting in which
the model is demonstrated on what correct answers
may look like for the particular task. We further
vary the generation temperature, where a higher
value increases the likelihood of a more creative
(but not always correct) prediction, enabling a more
diverse candidate set.

2.3.2 Combining Predictions
For each of the six prompts p, we ask the model
to suggest ten alternative simplified expressions
Sp and filter them with the exact same rules as the
single prompt system in Run 1. In order to combine
and re-rank suggestions s, we assign a combination
score V to each distinct prediction s ∈ ⋃

p Sp:

V (s) =
∑

p

max(5.5− 0.5 · rankSp(s), 0), (1)

where rankSp(s) is the ranked position of sugges-
tion s in the resulting ranking from prompt p. If
s /∈ Sp, we set rankSp(s) = ∞. The scaling pa-
rameters are chosen arbitrarily and can be adjusted
to account for the expected number of suggestions
per prompt. We estimate that the biggest perfor-
mance improvement is coming simply from pro-
viding enough predictions post filtering. As a sec-
ondary gain, we see more consistent behavior in
the top-most prediction slots, boosting especially
the @1 performance of the ensemble.
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Acc@k@Top1 MAP@k Potential@k
Run ACC@1 k = 1 k = 2 k = 3 k = 3 k = 5 k = 10 k = 3 k = 5 k = 10

Ensemble (Ours) 0.8096 0.4289 0.6112 0.6863 0.5834 0.4491 0.2812 0.9624 0.9812 0.9946
Single (Ours) 0.7721 0.4262 0.5335 0.5710 0.5090 0.3653 0.2092 0.8900 0.9302 0.9436
MANTIS-1 0.6568 0.319 0.4504 0.5388 0.473 0.3599 0.2193 0.8766 0.9463 0.9785
UoM&MMU-1 0.6353 0.2895 0.4530 0.5308 0.4244 0.3173 0.1951 0.8739 0.9115 0.9490
LSBert 0.5978 0.3029 0.4450 0.5308 0.4079 0.2957 0.1755 0.8230 0.8766 0.9463
TUNER 0.3404 0.1420 0.1689 0.1823 0.1706 0.1087 0.0546 0.4343 0.4450 0.4450

Table 1: Results on the English language test set of the TSAR-2022 shared task, ranked by ACC@1 scores.
Listed are our own results (Ensemble and Single), the two best-performing competing systems (MANTIS and
UoM&MMU), as well as provided baselines (LSBert (Qiang et al., 2020) and TUNER (Ferrés et al., 2017)).

3 Results and Limitations

3.1 Results for English

For the official runs, we initially only submitted
predictions for the English subset; an excerpt of the
results can be seen in Table 1. While the zero-shot
single prompt run has consistently better results on
most metrics, it does not outperform all systems
for large candidate sets; e.g., Potential@10 is lower
than that of competing approaches, including the
LSBert baseline. We attribute this to the previously
mentioned issue of filtering predictions, and can
see a consequent improvement especially for larger
k by using the proposed ensemble method. Here,
the Potential@10 scores indicate that at least one
viable prediction is present in all but three samples.

3.2 Results for Spanish and Portuguese

Given the surprisingly good results on the English
subset, we decided to extend our experiments to
the Spanish and Portuguese tracks as well. Trans-
ferring the prompts to Spanish or Portuguese is sur-
prisingly simple. We alter the prompt to: “Given
the above context, list ten alternative Spanish
words for ‘complex_word’ that are easier to un-
derstand.” (bold highlight indicates change).
Without this adaption, returned suggestions gen-
erally tend to be in English, which could be an
attractive opportunity to mine cross-lingual sim-
plifications in future work. By adding the output
language explicitly, we ensure that the suggestions
match the expected results. For Portuguese, the
prompt can be adapted accordingly.
We find that our system also outperforms all com-
peting submitted approaches in the shared task;
result comparisons can be found in Table 4 and 5
in the Appendix, respectively. Notably, predictions
for Portuguese perform slightly better, which goes
against intuition, given that Spanish is usually a

highly represented language in multilingual cor-
pora. We suspect that a more literal wording of
synonyms in Portuguese, compared to multi-word
expressions in Spanish, could be the cause.

3.3 Error Analysis

As is common for sequence-to-sequence tasks,
crafting an approach centered around a LM requires
consideration of the particular challenges arising.
We detail some of the errors we have encountered
in our predictions that are unlikely to appear in
more stringently designed pipelines. Instances for
particular failure cases can be found in Table 2.

Unstable Prompts One of the primary chal-
lenges, particularly for zero-shot prompt settings, is
the unreasonable variance observed in results based
on even just slightly altered prompt templates. For
example, when removing the explicit mention of
Context:, Question: and Answer: in the prompt
template, the model is frequently predicting fewer
than the ten requested answers. Practical limita-
tions in our computational budget also mean that
we have no guarantee that these prompts are yield-
ing the best possible results; given the variability,
multiple runs should be compared for a thorough
pattern of a “best” prompt.

Lack of Context Instances with longer (or sub-
tly enforced) context cues show issues where these
hints are not properly recognized. In Table 2, we
can see the model changing the term “collision”
to a particular mode of transportation, such as
“car crash”, while an explicit context clue is given
through the word “flight” in the original sentence.

Enforcing Language While the transfer to Span-
ish and Portuguese is largely successful, the
model’s capabilities seem to be still limited in
maintaining the language throughout all samples.
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Error Type Context (complex word in bold) Model Predictions

Lack of Context #7-8 Despite the fog, other flights are reported
to have landed safely leading up to the collision.

car crash, train wreck, ...

Hallucinations The larva grows to about 120-130 mm,
and pupates in an underground chamber.

Transforms into a pupa, ...

Language [...] propiciado la decadencia de la Revolución francesa. decline, deterioration, ...

Table 2: Instances of observed failure classes in our system’s predictions.

For instances with particularly rare complex terms,
the predictions are sometimes still in English, de-
spite the specific prompt request to return Span-
ish/Portuguese results.

Hallucinations The necessity for post-filtering
of suggestions stems largely from the spontaneous
occurrence of hallucinations in responses. While
hallucinations in vLLMs are less about invalid vo-
cabulary terms, we observe instances where unnec-
essary multi-word suggestions were chosen over
a simple synonymous single-word expression, or
random inflections (such as the infinitive form with
an additional “to”) were generated.
Similar to the issues with language enforcing, this
occurs more frequently with particularly complex
words; in this sense, the system conversely fails
at instances that are most in need of simplifica-
tion. However, we note that some of the generated
multi-word expressions are actually more helpful
for understanding, even though the generations are
not precisely matching expected outputs.

3.4 Computational Limitations

Running a vLLM in practice, even for inference-
only settings, is non-trivial and requires compute
resources that are far beyond many public institu-
tion’s hardware budget. For the largest models with
publicly available checkpoints2, a total of around
325GB GPU memory is required, assuming ef-
ficient storage in bfloat16 or similar precision
levels. The common alternative is to obtain pre-
dictions through a (generally paid) API, as was
the case in this work. Especially for the ensemble
model, which issues six individual requests to the
API per sample, this can further bloat the net cost
of a single prediction. To give context of the total
cost, we incurred a total charge of slightly over $7
for computing predictions across the entire test set
of 373 English samples, which comes out to about

2At the time of writing, this would be the 176B Bloom
model (BigScience, 2022), which has a similar parameter
count to OpenAI’s davinci-002 model.

1000 tokens per sample, or around $0.02 at the cur-
rent OpenAI pricing scheme.3 For the Spanish sub-
set and language-dependent prompt development,
the total cost came to about $10, primarily due
to longer sample contexts. Costs for Portuguese
processing were around $6.50. While the singu-
lar prompt approach is cheaper at around 1/6 of
the total cost, even then a continuously deployed
model has to be supplied with a large enough bud-
get. Aside from monetary concerns, environmental
impacts are also to be considered for larger-scale
deployments of this kind (Lacoste et al., 2019).

4 Conclusion and Future Work

Utilizing prompted responses from vLLMs seems
to be a promising direction for lexical simplifica-
tion; particularly in the constrained setting with
pre-identified complex words the model performs
exceptionally well, even when presented with a
severely restricted budget of labeled training data.
While the approach also offers promising directions
for multi- and cross-lingual approaches, obtaining
state-of-the-art results in other languages, we are
presented with a prohibitive amount of computa-
tion per sample instance. It would therefore be an
interesting addition to deal with resource-constraint
systems, putting the prediction power into a slightly
different perspective. Finally, we are reminded of
the unstable nature of neural LMs; given similar
inputs, quality can vary greatly between samples,
including a complete breakdown in performance.
For future work, we are considering approaches
to generate static resources from vLLMs (Schick
and Schütze, 2021), which may require only a one-
time commitment to spending on datasets, which
can then used as training data for cheaper systems.
Exploration of prompt tuning approaches for auto-
mated search of suitable prompt templates would
also greatly accelerate the development process of
domain-specific applications (Lester et al., 2021).

3https://openai.com/api/pricing/, last accessed:
2022-10-01
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A Prompt Templates

Table 3 provides the exact prompt templates used
in the submission. Notably, the zero-shot with con-
text prompt is included twice, but with different
generation temperatures; with this we increase the
likelihood of strong candidates being retained. For
few-shot prompts, we have taken samples from the
previously published trial set for the respective lan-
guage. In instances where less than 10 distinctly
different suggestions were provided by annotators,
we manually extended the list of examples to match
exactly ten results based on our own judgment. For
instances with more provided suggestions, we limit
ourselves to the ten most frequently occurring ones.
The reason for this is that GPT-3 otherwise tended
to return an inconsistent number of suggestions in
our preliminary testing. The exact prompts for the
Spanish and Portuguese runs can be found in our
repository.

B Hyperparameters

We use the OpenAI Python package4 version
0.23.0 for our experiments. For generation, the
function openai.Completion.create() is used,
where most hyperparameters remain fixed across
all prompts. We explicitly list those hyperparame-
ters below that differ from their respective default
values.

1. model="text-davinci-002", which is the
latest and biggest available model for text
completion.

2. max_tokens=256, to ensure sufficient room
for generated outputs. In practice, most com-
pletions are vastly below the limit.

3. frequency_penalty=0.5, as well as
presence_penalty=0.3, which jointly
penalize present tokens and token repetitions.
The values are well below the maximum
(values can range from -2 to 2), since
individual subword tokens might indeed be
present several times across multiple (valid)
predictions. A more detailed computation can
be found in the documentation of OpenAI.5

Outside of the repetition penalties, the most influen-
tial parameter choice for generation is the sampling

4https://github.com/openai/openai-python
5https://beta.openai.com/docs/api-reference/

parameter-details

temperature. We generally take a more measured
approach than the default (temperature=1.0), but
vary temperature across our ensemble prompts to
ensure a more diverse result set overall. We list
the used temperatures in Table 3. Zero-shot with
context is used twice in the ensemble, once with
a more conservative temperature, and once with a
more “creative” (higher) temperature. For the sin-
gular prompt run, we use the conservative zero-shot
with context variant.

C Post-Filtering Operations

Given the uncertain nature of predictions by a lan-
guage model, we employ a series of post-filtering
steps to ensure high quality outputs. This includes
stripping newlines/spaces/punctuation (\n :;.?!),
lower-casing, removing infinitive forms (in some
instances, we observed predictions in the form of
“to deploy” instead of simply “deploy”), as well as
removing identity predictions (e.g., the prediction
being the same as the original complex word) and
deduplicating suggestions. Additionally, we no-
ticed that for some instances, generated synonyms
resemble more of a “description” rather than truly
synonymous expressions (example: “people that
are crazy” as a suggestion for “maniacs”). Given
the nature of provided data, we removed extreme
multi-word expressions (for English, any sugges-
tion with more than two words, for Spanish and
Portuguese more than three words in a single ex-
pression).
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Prompt Type Template
Zero-shot /w context Context: {context_sentence}\n
temperature: Question: Given the above context, list ten alternatives for
0.3 (conservative), “{complex_word}” that are easier to understand.\n
0.8 (creative) Answer:

Single-shot /w context Context: A local witness said a separate group of attackers
temperature: 0.5 disguisedin burqas — the head-to-toe robes worn by conservative

Afghan women — then tried to storm the compound.\n
Question: Given the above context, list ten alternative words
for “disguised” that are easier to understand.\n

Answer:\n1. concealed\n2. dressed\n3. hidden\n4. camouflaged\n
5. changed\n6. covered\n7. masked\n8. unrecognizable\n
9. converted\n10. impersonated\n\n

Context: {context_sentence}\n
Question: Given the above context, list ten alternatives for
“{complex_word}” that are easier to understand.\n

Answer:

Two-shot /w context Context: That prompted the military to deploy its largest
temperature: 0.5 warship, the BRP Gregorio del Pilar, which was recently

acquired from the United States.\n
Question: Given the above context, list ten alternative words
for “deploy” that are easier to understand.\n

Answer:\n1. send\n2. post\n3. use\n4. position\n5. send out\n
6. employ\n7. extend\n8. launch\n9. let loose\n10. organize\n\n

Context: The daily death toll in Syria has declined as the
number of observers has risen, but few experts expect the
U.N. plan to succeed in its entirety.\n

Question: Given the above context, list ten alternative words
for “observers” that are easier to understand.\n

Answer:\n1. watchers\n2. spectators\n3. audience\n4. viewers\n
5. witnesses\n6. patrons\n7. followers\n8. detectives\n
9. reporters\n10. onlookers\n\n

Context: {context_sentence}\n
Question: Given the above context, list ten alternatives for
“{complex_word}” that are easier to understand.\n

Answer:

Zero-shot w/o context Give me ten simplified synonyms for the following word:
temperature: 0.7 {complex_word}

Single-shot w/o context Question: Find ten easier words for “compulsory”.\n
temperature: 0.6 Answer:\n1. mandatory\n2. required\n3. essential\n4. forced\n

5. important\n6. necessary\n7. obligatory\n8. unavoidable\n
9. binding\n10. prescribed\n\n

Question: Find ten easier words for “{complex_word}”.\n
Answer:

Table 3: The English prompt templates used for querying the OpenAI model, including associated generation
temperatures. Only written out “\n” symbols indicate newlines, visible line breaks are inserted for better legibility.
Only top-most prompt template with conservative temperature was used in the single prompt (Run 1), as well as in
the ensemble run (Run 2). All other prompts were only included in the ensemble submission.
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Acc@k@Top1 MAP@k Potential@k
Run ACC@1 k = 1 k = 2 k = 3 k = 3 k = 5 k = 10 k = 3 k = 5 k = 10

Ensemble (Ours) 0.6521 0.3505 0.5108 0.5788 0.4281 0.3239 0.1967 0.8206 0.8885 0.9402
Single (Ours) 0.5706 0.3070 0.3967 0.4510 0.3526 0.2449 0.1376 0.6902 0.7146 0.7445
PresiUniv-1 0.3695 0.2038 0.2771 0.3288 0.2145 0.1499 0.0832 0.5842 0.6467 0.7255
UoM&MMU-3 0.3668 0.1603 0.2282 0.269 0.2128 0.1506 0.0899 0.5326 0.6005 0.6929
LSBert 0.2880 0.0951 0.1440 0.1820 0.1868 0.1346 0.0795 0.4945 0.6114 0.7472
TUNER 0.1195 0.0625 0.0788 0.0842 0.0575 0.0356 0.0184 0.144 0.1467 0.1494

Table 4: Results on the Spanish language test set of the TSAR-2022 shared task, ranked by ACC@1 scores.
Listed are our own results (Ensemble and Single), the two best-performing competing systems (PresiUniv and
UoM&MMU), as well as provided baselines (LSBert (Qiang et al., 2020) and TUNER (Ferrés et al., 2017)).

Acc@k@Top1 MAP@k Potential@k
Run ACC@1 k = 1 k = 2 k = 3 k = 3 k = 5 k = 10 k = 3 k = 5 k = 10

Ensemble (Ours) 0.7700 0.4358 0.5347 0.6229 0.5014 0.3620 0.2167 0.9171 0.9491 0.9786
Single (Ours) 0.6363 0.3716 0.4625 0.5160 0.4105 0.2889 0.1615 0.7860 0.8181 0.8422
GMU-WLV-1 0.4812 0.2540 0.3716 0.3957 0.2816 0.1966 0.1153 0.6871 0.7566 0.8395
Cental-1 0.3689 0.1737 0.2433 0.2673 0.1983 0.1344 0.0766 0.524 0.5641 0.6096
LSBert 0.3262 0.1577 0.2326 0.286 0.1904 0.1313 0.0775 0.4946 0.5802 0.6737
TUNER 0.2219 0.1336 0.1604 0.1604 0.1005 0.0623 0.0311 0.2673 0.2673 0.2673

Table 5: Results on the Portuguese language test set of the TSAR-2022 shared task, ranked by ACC@1 scores.
Listed are our own results (Ensemble and Single), the two best-performing competing systems (GMU-WLV and
Cental), as well as provided baselines (LSBert (Qiang et al., 2020) and TUNER (Ferrés et al., 2017)).
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Abstract

This paper describes the lexical simplification
system RCML submitted to the English lan-
guage track of the TSAR-2022 Shared Task.
The system leverages a pre-trained language
model to generate contextually plausible substi-
tution candidates which are then ranked accord-
ing to their simplicity as well as their gram-
matical and semantic similarity to the target
complex word. Our submissions secure 6th
and 7th places out of 33, improving over the
SOTA baseline for 27 out of the 51 metrics.

1 Introduction

Lexical Simplification (LS) is a means to facili-
tate reading comprehension for different target au-
diences such as second language learners, native
speakers with low literacy levels or various kinds
of neurodivergent conditions and reading impair-
ments.

1.1 Task description

The task of lexical simplification (LS) consists in
reducing the lexical complexity of a sentence by
replacing one (or more) difficult words or multi-
word expressions (MWE) with easier to read and
understand vocabulary all the while preserving the
original sense.

Normally, LS includes the task of complex word
identification (CWI) (Paetzold and Specia, 2016)
but in the context of the TSAR-2022 Shared Task
(Saggion et al., 2022), the word to be simplified is
provided. Given a sentence containing a complex
word, a system should then return an ordered list
(best predictions first) of substitutes (min 0, max
10) for the complex word in its original context.
The ordered list of predicted candidates must not
contain ties, repetitions or the complex word itself.
Predicted candidates must be good contextual fits
(semantically and syntactically) as well as have
the same morphological inflection as the complex

Despite the fog, other flights are reported to
have landed safely leading up to the collision.

GOLD: crash, impact, accident, collision
RCML: accident, crash, tragedy, incident

Figure 1: A complex word in context with gold annota-
tions and predicted substitution candidates

word in the original sentence. A team is allowed to
submit 3 runs per track.

Our team participated in the English track and
made 2 submissions.

1.2 Dataset description

The TSAR-2022 Shared Task has provided
participants with a trial and test sets (.tsv) from
a new multilingual lexical simplification dataset
(Stajner et al., 2022) in English, Spanish and Por-
tuguese. The trial set of each language contains
10 sentences accompanied by the complex word to
simplify (in the second column) and the suggested
substitution candidates (24 or 25) in the remain-
ing columns. The test set, in contrast, contains
only the first two columns (sentence and complex
word). The English test set contains 373 instances
(rather than the initially stated 386). The gold test
set in English contains multiple simplification sug-
gestions provided by annotators (25 or 26 in some
cases).

To produce the dataset, crowdsourced workers
were presented with instances (sentences) in which
a single token (and never a MWE) is marked as
requiring simplification. They were asked to pro-
vide simpler synonyms for the marked words, tak-
ing into account that the original meaning of the
sentence should be preserved. Annotators were
allowed to return multiple words if they could not
think of a relevant single-word simplification. A
number of suggestions match the complex word,
since annotators were instructed to submit the com-

259



plex word whenever they couldn’t find a simpler
substitution. However, the evaluation script ignores
such suggestions when calculating the scores.

1.3 Evaluation metrics

The evaluation metrics used in the TSAR-2022
Shared Task are the following:
Mean Average Precision @ K: K={1,3,5,10}.
MAP@K evaluates the relevance of the predicted
substitutes as well as the position of the relevant
candidates compared to the gold annotations.
Potential@K: K={1,3,5,10}. Potential@K evalu-
ates the percentage of instances for which at least
one of the substitutions predicted is present in the
set of gold annotations.
Accuracy@K@top1: K={1,2,3}. ACC@K@top1
evaluates the ratio of instances where at least one
of the K top predicted candidates matches the most
frequently suggested substitute in the gold list of
annotated candidates.

2 System Description

We propose a modular system for lexical simplifi-
cation which requires no training data and allows
to fine-tune each module separately in order to
improve the final result. Since the dataset already
provides complex word annotations, RCML is com-
posed of only two modules: one for candidate gen-
eration and one for candidate ranking.

2.1 Candidate Generation

To generate substitution candidates, we used
the lexical substitution framework LexSubGen
(Arefyev et al., 2020) and in particular, the best
performing estimator XLNet+emb which employs
a target word injection method different to LSBert’s
(Qiang et al., 2020). To produce a list of substitutes
with their probabilities from the XLNet-large-cased
model, LexSubGen combines a representation of
the original input sentence (without masking) with
the product of two distributions modelling the fit-
ness of a substitute to the context and to the target.
The proximity of each candidate to the target word
is computed as the inner product between the re-
spective embeddings, followed by a softmax to get
a probability distribution.

We modified the post-processing of the origi-
nal system to exclude the candidate lemmatization
and get inflected suggestions, rather than lemmas.
We kept the lowercase post-processor followed by
target exclusion which uses lemmatization to de-

tect and exclude all forms of the target word. Fi-
nally, we increased the number of suggestions to 20
which we found increased the chances of finding a
suitable simpler substitution candidate.

2.2 Candidate Ranking
We selected and ranked candidates based on a com-
bination of their grammaticality, meaning preser-
vation and simplicity scores (for which we pro-
vide detailed descriptions further down in this sec-
tion). Despite a large number of metrics aiming
to evaluate one or more aspects of a simplifica-
tion at a time (BLEU (Papineni et al., 2002), ME-
TEOR (Banerjee and Lavie, 2005), SARI (Xu et al.,
2016), SAMSA (Sulem et al., 2018), Simple-QE
(Kriz et al., 2020), ISiM (Mucida et al., 2022),
Flesch Reading Ease Score (Kincaid et al., 1975),
BERTScore (Zhang* et al., 2020), language model
perplexity, etc.), not a single one of them excels at
accurately measuring all three while also being pub-
licly available. To rank the substitution candidates
we thus chose to evaluate each aspect separately
and to combine the scores through a simple heuris-
tic giving twice as much weight to the simplicity
score.

rank wn≤N = Gw × (Sw × 2 +Mw)

The rank of each substitution wn of the N = 20
generated candidates is calculated as a function
of its grammaticality G ∈ {0, 1}, simplicity S ∈
[1, 6] and meaning preservation M ∈ [1, N ] scores.
The top 10 ranking candidates (or less) are those
included in the submission.
Grammaticality To evaluate the grammaticality
of a sentence given a substitute candidate, we com-
pare the coarse-grained part-of-speech (POS) and
morphological features of both complex word and
candidate in context. We use spaCy 1 to tokenize
and parse the sentence, making sure not to split hy-
phenated complex words, since LexSubGen does
not support multi-word expressions. We assign a
score of 1 to all candidates whose features (person,
number, mood, tense, etc.) correspond to those of
the target word and 0 otherwise.
Meaning Preservation To evaluate the effect
of a substitution candidate on the meaning of the
original sentence we compute the similarity of the
two sentences as a sum of the cosine similarities be-
tween their tokens’ embeddings using BERTScore
(Zhang* et al., 2020). The higher the similarity

1https://spacy.io/ | v. 3.1.3 | en-core-web-lg
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between source and target sentences, the higher the
chances that the substitution candidate’s meaning
is close to the one of the complex word. Candidates
are ranked by decreasing F1 score with the best
candidate receiving a score of 1 and the last one - a
score equal to N .
Simplicity Arguably the most important aspect
to evaluate of a given substitution candidate is
whether or not it is simpler than the original com-
plex word. Many synonyms a system (or even an-
notators) suggests may very well be grammatical,
but if they do not simplify the concept within an
acceptable degree of semantic variability, they fail
to render the phrase easier to understand. The met-
ric often times employed as a proxy for complexity
is frequency, but frequency alone does not explain
all the variation in lexical complexity datasets.

Our main contribution to this LS system is a
more accurate measure of lexical complexity, no-
tably a CEFR2 vocabulary classifier, which we use
to assign a complexity level to each substitution
candidate. The lower the difficulty level, the higher
a word’s final rank.

The classifier is trained on data from the En-
glish Vocabulary Profile 3 (EVP) (Capel, 2012,
2015), a rich resource in British and American En-
glish which associates single words, phrasal verbs,
phrases, and idioms not only with a CEFR level
but with part of speech tags, definitions, dictionary
examples and examples from learner essays. The
corpus also contains distinct entries for distinct
meanings of polysemous words, each associated
with its own difficulty level. For example, we find
10 entries for the word form run in the American
English section of the corpus, two noun forms and
eight verbs, whose difficulty varies between A1
(He can run very fast.) and C2 (He would like to
run for mayor.)

Rather than representing the vocabulary items by
their frequency and/or surface-level characteristics
(number of characters, number of syllables, etc.),
we extract a semantic, contextual, dense vector rep-
resentation of each item from a pre-trained masked
language model 4 (Devlin et al., 2018) by first en-
coding the target word or MWE in context (using
the dictionary and learner examples) and then ag-
gregating all 12 hidden layers for all WordPieces.

2The Common European Framework of Reference for Lan-
guages (CEFR) organizes language proficiency in six levels,
A1 to C2.

3https://www.englishprofile.org/american-english
4https://huggingface.co/bert-base-uncased

This representation of the dataset is then used to
train a support vector classifier 5 (Platt et al., 1999).

The resulting model is able to assign a difficulty
level between 1 ≡ A1 and 6 ≡ C2 to the meaning
of any word or MWE as determined by its context.

3 Results and Discussion

We submitted results from two runs of the same
system with the only difference being the grammati-
cality score. In our second submission, we disabled
the filtering of morphologically inconsistent sub-
stitution candidates (in other words, we assign Gw

a score of 1 for all w) after noticing that in some
cases, some very appropriate candidates get filtered
out following an erroneous morphological analysis.
Both submissions achieve very similar results (Sag-
gion et al., 2022), but the second one improves on
the first on all but two metrics: ACC@1@Top1 and
ACC@3@Top1 despite generating inappropriate
candidates (both semantically and syntactically) in
some rare cases.

Team ACC@1 MAP@3 Pot@3
UniHD 0.809 0.583 0.962
UniHD 0.772 0.509 0.89
MANTIS 0.656 0.473 0.876
UoM&MMU 0.635 0.424 0.873

LSBert-baseline 0.597 0.407 0.823

RCML 0.544 0.382 0.831
RCML 0.541 0.371 0.801
GMU-WLV 0.517 0.352 0.753

Table 1: Top of the leaderboard for the English track

RCML outperforms the state-of-the-art LSBert
baseline on 27 out of the total 51 metrics (including
Precision and Recall). Table 1 shows the top of the
leaderboard including our team’s two submissions.
RCML has Potential@3 of 0.831 which is higher
than LSBert’s (Qiang et al., 2020) and comparable
to the top-scoring systems. This result suggests a
potential for our system to assist human editors in
the task of lexical simplification by proposing a few
simpler synonyms to choose from. The system’s
Accuracy@1@top1 doubles when K = 3 which
means that in 46% of the time, the most commonly
suggested substitute is among our top 3 predictions.

5sklearn.svm.SVC

261

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html


Sentence Gold@1 System@1
Putin was expected to formally register later in the day to run for
president, [...] a period in which he grew more authoritarian.

dictatorial nationalist

In Japan, rice with azuki beans [...] is traditionally cooked for auspi-
cious occasions.

favorable important

Police are appealing for information about anyone seen acting suspi-
ciously lately at Bidston Hill, Bidston, to come forward.

doubtfully strangely

And in the capital Damascus, regime forces raided [...] while snipers
were stationed on the roofs of some buildings.

sharpshooters guns

Table 2: Sentences with complex gold substitution candidates

Sentence Gold@1 System@1
It decomposes to arsenic trioxide, elemental arsenic and iodine when
heated in air at 200°C.

decays changes

Lebanon is sharply split along sectarian lines, with 18 religious sects. divided religious

The stretch of DNA transcribed into an RNA molecule is called a tran-
scription unit and encodes at least one gene .

encrypts codes

Obama earlier dropped from night skies into Kabul [...], cementing 10
years of U.S. aid for Afghanistan after NATO combat troops leave in 2014.

bonding securing

Table 3: Sentences with erroneous gold substitution candidates

3.1 Error Analysis

We analyzed manually the first 100 sentences of the
test set, comparing the most popular substitution
candidate among annotators with the most proba-
ble candidate suggested by RCML. We identified
15 sentences for which the best Gold annotation is
more complex than the system’s top candidate, vs.
3 cases where the roles are reversed. Table 2 pro-
vides a few examples of our tentative observations.
Admittedly, choosing a lexical simplification candi-
date requires to strike a balance between simplicity
and synonymy, but we would argue that simplicity
should be the guiding factor.

In a number of cases (six in the gold annota-
tions and ten in the system predictions) the top
substitution candidate is semantically and/or mor-
phologically incoherent. Table 3 lists some of the
cases where we believe the annotators confused the
meaning of the target complex word, while RCML
provided a suitable candidate.

The error analysis of RCML allowed us to notice
that its current version does not exclude or penalize
candidates introducing repetitions in the sentence,
while human annotators avoid those naturally.

Another examined sentence illustrates well the

limits of distributional semantics and the pitfalls
of structural ambiguity. The complex word in the
sentence below is a predicate whose argument is the
noun fighters, but RCML first suggests predicates
compatible with explosives — hidden, positioned,
stored.

The unsophisticated nature of the at-
tack suggests little planning beyond hav-
ing fighters and some explosives pre-
positioned in the vicinity of Kabul.

4 Conclusion

In this paper, we describe a modular lexical sim-
plification system for English which requires no
training data. RCML uses LexSubGen to gener-
ate substitution candidates before evaluating their
grammaticality, meaning and simplicity. The latter
is predicted by a 6-class contextual CEFR vocab-
ulary classifier. The system is easily adaptable to
other languages provided a trained CEFR vocab-
ulary classifier in the languages in question. It
also has the capacity to perform personalized lexi-
cal simplification, a particularly relevant approach
when simplifying text for language learners at dif-
ferent proficiency levels.
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Abstract

This paper describes team GMU-WLV
submission to the TSAR shared-task on
multilingual lexical simplification. The goal
of the task is to automatically provide a
set of candidate substitutions for complex
words in context. The organizers provided
participants with ALEXSIS, a manually
annotated lexical simplification dataset in
English, Portuguese, and Spanish. Instances
in ALEXSIS were split between a small
trial set with a dozen instances in each of
the three languages of the competition and a
test set with over 300 instances in the three
aforementioned languages. To cope with the
lack of training data, participants had to either
use alternative data sources or pre-trained
language models. We experimented with
monolingual models: BERTimbau, ELECTRA,
and RoBERTA-large-BNE. Our best system
achieved 1st place out of sixteen systems for
Portuguese, 8th out of thirty-three systems for
English, and 6th out of twelve systems for
Spanish.

1 Introduction

Text simplification (TS) is an important NLP
application that consists of applying automatic
methods to make texts more accessible to various
target populations, such as children (Kajiwara
et al., 2013), second language learners (Lee and
Yeung, 2018), individuals with low-literacy levels
(Watanabe et al., 2009; Gasperin et al., 2009),
and individuals with reading disabilities (Devlin
and Tait, 1998; Carroll et al., 1998; Rello et al.,
2013). The core component of TS systems is
lexical simplification (LS) which addresses the
simplification of single complex words, complex
multi-word expressions or both.

LS is a multi-stage process. In the first step,
systems need to recognize words that are likely
considered to be hard to understand by a given
target population. This step is known as complex

word identification (CWI) (Paetzold and Specia,
2016) or lexical complexity prediction (LCP)
(Shardlow et al., 2020, 2021; North et al., 2022c).
The second step in LS systems is to provide suitable
candidate substitutions for complex words also
known as substitute generation (SG) (Qiang et al.,
2020; North et al., 2022a; Ferres and Saggion,
2022). These candidate substitutions are then
filtered in regards to their suitability, known as
substitute selection (SS) (Shardlow, 2014; Paetzold
and Specia, 2017b), and then ranked in accordance
to their simplicity, referred to as substitute ranking
(SR) (Specia et al., 2012; Paetzold and Specia,
2017a; Maddela and Xu, 2018). The most
appropriate candidate is then selected to replace
the complex word.

While most of the work in LS deals with
English, recent advances in multilingual and
cross-lingual NLP models have motivated the
study of multilingual models and datasets for
LS with the goal of improving performance for
languages other than English (Yimam et al.;
Finnimore et al., 2019; Štajner et al., 2022). The
Text Simplification, Accessibility, and Readability
(TSAR-2022) shared-task (Saggion et al., 2022)
follows this trend by providing participants with
a multilingual LS dataset containing annotated
data in English, Portuguese, and Spanish following
the ALEXIS protocol (Ferres and Saggion, 2022).
In this paper, we present team GMU-WLV’s
submissions to TSAR-2022 where we evaluate
multiple models for this task. We describe prior
methods of SG (Section 2), the task and data
(Section 3), our model architecture (Section 4), and
results (Section 5).

2 Related Work

As discussed by Paetzold and Specia (2017b),
various approaches have been used for LS. Early
approaches relied on predefined lists of complex
words with candidate substitutions (Ong et al.,
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2008; Kandula et al., 2010). WordNet (Fellbaum,
2010) is another widely used resource. Numerous
SG systems take the synonyms provided by
WordNet as valid simplifications of a complex
word (Devlin and Tait, 1998; Carroll et al., 1998,
1999) while others use WordNet’s list of hyponyms
and hypernyms to identify and rank suitable
replacements (Sinha, 2012; Nunes et al., 2013).
Finally, some combine WordNet with other datasets
consisting of linguistic features indicative of a
word’s complexity, such as the Psycholinguistic
Database (Wilson, 1988).

More recent approaches have used transformer-
based models that are able to more effectively
capture and utilize contextual information as
described by Vaswani et al. (2017). Qiang
et al. (2020) used a pretrained BERT model to
generate candidate substitutions using masked
language modelling (MLM) (Devlin et al., 2019).
Ferres and Saggion (2022) experimented with
multiple pre-trained multilingual and monolingual
transformers for MLM to generate Spanish
candidate substitutions, including BETO (Cañete
et al., 2020), mBERT (Devlin et al., 2019),
BERTIN (De la Rosa and Fernández, 2022),
RoBERTa-base-BNE, and RoBERTA-large-BNE
(Fandiño et al., 2022).

3 Task and Data

The TSAR-2022 shared task was hosted at
the Empirical Methods in Natural Language
Processing (EMNLP) conference. Participants
were tasked with creating an LS system that returns
an ordered list of a maximum of 10 potential
candidate substitutions for a given complex word.
TSAR-2022 supplied participants with datasets
in English, Portuguese (North et al., 2022a),
and Spanish (Ferres and Saggion, 2022) each
having their own track within the competition
(Saggion et al., 2022). The task received 33,
17 and 16 entries in the English, Spanish, and
Portuguese tracks respectively. The datasets
contained excerpts from journalistic texts and
Wikipedia articles. The English and Spanish
datasets contained extracts from WikiNews and
Wikipedia articles, whereas the Portuguese dataset
contained extracts from locally sourced Brazilian
newspapers. The Portuguese dataset is the only
variety-specific dataset of the three containing only
Brazilian Portuguese texts.

The three datasets are comparable in terms

of size. The English dataset consisted of 386
instances, the Spanish dataset contained 381
instances, and the Portuguese dataset had 386
instances. Each dataset was split into trial and
test sets and were provided to the participants with
the trial set being released approximately 2 months
prior. The trial set had only 10-12 instances per
language, whereas the test set contained 369-376
instances per language. The test set did not contain
the candidate substitution for each instance’s
complex word. The datasets were formatted as
follows: <sentence><complex.word>, providing
the original context for each complex word.

4 GMU-WLV: System Description

We approached this task with two model
architectures inspired by the performance of large
pre-trained monolingual transformers (Ferres and
Saggion, 2022). We submitted two unsupervised
models for each track due to the limited size of
the development and train sets. The first model
consisted of a pre-trained monolingual transformer
with substitute ranking of the probabilities
produced by MLM, which we name GMU-WLV-
vanilla. The second model consisted of the same
transformer model but with Zipf frequency for
additional substitute ranking, which we name
GMU-WLV-zipf. Both GMU-WLV-vanilla and
GMU-WLV-zipf models conducted MLM similar
to that described in Qiang et al. (2020). We masked
the complex word of the original sentence and fed
both the original sentence and the masked sentence
separated by a [SEP] token to predict the masked
token or in this case, the candidate substitution.

RoBERTA-large-BNE1 was seen to perform well
for Spanish by Ferres and Saggion (2022). As such,
we selected several large pre-trained monolingual
models for each track. For English, we used
ELECTRA2 (Clark et al., 2020), for Spanish
we used RoBERTA-large-BNE (Fandiño et al.,
2022), and for Portuguese we used the BERTimbau
model3 (Souza et al., 2020). RoBERTA-large-BNE
was pre-trained on the National Library of Spain
(Biblioteca Nacional de España) corpus (Fandiño
et al., 2022) containing 135 billion Spanish
tokens extracted from crawling all .es domains.
ELECTRA was pre-trained on English Wikipedia
data with a vocabulary size of 30522 tokens (Clark

1https://huggingface.co/BSC-TeMU/roberta-large-bne
2https://huggingface.co/google/electra-base-generator
3https://huggingface.co/neuralmind/bert-large-

portuguese-cased
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Top-k=1 Top-k=5 Top-k=10
Track Rank Model Accuracy MAP Potential Accuracy MAP Potential Accuracy MAP Potential

PT

1 GMU-WLV-vanilla 0.254 0.481 0.481 0.446 0.197 0.757 0.505 0.115 0.84
2 Central-1 0.174 0.369 0.369 0.286 0.134 0.564 0.324 0.077 0.61
4 LSBert-Baseline 0.158 0.326 0.326 0.326 0.131 0.58 0.401 0.078 0.674

12 GMU-WLV-zipf 0.07 0.216 0.216 0.324 0.124 0.655 0.505 0.084 0.84
16 UoM&MMU-2 0.045 0.136 0.136 0.136 0.071 0.297 0.168 0.042 0.361

EN

1 UniHD-2 0.429 0.81 0.81 0.751 0.449 0.981 0.842 0.281 0.995
5 LSBert-Baseline 0.303 0.598 0.598 0.611 0.296 0.877 0.684 0.176 0.946
8 GMU-WLV-vanilla 0.249 0.517 0.517 0.523 0.263 0.834 0.633 0.16 0.898

26 GMU-WLV-zipf 0.08 0.282 0.282 0.41 0.159 0.74 0.633 0.12 0.898
33 twinfalls-3 0.011 0.046 0.046 0.067 0.028 0.23 0.107 0.018 0.362

ES

1 PresiUniv-1 0.204 0.37 0.37 0.361 0.15 0.647 0.402 0.083 0.726
6 GMU-WLV-vanilla 0.182 0.353 0.353 0.413 0.166 0.679 0.492 0.099 0.772
9 LSBert-Baseline 0.095 0.288 0.288 0.25 0.135 0.611 0.348 0.08 0.747

12 GMU-WLV-zipf 0.068 0.236 0.236 0.307 0.126 0.617 0.492 0.083 0.772
17 OEG_UPM-1 0.043 0.103 0.103 0.141 0.059 0.334 0.217 0.039 0.446

Table 1: A snapshot of SG performances on the PT, EN, and ES tracks per Saggion et al. (2022). We list our two
models (GMU-WLV-vanilla and GMU-WLV-zipf), the LSBert-Baseline, as well as the highest and lowest scoring
entries in each track for comparison. Run numbers are provided with a hyphen (e.g. -1) next to the model/team
name. Our best system in each track is presented in bold.

et al., 2020). BERTimbau was pre-trained on the
Brazilian Web as Corpus (Wagner Filho et al.,
2018) that contains 2.7 billion Portuguese tokens
annotated with tagging and parsing information and
being derived from a diverse selection of Brazilian
websites.

In regards to Zipf frequency ranking, we used the
wordfreq Python library (Speer et al., 2018) to rank
candidate substitutions. Inspired by previous work
in CWI and LCP (Zampieri et al., 2016; Quijada
and Medero, 2016; Shardlow et al., 2021), we pose
that those candidate substitutions with a higher Zipf
frequency would be considered more familiar to
the user and therefore would be considered less
complex than compared to those with a lower Zipf
frequency.

5 Results

The results obtained by GMU-WLV-vanilla are
presented in Table 1 and Table 2. GMU-WLV-
vanilla’s top-k = 1 accuracy placed it first among
the sixteen submissions in the Portuguese track,
whereas for the English and Spanish tracks, its
top-k = 1 accuracy placed it eighth among thirty-
three submissions and sixth among seventeen
submissions respectively.

The accuracies achieved by our GMU-WLV-
vanilla model for its top-k = [1, 2, 3] candidate
substitutions for Portuguese were 0.254, 0.372
and 0.396 respectively (Table 2). Their MAP
scores were 0.481, 0.364 and 0.282, whereas
their potential scores were 0.481, 0.642 and 0.687
respectively. As such, a positive correlation

was found between performance and number of
candidate substitutions generated with this positive
correlation increasing up to top-k = 10 candidate
substitutions (Table 1). For the English track,
our GMU-WLV-vanilla model generated top-k =
[1, 2, 3] candidate substitutions with accuracies
of 0.249, 0.354 and 0.448 respectively. Their
MAP scores were 0.517, 0.414 and 0.352, whereas
their potential scores were 0.517, 0.649, and
0.753 respectively. For the Spanish track, the
accuracies achieved by this model’s top-k = [1,
2, 3] candidate substitutions were 0.182, 0.264 and
0.329 respectively. Their MAP scores were 0.353,
0.266 and 0.22, whereas their potential scores were
0.353, 0.497, and 0.568 respectively. A positive
correlation was therefore found to exist between
performance and number of candidate substitutions
generated, regardless of the language in question.

The performance of our second model: GMU-
WLV-zipf was less promising (Table 1). GMU-
WLV-zipf ranked twelfth among the sixteen
submissions in the Portuguese track, it was placed
twenty-sixth among thirty three submissions for
the English track, and twelfth among seventeen
submissions for the Spanish track. GMU-WLV-zipf
performed noticeably worst on the Portuguese track
in comparison to our GMU-WLV-vanilla model. Its
top-k = [1, 2, 3] candidate substitutions achieved
accuracies of 0.07, 0.136, and 0.216 respectively
(Table 2). Their MAP scores were 0.216, 0.18
and 0.156, whereas its potential scores were 0.216,
0.382 and 0.513 respectively.

GMU-WLV-zipf also performed less well on
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GMU-WLV-vanilla GMU-WLV-zipf
Track Top-k=n Accuracy MAP Precision Recall Potential Accuracy MAP Precision Recall Potential

PT

1 0.254 0.481 0.481 0.072 0.481 0.07 0.216 0.216 0.029 0.216
2 0.372 0.364 0.404 0.118 0.642 0.136 0.18 0.222 0.059 0.382
3 0.396 0.282 0.329 0.141 0.687 0.216 0.156 0.221 0.089 0.513
4 0.43 0.232 0.287 0.16 0.727 0.273 0.14 0.22 0.12 0.612
5 0.446 0.197 0.255 0.176 0.757 0.324 0.124 0.207 0.138 0.655
6 0.46 0.172 0.233 0.193 0.783 0.39 0.113 0.203 0.163 0.741
7 0.489 0.155 0.22 0.211 0.799 0.43 0.104 0.197 0.185 0.781
8 0.495 0.139 0.202 0.221 0.807 0.462 0.098 0.195 0.213 0.81
9 0.5 0.127 0.191 0.234 0.824 0.481 0.091 0.187 0.23 0.826

10 0.505 0.115 0.178 0.242 0.84 0.505 0.084 0.178 0.242 0.84

EN

1 0.249 0.517 0.517 0.064 0.517 0.08 0.282 0.282 0.033 0.282
2 0.354 0.414 0.446 0.107 0.649 0.169 0.223 0.263 0.062 0.44
3 0.448 0.352 0.412 0.146 0.753 0.249 0.19 0.255 0.09 0.563
4 0.496 0.304 0.377 0.178 0.81 0.33 0.174 0.259 0.122 0.662
5 0.523 0.263 0.338 0.2 0.834 0.41 0.159 0.256 0.15 0.74
6 0.547 0.23 0.305 0.214 0.842 0.472 0.148 0.253 0.176 0.786
7 0.574 0.207 0.283 0.232 0.858 0.512 0.139 0.249 0.2 0.828
8 0.603 0.19 0.269 0.249 0.874 0.566 0.132 0.247 0.227 0.86
9 0.619 0.174 0.254 0.262 0.89 0.617 0.126 0.244 0.252 0.885

10 0.633 0.16 0.239 0.272 0.898 0.633 0.12 0.239 0.272 0.898

ES

1 0.182 0.353 0.353 0.047 0.353 0.068 0.236 0.236 0.031 0.236
2 0.264 0.266 0.302 0.08 0.497 0.13 0.189 0.223 0.057 0.372
3 0.329 0.22 0.273 0.107 0.568 0.188 0.156 0.206 0.079 0.465
4 0.375 0.191 0.257 0.135 0.641 0.253 0.14 0.209 0.105 0.56
5 0.413 0.166 0.237 0.154 0.679 0.307 0.126 0.202 0.126 0.617
6 0.438 0.148 0.22 0.169 0.715 0.364 0.113 0.195 0.147 0.679
7 0.462 0.132 0.203 0.179 0.739 0.408 0.106 0.191 0.169 0.715
8 0.47 0.12 0.19 0.19 0.753 0.435 0.098 0.182 0.184 0.728
9 0.486 0.11 0.178 0.2 0.766 0.473 0.091 0.177 0.199 0.761

10 0.492 0.099 0.173 0.204 0.772 0.492 0.083 0.173 0.204 0.772

Table 2: Full list of our models’ performances for different number of top-k candidate substitutions generated on the
PT, EN, and ES tracks.

the English and Spanish tracks with its top-k
= [1, 2, 3] candidate substitutions achieving
less impressive results across all evaluation
metrics. For the English track, these candidate
substitutions achieved accuracies of 0.08, 0.169,
and 0.249, MAP scores of 0.282, 0.223, and 0.19,
and potential scores of 0.282, 0.44, and 0.563
respectively (Table 2). For the Spanish track, these
candidate substitutions showed accuracies of 0.068,
0.13, and 0.188, MAP scores of 0.236, 0.189, and
0.156, and potential scores of 0.236, 0.372, and
0.465 respectively.

6 Discussion

We believe that our GMU-WLV-vanilla model’s
performance on the Portuguese track was a result
of it being a large pre-trained model trained
only on Brazilian Portuguese data (Souza et al.,
2020). GMU-WLV-vanilla model’s competitive
performance on the English and Spanish tracks
was also likely due to the use of large monolingual
models.

We were hoping that multilingual models may

be able to transfer useful information learned from
the vector representations of multiple or similar
languages, such as Spanish, to the target language,
for instance, Portuguese. However, during our
experimentation, multilingual models, such as
mBERT (Devlin et al., 2019) or XLM-R (Conneau
et al., 2020), were found to produce candidate
substitutions in languages other than the target
language. Removing these words still resulted
in a list of candidate substitutions that appeared
to be less suitable than those produced by the
monolingual models. This was also found to be the
case after having applied Zipf frequency ranking.

We had previously theorised that ranking
candidate substitutions per their zipf-frequency
would produce a list of candidate substitutions
ordered from most to least familiar for a specific
or general target audience. Nevertheless, given
that the performance of our GMU-WLV-zipf model
was worst than that of our GMU-WLV-vanilla
model, we concluded that zipf-frequency ranking
was not in alignment with the annotators’ notion of
simplicity, regardless of language.
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Table 2 shows that the top-k = 5 candidate
substitutions ordered without zipf-frequency
ranking achieved on average +0.114, +0.090, and
+0.086 better accuracy, MAP, and potential scores
across all three languages. The problem with Zipf
frequency ranking is that it assumes that shorter
words are innately less complex since they are
more frequent than longer words and therefore
make better simplifications. This is not always the
case as it does not take into consideration context.
Consider the following example shown in both
Spanish (a) and English (b):

(a). El sistema prehispánico se colapsó bajo la
conquista española en el siglo XVI.

(b). The pre-Hispanic system collapsed under the
Spanish conquest in the 16th century.

Given the complex word “colapsó” (collapsed),
our GMU-WLV-zipf model generated several
candidate substitutions, including “hizo” (made),
“puso” (put), “detuvo” (stopped), and “acabara”
(finished). Without taking the meaning of the
complex word or its context into consideration,
“hizo” (made) or “puso” (put) would be the most
logical candidate substitutions as they are shorter
and more common in comparison to the other
candidates. However, they do not have the desired
meaning in this context. On the other hand,
“detuvo” (stopped) or “acabara” (finished) are more
semantically similar to the complex word despite
being longer and less common. For this reason,
zipf-frequency is not always a useful feature for
substitute ranking.

7 Conclusion and Future Work

This paper presents GMU-WLV’s submission
to the TSAR shared-task on multilingual
lexical simplification. Our GMU-WLV-vanilla
model came first place at generating candidate
substitutions for Portuguese, eighth for English,
and sixth for Spanish. We demonstrate the
importance of relying upon monolingual
models for SG with pretrain models, such
as BERTimbau and RoBERTA-large-BNE,
performing exceptionally well. We also show
that the use of zipf-frequency ranking for
substitute ranking may result in inferior candidate
substitutions being selected for simplification.

Transfer learning allows for the utilization
of large pre-existing datasets to under-resourced

NLP-related tasks, such as LS of Portuguese or
Spanish. We hope to experiment with transfer
learning on a number of datasets related to
LS but are not formatted in such a way as
to allow for the direct training of SG models,
including datasets such as the CompLex dataset
(Shardlow et al., 2020), a large pre-exsisting
dataset containing continuous lexical complexity
values, or the binary comparative CompLex dataset
(North et al., 2022b), a somewhat smaller dataset
consisting of comparative judgements between
lexical complexities. We hypothesize that transfer
learning will substantially increase the performance
of our models.
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Abstract

We report findings of the TSAR-2022 shared
task on multilingual lexical simplification, orga-
nized as part of the Workshop on Text Simpli-
fication, Accessibility, and Readability TSAR-
2022 held in conjunction with EMNLP 2022.
The task called the Natural Language Process-
ing research community to contribute with
methods to advance the state of the art in multi-
lingual lexical simplification for English, Por-
tuguese, and Spanish. A total of 14 teams sub-
mitted the results of their lexical simplification
systems for the provided test data. Results of
the shared task indicate new benchmarks in
Lexical Simplification with English lexical sim-
plification quantitative results noticeably higher
than those obtained for Spanish and (Brazilian)
Portuguese.

1 Introduction

Lexical Simplification (Shardlow, 2014; Paetzold
and Specia, 2017a) is a sub-task of Automatic Text
Simplification (Saggion, 2017) that aims at replac-
ing difficult words with easier to read (or under-
stand) synonyms while preserving the information
and meaning of the original text. This is a key task
to facilitate reading comprehension to different tar-
get readerships such as foreign language learners,
native speakers with low literacy levels or people
with different reading impairments (e.g. dyslexic
individuals). As such, it has gained considerable
attention in the past few years (Štajner, 2021).

Although Lexical Simplification systems can
be developed following different architectural pre-
cepts, several studies have suggested the following
pipe-lined approach:

1. identification of complex terms (Complex
Word Identification - CWI),

2. generation of substitution words (Substitute
Generation - SG),

3. selection of the substitutes that can fit in the
context (Substitute Selection - SS),

4. ranking substitutes by their simplicity (Substi-
tute Ranking - SR), and

5. morphological generation and context adapta-
tion (e.g. agreement).

There exists a considerable body of research
in lexical simplification for English (Horn et al.,
2014; Glavaš and Štajner, 2015; Paetzold and
Specia, 2017b; Qiang et al., 2020a). However, and
in spite of several lexical simplification studies
for languages other than English notably (Bott
et al., 2012; Baeza-Yates et al., 2015; Ferrés et al.,
2017; Ferrés and Saggion, 2022) for Spanish,
(Hartmann et al., 2018; North et al., 2022b) for
Portuguese, (Hmida et al., 2018) for French,
(Qiang et al., 2021) for Chinese, (Kajiwara
and Yamamoto, 2015; Hading et al., 2016) for
Japanese and (Abrahamsson et al., 2014) for
Swedish, there is a clear need to broaden the scope
of lexical simplification in terms of language
coverage. Moreover, given its social relevance
in making information accessible to broader
audiences, we believe it is important to under-
stand how far automatic systems can go in this task.

We therefore established this first Shared Task
on Multilingual Lexical Simplification calling the
NLP research community to contribute with meth-
ods to advance the state of the art. The task called
for systems able to simplify words in context in
(one or more of) three languages, namely English,
Portuguese, and Spanish. Systems have to deal
with steps 2-5 above to generate, select, rank, and
adapt to context substitutes for a given complex
word in a sentence. As the result of our call for sys-
tems, of the 22 teams registered to the task, 14 sent
their system outputs for evaluation. There were 31
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different runs for English, 15 for Spanish, and 14
for Portuguese.

This paper overviews the first Shared Task on
Multilingual Lexical Simplification. We describe
in detail the task, the trial and test data used, the
evaluation metrics, and the results. We also provide
an analysis of the results and consider possible
ways to expand the current scope of the task.

1.1 State-of-the-Art Lexical Simplification

In recent years, researchers have turned to large off-
the-shelf word embedding models, instead of pre-
compiled lists of synonyms or lexical databases, for
retrieving (or generating) substitution candidates
(Glavaš and Štajner, 2015; Paetzold and Specia,
2016), ranking them for simplicity and context us-
ing several sorting factors such as frequency, target
context similarity, language model probabilities,
etc. These approaches demonstrated better cover-
age than previous systems. Before the TSAR 2022
Shared Task, the state of the art for English lexi-
cal simplification was the LSBert system (Qiang
et al., 2020a), which used the pre-trained trans-
former language model BERT (Devlin et al., 2019)
and a masking technique for finding suitable simpli-
fications for complex words, resorting, as previous
approaches, to unsupervised ranking using several
feature combinations.

Lexical simplification in languages other than
English attracted less attention, however several
systems for Spanish have been proposed since the
initial work of (Bott et al., 2012). As it is with
the case of English, here the use of neural sys-
tems is also observed. For example, Alarcón et al.
(2021) leverages pretrained word embedding vec-
tors and BERT models. Subsystems were devel-
oped for CWI, SG, and SS; in particular, the CWI
sub-task was evaluated using the CWI 2018 shared
task dataset for Spanish (Yimam et al., 2018) where
it was found that traditional algorithms (i.e. Sup-
port vector Machines) are still competitive in this
task. The SG and SS sub-tasks were evaluated
using a portion of 500 instances of the EASIER
corpus (Alarcon et al., 2021). Each instance of this
portion contains a sentence, a target word and three
substitutions. More recently, Ferrés and Saggion
(2022) presented ALEXSIS, a dataset for bench-
marking Lexical Simplification in Spanish, and
performed experiments with several neural and un-
supervised systems for the different phases of the
simplification pipeline. They also performed the

first evaluation of an adaptation of LSBERT (Qiang
et al., 2020a) software for Spanish for SG and Full
Pipeline with the ALEXSIS and EASIER datasets,
achieveing state of the art.

For Brazilian Portuguese, a data-driven machine
translation approach has been proposed in (Spe-
cia, 2010). In the current neural paradigm, North
et al. (2022b) developed and evaluated, on a new
corpus for Portuguese based on ALEXSIS (Ferrés
and Saggion, 2022), four transformer models for
substitute generation following the BERT masked
approach (Qiang et al., 2020a). Somehow related
is the work of (Hartmann et al., 2020) that describe
a Portuguese datasets which is designed for simpli-
fication of texts for children.

1.2 Previous Lexical Simplification Shared
Tasks

The first shared task in lexical simplification was
proposed for SemEval 2012. It addressed English
Lexical Simplification (Specia et al., 2012) and
offered the opportunity to evaluate systems able
to rank substitution candidates in relation to their
simplicity. It was, therefore, concentrating just on
step number 4 in the lexical simplification pipeline
we have described in the Introduction. The dataset
used was taken from the Lexical Substitution task
at SemEval 2007 which was enriched with simplic-
ity rankings provided by second language learners
with high proficiency levels in English, rankings
per instance were aggregated to obtain a final gold
annotation. The task attracted 5 different institu-
tions which provided nine systems in total.

Complex word identification (CWI), which is not
addressed in the current TSAR challenge, has been
explored in two shared tasks: SemEval 2016 CWI
for English (Paetzold and Specia, 2016), and the
BEA 2018 CWI shared task for multiple languages
(Yimam et al., 2018). In SemEval 2016 CWI task,
participants were requested to predict which words
in a given sentence would be considered complex
by a non-native English speaker. A CWI dataset
composed of 9,200 instances was created with sen-
tences from different datasets which have already
been used in text simplification research and it was,
for the task objectives, annotated by non-native
speakers of English. The task attracted 21 teams
which produced a total of 42 systems. The BEA
2018 CWI shared task proposed to tackle CWI in
English, German, and Spanish (training and test
data were provided), together with a multilingual
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task with French as a target language without train-
ing data. Teams were asked to produce systems to
classify words as either complex or simple (binary)
and/or provide a probability for the complexity of
each word. The shared task attracted 11 teams. The
SemEval 2021 shared task on lexical complexity
prediction (Shardlow et al., 2021) also provided
a new dataset for complexity detection for single
words and multi-word expressions in English at-
tracting 55 teams. Additionally, the IberLef 2020
forum proposed a shared task on Spanish complex
word identification (Zambrano and Montejo-Ráez,
2020) but attracted few participants.

2 Task Description

The TSAR-2022 shared task featured three tracks:

• Lexical simplification in English;

• Lexical simplification in Spanish;

• Lexical simplification in (Brazilian) Por-
tuguese.

In all tracks, the task was the same. Given a
sentence/context and one target (complex) word
in it, provide substitutes for the target word that
would make the sentence easier to understand. It
was allowed to submit up to 10 substitutes, ordered
from the best to the least fitting/simple one. Ties
were not allowed.

Participants were provided with several trial ex-
amples in each language. Training datasets were
not provided. However, participants were allowed
to use any external resources for building their lex-
ical simplification systems. Participating systems
were evaluated on test sets using several metrics.1

2.1 Datasets
Datasets for all three languages were compiled us-
ing comparable procedures.

2.1.1 Context and Target Word Selection
For English and Spanish, the sentences/contexts
and target words were selected from respective
datasets used in the BEA-2018 shared task on com-
plex word identification (Yimam et al., 2018).2

For (Brazilian) Portuguese, the sentences and tar-
get words were selected from the PorSimplesSent

1Compilation of the datasets used in the TSAR-2022
shared task, their limitations, and strong baselines for En-
glish, Spanish, and (Brazilian) Portuguese are described in
detail in (Štajner et al., 2022).

2https://sites.google.com/view/cwisharedtask2018

dataset (Leal et al., 2018). In the (English and
Spanish) CWI-2018 datasets, complex words were
marked based on a crowdsourcing experiment with
10 native and 10 non-native speakers in each lan-
guage. Words that were highlighted by at least one
crowdsourced annotator as difficult to understand
in a given context (paragraph containing several
sentences), were marked as complex in the final
CWI-2018 datasets (Yimam et al., 2018). The Por-
SimplesSent dataset, used for selecting sentences
and target words for (Brazilian) Portuguese, is a
corpus of original and manually simplified news
articles. To identify complex words in the origi-
nal sentences, the following procedure was used.
An automatic word alignment tool was applied
which marked inconsistencies between the orig-
inal and simplified sentences. These were further
checked by a native Brazilian-Portuguese speaker,
who identified among them the complex words
which contained simpler substitutes in the simpli-
fied sentences.

In all three datasets (English portion of CWI-
2018, Spanish portion of CWI-2018, and PorSim-
plesSent for Portuguese), sentences often had sev-
eral words marked as complex. For compiling the
TSAR-2022 shared task datasets, we chose only
one of the marked complex words as the target
word, in each selected sentence. This made the
task easier for participants, as they only had to take
into account how the proposed simpler substitute
fit the context (i.e., whether or not it preserves the
original meaning) instead of additionally taking
into account interactions among the proposed sub-
stitutes of different target words within the same
sentence.

2.1.2 Dataset Annotation
To obtain a list of simpler substitutes for each
target word, selected sentences (386 in English,
381 in Spanish, and 386 in Brazilian Portuguese)
with marked target words were presented to crowd-
sourced workers who had a task of proposing a sim-
pler substitute which would preserve the meaning
of the original sentence. For English and Brazil-
ian Portuguese, this crowdsourcing annotation task
was done on Amazon Mechanical Turk,3 while for
Spanish, it was done on Prolific platform.4 The an-
notation was first done for the Spanish dataset. The
guidelines used for the Spanish annotation were
then translated into English and Portuguese with

3https://www.mturk.com/
4https://www.prolific.co/
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Language Instances
Substitutes per target
Min Max Avg

EN 386 2 22 10.55
ES 381 2 19 10.28
PT-BR 386 1 16 8.10

Table 1: Statistics on the TSAR-ST 2022 multilingual
lexical simplification dataset.

Language Test Trial Total

EN 373 10 383
ES 368 12 380
PT-BR 374 10 384

Table 2: Dataset splits for TSAR-2022 shared task. In-
stances with two or more repetitions of the complex
word were excluded from the test set.

minimal editing to ensure that the task remained
the same across languages. Details about dataset
compilation and annotation across the three lan-
guages can be found in the work by Štajner et al.
(2022). Additional details about Spanish and Por-
tuguese portions of the dataset can be found in the
works by Ferrés and Saggion (2022) and North
et al. (2022b), respectively. The total number of
annotated instances, the minimal, the maximal, and
average number of proposed simpler substitutes per
target word in each language are given in Table 1.

2.1.3 Test Sets and Examples
Annotated sentences in each language were split
into trial and test datasets (Table 2).5 Datasets are
available under the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International Li-
cense (CC-BY-NC-SA-4.0).6 Examples of in-
stances from trial portion of the dataset are given
in Table 3.

2.2 Baselines
We provided two strong baselines: TSAR-TUNER
and TSAR-LSBert. TSAR-TUNER is an adap-
tation of the TUNER Lexical Simplification sys-
tem (Ferrés et al., 2017), which is a state-of-the-
art non-neural Spanish lexical simplification sys-

5Note that some instances had two repetitions of the com-
plex word in the same sentence but were not included in the
TSAR-2022 Shared Task splits of the Evaluation Benchmark.
There was one such case in Spanish, three in English, and two
in Portuguese.

6https://github.com/LaSTUS-TALN-UPF/
TSAR-2022-Shared-Task/

tem. TSAR-TUNER differs from TUNER in that it
omits the complex word identification and context
adaptation phases. Instead, it returns an ordered list
of substitution candidates. TSAR-TUNER sequen-
tially executes four tasks: (1) sentence analysis,
(2) word sense disambiguation, (3) synonyms rank-
ing, and (4) morphological generation. Details of
TSAR-TUNER and its adaptation to English, and
Portuguese can be found in (Štajner et al., 2022).

TSAR-LSBert is an adaptation of LSBert (Qiang
et al., 2020b), the state-of-the-art neural lexical
simplification for English. LSBert uses the masked
language model (MLM) of BERT to predict a set
of candidate substitution words and their substi-
tution probabilities. It combines five features to
rank substitute candidates according to their sim-
plicity: BERT prediction order, a BERT-based lan-
guage model, the PPDB database, word frequency,
and semantic word similarity from fastText word
embeddings. Our TSAR-LSBert uses the same
resources as the original system for lexical simpli-
fication in English. For lexical simplification in
Spanish and Portuguese, all language-dependent
components are adapted using the best available
resources in corresponding languages. Details of
TSAR-LSBert system and its adaptation to Span-
ish and Portuguese can be found in (Štajner et al.,
2022).

2.3 Evaluation Metrics
To allow for fairer comparison of systems that pro-
pose a different number of substitution candidates,
i.e., not to penalize systems which return fewer
candidates, all evaluation metrics are applied on a
fixed number of k top-ranked candidates.

To account for various aspects of systems’ per-
formances, ten metrics were used as the official
metrics of the shared task: ACC@1, MAP@k, po-
tential@k, accuracy@n@top1 where k ∈ {3, 5, 10}
and n ∈ {1, 2, 3}.7

Potential@k is defined as the percentage of in-
stances for which at least one of the k top-ranked
substitutes is also present in the gold data.

Accuracy@k@top1 is defined as the percentage
of instances where at least one of the k top-ranked
substitutes matches the most frequently suggested
synonym in the gold data. Here is important to
note that Accuracy@1@top1 was denoted as Ac-
curacy@1 in (Štajner et al., 2022).

7ACC@1, MAP@1, and Potential@1 give the same results
per definition. We thus used ACC@1 to denote them all in the
official results.
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Data Context/Sentence Target (Gold) Substitutes Ranked

EN A local witness said a separate
group of attackers disguised in
burqas — the head-to-toe robes
worn by conservative Afghan
women — then tried to storm the
compound.

disguised concealed:4, dressed:4, hidden:3, camou-
flaged:2, changed:2, covered:2, disguised:2,
masked:2, unrecognizable:2, converted:1, im-
personated:1

ES Floreció en la época clásica y
tenía una reputada escuela de
filosofía.

reputada prestigiosa:6, famosa:4, reconocida:2,
afamada:2, conocida:2, renombrada:2, re-
spetada:2, prestigioso:1, muy reconocida:1,
valorada:1, acreditada:1, prestigiada:1

PT naquele país a ave é considerada
uma praga

praga peste:9, epidemia:5, maldição:3, doença:2,
desgraça:2, tragédia:1, infestação:1

Table 3: Examples from the trial part of the TSAR 2022 dataset. The number after the ":" indicates the number of
repetitions.

MAP@k: The MAP metric is used commonly
for evaluating information retrieval models and rec-
ommender systems (Beitzel et al., 2018; Valcarce
et al., 2020). In the context of lexical simplifica-
tion, instead of using a ranked list of relevant and
irrelevant documents, we use a ranked list of gen-
erated substitutes, which can either be matched
(relevant) or not matched (irrelevant) against the
set of the gold-standard substitutes. Unlike Preci-
sion@k, which only measures which percentage of
the k top-ranked substitutes can be found among
the gold-standard substitutes, MAP@k additionally
takes into account the position of the relevant sub-
stitutes among the first k generated candidates (i.e.,
whether or not the relevant candidates are at the top
positions).

The evaluation script was provided to the partic-
ipants and the research community.8

3 Participating Systems

We received the outputs of 13 teams for English,
6 for Spanish, and 5 for (Brazilian) Portuguese.
Each team was allowed to submit outputs of up to
3 systems. This totaled to 31 submitted outputs for
English, 15 for Spanish, and 14 for Portuguese.

CILS (Seneviratne et al., 2022) submitted three
systems for the English track. All systems use the
Model Prediction Score and Embedding Similarity
Score for candidate generation. A model prediction
score is computed using the XLNet model (Yang

8https://github.com/LaSTUS-TALN-UPF/
TSAR-2022-Shared-Task

et al., 2019) given the context and the target word
with any word in the vocabulary of XLNet. The
Embedding Similarity Score is the inner product of
the embedding of the target word and the embed-
ding of the respective word. The three systems dif-
fer in the ranking module. They rank the candidates
based on different combinations of scores such as
1) the score from the candidate generation; 2) sen-
tence similarity score (cosine similarity between
the source and target sentence); 3) gloss sentence
similarity score (the cosine similarity between the
target word and the candidate); 4) WordNet score
(a cosine similarity between the target word and
the candidate extracted from WordNet); and 5) Val-
idation score (a cosine similarity of the BERT-base
between the source and target sentence).

PresiUniv (Whistely et al., 2022) uses masked
language model (follows LSBert) for candidate gen-
eration, ranks candidates by cosine similarity (ex-
tracted from FastText), and then filter them out by
checking part-of-speech. The systems for the three
languages are the same, except that the language
model is specific for each language. It is interest-
ing that this approach works the best on Spanish
dataset, but not so well on the Portuguese and En-
glish datasets (lower than the baseline).

UoM&MMU (Vásquez-Rodríguez et al., 2022)
uses an approach that consists of three steps: 1)
candidate generation based on different prompt
templates (e.g., <easier, simple> <word, synonym>
for <target_word>); 2) fine-tuning of a language
model (BERT-based model) to select and rank can-
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didates; and 3) post-processing to filter out noise
and antonyms. This approach achieves the second
rank on the Spanish dataset and the third rank on
the English dataset, but to our surprise, the model
ranks the lowest on the Portuguese dataset.

PolyU-CBS (Chersoni and Hsu, 2022) proposes
three approaches for the candidate ranking. In all
three approaches, the candidates are generated us-
ing a masked language model. Then, the first ap-
proach ranks candidates based on the probability
received from the candidate generation (base prob-
ability) and sentence probability extracted from
GPT-2 pre-trained model by replacing the target
word with its candidate. The second approach
ranks candidates by base probability and masked
language model scoring (Salazar et al., 2020). The
third model ranks candidates by base probability
and contextualized embedding similarity (cosine
similarity between the target word and its candi-
date in the context of the original sentence). Based
on the official results, the third approach performs
better than the other two in all languages.

CENTAL (Wilkens et al., 2022) explored the
use of masked language model for candidate gen-
eration with three strategies for context expansion:
Copy, Query Expansion, and Paraphrase. The Copy
strategy is a copy of the sentence itself (follows that
of LSBert). The Query Expansion strategy extracts
alternative words for the target word from FastText
and then replaces the original sentence with each
alternative word. The Paraphrase strategy (English
only) extracts paraphrases from Pegasus (Zhang
et al., 2020). The authors propose three ranking
approaches: 1) using the frequency of words gener-
ated by the three strategies; 2) training a binary clas-
sifier (English only) for the ranking; 3) the English
ranking module (the binary classifier) performs
cross-lingual ranking for Spanish and Portuguese.

teamPN (Nikita and Rajpoot, 2022) proposes
a model that extract candidates through a com-
bination of modules such as verb sense disam-
biguation module (candidates are extracted from
VerbNet (Schuler, 2005) and filtered by FitBERT
(Havens and Stal, 2019)), paraphrase database mod-
ule (PPDB) (Ganitkevitch et al., 2013), DistilBERT
module (Sanh et al., 2019) (uses masked language
model), and Knowledge Graph module (Alberts
et al., 2021). Modules are combined depending on
the part-of-speech of the target word. All extracted
candidates are checked for correct inflection and
ranked by FitBERT (Havens and Stal, 2019).

MANTIS (Li et al., 2022) adapts masked lan-
guage model (RoBERTa) for candidate generation
and performs the candidate ranking with three dif-
ferent approaches. The first ranking approach uses
three features with different weights to rank the
candidates: 1) pre-trained language model feature
(the probability of the candidate extracted during
the candidate generation), 2) Word Frequency, and
3) semantic similarity (cosine similarity between
the FastText vector of the target word and the can-
didate). The second and third approaches rank can-
didates by word prevalence and equivalence score.
The second approach uses crowd-sourcing word
prevalence, which is a proportion of the population
that knows a given word based on a crowd-sourcing
study involving 220,000 people (Brysbaert et al.,
2019). The third approach uses corpus-derived
word prevalence, which is an estimate of the num-
ber of books that a word appears in (Johns et al.,
2020). The equivalence score is the entailment
score of the original sentence and the sentence re-
placed with the candidate. The experimental results
have shown that the first approach performs better
than the other two.

UniHD (Aumiller and Gertz, 2022) submitted
two systems. The first system was a zero-shot
prompted GPT-3 with a prompt asking for sim-
plified synonyms given a particular context. Sim-
plifications are then ranked. The second sys-
tem was an ensemble over six different GPT-3
prompts/configurations with average rank aggre-
gation. The second system attained the highest
score for English on all metrics. The approach is
simplistic in nature, relying heavily on the under-
lying language model which is only available for
research through a paid interface.

RCML (Aleksandrova and Brochu Dufour,
2022) proposes a system (English only) by apply-
ing the lexical substitution framework LexSubGen
(based on XLNet) for candidate generation and
ranks the candidates based on grammaticality (POS
+ morphological features), meaning preservation
(BERTScore of the source and target sentences),
and simplicity (predicted by an SVM classifier
trained on CEFR level data).

GMU-WLV (North et al., 2022a) submitted two
models for each of the three languages. These two
models follow the approach of LSBert, except the
second model uses an additional Zipf frequency
in the candidate ranking module. The first model
performs the best on the Portuguese dataset.
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Team Language Approach

CILS EN SG: Language Model (LM) probability and similarity score, SR: SG score, cosine similarity scores

PresiUniv EN, ES, PT SG: Masked Language Model (MLM), SR: cosine similarity, POS check

UoM&MMU EN, ES, PT SG: LM with prompt, SR: fined-tuned Bert model as classifier

PolyU-CBS EN, ES, PT SG: MLM, SR: MLM probability, GPT-2 probability, sentence probability, cosine similarity

CENTAL EN, ES, PT SG: MLM, SR: word frequency, binary classifier

teamPN EN SG: MLM, VerbNet, PPDB, Knowledge Graph, SR: MLM probability

MANTIS EN SG: MLM, SR: MLM probability, word frequency, cosine similarity

UniHD EN GTP-3 prompts: zero-shot, few-shot

RCML EN SG: lexical substitution, SR: POS, BERTScore, SVM classifier

GMU-WLV EN, ES, PT SG: MLM, SR: MLM probability, word frequency

Table 4: The approaches taken by each team, categorised according to substitution generation (SG) and substitution
ranking (SR) strategy.

A comparative of system approaches is provided
in Table 4.

4 Results and Discussions

In the following subsections we describe the re-
sults obtained by the participant teams for each of
the tracks in the TSAR 2022 Multilingual Lexical
Simplification shared task.9 Note that we will base
our description on the ranking obtained by sorting
submissions according to the ACC@1 metric as
well as summarizing methods for which a paper
has been submitted and accepted for the Shared
Task (see Section 3).

We also provided an extended version of the
results,10 which included ACC@1, Potential@k,
MAP@k, macro-averaged Precision@k, macro-
averaged Recall@k, and Accuracy@k@top1, for k
∈ {1, 2, ..., 10}. Precision@k and Recall @k were
defined as follows:

• Precision@k: the percentage of k top-ranked
substitutes that are present also in the gold
data;

• Recall@k: the percentage of substitutions
provided in the gold data that are included
in the top k generated substitutions.

Overall, we observe that several systems
achieved new state-of-the-art results in the differ-
ent tracks overtaking a previous competitive Neu-
ral Language Model for lexical simplification (LS-
Bert).

9Please note that official results can also be queried at
https://taln.upf.edu/pages/tsar2022-st/#results

10https://github.com/LaSTUS-TALN-UPF/
TSAR-2022-Shared-Task/tree/main/results/extended

4.1 English Track

In table 5 the results for English are presented
sorted by ACC@1.11 In this track, and of the 31
submitted runs, only four (from 3 teams: UniHD,
MANTIS, and UoM&MMU) performed better than
the LSBert baseline according to ACC@1. More-
over, UniHD run number 2 achieved the best per-
formance in all the reported metrics. UniHD run
number 2 outperforms the other teams’ systems in
more than 15 points in ACC@1 achieving a score
of 0.8096 in this metric. This indicates that it is
able to retrieve a correct synonym in the 80,96%
of instances of the dataset. Moreover, UniHD’s
run number 2 achieves a 99,46% of Potential@10.
This indicates that it has the potential to retrieve at
least one correct substitution in the top-10 predic-
tions of almost all the instances. In fact, it achieves
0.9624 in Potential@3 metric, which is almost nine
points higher than the second best official result
(MANTIS with 0.8900) and indicates also a great
performance obtaining at least one correct substitu-
tion in the top-3 predictions.

It is important to highlight that the UniHD’s sys-
tem relies on a pre-trained pay-per-query GPT-3
model to obtain candidate substitutions by prompt-
ing the model with 6 versions of zero, one, and
two shot prompts, based on the provided trial data,
finally combining the predicted candidate ranks
to select the best substitutions. In contrast, team
MANTIS relied on a freely available masked lan-
guage model to obtain substitutions and an adap-
tation of the ranking procedure of LSBert. While
UoM&MMU also relying on freely available pre-

11Note that the data to sort the results is avail-
able at https://github.com/LaSTUS-TALN-UPF/
TSAR-2022-Shared-Task/tree/main/results/official
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Team Run
ACC
@1

ACC@1
@Top1

ACC@2
@Top1

ACC@3
@Top1

MAP
@3

MAP
@5

MAP
@10

Potential
@3

Potential
@5

Potential
@10

UniHD 2 0.8096 0.4289 0.6112 0.6863 0.5834 0.4491 0.2812 0.9624 0.9812 0.9946
UniHD 1 0.7721 0.4262 0.5335 0.5710 0.5090 0.3653 0.2092 0.8900 0.9302 0.9436
MANTIS 1 0.6568 0.3190 0.4504 0.5388 0.4730 0.3599 0.2193 0.8766 0.9463 0.9785
UoM&MMU 1 0.6353 0.2895 0.4530 0.5308 0.4244 0.3173 0.1951 0.8739 0.9115 0.9490
LSBert-baseline 1 0.5978 0.3029 0.4450 0.5308 0.4079 0.2957 0.1755 0.8230 0.8766 0.9463
RCML 2 0.5442 0.2359 0.3941 0.4664 0.3823 0.2961 0.1887 0.8310 0.8927 0.9436
RCML 1 0.5415 0.2466 0.3887 0.4691 0.3716 0.2850 0.1799 0.8016 0.8847 0.9115
GMU-WLV 1 0.5174 0.2493 0.3538 0.4477 0.3522 0.2626 0.1600 0.7533 0.8337 0.8981
CL Lab PICT 1 0.5067 0.2064 0.3297 0.4021 0.3278 0.2331 0.1369 0.7265 0.7828 0.8042
UoM&MMU 3 0.4959 0.2439 0.3458 0.4235 0.3273 0.2411 0.1461 0.7560 0.8310 0.9088
teamPN 2 0.4664 0.1823 0.3056 0.3378 0.2743 0.1950 0.0975 0.6729 0.7506 0.7506
MANTIS 3 0.4611 0.2117 0.3351 0.4235 0.3227 0.2553 0.1673 0.7747 0.8793 0.9436
teamPN 3 0.4504 0.1769 0.2841 0.3297 0.2676 0.1872 0.0936 0.6648 0.7399 0.7399
teamPN 1 0.4477 0.1769 0.2815 0.3297 0.2666 0.1874 0.0937 0.6621 0.7453 0.7453
PolyU-CBS 3 0.4316 0.2064 0.2788 0.3297 0.2683 0.1995 0.1178 0.6139 0.6997 0.7747
MANTIS 2 0.4209 0.1662 0.2654 0.3565 0.2745 0.2193 0.1507 0.7131 0.8391 0.9517
PresiUniv 1 0.4021 0.1581 0.2305 0.3002 0.2603 0.1932 0.1136 0.6568 0.7399 0.7962
PolyU-CBS 1 0.3914 0.1823 0.2627 0.3002 0.2576 0.1883 0.1113 0.5924 0.6836 0.7533
CILS 3 0.3860 0.1957 0.2627 0.3083 0.2603 0.2014 0.1267 0.5656 0.6005 0.6380
CILS 2 0.3806 0.1903 0.2600 0.3083 0.2597 0.1997 0.1262 0.5630 0.6005 0.6434
PresiUniv 3 0.3780 0.1474 0.2010 0.2573 0.2277 0.1609 0.0897 0.5656 0.6058 0.6327
CILS 1 0.3753 0.2010 0.2788 0.3109 0.2555 0.1964 0.1235 0.5361 0.5898 0.6300
CENTAL 2 0.3619 0.1152 0.2091 0.2788 0.2573 0.2056 0.1271 0.6541 0.7667 0.8418
TUNER-baseline 1 0.3404 0.1420 0.1689 0.1823 0.1706 0.1087 0.0546 0.4343 0.4450 0.4450
PolyU-CBS 2 0.3190 0.1447 0.2091 0.2573 0.1973 0.1490 0.0901 0.5120 0.6032 0.7104
GMU-WLV 2 0.2815 0.0804 0.1689 0.2493 0.1899 0.1589 0.1200 0.5630 0.7399 0.8981
CENTAL 1 0.2761 0.1313 0.1930 0.2117 0.1635 0.1183 0.0707 0.3780 0.4021 0.4182
UoM&MMU 2 0.2654 0.1367 0.2171 0.2680 0.1820 0.1307 0.0794 0.4906 0.5817 0.6756
PresiUniv 2 0.2600 0.1018 0.1313 0.1554 0.1350 0.0862 0.0439 0.3136 0.3163 0.3163
twinfalls 1 0.1957 0.0509 0.0884 0.1233 0.1175 0.0879 0.0535 0.3485 0.4235 0.5067
twinfalls 2 0.1849 0.0643 0.0911 0.1367 0.1182 0.0857 0.0514 0.3565 0.4075 0.4664
NU HLT 1 0.1447 0.0670 0.1018 0.1179 0.0902 0.0583 0.0301 0.2600 0.2815 0.2895
twinfalls 3 0.0455 0.0107 0.0348 0.0455 0.0370 0.0277 0.0182 0.1474 0.2305 0.3619

Table 5: Results submitted for the English track in comparison with the baselines (LSBert, TUNER). The best
performances are in bold. Note: ACC@1, MAP@1, Potential@1, and Precision@1 give the same results as per
their definitions

trained masked language models fine tuned with
prompts to select the most appropriate substitutes
and filtering substitution candidates by checking
several resources (e.g. WordNet, corpora). Also
noticeable in the results of the task is that several
“neural” systems under-perform the “non-neural”
TUNER baseline in terms of ACC@1. Overall, it
seems that the use of pre-trained masked language
models fine-tuned to the task together with extra
lexical resources or corpora produce very competi-
tive approaches.

4.2 Portuguese Track

Table 6, presents the results for Portuguese, also
sorted by ACC@1. In this track, and of the 14
submitted runs, only two (from two teams: GMU-
WLV and CENTAL) performed better than the LS-
Bert baseline (as observed in the table, one team
performed equally to LSBert in terms of ACC@1,

but worst in the other metrics). The displayed re-
sults indicate that there is a clear top performing
(considering all metrics) system produced by team
GMU-WLV. Surprisingly, they have relied on a
simple approach to substitute generation and rank-
ing by adopting a pre-trained Portuguese masked
language model, BERTimbau (Souza et al., 2020).
The second best performing system according to
ACC@1 is by the CENTAL team which also relied
on a pre-trained masked language model in which
several strategies were used to provide context to
the target sentence, followed by a ranking proce-
dure based on voting. Similar as in the English
track, in this track, several systems under-perform,
in terms of ACC@1, the shared task non-neural
TUNER baseline.
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Team Run
ACC
@1

ACC@1
@Top1

ACC@2
@Top1

ACC@3
@Top1

MAP
@3

MAP
@5

MAP
@10

Potential
@3

Potential
@5

Potential
@10

GMU-WLV 1 0.4812 0.2540 0.3716 0.3957 0.2816 0.1966 0.1153 0.6871 0.7566 0.8395
CENTAL 1 0.3689 0.1737 0.2433 0.2673 0.1983 0.1344 0.0766 0.5240 0.5641 0.6096
PolyU-CBS 3 0.3262 0.1390 0.1871 0.2139 0.1755 0.1256 0.0732 0.4491 0.5106 0.5748
LSBert-baseline 1 0.3262 0.1577 0.2326 0.2860 0.1904 0.1313 0.0775 0.4946 0.5802 0.6737
PresiUniv 1 0.3074 0.1604 0.2032 0.2379 0.1573 0.1077 0.0580 0.4598 0.5320 0.5935
PresiUniv 3 0.3048 0.1604 0.2032 0.2379 0.1555 0.1062 0.0571 0.4572 0.5294 0.5855
PresiUniv 2 0.2941 0.1604 0.1978 0.2326 0.1494 0.1020 0.0549 0.4411 0.5026 0.5588
PolyU-CBS 1 0.2807 0.1122 0.1470 0.1711 0.1515 0.1059 0.0629 0.3983 0.4705 0.5534
CENTAL 3 0.2245 0.0614 0.1310 0.1925 0.1478 0.1143 0.0769 0.4705 0.6096 0.8021
PolyU-CBS 2 0.2219 0.0882 0.1203 0.1497 0.1112 0.0797 0.0478 0.3315 0.3850 0.4919
TUNER-baseline 1 0.2219 0.1336 0.1604 0.1604 0.1005 0.0623 0.0311 0.2673 0.2673 0.2673
GMU-WLV 2 0.2165 0.0695 0.1363 0.2165 0.1559 0.1243 0.0845 0.5133 0.6550 0.8395
CENTAL 2 0.2058 0.0641 0.1203 0.1898 0.1470 0.1103 0.0726 0.4786 0.6016 0.7673
UoM&MMU 1 0.1711 0.0695 0.0855 0.1096 0.1011 0.0747 0.0430 0.2486 0.2914 0.3636
UoM&MMU 3 0.1577 0.0748 0.1016 0.1283 0.1071 0.0785 0.0461 0.2834 0.3262 0.4171
UoM&MMU 2 0.1363 0.0454 0.0721 0.0962 0.0944 0.0711 0.0418 0.2379 0.2967 0.3609

Table 6: Results submitted for the Portuguese track in comparison with the baselines (LSBert, TUNER). The best
performances are in bold. Note: ACC@1, MAP@1, Potential@1, and Precision@1 give the same results as per
their definitions

4.3 Spanish Track

Results for the Spanish track are presented in Ta-
ble 7. The systems’ runs are sorted by ACC@1.
Several systems outperformed the LSBert base-
line. In particular, the PresiUniv team produced
two competitive approaches which ranked first and
third (tied with team UoM&MMU). However, the
approach did not reach top performance in sev-
eral of the official metrics. The PresiUniv lexi-
cal simplifier relies on a masked language model
approach for substitute selection combined with
a word-embbeding similarity model for meaning
preservation and a filtering stage based on POS-
tagging. The UoM&MMU, GMU-WLV and CEN-
TAL (with approaches already described for En-
glish or Portuguese) also performed well in the
Spanish track, with UoM&MMU and GMU-WLV
achieving top scores for some of the metrics. The
PolyU-CBS team produced a competitive system
which used a Spanish specific masked language
model to generate substitutes and a ranking based
on a combination of sentence language model prob-
abilities and word-embedding similarities. Best
performing systems in this track rely on Spanish-
specific masked language models, corpus-based
information, language model prompts, and syntac-
tic information, among others.

5 Conclusions and Further Work

Lexical Simplification, the task of replacing diffi-
cult words in a sentence by easier to read or under-
stand synonyms preserving the meaning of the orig-

inal sentence is an important problem which has
gained considerable attention in the past few years.
In spite of its popularity for English, the task has at-
tracted less research for other languages. Consider-
ing its social relevance in today’s digital world, we
put forward the first Shared Task on Multilingual
Lexical Simplification addressing three languages:
English, (Brazilian) Portuguese, and Spanish, and
called the research community to challenge the
state of the art. To carry out the task, we have
prepared three datasets, one per each language, fol-
lowing similar data collection and data annotation
approaches, leading the way to the development
of future datasets for additional languages. The
datasets are composed of sentences each containing
a single complex word which needs to be simplified.
Although the datasets were intended only for test-
ing the participating systems, a small (between 10
and 12 instances) portion was released as trial data.
This was particularly useful for several teams to
fine-tune their computational methods or prompts.
The task also featured two baselines: one based
on a competitive neural approach, and another one
on a traditional (dictionary-based) pipe-lined archi-
tecture. The Shared Task attracted a considerable
number of participants with a total of 60 systems’
runs submitted across the three tracks. Several
systems outperformed the competition, setting a
new benchmark in Lexical Simplification. It is ob-
served that pre-trained masked language models
when fine-tuned to the lexical simplification task
produce very competitive approaches in combina-
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Team Run
ACC
@1

ACC@1
@Top1

ACC@2
@Top1

ACC@3
@Top1

MAP
@3

MAP
@5

MAP
@10

Potential
@3

Potential
@5

Potential
@10

PresiUniv 1 0.3695 0.2038 0.2771 0.3288 0.2145 0.1499 0.0832 0.5842 0.6467 0.7255
UoM&MMU 3 0.3668 0.1603 0.2282 0.2690 0.2128 0.1506 0.0899 0.5326 0.6005 0.6929
PresiUniv 3 0.3614 0.2038 0.2581 0.2961 0.1944 0.1318 0.0706 0.5163 0.5543 0.5815
UoM&MMU 2 0.3614 0.1603 0.2445 0.2907 0.2225 0.1657 0.0958 0.5380 0.6168 0.7010
PolyU-CBS 3 0.3586 0.1630 0.2010 0.2364 0.2068 0.1456 0.0850 0.5244 0.5978 0.6793
GMU-WLV 1 0.3532 0.1820 0.2635 0.3288 0.2202 0.1664 0.0994 0.5679 0.6793 0.7717
UoM&MMU 1 0.3451 0.1494 0.2364 0.2907 0.2238 0.1614 0.0949 0.5543 0.6385 0.7038
CENTAL 1 0.3097 0.1467 0.2092 0.2391 0.1826 0.1327 0.0779 0.5000 0.5923 0.6358
LSBert-baseline 1 0.2880 0.0951 0.1440 0.1820 0.1868 0.1346 0.0795 0.4945 0.6114 0.7472
PolyU-CBS 1 0.2826 0.1141 0.1820 0.2255 0.1820 0.1320 0.0780 0.5000 0.5978 0.6820
PresiUniv 2 0.2500 0.1576 0.1793 0.1956 0.1197 0.0740 0.0371 0.3125 0.3152 0.3152
GMU-WLV 2 0.2364 0.0679 0.1304 0.1875 0.1557 0.1256 0.0833 0.4646 0.6168 0.7717
CENTAL 3 0.2201 0.0407 0.0896 0.1331 0.1416 0.1122 0.0745 0.4646 0.6086 0.7581
PolyU-CBS 2 0.2010 0.0869 0.1331 0.1739 0.1417 0.1025 0.0615 0.4103 0.4972 0.6413
CENTAL 2 0.1983 0.0652 0.1114 0.1657 0.1265 0.0979 0.0695 0.4184 0.5570 0.7282
TUNER-baseline 1 0.1195 0.0625 0.0788 0.0842 0.0575 0.0356 0.0184 0.1440 0.1467 0.1494
OEG_UPM 1 0.1032 0.0434 0.0842 0.1086 0.0772 0.0594 0.0389 0.2527 0.3342 0.4456

Table 7: Results submitted for the Spanish track in comparison with the baselines (LSBert, TUNER). The best
performances are in bold. Note: ACC@1, MAP@1, Potential@1, and Precision@1 give the same results as per
their definitions

tion with additional syntactic/lexical resources or
corpora.

The submitted systems relied heavily on pre-
trained language models, which are known to hallu-
cinate (i.e., generate non-factual statements based
on previously seen contexts). In the context of
substitution generation, hallucination may indicate
that incorrect simplifications are returned when the
context is under-specified or unfamiliar. Further
work to ensure that the simplifications generated
by such systems are faithful to the original text and
are factual in nature will help to engender a culture
of security and trust in simplification research.

In our dataset, we have not considered a key
aspect of simplification, which is the user. Our
datasets assume that there is one correct simplifi-
cation that is the best simplification for all users.
In fact, our ‘best’ simplification is collected from
many users and is based on the most frequently
returned simplification. It is interesting to note that
when asked to simplify the same word in the same
context, users will answer differently. It is logical
to conclude then, that a simplification system must
return a term which is appropriate to a user.

Concerning the selected evaluation metrics, al-
though the MAP@K metric takes into account the
order of returned items and it is very useful for
cases when multiple relevant items are expected,
it has the disadvantage that the relevance of the
returned items is binary. So, in further work, it
could be included a metric that could take into

account the possibility of graded or weighted rele-
vance allowing the participants to submit a weight
associated to each prediction and allow ties.

Finally, we note that our evaluation methodol-
ogy is entirely automated, due to the constraints
of a shared task environment. Whilst this is very
useful for developing systems for lexical simplifi-
cation, we strongly encourage those working on
in-production systems to directly evaluate the re-
sulting systems with the user bases that they are
intended for. Automated evaluation is secondary
to human evaluation, and this is especially true in
simplification where the goal is to enable the user
to better understand the original information.
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