Xiaoying Song


2025

pdf bib
Assessing the Human Likeness of AI-Generated Counterspeech
Xiaoying Song | Sujana Mamidisetty | Eduardo Blanco | Lingzi Hong
Proceedings of the 31st International Conference on Computational Linguistics

Counterspeech is a targeted response to counteract and challenge abusive or hateful content. It effectively curbs the spread of hatred and fosters constructive online communication. Previous studies have proposed different strategies for automatically generated counterspeech. Evaluations, however, focus on relevance, surface form, and other shallow linguistic characteristics. This paper investigates the human likeness of AI-generated counterspeech, a critical factor influencing effectiveness. We implement and evaluate several LLM-based generation strategies, and discover that AI-generated and human-written counterspeech can be easily distinguished by both simple classifiers and humans. Further, we reveal differences in linguistic characteristics, politeness, and specificity. The dataset used in this study is publicly available for further research.

pdf bib
Echoes of Discord: Forecasting Hater Reactions to Counterspeech
Xiaoying Song | Sharon Lisseth Perez | Xinchen Yu | Eduardo Blanco | Lingzi Hong
Findings of the Association for Computational Linguistics: NAACL 2025

Hate speech (HS) erodes the inclusiveness of online users and propagates negativity and division. Counterspeech has been recognized as a way to mitigate the harmful consequences. While some research has investigated the impact of user-generated counterspeech on social media platforms, few have examined and modeled haters’ reactions toward counterspeech, despite the immediate alteration of haters’ attitudes being an important aspect of counterspeech. This study fills the gap by analyzing the impact of counterspeech from the hater’s perspective, focusing on whether the counterspeech leads the hater to reenter the conversation and if the reentry is hateful. We compile the Reddit Echoes of Hate dataset (ReEco), which consists of triple-turn conversations featuring haters’ reactions, to assess the impact of counterspeech. To predict haters’ behaviors, we employ two strategies: a two-stage reaction predictor and a three-way classifier. The linguistic analysis sheds insights on the language of counterspeech to hate eliciting different haters’ reactions. Experimental results demonstrate that the 3-way classification model outperforms the two-stage reaction predictor, which first predicts reentry and then determines the reentry type. We conclude the study with an assessment showing the most common errors identified by the best-performing model.

pdf bib
A Dynamic Fusion Model for Consistent Crisis Response
Xiaoying Song | Anirban Saha Anik | Eduardo Blanco | Vanessa Frias-Martinez | Lingzi Hong
Findings of the Association for Computational Linguistics: EMNLP 2025

In response to the urgent need for effective communication with crisis-affected populations, automated responses driven by language models have been proposed to assist in crisis communications. A critical yet often overlooked factor is the consistency of response style, which could affect the trust of affected individuals in responders. Despite its importance, few studies have explored methods for maintaining stylistic consistency across generated responses. To address this gap, we propose a novel metric for evaluating style consistency and introduce a fusion-based generation approach grounded in this metric. Our method employs a two-stage process: it first assesses the style of candidate responses and then optimizes and integrates them at the instance level through a fusion process. This enables the generation of high-quality responses while significantly reducing stylistic variation between instances. Experimental results across multiple datasets demonstrate that our approach consistently outperforms baselines in both response quality and stylistic uniformity.

pdf bib
Speaking at the Right Level: Literacy-Controlled Counterspeech Generation with RAG-RL
Xiaoying Song | Anirban Saha Anik | Dibakar Barua | Pengcheng Luo | Junhua Ding | Lingzi Hong
Findings of the Association for Computational Linguistics: EMNLP 2025

Health misinformation spreading online poses a significant threat to public health. Researchers have explored methods for automatically generating counterspeech to health misinformation as a mitigation strategy. Existing approaches often produce uniform responses, ignoring that the health literacy level of the audience could affect the accessibility and effectiveness of counterspeech. We propose a Controlled-Literacy framework using retrieval-augmented generation (RAG) with reinforcement learning (RL) to generate tailored counterspeech adapted to different health literacy levels. In particular, we retrieve knowledge aligned with specific health literacy levels, enabling accessible and factual information to support generation. We design a reward function incorporating subjective user preferences and objective readability-based rewards to optimize counterspeech to the target health literacy level. Experiment results show that Controlled-Literacy outperforms baselines by generating more accessible and user-preferred counterspeech. This research contributes to more equitable and impactful public health communication by improving the accessibility and comprehension of counterspeech to health misinformation.

2024

pdf bib
Outcome-Constrained Large Language Models for Countering Hate Speech
Lingzi Hong | Pengcheng Luo | Eduardo Blanco | Xiaoying Song
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Automatic counterspeech generation methods have been developed to assist efforts in combating hate speech. Existing research focuses on generating counterspeech with linguistic attributes such as being polite, informative, and intent-driven. However, the real impact of counterspeech in online environments is seldom considered. This study aims to develop methods for generating counterspeech constrained by conversation outcomes and evaluate their effectiveness. We experiment with large language models (LLMs) to incorporate into the text generation process two desired conversation outcomes: low conversation incivility and non-hateful hater reentry. Specifically, we experiment with instruction prompts, LLM finetuning, and LLM reinforcement learning (RL). Evaluation results show that our methods effectively steer the generation of counterspeech toward the desired outcomes. Our analyses, however, show that there are differences in the quality and style depending on the model.