Wanru Zhuang
2025
PATIMT-Bench: A Multi-Scenario Benchmark for Position-Aware Text Image Machine Translation in Large Vision-Language Models
Wanru Zhuang
|
Wenbo Li
|
Zhibin Lan
|
Xu Han
|
Peng Li
|
Jinsong Su
Findings of the Association for Computational Linguistics: EMNLP 2025
Text Image Machine Translation (TIMT) aims to translate texts embedded within an image into another language. Current TIMT studies primarily focus on providing translations for all the text within an image, while neglecting to provide bounding boxes and covering limited scenarios. In this work, we extend traditional TIMT into position-aware TIMT (PATIMT), aiming to support fine-grained and layout-preserving translation, which holds great practical value but remains largely unexplored. This task comprises two key sub-tasks: region-specific translation and full-image translation with grounding. To support existing models on PATIMT and conduct fair evaluation, we construct the PATIMT benchmark (PATIMT-Bench), which consists of 10 diverse real-world scenarios. Specifically, we introduce an Adaptive Image OCR Refinement Pipeline, which adaptively selects appropriate OCR tools based on scenario and refines the results of text-rich images. To ensure evaluation reliability, we further construct a test set, which contains 1,200 high-quality instances manually annotated and reviewed by human experts. After fine-tuning on our data, compact Large Vision-Language Models (LVLMs) achieve state-of-the-art performance on both sub-tasks. Experimental results also highlight the scalability and generalizability of our training data.
2024
Empowering Backbone Models for Visual Text Generation with Input Granularity Control and Glyph-Aware Training
Wenbo Li
|
Guohao Li
|
Zhibin Lan
|
Xue Xu
|
Wanru Zhuang
|
Jiachen Liu
|
Xinyan Xiao
|
Jinsong Su
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing
Diffusion-based text-to-image models have demonstrated impressive achievements in diversity and aesthetics but struggle to generate images with legible visual texts. Existing backbone models have limitations such as misspelling, failing to generate texts, and lack of support for Chinese texts, but their development shows promising potential. In this paper, we propose a series of methods, aiming to empower backbone models to generate visual texts in English and Chinese. We first conduct a preliminary study revealing that BPE tokenization and insufficient learning of cross-attention modules restrict the performance of the backbone models. Based on these observations, we make the following improvements: (1) We design a mixed granularity input strategy to provide more suitable text representations; (2) We propose to augment the conventional training objective with three glyph-aware training losses, which enhance the learning of cross-attention modules and encourage the model to focus on visual texts. Through experiments, we demonstrate that our methods can effectively empower backbone models to generate semantic relevant, aesthetically appealing, and accurate visual text images, while maintaining their fundamental image generation quality.