Venktesh V


2025

pdf bib
Think Right, Not More: Test-Time Scaling for Numerical Claim Verification
Primakov Chungkham | Venktesh V | Vinay Setty | Avishek Anand
Findings of the Association for Computational Linguistics: EMNLP 2025

Fact-checking real-world claims, particularly numerical claims, is inherently complex that require multistep reasoning and numerical reasoning for verifying diverse aspects of the claim. Although large language models (LLMs) including reasoning models have made tremendous advances, they still fall short on fact-checking real-world claims that require a combination of compositional and numerical reasoning. They are unable to understand nuance of numerical aspects, and are also susceptible to the reasoning drift issue, where the model is unable to contextualize diverse information resulting in misinterpretation and backtracking of reasoning process. In this work, we systematically explore scaling test-time compute (TTS) for LLMs on the task of fact-checking complex numerical claims, which entails eliciting multiple reasoning paths from an LLM. We train a verifier model (VERIFIERFC) to navigate this space of possible reasoning paths and select one that could lead to the correct verdict. We observe that TTS helps mitigate the reasoning drift issue, leading to significant performance gains for fact-checking numerical claims. To improve compute efficiency in TTS, we introduce an adaptive mechanism that performs TTS selectively based on the perceived complexity of the claim. This approach achieves 1.8x higher efficiency than standard TTS, while delivering a notable 18.8% performance improvement over single-shot claim verification methods. Our code and data can be found at https://github.com/VenkteshV/VerifierFC

pdf bib
SUNAR: Semantic Uncertainty based Neighborhood Aware Retrieval for Complex QA
Venktesh V | Mandeep Rathee | Avishek Anand
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)

Complex question-answering (QA) systems face significant challenges in retrieving and reasoning over information that addresses multifaceted queries. While large language models (LLMs) have advanced the reasoning capabilities of these systems, the bounded-recall problem persists, where procuring all relevant documents in first-stage retrieval remains a challenge. Missing pertinent documents at this stage leads to performance degradation that cannot be remedied in later stages, especially given the limited context windows of LLMs which necessitate high recall at smaller retrieval depths. In this paper, we introduce SUNAR, a novel approach that leverages LLMs to guide a Neighborhood Aware Retrieval process. SUNAR iteratively explores a neighborhood graph of documents, dynamically promoting or penalizing documents based on uncertainty estimates from interim LLM-generated answer candidates. We validate our approach through extensive experiments on two complex QA datasets. Our results show that SUNAR significantly outperforms existing retrieve-and-reason baselines, achieving up to a 31.84% improvement in performance over existing state-of-the-art methods for complex QA. Our code and data are anonymously available at https://anonymous.4open.science/r/SUNAR-8D36/.

2024

pdf bib
EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning
Kiran Purohit | Venktesh V | Raghuram Devalla | Krishna Mohan Yerragorla | Sourangshu Bhattacharya | Avishek Anand
Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing

Answering reasoning-based complex questions over text and hybrid sources, including tables, is a challenging task. Recent advances in large language models (LLMs) have enabled in-context learning (ICL), allowing LLMs to acquire proficiency in a specific task using only a few demonstration samples (exemplars). A critical challenge in ICL is the selection of optimal exemplars, which can be either task-specific (static) or test-example-specific (dynamic). Static exemplars provide faster inference times and increased robustness across a distribution of test examples. In this paper, we propose an algorithm for static exemplar subset selection for complex reasoning tasks. We introduce EXPLORA, a novel exploration method designed to estimate the parameters of the scoring function, which evaluates exemplar subsets without incorporating confidence information. EXPLORA significantly reduces the number of LLM calls to ~11% of those required by state-of-the-art methods and achieves a substantial performance improvement of 12.24%. We open-source our code and data (https://github.com/kiranpurohit/EXPLORA).