Shaojie Tang


2025

pdf bib
Can Federated Learning Safeguard Private Data in LLM Training? Vulnerabilities, Attacks, and Defense Evaluation
Wenkai Guo | Xuefeng Liu | Haolin Wang | Jianwei Niu | Shaojie Tang | Jing Yuan
Findings of the Association for Computational Linguistics: EMNLP 2025

Fine-tuning large language models (LLMs) with local data is a widely adopted approach for organizations seeking to adapt LLMs to their specific domains. Given the shared characteristics in data across different organizations, the idea of collaboratively fine-tuning an LLM using data from multiple sources presents an appealing opportunity. However, organizations are often reluctant to share local data, making centralized fine-tuning impractical. Federated learning (FL), a privacy-preserving framework, enables clients to retain local data while sharing only model parameters for collaborative training, offering a potential solution. While fine-tuning LLMs on centralized datasets risks data leakage through next-token prediction, the iterative aggregation process in FL results in a global model that encapsulates generalized knowledge, which some believe protects client privacy. In this paper, however, we present contradictory findings through extensive experiments. We show that attackers can still extract training data from the global model, even using straightforward generation methods, with leakage increasing as the model size grows. Moreover, we introduce an enhanced attack strategy tailored to FL, which tracks global model updates during training to intensify privacy leakage. To mitigate these risks, we evaluate privacy-preserving techniques in FL, including differential privacy, regularization-constrained updates and adopting LLMs with safety alignment. Our results provide valuable insights and practical guidelines for reducing privacy risks when training LLMs with FL.

2024

pdf bib
BiKT: Enabling Bidirectional Knowledge Transfer Between Pretrained Models and Sequential Downstream Tasks
Hang Zeng | Chaoyue Niu | Fan Wu | Shaojie Tang | Leihao Pei | Chengfei Lv | Guihai Chen
Findings of the Association for Computational Linguistics: EMNLP 2024

Adapting pretrained models to downstream tasks is important in practical applications. Existing frameworks adapt from an initial pretrained model to each downstream task directly, but ignore the sequential nature of the downstream tasks and their feedback effect on the pretrained model. In this work, we propose a new framework, called BiKT, to enable bidirectional knowledge transfer between pretrained models and downstream tasks in rounds. We model each downstream task in the current round as a target task for adaptation and treat all the tasks in the previous rounds as source tasks for feedback. We design a feedback algorithm by multi-task learning over the labeled data of the source tasks, where task-specific prompts are plugged into the backbone network for decoupling task-exclusive knowledge from task-shared knowledge. We further utilize the good initiation of the new backbone network updated in the feedback phase and the trained prompts of the source tasks for adaptation. Evaluation over 9 GLUE datasets, 6 SuperGLUE datasets, and 8 other datasets using models with different pretraining levels and different parameter scales shows remarkable improvement in full-shot and few-shot adaptation settings.

pdf bib
Shall We Team Up: Exploring Spontaneous Cooperation of Competing LLM Agents
Zengqing Wu | Run Peng | Shuyuan Zheng | Qianying Liu | Xu Han | Brian I. Kwon | Makoto Onizuka | Shaojie Tang | Chuan Xiao
Findings of the Association for Computational Linguistics: EMNLP 2024

Large Language Models (LLMs) have increasingly been utilized in social simulations, where they are often guided by carefully crafted instructions to stably exhibit human-like behaviors during simulations. Nevertheless, we doubt the necessity of shaping agents’ behaviors for accurate social simulations. Instead, this paper emphasizes the importance of spontaneous phenomena, wherein agents deeply engage in contexts and make adaptive decisions without explicit directions. We explored spontaneous cooperation across three competitive scenarios and successfully simulated the gradual emergence of cooperation, findings that align closely with human behavioral data. This approach not only aids the computational social science community in bridging the gap between simulations and real-world dynamics but also offers the AI community a novel method to assess LLMs’ capability of deliberate reasoning.Our source code is available at https://github.com/wuzengqing001225/SABM_ShallWeTeamUp