Rio Yokota


2025

pdf bib
Aurora-M: Open Source Continual Pre-training for Multilingual Language and Code
Taishi Nakamura | Mayank Mishra | Simone Tedeschi | Yekun Chai | Jason T. Stillerman | Felix Friedrich | Prateek Yadav | Tanmay Laud | Vu Minh Chien | Terry Yue Zhuo | Diganta Misra | Ben Bogin | Xuan-Son Vu | Marzena Karpinska | Arnav Varma Dantuluri | Wojciech Kusa | Tommaso Furlanello | Rio Yokota | Niklas Muennighoff | Suhas Pai | Tosin Adewumi | Veronika Laippala | Xiaozhe Yao | Adalberto Barbosa Junior | Aleksandr Drozd | Jordan Clive | Kshitij Gupta | Liangyu Chen | Qi Sun | Ken Tsui | Nour Moustafa-Fahmy | Nicolo Monti | Tai Dang | Ziyang Luo | Tien-Tung Bui | Roberto Navigli | Virendra Mehta | Matthew Blumberg | Victor May | Hiep Nguyen | Sampo Pyysalo
Proceedings of the 31st International Conference on Computational Linguistics: Industry Track

Pretrained language models are integral part of AI applications, but their high computational cost for training limits accessibility. Initiatives such as Bloom and StarCoder aim to democratize access to pretrained models for collaborative community development. Despite these efforts, such models encounter challenges such as limited multilingual capabilities, risks of catastrophic forgetting during continual pretraining, and the high costs of training models from scratch, alongside the need to align with AI safety standards and regulatory frameworks. This paper presents Aurora-M, a 15B parameter multilingual open-source model trained on English, Finnish, Hindi, Japanese, Vietnamese, and code. Continually pretrained from StarCoderPlus on 435B additional tokens, Aurora-M surpasses 2T tokens in total training token count. It is the first open-source multilingual model fine-tuned on human-reviewed safety instructions, thus aligning its development not only with conventional red-teaming considerations, but also with the specific concerns articulated in the Biden-Harris Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence. We evaluate Aurora-M across a wide range of tasks and languages, showcasing its robustness against catastrophic forgetting and its superior performance in multilingual settings, particularly in safety evaluations. We open-source Aurora-M and its variants to encourage responsible open-source development of large language models at https://huggingface.co/aurora-m.

pdf bib
Leveraging High-Resource English Corpora for Cross-lingual Domain Adaptation in Low-Resource Japanese Medicine via Continued Pre-training
Kazuma Kobayashi | Zhen Wan | Fei Cheng | Yuma Tsuta | Xin Zhao | Junfeng Jiang | Jiahao Huang | Zhiyi Huang | Yusuke Oda | Rio Yokota | Yuki Arase | Daisuke Kawahara | Akiko Aizawa | Sadao Kurohashi
Findings of the Association for Computational Linguistics: EMNLP 2025

Limited low-resource language corpora in professional domains like medicine hinder cross-lingual domain adaptation of pre-trained large language models (PLMs). While abundant English medical corpora could complement this scarcity, the effective mixture of English and target language, including machine-translated content, remains underexplored. We examined how linguistic features (e.g., token sizes and language proportions) affect performance on a Japanese–English medical knowledge benchmark. Through continued pre-training of a bilingual PLM on multilingual corpora with varying proportions of English and Japanese texts (both original and machine-translated), we analyzed correlations between linguistic features and fine-grained task performance. Our findings suggest a practical approach to optimizing multilingual corpora for cross-lingual domain adaptation, which requires leveraging specialized knowledge from English corpora while ensuring sufficient coverage of language-specific expressions in a target language (Japanese). Such insights will contribute to the development of multilingual models that effectively leverage English-language resources in various professional domains with low-resource languages.