This paper presents our system for Track 1: Mistake Identification in the BEA 2025 Shared Task on Pedagogical Ability Assessment of AI-powered Tutors. The task involves evaluating whether a tutor’s response correctly identifies a mistake in a student’s mathematical reasoning. We explore four approaches: (1) an ensemble of machine learning models over pooled token embeddings from multiple pretrained langauge models (LMs); (2) a frozen sentence-transformer using [CLS] embeddings with an MLP classifier; (3) a history-aware model with multi-head attention between token-level history and response embeddings; and (4) a retrieval-augmented few-shot prompting system with a large language model (LLM) i.e. GPT 4o. Our final system retrieves semantically similar examples, constructs structured prompts, and uses schema-guided output parsing to produce interpretable predictions. It outperforms all baselines, demonstrating the effectiveness of combining example-driven prompting with LLM reasoning for pedagogical feedback assessment.
Large language models (LLMs) are transforming education by answering questions, explaining complex concepts, and generating content across a wide range of subjects. Despite strong performance on academic benchmarks, they often fail to tailor responses to students’ grade levels. This is a critical need in K-12 education, where age-appropriate vocabulary and explanation are essential for effective learning. Existing models frequently produce outputs that are too advanced or vague for younger learners, and there are no standardized benchmarks to evaluate their ability to adjust across cognitive and developmental stages. To address this gap, we introduce EduAdapt, a benchmark of nearly 48k grade-labeled QA pairs across nine science subjects, spanning Grades 1-12 and grouped into four grade levels. We evaluate a diverse set of open-source LLMs on EduAdapt and find that while larger models generally perform better, they still struggle with generating suitable responses for early-grade students (Grades 1-5). Our work presents the first dataset and evaluation framework for assessing grade-level adaptability in LLMs, aiming to foster more developmentally aligned educational AI systems through better training and prompting strategies. EduAdapt code and datasets are publicly available at https://github.com/NaumanNaeem/EduAdapt.
The rapid adoption of Large Language Models (LLMs) has raised important concerns about the factual reliability of their outputs, particularly in low-resource languages such as Urdu. Existing automated fact-checking systems are predominantly developed for English, leaving a significant gap for the more than 200 million Urdu speakers worldwide. In this work, we present UrduFactBench and UrduFactQA, two novel hand-annotated benchmarks designed to enable fact-checking and factual consistency evaluation in Urdu. While UrduFactBench focuses on claim verification, UrduFactQA targets the factuality of LLMs in question answering. These resources, the first of their kind for Urdu, were developed through a multi-stage annotation process involving native Urdu speakers. To complement these benchmarks, we introduce UrduFactCheck, a modular fact-checking framework that incorporates both monolingual and translation-based evidence retrieval strategies to mitigate the scarcity of high-quality Urdu evidence. Leveraging these resources, we conduct an extensive evaluation of twelve LLMs and demonstrate that translation-augmented pipelines consistently enhance performance compared to monolingual ones. Our findings reveal persistent challenges for open-source LLMs in Urdu and underscore the importance of developing targeted resources. All code and data are publicly available at https://github.com/mbzuai-nlp/UrduFactCheck.
Open-sourced large language models (LLMs) have exhibited remarkable performance in a variety of NLP tasks, often catching up with the closed-sourced LLMs like ChatGPT. Among these open LLMs, LLaMA-3-70B has emerged as the most recent and the most prominent one. However, how LLaMA-3-70B would situate itself in multilingual settings, especially in a rich morphological language like Arabic, has yet to be explored. In this work, we focus to bridge this gap by evaluating LLaMA-3-70B on a diverse set of Arabic natural language generation (NLG) benchmarks. To the best of our knowledge, this is the first study that comprehensively evaluates LLaMA-3-70B on tasks related to Arabic natural language generation. Our study reveals that LLaMA-3-70B lags behind the closed LLMs like ChatGPT, both in modern standard Arabic (MSA) and dialectal Arabic (DA). We further compare the performance of LLaMA-3-70B with our smaller and dedicated finetuned Arabic models. We find that both LLaMA-3-70B and ChatGPT are outperformed by comparatively smaller dedicated Arabic models, indicating the scope for potential improvement with Arabic-focused LLMs.