Hongxin Ding


2025

pdf bib
HyKGE: A Hypothesis Knowledge Graph Enhanced RAG Framework for Accurate and Reliable Medical LLMs Responses
Xinke Jiang | Ruizhe Zhang | Yongxin Xu | Rihong Qiu | Yue Fang | Zhiyuan Wang | Jinyi Tang | Hongxin Ding | Xu Chu | Junfeng Zhao | Yasha Wang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

In this paper, we investigate the retrieval-augmented generation (RAG) based on Knowledge Graphs (KGs) to improve the accuracy and reliability of Large Language Models (LLMs). Recent approaches suffer from insufficient and repetitive knowledge retrieval, tedious and time-consuming query parsing, and monotonous knowledge utilization. To this end, we develop a Hypothesis Knowledge Graph Enhanced (HyKGE) framework, which leverages LLMs’ powerful reasoning capacity to compensate for the incompleteness of user queries, optimizes the interaction process with LLMs, and provides diverse retrieved knowledge. Specifically, HyKGE explores the zero-shot capability and the rich knowledge of LLMs with Hypothesis Outputs to extend feasible exploration directions in the KGs, as well as the carefully curated prompt to enhance the density and efficiency of LLMs’ responses. Furthermore, we introduce the HO Fragment Granularity-aware Rerank Module to filter out noise while ensuring the balance between diversity and relevance in retrieved knowledge. Experiments on two Chinese medical multiple-choice question datasets and one Chinese open-domain medical Q&A dataset with two LLM turbos demonstrate the superiority of HyKGE in terms of accuracy and explainability. Code is available at https://github.com/Artessay/HyKGE.

pdf bib
3DS: Medical Domain Adaptation of LLMs via Decomposed Difficulty-based Data Selection
Hongxin Ding | Yue Fang | Runchuan Zhu | Xinke Jiang | Jinyang Zhang | Yongxin Xu | Weibin Liao | Xu Chu | Junfeng Zhao | Yasha Wang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large Language Models (LLMs) excel in general language tasks, motivating their adaptation to specialized domains such as healthcare. Effective domain adaptation typically involves supervised fine-tuning (SFT) on carefully selected instruction-tuning data. Current data selection methods adopt a data-centric approach, relying on external annotations and heuristics to identify externally defined high-quality or challenging data. Our exploratory experiments highlight this approach fails to improve the model’s domain performance, due to misalignment between selected data and the model’s knowledge distribution. To tackle this, we propose Decomposed Difficulty-based Data Selection (3DS), a two-stage model-centric data selection framework that aligns data selection with the model’s distribution. 3DS employs Prompt-Driven Data Selection to filter out noise based on the model’s knowledge via explicit alignment in Stage#1, then adopts Decomposed Difficulty-based Data Selection to guide selection via three novel data difficulty metrics, including Instruction Understanding, Response Confidence, and Response Correctness in Stage#2, enhanced by an attention-based importance weighting mechanism for accurate calibration.Extensive experiments in the healthcare domain show 3DS outperforms existing methods by up to 2.97% accuracy, with additional validation in law and general domains, confirming its generalization ability. Our dataset and code are open-sourced at https://github.com/PuppyKnightUniversity/3DS.

2024

pdf bib
ITAKE: Interactive Unstructured Text Annotation and Knowledge Extraction System with LLMs and ModelOps
Jiahe Song | Hongxin Ding | Zhiyuan Wang | Yongxin Xu | Yasha Wang | Junfeng Zhao
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 3: System Demonstrations)

Extracting structured knowledge from unstructured text data has a wide range of application prospects, and a pervasive trend is to develop text annotation tools to help extraction. However, they often encounter issues such as single scenario usage, lack of effective human-machine collaboration, insufficient model supervision, and suboptimal utilization of Large Language Models (LLMs). We introduces an interactive unstructured text annotation and knowledge extraction system that synergistically integrates LLMs and ModelOps to alleviate these issues. The system leverages LLMs for enhanced performance in low-resource contexts, employs a ModelOps platform to monitor models throughout their lifecycle, and amalgamates interactive annotation methods with online machine learning and active learning. The demo video and website are now publicly available.