Emily Diana


2025

pdf bib
Gender Inclusivity Fairness Index (GIFI): A Multilevel Framework for Evaluating Gender Diversity in Large Language Models
Zhengyang Shan | Emily Diana | Jiawei Zhou
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

We present a comprehensive evaluation of gender fairness in large language models (LLMs), focusing on their ability to handle both binary and non-binary genders. While previous studies primarily focus on binary gender distinctions, we introduce the Gender Inclusivity Fairness Index (GIFI), a novel and comprehensive metric that quantifies the diverse gender inclusivity of LLMs. GIFI consists of a wide range of evaluations at different levels, from simply probing the model with respect to provided gender pronouns to testing various aspects of model generation and cognitive behaviors under different gender assumptions, revealing biases associated with varying gender identifiers. We conduct extensive evaluations with GIFI on 22 prominent open-source and proprietary LLMs of varying sizes and capabilities, discovering significant variations in LLMs’ gender inclusivity. Our study highlights the importance of improving LLMs’ inclusivity, providing a critical benchmark for future advancements in gender fairness in generative models.

pdf bib
Mitigate One, Skew Another? Tackling Intersectional Biases in Text-to-Image Models
Pushkar Shukla | Aditya Chinchure | Emily Diana | Alexander Tolbert | Kartik Hosanagar | Vineeth N. Balasubramanian | Leonid Sigal | Matthew A. Turk
Findings of the Association for Computational Linguistics: EMNLP 2025

The biases exhibited by text-to-image (TTI) models are often treated as independent, though in reality, they may be deeply interrelated. Addressing bias along one dimension—such as ethnicity or age—can inadvertently affect another, like gender, either mitigating or exacerbating existing disparities. Understanding these interdependencies is crucial for designing fairer generative models, yet measuring such effects quantitatively remains a challenge. To address this, we introduce BiasConnect, a novel tool for analyzing and quantifying bias interactions in TTI models. BiasConnect uses counterfactual interventions along different bias axes to reveal the underlying structure of these interactions and estimates the effect of mitigating one bias axis on another. These estimates show strong correlation (+0.65) with observed post-mitigation outcomes.Building on BiasConnect, we propose InterMit, an intersectional bias mitigation algorithm guided by user-defined target distributions and priority weights. InterMit achieves lower bias (0.33 vs. 0.52) with fewer mitigation steps (2.38 vs. 3.15 average steps), and yields superior image quality compared to traditional techniques. Although our implementation is training-free, InterMit is modular and can be integrated with many existing debiasing approaches for TTI models, making it a flexible and extensible solution.