2025
pdf
bib
abs
Adaptive Tool Use in Large Language Models with Meta-Cognition Trigger
Wenjun Li
|
Dexun Li
|
Kuicai Dong
|
Cong Zhang
|
Hao Zhang
|
Weiwen Liu
|
Yasheng Wang
|
Ruiming Tang
|
Yong Liu
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Large language models (LLMs) have shown remarkable emergent capabilities, transforming the execution of functional tasks by leveraging external tools for complex problems that require specialized processing or up-to-date data. While existing research expands LLMs access to diverse tools (e.g., program interpreters, search engines, calculators), the necessity of using these tools is often overlooked, leading to indiscriminate tool invocation. This naive approach raises two key issues: increased latency due to unnecessary tool calls, and potential errors resulting from faulty interactions with external tools. In this paper, we introduce meta-cognition as a proxy for LLMs self-assessment of their capabilities, reflecting the model’s awareness of its own limitations. Based on this, we propose MeCo, an adaptive decision-making strategy for external tool use. MeCo quantifies metacognitive scores by capturing high-level cognitive signals in the representation space, guiding when to invoke tools. Notably, MeCo is fine-tuning-free and incurs minimal cost. Experiments across multiple backbone models and benchmarks show that MeCo reliably detects LLMs’ internal cognitive signals and significantly improves tool-use decision-making.
pdf
bib
abs
Planning with Multi-Constraints via Collaborative Language Agents
Cong Zhang
|
Xin Deik Goh
|
Dexun Li
|
Hao Zhang
|
Yong Liu
Proceedings of the 31st International Conference on Computational Linguistics
The rapid advancement of neural language models has sparked a new surge of intelligent agent research. Unlike traditional agents, large language model-based agents (LLM agents) have emerged as a promising paradigm for achieving artificial general intelligence (AGI) due to their superior reasoning and generalization capabilities. Effective planning is crucial for the success of LLM agents in real-world tasks, making it a highly pursued topic in the community. Current planning methods typically translate tasks into executable action sequences. However, determining a feasible or optimal sequence for complex tasks with multiple constraints at fine granularity, which often requires compositing long chains of heterogeneous actions, remains challenging. This paper introduces Planning with Multi-Constraints (PMC), a zero-shot methodology for collaborative LLM-based multi-agent systems that simplifies complex task planning with constraints by decomposing it into a hierarchy of subordinate tasks. Each subtask is then mapped into executable actions. PMC was assessed on two constraint-intensive benchmarks, TravelPlanner and API-Bank. Notably, PMC achieved an average 42.68% success rate on TravelPlanner, significantly higher than GPT-4 (2.92%), and outperforming GPT-4 with ReAct on API-Bank by 13.64%, showing the immense potential of integrating LLM with multi-agent systems. We also show that PMC works with small LLM as the planning core, e.g., LLaMA-3.1-8B.
pdf
bib
abs
MMDocIR: Benchmarking Multimodal Retrieval for Long Documents
Kuicai Dong
|
Yujing Chang
|
Derrick Goh Xin Deik
|
Dexun Li
|
Ruiming Tang
|
Yong Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing
Multimodal document retrieval aims to identify and retrieve various forms of multimodal content, such as figures, tables, charts, and layout information from extensive documents. Despite its increasing popularity, there is a notable lack of a comprehensive and robust benchmark to effectively evaluate the performance of systems in such tasks. To address this gap, this work introduces a new benchmark, named MMDocIR, that encompasses two distinct tasks: page-level and layout-level retrieval. The former evaluates the performance of identifying the most relevant pages within a long document, while the later assesses the ability of detecting specific layouts, providing a more fine-grained measure than whole-page analysis. A layout refers to a variety of elements, including textual paragraphs, equations, figures, tables, or charts. The MMDocIR benchmark comprises a rich dataset featuring 1,685 questions annotated by experts and 173,843 questions with bootstrapped labels, making it a valuable resource in multimodal document retrieval for both training and evaluation. Through rigorous experiments, we demonstrate that (i) visual retrievers significantly outperform their text counterparts, (ii) MMDocIR training set effectively enhances the performance of multimodal document retrieval and (iii) text retrievers leveraging VLM-text significantly outperforms retrievers relying on OCR-text.
pdf
bib
abs
RAPID: Efficient Retrieval-Augmented Long Text Generation with Writing Planning and Information Discovery
Hongchao Gu
|
Dexun Li
|
Kuicai Dong
|
Hao Zhang
|
Hang Lv
|
Hao Wang
|
Defu Lian
|
Yong Liu
|
Enhong Chen
Findings of the Association for Computational Linguistics: ACL 2025
Generating knowledge-intensive and comprehensive long texts, such as encyclopedia articles, remains significant challenges for Large Language Models. It requires not only the precise integration of facts but also the maintenance of thematic coherence throughout the article. Existing methods, such as multi-agent discussion, often struggle with issues like hallucinations, topic incoherence, and significant latency. To address these challenges, we propose RAPID, an efficient **R**etrieval-**A**ugmented long text generation framework with writing **P**lanning and **I**nformation **D**iscovery. RAPID consists of three main modules: (1) Retrieval-augmented preliminary outline generation to reduce hallucinations, (2) Attribute-constrained search for efficient information discovery, (3) Plan-guided article generation for enhanced coherence. Extensive experiments on our newly compiled benchmark dataset, FreshWiki-2024, demonstrate that RAPID significantly outperforms state-of-the-art methods across a wide range of evaluation metrics (long-text generation, outline quality, latency, etc). Our work provides a robust and efficient solution to the challenges of automated long-text generation.
pdf
bib
abs
ACEBench: A Comprehensive Evaluation of LLM Tool Usage
Chen Chen
|
Xinlong Hao
|
Weiwen Liu
|
Xu Huang
|
Xingshan Zeng
|
Shuai Yu
|
Dexun Li
|
Yuefeng Huang
|
Xiangcheng Liu
|
Wang Xinzhi
|
Wu Liu
Findings of the Association for Computational Linguistics: EMNLP 2025
Large Language Models (LLMs) have demonstrated significant potential in decision-making and reasoning, particularly when integrated with various tools to effectively solve complex problems. However, existing benchmarks for evaluating LLMs’ tool usage face several limitations: (1) limited evaluation scenarios, often lacking assessments in real multi-turn dialogue contexts; (2) narrow evaluation dimensions, with insufficient detailed assessments of how LLMs use tools; and (3) reliance on LLMs or real API executions for evaluation, which introduces significant overhead. To address these challenges, we introduce ACEBench, a comprehensive benchmark for assessing tool usage in LLMs. ACEBench categorizes data into three primary types based on evaluation methodology: Normal, Special, and Agent. “Normal” evaluates tool usage in basic scenarios; “Special” evaluates tool usage in situations with ambiguous or incomplete instructions; “Agent” evaluates tool usage through multi-agent interactions to simulate real-world, multi-turn dialogues. We conducted extensive experiments using ACEBench, analyzing various LLMs in-depth and providing a more granular examination of error causes across different data types.