2025
pdf
bib
abs
LAD: LoRA-Adapted Diffusion
Ruurd Jan Anthonius Kuiper
|
Lars de Groot
|
Bram van Es
|
Maarten van Smeden
|
Ayoub Bagheri
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: System Demonstrations
Autoregressive models dominate text generation but suffer from left-to-right decoding constraints that limit efficiency and bidirectional reasoning. Diffusion-based models offer a flexible alternative but face challenges in adapting to discrete text efficiently. We propose LAD (LoRA-Adapted Diffusion), a framework for non-autoregressive generation that adapts LLaMA models for iterative, bidirectional sequence refinement using LoRA adapters. LAD employs a structural denoising objective combining masking with text perturbations (swaps, duplications and span shifts), enabling full sequence editing during generation. We aim to demonstrate that LAD could be a viable and efficient alternative to training diffusion models from scratch, by providing both validation results as well as two interactive demos directly available online:https://ruurdkuiper.github.io/tini-lad/https://huggingface.co/spaces/Ruurd/tini-ladInference and training code:https://github.com/RuurdKuiper/lad-code
pdf
bib
abs
Assessing the Reliability of LLMs Annotations in the Context of Demographic Bias and Model Explanation
Hadi Mohammadi
|
Tina Shahedi
|
Pablo Mosteiro
|
Massimo Poesio
|
Ayoub Bagheri
|
Anastasia Giachanou
Proceedings of the 6th Workshop on Gender Bias in Natural Language Processing (GeBNLP)
Understanding the sources of variability in annotations is crucial for developing fair NLP systems, especially for tasks like sexism detection where demographic bias is a concern. This study investigates the extent to which annotator demographic features influence labeling decisions compared to text content. Using a Generalized Linear Mixed Model, we quantify this influence, finding that while statistically present, demographic factors account for a minor fraction (~8%) of the observed variance, with tweet content being the dominant factor. We then assess the reliability of Generative AI (GenAI) models as annotators, specifically evaluating if guiding them with demographic personas improves alignment with human judgments. Our results indicate that simplistic persona prompting often fails to enhance, and sometimes degrades, performance compared to baseline models. Furthermore, explainable AI (XAI) techniques reveal that model predictions rely heavily on content-specific tokens related to sexism, rather than correlates of demographic characteristics. We argue that focusing on content-driven explanations and robust annotation protocols offers a more reliable path towards fairness than potentially persona simulation.
2023
pdf
bib
abs
On Text-based Personality Computing: Challenges and Future Directions
Qixiang Fang
|
Anastasia Giachanou
|
Ayoub Bagheri
|
Laura Boeschoten
|
Erik-Jan van Kesteren
|
Mahdi Shafiee Kamalabad
|
Daniel Oberski
Findings of the Association for Computational Linguistics: ACL 2023
Text-based personality computing (TPC) has gained many research interests in NLP. In this paper, we describe 15 challenges that we consider deserving the attention of the NLP research community. These challenges are organized by the following topics: personality taxonomies, measurement quality, datasets, performance evaluation, modelling choices, as well as ethics and fairness. When addressing each challenge, not only do we combine perspectives from both NLP and social sciences, but also offer concrete suggestions. We hope to inspire more valid and reliable TPC research.