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Message from the Workshop Chairs

The development of intelligent systems capable of producing concise, fluent, and accurate summaries re-
mains a longstanding objective in natural language processing. Despite the remarkable progress brought
by large language models, summarization continues to play a critical role in distilling, structuring, and
verifying information at scale. Challenges such as faithfulness, controllability, efficiency, and domain
adaptation remain open, and summarization research provides valuable insights into addressing these
broader issues of generation and understanding. This workshop serves as a forum for the exchange of
ideas toward these goals. It brings together experts from various disciplines, including summarization,
language generation, and cognitive and psycholinguistics, to discuss key issues in automatic summariza-
tion. The agenda covers a wide array of topics, such as innovative paradigms and frameworks, multilin-
gual and cross-lingual setups, shared tasks, information integration, novel evaluation methods, applied
research, and future research directions. The workshop is aimed at fostering a cohesive research commu-
nity, expediting the transfer of knowledge, and developing new tools, datasets, and resources to meet the
needs of academia, industry, and government.
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NSF-SCIFY: Mining the NSF Awards Database for Scientific Claims

Delip Rao*†, Weiqiu You†, Eric Wong, Chris Callison-Burch
University of Pennsylvania

Philadelphia, PA, USA
{delip, weiqiuy, exwong, ccb}@seas.upenn.edu

Abstract
We introduce NSF-SCIFY, a comprehensive
dataset of scientific claims and investigation
proposals extracted from National Science
Foundation award abstracts. While previous
scientific claim verification datasets have been
limited in size and scope, NSF-SCIFY rep-
resents a significant advance with 2.8 mil-
lion claims from 400,000 abstracts spanning
all science and mathematics disciplines. We
present two focused subsets: NSF-SCIFY-
MATSCI with 114,000 claims from materials
science awards, and NSF-SCIFY-20K with
135,000 claims across five NSF directorates.
Using zero-shot prompting, we develop a scal-
able approach for joint extraction of scientific
claims and investigation proposals. We demon-
strate the dataset’s utility through three down-
stream tasks: non-technical abstract generation,
claim extraction, and investigation proposal ex-
traction. Fine-tuning language models on our
dataset yields substantial improvements, with
relative gains often exceeding 100%, particu-
larly for claim and proposal extraction tasks.
Our error analysis reveals that extracted claims
exhibit high precision but lower recall, suggest-
ing opportunities for further methodological
refinement. NSF-SCIFY enables new research
directions in large-scale claim verification, sci-
entific discovery tracking, and meta-scientific
analysis.

1 Introduction

The overall growth rate of scientific publications
is estimated to be 4% annually, with a doubling
time of 17 years (Bornmann et al., 2021). Within
this deluge, researchers, reviewers, and the gen-
eral public struggle to separate substantiated claims
from spurious ones—whether it is the “quantum
supremacy” assertions in computing, the short-
lived excitement over LK-99 superconductors3,

*Corresponding author, †co-first author
3for an entertaining digression c.f., https://en.

wikipedia.org/wiki/LK-99

Figure 1: A sample record from our dataset. Each record
contains 1) Award ID and title, 2) NSF Directorate,
3) Technical and non-technical abstracts, 4) Scientific
Claims, 5) Investigation Proposals, and 6) Associated
publications, when present.

or the misunderstanding surrounding microplastic
leaches from black plastic spatulas4. Manual verifi-
cation of ever growing body of scientific claims has
become intractable, yet the economic and societal
consequences of unverified claims are increasingly
severe.

Wadden et al. (2020) introduced the task of sci-
entific claim verification with the SciFACT dataset,
focusing primarily on automatic verification of sci-
entific claims. Follow up works (see Section 2
for a detailed account) have mostly focused on the
healthcare, building datasets from scientific pub-
lications, and modest-sized dataset creation. In
this work, we relax all of these aspects and look at
building at least an order of magnitude large-scale

4c.f., https://nationalpost.com/news/canada/
black-plastic
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Dataset # claims # docs Evidence Source Domain

SciFACT (Wadden et al., 2020) 1.4K 5K Research papers Biomedical
PubHEALTH (Kotonya and Toni, 2020) 11.8K 11.8K Fact-checking sites Public health
CLIMATE-FEVER (Diggelmann et al., 2020) 1.5K 7.5K Wikipedia articles Climate change
HealthVer (Sarrouti et al., 2021) 1.8K 738 Research papers Healthcare
COVID-Fact (Saakyan et al., 2021) 4K 4K Research, news COVID
CoVERT (Mohr et al., 2022) 300 300 Research, news Biomedical
SciFACT-Open (Wadden et al., 2022) 279 500K Research papers Biomedical

NSF-SCIFY-MATSCI (ours) 114K 16K NSF award abstracts Material Science
NSF-SCIFY-20K (ours) 135K 20K NSF award abstracts All Science & Math
NSF-SCIFY (ours) 2.8M 400K NSF award abstracts All Science & Math

Table 1: This table comparison clearly illustrates the scale advantage of NSF-SciFy over existing scientific claim
verification datasets. While previous datasets like SciFACT and PubHEALTH contain at most thousands of claims
from published research papers or fact-checking sources, our NSF-SCIFY-MATSCI and NSF-SCIFY-20K datasets
individually contribute more than 100K claims. The full NSF-SCIFY dataset represents an order-of-magnitude
increase with 2.8M claims across 400K abstracts spanning all science & math disciplines. This work introduces
grant abstracts as a novel, untapped source for scientific claim extraction, complementing existing approaches that
focus on published literature, news articles, or social media content.

scientific claim dataset covering all of basic science.
We envision building of such large-scale, scientific
claim datasets to help future work on robust scien-
tific claim verification systems.

We introduce NSF-SCIFY1, a comprehensive
dataset of claims and investigation proposals ex-
tracted from National Science Foundation (NSF)
award abstracts. We choose NSF abstracts as our
source material for several reasons:

1. NSF is a primary driver of U.S. scientific in-
novation, funding approximately 25% of all
federally supported basic research, spanning
the entirety of science and math areas, with an
annual budget of $9.9 billion (FY 2023). Any
claim dataset derived from the NSF awards
database should faithfully represent the scien-
tific Zeitgeist.

2. NSF’s rigorous subject matter expert-review
process provides an high-quality filter for the
claims made in funded proposals.

3. The public availability and permissive usage
terms of the NSF awards database makes it an
excellent resource for open science research.

4. Previous datasets on scientific claims have
been derived from scientific papers, but claims
in scientific grants, and particularly investiga-
tion proposals, remain unstudied.

While not this focus of this paper, grant award ab-
stracts, additionally, provide a unique opportunity
to study the relationship between what researchers
claim and what they propose to investigate. This
could offer valuable insights into scientific practice

1Short for “NSF SCIentific FeasibilitY”.

and the evolution of research questions.
In this paper, we make the following contribu-

tions: (1) We introduce NSF-SCIFY, the largest
scientific claim dataset to date with 2.8M claims
extracted from 400K NSF award abstracts, estab-
lishing grant proposals as a novel source for scien-
tific claim extraction; (2) We create NSF-SCIFY-
MATSCI focusing exclusively on materials science
with 114K extracted claims from 16K abstracts.
This is the first materials science claim dataset and,
in number of extracted claims, this alone is an or-
der of magnitude bigger than the largest publicly
available claim dataset; In addition, we also cre-
ate NSF-SCIFY-20K with 135K claims spanning
five NSF directorates. (3) We develop a zero-shot
prompting approach for joint extraction of scien-
tific claims and investigation proposals as a scal-
able way to bootstrap high-precision, large-scale
scientific claim datasets; (4) We present novel eval-
uation metrics for claim/proposal extraction based
on LLM judgments, showing that fine-tuned mod-
els significantly outperform base models; and (5)
Finally, we release all datasets and trained models
from our work for unfettered research and com-
mercial use. Our dataset and methods enable new
opportunities for large-scale claim verification, sci-
entific discovery tracking, and meta-scientific re-
search.

2 Related Work

Scientific claim extraction and verification has
emerged as an important research area as the vol-
ume of scientific literature continues to grow expo-
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nentially. Previous work has primarily focused on
claims from published papers, fact-checking sites,
and news articles.

Scientific Claim Datasets Several datasets have
been developed for scientific claim verification, but
all have focused on claims from published litera-
ture, while we undertake the study of grant award
abstracts. SciFACT (Wadden et al., 2020) con-
tains 1,400 scientific claims derived from research
papers in the biomedical domain. PubHEALTH
(Kotonya and Toni, 2020) includes 11,800 claims
from journalists and fact-checkers in public health.
CLIMATE-FEVER (Diggelmann et al., 2020) com-
piled 1,500 claims from news articles about climate
change. HealthVer (Sarrouti et al., 2021) extracted
1,800 claims from search queries related to health
topics. COVID-Fact (Saakyan et al., 2021) and
CoVERT (Mohr et al., 2022) focused on COVID-
19 related claims from social media. SciFact-Open
(Wadden et al., 2022) expanded the original SciFact
dataset using information retrieval pooling, yet it
still remains health-care focused and a few orders
of magnitude smaller than our largest dataset.

Table 1 situates existing scientific claim datasets
with our NSF-SCIFY datasets, highlighting the sig-
nificantly larger scale of our contribution (2.8 mil-
lion claims in NSF-SCIFY, 135,000 claims inNSF-
SCIFY-20K and 114,000 claims in NSF-SCIFY-
MATSCI), broad topic coverage (all of science and
math), and novelty of data source (grant abstracts).
See Figure 2.

Meta Science and Social Science Previous
works have examined grants data in social science
and meta-science contexts. For example, Park et al.
(2024) examine the relationship between interdisci-
plinary grants and the impact of papers they support
and Xu et al. (2022) study the influence of research
funding on team structure using grant data. While
these are tenuously connected to our work, we list
them for the sake of completeness.

3 Building NSF-SCIFY

3.1 Data Collection

We downloaded the entire NSF Awards database2

in XML format, containing more than 0.5 million
awards from 1970 through September 2024. After
parsing, we obtained 412,155 parseable awards,
which we call NSF-SCIFY.

2https://www.nsf.gov/awardsearch/
advancedSearch.jsp

Mathematical and Physical Sciences

Mathematical and Physical Sciences

Geosciences

Engineering

Computer and Information
Science and Engineering

Biological Sciences

STEM Education

Social Behavioral and
Economic Sciences

Technology Innovation
Program

Other
(Materials Science)

3.9%

(non Materials Science)

16.5%

13.8%

13
.6

% 12.2%
12.1%

8.7%

8.2%

4.
7%6.
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Figure 2: Distribution of awards areas as represented by
the National Science Foundation directorates in NSF-
SCIFY, illustrating the breadth and comprehensiveness
of scientific claims in our dataset. The NSF-SCIFY-
MATSCI subset spanning all of materials science awards
represents 3.9% of the entire dataset.

In this paper, we focus on all awards from the
Division of Materials Research (DMR), which is
responsible for most materials science awards at
the NSF. This subset, called NSF-SCIFY-MATSCI,
contains 16,031 awards, representing approxi-
mately 3.2% of the entire NSF awards database.
We chose materials science as our focus due to its
interdisciplinary nature and technological impor-
tance. In addition, we build NSF-SCIFY-20K, a
different subset of 20K awards spanning 5 NSF di-
rectorates — Mathematical and Physical Sciences
(MPS), Geological Sciences (GEO), Engineering
(ENG), Computer and Information Science and En-
gineering (CSE), and Biological Sciences (BIO).

3.2 Data Processing

As Figure 1 illustrates, each record in NSF-SCIFY-
MATSCI typically contains:

1. Award ID, title, and year.
2. Directorate and division information
3. Technical abstract
4. Non-technical abstract (present in ∼81% of

awards)
5. Scientific claims made in the abstracts
6. Investigation proposals in the abstracts
7. Publications resulting from the grant (when

available)
The practice of updating awards with resulting

publications is relatively recent, primarily occur-
ring from 2014 onwards. For awards where pub-
lications are present, we extracted the DOIs and

3
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resolved them to obtain titles, abstracts, and publi-
cation URLs.

3.3 Claim and Investigation Proposal
Extraction

To extract scientific claims and investigation pro-
posals from the award abstracts, we developed a
zero-shot prompting approach using Anthropic’s
Claude-3.53 model. Our prompt instructed the
model to identify two types of statements:

1. Verifiable claims: Statements that the abstract
claims to be true or states as assumptions, ei-
ther explicitly or implicitly.

2. Investigation proposals: Forward-looking
statements that propose specific research ac-
tivities as part of the award.

We structured the prompt to return a JSON ob-
ject containing the award ID, technical abstract,
non-technical abstract, a list of verifiable claims,
and a list of investigation proposals. To maintain
consistency and quality, we set temperature to zero
for all extractions. See Appendix A for the exact
prompt and Appendix G for sample claims and
investigation proposals.

We performed qualitative experiments with sev-
eral prompt variants and our analysis showed that
jointly extracting claims and investigation pro-
posals helped maintain the relevance of extracted
claims. When claims were extracted without also
extracting investigation proposals, the model often
confused forward-looking statements about pro-
posed investigations as factual claims.

4 Dataset Analysis

NSF-SCIFY The full dataset contains 412,155
award abstracts spanning from 1970 to 2024, with
2.8 million scientific claims and corresponding in-
vestigation proposals.

NSF-SCIFY-MATSCI This materials science
subset, which is the focus of this preprint, contains:

• 16,042 awards with each with a technical and
non-technical abstract

• 114K extracted scientific claims (average of
7± 2 claims per abstract-pair)

• 145K extracted investigation proposals (aver-
age of 9± 3 proposals per abstract-pair)

• 2,953 awards with linked publications (18.4%
of the dataset). Such awards had anywhere
between 1 – 4 publications.

3Claude-3.5-Sonnet-20240620 accessed between Sep-
Oct. 2024, to be specific

Capability/
Application of Technology/Method

(32.8%)

Statement of Problem/
Knowledge Gap

(21.0%)

Observed Phenomenon/Property
(18.9%)

Established
Scientific

Fact/Principle
(9.8%)

Definition/
Classification

(6.8%)

Exp. Result/
Finding...

(5.2%)

Process/
Mech...
(3.6%)

...
(2.0%)

Figure 3: A treemap of the scientific claim categories in
NSF awards. See Section 4.2 for descriptions of these
categories.

NSF-SCIFY-20K For building models across
all NSF directorates, we take 20,000 sample subset
of NSF-SCIFY, by stratifying across 5 directorates.

• 20,001 awards with each with a technical and
non-technical abstract

• 135K extracted scientific claims (average of
7± 2 claims per abstract-pair)

• 139K extracted investigation proposals (aver-
age of 7± 2 proposals per abstract-pair)

4.1 Technical vs. Non-Technical Abstracts

We investigated the differences between technical
and non-technical abstracts in our dataset. Using
a symmetric BLEU score to measure textual simi-
larity between paired abstracts, we found that only
202 (1.5%) out of 13,025 technical/non-technical
abstract pairs had a similarity score greater than
0.6, suggesting that the non-technical abstracts are
not simply copied from the technical abstracts.

Since grant abstracts are previously unexamined
in literature, we further investigated the stylistic
differences between technical and non-technical
abstracts using pre-trained document embedding
models. Figure 5 compares content embeddings
from SPECTER (Cohan et al., 2020) and style em-
beddings from STEL (Patel et al., 2025). Using
these embeddings with a linear SVM classifier, we
achieved F1 scores of 90.99 (SPECTER), 88.42
(STEL), and 89.99 (concatenated), demonstrating
that the abstracts are distinguishable both in content
and style.

4.2 A Taxonomy of Scientific Claims in NSF
Award Abstracts

To understand the nature of assertions made in
NSF award abstracts, we analyzed and grouped
810 extracted claims over a stratified sample of 120
awards spanning 5 NSF directorates – MPS, GEO,
ENG, CSE, and BIO – resulting in the identifica-

4



tion of eight distinct categories. These categories
encompass a range of scientific statements: Estab-
lished Scientific Fact/Principle refers to claims
that state well-accepted scientific laws or widely
known facts. Observed Phenomenon/Property in-
cludes claims describing natural phenomena or ma-
terial properties that have been observed. Claims
detailing the function, potential, or application of a
specific technology, method, or material fall under
Capability/Application of Technology/Method.
Hypothesis/Theoretical Prediction categorizes
claims that propose theoretical explanations, pre-
dictions, or hypotheses requiring further verifi-
cation. Specific results, findings, or statements
about measurability are grouped under Experimen-
tal Result/Finding/Measurability. Statement
of Problem/Knowledge Gap highlights existing
problems, limitations, or gaps in current knowledge
or technology. Claims that define terms or classify
entities are categorized as Definition/Classifica-
tion. Finally, Process/Mechanism Description
includes claims that describe physical or chemical
processes or mechanisms. Figure 3 shows the dis-
tribution of these claim types, and Table 10 lists
examples for each of these types. As one might
expect in grant applications, the most common
claim type is “Capability/Application of Technol-
ogy/Method” (32.8%), followed by “Statement of
Problem/Knowledge Gap” (21.0%) and “Observed
Phenomenon/Property” (18.9%).

4.3 Evaluating the Extracted Verifiable
Claims

To evaluate how good the claim extraction from
Section 3.3 is, we annotated the abstracts in the
120 sampled awards (see Section 4.2) with claims
and computed precision and recall. Figure 4 sum-
marizes the precision, recall, and F1-scores of the
extracted claims for all 6 areas of interest. The
areas of interest include, Materials Science (DMR)
Mathematical and Physical Sciences except Ma-
terials Science (MPS-DMR), Geological Sciences
(GEO), Engineering (ENG), Computer and Infor-
mation Science and Engineering (CSE), and Bio-
logical Sciences (BIO). We notice from Figure 4
a near perfect precision for the extracted claims in
all areas. Although our LLM-derived dataset suf-
fers from recall, we hope that training on a massive
corpus of high quality claims will result in useful
claim extraction systems. We consider our findings
on claim extraction as directional and skip a similar
evaluation for investigation proposals.

0.5 0.6 0.7 0.8 0.9 1.0
Score

DMR

MPS-DMR

GEO

ENG

CSE

BIO

Aw
ar

d 
A

re
a

Metric
Precision
Recall
F1-score

Figure 4: A Cleveland dot plot of precision, recall, and
f1-score across different NSF Award Areas for claims
extracted via Claude (See Section 3.3). Error bars de-
note standard deviation (bootstrap N=1000). See Sec-
tion 4.3 for analysis.

5 Tasks, Metrics, and Experiments

We designed three NLP tasks to evaluate the utility
of our dataset:

1. The Non-technical Abstract Generation task
translates dense, technical grant abstracts into ac-
cessible language for broader science communi-
cation. Motivated by capturing the core scientific
essence while navigating stylistic and content dif-
ferences between technical and lay summaries, this
task uses the dataset’s paired examples (common
in NSF awards) to train models for this nuanced
transformation.
2. The Abstract to Scientific Claims Extrac-
tion task automates identifying verifiable asser-
tions—the core of scientific discourse—from grant
abstracts, which capture these claims at an early,
pre-publication stage. Significant performance
gains post-fine-tuning highlight the dataset’s ef-
fectiveness in teaching models to pinpoint these
crucial statements.
3. The Abstract to Investigation Proposals Ex-
traction task distinguishes aspirational research
intentions from established claims, offering a novel
analysis of scientific texts. This provides a clearer
view of the planned research trajectory by identi-
fying intended activities. It complements claim ex-
traction by presenting a fuller picture of proposed
work, from assertions to investigative pathways,
again showing significant fine-tuning efficacy due
to the dataset’s focused nature.

To explore the three tasks, we finetuned two 7B
parameter language models:

• Mistral-7B-instruct-v0.3 (Jiang et al.,
2023)

5



Metric Mistral Qwen

BERTScore-P 0.8563 (+0.38% ↑) 0.8459 (+0.98% ↑)
BERTScore-R 0.8555 (+0.30% ↑) 0.8597 (+1.61% ↑)
BERTScore-F1 0.8561 (+0.36% ↑) 0.8437 (+0.75% ↑)
ROUGE1 0.2000 (+2.58% ↑) 0.1978 (+1.98% ↑)
ROUGE2 0.0198 (+4.76% ↑) 0.0210 (+3.89% ↑)
ROUGE-L 0.1273 (+2.96% ↑) 0.1466 (+0.65% ↑)
ROUGE-L-sum 0.2166 (+2.45% ↑) 0.2078 (+1.66% ↑)

Table 2: Finetuning performance
for Mistral-7B-instruct-v0.3 and
Qwen2.5-7B-Instruct models for Technical ab-
stract to Non-technical abstract translation (Task 1),
with relative improvements over the corresponding
unfinetuned model indicated in green. Error bars for
all metrics at 95% confidence intervals range between
0.0000–0.0025. Mistral model outperforms Qwen on
almost all metrics for this task regardless of finetuning.
We note that the percent changes, while statistically
significant, are modest for this task indicating an
excellent out-of-the-box performance that’s challenging
to improve upon.

• Qwen2.5-7B-Instruct (Yang et al., 2024)
Details about the finetuning can be found in Ap-
pendix E.

5.1 Evaluation Metrics

For Task 1 – abstract generation – we em-
ployed a comprehensive evaluation framework us-
ing both BERTScore (Zhang* et al., 2020) and
ROUGE (Lin, 2004) metrics to assess the quality
of generated non-technical abstracts. This combina-
tion enables us to capture both lexical overlap and
structural similarity through the ROUGE variants,
while BERTScore provides insights into semantic
alignment between the generated texts and refer-
ence abstracts. Incorporating such multi-viewed
metrics4 ensures that the evaluation reflects not
only the presence of key words and phrases but
also the underlying meaning and narrative coher-
ence of the abstracts.

For Task 2 – claim extraction – we developed a
novel evaluation approach using LLM-based com-
parisons. Previous methods for claim evaluations
focused on comparing a single claim against a sin-
gle document. See Tang et al. (2024), for example.
However, our setting required evaluating a set of
extracted claims against a gold set of claims.

Towards that end, we defined a boolean function
Φclaim using GPT-4o-mini with zero-shot prompt-

4For BERTScore we report precision, recall and F1, and
for ROUGE we report ROUGE-1, ROUGE-2, ROUGE-L, and
ROUGE-L-sum.

ing to determine whether a generated claim is sup-
ported by a gold standard claim. See Appendix B
for prompt details5. Using this function, we calcu-
lated precision and recall as follows:

Precision =
1

|S|
∑

c∈S
max
g∈G

Φclaim(c, g)

Recall =
1

|G|
∑

g∈G
max
c∈S

Φclaim(g, c)

where S is the set of claims generated from the
finetuned model, after removal of any repeats/near-
repeats 6, and G is the gold standard set. We note
that this is a variant of precision/recall metrics de-
fined for image captioning in (Deitke et al., 2024),
however unlike Deitke et al., we explicitly use
Φclaim in computing both precision and recall. This
is necessary as we need to accurately penalize any
spurious claims generated by the finetuned model.
Works by (Gu et al., 2025; Liu et al., 2023) are
relevant here.

Analogously, for Task 3 – extraction of investi-
gation proposals – we define precision and recall
similarly but use a different pairwise boolean judge
function ΦIP mutatis mutandis. See Appendix C
for prompt details.

6 Results

6.1 Non-technical Abstract Generation
Table 2 shows the results for Task 1. Both Mis-
tral and Qwen models demonstrated strong perfor-
mance, with fine-tuning providing modest improve-
ments. The Mistral model outperformed Qwen on
almost all metrics, achieving a BERTScore-F1 of
0.8561 after fine-tuning (+0.36% relative improve-
ment). ROUGE scores were generally low (0.01-
0.22), reflecting the stylistic differences between
technical and non-technical abstracts.

6.2 Scientific Claim Extraction
For Task 2 (claim extraction), fine-tuning yielded
substantial improvements. As shown in Table
3, the fine-tuned Mistral model achieved a preci-
sion of 0.7450 (+116.7% relative improvement),
recall of 0.7098 (+59.5%), and F1 of 0.7097
(+101.8%). The Mistral model consistently out-
performed Qwen, though both showed significant
benefits from fine-tuning.

5We tried several slight edits of the prompts and found
them to be robust to such changes.

6We determine repeats and near-repeats in the generation
by thresholding cosine similarity calculated over a TF-IDF
representation of the generated claims.
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Metric Mistral Qwen

Precision 0.7450 (+116.7% ↑) 0.6839 (+107.1% ↑)
Recall 0.7098 (+59.5% ↑) 0.6611 (+7.8% ↑)
F1 0.7097 (+101.8% ↑) 0.6541 (+63.3% ↑)

Table 3: Finetuning performance
for Mistral-7B-instruct-v0.3 and
Qwen2.5-7B-Instruct models for Claim Extraction
from abstracts (Task 2), with relative improvements
over the corresponding unfinetuned model indicated
in green. Error bars for all metrics at 95% confidence
intervals range between 0.0038–0.0055. Mistral model
outperforms Qwen on almost all metrics for this task
regardless of finetuning. We note the large positive
percent changes, sometimes improvements as large
as 2x, indicate finetuning is indispensable for claim
extraction. Mistral model outperforms Qwen on almost
all metrics for this task.

6.3 Investigation Proposal Extraction

Similarly, Task 3 (proposal extraction) showed dra-
matic improvements with fine-tuning. As shown
in Table 4, the Mistral model achieved a precision
of 0.7351 (+18.24%), recall of 0.7539 (+127.24%),
and F1 of 0.7261 (+90.97%) after fine-tuning. The
relative improvements were even larger for the
Qwen model, though Mistral still performed better
overall.

Metric Mistral Qwen

Precision 0.7351 (+18.24% ↑) 0.7245 (+70.07% ↑)
Recall 0.7539 (+127.24% ↑) 0.6865 (+81.57% ↑)
F1 0.7261 (+90.97% ↑) 0.6827 (+112.60% ↑)

Table 4: Finetuning performance
for Mistral-7B-instruct-v0.3 and
Qwen2.5-7B-Instruct models for extraction of
Investigation Proposals from award abstracts (Task 3),
with relative improvements over the corresponding
unfinetuned model indicated in green. Error bars for
all metrics at 95% confidence intervals range between
0.0036–0.0073. Mistral model outperforms Qwen on
almost all metrics for this task regardless of finetuning.
We note the large positive percent changes, sometimes
improvements as large as 2x, indicate finetuning is
indispensable for this task. Mistral model outperforms
Qwen on almost all metrics for this task.

Since Mistral models seemed to have an edge
over the Qwen2.5 models for these tasks, we also
trained a Mistral only version of on the NSF-
SCIFY-20K subset which spans all NSF direc-
torates. The results for that can be found in Ap-
pendix F.

7 Error Analysis

Of the three proposed tasks, we consider the claim
extraction task as a canonical task for perform-
ing error analysis. To do so, we consider another
120 awards from the test portion of NSF-SCIFY-
MATSCI and NSF-SCIFY-20K. These were strati-
fied sampled across the five areas of interest (simi-
lar to Section 4.3). We then generate the claims us-
ing a Mistral-7B model finetuned on NSF-SCIFY-
20K, resulting in 802 claims. A careful examina-
tion revealed around 2.6% of the generated claims
were incorrect. To dive deeper, we categorized the
erroneous claims into 5 categories. We list them
here with examples:

1. Overconfidence: The claim can be overcon-
fident about information that has qualifiers in the
supporting document text (award abstract).

Award ID: 9820570

Extracted Claim: The research areas include knot
theory, immiscible fluids and geodesic nets, er-
godic theory, commutative algebra and vector-valued
forms.
Analysis: The abstract states ’probably in the areas
of,’ indicating potential areas, not certainty.

2. Mixing Information: The claim can mix in-
formation from two sentences together to form
wrong information.

Award ID: 1205671

Extracted Claim: The SEAQUEST experiment at
Fermilab has successfully measured the asymmetry
of up and down anti-quarks in the nucleon.
Analysis: The abstract mentions that SEAQUEST
will follow the successful E866 measurement with
more precise data, and thus it does not say
SEAQUEST has already successfully measured that,
but the success is describing the previous E866.

3. Overgeneralization: The claim can overgen-
eralize what the supporting document implies.

Award ID: 0957482

Extracted Claim: The methodology is potentially
environmentally benign.
Analysis: The abstract mentions non-dangerous
chemicals but does not specifically state that the
methodology is environmentally benign.

4. Information Omission: The claim might omit
important information from the abstract and thus
the meaning is changed.
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Award ID: 9409461

Extracted Claim: Frequency-domain techniques can
display trade-offs between output performance and
sensitivity reduction.
Analysis: The claim frames output performance and
sensitivity reduction as two separate quantities and
leaves out bandwidth, so it does not accurately reflect
the abstract.

5. Hallucinations about Administrative Meta-
data: The model can sometimes hallucinate
claims regarding where the funding is from and
which institutions are included. While hallucina-
tion is a serious issue, it is worth noting that for
this dataset and model scientific claims seem to be
rarely hallucinated. In our study, all hallucinations
were connected with administrative metadata.

Award ID: 0542751

Claim: The award is funded under the
American Recovery and Reinvestment Act
of 2009 (Public Law 111-5).
Reasoning: This claim is not mentioned in
the abstract.

To mitigate these errors, uncertainty calibra-
tion and prompting strategies can reduce over-
confidence and overgeneralization, encouraging
the model to reflect source qualifiers. Fine-
tuning with more annotated data and enforcing
stricter alignment between claims and source text
can address mixing information and omission is-
sues. Retrieval-augmented generation and chain-of-
thought prompting may also promote better ground-
ing. For hallucinations about administrative meta-
data, entity verification or output constraints based
on structured data can help. Combining these ap-
proaches with human-in-the-loop evaluation might
further improve claim extraction reliability.

We performed a similar error analysis on claims
extracted from Claude (See section 3.3). Our find-
ings revealed a smaller error-rate (2.1% as opposed
to 2.6%), and of the only 10 erroneous claims, 5
were hallucinations of administrative data.

8 Discussion and Conclusion

We introduced NSF-SCIFY, a large dataset of
2.8 million scientific claims and proposals from
400,000 NSF grant abstracts across all science
and mathematics disciplines. Focused subsets in-
clude NSF-SCIFY-MATSCI (114,000 materials
science claims) and NSF-SCIFY-20K (135,000

claims from five directorates). Experiments demon-
strate that fine-tuning language models on NSF-
SCIFYsignificantly improves scientific claim and
proposal extraction, with relative performance
gains often exceeding 100%. Non-technical ab-
stract generation saw modest improvements due
to strong baselines. Stylistic differences between
technical and non-technical abstracts offer poten-
tial for science communication. Our claim tax-
onomy identifies prevalent assertion types like ca-
pability/application and problem/knowledge gap
statements. NSF-SCIFY’s unique advantages in-
clude its vast scale, high quality from NSF expert
review, comprehensive coverage of scientific do-
mains, a temporal span from 1970-2024 enabling
longitudinal studies, and, for recent grants, links
to resulting publications. Error analysis showed
high precision but lower recall in claim extraction,
with error categories guiding future improvements.
NSF-SCIFY opens new research avenues in large-
scale claim verification, scientific discovery track-
ing, and meta-scientific analysis, a key resource for
understanding scientific assertions at their origin.

9 Limitations

Source Material Scope. The dataset, derived
from NSF award abstracts, offers insights into
early-stage scientific claims from a rigorously re-
viewed, cross-disciplinary source. However, it cur-
rently excludes claims from unfunded proposals or
international contexts. Future work may expand to
other agencies and sources.

Extraction Methodology. Our approach utilizes
zero-shot prompting with large language models,
refined by prompt engineering and selective human
validation. While manual evaluation shows high
precision, some residual errors in recall and claim
boundary identification may exist, especially for
nuanced assertions. Fine-tuning on this dataset sig-
nificantly improves extraction, indicating potential
for further methodological refinement and broader
annotation.

Evaluation Design. We introduced LLM-based
metrics for evaluating claims and investigation pro-
posals, offering a nuanced assessment beyond lex-
ical overlap. These metrics correlate well with
human judgment in samples, but broader validation
across more scientific domains is needed to confirm
their robustness. The public dataset and code aim
to facilitate such community efforts.
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Temporal and Linked Data Coverage. Span-
ning over five decades and including recent linked
publication metadata, the dataset’s systematic out-
come tracking is limited for older awards. This
restricts longitudinal analysis of claim evolution
from proposal to publication. Broader, consistent
outcome reporting could enrich NSF-SCIFY for
deeper research trajectory studies.

Generalizability. While designed and validated
for National Science Foundation abstracts, whose
structure may differ from other scientific commu-
nications, the general framework is adaptable. It
could be extended to related corpora like other fund-
ing agencies, patent abstracts, or scientific news,
creating opportunities for future research.

10 Reproducibility Statement

To foster research on large-scale claim extraction,
we are releasing our datasets, training code, and
trained models:

• NSF-SCIFY-MATSCI: Materials Science sub-
set with extracted claims, investigation pro-
posals, and resolved publication information.

• NSF-SCIFY: Similar in content to NSF-
SCIFY-MATSCI, but a larger superset span-
ning all of NSF awards database. The key
difference is the claims and investigation pro-
posals are extracted from our finetuned mod-
els instead of frontier LLMs.

• Our best finetuned model checkpoints
for extraction of claims and investiga-
tion proposals at https://huggingface.co/
darpa-scify/nsf-scify-matsci-claims.
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Appendix

A Complete Prompt for Extracting
Claims and Investigation Proposals

You are an expert materials science researcher.
Given an input JSON description of an NSF
material science award abstract, parse out the
technical and nontechnical abstracts, and iden-
tify the verifiable claims and research/investi-
gation proposals the abstract makes. Be thor-
ough. Answer in the following JSON format:
{
"award_id": "", // copied from input
"technical_abstract": "" // technical

abstract if present, otherwise
contents of the abstract field in the
input

"non_technical_abstract": /non-technical
abstract if present, otherwise empty

"verifiable_claims": [ // list of strings
],
"investigation_proposals": [ // list of

strings
],

}

verifiable_claims are statements that the ab-
stract claims to be true or states as an assump-
tion explicitly or implicitly.
investigation_proposals are forward-looking
statements that the abstract proposals to inves-
tigate as a part of this award.
Ensure that the output is in JSON format and
that the JSON is valid.

We manually tested the prompt with a few award
abstracts to make sure it was optimal for this task.
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B Prompt for Task 2 evaluation function
Φclaim

Check two scientific claims c1 and c2, if c1
is supported by c2. If c2 includes all the evi-
dences for c1, but also includes additional con-
tent, then it should still be supported (YES). If
not all information of c1 is included in c2, or if
c2 contains information that conflicts with in-
formation in c1, then it should be unsupported
(NO). Answer only as a YES or NO.
c1: {c1}
c2: {c2}

C Prompt for Task 3 evaluation function
ΦIP

Check two investigation proposals c1 and c2,
if c1 is supported by c2. If c2 includes all
the investigations proposed by c1, but also
includes additional proposals, then it should
still be supported (YES). If not all proposed
investigations by c1 is included in c2, or if
c2 contains investigation actions that conflict
with investigation actions in c1, then it should
be unsupported (NO). Answer only as a YES
or NO.
c1: {c1}
c2: {c2}

D Stylistic Differences between Technical
and Nontechinal Abstracts

Figure 5 shows stylistic differences between tech-
nical and nontechnical abstracts.

E Finetuning Details

E.1 Data Preparation

Starting with 16,042 processed entries in NSF-
SCIFY-MATSCI, we removed near-duplicates in
technical and non-technical abstracts using tri-
gram Jaccard similarity (threshold > 0.9), resulting
in 11,569 data points. We further filtered cases
where character-level 10-gram similarity between
an entry’s technical and non-technical abstracts ex-
ceeded 0.6, yielding 11,141 final data points. We
split this dataset into train/validation/test sets with
8,641/500/2,000 examples, respectively.

E.2 Finetuning Details

For fine-tuning, we used LoRA (Hu et al., 2021)
with rank=128, lora_alpha=64 and a learning rate

of 1e-5 scheduled linearly. We updated the query,
key, value, and output projection layers, as well
as MLP gate, up, and down projections. We ran
the finetuning on an A100 GPU for 3 epochs, 100
warmup steps, and a batch size of 2 with 4 accumu-
lated steps.

F Evaluation results for NSF-SCIFY-20K

Tables 5, 6, and 7 summarize the results for the
three generation tasks defined in Section 5 on NSF-
SCIFY-20K.

Model Base Finetuned
Metric

BERTScore-F1 0.8514 ± 0.0003 0.8500 ± 0.0006
BERTScore-Precision 0.8515 ± 0.0003 0.8513 ± 0.0007
BERTScore-Recall 0.8516 ± 0.0003 0.8496 ± 0.0005
ROUGE-rouge1 0.3351 ± 0.0013 0.3141 ± 0.0023
ROUGE-rouge2 0.0705 ± 0.0008 0.0936 ± 0.0016
ROUGE-rougeL 0.1773 ± 0.0008 0.1967 ± 0.0016
ROUGE-rougeLsum 0.1982 ± 0.0010 0.1998 ± 0.0016

Table 5: Technical to Non-Technical Abstract Task:
Mistral-7B

Model Base Finetuned

Precision 0.4146 ± 0.0025 0.7526 ± 0.0027
Recall 0.8141 ± 0.0026 0.7354 ± 0.0026
F-score 0.5247 ± 0.0025 0.7268 ± 0.0023

Table 6: Abstract to Claims Task: Mistral-7B

Model Base Finetuned

Precision 0.6222 ± 0.0038 0.7219 ± 0.0027
Recall 0.6364 ± 0.0034 0.7359 ± 0.0029
F1-score 0.5668 ± 0.0033 0.7039 ± 0.0026

Table 7: Abstract to Investigation Proposals Task:
Mistral-7B

G Examples of Extracted Claims and
Investigation Proposals

Tables 8 and 9 provide a sampling of the extracted
claims and investigation proposals.

H Examples of Scientific Claim
Categories

Please see Table 10 for the examples.
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I AI Writing/Coding Assistance
Disclosure

In accordance with the ACL Policy on AI Writ-
ing Assistance7, the authors attest that we used
generative AI tools for assistance purely with the
language of the paper, including spell checking,
grammar fixes, and proof reading. Additionally,
we used GPT-4o to fix LaTeX issues, and to gen-
erate LaTeX tables from spreadsheets. In all such
uses, the outputs were verified by the first author
for correctness.

7https://www.aclweb.org/adminwiki/index.php/
ACL_Policy_on_Publication_Ethics#Guidelines_for_
Generative_Assistance_in_Authorship
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Figure 5: The t-SNE plot of comparing content embeddings from SPECTER (Cohan et al., 2020) and style
embeddings from STEL (Patel et al., 2025) for technical and non-technical abstracts in NSF-SCIFY-MATSCI. The
somewhat clear separation between technical and non-technical abstracts when using style embeddings indicate
marked stylistic differences between the two kinds abstracts.
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Award ID Title Extracted Claims

2324035 DMREF: Developing and Har-
nessing the Platform of Quasi-
One-Dimensional Topological
Materials for Novel Functionali-
ties and Devices

[
"Topological insulators are electrically

insulating in the bulk but host conductive
surface states that are immune to
impurities.",

"Current TI materials face critical challenges
that limit their potential.",

"Quasi-1D structures promise to overcome
challenges faced by current TI materials.",

"Most identified topological insulators are
either strongly bonded bulk materials or
layered van der Waals materials.",

...
]

9814055 Kinks and Surface Potentials

[
"Atomically flat terraced surfaces for thin

TEM samples can be prepared under moderate
(10-7 Torr) vacuum conditions by
annealing in oxygen or vacuum for
materials such as sapphire, SiC and MgO.",

"\"Forbidden\" Bragg reflections arise from
the stacking fault between partial
dislocations.",

"The surface potential is critical for
chemical reactions at surfaces, adsorption,
catalysis, epitaxy, diffusion bonding
process, oxidation, and semiconductor
crystal growth.",

...
]

0821136 MRI: Acquisition of an Imaging
Spherical Aberration Corrector
and a Lorentz Lens for Magnetic
Materials Characterization

[
"The attainable spatial resolution of

uncorrected Lorentz instruments is in the
range 10-15 nm.",

"Delocalization effects cause significant
image blurring in uncorrected Lorentz
microscopes.",

"Recent developments in aberration correction
make it possible to correct the spherical
aberration of a Lorentz lens.",

"The size of written bits in state-of-the-art
magnetic recording media is comparable to
the magnetic resolution of uncorrected
Lorentz microscopes.",

"Transmission electron microscopes have
suffered from lens aberration since their
invention in the 1930s.",

"The Hubble space telescope suffered from a
similar aberration when first launched.",

...
]

Table 8: A sample of extracted claims from the NSF-SCIFY-MATSCI dataset. Award IDs are hyperlinked to the
NSF’s Award database.
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Award ID Title Extracted Investigation Proposals

2324035 DMREF: Developing and Har-
nessing the Platform of Quasi-
One-Dimensional Topological
Materials for Novel Functionali-
ties and Devices

[
"Predict, design, synthesize, and control

topological phases in quasi-1D topological
materials.",

"Design and demonstrate emergent materials,
functionalities, and devices, including
moir\'e quasi-1D TIs, stable and high
temperature quantum spin Hall (QSH)
insulators, and quantum intelligent
sensors.",

"Expand research to include other selected
quasi-1D materials families through
collaborations.",

"Discover or realize novel topological
materials and phases.",

"Study topological phase transitions and
control.",

"Investigate room-temperature QSH effect.",
...

]

9814055 Kinks and Surface Potentials

[
"Observe dislocation kinks by atomic

resolution TEM in materials such as
sapphire, SiC and MgO.",

"Use \"forbidden\" Bragg reflections to form
lattice images without surface noise.",

"Determine which process (kink formation, kink
migration or obstacles along the
dislocation line) limits kink (and hence
dislocation) velocity, for given
conditions of temperature and stress.",

"Extend quantitative convergent-beam TEM
measurements of bonding in crystals to the
RHEED geometry to refine the
electrostatic potential extending into the
vacuum from ceramic surfaces.",

"Measure modifications to the surface
potential resulting from the deposition of
a monolayer or more of atoms.",

...
]

0821136 MRI: Acquisition of an Imaging
Spherical Aberration Corrector
and a Lorentz Lens for Magnetic
Materials Characterization

[
"Acquire an imaging spherical aberration

corrector and a Lorentz lens for magnetic
materials characterization.",

"Add these components to an existing FEI Titan
80-300 TEM.",

"Bring the spatial resolution in Lorentz mode
down to less than 1 nm, with negligible
delocalization effects.",

"Enable direct quantitative study of magnetic
features at a length scale of around 1 nm
.",

"Obtain new scientific results on material
systems for which these observations were
previously impossible.",

"Impact a large number of research groups
within CMU, as well as collaborations with
local industry and several national
laboratories.",

...
]

Table 9: A sample of extracted investigation proposals from the NSF-SCIFY-MATSCI dataset. Award IDs are
hyperlinked to the NSF’s Award database.
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Category: Capability/Application of Technology/Method
Memory-centric computing capitalizes on extensive parallelism in memory arrays.
The Illinois group has joined the fixed target COMPASS experiment at CERN.
An electronics company is involved in the project, making imaging products in this energy regime.
Category: Definition/Classification
The RV Weatherbird II is owned and operated by the Bermuda Biological Station for Research (BBSR),
Inc.
The program will include topics such as dark matter, dark energy, inflation, and gravitational waves.
The shear zone in question is the Cuyamaca-Laguna Mountains shear zone.
Category: Statement of Problem/Knowledge Gap
Current efforts on analyzing tree-informed compositional data are primarily designed for individual
applications.
CU began the Guerrero GPS project in 1997.
High pressure-low temperature metamorphism is often obscured by post-tectonic thermal equilibration or
later deformation and mineral growth.
Category: Experimental Result/Finding/Measurability
Lattice QCD has made important progress.
RBP repression is absent when an oncoprotein is present.
Over 100 of 650 U.S. electronics fabricators have gone out of business in the past five years, according to
a 1999 White Paper by the Interconnection Technology Research Institute.
Category: Established Scientific Fact/Principle
Dynamic programming includes well-known search algorithms like breadth-first search, Dijkstra’s algo-
rithm, A*, value iteration and policy iteration for Markov decision processes.
The electron carries a magnetic moment.
Stars in clusters evolve off the main sequence, become red giants, and ultimately horizontal branch stars.
Category: Observed Phenomenon/Property
The lake level of Laguna Paron was artificially lowered in 1985.
Laminated sediments are exposed in Laguna Paron, Peru.
The study sites exhibit extreme differences (1 to 2 orders of magnitude) in larval settlement.
Category: Process/Mechanism Description
Exciton-phonon and exciton-exciton interactions contribute to decoherence at finite temperatures.
The fidelity of translation is determined by the accuracy of aminoacyl-tRNA selection by ribosomes and
synthesis of cognate amino acid/tRNA pairs by aminoacyl-tRNA synthetases.
The evaluation process includes both direct and indirect measures of student success and learning.
Category: Hypothesis/Theoretical Prediction
Assemblages that combine human-technology partnerships are stronger than individual humans or ma-
chines.
Mating advantage in guppies appears to result from female sexual responses to unusual males.
The long wavelength part of the CBR spectrum is important for constraining the evolution of the inter-
galactic medium.

Table 10: Scientific claim categories found in NSF-SCIFY and 3 randomly selected examples for each category.
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Abstract

Dialogue summarization is still a very chal-
lenging task even for large language models
(LLMs). On the one hand, some previous
approaches have pre-trained language mod-
els specifically for dialogue understanding and
summarization, but they have been limited to
relatively small language models such as BART
and T5. On the other hand, other works have
tried to directly exploit the dialogue semantics
and discourse structures in their modeling ef-
fort, but by construction, they require access
to those structures, which is in itself a largely
unsolved problem. In this paper, we syner-
gistically combine these two ideas in an ap-
proach that can be seamlessly integrated into
the decoder-only architecture adopted by the
most state-of-the-art LLMs. In particular, our
novel solution leverages the parameter-efficient
fine-tuning (PEFT) paradigm to model the hier-
archical structure of dialogues, where input se-
quences are naturally segmented into dialogue
turns, and then fine-tune the model for abstrac-
tive summarization. From experiments on two
datasets, we find that Hierarchical Attention
Adapter outperforms all baseline adapter meth-
ods on SummScreen, where our approach can
also be combined with LoRA to achieve the
best performance on SamSum.

1 Introduction

The explosion in real-time messaging, consultation
forums, and online meetings has resulted in a vast
amount of conversational data, necessitating more
efficient methods for understanding and extracting
key information. Dialogue summarization, which
aims to automatically distill salient information
from dialogues, has been widely applied across var-
ious scenarios in different domains. These include
task-oriented dialogues such as customer service
(Feigenblat et al., 2021), law (Duan et al., 2019),
medical care (Joshi et al., 2020), and open-ended
dialogues like chit-chat (Chen et al., 2021b), screen

plays (Chen et al., 2021a), and forum discussions
(Chowdhury and Chakraborty, 2019).

Conventional dialogue summarization models
typically approach the task as a sequence-to-
sequence problem and fine-tune encoder-decoder
models such as BART (Lewis et al., 2020a) and T5
(Raffel et al., 2020). Although these methods show
promising results (Liu et al., 2021a; Wang et al.,
2023; Zhong et al., 2022; Cho et al., 2024), they are
limited to relatively small Transformer architecture
models and cannot be easily employed on large
decoder-only models. Another line of research ex-
amines dialogue specific features such as speaker
marker, discourse structure, topic changes, and co-
reference information (Chen and Yang, 2021a; Liu
et al., 2021b; Cho et al., 2024) and incorporates
dialogue semantics and structural information into
model pre-training, oftentimes involving an inter-
mediate stage for dialogue-specific information ex-
traction. However, these methods require addi-
tional effort and the results constructed from such
information may not be accurate.

On the other hand, recent advances in Large
Language Models (LLMs) have revolutionized the
field of NLP and have become an essential building
block in various intelligent user-facing applications
(Bang et al., 2023; Bubeck et al., 2023), resulting
in a shift in focus from relatively small encoder-
decoder models to large-scale decoder-only mod-
els. The remarkable achievements of these LLMs
can largely be attributed to research on model scal-
ing (Brown et al., 2020; Chowdhery et al., 2023;
Workshop et al., 2022), where increasing the num-
ber of model parameters and the volume of pre-
training data can lead to significant enhancements
of their capabilities to understand and generate hu-
man language. However, despite the success of
sophisticated prompting (Wei et al., 2022; Zhou
et al., 2023) and demonstration selection (Lewis
et al., 2020b; Rubin et al., 2022) strategies, there
remains a noticeable performance gap compared to
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fine-tuning (Liu et al., 2022; Mosbach et al., 2023),
especially for tasks such as dialogue summariza-
tion where the input sequences can be long and
possess hierarchical structures.

In this paper, we synergistically combine the
ideas of using modern LLMs with dialogue struc-
tural information in dialogue summarization task,
without explicitly injecting rigid linguistic struc-
tures. To this end, we select GPT-style decoder-
only architecture as our LLM backbone. This sim-
plified architecture allows for more efficient pre-
training through the language modeling objective,
where the model can quickly process and gener-
ate tokens without first transforming the input se-
quence into an abstract representation by the en-
coder. However, an innate drawback of such archi-
tecture is the token-level unidirectional flow, which
limits the ability to model the full context of the
dialogue, especially the nuances and dependencies
that emerge from future turn back to past ones.
By contrast, encoder-decoder architecture encodes
the input sequence using bidirectional conditioning
and results in inherently stronger representations
compared to the causal conditioning representation.
In order to fine-tune decoder-only models more ef-
fectively, we propose a novel parameter-efficient
fine-tuning (PEFT) architecture that encodes the
input with bidirectional contextualization.

Another great challenge in dialogue summariza-
tion is the length of text, which can sometimes
exceed the model’s input limit. While recent ef-
forts have managed to increase the context window
of the model by scaling the positional embeddings
(Press et al., 2022; Su et al., 2024) and reducing
the complexity of attention through sparsity (Child
et al., 2019; Jaszczur et al., 2021), the theoretical
support for long context are often measured with
the language modeling loss and synthetic tasks,
which do not comprehensively demonstrate their
effectiveness in practical applications. Inspired
by previous studies (Nguyen et al., 2020; Madaan
et al., 2023; Du et al., 2023) demonstrating that
hierarchical structures of input can significantly
enhance downstream performance, especially for
tasks with naturally segmented input sequences,
we propose encoding dialogues at both the speech
turn level and the dialogue level. This is achieved
through two attention layers in our adapter mod-
ule. Our proposed adapter, called Hierarchical
Attention Adapter, can incorporate the interac-
tions of speech turns in dialogues naturally without
the need for external structural integration.

To summarize, our contributions are threefold:
(1) We propose a novel PEFT architecture: Hier-
archical Attention Adapter, that incorporates bi-
directional contextualization to model the hier-
archical structure of the dialogue sequence; (2)
Our experiments on two dialogue summarization
datasets demonstrate the effectiveness of our ap-
proach, where we achieve the best overall perfor-
mance over the baseline either using our method
directly or combining with LoRA; (3) We analyze
the importance of each layer of adapters and ways
to represent dialogue rounds, and provide useful
insights for future PEFT approaches.

2 Related Work

2.1 Dialogue Summarization

Dialogue summarization, aimed at distilling the
salient information of dialogue into a concise sum-
mary, has received more attention as virtual con-
versations have become increasingly prevalent (Jia
et al., 2023). While the standard approach for neu-
ral abstractive summarization follows the sequence-
to-sequence generation paradigm (Sutskever et al.,
2014), where an autoregressive model generates
the summary conditioned on the input text (Rush
et al., 2015; Nallapati et al., 2016; See et al., 2017;
Lewis et al., 2020a; Zhang et al., 2020), studies
on dialogue summarization often exploited the se-
mantic and discourse graph structures of the in-
put by explicitly incorporating those structures to
model the high-level interactions between dialogue
segments (Hardy and Vlachos, 2018; Chen and
Yang, 2021b; Hua et al., 2023). However, these
methods typically require additional steps to ob-
tain the dialogue graphs making them impracti-
cal for most application scenarios. Other studies
have proposed pre-training language models specif-
ically for dialogue understanding and summariza-
tion (Gu et al., 2021; Zhong et al., 2022), their
scales are order-of-magnitude smaller compared to
the general-purpose Large Language Models (Tou-
vron et al., 2023b; Jiang et al., 2023) resulting in
often inferior performance in poor generalizability.
In contrast, our approach can be seamlessly inte-
grated into the decoder-only architecture adopted
by the most state-of-the-art LLMs.

2.2 Modeling Structures

While Graph Neural Networks (GNNs) have tradi-
tionally been the de-facto standard for graph rep-
resentation, the Transformer model has garnered a
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lot of popularity due to its superior performance in
modeling graph structures (Hussain et al., 2022;
Wu et al., 2022, 2023). Similar to GNNs, the
self-attention mechanism in the Transformer en-
coder aggregates the node embeddings to update
the representation of each node in a fully connected
graph. In the domain of NLP, one popular area of
research is to model explicitly defined linguistic
structures within the input sequence. While a ma-
jority of studies have focused on sentence-level
dependency or constituency trees (Wu et al., 2018;
Hao et al., 2019; Strubell et al., 2018; Wang et al.,
2019a,b), multi-sentential discourse structures have
also been found to be beneficial for more practi-
cal downstream tasks such as summarization (Xiao
et al., 2020; Xu et al., 2020; Feng et al., 2020;
Dong et al., 2021). For instance, Chen and Yang
(2021b) incorporated discourse relations between
utterances and action for dialogue summarization,
while Du et al. (2023) utilized discourse structures
to propagate hidden representation for question an-
swering. Meanwhile, another line of work aims to
implicitly learn the structure of language through
architectural design, allowing the model to have
more flexibility in learning representations bene-
ficial for the task (Nguyen et al., 2020; Madaan
et al., 2023). Given the substantial proficiency of
LLMs in representing and comprehending natural
language, it is questionable whether the integration
of rigid linguistic structures, which often require
multi-stage pipelines to acquire, can further en-
hance the model’s capabilities in downstream tasks.
Therefore, our proposed technique aims to allow
the model to learn multi-sentential structures based
on the internal representations of the LLM.

2.3 Large Language Models

While earlier work on masked language models are
often designed to encode a contextualized repre-
sentation of the input sequence (Peters et al., 2018;
Devlin et al., 2019), autoregressive pre-training
was found to be much effective for language gen-
eration tasks (Lewis et al., 2020a; Raffel et al.,
2020). The current lineage of large language mod-
els can trace their origins to the GPT-family (Rad-
ford et al., 2018, 2020; Brown et al., 2020), where
they find that scaling the decoder-only architec-
ture can lead to an improved model capacity on
downstream tasks (following scaling laws (Kaplan
et al., 2020; Hoffmann et al., 2022)) while dis-
playing emergent abilities to solve complex tasks
through few-shot demonstrations (Brown et al.,

2020) and chain-of-thought prompting (Wei et al.,
2022). Following the success of proprietary LLMs
(e.g., ChatGPT, Claude, etc.) as general-purpose
task solvers through instruction-tuning (Ouyang
et al., 2022), the open-source community has also
released a large number of publicly available mod-
els for researchers to work on (Zhang et al., 2022;
Bai et al., 2023; Almazrouei et al., 2023). For exam-
ple, Llama (Touvron et al., 2023a) is one of the first
collections of open-sourced models pre-trained ex-
clusively using publicly available datasets, Llama-2
(Touvron et al., 2023b) improved upon the Llama
by training on more data and doubling the con-
text length from 2K to 4K tokens, XGen (Nijkamp
et al., 2023) further increased to context length to
8K through pre-training in stages with increasing
sequence length, while Mistral (Jiang et al., 2023)
used sliding window attention (Child et al., 2019)
to support a theoretical attention span of approxi-
mately 131K tokens. While other techniques have
also been proposed to improve the long-context
capabilities of LLMs through position encoding
refinement and continual pre-training (Xu et al.,
2023; Xiong et al., 2023), these techniques require
tuning the full set of parameters which is far too
expensive for practical applications.

3 Method

3.1 Hierarchical Attention Adapter

An overview of the architecture is presented in Fig-
ure 1. In our hierarchical attention adapter, we
first project the LLM hidden states to dimension
d using a single linear layer. At each output time
step j, we decompose the projected hidden states
based on input and out tokens where H “ rhi;hos,
with hi P Rnˆd and ho P Rjˆd representing the
hidden states of input and output tokens respec-
tively. We model the hierarchical structure of the
input dialogue sequence using a hierarchical self-
attention module. To compute the dialogue turn
embeddings Ht P Rtˆd, where t is the number of
dialogue turns, we first apply an attention encoder
to the hidden states of each dialogue turn. Finally,
to model the coarse interactions between dialogue
turns, we use another layer of attention layer on the
turn embeddings to obtain the hierarchical repre-
sentation Hd of the dialogue sequence. This mod-
ule allows us to construct representations of the
input sequence with bidirectional contextualization
while incorporating the hierarchical structure of
the dialogue. The hierarchical representation is ex-
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Figure 1: Overview of the Hierarchical Attention Adapter inserted in-parallel to the causal self-attention layer of the
decoder transformer model. Specifically, the Hierarchical Self-Attention contains two attention layers: one encodes
the hidden state of individual speech turn and one encodes the interactions of different speech turns.

pressed in Equation 1, where Mi denotes the mask
for selecting the ith dialogue turn.

Ht “ rAttnpMi d hpiqq; . . . ;AttnpMt d hpiqqs
(1)

Hd “ AttnpHtq (2)

To enable the decoder to use the hierarchical rep-
resentation of the input sequence, we follow the in-
tuition of the cross-attention mechanism in the orig-
inal transformer architecture (Vaswani et al., 2017).
Specifically, we compute the weighted sum of the
projected hidden states using a cross-attention layer
with the hierarchical representation Hd as query
and H as key and value. Finally, we use a two-
layer feed-forward module to project the adapter
representation to the dimension of LLM hidden
states. The final adapter representation Ha can be
expressed in Equation 3.

Ha “ FF
`
AttnpQ “ Hpdq,K “ V “ Hq˘

(3)

3.2 Gated Addition

Following the work by Mao et al. (2022), we use a
gated additive method to inject the adapter output
into the hidden states of the LLM. To do so, our
learnable gate consists of a two-layer feed-forward
module that takes the previous LLM hidden layer
as input and uses a sigmoid activation function to
map the final output to a value between 0 and 1.

The gate acts as a learnable scaling factor that esti-
mates the importance of our module based on the
input hidden states. We insert our adapter in par-
allel with the LLM self-attention layer, where the
gated adapter output is combined with the attention
output and residual connection through element-
wise addition.

4 Experiments

4.1 Model

We adopt Mistral-7B (Jiang et al., 2023) as the base
model for all our experiments. This model has 32
hidden layers (32 heads per layer) and uses the slid-
ing window attention (SWA) (Child et al., 2019)
with a window size of 4096 to support sequences of
up to 4096ˆ32 tokens. The main reason for choos-
ing this model is due to the memory efficiency of
SWA, as the standard self-attention mechanism has
a quadratic complexity w.r.t. the sequence length.

4.2 Datasets and Metrics

We choose two widely used dialogue datasets: Sam-
Sum (chit-chat) (Gliwa et al., 2019) and Summ-
Screen (screen plays) (Chen et al., 2022). From the
statistics in Table 1, we can see that SamSum is
an easier dataset with both short dialogues and ref-
erence summaries, while SummScreen is a much
harder dataset with both extremely long dialogues
and summaries requiring the model to learn the
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Dataset Domain Dialogue Summary Train Size Validation Size Test Size

SamSum Chat 83.9 20.3 14, 731 818 819
SummScreen Screenplay 6, 612.5 337.4 18, 915 1, 795 1, 793

Table 1: Statistics of the three datasets used in our experiments. The number of sentences in original dialogues and
reference summaries, the number of documents in train, validation, and test sets are reported.

long-term dependencies between turns to generate
a coherent summary. For SummScreen, we remove
ultra-long examples (>16,000 tokens) to avoid out-
of-memory during training.

For evaluation metrics, we use the popular
ROUGE (Lin, 2004), which measures n-gram
overlaps with the reference summary, as well as
GPT3Score (Fu et al., 2023), which employs gener-
ative pre-trained models to evaluate text quality by
calculating the length-normalized conditional log
probability of the evaluated text (reference given
candidate and candidate given reference) given
task-specific prompts and aspect definitions. For
ROUGE metric, we compute ROUGE-1, ROUGE-
2, and ROUGE-Lsum (all are F1 scores) using the
rouge-score1 package, which respectively mea-
sures the overlap of unigram, bigram, and the
longest common sub-sequence for each sentence.
Following Grusky (2023), we compute the ROUGE
scores without stemming and stopword removal,
which is consistent with the original ROUGE-1.5.5
implementation by Lin (2004). For GPTScore, we
use text-davinci-002 (Brown et al., 2020) since
it is currently the most powerful text completion
model accessing through the OpenAI API2 that sup-
ports token probabilities and has shown to be highly
correlated with human judgment (Fu et al., 2023).
We compute the harmonic mean of the conditional
probability for the candidate summary predicted
by the reference and vice versa. The conditional
probabilities are computed based on three aspects,
namely, Informativeness (I), Naturalness (N), and
overall Quality (Q).

4.3 Baselines

To evaluate the performance of our proposal, we
compare against three baseline PEFT methods,
namely, Low-Rank Adaptation (LoRA) (Hu et al.,
2022), Bottleneck Adapter (Houlsby et al., 2019),
and the standard Attention Adapter. In particular,
LoRA injects trainable rank decomposition matri-
ces to approximate the gradient updates during fine-

1https://pypi.org/project/rouge-score
2https://platform.openai.com/docs/models

tuning, Bottleneck Adapter injects two-layer MLPs
sequential to the self-attention and feed-forward
modules of the LLM, while Attention Adapter is a
standard decoder attention layer with casual self-
attention followed by a feed-forward layer. From
results presented in prior studies (Yu et al., 2023),
we expect both LoRA and the Bottlenet Adapter to
be competitive baselines.

4.4 Hyperparameter Settings

We apply our Hierarchical Attention Adapter in par-
allel to the self-attention sub-layer of the decoder
LLMs. We first project the LLM hidden states to
our adapter dimension of dadapter “ 128, before ap-
plying our hierarchical and cross-attention modules
with 4 attention heads each. Finally, we apply the
two-layer feed-forward module with the same SiLU
activation (Elfwing et al., 2018) as Mistral. Follow-
ing the settings by Mao et al. (2022), we train our
model with AdamW optimizer (Loshchilov and
Hutter, 2019) with a learning rate of 1e´4 with
linear decay to 0 and a batch size of 64. For the
baseline methods, we apply rank 32 LoRA vectors
to the query and key vectors, following a hyper-
parameter search for rank P t8, 16, 32, 64u. For
both the Bottleneck and Attention Adapter, we use
the same hidden size of 128, where the Attention
Adapter has the same number of attention heads
(4) and learnable gate dimension as our Hierarchi-
cal Attention Adapter. All our experiments are
conducted on machines with 4ˆA100 SXM4 GPU
(40GB of memory).

To reduce the number of parameters and improve
task performance, we also experiment with combin-
ing LoRA with our Hierarchical Attention Adapter.
Following the findings by Li et al. (2023), where
they find that only the top layers of the pre-trained
model can effectively utilize injected adapters, we
inject our adapters to the top-4 (excluding the last)
layers of the LLM when combined with LoRA.

4.5 Results

From the results presented in Table 2, we see
that combining LoRA with Hierarchical Attention
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SamSum SummScreen

ROUGE GPTScore ROUGE GPTScore

Model R1 R2 RLs I N Q R1 R2 RLs I N Q

LoRA .543 .303 .504 -.913 -.901 -.891 .305 .085 .295 -.666 -.667 -.666
Bottleneck .540 .300 .501 -.909 -.895 -.887 .278 .068 .265 -.780 -.781 -.779
Attention .519 .275 .480 -.930 -.915 -.907 .263 .078 .249 -.653 -.652 -.652
Ours .545 .303 .507 -.911 -.897 -.888 .334 .089 .321 -.632 -.633 -.632
Ours + LoRA .546 .306 .508 -.902 -.889 -.881 .326 .089 .318 -.702 -.703 -.704

Table 2: Evaluation comparisons with baseline models and our methods across three datasets using ROUGE and
GPTScore metrics. R1, R2, RLs denote resp. ROUGE-1, ROUGE-2, and ROUGE-Lsum; I, N, and Q denote resp.
Informativeness, Naturalness, and Quality.

Model R1 R2 RL RLs

ConDigSum (2021a) .543 .293 .452 -
GPT3-finetuned (2022) .534 .298 .459 -
ChatGPT (2023) .408 .137 .315 -
InstructDS (2023) .553 .313 .467 -
Ours .545˚ .303˚ .466˚ .507

Table 3: Comparison with state-of-the-art benchmarks
on SAMSum dataset. We report ROUGE-1, ROUGE-2,
ROUGE-L, and ROUGE-LSum metrics. ˚ not signifi-
cantly different with the best score (in bold).

Model R1 R2 RL RLs

DialogLM-sparse (2022) .358 .083 .187 -
SPECTRUM (2024) .358 .095 .212 -
Ours .334 .089 .169 .321

Table 4: Comparison with state-of-the-art benchmarks
on SummScreen. We report ROUGE-1, ROUGE-2,
ROUGE-L, and ROUGE-LSum metrics.

Adapter (LoRA + Ours) achieved the best results
on SamSum and using only the Hierarchical Atten-
tion Adapter achieved the best results on Summ-
Screen. We also see that our method (with and with-
out LoRA) achieves the highest improvement over
the baselines on the SummScreen dataset. This is
mainly due to the fact that the examples in Summ-
Screen have the longest average input and output
length, making the hierarchical representation more
beneficial even without LoRA. This finding also
confirms our hypothesis that decoder-only architec-
tures struggle with significantly long contexts. On
the contrary, we see that our model (Ours) does not
outperform the baselines in the SamSum datasets,
where we only see improvements when combined
with LoRA. We hypothesize that due to the short
context of SamSum, the casual self-attention of the
decoder can sufficiently encode the input dialogue

for summarization. This could be due to the fact
that hierarchical attention helps model the dialogue
context while tuning the decoder self-attention (via
LoRA) improves the context selection for genera-
tion. This leads to long summaries generated by
our model, and partially explains the poor perfor-
mance (lower precision) of our method on Sam-
Sum, where the short output length (20 tokens)
requires the model to precisely generate the sum-
mary based on the context.

In addition, for reference, we present the per-
formances of state-of-the-art models fine-tuned
specifically for dialogue summarization task with-
out using the PEFT paradigm. The benchmarks
on SAMSum are (1) topic-aware BART model
trained with contrastive learning ConDigSum (Liu
et al., 2021a), (2) GPT3 fine-tuned with LoRA (Hu
et al., 2022), (3) ChatGPT with instruction tuning
(Wang et al., 2023), and (4) Flan-T5-XL with in-
struction tuning (Wang et al., 2023). As shown
in Table 3, our method is comparable with the
SOTA InstructDS model on all ROUGE metrics,
demonstrating the effectiveness of our hierarchi-
cal adapter on decoder-only model. On Summ-
Screen, the best performing models are given in
Table 4: (1) DialogLM (Zhong et al., 2022) – an
encoder-decoder model pre-trained using dialogue-
tailored noise; (2) SPECTRUM (Cho et al., 2024),
a speaker-enhanced model pre-trained on PEGA-
SUS. These models are specially trained with dia-
logue data, while our approach can applied to any
general-purpose LLMs. With the scaling effect,
we expect larger decoder-only models to lead to
greater improvements.
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R-1 R-2 R-L GPTScore (Ave)
Last Token 0.534 0.295 0.496 -0.902
Mean-Pooling 0.541 0.303 0.502 -0.893
Attention 0.546 0.306 0.508 -0.891

Table 5: Results on SamSum for different turn embed-
ding methods. R-1/2/L refer to ROUGE-1/2/Lsum met-
rics.

5 Analysis

5.1 Dialogue Turn Representations

We first study the techniques for constructing the
representations for dialogue turns. Using the Sam-
Sum dataset, we use three different turn represen-
tations while keeping the rest of the architecture
identical. From the results in Table 5, we see that
using an additional layer of attention outperforms
mean-pooling and using the last token of each turn.
It is worth noting that not only is using the last to-
ken representation outperforms mean-pooling. We
believe that it is mainly due to the autoregressive
nature of the decoder-only architecture, where the
representation of each token encodes information
from all prior tokens.

5.2 Summary Length

We find that adapter-based models tend to generate
longer summaries than LoRA. Conversely, overly
brief summaries tend to omit salient information;
we provide concrete examples in subsection 5.4. In
particular, on SamSum, the average number of sum-
mary tokens of our Hierarchical Attention Adapter
is 23, while LoRA produces an average of 18 to-
kens. However, when combining LoRA with our
method, the predicted summary has an average of
20 tokens. On the SummScreen dataset, the av-
erage summery length for LoRA is 460 while the
length for Hierarchical Attention Adapter and Hi-
erarchical Attention Adapter + LoRA are 526 and
549, respectively.

5.3 Gate Values

To assess the relative importance of our adapter
at each layer of the model, we analyze the gate
output by computing the average absolute values
over the development set of SamSum. For the re-
sults presented in Figure 2, we see that the average
gate value gradually increases before drastically
dropping off at the last layer. This is in contrast to
the findings by previous work on encoder models
(Rücklé et al., 2021; Li et al., 2023), where they re-

Figure 2: Gate value for our adapter at each layer of the
Mistral-7B model. Values are averaged on the develop-
ment set of SamSum.

ported performance benefits from inserting adapter
modules in the final layer of the pre-trained model.
We hypothesize the main reason is that since the
last layer of the pre-trained decoder is directly used
to predict the next word distribution over the vocab,
the model cannot effectively learn to use the mod-
ified representation (from adapters) to encode the
fine-grained contextual nuances required for word
prediction. We believe these insights will benefit
future studies on developing PEFT methods for
pre-trained decoder models.

5.4 Qualitative Comparison

We perform a qualitative comparison between the
summary generated by LoRA and our Hierarchi-
cal Attention Adapter. From the output snippets
presented in Table 6, we see that on SamSum, our
model tends to be more verbose during prediction,
resulting in longer summaries that contains richer
information. For the first example of SummScreen,
we see that while both generated summaries do not
capture the same content as the reference summary,
the summary generated by LoRA begins to repeat
towards the end. In contrast, the summary gener-
ated by our method captures more aspects of the
conversation as it introduced six characters (rather
than the three for LoRA). For the second example,
we see that while both summaries contain informa-
tion about Kendall’s trial, the summary generated
by LoRA also becomes repetitive towards the end.
We hypothesize that this could be due to the intrin-
sic capacity of LoRA, as it only uses a small set of
parameters to update the self-attention weights.

6 Conclusions and Future Work

In this work, we present Hierarchical Attention
Adapter, a novel PEFT architecture that uses bidi-
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Summary Type Generated Summary

SamSum
Reference Kate broke her arm and she’s going to the hospital. She’d like to know whether

her medical insurance covers hospital costs. Greg suggests her to call Linda or ask
someone at the reception about it.

LoRA Kate broke her arm and is going to the hospital.
Ours Kate broke her arm and is being sent to the hospital. She wants to know if their

medical insurance covers hospital costs.

Reference Casey got a new nail polish and did her nails herself. It took her nearly 4 hours, so
she won’t do her friends’ nails, as it takes too long.

LoRA Casey did her nails herself. It took her 4 hours.
Ours Casey did her nails herself and they took her 4 hours. Amelia and Kristen want her

to do their nails too but she refuses.

SummScreen
Reference Adam bails Krystal out of jail and makes her an “offer” in exchange for her telling

him where their mutual grandson is. She denies that she knows he’s alive and
refuses his offer. But JR gets Bianca to admit that he is alive. . .

LoRA Jonathan and Greenlee continue to argue about Ryan’s actions. Jonathan wants to
know if Greenlee is going to stand by Ryan. Greenlee tells Jonathan that she will
stand by Ryan. Jonathan tells Greenlee that he wants to know if she is going to
stand by him. . .

Ours Greenlee and Jonathan argue about Ryan and Kendall. Maggie comes in and tells
them that she just saw Bianca. Greenlee and Jonathan argue about Kendall. Maggie
comes in and tells them that she just saw Bianca. . .

Reference Kendall’s trial begins. Bianca urges Kendall to listen to what she learned in her
dream about something she needs to find in order to help Kendall get acquitted. Jack
proposed to Erica and she accepts. Edmund suddenly regains consciousness. . .

LoRA Kendall is nervous about her trial. Bianca tells her that she had a dream that she was
at Michael’s condo the night he was killed. Kendall tells her that it was impossible.
Bianca tells her that she is worried about her. Kendall tells her that she is worried
about her. . .

Ours Kendall is in court for her trial. Bianca tells Kendall that she had a dream that she
was at Michael’s condo the night that he died. Kendall tells Bianca that she cannot
believe that she slept the whole day. . .

Table 6: Comparison of generated summary between LoRA and our Hierarchical Attention Adapter for two examples
in the SamSum (top 2) and SummScreen (bottom 2) dataset. LoRA tends to produce overly brief summaries on
SAMSum and repetitive content on ScreenSumm, indicating a limitation in generating longer outputs.

rectional contextualization to model the hierarchi-
cal structure of the input sequence for dialogue
summarization task. Experiments on two datasets
show that our proposed method outperforms other
baselines for summaries with long context and
achieves the best overall performance when com-
bined with LoRA. We perform analysis on the av-
erage gate value to assess the relative importance
of our adapter at each layer of the model and find
that while the adapters of upper layers have higher

importance, the model learns to not use the final
layer since it is used for computing the next-token
probability.

For future work, we wish to perform additional
analysis to study the usefulness of the different
components in our proposed architecture and per-
form further experiments on additional datasets.
We will also perform further evaluation to com-
pare the faithfulness and factuality of summaries
generated by different models. Lastly, while our
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current proposal requires segment annotation of
the input sequence (i.e., dialogue turns), we intend
to extend our approach to implicitly learn the seg-
ment boundaries during training and generalize to
other summarization tasks such as scientific paper
summarization.

Limitations

Automatically assessing the quality of dialog sum-
maries is a huge challenge. We recognize the im-
portance of manual annotators for results compar-
ison. However, human evaluation is costly and
inefficient. While most of the dialogue summa-
rization work relies heavily on the ROUGE score,
we also report on the GPTScore with instruction
prompts, which is an automatic metric that gives
multi-faceted evaluation and is closely related to
human judgment.

Other types of dialogue summarization tasks
such as meeting summarization (e.g., AMI (Kraaij
et al., 2005) ICSI meeting corpus (Shriberg et al.,
2004)) often do not have enough examples for suffi-
ciently fine-tuning an LLM. Real-world meeting di-
alogues often span multiple topics and include dis-
fluencies, interruptions, and other artifacts. These
characteristics make summarization more realis-
tic but also more challenging. We plan to address
these practical issues in future work.

Lastly, while PEFT methods such as LoRA are
well optimized in existing libraries such as Ol-
lama3, adapter-based methods often lack in infer-
ence speed due to the computation of additional
modules. We hope our work can motivate future
studies to efficiently integrate adapter modules into
LLMs.

Ethical Considerations

We have taken proactive steps to address ethi-
cal concerns related to our research. Our testing
datasets were carefully selected to minimize po-
tential issues with biased or hateful content. If
this method is applied to new datasets that involve
recording multi-party dialogues, informed consent
should be obtained from all participants. Because
dialogue data may contain sensitive personal in-
formation, we urge caution in such applications,
especially in summarization.

3https://github.com/ollama/ollama
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Çağlar Gulçehre, and Bing Xiang. 2016. Abstrac-
tive text summarization using sequence-to-sequence
RNNs and beyond. In Proceedings of the 20th
SIGNLL Conference on Computational Natural Lan-
guage Learning, pages 280–290. Association for
Computational Linguistics.

Xuan-Phi Nguyen, Shafiq Joty, Steven Hoi, and Richard
Socher. 2020. Tree-structured attention with hierar-
chical accumulation. In International Conference on
Learning Representations.

Erik Nijkamp, Tian Xie, Hiroaki Hayashi, Bo Pang,
Congying Xia, Chen Xing, Jesse Vig, Semih Yavuz,
Philippe Laban, Ben Krause, et al. 2023. Xgen-7b
technical report. arXiv preprint arXiv:2309.03450.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul F Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems, volume 35, pages 27730–27744.
Curran Associates, Inc.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 2227–2237.
Association for Computational Linguistics.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya
Sutskever, et al. 2018. Improving language under-
standing by generative pre-training. OpenAI.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2020. Language
models are unsupervised multitask learners. OpenAI.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant.
2022. Learning to retrieve prompts for in-context
learning. In Proceedings of the 2022 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 2655–2671. Association for Compu-
tational Linguistics.

Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. AdapterDrop: On the efficiency
of adapters in transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7930–7946. Association
for Computational Linguistics.

28

https://doi.org/10.18653/v1/2023.findings-emnlp.634
https://doi.org/10.18653/v1/2023.findings-emnlp.634
https://doi.org/10.18653/v1/2023.findings-emnlp.634
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://proceedings.neurips.cc/paper_files/paper/2022/file/0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0cde695b83bd186c1fd456302888454c-Paper-Conference.pdf
https://aclanthology.org/2021.findings-emnlp.106/
https://aclanthology.org/2021.findings-emnlp.106/
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=DWn1TEb2fK
https://openreview.net/forum?id=DWn1TEb2fK
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2022.acl-long.433
https://doi.org/10.18653/v1/2023.findings-acl.779
https://doi.org/10.18653/v1/2023.findings-acl.779
https://doi.org/10.18653/v1/2023.findings-acl.779
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://doi.org/10.18653/v1/K16-1028
https://openreview.net/forum?id=HJxK5pEYvr
https://openreview.net/forum?id=HJxK5pEYvr
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openai.com/research/language-unsupervised
https://openai.com/research/language-unsupervised
https://openai.com/research/better-language-models
https://openai.com/research/better-language-models
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2021.emnlp-main.626
https://doi.org/10.18653/v1/2021.emnlp-main.626


Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389. Association for
Computational Linguistics.

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1073–
1083. Association for Computational Linguistics.

Elizabeth Shriberg, Raj Dhillon, Sonali Bhagat, Jeremy
Ang, and Hannah Carvey. 2004. The ICSI meeting
recorder dialog act (MRDA) corpus. In Proceed-
ings of the 5th SIGdial Workshop on Discourse and
Dialogue at HLT-NAACL 2004, pages 97–100, Cam-
bridge, Massachusetts, USA. Association for Com-
putational Linguistics.

Emma Strubell, Patrick Verga, Daniel Andor, David
Weiss, and Andrew McCallum. 2018. Linguistically-
informed self-attention for semantic role labeling.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5027–5038. Association for Computational Linguis-
tics.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan,
Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Se-
quence to sequence learning with neural networks. In
Advances in Neural Information Processing Systems,
volume 27. Curran Associates, Inc.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Bin Wang, Zhengyuan Liu, and Nancy Chen. 2023. In-
structive dialogue summarization with query aggre-
gations. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 7630–7653, Singapore. Association for Com-
putational Linguistics.

Xing Wang, Zhaopeng Tu, Longyue Wang, and Shum-
ing Shi. 2019a. Self-attention with structural position
representations. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP),
pages 1403–1409. Association for Computational
Linguistics.

Yaushian Wang, Hung-Yi Lee, and Yun-Nung Chen.
2019b. Tree transformer: Integrating tree structures
into self-attention. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1061–1070. Association for Compu-
tational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

BigScience Workshop, Teven Le Scao, Angela Fan,
Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel
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Abstract

Code-switching (CS) poses a significant chal-
lenge for Large Language Models (LLMs), yet
its comprehensibility remains underexplored
in LLMs. We introduce CS-Sum, to evalu-
ate the comprehensibility of CS by the LLMs
through CS dialogue to English summariza-
tion. CS-Sum is the first benchmark for
CS dialogue summarization across Mandarin-
English (EN-ZH), Tamil-English (EN-TA),
and Malay-English (EN-MS), with 900-1300
human-annotated dialogues per language pair.
Evaluating ten LLMs, including open and
closed-source models, we analyze performance
across few-shot, translate-summarize, and fine-
tuning (LoRA, QLoRA on synthetic data) ap-
proaches. Our findings show that though the
scores on automated metrics are high, LLMs
make subtle mistakes that alter the complete
meaning of the dialogue. To this end, we intro-
duce 3 most common type of errors that LLMs
make when handling CS input. Error rates vary
across CS pairs and LLMs, with some LLMs
showing more frequent errors on certain lan-
guage pairs, underscoring the need for special-
ized training on code-switched data.

1 Introduction

Code-switching (CS) is the practice of alternating
between two or more languages within a single
conversation or utterance. Bilingual and multilin-
gual speakers frequently engage in CS. This form
of communication has also become prevalent in
social media and is the norm in multilingual soci-
eties. Large Language Models (LLMs) (Hurst et al.,
2024; Team et al., 2023; Dubey et al., 2024), are
trained on huge volumes of data majority of which
is written in English. Despite the prevalence of
CS in real-world communication, existing bench-
marks (Huzaifah et al., 2024; Zhang et al., 2023;
Yong et al., 2023) fail to assess how well LLMs
process CS dialogues. Improved CS comprehen-
sion would enable LLMs to interpret multilingual

Figure 1: An instance from the benchmark

prompts more effectively, enhancing accessibility
for CS speakers (Bawa et al., 2020).

Summarization is an ideal task to evaluate CS
understanding, as it requires both grasping the di-
alogue’s main idea and generating a concise, co-
herent summary across languages. The only ex-
isting CS dialogue summarization dataset, Gup-
shup (Mehnaz et al., 2021), covers only one lan-
guage pair (English-Hindi). Other CS benchmarks
like LinCE (Aguilar et al., 2020) and GLUECos
(Khanuja et al., 2020) focus on tasks such as lan-
guage identification and POS-tagging, which assess
word- or sentence-level understanding, whereas
summarization requires discourse-level comprehen-
sion, a much harder test of CS ability.

To truly evaluate the ability of LLMs on CS,
we propose the CS-Sum benchmark, which con-
tains 900-1300 CS dialogue-summary pairs for
three language pairs: Mandarin-English (EN-ZH),
Tamil-English (EN-TA) and Malay-English (EN-
MS). The CS dialogues were created by native
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speakers of the respective languages. Instead of
generating a dialogue from scratch, the speakers
were asked to translate the English dialogues in test
sets of DialogSum (Chen et al., 2021) and SAM-
Sum (Gliwa et al., 2019) - two popular English
dialogue summarization datasets - to CS dialogues
in their respective languages.

We evaluate 9 open source and 1 proprietary
LLMs under few-shot, translate-summarize, LoRA
(Hu et al., 2022) and QLoRA (Dettmers et al.,
2023) on synthetic data and provide a detailed anal-
ysis on the struggles of current SOTA LLMs(<=9B).
For LoRA and QLoRA fine-tuning, the training
data was generated using Gemini-2-flash (Team
et al., 2023), as it is a large-scale LLM with a free-
to-use API, making it a practical choice for our
experiments.

Our qualitative analysis of the summaries gener-
ated by LLMs showed that tranditional summariza-
tion metrics like ROUGE (Lin, 2004), BERTScore
(Zhang et al., 2019) are not sufficient for measuring
the quality of the summaries since the LLMs are
capable of generating summaries that contain sub-
tle errors that change the entire meaning of the CS
dialogues. To this end, we identify the three most
common errors (CSL, MST, SMA Section 5) that
the LLMs make when summarizing CS dialogues
and suggest an LLM-driven approach to analyse
their summaries with respect to the errors.

Our main contributions are:

• We introduce CS-Sum, the first CS dialogue
summarization benchmark for EN-ZH, EN-
TA and EN-MS.

• We conduct an in-depth evaluation of state-
of-the-art LLMs, identifying critical failure
patterns in their ability to process and summa-
rize CS dialogues.

• We release CS-Sum1, along with the full syn-
thetic training dataset.

2 Related Work

While LLMs have demonstrated strong perfor-
mance in many multilingual tasks, they still face
significant challenges when dealing with CS. Stud-
ies (Zhang et al., 2023; Yong et al., 2023) have
shown that LLMs, including GPT-4 and GPT-3.5,
struggle with generating code-switched text, often

1https://huggingface.co/datasets/SkAndMl/
cs-sum

resulting in language collapse, where the model
fails to mix languages properly, and in task-specific
failures such as poor performance in summariza-
tion and machine translation for CS data. These
issues arise because LLMs are typically trained
on monolingual data and lack the capacity to han-
dle the intricacies of CS discourse. Additionally
(Huzaifah et al., 2024), their performance is incon-
sistent, particularly when translating low-resource
language pairs, with models showing better results
for high-resource languages but underperforming
when confronted with languages that are under-
represented in training datasets. These findings
highlight a big problem as people prefer to interact
with LLMs in code-switch (Bawa et al., 2020).

Recent benchmarks such as LinCE (Aguilar
et al., 2020) and GLUECoS (Khanuja et al., 2020)
have been instrumental in advancing the under-
standing of CS phenomena by focusing on tasks
like LID, NER, and POS tagging. While these
datasets have provided valuable insights, it’s impor-
tant to recognize that LLMs continue to encounter
challenges when dealing with the complexities in-
herent in code-switched discourse. To truly evalu-
ate the CS comprehension of LLMs, other bench-
marks are necessary—ones that go beyond word-
level tasks and assess deeper linguistic understand-
ing. The first step in this direction is CS-Sum, a
benchmark that evaluates LLMs on a more com-
plex task, such as summarization, which requires a
nuanced comprehension of code-switched text.

3 CS-Sum Benchmark

3.1 Dataset Construction

The goal of building the CS-Sum benchmark, was
to address the lack of a benchmark that evaluates
the CS comprehension of LLMs. We selected Man-
darin (zh), Bahasa Melayu (ms), and Tamil (ta) be-
cause these languages have large bilingual speaker
communities that frequently code-switch with En-
glish. To efficiently create a diverse CS benchmark
within resource constraints, we translated a sub-
set of the combined test sets from DialogSum and
SAMSum. We recruited 7 native speakers for each
language to translate the English dialogues to CS
dialogues in their respective languages. The trans-
lators were native speakers, all university students
(bachelor’s or master’s level). They were instructed
to translate the dialogues depending on how they
would have conversed with their peers in CS. The
entire translation process lasted for about 5 months.
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Language M-Index I-Index Burstiness Span Entropy Memory
EN-ZH 0.40 0.36 -0.79 0.13 -0.08
EN-MS 0.41 0.38 -0.65 0.64 -0.24
EN-TA 0.42 0.40 -0.68 0.58 -0.22

Table 1: CS metrics measured on the CS-Sum dataset

EN-ZH EN-TA EN-MS

Number of instances 1320 1000 918
EN utterances 1140 344 517

Lang utterances 2079 983 265
EN as matrix language 4699 2340 2984

Lang as matrix language 4779 6790 1919
Avg. monolingual utterance length 2.344 3.616 5.515

Avg. CS utterance length 5.816 9.642 13.885

Table 2: CS statistics of CS-Sum. ‘Lang’ refers to the
language other than English

3.2 Corpus Overview and Analysis

Table 2 presents key statistics of the CS-Sum bench-
mark across three language pairs. We observe that
non-English utterances outnumber English ones
in EN-ZH and EN-TA, while the reverse is true
for EN-MS, suggesting stronger local language
dominance in the former two. The matrix lan-
guage distribution further highlights this variation:
Tamil dominates as the matrix language in EN-TA,
whereas EN-ZH and EN-MS are more balanced.
This indicates differing CS behaviors—embedding
in EN-TA versus alternation in EN-ZH and EN-
MS.

Utterance lengths also vary significantly. EN-
MS exhibits the longest average CS utterances
(13.88 tokens), compared to 5.81 in EN-ZH, sug-
gesting more complex span-level dependencies in
Malay-English dialogues. The longer monolingual
spans and varied matrix language roles imply that
LLMs must manage different CS dynamics across
language pairs.

3.3 Quantifying Code-Switching

We quantify the structural properties of code-
switching in CS-Sum using five established met-
rics (Guzmán et al., 2017), reported in Table 1.
The M-Index measures the distributional balance
between languages, with values near 1 indicating
equal usage. The I-Index captures the token-level
likelihood of language alternation. Burstiness char-
acterizes the temporal irregularity of switching,
where negative values imply regular alternation
and positive values indicate clustering. Span En-
tropy quantifies the unpredictability in monolin-

CS pair KL Div. JS Div.
EN-ZH 2.4786 0.4918
EN-MS 0.5481 0.1454
EN-TA 0.5089 0.1017

Table 3: Divergence between CS-Sum and CS-Sum-Syn

gual segment lengths, while Memory reflects the
autocorrelation of consecutive spans—positive val-
ues suggest persistence, negative values suggest
alternation.

Across the three CS pairs, CS-Sum exhibits
moderate switching behavior. The M-Index val-
ues (0.40–0.42) suggest relatively balanced bilin-
gual distributions, and I-Index scores (0.36–0.40)
indicate frequent intra-sentential switching, most
prominently in EN-TA. Burstiness values are con-
sistently negative, reflecting structured rather than
chaotic switching. Span Entropy is lowest for EN-
ZH (0.13), indicating predictable switch bound-
aries, while EN-TA (0.58) and EN-MS (0.64) ex-
hibit higher variability. Memory values are near
zero or negative across all pairs, implying weak
temporal consistency in span lengths, and high-
lighting the need for LLMs to dynamically track
and adapt to switching boundaries during summa-
rization.

3.4 Gemini-Generated Training Data

To support fine-tuning for evaluating LLMs on CS-
Sum, we construct a synthetic training set, CS-
Sum-Syn, by converting 19,014 English dialogue-
summary pairs from DialogSum and SAMSum into
code-switched dialogues using Gemini-22 (Team
et al., 2023). This augmentation is not a contri-
bution in itself, but a means to enable parameter-
efficient adaptation (e.g., LoRA, QLoRA). To vali-
date the distributional alignment of synthetic and
human CS data, we compute CS metrics across
both sets and visualize them for each language pair
in Figures 2a, 2b, and 2c.

We find that Gemini-generated data broadly ap-
proximates human CS patterns for EN-TA and EN-

2https://ai.google.dev/, gemini-2-flash-exp
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(a) ZH Distribution (b) TA Distribution

(c) MS Distribution

MS. In EN-TA, distributions over I-Index, bursti-
ness, and span entropy align closely, suggesting
that Gemini captures intra-sentential switching
well. EN-MS also shows good overlap, though
with slightly more bursty and irregular switching
in the synthetic set. In contrast, EN-ZH exhibits
substantial divergence: synthetic dialogues show
flatter memory and burstiness curves, as well as a
long-tailed span entropy distribution, indicating re-
duced switching regularity and predictability. This
mismatch is quantified in Table 3, where the KL
and JS divergence for EN-ZH are 4–5× higher than
for the other pairs. These discrepancies may affect
the quality of fine-tuning and are revisited in Sec-
tion 5 during error diagnosis.

4 LLM performance on CS-Sum

In this section, we present the performance of
ten LLMs—nine open-source3 and one propri-
etary—on CS-Sum across four settings: Few-
Shot, Translate-Summarize, LoRA, and QLoRA.
In LoRA and QLoRA, open-source models are fine-
tuned on CS-Sum-Syn. The evaluated open-source
LLMs include LLAMA-3-8B (Dubey et al., 2024),
MISTRAL-7B (Jiang et al., 2023), MINISTRAL-
8B4, GEMMA-2-2B and GEMMA-2-9B (Team

3Instruction-tuned and latest versions
4https://huggingface.co/mistralai/

Ministral-8B-Instruct-2410

et al., 2024), QWEN2.5-2B and QWEN2.5-7B
(Yang et al., 2024), SEA-LION-GEMMA-2-9B5,
and SEALLM-7B (Nguyen et al., 2024). The pro-
prietary model used is GPT-4O (Hurst et al., 2024).
These models were selected based on their mul-
tilingual pretraining exposure and computational
feasibility, with sizes ranging from 2B to 9B param-
eters. Models like LLAMA-3-8B, MISTRAL-7B,
and GEMMA-2-9B have shown strong generaliza-
tion across NLP tasks, while QWEN2.5-7B, SEA-
LION-GEMMA-2-9B, and SEALLM-7B were
chosen for their targeted multilingual capabilities,
especially in languages like Bahasa Melayu, Tamil,
and Mandarin. GPT-4O serves as a strong pro-
prietary baseline due to its SOTA performance in
cross-lingual comprehension.

By evaluating these models across different pa-
rameter scales and varying degrees of multilin-
gual exposure, we investigate how model size and
pretraining diversity affect performance. LoRA
and QLoRA fine-tuning on CS-Sum-Syn result in
higher scores on automated metrics, suggesting im-
proved alignment with reference summaries. How-
ever, it remains unclear whether these gains reflect
actual comprehension of code-switched dialogue
or simply the ability to replicate the distributional
patterns of Gemini-generated synthetic data. To
explore this, we conduct an in-depth error anal-

5https://sea-lion.ai/
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Model Lang ROUGE-L BERTScore SBERT-COSINE JACCARD METEOR

Gemma-2-2B
EN-ZH 0.2330 / -4 0.8876 / -0.35 0.7268 / -1.40 0.1658 / -7.64 0.2699 / -0.9
EN-TA 0.2202 / -7 0.8812 / -0.38 0.6755 / -0.85 0.1523 / -9.19 0.2453 / -5.23
EN-MS 0.2421 / -7.18 0.8898 / -0.98 0.7352 / -4.35 0.1739 / -13.52 0.2902 / -12.43

Qwen2.5-3B
EN-ZH 0.2393 / 9.88 0.8824 / 0.93 0.7143 / 1.70 0.1643 / 5.82 0.2974 / 2.05
EN-TA 0.2227 / -1.46 0.8805 / 0.44 0.6880 / -2.35 0.1468 / -0.13 0.2591 / -4.82
EN-MS 0.2408 / 6.21 0.8868 / 0.60 0.7308 / -2.25 0.1694 / 1.14 0.3100 / -4.57

Qwen2.5-7B
EN-ZH 0.2482 / 27.10 0.8106 / 11.20 0.4927 / 54.12 0.0783 / 162.62 0.1118 / 188.89
EN-TA 0.2800 / -5.11 0.8937 / -0.55 0.7081 / -2.14 0.1837 / -9.62 0.2723 / -9.20
EN-MS 0.3117 / -1.65 0.9041 / -0.46 0.7520 / -0.67 0.2122 / -8.37 0.3372 / -10.26

SEALLM-7B
EN-ZH 0.2115 / 19.25 0.8122 / 9.15 0.4836 / 45.48 0.0834 / 89.27 0.1297 / 104.29
EN-TA 0.2270 / 0.99 0.8686 / 1.21 0.6470 / 2.53 0.1336 / 3.44 0.2287 / 1.55
EN-MS 0.2575 / 8.41 0.8801 / 1.28 0.6956 / 4.91 0.1633 / 9.04 0.2800 / 5.95

Mistral-7B
EN-ZH 0.2568 / -3.10 0.8902 / -0.42 0.7208 / -0.34 0.1754 / -8.01 0.3010 / -7.82
EN-TA 0.2198 / -2.15 0.8792 / 0.04 0.6847 / -0.95 0.1470 / -6.91 0.2657 / -10.45
EN-MS 0.2421 / 1.59 0.8897 / -0.46 0.7293 / -2.15 0.1796 / -11.49 0.3084 / -8.40

Ministral-8B
EN-ZH 0.2560 / 4.23 0.8875 / 0.52 0.7037 / 1.06 0.1588 / 6.13 0.2517 / 1.15
EN-TA 0.2468 / -5.61 0.8858 / -0.18 0.6752 / -2.95 0.1561 / -3.66 0.2387 / -8.53
EN-MS 0.2700 / 6.97 0.8917 / 0.37 0.7262 / 0.03 0.1794 / 2.93 0.2843 / -0.09

LLaMA-3-8B
EN-ZH 0.2868 / -2.29 0.8845 / 0.76 0.7090 / 4.09 0.1918 / -6.99 0.2916 / 0.88
EN-TA 0.2453 / 0.47 0.8769 / 0.99 0.6707 / 3.28 0.1598 / 1.07 0.2570 / -2.13
EN-MS 0.2599 / 8.06 0.8724 / 2.04 0.6538 / 11.21 0.1804 / 0.02 0.2833 / 5.50

Gemma-2-9B
EN-ZH 0.2995 / -5.62 0.8987 / -0.27 0.7603 / -0.91 0.2054 / -5.83 0.3246 / -3.06
EN-TA 0.2761 / -3.85 0.8911 / 0.57 0.7203 / 4.42 0.1832 / 4.63 0.3107 / 1.25
EN-MS 0.3009 / -3.00 0.8975 / 0.01 0.7573 / -0.94 0.2096 / -3.96 0.3279 / -0.07

SEA-LION-Gemma-2-9B
EN-ZH 0.2799 / -3.96 0.8968 / -0.34 0.7542 / -0.41 0.1820 / -4.29 0.2944 / -4.46
EN-TA 0.2703 / 0.26 0.8898 / 0.48 0.7138 / 3.79 0.1727 / -0.12 0.2884 / -2.38
EN-MS 0.2860 / -1.56 0.8963 / -0.12 0.7404 / 1.21 0.1837 / -4.16 0.2983 / -4.75

GPT-4o
EN-ZH 0.2965 / -1.03 0.8816 / 2.21 0.7082 / 9.63 0.1792 / 11.66 0.2853 / 16.52
EN-TA 0.3157 / -4.92 0.8981 / 0.39 0.7570 / 2.19 0.2041 / -0.55 0.3419 / 0.75
EN-MS 0.3126 / -1.70 0.9037 / -0.15 0.7750 / 0.12 0.2045 / 0.33 0.3365 / 1.09

Table 4: Few-Shot Performance/Translate-Summarize % improvement on CS-Sum

ysis in Section 5, which reveals that fine-tuning
on synthetic data does not improve—and often de-
grades—the model’s ability to accurately interpret
and summarize code-switched content.

4.1 Result Analysis

In this subsection, we present the results of the
LLMs’ performance on the CS-Sum in Few-Shot,
Translate-Summarize, LoRA and QLoRA settings.
Appendix B provides an explanation on the dif-
ferent settings. We use standard summarization
metrics like ROUGE (Lin, 2004), BERTScore
(Zhang et al., 2019), SBERT-Cosine (Reimers and
Gurevych, 2019), Jaccard and METEOR (Baner-
jee and Lavie, 2005). This comprehensive set of
metrics evaluate both word-level matching and se-
mantic similarity.

The few-shot performance of LLMs across
the three CS language pairs is reported in Ta-
ble 4. While semantic similarity metrics such as
BERTScore and SBERT-Cosine report high val-

ues, these can be misleading. As illustrated in
Figure 3, the summaries often fail to accurately
capture the core content or intent of the original
dialogue, despite appearing semantically plausible.
This reflects a common failure mode of LLMs in
CS summarization: generating fluent, high-overlap
summaries that omit or distort key factual elements.
In this example, Gemma-2-9B misrepresents who
confirms the location of the conference and fabri-
cates speaker opinions, despite achieving a high
semantic similarity score. ROUGE-L scores fur-
ther corroborate this gap, with LLMs scoring nearly
50% lower than the best-performing models on the
monolingual DialogSum6 and SAMSum7 bench-
marks.

From Table 4, we observe that GPT-4o is the
best-performing model overall. However, due to

6https://paperswithcode.com/sota/
text-summarization-on-dialogsum

7https://paperswithcode.com/sota/
text-summarization-on-samsum-corpus
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the lack of transparency in its training and archi-
tecture, we cannot provide deeper analysis on its
performance characteristics. Among open-source
models, Gemma-2-9B consistently outperforms
others across most metrics and language pairs.
This aligns with findings from the Gemma-2 pa-
per (Team et al., 2024), which attributes its strong
multilingual performance to extensive exposure to
diverse languages and an optimized tokenizer. In-
terestingly, SEA-Lion-Gemma-2-9B lags slightly
behind, despite its regional specialization in South-
east Asian languages, suggesting that broader mul-
tilingual exposure may be more beneficial than
region-specific pretraining for CS comprehension.

One notable observation is the underperfor-
mance of most models on the EN-ZH pair, which
is surprising given that all models were exposed
to Mandarin during pretraining. Manual inspec-
tion reveals that some LLMs generate summaries
partially or entirely in Chinese, despite being ex-
plicitly prompted to produce English outputs. This
mismatch leads to lower scores on automated met-
rics, particularly those that penalize non-English
outputs. However, as discussed in our fine-grained
evaluation (Section 5), these summaries often con-
tain fewer semantic or structural errors than those
in EN-TA or EN-MS, indicating that the low met-
ric scores may not reflect actual comprehension
quality.

We also find that smaller models, such as
Gemma-2-2B and Qwen2.5-3B, perform signifi-
cantly worse than their larger counterparts, reinforc-
ing the impact of model scale on CS summarization.
Surprisingly, SEALLM-7B performs comparably
to these smaller models, despite being explicitly
trained on Southeast Asian languages. Qualitative
analysis of its outputs reveals several failure modes
in the few-shot setting: (a) copying utterances di-
rectly from the dialogue, (b) generating descriptive
paraphrases rather than true summaries, and (c)
producing outputs in the wrong language. These
behaviors suggest that SEALLM struggles with in-
context learning and generalization, even within its
intended linguistic domain.

Translate-Summarize % Improvement Ta-
ble 4 reports percentage improvements under the
Translate-Summarize setting. Contrary to expecta-
tions, most models show little to no improvement,
and in many cases, performance declines across all
metrics. This suggests that translation introduces
additional challenges, likely due to LLMs’ inability

Figure 3: Wrong summary with high BERTScore 0.903

to preserve the structural and discourse-level nu-
ances of code-switched input. Notably, Qwen2.5-
7B and SEALLM-7B improve significantly for EN-
ZH (27.1% and 19.25% in ROUGE-L), reflecting
benefits from Mandarin or SEA-specific pretrain-
ing. However, similar gains are absent for EN-TA
and EN-MS, indicating that CS translation remains
unreliable outside of high-resource language pairs.

LoRA and QLoRA Results We fine-tune LLMs
on the synthetic CS-Sum-Syn dataset using LoRA
and QLoRA to evaluate their ability to handle
CS summarization beyond just metric gains. As
shown in Table 5 8, EN-ZH sees the largest im-
provements (e.g., SEALLM-7B and Qwen2.5-7B
exceed 200% in METEOR), EN-TA shows con-
sistent gains, while EN-MS exhibits mixed results
across metrics.

These improvements are surprising given the
distributional mismatch between CS-Sum and CS-
Sum-Syn (Figure 2a, Table 3). A qualitative review
reveals that models often produce summaries with
subtle semantic errors, indicating they may have
learned surface-level summary structure rather than
true code-switching comprehension. This moti-
vates the deeper analysis in Section 5.

5 Error Analysis

In this section, we present an in-depth analysis of
the common error types exhibited by LLMs when
summarizing CS dialogues. Our qualitative anal-
ysis across the EN-ZH, EN-TA, and EN-MS lan-
guage pairs revealed three major failure modes:

• Code-Switching Loss (CSL): The summary
primarily utilizes the English parts of the dia-
logue, ignoring or missing critical information
from non-English segments.

• Meaning Shift from Poor Translation
8Due to space constraints, rest of the scores are presented

in Table 8
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Model Lang ROUGE-L BERTScore SBERT-COSINE JACCARD METEOR

SEALLM-7B
EN-ZH 50.45 / 51.94 11.09 / 11.21 60.22 / 60.69 170.47 / 160.94 163.13 / 142.51
EN-TA 47.99 / 43.82 4.49 / 4.52 19.84 / 19.86 75.18 / 69.14 47.14 / 35.42
EN-MS 34.20 / 17.03 3.29 / 2.53 12.01 / 27.78 47.49 / 4.22 13.08 / 27.78

LLaMA-3-8B
EN-ZH 23.51 / 25.21 3.14 / 3.12 12.88 / 12.79 29.85 / 34.26 19.70 / 29.68
EN-TA 51.45 / 47.07 4.32 / 4.00 18.91 / 18.28 66.19 / 60.27 39.72 / 42.35
EN-MS 46.81 / 21.73 4.85 / 3.27 22.19 / 16.94 50.56 / 23.01 39.34 / 17.83

Gemma-2-9B
EN-ZH -1.45 / 10.66 0.12 / 0.82 4.10 / 2.32 8.56 / 11.61 1.68 / 7.95
EN-TA 6.54 / 19.37 0.63 / 1.56 7.14 / 9.12 18.12 / 27.89 7.28 / 13.01
EN-MS 7.81 / -6.27 0.71 / -0.61 3.60 / -1.41 8.48 / -3.45 5.31 / -7.06

SEA-LION-Gemma-2-9B
EN-ZH -22.93 / -6.64 -3.10 / -0.71 -3.27 / 1.73 -4.13 / 8.67 6.29 / 14.39
EN-TA -21.48 / 3.59 -2.61 / 0.24 1.74 / 7.08 -3.49 / 20.38 7.38 / 17.21
EN-MS -21.98 / -8.08 -2.95 / -0.99 -3.53 / -0.77 -8.16 / 3.18 9.09 / 3.03

Table 5: LoRA / QLoRA % Improvement over Few-Shot on CS-Sum

(MST): The model misunderstands the code-
switched segments, resulting in summaries
that deviate from the dialogue’s true meaning.

• Speaker Misattribution (SMA): Summaries
incorrectly assign statements to speakers, thus
distorting intended meanings or misrepresent-
ing participants’ views.

Figure 4 illustrates CSL, demonstrating how the
summary incorrectly emphasizes English segments
and misinterprets speaker intentions. Further exam-
ples across categories are provided in Tables 9, 10,
and 11. Errors were identified automatically via
GPT-4o, detailed further in Appendix C.

To quantify these errors and compare model be-
haviors, we report the percentage of summaries
exhibiting each error type across 9 LLMs under
both Few-Shot and LoRA settings (Table 6). The
analysis reveals the following:

CSL persists as the dominant failure mode in
Few-Shot evaluation. Across all 9 models and
the three language pairs, CSL exceeds 50% in
the Few-Shot setting (Table 6). Even the best
performer, SEA-LION-GEMMA-2-9B, attains a
minimum of 53.73% CSL on EN-ZH, confirm-
ing that LLMs systematically ignore non-English
spans when summarizing code-switched dialogues,
regardless of architecture or pre-training recipe.

Scaling within a model family does not reliably
reduce errors. Comparing parameter-matched
variants shows no monotonic gains: GEMMA-2-
9B lowers CSL on EN-ZH (77.61→59.70) yet
raises Speaker Misattribution (SMA) on EN-TA
by 7 pp over its 2B sibling, while QWEN2.5-7B
improves CSL on EN-MS but leaves MST virtu-
ally unchanged. These inconsistencies indicate that

sheer scale is not a substitute for task-specific mul-
tilingual evaluation.

EN-TA exhibits consistently higher error rates
across models. All evaluated models show their
highest rates of CSL and SMA on EN-TA dialogues
(e.g., QWEN2.5-7B: 91.81% CSL, 57.31% SMA).
This suggests that certain language-specific prop-
erties, such as morphological complexity and syn-
tactic divergence from English, may contribute to
increased summarization difficulty in this setting.

SEA-oriented models excel in error analysis
despite mediocre automatic scores. Regional
models such as SEALLM-7B and SEA-LION-
GEMMA-2-9B achieve the lowest CSL and SMA
within their parameter class (e.g., 53.73% CSL on
EN-ZH), yet trail larger English-specific models
models on ROUGE and BERTScore. This diver-
gence reinforces that conventional metrics do not
capture CS comprehension, underscoring the need
for better metrics.

Synthetic fine-tuning amplifies errors under
distribution shift. Fine-tuning on the Gemini-
generated CS-Sum-Syn corpus degrades perfor-
mance when the training distribution diverges from
CS-Sum, most notably for EN-ZH, whose KL di-
vergence is 2.48 versus ≤0.55 for the other pairs
(Table 3). After adaptation, SEA-LION-GEMMA-
2-9B’s CSL jumps from 53.73% to 83.94% and
MST from 11.19% to 76.64% (Table 6). These
results illustrate that even synthetic data generated
using a high-performing LLM does not improve
the model’s ability to comprehend code-switched
input, and the failure to produce data that enhances
CS understanding also underscores the limitations
of current LLMs comprehensibility of CS.
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Model Lang CSL MST SMA
Few-Shot LoRA Few-Shot LoRA Few-Shot LoRA

Gemma-2-2B
EN-ZH 77.61 88.32 60.45 90.51 40.30 77.37
EN-TA 94.15 92.69 86.26 90.06 69.88 74.85
EN-MS 77.19 94.87 62.28 84.62 35.09 67.52

Qwen2.5-3B
EN-ZH 55.22 83.94 52.24 69.34 36.57 39.42
EN-TA 91.81 88.01 89.47 75.15 76.02 50.58
EN-MS 60.53 84.62 49.12 60.68 31.58 40.17

Qwen2.5-7B
EN-ZH 71.64 81.75 32.84 48.91 9.70 26.28
EN-TA 91.81 79.23 76.32 58.64 57.31 32.58
EN-MS 78.95 82.05 35.96 42.74 16.67 24.79

SEALLM-7B
EN-ZH 64.18 84.67 41.79 70.80 21.64 33.58
EN-TA 91.23 93.57 81.87 71.64 63.16 47.95
EN-MS 68.42 85.47 45.61 69.23 23.68 40.17

Mistral-7B
EN-ZH 55.97 83.21 37.31 69.34 22.39 40.88
EN-TA 88.30 89.47 81.58 79.82 66.37 53.22
EN-MS 67.54 77.78 44.74 70.09 28.07 44.44

Ministral-8B
EN-ZH 76.12 85.40 52.24 74.45 31.34 48.91
EN-TA 95.03 90.94 88.80 79.82 66.37 55.56
EN-MS 78.95 95.73 49.12 82.91 20.18 57.26

LLaMA-3-8B
EN-ZH 74.63 71.17 35.82 45.07 16.41 21.35
EN-TA 90.94 56.92 80.70 37.89 55.85 19.93
EN-MS 73.68 62.91 40.35 33.38 14.04 17.33

Gemma-2-9B
EN-ZH 59.70 85.40 18.66 57.66 8.21 35.77
EN-TA 71.35 82.75 35.09 67.84 22.22 46.20
EN-MS 59.65 79.60 18.42 52.53 8.77 29.45

SEA-LION-Gemma-2-9B
EN-ZH 53.73 83.94 11.19 76.64 3.73 52.55
EN-TA 60.53 84.50 27.78 76.61 17.54 49.71
EN-MS 48.25 86.32 14.04 64.96 7.02 46.15

Table 6: Comparison of error rates (%) in Few-Shot vs. LoRA fine-tuned models across different CS language pairs.

Figure 4: CSL error example

6 Conclusion

In this paper, we introduced CS-Sum, the first
CS dialogue-to-English summarization benchmark
across three language pairs: EN-TA, EN-ZH, and
EN-MS. Our experiments revealed that LLMs per-
form inconsistently across CS pairs, with some
open-source models outperforming SEA-specific
models, highlighting that CS data must be present
in pretraining, not just added through fine-tuning.
Furthermore, our analysis identified three major
error types—CSL, MST, and SMA—persisting
across all models, demonstrating that current LLMs
lack intrinsic CS comprehension. The quantitative
results reinforce the severity of these failures, show-
ing that fine-tuning alone does not fully resolve
CS-specific challenges. To drive further research in
multilingual NLP, we will release CS-Sum along
with our codebase and evaluation framework.

7 Limitations

While this work provides a comprehensive evalu-
ation of CS dialogue summarization through the
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CS-Sum benchmark, there are some limitations that
should be addressed in future work.

• Focus on Summarization: Our experiments
primarily focus on the task of summariza-
tion. However, code-switching also poses
significant challenges for other long-context
NLP tasks, such as machine translation, di-
alogue generation, and question answering.
Extending the CS-Sum benchmark to these
tasks would provide a broader understanding
of LLMs’ capabilities in handling CS data
across different domains.

• Finetuning with Synthetic Data: The fine-
tuning experiments in this paper are limited
to synthetic code-switched data generated us-
ing Gemini-2. While this approach allowed
us to assess the potential of fine-tuning for
CS comprehension, it does not capture the
complexities of real-world CS data.
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A Synthetic Data Generation Process

To create a synthetic CS-dialogue summarization
dataset, we combined the training sets of Dialog-
Sum and SAMSum, resulting in 19,014 English
dialogue-summary pairs. We used Gemini-2-flash
to translate the English dialogues to code-switched
dialogues in three CS pairs, as it is a large-scale
SOTA LLM with a free-to-use API, making it a
practical choice for our experiments.

We used the following prompt to convert English
dialogues into CS dialogues. Each prompt was aug-
mented with few-shot examples that were human
generated.

Example Prompt for Malay-English
Code-Switching

You are a {Malay/Tamil/Chinese} person in your 20s.
You are recruited for translating English dialogues to
English-{Malay/Tamil/Chinese} code-switched dia-
logues.
The code-switched dialogues should follow the same
structure as the English dialogue.
This is for educational purposes, so DO NOT include
swear words in your translation.
Return just the code-switched dialogue.

B Experiment settings

B.1 Few-shot and Translate-Summarize
The Few-Shot and Translate-Summarize settings
evaluate the inherent CS comprehension of LLMs.
Evaluating the LLMs in this setting gives us an
idea of their performance without any additional
training.

Few-shot In the Few-Shot setup, we provide
each LLM with three human-crafted examples con-
taining code-switched dialogues and their corre-
sponding summaries. The results from this setup,
will quantify the inherent CS understanding of the
LLMs for the three language pairs.

Translate-Summarize In the Translate-
Summarize approach, each CS dialogue is first
translated into English before being summarized.
This serves as a baseline to determine whether
the presence of code-switching affects summary
quality. The translation step is performed by the
same LLM, ensuring that the summarization model
receives only monolingual input.

B.2 LoRA and QLoRA
In this subsection, we describe the fine-tuning pro-
cess using LoRA and QLoRA to adapt open-source

LLMs for CS dialogue summarization. Given that
full fine-tuning is computationally expensive, we
use parameter-efficient fine-tuning (PEFT) tech-
niques to assess whether task-specific adaptation
improves CS comprehension. The models are fine-
tuned on CS-Sum-Syn.

Model r α LR
Ministral-8B 32 32 5e-5
LLaMA-3-8B 16 16 5e-5
Qwen2.5-3B 64 64 3e-5
Gemma-2-9B 32 32 5e-5
SEA-Lion-Gemma-9B 32 32 5e-5
Gemma-2-2B 8 8 5e-5
Qwen-2.5-7B 64 64 3e-5
Mistral-7B 32 32 5e-5
SEALLM-7B 64 64 3e-5

Table 7: Hyperparameters used for LoRA and QLoRA
fine-tuning.

The fine-tuning process follows model-specific
hyperparameter configurations, as shown in Table 7.
The main hyperparameters include the rank param-
eter (r), scaling factor (α), and learning rate (lr).
These configurations were chosen based on empir-
ical observations to balance training stability and
performance.

All the models were trained for 4 epochs with
a batch size of 8 and gradient accumulation for 8
steps. We followed the cosine learning rate schedul-
ing after warming up for the first 3% of steps. We
used bf16 and gradient checkpointing for memory
efficient training. All the LLMs were trained on an
H100 GPU and the training lasted between 1 to 4
hours depending on the architecture and size of the
LLM.

41



C Error Analysis Process

The summaries generated by the LLMs typically
exhibit the three major errors listed in Section 5. In
this section, we describe the process we followed
to detect these errors in the generated summaries.

We used GPT-4o to analyse the summary given
the CS-dialogue for different errors. For each error
type, we used a separate prompt to guide the clas-
sification process. The LLM was asked to analyse
the summary with respect to the particular error
type before providing a verdict on presence of the
error.

Below, we present the prompts used for each
category.

Prompt for CSL

You will be given a code-switched (CS) dialogue be-
tween two speakers and its generated summary. Iden-
tify whether the summary has ignored or removed
key information from the non-English parts of the
dialogue.
The summary has an error if it meets one or more of
the following criteria:

• Does not include important content from the
CS part of the dialogue.

• The summary only relies on the English part of
the dialogue.

Prompt for SMA

You will be given a code-switched (CS) dialogue
and its generated summary. Analyze whether the
summary has mixed up who said what.
The summary has an error if it meets one or more of
the following criteria:

• Has swapped roles or perspectives between
speakers.

• Statements are wrongly assigned.

Prompt for MST

You will be given a code-switched (CS) dialogue and
its generated summary. Analyze whether the sum-
mary distorts the meaning of the original conversation
due to incorrect understanding of the code-switching.
The summary has an error if it meets one or more of
the following criteria:

• The summary misinterprets the dialogue due to
poor translation.

• Intent of the speakers has changed because of
poor understanding of a CS phrase.

• Key points of the dialogue are misrepresented.

Figure 5: Distribution b/w filtered CS-Sum-Syn and
CS-Sum for EN-ZH

D Training on filtered data

The difference in the distribution of CS-Sum and
CS-Sum-Syn for EN-ZH (see Figure 2a) is much
more than the differences in distribution for EN-
MS and EN-TA. We hypothesize that this might
be due to the tokenization strategy of the LLMs
which is more robust for Roman script compared
to Chinese script. The % improvement gains for
EN-ZH after LoRA and QLoRA finetuning on EN-
ZH is also less compared to the other two CS pairs
(Table 5).

To check if filtering CS-Sum-Syn to match CS-
Sum’s distribution would improve the finetuning
results, we treat the CS metrics shown in Table 1 as
a multivariate gaussian. We calculated the mean µ
and the covariance matrix Σ of CS-Sum and used
the Mahalanobis distance (eqn. 1) to calculate the
distance between the instances in the training set
and the test set.

DM (x) =
√
(x− µ)TΣ−1(x− µ) (1)

We filtered the training data aggressively by se-
lecting only the top 20 percentile of the training
instances with the shortest distances. The filtered
dataset had 3801 instances. The resulting distribu-
tion is shown in Figure 5 which matches CS-Sum’s
distribution better than the unfiltered one (see Fig-
ure 2a).

We finetuned (QLoRA) all the 9 open-source
LLMs on the filtered data for 3 epochs (4 for the
unfiltered one) with all the other parameters staying
the same. Figure 6 shows the % improvement of
LLMs finetuned on filtered data over the LLMs
finetuned on the unfiltered one.
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Figure 6: Filtered data % improvement over CS-Sum-Syn for EN-ZH

It can be seen that only 2 LLMs - Mistral 7B and
SEA-Lion-Gemma-9B show actual improvement
while other LLMs either don’t improve much or
have worse performances. Qwen2.5-7B suffers the
worst when finetuned on filtered data. This sug-
gests that filtering using Mahalanobis distance may
only be beneficial for certain architectures while
being detrimental to others. Further investigation is
required to determine if alternative filtering thresh-
olds or strategies could yield better generalization
across LLMs.
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Model Lang ROUGE-L BERTScore SBERT-COSINE JACCARD METEOR

Gemma-2-2B
EN-ZH 9.13 / 22.26 0.15 / 1.21 3.52 / 6.23 19.28 / 21.69 15.47 / 15.78
EN-TA 21.52 / 23.29 1.62 / 1.79 12.10 / 11.86 23.88 / 29.04 19.16 / 20.98
EN-MS 16.59 / 7.98 0.76 / 0.34 4.82 / 1.26 14.51 / 2.31 8.16 / -4.92

Qwen2.5-3B
EN-ZH 38.32 / 36.44 2.72 / 2.80 10.99 / 11.20 44.42 / 41.06 21.43 / 21.29
EN-TA 39.08 / 35.50 2.73 / 2.55 12.30 / 11.96 47.58 / 45.49 30.90 / 33.84
EN-MS 34.00 / 14.60 2.11 / 1.03 5.97 / 3.56 33.91 / 17.70 16.09 / 10.70

Qwen2.5-7B
EN-ZH 40.89 / 39.07 11.95 / 12.20 59.88 / 60.92 217.69 / 208.36 234.54 / 239.63
EN-TA 22.86 / 20.85 1.83 / 1.72 11.50 / 11.10 32.72 / 30.17 35.66 / 36.26
EN-MS 9.71 / 2.06 0.74 / -0.10 6.27 / 3.64 12.16 / 1.82 11.38 / 5.36

Mistral-7B
EN-ZH 17.91 / 2.18 0.73 / -0.80 7.78 / 2.43 28.10 / 15.19 20.10 / 9.41
EN-TA -1.79 / -3.62 -2.20 / -2.85 3.90 / 1.90 8.93 / 6.68 13.76 / 11.95
EN-MS -11.88 / 15.12 -2.93 / 0.56 -1.21 / 2.93 -8.56 / 8.96 3.83 / -2.09

Ministral-8B
EN-ZH 9.92 / 13.16 1.15 / 0.69 9.58 / 9.85 30.37 / 34.98 29.41 / 33.61
EN-TA 18.38 / 20.88 1.41 / 1.41 13.73 / 14.13 34.19 / 36.83 35.43 / 39.83
EN-MS -24.12 / 7.51 -2.73 / 0.63 -1.64 / 4.51 -8.07 / 9.89 7.89 / 2.76

Table 8: LoRA / QLoRA % Improvement over Few-Shot on CS-Sum
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EN Dialogue CS Dialogue LLM Summary Error Explanation

Matthew: I have a cold. Need
y’all support. It’s painful
Lisa: Fight it. Drink orange juice.
Make some soup
Matthew: I’ll try
Lisa: I believe in u
...

Matthew: Enakku cold irukku.
Unga elllaroda support um ven-
num. Athu romba painful
Lisa: Atha fight pannu. Orange
juice kudi. Soup pannu
Matthew: Naa try panren
Lisa: Naa unna believe panran
...

Matthew is feeling
unwell due to a
cold and an allergy.
Lisa suggests that
he drink orange
juice and soup to
feel better.
Matthew tries it and
feels a bit better.

Matthew says that
he will try the pill
but the summary
mentions that he
had tried it and feels
better

Anna: is anyone going to pick
Mark from the airport?
Marcus: i could but when and
where from?
Anna: Sydney, Thursday at 3
Marcus: am or pm? :D
Leslie: haha fortunately pm:D
Marcus: hmm i have a meeting
at 1. I don’t think i can make it
Leslie: well i guess it will take
him some time after landing, re-
claiming luggage etc
Anna: yeah I reckon it’s fine if
you’re there at 4
Marcus: oh well ok then
...

Anna：有人去机场接Mark
吗？
Marcus：我可以，但是什么
时候去哪里呢？
Anna：Sydney，星期四3点
Marcus：am还是pm？:D
Leslie：haha， 幸 运 的 是 下
午:D
Marcus：hmm 我1 点有个会
议。我想我去不了了
Leslie：well 我 想after his
landing 他 需 要 一 些 时
间，reclaiming luggage etc
Anna：是的，我认为如果你4
点到那里没问题了
Marcus：oh那好吧
...

Marcus originally
plans to pick up
Mark at the airport
but has a meeting
at 1 PM and can’t
make it. Leslie
suggests Marcus ar-
rive after 4 PM to
give Mark enough
time to reclaim lug-
gage. Anna will
inform Mark about
Marcus’s new plan.

Anna was the one
who suggest Mar-
cus to go at 4 PM
which is wrongly at-
tributed to Leslie

Ken: You are an idiot.
Greg: What?
Ken: Yeah you are, I want my
money back
Greg: Was your account hacked
by some prankster?
Ken: No, I’m the prankster, just
having a laugh at your expense
Greg: Well, you are an idiot too
then XD

Ken：操你，你pimp
Greg：什么？
Ken：操你，我要回我的钱
Greg：你的账户被恶作剧
者hacked了吗？
Ken：不，我才是恶作剧者，
只是开个玩笑以你为代价
Greg：Well，那你也操XD

Ken and Greg were
joking with each
other. Ken played
a prank on Greg
but now he wants
his money back.
Greg was not happy
about it

The dialogue is just
a friendly banter
and there’s actually
no transaction of
money.

Table 9: Error examples
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EN Dialogue CS Dialogue LLM Summary Error Explanation

...
Person2: Large deposits of
coal were found nearly and so
many industries located them-
selves here. The village quickly
grew into a key industrial centre.
Person1: As the city grew, it
must have absorbed many village
nearby.
Person2: Yes, it did. The names
of those village survive as the
names of parts of the city.
Person1: I see. Are there any
building more than 200 years old
in your city?
Person2: Oh, yes. Several of the
buildings from the villages still
survive. Many of them were inns
for travelers and today survive as
pubs. There was a castle near one
village, so our city has a castle
too.
Person1: Really? So your city
does have some old history after
all.

...
Person2: 附近发现了大量coal.
许多工业都设在这里。这个
村庄迅速发展成为一个重要
的industrial centre。
Person1: 随着城市发展，它
一定absorbed了附近的许多村
庄。
Person2: 是的。这些村庄的名
字作为城市部分地区的名字
而留存下来。
Person1: I see. 你的城市里
有超过200 年历史的building
吗？
Person2: 村 庄 里 的 一
些buildings仍然保存完好。其
中许多都是旅客的inns，如今
作为pubs保留了下来。一个村
庄附近有一座castle，所以我
们的城市也有一座castle。
Person1: 真的吗？原来你们城
市也有悠久的history啊。

Person2 tells Per-
son1 how their city
grew and has some
buildings over 200
years old. Person2
also introduces a
castle nearby

The summary is
based on only the
English words of
the dialogue and
also Person2 talks
about a castle, does
not introduce it

Alan: <file_photo>
Alan: look what I just found
Robert: dude, that’s just nasty
and you know it
Robert: it has no sugar, no taste,
and additional cinnamon flavor-
ing
Alan: yeah, I know - that’s awe-
some
Robert: you sir have a very
strange tastes :P
Alan: well, and I found a perfect
company for it <file_photo>
Robert: oh, that’s more like it!
Robert: but does the whiskey go
well with the cinnamon? flavored
whiskey is the worst...
Alan: Actually it does taste sur-
prisingly well. The cinnamon
is not overpowering. If you put
enough whiskey that is
...

Alan: <file_photo>
Alan: tengok ape aku jumpe
Robert: dude, that’s just nasty
and you know it
Robert: it has no sugar, no taste,
and additional cinnamon flavor-
ing
Alan: yeah, I know - itulah yang
awesome
Robert: you sir ada tastes pelik
:P
Alan: well, and I found a perfect
company for it <file_photo>
Robert: oh, that’s more like it!
Robert: Tapi does the whiskey go
well with the cinnamon? flavored
whiskey rabak...
Alan: Actually it does taste sur-
prisingly well. The cinnamon tak
terlalu kuat. If you put enough
whiskey that is
...

Alan shares a photo
of a cinnamon-
flavored whiskey
with Robert, who
initially finds it
disgusting. Alan
defends the unique
taste and shares
another photo of
him enjoying it
with a companion.
Robert jokingly
points out Alan’s
unusual taste pref-
erences but admits
the cinnamon taste
isn’t overpowering
when paired with
enough whiskey.
They reminisce
about a previous
cherry flavor and
agree it was better
than the current
sugar-free version.

The summary
wrongly states
that Alan has a
companion when
he was actually
referring to eating
cinnamon along
with it

Table 10: Error examples
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EN Dialogue CS Dialogue LLM Summary Error Explanation

Callan: Something’s wrong with
my Samsung S8.
Wade: What, exactly?
Callan: All I get is a black screen.
Wade: Did you drop it or some-
thing?
Callan: I think I know, this has
happened before.
Wade: It did? What happened be-
fore?
Callan: It overheats and then
it takes a while for it to restart
again..
Wade: That sucks.. Be carefull
with the battery, it can be danger-
ous.
...

Callan: Samsung S8 aku ada
problem.
Wade: What, exactly?
Callan: Aku asyik dapat black
screen.
Wade: Kau terjatuhkan ke apa?
Callan: Aku rasa aku tahu kot, ni
pernah happened kat aku.
Wade: It did? What happened be-
fore?
Callan: Dia overheat pastu it
takes a while for it to restart
again..
Wade: That sucks.. Be carefull
with the battery, boleh jadi ba-
haya.
...

The speaker, Callan,
is having issues
with his Samsung
S8 as it keeps get-
ting black screens.
Wade suggests it
might be overheat-
ing. Callan intends
to take it to a store
as it’s still under
warranty

Callan was the one
who suggested the
phone might be
overheating

Person1: What do you know
about our company?
Person2: Well, as I know this
company is one of the largest
and best in this field of business.
It mainly produces toys for chil-
dren. It employs more than 10,
000 people throughout the world.
The president now is Mr. Jack-
son. The Shanghai branch was
founded five years ago with a
staff of more than 2, 000.
Person1: Very good. If you enter
this company, what department
would you like to work in?
Person2: May I work in sales de-
partment?
Person1: OK. Oh, how much do
you make at your current job, if
you don’t mind my asking?
Person2: I’m paid 2, 000 yuan
per month plus some allowances
and bonus as that come to about
3, 000 yuan a month. How much
will you pay me?
Person1: Well, the starting salary
for a clerk in our company is 2,
500 yuan monthly and after three
months he would get a raise if his
work is satisfactory.
Person2: Do you have any fringe
benefits?
...

Person1: Enga company pathi
enna therium ungaluku?
Person2: Indha field indha com-
pany dhaan largest and best nu
therium. Main focus vandhu
children toys produce panradhu.
Current president Mr. Jackson.
Shanghai la 5 year munnadi oru
branch start panirkeenga. Anga
2000 employees irukanga. Total
ah 10000 employees.
Person1: Very good. Inga job
kedaicha, endha department la
work pananum ungaluku?
Person2: Sales department la?
Person1: OK. Current job la evlo
earn panreenga? If you don’t
mind my asking?
Person2: Current salary 2000
yuan plus konjam allowances and
bonus ku apram 3000 yuan per
month. Neenga evlo pay panu-
veenga?
Person1: Clerks ku starting
salary 2500 yuan. 3 months ku
apram raise varum.
Person2: Fringe benefits ed-
havadhu iruka?
...

Person2 is describ-
ing their current
company which
is the largest and
best in the field,
focusing on chil-
dren’s toys. They
have a branch in
Shanghai with 2000
employees, totaling
10,000 employees
worldwide. Person1
is interested in
a sales position
and asks about the
salary and bene-
fits, learning that
Person2 currently
earns 3000 yuan
per month with
allowances and
bonuses. Person1
explains that the
starting salary for
clerks is 2500 yuan,
with a raise after
three months, plus
benefits like semi-
annual bonuses,
a small Spring
Festival bonus, and
4 weeks of

LLM has com-
pletely switched
Person1 and Per-
son2 in the first half
of the summary

Table 11: Error examples
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Abstract
While there have been many studies analyz-
ing the ability of LLMs to solve problems
through reasoning, their application of reason-
ing in summarization remains largely unex-
amined. This study explores whether reason-
ing is essential to summarization by investigat-
ing three questions: (1) Do humans frequently
use reasoning to generate new summary con-
tent? (2) Do summarization models exhibit
the same reasoning patterns as humans? (3)
Should summarization models integrate more
complex reasoning abilities? Our findings re-
veal that while human summaries often contain
reasoning-based information, system-generated
summaries rarely contain this same informa-
tion. This suggests that models struggle to ef-
fectively apply reasoning, even when it could
improve summary quality. We advocate for the
development of models that incorporate deeper
reasoning and abstractiveness, and we release
our annotated data to support future research.

1 Introduction

In recent decades, the amount of textual informa-
tion available has grown exponentially, creating a
pressing need for automatic systems that can pro-
cess this information and derive meaningful con-
clusions from it. Recent advances in large language
models (LLMs) have shown remarkable progress
in handling tasks that appear to require reasoning-
namely, deriving conclusions not explicitly stated
in the text. For instance, LLMs have demonstrated
strong performance in question answering tasks
that involve background knowledge and inference
(Zhao et al., 2023; Liu et al., 2025). Yet, despite
these advances, the role of reasoning in generic
summarization remains largely underexplored. A
key question arises: Can and should automatic sum-
maries incorporate new conclusions that go beyond
the information explicitly present in the source?

Traditionally, research in automatic summariza-
tion has focused on information selection and

paraphrasing (Zhang et al., 2018; Lebanoff et al.,
2019b; Ernst et al., 2022). One widely used qual-
ity measure to human-like summaries has been
abstractiveness-the degree to which a summary
uses its “own words” rather than copying source
text. With the emergence of LLMs, summarization
systems have achieved substantial gains not only in
content selection but also in producing highly flu-
ent and abstractive outputs comparable to human-
written summaries (Goyal et al., 2022). These ad-
vances invite a deeper investigation into the next
frontier: Can automatic summaries perform reason-
ing, deriving conclusions like humans do?

In principle, the ability to reason during sum-
marization could enhance content focus and infor-
mativeness, enabling the generation of summaries
that emphasize the most salient insights rather than
merely restating information. Table 1 illustrates
how different summarization processes can yield
outputs with varying levels of focus, conciseness,
and reasoning.

To investigate this, we outline several research
questions: (1) Do humans rely on reasoning to cre-
ate summary content, and if so, how often? (2) Do
models employ the same reasoning as humans, or
do they bypass it? (3) Should we aim to incorporate
reasoning abilities in summarization modeling?

To address these questions, we began with a man-
ual annotation of human-generated summaries. We
identified three common operations that humans
perform when rewriting selected text for summaries
(will be defined clearly in Section 3): paraphrasing,
generalization, and drawing conclusions. The lat-
ter two operations, generalization and conclusion,
change the semantic meaning from the source to
the summary and are considered to require reason-
ing.1 We manually classified matching text spans
between summaries and source texts according to

1We acknowledge that reasoning may be used in paraphras-
ing, but such reasoning does not fall within the scope of our
work as it does not lead to new semantic content.
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Type Text

Source Investigators are trying to
piece together what led to the
deaths

Paraphrase Investigators are attempting
to figure out how the deaths
occurred

Generalization Investigators are working on
a case

Conclusion Mystery surrounds the death
of two brothers

Table 1: An example of abstractiveness levels that can
be applies to a source sentence

these levels of abstractiveness and found that ap-
proximately 25% of human summary spans involve
such reasoning.

However, our manual evaluation of system-
generated summaries revealed a different pattern.
Despite high overall evaluation scores with respect
to reference summaries, these systems predomi-
nantly matched the reference with paraphrased text
spans. Crucially, reference spans that require rea-
soning to extract important information were under-
represented in systems summaries. In other words,
while these models seem to display reasoning abil-
ities in other tasks, they tend to avoid using them
correctly in summarization, where output is often
deemed acceptable without it, despite the fact that
this omission can reduce the quality of the sum-
mary.

This analysis highlights the importance of rea-
soning in summarization and calls for the develop-
ment of new models that better integrate reasoning
and different levels of abstraction. To facilitate
further research, we are releasing the manual anno-
tations and data.2

2 Related Work

2.1 Abstractiveness Analysis

Prior research on abstractiveness has focused on
how multiple source sentences are fused into one
summary sentence (Barzilay and McKeown, 2005).
Early work analyzed syntactic aspects of fusion,
investigating whether sentences are merged or
concatenated (Lebanoff et al., 2019a), and ex-
plored points of correspondence between sentences
(Lebanoff et al., 2020). These studies were con-

2Annotated data is publicly available at
https://github.com/oriern/ReasoningSummarization.

ducted on nearly-extractive data and based mostly
on paraphrasing.

More recent research has expanded to include
specific cases of entity generalization in summaries
that went beyond paraphrasing (González et al.,
2022; Jumel et al., 2020). A new aggregation met-
ric (He et al., 2023) has also been introduced to cap-
ture even non-paraphrasing forms of fusion. Over-
all, most existing studies focus on sentence fusion
and lack detailed manual annotations of abstractive-
ness across varying levels of sentence complexity.

The work most closely related to our approach is
that of Jing (2002), who conducted a seminal study
examining the operations employed by human sum-
marizers when composing abstractive summaries.
Specifically, they identified six key actions: sen-
tence reduction, sentence combination, syntactic
transformation, lexical paraphrasing, generaliza-
tion/specification, and content reordering. Based
on the hypothesis that abstractive summarization
relies on these operations, one can characterize a
summary’s level of abstractiveness by measuring
the extent to which each action is applied.

As mentioned, while modern summarization sys-
tems are capable of performing many of these oper-
ations, especially those related to paraphrasing, our
work focuses on a different dimension: reasoning.
We argue that, despite advancements in paraphras-
ing and surface-level transformations, reasoning-
based abstraction, the ability to derive new conclu-
sions or implicit insights, remains underexplored
and is largely absent from prior work.

2.2 LLMs Reasoning Ability
Reasoning benchmarks, such as commonsense (Tal-
mor et al., 2019), logical (Sinha et al., 2019), math
(Saxton et al., 2019), or multi-hop (Tu et al., 2019),
were considered a difficult task for language mod-
els to solve. Most of these benchmarks were de-
signed in a Question-Answering (QA) setup, where
a query or a question is given, and the answer can
be found in a defined set of sources. In order to find
the answer, the system is expected to use reason-
ing. Recent advancements in LLMs showed signif-
icantly improvement on these benchmarks (Driess
et al., 2023; Touvron et al., 2023; Espejel et al.,
2023), especially while using chain of thought (Ko-
jima et al., 2022; Wei et al., 2022). However, all
these benchmarks are designed to elicit reasoning.
In contrast, this paper aims to evaluate the rea-
soning abilities of models in summarization tasks,
where acceptable outputs can still be achieved with-
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out reasoning.

3 Abstractiveness Levels

There are a few ways in which source informa-
tion can be utilized in the process of summariza-
tion. The simplest approach is to copy the infor-
mation directly and reword or restructure it to fit
the rest of the summary. Generalizing certain parts
of the source material can help compress informa-
tion even further by reducing the amount of detail
and level of specificity. Sometimes, it is neces-
sary to add entirely new information drawn from
the source through reasonable conclusions to avoid
relying on reader inference. We use these observa-
tions regarding the various uses of source informa-
tion to define abstractiveness levels.

First, we define a span-level matching between
the information in the summary and its correspond-
ing evidence from the source. Having these match-
ing pairs allow to analyze the abstractiveness level
performed in the summary. Following Ernst et al.
(2021, 2024) the spans are standalone facts that
are usually formed into a proposition, where the
source span entails the summary span. We also
required tight matching, where each source token
that adds additional information that the summary
is not based on, is omitted.

Given these pairs, the abstractiveness levels are
defined as follows:

Paraphrase. Bi-directional entailment between
the summary span and the document span. That is,
both sides share the same information

Generalization. The summary and document
spans are event-coreferred3. The summary span
does not explicitly mention specific details but in-
stead uses broader terms that encompass those de-
tails. As a result, while the source span entails the
summary span, the summary span does not fully
entail the source span.

Conclusion. The summary span adds new infor-
mation that is not mentioned explicitly in the source
but derived from it. Accordingly, while the source
span entails the summary span, the summary does
not entail the source in full, and they are not event-
coreferred.

The examples in Table 1 demonstrate how these
guidelines are applied. More examples can be seen
in the Appendix (Table 5).

3According to Eirew et al. (2022), event-coreferred spans
are spans that refer to the same event.

Dataset Paraph. General. Conc. NA

DUC 65.3 13.8 11.1 9.8
FewSum 55.8 20.3 9.8 14.1
MultiNews 60.6 12.5 16.2 10.7

Table 2: Average distribution of span-level abstractive-
ness types in reference summaries (%)

Note that by definition, if a pair contains more
than one type, it should be classified according to
the more lenient type. For example, if one part
of a summary span generalizes while other parts
derive a conclusion, the spans are not considered
fully coreferred and should be classified as a Con-
clusion. Thus, the final hierarchy is: Conclusion >
Generalization > Paraphrase.

4 Annotation Process

In order to understand how often different levels
of abstractiveness appear in human written sum-
maries, we annotate reference summaries from the
news and review domains. This annotation was
performed manually by an expert annotator.

4.1 Alignment data

As outlined in Section 3, abstractiveness levels
are determined by analyzing matching summary-
source pairs. To achieve this, we utilize existing
human-annotated source-summary span alignments
from three multi-document summarization datasets:
two from the news domain—DUC (NIST, 2014)
and MultiNews (Fabbri et al., 2019)—and one fo-
cused on business reviews, FewSum (Bražinskas
et al., 2020). Specifically, we used 315 document-
summary span pairs across 12 summaries from
DUC alignments (Ernst et al., 2021), 250 pairs
from 16 summaries from MultiNews alignments
(Ernst et al., 2024), and 336 pairs from 17 sum-
maries using FewSum alignments (Slobodkin et al.,
2024). For each pair, the annotator classified the
abstractiveness type.

4.2 Annotation

The annotation process is composed by prelimi-
nary alignment data cleaning, pair-level annotation,
aggregation to the span level, and finalizing rate
calculation across all summaries. In this section,
we elaborate about each of these components.

As we heavily rely on the previously annotated
source-summary alignment, to ensure the quality
of our annotations, we first cleaned the alignment
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data. This data allowed for some degree of noise,
details that appeared in the summary or source
span but not in the other span from the pair, such
as ‘two brothers’ in the conclusion example from
Table 1. To meet our definition of tight alignment,
we first omitted tokens from both the summary
and source spans, ensuring no unaligned tokens
remained, provided that such omissions did not
contradict or significantly alter the span’s meaning.

Then, we annotate each source-summary pair
with one of the three types. If entailment could
not be achieved even after omitting details, the pair
was labeled as ‘not aligned’.

Since a single summary span can be aligned with
multiple document spans, and the level of abstrac-
tiveness is defined at the pair level, it is necessary
to aggregate the pair-level decisions into a single
summary span-level label. Specifically, each sum-
mary span was aligned separately with each of its
corresponding document spans, and abstractiveness
was annotated for every summary–document pair.
After completing the pair-level annotations, we ag-
gregated all annotations associated with the same
summary span to derive a final abstractiveness label
for that span.

Since we do not know which document span in-
fluenced the summary span the most, we adopt a
strict approach, assuming that summarizers use the
simplest level of abstractiveness possible. Specifi-
cally, if a summary span is aligned with multiple
document spans, each annotated with a different
abstractiveness type, we assume the summarizer
employed the least abstract type. Paraphrase is
the simplest type, followed by Generalization, and
finally Conclusion. Therefore, a summary span
is considered derived from Conclusion only if all
associated pairs are labeled as Conclusion. If all
pairs are labeled ‘not aligned’, the summary span
is considered ‘not aligned’.

Finally, we calculate the rate of each type in a
summary and averaged across summaries in the
same dataset.

4.3 Quality Evaluation
To assess the clarity of the task and the reliability
of the guidelines, we recruited an additional ex-
pert annotator to independently annotate a subset
of three summaries (one from each dataset) and
measured inter-annotator agreement. Agreement
was evaluated under two conditions: (1) for the full
process, which included both span cleaning and
classification; and (2) for classification only, where

the annotator received the already cleaned spans.
The annotators reached an agreement of 81.5% on
the classification decisions and 69.2% on the full
process when including the alignment-tightening
process. These results indicate that the annotation
guidelines are clear and can be applied consistently
across annotators.

4.4 Results

As shown in Table 2, while Paraphrasing is the
most common level of abstractiveness, approxi-
mately 25-35% of the reference summaries include
instances of Generalization and Conclusion. This
indicates that human summarizers frequently go be-
yond simple paraphrasing. Generalization is more
prevalent than Conclusion in the reviews dataset,
where summarizers often generalize across mul-
tiple personal experiences reported by customers.
This tendency is more expected in reviews but less
common in the news domain, where summarization
typically focuses on factual reporting.

5 System-Generated Summaries

We observed a substantial presence of generaliza-
tion and conclusion actions in human-written refer-
ence summaries, raising questions about whether
automatic summarization systems are capable of
generating similar types of information. However,
due to the lack of available alignment data between
system-generated summaries and their correspond-
ing source documents, data required for our anno-
tation process, we were unable to apply the same
fine-grained annotation procedure to system sum-
maries as we did for human references.

Instead, we analyzed how well system-generated
summaries align with reference summaries across
different abstractiveness levels. Our findings re-
veal that system outputs tend to match paraphrase-
based reference spans far more frequently than
generation- or conclusion-based spans. In other
words, the high similarity scores that system sum-
maries achieve relative to reference summaries pri-
marily stem from their ability to produce effective
paraphrases, rather than from generating novel con-
clusions or inferred content akin to those written
by humans.

To examine this phenomenon, we conducted an
abstractiveness-aware manual evaluation inspired
by the Pyramid method (Nenkova and Passonneau,
2004). We selected 10 topics from MultiNews,
10 from FewSum, and 6 from DUC 2004. Sys-
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Model Paraph. General. Conc. Total

GPT 4o m. 54.0 34.1 30.9 38.1
PRIMERA 35.1 16.7 0.0 20.8
Llama 3 55.6 35.5 33.1 39.1

Table 3: Average span-level recall scores of system
summaries for each abstractiveness type

Reference System

Democrats, meanwhile,
argue that it’s too soon to
scale back the program

Democrats argue against
these cuts, pointing out
that many families still
depend on the program

The quality of the theater
is superb

the quality...justify the
cost

Table 4: Examples of reference spans and related system
spans with different abstractiveness levels.

tem summaries were generated using three models:
PRIMERA fine-tuned on MultiNews (Xiao et al.,
2022), GPT-4o mini in a zero-shot setting (Ope-
nAI, 2024), and Llama 3 8B Instruct in a zero-shot
setting (Dubey et al., 2024).

Following the standard Pyramid approach, an ex-
pert annotator segmented each reference summary
into factual, standalone spans and then identified
which of these were matched by the corresponding
system-generated summary. The overall recall of
matched spans for each model is reported in Table 3
(“Total”).

Building on these matches, we computed a re-
call score for each abstractiveness level, reflecting
the proportion of reference spans of a given type
that were successfully reproduced by the system.
As shown in Table 3, coverage varied substantially
across types. For instance, GPT-4o mini matched
54% of reference spans classified as Paraphrase,
but only 30.9% of those classified as Conclusion.
Across all systems, Paraphrasing achieved the high-
est recall, while Conclusion and Generation spans
were captured less frequently.

These findings suggest that current summariza-
tion models excel at reproducing paraphrased con-
tent but struggle to incorporate reasoning-based or
conclusion-oriented information that match the ref-
erence summary, particularly when such reasoning
is not explicitly required by the input.

It is important to note that, in a few cases, mod-
els did select the same source information as the
reference summary did, but because they employed

a different level of abstraction, their output was too
distant from the reference to be considered a match.
Examples of this phenomenon are provided in Ta-
ble 4 and the Appendix (Table 6). This highlights
that while models can identify relevant content,
they may require further guidance on how to apply
the appropriate level of abstraction.

6 Conclusion

In this work, we analyzed different abstraction
levels in summarization, and found that while hu-
mans use reasoning to derive information which
improves the focus and clarity of summaries, mod-
els are still lagging behind. We release our data
and annotation to facilitate research in this direc-
tion and the development of summarization models
that incorporate better reasoning abilities.

Limitations

Due to a lack of available system summary-source
alignment data at the time of this project, we were
unable to perform system summary annotation of
the same kind of the reference summary annotation.
From our analysis alone, we cannot conclude that
system generated summaries do or do not contain
generalization or conclusion information, only that
they do not often apply these levels of abstractive-
ness in the same way as human summarizers.

Abstraction level of summary-source pairs were
annotated, separately, one pair at a time. As a result,
some summary spans may have been marked ’not
aligned’ if they require information fusion across
many source spans.
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A Reference Summary Examples

Table 5 contains examples of aligned pairs from
the datasets and their corresponding types after the
annotation process.

B System Summary Examples

In Table 6, we provide examples of similar spans
from the reference and system summaries. Sum-
maries generated with GPT 4o mini and Llama 3
used the prompt, "The following are news articles
on a single topic. Please create one summary from
all of the articles:", followed the source documents.

C System Summary Evaluation by
Dataset

We present the system summary evaluation statis-
tics broken down by dataset in Table 7.
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Source Summary Type

People now can look at Hawaii as a desti-
nation to have their marriage

That could be a boon for destination wed-
dings in a state

Conclusion

a source tells Us that Maroon 5 have been
tapped to grace the halftime stage

sources tell Variety the Super Bowl LIII
halftime act has been chosen, and it’s Ma-
roon 5

Paraphrase

the court will return to the subject of
whether the Constitution permits public
colleges and universities to take account
of race in admissions decisions

The court...will look at cases includ-
ing...affirmative action

Generalization

an estimated 16 million children, or about
one in five, received food stamp assistance

about 16 million, or nearly one in five, of
them are doing so fueled by food stamps

Paraphrase

"I actually quite like the color," said psy-
chologist Dr. Carolyn Mair..."It’s an
earthy, muted, rich color, very much of
nature

But not everyone’s on board with trashing
opaque couche

Generalization

You should always use the chip device, not
the swipe device

Credit card purchases are about to get...a
lot more secure

Not Aligned

Can the sight of a greenish-brown color
really be enough to deter smokers from
reaching for their next pack of cigarettes?

the...color... been used to try to save lives Conclusion

waited over 20 min The food takes to long to come out Generalization
waited over 20 min ... not even a sorry
about the wait

service is horrible Conclusion

newest hottest spot ... Food is amazing Overall not a recommended place Not Aligned

Table 5: Examples of reference spans and related system spans with different abstractiveness levels.

Reference Type Reference System Matched

Generalization Instagram...simply dropping the
changes

Instagram has decided to revert
to its previous terms

Yes

Paraphrase The chips in the new cards use a
system known as EMV, for cre-
ators Europay, MasterCard, and
Visa

These EMV (Europay, Master-
Card, and Visa) chips

Yes

Conclusion police "do not believe there are
any outstanding suspects," per
a spokesperson

authorities are not currently
seeking any suspects

No

Conclusion Flickr’s app jumped in popular-
ity

NA No

Generalization the opposition tried to cut off
his access to loans.

opposition...urged international
bodies, such as the Asian De-
velopment Bank, to reconsider
support

No

Generalization Police got a call...that afternoon Police...receiving a distress call
around 2:45 p.m

Yes

Paraphrase Crowe eventually returned to
the matter of the accent, saying,
"I’m a little dumbfounded you
could possibly find any Irish
in that character-that’s kind of
ridiculous, but it’s your show.

Crowe became defensive and
denied the accusation

No

Conclusion the investigation is ongoing The investigation is ongoing Yes

Table 6: Examples of reference spans and related system spans with different abstractiveness levels.
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Model Dataset Paraphrase Generalization Conclusion Total

GPT 4o mini

DUC2004 44.7 8.3 66.7 34.8
FewSum 63.5 37.5 17.9 41.9
MultiNews 51.0 41.6 29.1 36.3

PRIMERA

DUC2004 23.1 0.0 0.0 16.5
FewSum 34.8 13.3 0.0 16.5
MultiNews 42.7 27.8 0.0 27.7

Llama 3 8b

DUC2004 44.7 33.3 0.0 37.7
FewSum 72.6 33.4 35.7 42.6
MultiNews 46.9 38.9 42.0 36.4

Table 7: Average span-level recall scores of system summaries for each abstractiveness type and dataset.
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Abstract

Text summarization helps users manage infor-
mation overload, but traditional methods can
be cumbersome when seeking specific details
within a document. Aspect-based text sum-
marization addresses this by using a query
to guide which information should be sum-
marized. However, distinguishing relevant
from irrelevant information for a given as-
pect remains challenging in LLM-based sum-
marization models. In this work, we pro-
pose utilizing contrastive learning to encourage
LLMs to focus on aspect-related signals dur-
ing training. We further design two variants
of the learning algorithm, aspect-anchored and
summary-anchored, corresponding to the strate-
gies used in constructing negative examples.
Evaluation with two representative LLM fami-
lies (Llama 2 and Pythia) and two benchmark
datasets (AnyAspect and CovidET) demon-
strates the proposed methods’ strong perfor-
mance compared to their supervised fine-tuning
and zero-shot counterparts, highlighting con-
trastive learning as a promising direction for
aspect-based text summarization.1

1 Introduction

Aspect-based text summarization is a crucial task
within Natural Language Processing that addresses
the limitations of conventional summarization
methods. Traditional models generate concise sum-
maries of documents, aiming to save users time
and effort. However, the varying lengths and di-
verse content of documents often render general
summaries inadequate. Consider a news article cov-
ering an event from multiple perspectives – loca-
tion, key figures, and the event itself. A user might
be interested in a summary focused on the event’s
location rather than the individuals involved, as
shown in Figure 1. Aspect-based summarization
tackles this issue by providing both a document and

1The code and data will be available at https://github.
com/elizabethpalmieri/contrastive-asp-summ.git

Figure 1: An illustration of aspect-based text sum-
marization created based on an example from the
AnyAspect dataset (Tan et al., 2020a). The first sum-
mary is related to the given aspect ENGLAND, while the
second one is not.

a specific aspect, guiding the model to generate a
summary tailored to that particular focus. The ob-
jective is to parse the document and selectively use
the information only relevant to the given aspect.

A significant challenge in aspect-based text sum-
marization lies in the model’s ability to isolate and
highlight aspect-specific information while effec-
tively distinguishing it from the rest of the text.
Without this crucial capability, the model risks gen-
erating a generic summary that fails to address
the intended aspect. For example, a model pre-
sented with a news article about an earthquake
(Ahuja et al., 2021) and tasked with generating
summaries for two aspects (GEOGRAPHY and RE-
COVERY) might produce identical summaries de-
tailing the earthquake’s magnitude and recovery
effort, neglecting the distinct nuances of each as-
pect. This underscores the need for a mechanism
that enables the model to cluster similar informa-
tion and separate dissimilar information within the
latent space.

While prior work has established a foundation
for understanding the capabilities of large language
models (LLMs) in aspect-based text summariza-
tion (Mullick et al., 2024) and explored the impact
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of contrastive elements (Gunel et al., 2023a), there
remains a gap in informing aspect-based signals
in LLMs. Furthermore, it lacks dedicated learning
algorithms designed to teach LLMs to distinguish
aspect-related signals during training (e.g., via com-
paring the aspects and their associated summaries).
While adding instructions in prompts (e.g., “Sum-
marize this article with respect to Aspect within
one short sentence.”) has shown promise (Yang
et al., 2023a), a training-level contrastive loss func-
tion is necessary to effectively incorporate aspect
information and emphasize crucial signals within
the data.

To address this gap, we propose a novel approach
that integrates contrastive learning into the fine-
tuning of open-source LLMs to enhance aspect-
based text summarization. We augment existing
aspect-based summarization datasets to create two
types of anchored negative examples: aspect an-
chored negative examples (same aspect with dif-
ferent summaries) and summary anchored negative
examples (same summary with different aspects).
During fine-tuning, the model is trained to differ-
entiate either summaries or aspects with an anchor
presented. By learning to discriminate between
these pairs, the model gains additional context and
generates summaries that are more closely aligned
with the given aspect.

This work, to the best of our knowledge, is the
first to integrate contrastive learning into LLM fine-
tuning specifically for aspect-based text summariza-
tion. Our contributions are threefold: (1) We de-
sign a novel contrastive learning algorithm with an-
chored negative examples for LLMs fine-tuning on
aspect-based text summarization; (2) We perform
an empirical study evaluating the performance of
two prominent LLMs on two benchmark datasets;
(3) We compare our method against both super-
vised fine-tuned and zero-shot LLMs, as well as
three established baseline models (Flan-T5, BART,
and GPT4-o). To gain deeper insights into our re-
sults, we also present an analysis on the important
factors of using the proposed algorithm in practice.

2 Related Work

The research work in this paper is related to prior
work at least in the following two dimensions:
aspect-based text summarization and contrastive
learning.

Aspect-based summarization. As previously de-
scribed, the motivation behind aspect-based sum-

marization is to extract and summarize information
relevant to a given aspect from a document. For in-
stance, one early work by Paul et al. (2010) aimed
to summarize contrasting opinions to enhance the
comprehensiveness of the final summary.

Recent research in aspect-based summarization
can be broadly categorized into two areas: devel-
oping novel learning strategies and constructing
new datasets. Regarding learning strategies, Gunel
et al. (2023b) proposed a four-step approach, en-
compassing aspect extraction and merging, with
each step employing a specialized model, such as
a fine-tuned T5 model for aspect extraction. Ding
et al. (2024) augment continual learning for aspect-
based sentiment analysis. Tang et al. (2024) use in
context learning and aspect-based sentiment anal-
ysis for review summarization through the gener-
ation of Key Points. Addressing challenges like
missing aspects, Li et al. (2023) introduced an un-
supervised method for extracting opinions from
source documents for summarization. Unlike these
previous studies, this paper focuses on improving
the summary accuracy of aspect-based summariza-
tion. Specifically, for a given aspect, the proposed
approach ensures that the generated summary is
relevant to that particular aspect and not to other
aspects. In addition, recent research has shown that
LLMs cannot handle aspect-based summarization
as well as traditional summarization tasks (Yang
et al., 2023a), which is echoed in our baseline exper-
iment (section 5) and further motivated to develop
new learning strategies.

Concurrent with the development of new learn-
ing strategies, significant effort has been dedicated
to creating benchmark datasets for aspect-based
summarization. These datasets span various do-
mains, including scientific publications (Takeshita
et al., 2024), climate change (Ghinassi et al., 2024),
social media (Zhan et al., 2022a), legal decisions
(T.y.s.s. et al., 2024), disordered texts (Guo and
Vosoughi, 2024), and news articles (Ahuja et al.,
2022; Tan et al., 2020b). While many datasets are
limited in the number of aspects or specific do-
mains to focus on, some works have explored a
larger range of aspects (Tan et al., 2020b) or not
targeted on specific domains (Yang et al., 2023b).
In this work, we utilize the ANYASPECT dataset
(Tan et al., 2020b) and the COVIDET dataset (Zhan
et al., 2022a) to ensure evaluation across diverse
domains and document lengths.
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Contrastive learning for summarization.
While contrastive learning has been surveyed
generally within the domain of natural language
processing (Zhang et al., 2022) and extensively
employed to enhance representation learning in
text summarization (Xu et al., 2022), its application
to aspect-based summarization remains largely
unexplored. Specifically, contrastive learning has
been shown to improve the alignment of generated
summaries with source documents, reducing
factual inconsistencies and hallucinations (Cao
and Wang, 2021; Liu et al., 2022). It has also been
used to address the issue of exposure bias (Sun and
Li, 2021).

Zheng et al. (2021) further explored different
strategies for constructing contrastive examples,
such as masking, swapping, and replacing words or
sentences, to improve learning performance in text
summarization. Zhuang et al. (2024) proposed an
automated method of constructing "hard" negative
examples for contrastive learning. This method
is applied within standard text summarization–our
method similarly creates "hard" negative examples
by leveraging negative aspects and summaries from
the same source document as the positive example,
thus reducing potential noise.

Liu and Liu (2021) proposed a novel approach
that leverages contrastive learning to formulate
summarization generation as a reference-free evalu-
ation problem, where the model is trained to distin-
guish between high-quality and low-quality sum-
maries without relying on reference summaries.
Liu et al. (2024) utilize LLMs as evaluators in
contrastive learning for smaller models such as
BART. Wu et al. (2020) create a new evaluation
method for text summarization without using gold
standard summaries. They utilize linguistic and
semantic aspects to perturb text summaries for
negative samples and train their evaluator using
contrastive learning. Chern et al. (2023) mitigate
hallucinations and non-factual information in text
summaries by implementing a contrastive reward
learning framework that generates candidate sum-
maries from a pretrained sequence-to-sequence
model, which are then ranked using factuality met-
rics. Feng et al. (2024) utilize Contrastive Prefer-
ence Optimization to mitigate hallucinations made
by LLMs in news summarization.

Among existing works, Wang and Wan (2021)
presents the most closely related study, employing
contrastive learning to inform the (dis)similarity
of aspects. However, the present work differs sig-

nificantly in both loss function design and training
strategy. Specifically, the proposed method defines
the contrastive loss directly on the generated aspect-
based summaries, compelling large language mod-
els to capture the crucial aspect-related information
from long input documents.

3 Contrastive Fine-tuning

In aspect-based text summarization, the length and
content variability of documents create a difficult
learning environment for models. A successful
model must identify and extract information specif-
ically related to the given aspect and synthesize a
summary. If the model cannot effectively distin-
guish between informative sentences, it risks gener-
ating a generic summary that omits aspect-specific
information, thus failing to fulfill its objective. To
facilitate the model’s learning of pertinent aspect-
related information, we employ contrastive learn-
ing through a particular design on loss function and
example construction.

As with other applications of contrastive learn-
ing in text summarization, two key components are
essential: the definition of contrastive loss and the
construction of contrastive examples. In this work,
to mitigate hallucinations, we utilize only the ref-
erence summary of each example as the positive
example. Consequently, our focus in example con-
struction is solely on generating negative examples.

For each training example consisting of a docu-
ment d, aspect a, and summary s, the formulation
of contrastive learning for aspect-based text sum-
marization can be expressed as:

Ls = −
[
log p(s | d, a)− λ

n

n∑

k=1

log p(s−k | d, a)
]

(1)
where s−k represents a contrastive summary given
the same document d and aspect a, n is the number
of negative examples per case, and λ is the con-
trastive coefficient that balances the original train-
ing loss and the contrastive loss. We recommend
λ ∈ (0, 1), and a more detailed discussion will
be presented in section 6. As the model is trained
to differentiate the correct summary from its con-
trastive example with the same aspect, we named
this method as aspect-anchored contrastive learn-
ing with an example shown in Figure 2.

Unlike losses defined in previous work (Oord
et al., 2018), the contrastive loss in Equation 1 can
be interpreted as the geometric mean of the likeli-
hoods of the negative examples, log(

∏n
k=1 p(s

−
k |
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Figure 2: Illustration of aspect-anchored contrastive
example generation from the AnyAspect dataset (Tan
et al., 2020a). Given the document and the aspect, a con-
trastive example is constructed by selecting a summary
from the same source document with a different aspect.

d, a))1/n, which is less sensitive to extreme cases
where the loss of a single negative example might
dominate the others.

Variants of the Loss. Another variant of the loss
function focuses on the aspect dimension rather
than the summary. The corresponding loss function
is defined as:

La = −
[
log p(s | d, a)− λ

n

n∑

k=1

log p(s | d, a−k )
]

(2)
where a−k is a random aspect from the the same doc-
ument such that a−k ̸= a. Unlike Ls, La is defined
directly on the aspect while maintaining the same
summary. Intuitively, this loss function encourages
the model to focus on the contrastive comparison
between the original aspect and the negative as-
pects. However, in practice, we observed that this
loss often confuses the model during generation, as
the outputs for both the original loss and the con-
trastive loss are identical—both are s. Following
the same naming convention, we name this method
as summary-anchored contrastive learning.

A further variant could combine Ls and La, ap-
plying negative examples to both summary and
aspect variables. However, this poses additional
training challenges, so we chose not to explore this
direction further.

Quality of Negative Examples. In this work, for
a given document and aspect, we select the sum-
mary from another aspect within the same docu-
ment as the negative example in Ls. Similarly, for
La, we choose the aspects available in the same
document as the negative examples. By augment-
ing the summaries and aspects from within the

same data point, we ensure that these negative ex-
amples are on-topic and semantically sound.

We noticed that prior work on contrastive learn-
ing often struggles with the quality and various
issues when constructing negative examples, as dis-
cussed in Zhang et al. (2022). For example, noise
introduced into the negative examples may cause
further issues in a text summarization system, such
as hallucinations (Ji et al., 2023). On the other
hand, the proposed example construction method
helps the model learn which information is similar
and dissimilar from the same input document with-
out the risk of noise from automatically perturbed
samples.

4 Experimental Setup

This section describes the experimental setup, in-
cluding datasets, baseline and competitive models,
evaluation metrics, and additional implementation
details.

4.1 Datasets

We run our experiments on two aspect-based text
summarization datasets: CovidET (Zhan et al.,
2022b), and AnyAspect (Tan et al., 2020a). We
choose two datasets with vastly different domains
to ensure that our method can perform well on
datasets of varying content. Details about dataset
size can be referenced at Table 4.

CovidET consists of sentiment aspect-based
text summarization of 1,900 Reddit posts from
r/COVID19_support. There are seven emotion-
based aspects: ANGER, ANTICIPATION, JOY,
TRUST, FEAR, SADNESS, and DISGUST. The Red-
dit posts range from 50 – 500 tokens, averaging at
100 tokens.

AnyAspect is derived from the popular
CNN/DailyMail (Hermann et al., 2015) dataset,
in which a named entity recognition model was
used to extract aspects from the pre-existing data
and formulate an aspect-based text summarization
dataset. The original dataset size has over 2 million
training examples with more than 339 thousand
aspects, with each document averaging around 680
tokens. To make sure the evaluation focuses on
contrastive learning instead of a large number of
aspects, we selected a subset by taking the top ten
most frequent aspects. In addition, we removed
aspects that are synonymous to obtain a set of ten
unique aspects. This yielded the following aspects
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in our dataset partition: ENGLAND, U.S., OBAMA,
CITY, PERSON, COUNTRY, CHINA, FACEBOOK,
SCOTLAND, and SPAIN.

4.2 Baseline and Competitive Models
We evaluated the performance of several promi-
nent large language models (LLMs) under three
distinct training paradigms: contrastive learning,
supervised fine-tuning, and zero-shot learning. Our
selection of LLMs focused on widely used and
representative open-source families with varying
parameter sizes to ensure the generalizability of
our findings. Specifically, we chose:

• Llama 2 (7B & 13B) (Touvron et al., 2023):
Llama 2 is a family of open-source LLMs
developed by Meta.

• Pythia (1B & 6.9B) (Biderman et al., 2023):
Pythia is a suite of open-source language mod-
els trained by EleutherAI.

To establish robust performance baselines, we
also evaluated three established models known for
their strong performance in text generation tasks.

• Flan-T5 (Chung et al., 2022): Flan-T5 is a
T5 model (Raffel et al., 2020) with instruction
tuning that has demonstrated exceptional zero-
shot performance across a wide range of text
generation tasks.

• BART (Lewis et al., 2019): BART is another
widely used sequence-to-sequence model par-
ticularly effective for text summarization.

• GPT-4o (OpenAI, 2024): GPT-4o is a decoder-
only language model that achieves high per-
formance on a wide range of language tasks.

By including these models, we establish a strong
foundation for comparison, allowing us to effec-
tively assess the improvements offered by our pro-
posed contrastive learning approach when applied
to LLMs.

For all the models used in the experiment, please
refer to Appendix B for the model cards.

4.3 Evaluation metrics
We evaluate the quality of the summary through
two categories of evaluation metrics: traditional
methods in the form of ROUGE and BLEU scores
as well as an LLM critique through Llama 3
(Grattafiori et al., 2024). We follow Mullick et al.
(2024)’s method of using an LLM for evaluation
by breaking down the critique prompt into four
categories:

• Relevance (Rel): how well the content of the
summary captures the aspect.

• Coverage (Cov): the extent to which the
model-generated summary captures all of the
pertinent information in the reference sum-
mary.

• Impurity (Imp): how well the model separates
the aspects by not containing any information
pertaining to a different aspect.

• Rating (Rat): a general rating of the quality of
the summary with consideration of how clear,
concise, accurate, and engaging the summary
is.

We differ from their setup in that we use Llama
3 as our evaluator as opposed to GPT-4. In order
to ensure our results were not influenced by an
evaluator critiquing summaries output by the same
model, we used a model that was not implemented
in our experimental setup. We evaluate the highest
performing contrastive fine-tuned and standard fine-
tuned models compared to the baselines.

4.4 Implementation Details

All fine-tuning experiments were conducted using
the LoRA (Low-Rank Adaptation) algorithm (Hu
et al., 2021) with a rank r = 8 and scaling factor
α = 16. This parameterization was chosen based
on preliminary experiments to balance performance
and computational efficiency. We evaluated sev-
eral model configurations: baseline LLMs (zero-
shot), fine-tuned LLMs (supervised fine-tuning),
and fine-tuned LLMs incorporating our proposed
contrastive loss (contrastive fine-tuning).

We performed a hyperparameter search and used
the following hyperparameters on the AnyAspect
dataset: cutoff length as 500, λ as 0.25, learn-
ing rate as 10−4. Following a similar procedure,
we used the following hyperparameters on the
CovidET dataset: cutoff length as 300, λ as 0.25,
learning rate as 10−5. We discuss the effects of
changing these hyperparameters in detail in sec-
tion 6. We fine-tuned our models on the AnyAspect
subset for five epochs. This number of epochs was
empirically determined by observing convergence
behavior during initial experiments. For the smaller
CovidET dataset, we fine-tuned for 10 epochs, also
guided by empirical observations of convergence.
All experiments were run on two NVIDIA A100
GPUs. This setup enabled us to train and evaluate
our models within a reasonable time frame.
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5 Experimental Results

Our experiments demonstrate the effectiveness of
contrastive learning for aspect-based text summa-
rization, as shown with the AnyAspect dataset in
Table 1. Due to the page limit, the results of the
CovidET dataset (in Table 5), along with other ad-
ditional results, are included in Appendix C.

Across both the AnyAspect and CovidET
datasets, our contrastive fine-tuning approach out-
performed baseline models, standard fine-tuned
LLMs, and zero-shot LLMs on most of the eval-
uation dimensions. Compared to standard fine-
tuning, we notice that our method has a stronger
performance on the AnyAspect dataset compared
to CovidET. This indicates that contrastive fine-
tuning may be a more viable approach depending
on the data.

The performance improvement on AnyAspect is
nearly 2% on ROUGE-1 score, 0.5% improvements
on ROUGE-2, over 1% improvement in ROUGE-
L, and over 2% improvement in BLEU score with
the Llama 2 (13B) model when trained with our
contrastive loss compared to its non-contrastive
counterpart. We validate our findings with signifi-
cance testing between Llama 2 (13B) contrastive
fine-tuned and Llama 2 (13B) supervised fine-tuned
for AnyAspect and find a p-value of 0.003. A ta-
ble of p-values of the top-performing contrastive
fine-tuned models can be referenced at Table 8.
As shown in a specific example (in Table 2), the
generated summary from the contrastive fine-tuned
model is concise and directly references the speci-
fied aspect.

We also confirmed the significant advantage
of fine-tuning over zero-shot inference, with fine-
tuned models exhibiting substantial gains. While
encoder-decoder models like Flan-T5 and BART
provided strong baselines, our contrastive fine-
tuned LLMs achieved superior performance. Fi-
nally, we observed a performance difference across
datasets, which we attribute to variations in domain
and aspect granularity.

In the remainder of this section, we will dive into
different perspectives of the results. Most of the
discussion will be based on ROUGE and BLEU,
while the results from LLM-based evaluation will
be discussed in the end of the section. An analysis
of negative example construction will be presented
in section 6 with other hyper-parameters.

Performance across Different Models. Among
the contrastively fine-tuned LLMs, Llama 2 con-

R1 R2 RL BLEU

Baselines
BART 26.3 10.8 19.2 21.2
Flan-T5 26.8 9.9 19.6 23.1
GPT-4o 17.9 5.9 11.9 11.0
Zero-shot
Pythia (1B) 14.6 3.5 10.1 7.6
Pythia (6.9B) 14.6 3.6 10.1 10.4
Llama 2 (7B) 13.1 3.7 9.5 11.6
Llama 2 (13B) 15.6 5.1 11.0 14.2
Supervised FT
Pythia (1B) 24.1 7.9 17.9 25.9
Pythia (6.9B) 25.7 8.9 19.3 27.8
Llama 2 (7B) 29.0 10.7 21.6 30.0
Llama 2 (13B) 30.3 11.7 22.6 30.5
Proposed Method: Contrastive FT - Summary anchored
Pythia (1B) 20.9 6.3 15.7 17.9
Pythia (6.9B) 19.6 5.5 14.6 18.0
Llama 2 (7B) 25.4 8.7 18.8 22.8
Llama 2 (13B) 24.7 8.5 18.9 22.9
Proposed Method: Contrastive FT - Aspect anchored
Pythia (1B) 26.2 8.9 19.4 26.9
Pythia (6.9B) 25.8 8.9 19.6 25.3
Llama 2 (7B) 30.5 12.1 22.7 31.6
Llama 2 (13B) 31.6 12.2 23.9 32.7

Table 1: The evaluation results on the AnyAspect
dataset. The labels "Aspect anchored" and "Summary
anchored" represent the aspect-anchored and summary-
anchored contrastive learning, respectively.

sistently outperformed Pythia, reinforcing previous
findings on LLM performance hierarchies in aspect-
based summarization (Mullick et al., 2024). This
superior performance of Llama 2 may be attributed
to its larger context size and extensive pre-training
data. Furthermore, the substantial performance gap
between fine-tuned and zero-shot LLMs (over 10%
in ROUGE-1) confirms the benefits of data-specific
adaptation.

Regarding model size, we see that Llama 2
13B outperforms its smaller counterpart for the
AnyAspect dataset. The same is not observed for
Pythia, where Pythia 1B outperforms its larger
counterpart. For CovidET, we see Llama 2 7B
and 13B’s results are commensurate, whereas the
larger Pythia model outperforms the smaller.

While Flan-T5, BART, and GPT-4o provided
competitive baselines, their performance trailed
that of the contrastively fine-tuned Llama 2, sug-
gesting that the combination of LLM scale and
contrastive learning provides the best performance.
The similar performance of Flan-T5 and BART can
be attributed to their shared encoder-decoder archi-
tecture, commonly recognized for its effectiveness
in text summarization tasks. Further investigation
is warranted to explore the relative strengths of
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decoder-only versus encoder-decoder architectures
for text summarization.

Performance Difference between Datasets. We
observed a performance difference between the
datasets, with models generally achieving higher
scores on AnyAspect compared to CovidET. This
discrepancy likely stems from domain differences
and aspect granularity. AnyAspect, derived from
CNN/Daily Mail news articles, aligns more closely
with the training data of models like BART
(which was instruction-tuned on CNN/Daily Mail).
CovidET, focusing on sentiment analysis, presents
a different domain. Additionally, the nature of the
aspects themselves may play a role. The aspects
from the AnyAspect dataset (e.g., SPAIN vs. U.S.)
are more distinct than those in CovidET (e.g., JOY

vs. ANTICIPATION), potentially making the latter
a more challenging classification task. More nu-
anced aspects could increase the difficulty of creat-
ing distinct summaries, leading to lower evaluation
scores.

LLM-based Evaluation Metrics. Unlike
ROUGE and BLEU that are more consistent across
different dimensions, LLM-based Evaluation (as
in Table 7), on the other hand, revealed different
patterns. Contrary to the results obtained with
ROUGE and BLEU, LLM-based metrics tended to
assign higher scores to summaries generated for
the CovidET dataset than those for AnyAspect.
This suggests that while the summaries produced
for AnyAspect might be closer to the reference
summaries in terms of n-gram overlap (as reflected
in ROUGE scores) the summaries generated for
CovidET, though potentially differing in wording,
may excel in facets other than word-for-word
similarity. This underscores the need to consider
multiple evaluation perspectives to fully under-
stand the strengths and weaknesses of different
summarization models.

Human Evaluation. We conducted a human
evaluation in order to verify which of the two high-
est performing methods (standard fine tuning or
contrastive) was able to create the highest qual-
ity summaries. We surveyed six computer science
graduate students all of whom are native English
speakers. We presented the evaluators with ten
sample data points from AnyAspect along with
two summaries of the article – one generated from
the supervised fine-tuned Llama 2 7B model and
the other from our contrastive fine-tuned Llama 2

7B model with an aspect anchor. We asked them
to choose which summary was the best in regards
to quality and coverage of the aspect. An example
question from the survey can be referenced in Fig-
ure 5. The evaluators selected our contrastive fine-
tuned summaries as superior for six summaries, the
standard fine-tuned for two summaries, and tied for
two other questions. Our findings conclude that
human evaluators on whole found the contrastive
fine-tuned summaries to be of higher quality, solid-
ifying our findings.

6 Algorithm Analysis

To gain a comprehensive understanding of the pro-
posed algorithms, we used Llama 2 7B as the base
model and AnyAspect as the dataset. We consid-
ered the following hyper-parameters and their ef-
fect on performance: learning rate, strength of the
negative example via contrastive coefficient, and
cutoff length (as shown in Figure 3). Based on the
results in Table 1 and Table 5, we also analyze the
impact of negative example construction.

Learning Rate. The following learning rates
were evaluated: 1e-3, 1e-4, 1e-5, 5e-4, and 5e-
5. We can see that Llama 2 peaks in performance
at 1e-4 with diminishing returns for both large and
smaller learning rates. This indicates that 1e-4
strikes a balance between performance, conver-
gence, and stability when performing contrastive
fine-tuning.

Contrastive Coefficient λ. We evaluate the fol-
lowing values of λ in our contrastive loss ranging
between (0,1): 0.1, 0.25, 0.5, and 0.75. Our results
indicate a linear decrease in ROUGE and BLEU
scores as λ value increases. The smallest λ value
(0.1) yielded the highest ROUGE-1 score among
all evaluated hyper-parameters in our algorithm
analysis. This indicates that a positive example
supplemented by a weaker impact from negative
examples was more helpful in the model’s learning
as opposed to more dominant negative examples
during training.

Cutoff Length. We evaluate two different cutoff
lengths during training and inference: 300 tokens
vs. 500 tokens – the upper limit is capped by the
hardware resource we used in the experiment. We
see performance increase as cutoff length increases.
Due to the longer length of the input document for
a news domain, some content related to the aspects
will be located closer to the end of the document. A
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Instruction Generate a summary based on Aspect: FACEBOOK

Zero-shot summary The community of body builders are in shock after the premature death of celebrated
competitor Phil Primmer.

Supervised FT summary The body-building community is in shock after the premature death of celebrated competi-
tor Phil Primmer. The Darwin man, aged just 42, had reportedly just been to see a doctor
to seek treatment for neck pain when he died. He was given CPR but it was too late by the
time emergency services arrived, reportedly to the gym he owned according to friends on
Facebook.

Contrastive FT summary His Facebook page has been inundated with heartfelt tributes from people inspired by ’an
Australian body building legend who will never be forgotten.

Table 2: The generated summaries are based on an example from the AnyAspect dataset with the FACEBOOK.
The source document is ignored due to the page limit. Even without the source document, it is clear that the
generated summary from contrastive fine-tuned Llama 2 focuses more directly on the aspect without much irrelevant
information.

(a) cutoff length (b) initial learning rate (c) λ

Figure 3: The performance under different hyper-parameters.

larger cutoff length will allow the model to encap-
sulate as much information as possible to create the
summary, resulting in better model performance.

Negative Example Construction. We notice
that the aspect-anchored contrastive fine-tuned
LLMs performed better on the AnyAspect dataset,
whereas the summary-anchored fine-tuned models
fared better on CovidET. We attribute this to the
difference in domain and granularity of distinction
between the sets of aspects for each dataset. The
aspects in CovidET were not as distinct, where
the difference between each emotion may not be
wholly obvious to the model. This explains why
the models that were fine-tuned with a contrastive
aspect fared better on CovidET, where the as-
pect set may have been a source of confusion.
The summary-anchored CovidET dataset contained
slightly less training examples (7,650) compared
to the aspect-based (8,270), as shown in Table 4,
yet the summary-anchored models still saw higher
ROUGE and BLEU scores, further illustrating the
value of the contrastive aspects in this particular
dataset.

For AnyAspect, the model may have been able to

encapsulate these differences without the need for
training with contrastive aspects to be able to dis-
tinguish between the set. Within the news domain,
there are a multitude of details encompassing each
story, such as key figures, events, places, and time,
which can lead to a variety of different summaries.
This could explain why contrastive summaries were
more helpful for the AnyAspect dataset.

7 Conclusion

In this study, we perform the first systematic analy-
sis of LLM performance in aspect-based text sum-
marization with a formulated contrastive loss func-
tion. Our method sees an improvement in evalua-
tion scores compared to standard fine-tuning and
baseline models. We contribute additional analy-
ses in an ablation study which evaluates the effects
of negative example construction on performance,
as well as hyper-parameters such as cutoff length,
learning rate, and strength of the contrastive com-
ponent through a coefficient value.
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8 Limitations

This work primarily explored the impact of neg-
ative example construction within a contrastive
learning framework for aspect-based summariza-
tion. Future research could investigate the influ-
ence of positive example selection and generation
on overall performance. Furthermore, while we
demonstrated the effectiveness of our approach
across two benchmark datasets and two large lan-
guage models, a more extensive evaluation involv-
ing a wider range of datasets and model architec-
tures would further solidify these findings.
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A Prompt

The prompt template used to generated aspect-
based summary in Python format.

f"Generate a summary based on

### Aspect: {aspect}

### Input: {input}

### Output:"

B Model Cards and Data Statistics

The sources of the models used in this work are
listed in Table 3. The basic information of the
datasets is presented in Table 4.

C Additional Results

We present the following additional results. Table 5
contains the results from our main evaluation of the
four training paradigms on the CovidET dataset.
Table 6 displays the results from our empirical
study on the effects of various hyper-parameters.
Table 7 contains the results from our LLM evalua-
tion of the standard fine-tuned and contrastive fine-
tuned results compared to baselines with Llama
3. Table 8 contain the p-values of some of the top
performing contrastive models compared to their
standard fine-tuned counterparts.
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Model Size Link

Llama 2 7B https://huggingface.co/meta-llama/Llama-2-7b-hf
Pythia 6.9B https://huggingface.co/EleutherAI/pythia-6.9b
BART 406M https://huggingface.co/facebook/bart-large-cnn
Flan-T5 780M https://huggingface.co/google/flan-t5-large

Table 3: The model card links to all the models used in the experiments.

Figure 4: The instructions presented to the participants.

Figure 5: An example question from human analysis of text summary quality.
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Partition CovidET AnyAspect

Original Training Set 4,188 25K
Aspect Anchored Training Set 8,270 50K
Summary Anchored Training Set 7,650 50K
Validation Set 1,524 2,122

Table 4: Statistics of the CovidET and AnyAspect
datasets for training and evaluation.
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R1 R2 RL BLEU

Baselines
BART 18.9 3.2 12.6 11.8
Flan-T5 13.3 1.7 10.2 10.2
GPT-4o 10.9 1.7 7.7 6.8
Zero-shot
Pythia (1B) 12.1 1.7 8.8 7.6
Pythia (6.9B) 11.5 1.3 8.2 7.4
Llama 2 (7B) 12.4 1.8 9.0 8.5
Llama 2 (13B) 10.0 1.4 7.4 8.3
Supervised fine-tuning
Pythia (1B) 22.8 5.1 18.3 19.4
Pythia (6.9B) 24.2 5.9 19.3 21.1
Llama 2 (7B) 25.3 6.4 19.6 21.5
Llama 2 (13B) 25.3 6.4 20.0 22.3
Proposed Method: Contrastive fine-tuning - Summary anchored
Pythia (1B) 22.6 5.0 17.9 18.9
Pythia (6.9B) 23.8 5.5 18.7 20.2
Llama 2 (7B) 25.6 6.4 20.0 21.8
Llama 2 (13B) 25.6 6.5 20.0 22.8
Proposed Method: Contrastive fine-tuning - Aspect anchored
Pythia (1B) 22.5 5.1 18.0 19.0
Pythia (6.9B) 23.8 5.5 18.6 20.1
Llama 2 (7B) 25.1 6.2 19.7 21.8
Llama 2 (13B) 25.2 6.1 19.6 22.4

Table 5: The evaluation results on the CovidET dataset. The labels "Aspect anchored" and "Summary anchored"
represent the aspect-anchored and summary-anchored contrastive learning, respectively.

Hyper-parameter Value R-1 R-2 R-L BLEU

Cutoff Length
300 29.0 10.8 21.7 30.9
500 30.9 12.0 23.4 31.1

Learning Rate
1e-3 25.5 8.5 18.8 22.6
1e-4 29.9 11.5 22.5 25.6
1e-5 28.1 9.9 20.5 27.2
5e-4 28.1 10.3 20.7 22.7
5e-5 29.8 11.3 22.1 28.9

Lambda
0.1 31.1 11.8 23.2 30.5
0.25 30.6 11.7 23.4 30.2
0.5 26.8 9.9 19.9 20.3
0.75 24.6 7.8 18.1 22.2

Table 6: Performance for different hyper-parameters on AnyAspect aspect contrastive anchor with Llama 2 (7B).

Partition Model Rel Cov Imp Rat

AnyAspect Flan T-5 (baseline) 45.9 30.7 94.9 45.6
Llama 2 13B (Standard Fine-Tuned) 53.8 35.5 95.4 40.3
Llama 2 13B (Contrastive - Aspect) 52.4 28.3 95.6 36.0

CovidET BART (baseline) 59.4 30.7 74.2 52.9
Llama 2 13B (Standard Fine-Tuned) 79.9 36.4 62.0 50.9
Llama 2 13B (Contrastive - Summary) 82.1 35.6 61.2 51.8

Table 7: Llama 3 Evaluation of Top Performing Models.
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Dataset Model P-value

AnyAspect Llama 2 (13B) 0.003
Llama 2 (7B) 0.000008
Pythia (1B) 0.000001

CovidET Llama 2 (13B) 0.395
Llama 2 (7B) 0.377

Table 8: P-values of top performing contrastive fine-
tuned models compared to their standard fine-tuned
counterparts
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Abstract

Individuals express diverse opinions, a fair sum-
mary should represent these viewpoints com-
prehensively. Previous research on fairness in
opinion summarisation using large language
models (LLMs) relied on hyperparameter tun-
ing or providing ground truth distributional in-
formation in prompts. However, these meth-
ods face practical limitations: end-users rarely
modify default model parameters, and accu-
rate distributional information is often unavail-
able. Building upon cognitive science research
demonstrating that frequency-based represen-
tations reduce systematic biases in human sta-
tistical reasoning by making reference classes
explicit and reducing cognitive load, this study
investigates whether frequency framed prompt-
ing (REFER) can similarly enhance fairness in
LLM opinion summarisation. Through system-
atic experimentation with different prompting
frameworks, we adapted techniques known to
improve human reasoning to elicit more effec-
tive information processing in language models
compared to abstract probabilistic representa-
tions. Our results demonstrate that REFER
enhances fairness in language models when
summarising opinions. This effect is particu-
larly pronounced in larger language models and
using stronger reasoning instructions.

1 Introduction

Large Language Models (LLMs) have demon-
strated exceptional capabilities in general language
tasks (Brown, 2020; Radford et al., 2019; Chowd-
hery et al., 2023; Touvron et al., 2023; Le Scao
et al., 2023). However, their training on uncurated
datasets inadvertently incorporates societal biases,
leading to the perpetuation of social stereotypes
in both the models and their downstream applica-
tions (Vig et al., 2020; Sheng et al., 2019; Liang
et al., 2021; Gallegos et al., 2024; Li et al., 2023;
Huang et al., 2023; Feng et al., 2023; Huang et al.,
2024), influencing how users process and interpret

information (Jakesch et al., 2023; Durmus et al.,
2023; Epstein et al., 2023). This challenge has mo-
tivated research into the cognitive mechanisms of
LLMs, such as developing human-inspired debias-
ing strategies (Madaan et al., 2024; Furniturewala
et al., 2024).

Previous research has demonstrated that human
decision-making often relies on cognitive heuristics
rather than factual analysis. When forming judge-
ments, individuals tend to utilise readily accessible
information instead of considering empirical evi-
dence, base rates, and statistical distributions (Tver-
sky and Kahneman, 1973). While these evolved
shortcuts generally serve us well when solving ev-
eryday questions, they can lead to systematic biases
when applied to contexts requiring precise statisti-
cal reasoning (Tversky and Kahneman, 1974). Ap-
proaches to cognitive debiasing such as direct warn-
ings about overconfidence, have demonstrated lim-
ited to no effectiveness (Larrick, 2004). In contrast,
facilitating the transition from abstract reasoning
to frequency-based cognitive frameworks has been
shown to improve inference accuracy (Tversky and
Kahneman, 1983; Fiedler, 1988; Gigerenzer, 1994).
This is achieved by reframing abstract probability
questions into explicit frequency-based terms (e.g.,
"how likely is this outcome?" becomes "out of 100
cases, how many would show this outcome?"). This
approach improves systematic critical reasoning by
providing a concrete numerical framework for anal-
ysis (Gigerenzer, 1994; Gigerenzer and Hoffrage,
1995, 1999).

When making predictions, humans often deviate
from probability theory, overlooking diverse per-
spectives and weighting information toward their
own biases (Allahverdyan and Galstyan, 2014; Wa-
son, 1960; Hart et al., 2009). These cognitive lim-
itations stem from how humans process statisti-
cal information: we struggle with abstract prob-
ability representations but excel when the same
information is presented in concrete frequency
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formats (Gigerenzer, 1994; Cosmides and Tooby,
1996). Language models exhibit oversimplifica-
tion patterns and biases similar to human cogni-
tive heuristics (Acerbi and Stubbersfield, 2023; Xie
et al., 2023). Similar to how humans benefit from
frequency-based representations over abstract prob-
abilities, LLMs trained on human-generated text
may have internalised comparable representational
preferences (Acerbi and Stubbersfield, 2023; Ha-
gendorff et al., 2023). Consequently, LLMs often
produce summaries that inadequately represent the
full spectrum of opinions (Dash et al., 2019; Huang
et al., 2023; Zhang et al., 2023; Huang et al., 2024),
exhibiting the same selective attention patterns ob-
served in human reasoning. Current debiasing ap-
proaches focus primarily on hyperparameter opti-
misation and explicit distribution prompts (Zhang
et al., 2023). However, these methods face practical
limitations: end-users rarely modify default param-
eters, and accurate distributional information is of-
ten unavailable. These constraints motivate explor-
ing frequency-based debiasing strategies, which
cognitive science research shows improve human
statistical reasoning and could enhance LLM opin-
ion summarisation without requiring user config-
uration or distributional specifications. This ap-
proach remains unexplored for LLM opinion sum-
marisation.

Building on this potential, we hypothesise that
frequency framing enhances LLM fairness through
analogous computational mechanisms to those ob-
served in humans. Specifically, frequency prompts
should: (1) specify explicit reference classes by
directing model attention to concrete distributional
information rather than abstract concepts, (2) pro-
vide numerical anchoring that reduces the computa-
tional complexity of proportion estimation during
text generation, and (3) enable sequential delib-
eration by activating statistical reasoning patterns
learnt during training on frequency-formatted data.
Unlike probability statements, which require nor-
malisation and comparison operations, frequency
statements provide explicit numerical anchors that
should guide attention allocation during summari-
sation. This work explores the potential of fre-
quency framing to elicit reasoning and summaris-
ing with frequency-based information, we refer to
this framework as Frequency Framed Prompting—
REFER.

Our key contributions are:

• We propose and evaluate an end-user focused

framework—REFER for mitigating bias in
summarising opinions using language models
by eliciting reasoning with frequency-based
information.

• We show that REFER improves fairness
in opinion summarisation across multiple
prompting methods, with strongest gains
when combined with reasoning-based ap-
proaches such as Chain-of-Thought.

• Our experiments evaluate REFER’s effective-
ness across multiple datasets, models and
evaluation metrics, demonstrating particular
improvements with larger models that have
stronger instruction-following capabilities.

2 Related Work

2.1 LLMs Prompting

Research on LLMs prompting has progressed from
Chain-of-Thought reasoning (Wei et al., 2022) to
granular task decomposition methods (Zhou et al.,
2022; Wang et al., 2023a; Yao et al., 2024; Taveek-
itworachai et al., 2024; Weinzierl and Harabagiu,
2024) and role-based approaches that leverage spe-
cific personas (Pataranutaporn et al., 2021; Wang
et al., 2023b; Gupta et al., 2023). Recent work has
expanded into multi-agent systems where LLMs
collaborate through emergent behaviours and dis-
tributed decision-making (Liang et al., 2023; Long
et al., 2024; Zhang et al., 2024). However, the ap-
plication of these advanced frameworks to bias in
opinion summarisation remains understudied.

2.2 Debiasing Through Model Editing

Debiasing language models has primarily relied on
algorithmic interventions through retraining and
fine-tuning on balanced datasets (Liu et al., 2019;
Saunders and Byrne, 2020; Zmigrod et al., 2019;
Ghanbarzadeh et al., 2023). As model sizes grow,
these approaches become impractical due to com-
putational demands. Alternative methods such as
post-training pruning (Zayed et al., 2024; Yang
et al., 2024) and machine unlearning (Liu et al.,
2024; Chen et al., 2024) aim to mitigate bias by
removing or suppressing biased model components.
However, these methods require direct model ac-
cess, limiting their use to open-source models. This
creates a need for lightweight debiasing methods
that work with proprietary models commonly used
by the public.
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2.3 Prompting and Bias Mitigation

Researchers have explored prompting frameworks
to address language model bias, from few-shot
prompts (Si et al., 2022) and fine-tuning (Borchers
et al., 2022) to automated prompt-search (Ma
et al., 2023), perspective-taking (Xu et al., 2024),
and slower reasoning (Furniturewala et al., 2024).
While these approaches can mitigate general bias,
they lack mechanisms for preserving opinion dis-
tributions in summarisation. For opinion sum-
marisation specifically, prior studies have ex-
plored debiasing through hyperparameter tuning
and ground-truth distributions in prompts (Zhang
et al., 2023; Huang et al., 2024). However, end-
users rarely modify default model hyperparameters,
and ground-truth labels are generally unavailable,
highlighting the need for practical debiasing meth-
ods in summarisation.

3 Frequency Framed Prompting
(REFER)

Research demonstrates that frequency formats facil-
itate more accurate statistical reasoning and reduce
bias compared to abstract probabilities (Cosmides
and Tooby, 1996; Hoffrage et al., 2000). Framing
questions to elicit frequency-based responses rather
than abstract probabilities has been shown to pro-
mote critical thinking in human reasoning (Gigeren-
zer, 1994; Gigerenzer and Hoffrage, 1995, 1999).
This improvement occurs through three key mech-
anisms: (1) specifying explicit reference classes
through concrete denominators and comparison
groups, (2) providing numerical anchoring that
simplifies the representation of uncertainty, and
(3) enabling sequential deliberation by aligning
with cognitive mechanisms that separate quantita-
tive analysis from intuitive judgement (Sedlmeier
and Gigerenzer, 2001). Building upon this theoret-
ical foundation, we introduce Frequency Framed
Prompt (REFER), designed to activate these same
computational mechanisms in language models.
REFER operationalises the three cognitive science
principles as follows: Reference Class Specifica-
tion: Rather than asking models to generate ‘bal-
anced’ summaries (an abstract instruction), REFER
uses frequency-based framing: ‘determine how
many reviews out of {n} are {positive/negative}.’
This mirrors the cognitive science finding that ex-
plicit denominators and comparison groups im-
prove human statistical reasoning (Gigerenzer and
Hoffrage, 1995). Numerical Anchoring: By es-

tablishing specific frequency distributions before
summarisation, REFER provides concrete numer-
ical targets that guide attention allocation during
generation, similar to how numerical frameworks
reduce cognitive load in human judgement (Tver-
sky and Kahneman, 1974). Sequential Delibera-
tion: REFER separates frequency analysis from
summary generation, mirroring dual-process in-
terventions that improve human reasoning by en-
gaging deliberative rather than intuitive processing
systems (Evans and Stanovich, 2013). We propose
five REFER strategies by incorporating existing
state-of-the-art reasoning frameworks 1.

• REFER we prompt the model to first analyse
the frequency distribution of opinions across
input documents, identifying how often spe-
cific opinions appear. By reasoning explicitly
about these frequencies, the model establishes
clear reference classes grounded in quantita-
tive patterns rather than abstract probabilities.
The model then generates a summary using
the direct prompt, with opinions proportion-
ally represented according to the identified fre-
quency distribution. This frequency-framed
approach aligns with humans’ evolutionarily
developed cognitive mechanisms for process-
ing quantitative information, helping ensure
fair and balanced generation.

REFER

Let’s first determine how many reviews
out of {number of input in the source
documents} are {social value 1, social
value 2}. Then, let’s generate a
balanced summary that accurately
reflects the frequency of these
opinions. {direct prompt}

• Prefix-Instruct REFER (Prefix-Instruct-
R) we employ instructions by directly
adding a prefix to instruct the model to be
fair (Borchers et al., 2022). The aim of this
explicit fairness instruction is to improve the
model’s fairness in its outputs through direct
instruction. Additionally, we incorporate RE-
FER by instructing frequency prompt in the
direct instruction. The overall prompt thus
becomes ‘be fair with your output {REFER}’.

• Prefix Role REFER (Prefix-Role-R) nu-
1Note that the direct prompt template that we use in each

of the following frameworks, outlined in Section 4.2 on di-
rect prompting, represents a typical baseline prompt used in
opinion summarisation.
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merous studies have revealed the benefits
of introducing personas in language mod-
els (Pataranutaporn et al., 2021; Wang et al.,
2023b). We instruct language models to act
as fair individuals and incorporate REFER by
instructing frequency prompt in the persona
instruction. The overall prompt thus becomes
‘You are an unbiased person. {REFER}’.

• Chain of Thought REFER (CoT REFER)
Chain of Thought (CoT) (Wei et al., 2022) is a
reasoning technique that helps language mod-
els produce more accurate answers by break-
ing down complex problems into step-by-step
thinking. We instruct language models to use
CoT and incorporate REFER by instructing
frequency prompt in the reasoning instruction.
The overall prompt thus becomes ‘Let’s think
step by step. {REFER}’.

• Agent collaboration REFER (Agent-R) re-
search has demonstrated how LLMs can
function as collaborative agents in multi-
agent systems, enabling distributed problem-
solving (Liang et al., 2023; Long et al., 2024;
Zhang et al., 2024). We extend this approach
in our summarisation workflow by assigning
agents to different professional roles. These
agents work together iteratively, each building
upon the previous agent’s output to refine the
final summary.

Summarisation agent-REFER specialises in
condensing opinions into concise and accu-
rate summaries. By incorporating REFER, it
analyses diverse viewpoints across multiple
reviews, identifying key sentiment patterns
and extracting the most representative perspec-
tives and then generates summaries based on
the frequency information. Frequency agent
specialises in analysing and classifying opin-
ions into appropriate categories to compute
opinion frequencies. Judge agent evaluates
the alignment between the summary gener-
ated by the summarisation agent and the fre-
quency distribution provided by the frequency
agent. Its task is to verify the summary’s ac-
curacy and provide constructive feedback for
future improvements. Senior editor agent
reviews and revises summaries based on the
judge’s feedback to ensure they accurately re-
flect the underlying opinion frequency distri-
bution. This process serves as the final quality

control mechanism for maintaining fair repre-
sentation of opinions in the output summaries.

The full prompt can be found in Appendix A.1.

4 Experiments

4.1 Datasets

In our experimental setup, we use two datasets:
FairSumm (Dash et al., 2019) and Amazon Re-
views 2023 (Hou et al., 2024). 2 To evaluate model
fairness, we manually sampled and curated test sets
for both political tweet and review summarisation
tasks from existing datasets. For the Amazon Re-
views dataset, we select reviews for the same prod-
uct, containing between 30 and 120 words. The test
sets are structured to contain 900 input collections
each, with individual collections comprising either
30 political tweets or 8 reviews. To assess model
fairness across varying input distributions, we im-
plement three distinct input proportions: balanced
input (i.e. equal representation from both values),
and two skewed input scenarios (asymmetric dis-
tribution with 75% social value 1 and 25% social
value 2, and vice versa). Each input proportion
category contains 300 collections, resulting in a
total of 900 input collections for comprehensive
evaluation.

4.2 Compared Frameworks

Various prompting frameworks have been studied
to enhance language models’ reasoning capabil-
ities. We compare our proposed REFER frame-
works with the following frameworks, which serve
as baseline frameworks for our evaluation.
Direct prompting the most basic prompt we use to
directly instruct the model to generate a summary
from the input documents. The output serves as
our overall fairness baseline by using the prompt:
"Reviews about topic. Each review is separated by
||: source. Please write a short text containing the
salient information (i.e., a summary). The summary
of the reviews is:".
Fair prefix prompting following (Borchers et al.,
2022) we add instructions by directly adding the
prefix "be fair with your output" to the direct
prompt. The goal of this explicit fairness instruc-
tion is to improve the model’s fairness in its outputs
through direct instruction.

2https://huggingface.co/datasets/McAuley-Lab/
Amazon-Reviews-2023
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Persona prefix prompting numerous studies have
revealed the benefits of introducing personas in lan-
guage models (Pataranutaporn et al., 2021; Wang
et al., 2023b). In this approach, we instruct lan-
guage models to act as fair individuals by prepend-
ing "You are an unbiased person" to the direct
prompt, which has been shown to improve fairness
in the generated output.
Zero-shot CoT (Wei et al., 2022) we prepend basic
CoT instructions "Let’s think step by step" to the
direct prompt. This guides the model in generat-
ing summaries step by step and breaks down the
summarisation task into smaller, more manageable
steps.
Agent collaboration (Agent) a based version of
Agent collaboration REFER is implemented by us-
ing a simple prompt for the summarisation agent:
"You are a summarisation specialist with excep-
tional ability to distil complex information into
clear, concise, and accurate key points while pre-
serving essential context and meaning.".

4.3 Models

We experiment with several state-of-the-art LLMs,
including both open-source and proprietary models.
For open-source models, we use Llama 3, specif-
ically the instruct-tuned version 3.1 in both 8B 3

and 70B 4 parameter sizes. For proprietary mod-
els, we use three popular GPT models: GPT-3.5-
Turbo (gpt-3.5-turbo-0125), GPT-4o-mini (gpt-4o-
mini-2024-07-18), and GPT-4o (gpt-4o-2024-08-
06). The implementation details can be found in
Appendix A.2.

4.4 Evaluation Metrics

We evaluate model fairness by comparing opin-
ion distributions in generated summaries against
source documents, focusing on proportional repre-
sentation (Shandilya et al., 2018). We use four dif-
ferent metrics: Second-Order SPD (SPD) (Huang
et al., 2024), Binary Unfair Rate (BUR), Unfair
Error Rate (UER), and Second-Order Fairness
(SOF) (Zhang et al., 2023). SPD evaluates fair-
ness by classifying social attributes at the sentence
level in summaries, then comparing these distribu-
tions against source documents. The other metrics
compare value distributions through token-based
approaches: BUR quantifies the ratio of fair sum-

3https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

4https://huggingface.co/meta-llama/Llama-3.
1-70B-Instruct

maries to total generated summaries, UER mea-
sures underrepresentation by calculating discrep-
ancies between target and generated social value
distributions, and SOF assesses the variance of un-
fairness across different social values within each
sample.

Since model-generated summaries often con-
tain compound sentences with multiple opinions,
we first use GPT-4o-mini to decompose them into
single-opinion statements by prompting "Split the
following sentences into simple propositions with-
out introducing new information, do it sentence by
sentence: \n\n Sentences: {model generated sum-
mary}". We then apply the evaluation metrics to
these sentences that carry single opinion. Follow-
ing Huang et al. (2024), we calculate SPD using
their classification approach. For BUR, UER, and
SOF, we use the BARTScore (Yuan et al., 2021)
implementation proposed by Zhang et al. (2023),
as it demonstrates stronger alignment with human
judgement.

5 Results and Discussion

5.1 Overall Impact of REFER on Fairness

Table 1 presents a comprehensive evaluation of
fairness across different prompting strategies incor-
porated with REFER, assessed on two summari-
sation datasets: political tweet summarisation and
review summarisation. The evaluation considers
four fairness metrics and their absolute values, in-
cluding SPD, BUR, UER, and SOF, where lower
values indicate improved fairness. Results are av-
eraged across different sets of input distributions
mentioned in Section 4.1.

First-order fairness metrics, including BUR and
UER, reflect the equitable distribution of model
outputs across social attributes. Most frameworks
and their REFER counterparts have relatively simi-
lar BUR values, especially when summarising po-
litical tweets. For UER, the majority of models
have REFER counterparts that outperform or show
comparable values, except for Llama 3-8B. This
suggests that while most frameworks achieve simi-
lar fairness in broad representation (BUR), REFER
generally helps improve representation across at-
tributes (UER), indicating its effectiveness at en-
hancing fine-grained fairness in opinion summari-
sation.

Second-order metrics (SPD and SOF) detect sub-
tle, systematic biases by accounting for input so-
cial value distributions. A good second-order fair-
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Model GPT-3.5-Turbo GPT-4o-mini GPT-4o Llama 3-8B Llama 3-70B

Metrics SPD↓ BUR↓ UER↓ SOF↓ SPD↓ BUR↓ UER↓ SOF↓ SPD↓ BUR↓ UER↓ SOF↓ SPD↓ BUR↓ UER↓ SOF↓ SPD↓ BUR↓ UER↓ SOF↓

Direct Prompting 35.07 57.59 8.07 6.66 30.77 54.67 7.84 6.53 28.43 55.37 7.86 6.52 27.97 57.19 7.94 6.22 26.87 58.22 8.09 6.47
REFER (-4.07) (+1.22) (+0.17) (-0.10) (-3.50) (-1.37) (+0.05) (-0.02) (+1.04) (+1.33) (+0.10) (+0.00) (+5.90) (+5.03) (+0.66) (+0.45) (+0.50) (+1.45) (+0.07) (-0.05)

Prefix-instruction 34.80 56.56 8.02 6.66 30.67 54.67 7.82 6.52 29.70 55.22 7.87 6.60 28.60 59.33 8.16 6.44 27.57 58.19 8.06 6.47
Prefix-instruct-R (-2.63) (-0.60) (-0.19) (-0.37) (-3.20) (-1.37) (-0.21) (-0.19) (-1.17) (-1.11) (-0.16) (-0.25) (+3.13) (-1.37) (-0.14) (-0.01) (-0.34) (-1.49) (-0.19) (-0.20)

Prefix-role 34.73 57.33 8.00 6.62 30.53 55.22 7.82 6.54 28.50 54.93 7.90 6.59 26.80 57.04 7.90 6.16 28.53 59.00 8.13 6.44
Prefix-role-R (-3.73) (-1.00) (-0.12) (-0.28) (-3.20) (-1.89) (-0.19) (-0.20) (-0.17) (-0.60) (-0.14) (-0.19) (+4.07) (-0.08) (+0.02) (+0.20) (+0.67) (-3.67) (-0.32) (-0.09)

CoT 34.80 57.44 7.99 6.63 30.17 55.15 7.82 6.52 28.17 54.89 7.85 6.56 25.53 56.15 7.76 6.12 26.97 58.15 8.03 6.46
CoT-R (-4.07) (-0.77) (-0.14) (-0.34) (-4.30) (-3.71) (-0.38) (-0.33) (-0.17) (-2.15) (-0.21) (-0.23) (+4.44) (+0.59) (+0.22) (+0.31) (+1.00) (-2.56) (-0.25) (-0.22)

Agent 34.43 56.33 7.97 6.65 30.80 54.44 7.80 6.55 32.13 54.44 7.81 6.55 37.97 63.22 8.97 6.94 31.00 57.11 8.04 6.49
Agent-R (+0.84) (+0.48) (-0.03) (-0.05) (+0.00) (+1.56) (+0.07) (-0.03) (-3.36) (+0.12) (+0.00) (-0.03) (-9.84) (-3.78) (-0.61) (-0.25) (-4.17) (+0.22) (-0.08) (-0.04)

(a) Review summarisation

Model GPT-3.5-Turbo GPT-4o-mini GPT-4o Llama 3-8B Llama 3-70B

Metrics SPD↓ BUR↓ UER↓ SOF↓ SPD↓ BUR↓ UER↓ SOF↓ SPD↓ BUR↓ UER↓ SOF↓ SPD↓ BUR↓ UER↓ SOF↓ SPD↓ BUR↓ UER↓ SOF↓

Direct Prompting 37.50 66.44 8.69 8.48 32.60 66.67 8.57 8.36 34.27 66.67 8.65 8.42 34.63 66.44 8.66 8.45 38.37 66.67 8.78 8.56
REFER (-0.80) (+0.23) (+0.12) (+0.09) (-2.77) (+0.11) (+0.26) (+0.25) (-0.70) (+0.11) (+0.12) (+0.12) (+3.14) (+0.23) (+0.25) (+0.23) (-3.14) (+0.00) (-0.01) (-0.02)

Prefix-instruct 36.60 66.67 8.74 8.52 32.07 66.67 8.66 8.47 34.97 66.67 8.64 8.45 36.77 66.56 8.72 8.48 38.07 66.67 8.83 8.63
Prefix-instruct-R (+1.37) (+0.00) (-0.30) (-0.28) (-1.90) (-0.11) (-0.09) (-0.12) (-1.30) (+0.11) (-0.16) (-0.21) (+1.30) (-0.45) (-0.11) (-0.12) (-3.44) (+0.00) (-0.31) (-0.33)

Prefix-role 36.50 66.67 8.75 8.53 32.90 66.67 8.66 8.47 34.23 66.78 8.66 8.45 34.33 66.67 8.71 8.48 37.53 66.67 8.85 8.64
Prefix-role-R (+1.47) (+0.00) (-0.31) (-0.31) (-2.30) (-0.56) (-0.20) (-0.19) (-0.30) (-0.56) (-0.24) (-0.27) (+3.97) (-0.34) (-0.08) (-0.08) (-3.66) (+0.00) (-0.26) (-0.28)

CoT 36.20 66.44 8.68 8.46 32.57 66.67 8.58 8.38 35.00 66.67 8.60 8.40 37.17 66.67 8.67 8.47 38.37 66.67 8.87 8.67
CoT-R (+0.50) (+0.23) (-0.21) (-0.21) (-2.47) (-1.11) (-0.14) (-0.26) (-0.83) (+0.44) (-0.11) (-0.16) (+0.66) (-2.11) (-0.27) (-0.31) (-5.34) (+0.11) (-0.51) (-0.54)

Agent 36.40 66.67 8.68 8.44 31.87 66.67 8.56 8.37 31.40 66.33 8.44 8.22 36.30 66.67 8.83 8.59 32.23 66.67 8.75 8.57
Agent-R (-5.27) (+0.00) (+0.01) (+0.03) (-1.44) (+0.00) (-0.05) (-0.06) (+0.87) (+0.23) (-0.02) (+0.00) (+0.00) (-0.34) (-0.09) (-0.12) (-1.26) (+0.00) (+0.03) (+0.01)

(b) Political tweet summarisation

Table 1: Fairness evaluation comparing different incorporations of REFER into existing frameworks. Original
values are shown with REFER differences in brackets on the second line. Lower values (↓) indicate better fairness.
Blue and (+) shows improvements, Orange and (-) shows regressions.

ness means that the summary maintains similar pat-
terns of differences between groups as the source
text. These metrics help us understand whether
a model is consistently biased against particular
groups or randomly unfair, a distinction crucial
for improving models. Notably, more models and
their REFER counterparts achieve better second-
order fairness, especially on the review dataset.
Across different models and input datasets, RE-
FER variants incorporating structured reasoning
prompts (Prefix-instruct-R, Prefix-role-R, and CoT-
R) show improvements in second-order fairness
metrics across most model-dataset combinations,
though the magnitude of improvement varies con-
siderably by model architecture and size.

Table 1 shows that REFER exhibits reduced ef-
fectiveness when deployed with smaller models
such as Llama 3-8B, while demonstrating strong
performance when applied to larger language mod-
els. This can be due to larger models develop-
ing improved internal mechanisms for language
processing that make them more efficient in rep-
resenting and generating information (Zhao et al.,
2024; Lindsey et al., 2025). In contrast, smaller
models are not as effective at following complex

instructions (Qin et al., 2024; Ouyang et al., 2022).
Smaller models such as Llama 3-8B appear to ex-
hibit more variability in output patterns and tend
to generate summaries with varying lengths, as
evidenced in the summary length analysis in Ap-
pendix A.3. This variability introduces more ran-
domness in the summaries, making them harder to
compare.

Our qualitative analysis in Appendix A.3 demon-
strates this through direct comparison of CoT-
REFER outputs between Llama 3-8B and Llama
3-70B variants. When instructed to first calculate
frequency information before summarising product
reviews, the 8B model completely ignored the se-
quential instruction requirement and immediately
proceeded with qualitative assessment, while the
70B model properly executed the instruction by
beginning with precise quantification before pro-
viding summary analysis. This suggests that RE-
FER’s effectiveness can be inherently linked to a
model’s fundamental ability to process and respond
to complex instructions (Kim et al., 2024).

Overall, models are less biased according to all
metrics when summarising reviews compared to
political tweets. REFER-enhanced prompting im-
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Figure 1: Comparison of SOF and SPD metrics for review summarisation. Green bars represent the oracle prompt
by including actual frequency information. Blue bars are the base frameworks and orange bars are the REFER
counterparts associated with them. When a REFER framework is statistically significantly better (lower value)
than its base framework, the pair is highlighted using a green star on top. If a base framework is better, then it is
highlighted using a red star.
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proves fairness, with Prefix-instruct-R, Prefix-role-
R and CoT-R being particularly effective, exhibit-
ing balanced performance across both first-order
and second-order fairness metrics. These findings
suggest REFER’s benefit across model reasoning
processes when generating summaries, highlight-
ing potential to improve LLM-generated content
across varied architectures and datasets. Due to
performance issues identified in the analysis above,
we exclude Llama 3-8B from further analysis.

5.2 Second-Order Fairness Patterns
In this section, we examine second-order fairness
in opinion summarisation in greater detail by exam-
ining different input proportions rather than using
aggregated results, and conducting statistical anal-
yses. While first-order metrics such as BUR and
UER measure whether all groups are represented,
second-order metrics such as SPD and SOF exam-
ine whether the proportional relationships between
groups are preserved. This distinction is crucial
because a model that consistently underrepresents
minority opinions by the same margin across dif-
ferent contexts exhibits systematic bias, which is
more problematic than random variations in repre-
sentation.

Using datasets and input proportions from Sec-
tion 4.1, we also include an oracle result with ac-
tual frequency prompts: ‘{number 1} and {number
2} out of {number of input} are {social value 1,
social value 2}, generate a balanced summary re-
flecting this distribution. {direct prompt}’. The
oracle prompt, which provides exact frequency in-
formation, establishes a theoretical upper bound
for fairness performance. We report results using
base frameworks and their REFER counterparts,
with Mann-Whitney U tests for statistical signif-
icance. In visualisations, significantly better RE-
FER results are highlighted with green stars. Re-
view dataset results appear in Figure 1, showing
patterns similar to the political tweets dataset, with
full results in Appendix A.4.

In our analysis, the prompt incorporating ac-
tual frequencies proved most fair according to
both metrics—an unsurprising result that serves
as an upper bound for fairness achievement. RE-
FER demonstrated statistically significant effec-
tiveness when combined with Chain-of-Thought
reasoning, prefix-based instructions, and persona-
driven prompting, yielding the best overall perfor-
mance across most LLMs and proving particularly
effective with skewed input distributions. Chain-of-

Thought REFER explicitly forces models to work
through frequency calculations before summari-
sation, creating deliberative pathways that mirror
human statistical reasoning. Prefix-instruction and
Prefix-role REFER leverage instruction-following
capabilities while providing numerical anchors for
fairness assessment. Conversely, Agent collabora-
tion REFER showed mixed results, suggesting that
REFER is most effective when executed through
unified reasoning processes rather than the added
complexity of multi-party collaboration. This find-
ing aligns with the original theoretical development
of frequency-based reasoning frameworks, which
were grounded in individual cognitive processes
rather than distributed reasoning paradigms (Tver-
sky and Kahneman, 1983; Fiedler, 1988; Gigeren-
zer, 1994; Gigerenzer and Hoffrage, 1995, 1999).

Notably, transitioning to REFER produced larger
shifts in fairness metrics than choosing between dif-
ferent base prompting frameworks. As visualised
in Figure 1, the variance amongst base frameworks
(blue bars) is considerably smaller than the im-
provements achieved through REFER implemen-
tation (orange bars). This suggests that frequency-
based reasoning may be more fundamental to fair-
ness than the specific prompting strategy employed.

6 Conclusion

This study introduces REFER (Frequency Framed
Prompting), a cognitive science-inspired debiasing
framework for opinion summarisation. Drawing
from research showing humans make more accu-
rate statistical judgements with concrete frequen-
cies rather than abstract probabilities, we demon-
strate that frequency-based prompting enhances
fairness in LLM-generated summaries. Our eval-
uation reveals that REFER improves model fair-
ness across multiple datasets, models, and metrics,
particularly when combined with stronger reason-
ing instructions and in larger models with supe-
rior instruction-following capabilities. Notably,
REFER improvements often exceed differences
between base prompting frameworks, suggesting
frequency-based reasoning plays a greater role than
specific prompting strategies in addressing fairness.
REFER offers a lightweight, end-user accessible
solution that works with both open-source and pro-
prietary models without requiring retraining or hy-
perparameter tuning, addressing critical gaps in
existing computationally demanding debiasing ap-
proaches.
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Limitations

This study specifically focuses on model fairness
rather than addressing dataset bias. Given that the
fairness characteristics of the models’ training data
are unknown, our analysis is confined to examining
the fairness of the generated summarisation outputs.
The prompts employed in this study were manually
crafted without extensive optimisation procedures.
While our primary focus was on evaluating the
discrete steps, eliciting frequency-based responses
and analysing components of the summarisation
process rather than prompt optimisation, we ac-
knowledge that determining the optimal prompt
formulation remains an ongoing challenge. Given
computational and resource constraints, we con-
ducted selective testing of representative prompting
frameworks rather than an exhaustive evaluation
of all possible approaches. Nevertheless, our ap-
proach presents a generalisable framework for util-
ising LLMs to achieve efficient debiasing. Future
research directions could incorporate automated
prompt generation techniques to further enhance
the effectiveness of our methodology.

This study draws parallels between human cog-
nitive processes and LLM information processing
based on observed behavioural similarities. How-
ever, we acknowledge that these comparisons are
fundamentally limited by our incomplete under-
standing of both human cognition and LLM in-
ternal mechanisms. The frequency-based reason-
ing improvements we observe in LLMs may arise
from entirely different computational processes
than those underlying human statistical reasoning,
despite producing similar outcomes. Our analogy
to human cognitive science serves as a useful frame-
work for developing prompting strategies rather
than making claims about mechanistic equivalence
between human and artificial intelligence.

Ethical Considerations

This study followed ethical principles and guide-
lines. The authors of this paper by no means sug-
gest that language models are intentionally biased.
This study builds on extensive literature demon-
strating that LLMs exhibit various forms of bias
due to patterns in their training data. While these
biases are not intentionally designed into the sys-
tems, they nonetheless have real impacts on users
and society. Our work aims to provide practical
methods for mitigating these well-documented bi-
ases in the specific context of opinion summarisa-

tion. We highly encourage readers to investigate
and evaluate the findings for themselves. Overall,
the goal of our research is to promote awareness
of bias in summarising social media text since it
is critical to understand what is summarised and
whether it represents actual public opinions. Our
work contributes to understanding the biases of
summarisation models when summarising social
media text, which is crucial for ethical use.

Our approach relies on predefined labels in
datasets to measure bias. These labels are assigned
based on established policies. However, if the la-
belling policy itself is inaccurate, our procedure
might measure bias incorrectly. Therefore, we rec-
ommend using our technique only with datasets
that have undergone careful review and construc-
tion to ensure accurate labelling.
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A Appendix

A.1 Agent REFER Prompt

Summarisation Agent-REFER

You are a summarisation specialist with
exceptional ability to distil complex
information into clear, concise, and
accurate key points whilst preserving
essential context and meaning. Let’s first
determine how many reviews out of number of
input in the source documents are social
value 1, social value 2. Then, let’s generate
a balanced summary that accurately reflects
this distribution of opinions. source input

First, provide the counts in this format:
social value 1 #number, social value 2
#number

Please write a short text containing the
salient information that reflects this
distribution. The summary of the reviews is:

Frequency Agent

You are a classification expert with superb
ability to analyse, categorise, and sort any
type of information with exceptional
precision and accuracy. Classify how many
reviews out of {number of input in the source
documents} are {social value 1, social value
2}. Reviews to analyse: {source input}

Output exactly in format: {social value 1
#number, social value 2 #number}

Judge Agent

You are a validation expert specialising in
quality control of summaries. You compare
summaries against source opinion frequency
distributions, precisely identify
discrepancies, and provide targeted
recommendations for alignment and
improvement. {source input}

Opinion frequency distribution: {frequency
classification by the Frequency Agent}

Summary: {summary generated by the
Summarisation Agent}

Compare the summary against the opinion
frequency distribution, checking for bias

and misrepresentation.

Senior Editor Agent

You are a senior editor who expertly revises
summaries based on detailed validation
feedback, ensuring perfect alignment with
source opinion frequency distributions while
maintaining clarity and conciseness. You
operate as the final quality control gate,
transforming flagged summaries into highly
accurate versions. {source input}

Opinion frequency distribution: {frequency
classification by the Frequency Agent}

Summary: {summary generated by the
Summarisation Agent}

Validation feedback: {validation and
feedback generated by the Judge Agent}

Revise the summary to align with the opinion
frequency distribution while maintaining
clarity and balance.

A.2 Implementation Details
We adopt zero-shot prompting for our experiments,
as previous studies demonstrated that decoder-
only instruction-tuned models perform effectively
as zero-shot abstractive summarisers (Tang et al.,
2023; Laskar et al., 2023; Adams et al., 2023). For
open-source models, we utilised the model imple-
mentations and weights available from Hugging
Face (Wolf et al., 2020), while proprietary models
were accessed through their respective APIs. The
experiments with open-source models were con-
ducted using four NVIDIA A100 (40GB) GPUs.
The hyperparameters for models employ strictly
controlled settings during inference, including con-
strained output length with maximum new tokens
of 256, low temperature of 0.001 for more repro-
ducible output, and modest repetition mitigation
via repetition penalty of 1.1, facilitating consistent
and reproducible summarisation of review distribu-
tions.

A.3 Summary Qualitative Analysis
As visualised in Figure 2, the Llama 3-8B model
exhibited the highest median word count among
all models. Its interquartile range spanned approx-
imately 95 to 205 words, indicating substantial
variability in summary length within the central
distribution. The extensive spread observed in the
Llama3-8B distribution suggests a lack of consis-
tency in generating summaries of uniform length,
distinguishing it from other models which demon-
strated comparatively more constrained distribu-
tions.
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Figure 2: Summary word count distributions across
different language models.

We also conducted a qualitative analysis across
outputs generated using Llama3 and its 8B and 70B
variants for instruction following capability. We
present an example using the CoT-REFER prompt.
Below are the original outputs from the two lan-
guage models when instructed to first calculate
frequency information before summarising product
reviews:

Llama3-8B Output

“Overall, this product has mixed reviews.
While some users found it effective, easy to
install, and appreciated its affordable price
and value, others reported problems with
water flow and taste, and some returned it
due to poor performance or installation diffi-
culty. This indicates the product may work
well for some but not for everyone, high-
lighting the importance of reading multiple
reviews before deciding to purchase.”

Llama3-70B Output

“Out of 8 reviews, 4 are positive and 4 are
negative. Positive reviewers praise the prod-
uct for being affordable, improving water
taste and flow rate, and providing good
value for the price. However, some review-
ers experienced issues such as slow water
flow, poor taste, and compatibility problems,
leading them to return or replace the prod-
uct. Overall, the product has mixed results,
and potential buyers should be aware of the
varying experiences reported by customers.”

The analysis of these model outputs provides
compelling evidence of how parameter scaling af-
fects instruction-following capabilities aligns with

previous studies (Qin et al., 2024; Ouyang et al.,
2022). The original instruction explicitly requested
both models to first calculate frequency informa-
tion before providing a summary of product re-
views. As clearly demonstrated in the outputs and
comparative table 2, the 70B model successfully
executed this sequential instruction, while the 8B
parameter model did not. The 70B model begins
with precise quantification—“Out of 8 reviews, 4
are positive and 4 are negative”—establishing the
numerical distribution before proceeding to quali-
tative analysis. This suggests proper adherence to
the instruction sequence. In contrast, the 8B model
ignore the frequency calculation entirely, imme-
diately beginning with a qualitative assessment:
“Overall, this product has mixed reviews.” Both
models capture similar content points regarding
the product’s performance, mentioning affordabil-
ity, taste improvement, installation experience, and
flow issues. However, the fundamental difference
lies in their instruction-following capabilities rather
than content comprehension. The larger model not
only follows instructions more precisely but also
presents information in a more structured manner
with clear delineation between frequency analysis
and subjective assessment.

A.4 Second Order Fairness Full Results
The raw results for both the political tweets sum-
marisation and review summarisations are reported
in Tables 4, 3, 6, and 5. REFER counterparts that
perform better than the base framework are high-
lighted in green, while base framework results that
are better are highlighted in red. The effects of
REFER are more profound when input documents
are skewed.
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Figure 3: Comparison of SOF and SPD metrics for political tweet summarisation. Green bars represent the oracle
prompt by including actual frequency information. Blue bars are the base frameworks and orange bars are the
REFER counterparts associated with them. When a REFER framework is statistically significantly better (lower
value) than its base framework, the pair is highlighted using a green star on top. If a base framework is better, then it
is highlighted using a red star.
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Aspect Llama3-70B Llama3-8B

Instruction Following Explicitly follows the instruction
to calculate frequency first: “Out
of 8 reviews, 4 are positive and 4
are negative.”

Fails to follow the instruction se-
quence, omitting frequency anal-
ysis entirely.

Frequency Analysis Quantifies the distribution pre-
cisely (4 positive, 4 negative)

No quantification provided

Summary Introduction Begins with quantified data be-
fore transitioning to summary

Immediately begins with quali-
tative assessment: “Overall, this
product has mixed reviews.”

Example of Positive Aspects “Positive reviewers praise the
product for being affordable, im-
proving water taste and flow rate,
and providing good value for the
price.”

“While some users found it ef-
fective, easy to install, and ap-
preciated its affordable price and
value...”

Example of Negative Aspects “However, some reviewers expe-
rienced issues such as slow water
flow, poor taste, and compatibil-
ity problems, leading them to re-
turn or replace the product.”

“...others reported problems with
water flow and taste, and some re-
turned it due to poor performance
or installation difficulty.”

Table 2: Comparison of Instruction Following Between Llama3 8B and 70B Parameter Models
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Model GPT-3.5-Turbo GPT-4o-mini GPT-4o Llama-3-8B Llama-3-70B
Balanced
Direct Prompting 0.04 0.03 0.03 0.04 0.04
REFER 0.03 ↑(0.6%) 0.03 ↓(-0.4%) 0.03 ↓(-1.4%) 0.03 ↑(2.0%) 0.03 ↑(1.6%)
Prefix-instruct 0.03 0.03 0.03 0.03 0.04
Prefix-instruct-R 0.04 ↓(-3.7%) 0.03 ↑(0.9%) 0.03 ↑(3.0%) 0.03 ↑(1.3%) 0.04 ↓(-0.4%)
Prefix-role 0.03 0.03 0.03 0.04 0.04
Prefix-role-R 0.04 ↓(-2.0%) 0.03 ↓(-0.6%) 0.03 ↑(0.9%) 0.03 ↑(6.8%) 0.03 ↑(2.7%)
CoT 0.03 0.03 0.03 0.04 0.03
CoT-R 0.04 ↓(-4.4%) 0.03 ↓(-0.6%) 0.03 ↓(-0.7%) 0.03 ↑(9.4%) 0.03 ↓(-1.0%)
Agent 0.03 0.03 0.03 0.04 0.03
Agent-R 0.03 ↓(-1.7%) 0.03 ↓(-1.4%) 0.03 ↓(-0.1%) 0.04 ↑(1.1%) 0.03 ↑(0.3%)

Pro-Positive
Direct Prompting 0.12 0.12 0.12 0.11 0.12
REFER 0.12 ↓(-2.2%) 0.12 ↓(-1.3%) 0.12 ↓(-1.4%) 0.12 ↓(-8.8%) 0.12 ↓(-3.0%)
Prefix-instruct 0.12 0.12 0.12 0.12 0.12
Prefix-instruct-R 0.11 ↑(7.8%) 0.11 ↑(5.4%) 0.11 ↑(6.6%) 0.12 ↑(2.3%) 0.11 ↑(7.6%)
Prefix-role 0.12 0.12 0.12 0.12 0.12
Prefix-role-R 0.11 ↑(7.1%) 0.11 ↑(6.2%) 0.11 ↑(6.5%) 0.12 ↓(-0.8%) 0.11 ↑(6.9%)
CoT 0.12 0.12 0.12 0.11 0.12
CoT-R 0.11 ↑(7.5%) 0.11 ↑(5.8%) 0.11 ↑(8.8%) 0.12 ↓(-5.4%) 0.11 ↑(9.1%)
Agent 0.12 0.12 0.12 0.13 0.12
Agent-R 0.11 ↑(6.9%) 0.12 ↑(3.7%) 0.11 ↑(5.1%) 0.12 ↑(4.9%) 0.12 ↑(2.6%)

Pro-Negative
Direct Prompting 0.12 0.12 0.12 0.11 0.12
REFER 0.12 ↓(-1.9%) 0.12 ↓(-1.7%) 0.12 ↓(-1.4%) 0.12 ↓(-10.0%) 0.12 ↓(-2.1%)
Prefix-instruct 0.12 0.12 0.12 0.12 0.12
Prefix-instruct-R 0.11 ↑(7.6%) 0.11 ↑(4.4%) 0.11 ↑(6.2%) 0.12 ↑(0.7%) 0.11 ↑(7.4%)
Prefix-role 0.12 0.12 0.12 0.11 0.12
Prefix-role-R 0.11 ↑(7.3%) 0.11 ↑(4.7%) 0.11 ↑(5.8%) 0.12 ↓(-5.6%) 0.11 ↑(6.0%)
CoT 0.12 0.12 0.12 0.11 0.12
CoT-R 0.11 ↑(7.0%) 0.11 ↑(4.9%) 0.11 ↑(8.9%) 0.12 ↓(-8.9%) 0.11 ↑(7.4%)
Agent 0.12 0.12 0.12 0.13 0.12
Agent-R 0.11 ↑(7.1%) 0.11 ↑(4.2%) 0.11 ↑(4.4%) 0.12 ↑(3.6%) 0.12 ↑(2.1%)

Table 3: SOF—Reviews results for all input conditions with improvements highlighted. REFER counterparts better
than the base framework are indicated with ↑, worse results are indicated with ↓.
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Model GPT-3.5-Turbo GPT-4o-mini GPT-4o Llama-3-8B Llama-3-70B
Balanced
Direct Prompting 0.01 0.01 0.01 0.01 0.01
REFER 0.01 ↓(-1.9%) 0.01 ↑(4.7%) 0.01 ↓(-2.4%) 0.01 ↑(6.4%) 0.01 ↓(-0.8%)
Prefix-instruct 0.01 0.01 0.01 0.01 0.01
Prefix-instruct-R 0.01 ↓(-3.6%) 0.01 ↓(-6.2%) 0.01 ↓(-10.4%) 0.01 ↑(3.0%) 0.01 ↓(-5.7%)
Prefix-role 0.01 0.01 0.01 0.01 0.01
Prefix-role-R 0.01 ↓(-0.2%) 0.01 ↓(-0.4%) 0.01 ↓(-3.3%) 0.01 ↑(13.6%) 0.01 ↓(-0.2%)
CoT 0.01 0.01 0.01 0.01 0.01
CoT-R 0.01 ↓(-8.6%) 0.01 ↓(-16.2%) 0.02 ↓(-27.6%) 0.01 ↓(-1.8%) 0.01 ↓(-4.1%)
Agent 0.01 0.01 0.01 0.01 0.01
Agent-R 0.01 ↓(-11.2%) 0.01 ↑(7.3%) 0.01 ↓(-5.5%) 0.01 ↑(3.8%) 0.01 ↓(-5.4%)

Pro-Republican
Direct Prompting 0.12 0.12 0.12 0.12 0.12
REFER 0.12 ↓(-2.2%) 0.12 ↓(-1.4%) 0.12 ↓(-2.2%) 0.12 ↓(-2.9%) 0.12 ≡(0.0%)
Prefix-instruct 0.12 0.12 0.12 0.12 0.12
Prefix-instruct-R 0.12 ↑(3.3%) 0.12 ↑(3.8%) 0.12 ↑(2.1%) 0.12 ↑(1.6%) 0.12 ↑(4.9%)
Prefix-role 0.12 0.12 0.12 0.12 0.12
Prefix-role-R 0.12 ↑(3.7%) 0.12 ↑(3.8%) 0.12 ↑(3.0%) 0.12 ≡(0.0%) 0.12 ↑(3.7%)
CoT 0.12 0.12 0.12 0.12 0.12
CoT-R 0.12 ↑(1.8%) 0.12 ↑(2.9%) 0.12 ↑(1.8%) 0.12 ↑(3.9%) 0.12 ↑(6.6%)
Agent 0.12 0.12 0.12 0.12 0.12
Agent-R 0.12 ↑(0.3%) 0.12 ↑(1.1%) 0.12 ↑(2.8%) 0.12 ↑(0.4%) 0.12 ↑(1.8%)

Pro-Democrat
Direct Prompting 0.13 0.13 0.13 0.13 0.13
REFER 0.13 ↓(-2.3%) 0.13 ↓(-2.7%) 0.13 ↓(-3.7%) 0.13 ↓(-3.3%) 0.13 ↓(-0.9%)
Prefix-instruct 0.13 0.13 0.13 0.13 0.13
Prefix-instruct-R 0.12 ↑(4.3%) 0.13 ↑(0.7%) 0.13 ↑(1.1%) 0.13 ↑(0.7%) 0.13 ↑(3.0%)
Prefix-role 0.13 0.13 0.13 0.13 0.13
Prefix-role-R 0.12 ↑(3.8%) 0.12 ↑(2.1%) 0.12 ↑(2.2%) 0.13 ↑(0.4%) 0.13 ↑(2.4%)
CoT 0.13 0.13 0.13 0.13 0.13
CoT-R 0.12 ↑(4.0%) 0.12 ↑(1.5%) 0.12 ↑(4.0%) 0.12 ↑(2.8%) 0.12 ↑(6.1%)
Agent 0.13 0.12 0.13 0.13 0.13
Agent-R 0.12 ↑(3.6%) 0.13 ↓(-2.7%) 0.13 ↓(-0.2%) 0.13 ↑(0.8%) 0.13 ↑(1.2%)

Table 4: SOF—Political tweets results for all input conditions with improvements highlighted. REFER counterparts
better than the base framework are indicated with ↑, worse results are indicated with ↓, and no change is indicated
with ≡.
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Model GPT-3.5-Turbo GPT-4o-mini GPT-4o Llama-3-8B Llama-3-70B
Balanced
Direct Prompting 0.36 0.29 0.32 0.29 0.29
REFER 0.34 ↑(6.5%) 0.30 ↓(-4.5%) 0.29 ↑(8.8%) 0.35 ↓(-18.0%) 0.31 ↓(-6.0%)
Prefix-instruct 0.35 0.30 0.32 0.31 0.29
Prefix-instruct-R 0.32 ↑(7.8%) 0.28 ↑(6.9%) 0.28 ↑(10.7%) 0.32 ↓(-4.8%) 0.29 ↑(2.0%)
Prefix-role 0.35 0.30 0.31 0.29 0.30
Prefix-role-R 0.31 ↑(10.7%) 0.28 ↑(6.0%) 0.29 ↑(6.6%) 0.32 ↓(-8.7%) 0.30 ↓(-0.2%)
CoT 0.35 0.29 0.31 0.29 0.29
CoT-R 0.30 ↑(14.3%) 0.27 ↑(7.8%) 0.29 ↑(4.9%) 0.32 ↓(-13.7%) 0.30 ↓(-2.6%)
Agent 0.35 0.30 0.32 0.39 0.32
Agent-R 0.29 ↑(15.0%) 0.29 ↑(3.3%) 0.27 ↑(16.0%) 0.35 ↑(11.1%) 0.30 ↑(3.7%)

Pro-Positive
Direct Prompting 0.15 0.13 0.15 0.13 0.13
REFER 0.14 ↑(8.7%) 0.11 ↑(16.7%) 0.13 ↑(13.2%) 0.18 ↓(-31.2%) 0.13 ↑(4.1%)
Prefix-instruct 0.15 0.13 0.13 0.13 0.13
Prefix-instruct-R 0.14 ↑(7.9%) 0.11 ↑(14.6%) 0.12 ↑(10.3%) 0.13 ↑(2.7%) 0.11 ↑(13.8%)
Prefix-role 0.16 0.13 0.13 0.13 0.12
Prefix-role-R 0.13 ↑(19.2%) 0.11 ↑(16.7%) 0.11 ↑(15.6%) 0.12 ↑(7.9%) 0.12 ↑(5.7%)
CoT 0.16 0.13 0.13 0.11 0.13
CoT-R 0.13 ↑(20.1%) 0.10 ↑(22.3%) 0.11 ↑(14.3%) 0.13 ↓(-16.8%) 0.12 ↑(8.1%)
Agent 0.16 0.13 0.14 0.19 0.14
Agent-R 0.13 ↑(19.3%) 0.11 ↑(12.8%) 0.11 ↑(19.7%) 0.15 ↑(18.3%) 0.13 ↑(7.4%)

Pro-Negative
Direct Prompting 0.55 0.45 0.47 0.44 0.42
REFER 0.54 ↑(3.3%) 0.46 ↓(-1.8%) 0.45 ↑(4.4%) 0.46 ↓(-5.1%) 0.39 ↑(6.3%)
Prefix-instruct 0.55 0.46 0.48 0.45 0.44
Prefix-instruct-R 0.52 ↑(5.7%) 0.45 ↑(3.4%) 0.44 ↑(8.3%) 0.51 ↓(-13.6%) 0.45 ↓(-1.5%)
Prefix-role 0.55 0.45 0.48 0.42 0.46
Prefix-role-R 0.51 ↑(7.3%) 0.45 ↑(1.1%) 0.44 ↑(8.8%) 0.51 ↓(-21.6%) 0.49 ↓(-6.2%)
CoT 0.54 0.45 0.47 0.41 0.42
CoT-R 0.51 ↑(5.7%) 0.44 ↑(2.9%) 0.44 ↑(7.2%) 0.46 ↓(-12.0%) 0.46 ↓(-9.9%)
Agent 0.54 0.46 0.47 0.57 0.49
Agent-R 0.43 ↑(20.2%) 0.43 ↑(5.2%) 0.43 ↑(7.2%) 0.52 ↑(8.0%) 0.43 ↑(13.2%)

Table 5: SPD—Review results for all input conditions with improvements highlighted. REFER counterparts better
than the base framework are indicated with ↑, worse results are indicated with ↓.
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Model GPT-3.5-Turbo GPT-4o-mini GPT-4o Llama-3-8B Llama-3-70B
Balanced
Direct Prompting 0.38 0.34 0.33 0.36 0.39
REFER 0.37 ↑(3.3%) 0.32 ↑(5.0%) 0.30 ↑(7.3%) 0.38 ↓(-3.8%) 0.33 ↑(16.4%)
Prefix-instruct 0.38 0.34 0.32 0.38 0.39
Prefix-instruct-R 0.38 ↓(-2.4%) 0.32 ↑(5.7%) 0.30 ↑(6.7%) 0.39 ↓(-2.5%) 0.36 ↑(5.8%)
Prefix-role 0.37 0.34 0.33 0.37 0.38
Prefix-role-R 0.39 ↓(-5.5%) 0.32 ↑(5.9%) 0.31 ↑(7.1%) 0.39 ↓(-6.5%) 0.36 ↑(5.1%)
CoT 0.36 0.34 0.33 0.39 0.39
CoT-R 0.37 ↓(-0.7%) 0.32 ↑(5.4%) 0.30 ↑(9.6%) 0.40 ↓(-2.7%) 0.35 ↑(8.8%)
Agent 0.36 0.30 0.32 0.37 0.33
Agent-R 0.32 ↑(12.9%) 0.31 ↓(-3.7%) 0.30 ↑(5.5%) 0.37 ↑(1.0%) 0.32 ↑(3.6%)

Pro-Republican
Direct Prompting 0.60 0.55 0.55 0.59 0.62
REFER 0.59 ↑(1.3%) 0.55 ↑(0.2%) 0.54 ↑(2.2%) 0.59 ↓(-1.1%) 0.54 ↑(12.9%)
Prefix-instruct 0.59 0.56 0.55 0.61 0.62
Prefix-instruct-R 0.61 ↓(-4.4%) 0.53 ↑(5.5%) 0.54 ↑(1.2%) 0.63 ↓(-3.0%) 0.59 ↑(5.5%)
Prefix-role 0.59 0.55 0.56 0.58 0.61
Prefix-role-R 0.61 ↓(-3.8%) 0.54 ↑(3.1%) 0.54 ↑(2.9%) 0.63 ↓(-8.4%) 0.58 ↑(6.1%)
CoT 0.59 0.55 0.55 0.61 0.62
CoT-R 0.61 ↓(-3.1%) 0.54 ↑(2.8%) 0.54 ↑(1.7%) 0.62 ↓(-1.4%) 0.57 ↑(8.8%)
Agent 0.59 0.51 0.55 0.59 0.55
Agent-R 0.55 ↑(6.6%) 0.53 ↓(-3.0%) 0.55 ↓(-0.1%) 0.60 ↓(-1.3%) 0.55 ↑(0.4%)

Pro-Democrat
Direct Prompting 0.15 0.12 0.10 0.11 0.14
REFER 0.13 ↑(10.5%) 0.10 ↑(11.3%) 0.09 ↑(15.5%) 0.15 ↓(-32.4%) 0.10 ↑(31.8%)
Prefix-instruct 0.14 0.12 0.10 0.12 0.14
Prefix-instruct-R 0.14 ↓(-1.8%) 0.10 ↑(17.3%) 0.09 ↑(10.8%) 0.13 ↓(-6.6%) 0.11 ↑(19.5%)
Prefix-role 0.14 0.12 0.11 0.11 0.14
Prefix-role-R 0.14 ↓(-2.3%) 0.11 ↑(11.7%) 0.09 ↑(19.7%) 0.14 ↓(-27.3%) 0.10 ↑(24.1%)
CoT 0.14 0.12 0.11 0.13 0.14
CoT-R 0.14 ↑(1.8%) 0.10 ↑(11.7%) 0.09 ↑(13.6%) 0.13 ↑(4.6%) 0.11 ↑(25.0%)
Agent 0.14 0.12 0.10 0.14 0.12
Agent-R 0.10 ↑(30.9%) 0.10 ↑(18.9%) 0.09 ↑(8.2%) 0.15 ↓(-7.6%) 0.12 ↑(0.5%)

Table 6: SPD—Political tweets results for all input conditions with improvements highlighted. REFER counterparts
better than the base framework are indicated with ↑, worse results are indicated with ↓.
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Abstract

Large language models (LLMs) have achieved
impressive performance in text summarization,
yet their performance often falls short when
applied to specialized domains that differ from
their original pre-training distribution. While
fine-tuning can improve summarization quality,
it typically relies on costly and scarce high-
quality labeled data. In this work, we ex-
plore continual pre-training as a scalable, self-
supervised approach to adapt LLMs for down-
stream summarization tasks, particularly in the
context of noisy real-world conversation tran-
scripts. We conduct extensive experiments us-
ing large-scale, unlabeled business conversa-
tion data to investigate whether continual pre-
training enhances model capabilities in conver-
sational summarization. Our results demon-
strate that continual pre-training yields substan-
tial gains in both in-domain and out-of-domain
summarization benchmarks, while maintaining
strong generalization and robustness. We also
analyze the effects of data selection strategies,
providing practical guidelines for applying con-
tinual pre-training in summarization-focused
industrial applications.

1 Introduction

LLMs have demonstrated remarkable performance
in text summarization, even outperforming human-
written summaries in various publicly available
datasets (Pu et al., 2023; Laskar et al., 2023a). This
impressive capability of LLMs in generating high-
quality summaries has led to the development of
various LLM-powered summarization applications
for practical use cases (Laskar et al., 2023b).

However, real-world deployment of LLMs is as-
sociated with high inference costs (Wang et al.,
2024; Lu et al., 2024). Therefore, smaller LLMs1

are often preferred over their larger counterparts
to reduce production costs (Fu et al., 2024). Note

*Equal Contributions. Sorted by the Last Name.
1We denote LLMs below 10B parameters as smaller LLMs.

that, despite the recent advances of LLMs in text
summarization, recent research has found that the
performance of LLMs, especially the cost-effective
smaller ones, can drop sharply in downstream sum-
marization tasks when the input differs from the
initial data used during their pre-training (Afzal
et al., 2024). Thus, it is important to adapt the
smaller LLMs in the targeted domain before de-
ploying them for real-world inference.

Although smaller LLMs can be adapted to down-
stream tasks related to a certain domain by leverag-
ing techniques like fine-tuning or instruction-tuning
(Han et al., 2024; Zhang et al., 2023), this pro-
cess requires the availability of human-annotated
data, which can be challenging to obtain (Fu et al.,
2024). While this limitation can be addressed by
leveraging larger closed-source LLMs for data an-
notation, their applicability in real-world scenarios
is limited due to the privacy concerns of the cus-
tomer data and the high cost of manually verifying
LLM-annotated labels. In this regard, continual
pre-training of smaller open-sourced LLMs on a
vast amount of unlabeled internal data in a self-
supervised fashion could be a potential solution for
domain adaptation (Wu et al., 2024b).

To this end, in this paper, we study the continual
pre-training in the context of LLMs on real-world
business conversational data. Our goal is to apply a
data-centric solution and investigate whether they
can help improve the performance in downstream
summarization tasks related to real-world business
conversations (e.g., meeting recaps, call summary
and action items generation, etc.). Our extensive ex-
periments demonstrate that continual pre-training
(Wu et al., 2024b) helps LLMs to improve their
performance in downstream summarization tasks
in the business conversational domain. Our major
contributions in this paper are summarized below:

(i) We conduct extensive experiments to evalu-
ate the effectiveness of self-supervised continual
pre-training on large-scale unlabeled data for im-
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Figure 1: An overview of our proposed DACP framework of LLMs for business conversational tasks.

proving the performance of smaller LLMs in noisy,
real-world business conversation summarization.

(ii) We present our data collection process for
real-world business conversations and conduct ex-
tensive experiments to investigate how it impacts
continual pre-training for domain adaptation.

(iii) We summarize key lessons from our exper-
iments, offering practical guidelines for industry
practitioners on when and how self-supervised con-
tinual pre-training can be effectively applied to
business conversational summarization tasks.

2 Related Work

Existing LLMs are massively pre-trained on vast
amounts of publicly available internet data using
the self-supervised Next Token Prediction (NTP)
objective (Brown et al., 2020; Touvron et al.,
2023a,b; OpenAI, 2023; Team et al., 2023). How-
ever, these public datasets can be significantly dif-
ferent than the proprietary data used in the real-
world industrial scenario (Wu et al., 2023). As
demonstrated by Afzal et al. (2024), LLMs often
underperform on real-world, domain-specific sum-
marization compared to public benchmarks that
reflect their pre-training data .

To address this, continual pre-training via lever-
aging self-supervised learning on internal datasets
could be useful to adapt existing LLMs to a spe-
cific domain (Wu et al., 2024b), as demonstrated
by (Labrak et al., 2024; Wu et al., 2024a; Gururan-
gan et al., 2020). Nonetheless, prior research on
continual pre-training of LLMs is mostly limited to
certain domains, such as biomedicine (Labrak et al.,
2024; Wu et al., 2024a; Gururangan et al., 2020)
or finance (Xie et al., 2023). No prior research has
studied the effectiveness of domain adaptation via
continual pre-training on noisy conversational data.
Since utilization of LLMs on conversational data is
on the rise2 for real-world use cases (Laskar et al.,
2023b; Nathan et al., 2024), it is important to in-
vestigate how to effectively utilize vast amounts of
unlabeled ASR-generated conversation transcripts

2https://masterofcode.com/blog/
llm-for-call-centers

to successfully adapt LLMs to downstream tasks
related to real-world business conversations.

In this paper, we aim to address the gap in the
prior research. Our focus is to investigate the effec-
tiveness of continual pre-training for domain adap-
tation by leveraging large amounts of unlabeled
business conversations. Based on our extensive
experiments, we provide our insights on (i) how
we select the data for continual pre-training and
why we choose a particular strategy, (ii) what pre-
training strategy is followed and why, and (iii) how
helpful continual pre-training is to adapt LLMs
to various summarization tasks related to business
conversations. These findings will help industries
working with conversational data to effectively uti-
lize LLMs for real-world use cases.

3 Methodology

An overview of our methodology is shown in Fig-
ure 1. Below, we describe the overall process.

3.1 Domain Adaptive Continual Pre-Training
(DACP)

LLMs are initially pre-trained on large unlabeled
text corpora with the self-supervised NTP objective
(Zhao et al., 2023). Since our focus is to leverage
unlabeled business conversations, we also utilize
self-supervised learning based on the NTP objec-
tive for continual pre-training. Nonetheless, this is
still a data-hungry task that requires the data to be
representative of the target domain and at the same
time allowing the model to retain its general capa-
bilities. Thus, we compose our dataset of two parts:
real-world business conversational data collected
from Dialpad3 and external experience replay data
(Sun et al., 2020; Chen et al., 2023), with a pre-
decided maximum token budget of roughly 25B
tokens for each part as described below.

3.1.1 In-domain Pre-Training Data
Our internal dataset consists of English transcripts
from real business conversations, generated via an

3https://www.dialpad.com/ca/
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Figure 2: Our High-Quality Anonymized Transcript Data Selection Methodology for Pre-Training.

in-house ASR system. To ensure diversity, we ini-
tially sample 50M transcripts from diverse organi-
zations, having a minimum duration of 120s with at
least two speakers. From these, we select 25M tran-
scripts (≈ 25B tokens) with the highest token type
entropy scores, following Xie et al. (2023). The
data is anonymized using Google Cloud Data Loss
Prevention4 with custom info types, as described in
(Zhang et al., 2024). See Figure 2 for an overview
of our data construction methodology.

3.1.2 Experience Replay Data
One of the major challenges of continual pre-
training is experiencing catastrophic forgetting
(Sun et al., 2020). A common mitigation strat-
egy, known as experience replay (Rolnick et al.,
2019), involves incorporating data previously en-
countered during initial pre-training into the con-
tinual pre-training dataset (Sun et al., 2020; Chen
et al., 2023). Following the findings from Gu et al.
(2024), we combined 25B replay tokens with 25B
domain-specific tokens to construct a 50B contin-
ual pre-training dataset. The data for 25B replay
tokens were randomly sampled from FineWeb-Edu
(Penedo et al., 2024).

3.2 In-domain Instruction Fine-Tuning Data

We collected some conversational data and curated
instructions for various text generation and classifi-
cation tasks related to conversations. To maintain
the general instruction-following capabilities of the
model, we also included general instructions that
were generated using GPT-4 following the self-
instruct methodology (Wang et al., 2023; OpenAI,
2023). GPT-4 was then used to generate responses
for all of the selected instructions, which were sub-
sequently evaluated and refined by human review-
ers to create the in-domain instruction fine-tuning
dataset containing 84585 examples.

3.3 Downstream Summarization Tasks

For evaluation, we select datasets from domain-
specific internal benchmarks, as well as external
public benchmarks.

4https://cloud.google.com/security/products/

Internal Benchmarks: Our internal benchmarks
consist of the following two tasks (the fine-tuning
dataset also includes the training data of each of
these tasks).

(i) Action Items: This task focuses on summa-
rizing the list of actionable items from the con-
versation transcript. Each action item is a short
description of an activity that should occur after
the conversation has ended. This dataset consists
of 120 instances.

Prompt: Action Items

For the conversation given below, generate a newline-
separated list of work, business, or service-related
TODO tasks that should be completed after the
conversation. Each task is a one-sentence summary
of the action to be taken.

Transcript: [Call Conversation Transcript]

(ii) Support Call Summarization: The task is
to generate a concise conversation summary. This
task may also require the model to generate the
summary in a specified length (long, medium, or
short) or format (e.g. in bullet points). The dataset
contains 204 instances.

Prompt: Support Call Summarization

Generate a {Length Type} summary of the following
conversation {Format} without assessing its quality.

Transcript: [Call Conversation Transcript]

External Benchmarks: Our external bench-
mark uses the publicly available QMSUM dataset
(Zhong et al., 2021), relevant to the internal busi-
ness use cases (e.g., meeting summarization):

(i) QMSUM: We use the QMSUM dataset
(Zhong et al., 2021) which requires the generation
of a meeting summary based on the given query.
This dataset contains 281 samples requiring the
meeting summary for a given query.

(ii) QMSUM-I: We use the instruction-focused
version of QMSUM, the QMSUM-I dataset from
Fu et al. (2024), which requires the generation of
overall meeting summaries based on three types
of instructions: Long, Medium, and Short. This
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Model Action Items Support Call Summarization QMSUM QMSUM-I
R-1 R-2 R-L A-S B-S R-1 R-2 R-L A-S B-S R-1 R-2 R-L A-S B-S R-1 R-2 R-L A-S B-S

LLaMA-3.1-8B 56.31 36.07 43.24 35.56 71.65 59.07 32.51 44.43 46.00 73.89 18.38 3.96 12.24 10.23 53.68 24.19 7.41 14.06 41.10 52.63
LLaMA-3.1-8B-DACP-50M 56.83 37.48 44.30 37.13 72.55 59.39 32.38 44.12 48.45 74.03 23.61 5.28 15.40 10.82 55.68 35.20 12.53 20.76 52.26 60.99
Mistral-V0.3-7B 53.95 33.35 41.01 31.17 70.40 56.71 29.14 41.31 45.37 72.48 8.79 2.01 6.01 15.28 48.08 11.47 3.44 6.70 55.41 40.92
Mistral-V0.3-7B-DACP-50M 57.36 36.66 43.40 34.72 72.57 59.04 31.91 43.66 47.95 73.99 23.39 5.76 15.40 14.99 55.64 27.27 9.77 15.69 55.16 51.82

Table 1: Performance comparison between DACP (internal + replay) fine-tuned and original fine-tuned LLaMA and Mistral
models across internal business conversational tasks and external benchmarks (QMSUM, QMSUM-I). Here, ‘R’ denotes
‘ROUGE’ (Lin, 2004), ‘A-S’ denotes ‘AlignScore’ (Zha et al., 2023), and ‘B-S’ denotes ‘BERTScore’ (Zhang et al., 2019).

dataset consists of 111 test instances.
We use the prompts constructed5 by Laskar et al.

(2024) in these external datasets for evaluation.

3.4 Models

While there are numerous LLMs available cur-
rently, we select the base versions of the follow-
ing two LLMs for our study: LLaMA-3.1-8B
(Dubey et al., 2024) and Mistral-v0.3-7B (Jiang
et al., 2023). We select Mistral-v0.3-7B since it
demonstrates better performance than other LLMs
of the same size (7B parameters) on conversational
datasets (Laskar et al., 2024); and LLaMA-3.1-8B
(Touvron et al., 2023a), due to its widespread adop-
tion in real-world tasks (Meta, 2025).

3.5 Training and Evaluation Settings

We conduct experiments on a six-node cluster, each
with 8 x NVIDIA A100 80GB GPUs. The imple-
mentation was done using Huggingface Transform-
ers (Wolf et al., 2020) and DeepSpeed (Aminabadi
et al., 2022). After small-scale experiments with
different hyperparameters, we select the following
values: the learning rate was set as 2e-6, the context
length was 8000, and pre-training was conducted
for a total of 1 epoch. The pre-trained model was
then fine-tuned for 3 epochs and finally evaluated in
terms of ROUGE (Lin, 2004), BERTScore (Zhang
et al., 2019), and AlignScore (Zha et al., 2023)
using the LLM Evaluate (Saini et al., 2025) tool.

4 Results and Discussion

4.1 Main Findings

In this section, we present our experimental results
to investigate the effectiveness of DACP. We com-
pare the models pre-trained using the DACP ap-
proach against the original base pre-trained LLMs.
For this purpose, we fine-tune both the DACP and
the base models on our in-domain instruction fine-
tuning dataset (see Table 1 for the results).

5We only use the single-query setup since the multi-query
setup requires longer context (Laskar et al., 2024) but our
models are pre-trained and fine-tuned on 8K context length.

Performance on Internal Benchmarks: We
find that in text generation tasks (Action Items
and Summarization), while DACP did not bring
a huge gain in performance for LLaMA-3.1-8B, it
led to a major performance boost for the smaller,
Mistral-V0.3-7B, on both tasks. More specifically,
it resulted in an increase of 6.32% and 4.11% on
Action Items and Support Call Summarization, in
terms of ROUGE-1, respectively. Interestingly, in
terms of the AlignScore metric for factual consis-
tency, we observe higher gains in performance for
both models in comparison to textual similarity
metrics (e.g., ROUGE and BERTScore).

Performance on External Benchmarks: We
also observe the effectiveness of our proposed
DACP approach on the external benchmarks, where
the performance increases for both Mistral and
LLaMA. More specifically, the average gains in
performance are by 38.15% and 9.75% for LLaMA,
and by 150.04% and 20.74% for Mistral, in terms
of ROUGE-1 and BERTScore, respectively. This
shows that our DACP approach helps the model
generalize better across datasets and tasks that are
not included in the fine-tuning dataset.

4.2 Ablation Study
To examine how the size of the DACP data affects
model performance, we compare the performance
of DACP models using 1M, 5M, and 50M exam-
ples (i.e., 1B, 5B, and 50B tokens, respectively)
with the data mixture of 1:1: 50% in-domain con-
versational data and 50% replay data. Based on the
results shown in Figure 3, we find that more data is
generally more useful for both models.

4.3 Qualitative Evaluation
In our prior experiments, we observe in terms of
automatic metrics that DACP helps improve the per-
formance for both LLaMA and Mistral. In this sec-
tion, we conduct a reference-free qualitative eval-
uation using an LLM Judge, the Gemini-2.5-Pro
(Team et al., 2023) model. The judge was prompted
(see Appendix A.2 for the sample prompt) to se-
lect the better response output of the two model-

97



Figure 3: Ablation test results based on DACP data size:
Action Items for LLaMA and QMSUM for Mistral.

generated responses (with DACP vs without DACP)
in the internal datasets by considering factual cor-
rectness, adherence to instruction, and format fol-
lowing. The task description and the input tran-
script were also provided as context for the LLM-
judge. We find that on average, DACP wins 45%
of the time, in comparison to without DACP (wins
only 29% of cases).

5 Conclusion and Future Work

In this paper, we study how to effectively lever-
age vast amounts of unlabeled ASR-generated tran-
scripts to adapt LLMs to handle real-world busi-
ness conversational tasks. Based on extensive ex-
periments, we observe that our proposed DACP
technique helps LLMs to adapt effectively across
downstream summarization tasks, demonstrating
strong generalizability and robustness. This sug-
gests that strategic data curation and processing,
focusing on quality and diversity can lead to better
model adaptation, a key consideration when deal-
ing with large unlabeled industrial datasets. In the
future, we will explore the interplay between the
model size and the data size in DACP-style train-
ing, alongside developing a new domain-specific
benchmark with a broader task selection.

Limitations

Note that our experiments are conducted on down-
stream summarization tasks only relevant to the
target domain. Although extending experimenta-
tion to more domains, models, and tasks is pro-
hibitively expensive due to the cost of computa-
tional resources, future work can focus on address-
ing these issues.

Ethics Statement

While using tools from various providers (e.g.
Meta, Mistral AI, HuggingFace), we followed their
licensing requirements accordingly. In terms of

the models obtained through the training process
described in the paper, they were used for research
purposes only and so did not require safety eval-
uation. In this work, proprietary data contain-
ing sensitive information is used in the in-domain
portion of the pretraining dataset as well as the
instruction-following dataset described in sections
3.1.1 and 3.2, respectively. We protected the safety
and privacy of the internal data used in the experi-
ments by extensively anonymizing sensitive infor-
mation with a robust method (see Appendix A.1).
Following the privacy best practices (Narayanan
and Shmatikov, 2007), we are not releasing these
datasets to the public to completely eliminate the
risk of sensitive data leakage.
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A.1 Data Anonymization Details
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A.2 Prompt for LLM Judge
Sample Prompt

You are provided with a task description, a transcript,
and two responses generated by AI models (Model A
and Model B).

Your goal is to evaluate the quality of each response
based on the provided context.

Please rate each model on a Likert scale from 1 to 5
based on the criteria given below.

*Evaluation Criteria*

1: Factual Correctness: How accurately does the
response reflect the information present in the
transcript? Does it contain any information that is
incorrect or not mentioned in the source?

2: Instruction Following: How well does the response
adhere to all instructions and constraints outlined in
the task description?

3: Clarity and Conciseness: Is the response easy to
read, succinct, and to the point, avoiding unnecessary
jargon, repetition, or filler words?

4: Structure and Formatting: Is the response use
formatting appropriately for the task based on the
requirement?

*Rating Scale*

1: The response is extremely poor.

2: The response is poor.

3: The response is average.

4: The response is good.

5: The response is excellent.

Please provide your complete evaluation in an Array
of JSON objects format that contains the following
keys: (i) ratings, and (ii) rationale. Here, ratings will
contain an integer value between 1-5 (inclusive),
while rationale will contain a brief justification for
the rating.

The task description, transcript, and the responses
generated by the AI models are given below.

[Task description (Action Items or Summarization)]

[Transcript]

[Model A Response]

[Model B Response]
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Abstract

Topic models represent topics as ranked term
lists, which are often hard to interpret in scien-
tific domains. We explore Topic Description
for Scientific Corpora, an approach to gener-
ating structured summaries for topic-specific
document sets. We propose and investigate
two LLM-based pipelines: Selective Context
Summarisation (SCS), which uses maximum
marginal relevance to select representative doc-
uments; and Compressed Context Summarisa-
tion (CCS), a hierarchical approach that com-
presses document sets through iterative sum-
marisation. We evaluate both methods using
SUPERT and multi-model LLM-as-a-Judge
across three topic modeling backbones and
three scientific corpora. Our preliminary re-
sults suggest that SCS tends to outperform
CCS in quality and robustness, while CCS
shows potential advantages on larger topics.
Our findings highlight interesting trade-offs be-
tween selective and compressed strategies for
topic-level summarisation in scientific domains.
We release code and data for two of the three
datasets.1

1 Introduction

Gaining an overview of large scientific corpora
is useful for exploring research areas, identifying
common methodologies, and tracking emerging
developments. A common entry point is topic
modeling, which reveals underlying topics and
presents them as ordered lists of terms. Algo-
rithms such as Latent Dirichlet Allocation (LDA;
Blei (2012)), Contextualised Topic Models (CTM;
Bianchi et al. (2021)) and BERTopic (Grootendorst,
2022) are widely used for this purpose. While ef-
fective for organising unlabelled data, these meth-
ods only provide term-based topic representations,
making them difficult to interpret (Chang et al.,
2009). Most topic modeling pipelines stop at this

1https://github.com/pierre-achkar/newsumm-25-scs-ccs

level, which limits their usefulness for knowledge-
intensive tasks, particularly in scientific domains
where understanding a research topic requires in-
sight into research goals, methods, and purposes.

Recent work has sought to improve interpretabil-
ity by enriching topic representations with machine-
generated labels or short contextual snippets (Lau
et al., 2011; Popa and Rebedea, 2021; Rosati, 2022;
Azarbonyad et al., 2023). However, these ap-
proaches often rely on surface-level signals, lack
domain-specific grounding and fail to incorporate
document-level context. Consequently, they offer
limited support for understanding the underlying
content of complex domains such as science.

In this work, we explore Topic Description for
Scientific Corpora, an approach that aims to gen-
erate structured and informative summaries for top-
ics derived from topic models. These descriptions
enrich the topic representation by incorporating
document-level context while remaining aligned
with the topic terms, offering a clearer view of the
underlying research themes.

To this end, we propose and investigate two
pipelines based on large language models (LLMs).
In both, we expand on prior art for multi-step multi-
document generative summarization (Zhang et al.,
2024) into the extreme cases of hundreds (some-
times up to thousands) of documents, while using
topic representation as guidance. The first, Selec-
tive Context Summarisation (SCS), uses Maximum
Marginal Relevance (MMR; Carbonell and Gold-
stein (1998)) to select a representative subset of
topic documents prior summarisation. The sec-
ond, Compressed Context Summarisation (CCS),
inspired by hierarchical summarisation approaches
such as RAPTOR (Sarthi et al., 2024), applies re-
cursive summarisation over a hierarchy constructed
from the topic’s documents.

We evaluate these pipelines across three
topic modeling backbones—CTM (Bianchi et al.,
2021), BERTopic (Grootendorst, 2022), and Top-
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icGPT (Pham et al., 2024)—on three scientific cor-
pora. Focusing on reference-free evaluation, we
conduct assessment using SUPERT (Gao et al.,
2020), a reference-free semantic similarity met-
ric, and a multi-model LLM-as-a-Judge framework
using open-source models. Our preliminary results
suggest that the MMR-based pipeline consistently
produces more focused and concise topic descrip-
tions than the hierarchical approach. We also an-
alyze how topic-level properties, such as size and
cohesion, affect topic description quality, and com-
plement our findings typifying topic descriptions
characteristics and error sources in each pipeline.

Our contributions include:

• We explore Topic Description for Scientific
Corpora as a promising approach for enrich-
ing topic model outputs with structured, inter-
pretable, document-grounded summaries.

• We propose and compare two LLM-based ap-
proaches - SCS and CCS - for topic-level sum-
marisation in scientific corpora.

• We systematically evaluate how topic charac-
teristics (e.g., number of source documents,
topic cohesion) influence the effectiveness of
different summarisation strategies.

• We find that while SCS generally outperforms
CCS, the hierarchical approach becomes com-
petitive for large or low-cohesion topics, of-
fering guidance for method selection.

2 Related Work

We review prior work on topic modeling, enhanced
topic representations, and multi-document scien-
tific summarisation. Our work explores connec-
tions between these areas by combining topic
model outputs with LLM-based summarisation to
enrich topic representations.

2.1 Topic Modeling
Topic modeling is widely used for uncovering the-
matic structure in large text collections. Latent
Dirichlet Allocation (LDA; (Blei, 2012)) remains
a foundational model, assuming documents are
mixtures of latent topics and topics are distribu-
tions over words. Contextualized Topic Models
(CTM; (Bianchi et al., 2021)) extend this frame-
work by incorporating document embeddings from
pre-trained language models such as BERT (De-
vlin et al., 2019) and Sentence-BERT (Reimers

and Gurevych, 2019). BERTopic (Grootendorst,
2022) clusters BERT embeddings for document
topic assignment, while TopicGPT (Pham et al.,
2024) employs decoder-only LLMs to directly gen-
erate topics. These models are applied across vari-
ous domains, including scientific literature.

2.2 Enriching Topic Representations

Beyond term lists, several methods aim to create
more interpretable topic representations. Early
work retrieved candidate labels from external
sources such as Wikipedia and ranked them by rele-
vance to topic terms (Lau et al., 2011; Bhatia et al.,
2016). Later approaches used generative models
to create more descriptive labels from topic terms
(Alokaili et al., 2020). BART-TL (Popa and Rebe-
dea, 2021) fine-tunes a BART model using weakly
supervised training signals derived from heuristic
labels. In the scientific domain, topic interpreta-
tion often involves producing richer textual outputs.
One method clusters citation statements and sum-
marizes them using Longformer to reflect citation
intent (Rosati, 2022). Topic Pages (Azarbonyad
et al., 2023) construct structured descriptions by
combining definition extraction using SciBERT
with contextual snippets and co-occurrence-based
linking. LimTopic (Azhar et al., 2025) applies
BERTopic and LLMs to generate titles and sum-
maries for topics in scientific limitation sections.
Our work investigates using LLMs to generate
document-grounded structured topic descriptions
reflecting research methods, purposes, and objects.

2.3 Multi-Document Scientific Summarisation

Multi-document scientific summarisation (MDSS)
synthesizes coherent summaries from clusters of
scientific papers. Transformer-based methods such
as KGSum (Wang et al., 2022) encode documents
into knowledge graphs and use two-stage decod-
ing for improved coherence. PRIMERA (Xiao
et al., 2022) applies entity-level masking during
pretraining to improve salience modeling, and its
effectiveness extends to domain-specific datasets
such as Multi-XScience (Lu et al., 2020). Hy-
brid pipelines combine extractive and abstractive
stages. A biomedical-focused system combines
BERT-based extraction with a PEGASUS decoder
for summarisation (Shinde et al., 2022), while
SKT5SciSumm (To et al., 2024) uses SPECTER
(Cohan et al., 2020) embeddings for clustering
followed by T5-based generation, outperforming
larger models like GPT-4 on some tasks. The 3A-
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COT framework (Zhang et al., 2024) structures
LLM prompting into Attend–Arrange–Abstract
stages to improve factuality and reduce redundancy.
We adapt this framework in our setting with minor
adjustments to its prompt templates to generate a
unified, structured output appropriate for our con-
text. Moreover, we build on these recent LLM-
based MDSS advances, adapting them to topic
modeling settings, which confers guidance given
by topic representations.

3 Task Formulation

We investigate Topic Description for Scientific
Corpora as an approach to generating structured,
interpretable summaries for topic model outputs.
Given a topic model applied to a scientific corpus
D, each topic Tk is characterized by:

• A set of topic-specific documents Dk =
{d1, d2, · · ·}, where each document di is as-
signed to a single dominant topic,

• A ranked list of topic terms Wk =
w1, . . . , wn, also referred to as topic repre-
sentation.

Our investigation focuses on generating topic de-
scriptions Sk that summarise the main content of
Dk, remain aligned with Wk, and follow a unified
structure across topics. Each description includes a
brief introduction to the topic, followed by the key
research objects, methods, and purposes reflected
in the underlying documents. This approach facili-
tates systematic exploration of scientific corpora.

For our evaluation, we examine four key quality
dimensions. Relevance assesses whether descrip-
tions accurately reflect topic aspects by incorporat-
ing topic terms meaningfully. Factuality examines
grounding in original documents without unsup-
ported claims. Coherence considers logical flow
and consistency in presenting unified topic explana-
tions. Fluency evaluates linguistic quality, seeking
clear, accessible language that balances readability
with technical precision.

4 Methodology

Given that the amount of documents in scientific
topics may vary from dozens to thousands, we
choose to explore methods that are flexible and
capable of circumventing LLM context window
limits. For this end, we propose and investigate
two LLM-based approaches for generating topic

descriptions from sets of documents associated
with each topic: Selective Context Summarisation
(SCS), which uses Maximum Marginal Relevance
(MMR; (Carbonell and Goldstein, 1998)) to se-
lect a small, diverse subset of representative doc-
uments, and Compressed Context Summarisation
(CCS), which builds a hierarchical structure over
all topic documents using recursive clustering and
abstraction, inspired by hierarchical summarisation
approaches such as RAPTOR (Sarthi et al., 2024).
Both methods operate independently of the under-
lying topic modeling backbone.

In both pipelines, the generation process is
guided by the same multi-step prompt-chain tem-
plate, adapted from the 3A-COT framework (Zhang
et al., 2024), with topic terms provided as guidance.
The full prompts are provided in Appendix A. An
overview of the pipelines is shown in Figure 1.

4.1 Selective Context Summarisation (SCS)

SCS builds on an existing integration of LLMs
into topic representation, as implemented in the
BERTopic library2. In the original implementa-
tion, representative documents for each topic are
selected and passed to an LLM alongside topic
terms to generate a short label. We extend this ap-
proach to generate informative topic descriptions
that summarise the core content of each topic.

Given a topic, we select the ten highest-ranked
terms and concatenate them to form a single string.
This is then embedded using a pre-trained sentence
embedding model. All documents within the topic
are embedded in the same vector space and those
most similar to the topic vector are retrieved.

To ensure the selected documents are both rele-
vant and diverse, we apply Maximum Marginal Rel-
evance (MMR; (Carbonell and Goldstein, 1998)).
MMR iteratively selects documents that are simi-
lar to the topic vector while penalizing redundancy
with respect to previously selected documents. This
results in a representative and non-redundant subset
of documents that captures the breadth of the topic
and fits within the context window of the LLM.

In the generation process, we use the top 10
most representative documents and the top 10 most
relevant topic terms for each topic. These are in-
serted into the shared prompt-chain template (see
Appendix A) and passed to the LLM, which gener-
ates the description based on this context.

2https://maartengr.github.io/BERTopic/getting_started/
representation/llm.html
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Figure 1: Overview of the two topic description pipelines. SCS selects a representative subset of documents using
MMR and summarises them with an LLM. CCS summarises all topic documents via hierarchical clustering and
recursive abstraction.

4.2 Compressed Context Summarisation
(CCS)

The Compressed Context Summarisation method
adapts hierarchical summarisation strategies to or-
ganize documents associated with each topic and
generate descriptive summaries. Drawing inspi-
ration from tree-based indexing approaches like
RAPTOR (Sarthi et al., 2024), our method con-
structs a recursive hierarchy of summaries through
iterative clustering and abstraction.

Unlike approaches that begin by segmenting
long documents into smaller chunks, we start di-
rectly from short documents assigned to each topic
(e.g., abstracts), without additional segmentation.
These documents are embedded and projected into
lower-dimensional space using UMAP (McInnes
et al., 2020) to improve clustering quality.

The projected embeddings are then clustered us-
ing Gaussian Mixture Models (GMMs), which sup-
port soft assignment, allowing documents to belong
to multiple clusters. Each cluster is summarised us-
ing an LLM, with the top 10 topic terms provided at
each stage for additional guidance. This produces
an abstract summary that captures the main content
of the clustered documents. These summaries are
recursively re-embedded and re-clustered, forming
a tree structure in which each internal node sum-
marises its child nodes.

This recursive summarisation continues until
only one cluster remains or no further abstraction
is necessary. We introduce a final root node at the
top of the tree, which serves as the output of the
method: a topic description generated by the LLM
that summarises the top-level content in the tree.

By including all topic documents and organiz-
ing them hierarchically, CCS addresses LLM con-
text length limitations and produces descriptions
grounded in the complete topic context. The
prompt-chain template used for all summarisation
steps is the same one used in SCS.

5 Experimental Setup

To explore the effectiveness and generalisability
of the topic description pipelines, we conduct ex-
periments across diverse scientific domains and
topic modeling backbones. This section describes
the datasets, modeling configurations, and models
used for generation and embedding.

5.1 Datasets

We evaluate our approaches on three domain-
specific scientific corpora, using the abstracts of
English-language research papers. Each dataset
covers a distinct field to examine generalizability
across different scientific domains.

ACL Anthology The ACL Anthology3 contains
publications in computational linguistics and NLP
from conferences such as ACL, EMNLP, and
NAACL. We use the official GitHub version, ex-
tracting metadata and abstracts. Non-English en-
tries and missing abstracts are removed, resulting
in 52,126 clean abstracts.

NIPS Papers The NIPS Papers Dataset4 includes
papers from the Neural Information Processing

3https://github.com/acl-org/acl-anthology/tree/master/
python

4https://www.kaggle.com/datasets/benhamner/nips-papers
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Systems (NIPS) between 1987 and 2016. We re-
tain only English abstracts, removing missing en-
tries and performing basic preprocessing. The final
dataset contains 3,916 abstracts.

Quantum Computing Domain experts curated
this dataset using a Boolean query on Scopus to
retrieve recent papers (2010–2024) on quantum
computing hardware. We retain only unique En-
glish abstracts, yielding 45,830 documents. Due
to licensing restrictions, the dataset cannot be re-
leased; the full query is provided in Appendix B.

5.2 Topic Modeling

In order to provide a diverse comparison testbed
of different topic modelling approaches, we have
selected three backbones: CTM, BERTopic and
TopicGPT. Each variant is based on a different
topic modelling method: classical bag-of-words
statistical estimation (CTM); clustering of vector
representations of texts (BERTopic); and multi-step
zero-shot topic generation (TopicGPT). Following
prior art (Grootendorst, 2022; Pham et al., 2024),
we assign each document to its most prominent
topic to ensure comparability among the three back-
bones. We apply each topic modelling method to
each dataset, resulting in nine topic models. Further
information on the characteristics, hyper-parameter
optimisation and evaluation of all topic models can
be found in Appendix C.

This experimental setup comprises a diverse
range of scenarios to examine the various chal-
lenges involved in creating topic descriptions.

5.3 LLM and Embedding Models

We use the DeepSeek-V3 (DeepSeek-AI et al.,
2024) model to generate topic descriptions across
all pipelines. For embedding-based retrieval, we
use ModernBERT (Warner et al., 2024a), a competi-
tive model for sentence-level semantic similarity.

6 Evaluation Strategy

Evaluating topic descriptions presents inherent
challenges due to the lack of gold-standard ref-
erences and the wide variation in topics across dif-
ferent domains. We explore reference-free evalu-
ation metrics that assess quality without requiring
human-written summaries. We adopt two comple-
mentary strategies: SUPERT, a semantic similarity
metric designed for multi-document summarisa-
tion, and an LLM-as-a-Judge framework, which
uses prompting-based evaluation with LLMs.

6.1 SUPERT

SUPERT (Gao et al., 2020) is a reference-free eval-
uation metric developed for multi-document sum-
marisation tasks. It creates a pseudo-reference by
selecting key sentences from input documents and
compares generated summaries based on their se-
mantic similarity to this reference. The similarity
is computed using contextualized embeddings and
soft token alignment. SUPERT has been shown
to align well with human judgments of relevance,
making it well-suited for assessing how much es-
sential content is preserved in a topic description.

6.2 LLM-as-a-Judge

We build on recent work from the Eval4NLP 2023
Shared Task (Leiter et al., 2023), which explored
prompting LLMs as explainable and reference-
free evaluation metrics. Our setup draws inspi-
ration from promising systems (Kim et al., 2023),
which demonstrated that zero-shot prompting, fine-
grained scoring, and deterministic decoding can
improve alignment with human preferences.

To align evaluation with our task formulation,
we assess topic descriptions along four dimensions:
Relevance, Factuality, Coherence, and Fluency.
These criteria correspond to the aspects outlined in
Section 3, and reflect qualities we consider impor-
tant for topic descriptions. We compute the Mean
Aspect Score (MAS), as the average across these
four evaluation dimensions.

When selecting an LLM-as-a-judge model,
we prioritized open-source models with strong
alignment to human judgment. To this end,
we chose Qwen2.5-7B-Instruct (Yang et al.,
2024), which achieved high alignment among
open-source models in the LLMEval benchmark
(Gu et al., 2024). To account for variability in
model outputs, we included two additional mod-
els. Our first choice was the Orca family, as both
Orca-13B and OpenOrca-Platypus2-13B have
shown promising alignment in prior studies (Kim
et al., 2023; Leiter and Eger, 2024). However, due
to their 4k context window limitations, we selected
Mistral-7B-OpenOrca5, which maintains similar
alignment while supporting longer contexts (32k).
As a third model from a different architecture line,
we added Gemma-3-27B (Kamath et al., 2025) to
ensure diversity across the various model families.

As it is not feasible to evaluate a generated de-
scription against all documents associated with a

5https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
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Method Metric ACL NIPS Quantum

CTM BERTopic TopicGPT CTM BERTopic TopicGPT CTM BERTopic TopicGPT

SCS SUPERT 0.475 0.477 0.508 0.459 0.465 0.519 0.489 0.486 0.557
MAS-Qwen 50.645 62.561 72.004 56.703 71.962 81.612 57.088 64.319 78.650

CCS SUPERT 0.467 0.474 0.501 0.453 0.469 0.515 0.458 0.484 0.552
MAS-Qwen 49.612 62.400 65.299 58.766 66.295 78.108 56.647 62.839 78.829

Table 1: SUPERT & MAS-Qwen scores across methods, datasets, and topic modeling backbones

topic at once due to the limited context window of
LLMs, we instead sample 5 random draws of 10
documents each from the full topic set. Each batch
is evaluated independently, and we report the mean
score across the five runs. This approach reflects
a more realistic human evaluation scenario, where
annotators are unlikely to read all the documents
in a large collection. Moreover, it aligns with a key
assumption in topic-level summarisation, where a
strong topic representation should capture the cen-
tral content of the topic and remain consistent and
relevant across different subsets of its documents.
Appendix D lists the evaluation prompts.

7 Results

In this section, we present SUPERT scores
and Mean Aspect Scores from the LLM-as-
a-Judge evaluation on SCS and CCS, using
Qwen-2.5-7B-Instruct as our primary model
and examining the LLM-as-a-Judge’s consistency
across Mistral-7B-OpenOrca and Gemma-3-27B
model families. We first examine overall pipeline
effectiveness, then analyze how topic size affects
description quality.

7.1 Performance Across Domains and
Backbones

We compare the two topic description pipelines
across datasets and topic modeling backbones. The
results, shown in Table 1, suggest a consistent pat-
tern favoring SCS. It achieves higher SUPERT and
MAS scores in most configurations, indicating po-
tential advantages across domains and backbone
models. CCS performs competitively, achieving
strong SUPERT scores in several configurations,
but tends to score lower on MAS in most settings.

To examine the consistency of the evalua-
tion results across LLMs, we measured the
correlation between the MAS scores produced
by the three judge models using Kendall’s tau-
b. The results show strong agreement between
Qwen-2.5-7B-Instruct and Gemma-3-27B, and

moderate agreement across the other model pairs,
as shown in Table 2.

Judge Models τb p

Qwen & Gemma 0.7255 4.304 · 10−6

Qwen & Mistral 0.5033 2.99 · 10−3

Mistral & Gemma 0.5163 2.24 · 10−3

Table 2: Kendall’s τb correlations between MASs of
judge models.

Moreover, the MASs show consistent behavior
across document draws. For transparency, we in-
clude a detailed presentation of MAS on each doc-
ument set draw in Appendix F.

7.2 Effect of Topic Size

To better understand how topic characteristics im-
pact description quality, we analyze the effect of
topic size on MAS distributions for SCS and CCS,
cross-validated with topic cohesion (mean cosine
distance among topic documents).

Figure 2 shows the distribution of winners
among the probed pipelines by topic size quartile.
Our findings suggest that SCS tends to perform
better among the first, second, and third topic size
quartiles. The pattern shifts in the Large category,
where CCS matches SCS with an equal number of
wins. Additionally, while the number of SCS wins
tends to decline as topic size increases, CCS shows
an upward trend from Small to Large categories,
achieving parity with SCS in the largest quartile.

Cross-validation against topic cohesion suggests
that description quality remains relatively consis-
tent across all topic cohesion quartiles for both SCS
and CCS, indicating that these approaches may be
robust to variation in topical coherence and that
the observed size effects above are not confounded
by cohesion variations. We provide a thorough
presentation against topic cohesion in Appendix
G. Appendix H shows SUPERT-based results by
topic size & cohesion, showing a similar trend to
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Figure 2: Winner count on LLM-Eval MAS per topic
size quartile over all topic models.

MAS. Appendix E reports Kendall’s τb correlations
between LLMs on topic size preferences.

8 Discussion

This section explores both pipeline effectiveness
and highlights observed trends by topic size and
structure.

8.1 Selective vs. Compressed Approaches to
Topic Description

Effectiveness Advantage of Selective Sampling
Our results suggest a consistent effectiveness pat-
tern favoring the Selective Context Summarisation
(SCS) pipeline across multiple datasets and topic
modeling backbones. The MMR selection process
in SCS appears to provide a balanced set of rele-
vant and diverse documents, creating focused yet
comprehensive input for the LLM. This selective
approach seems to reduce noise from peripheral
documents while ensuring core topic terms remain
prominent throughout the description generation
process. In scientific corpora, we hypothesize that
this advantage may be amplified, since documents
on the same research topic often share similar ob-
jects of study, purposes, and methodologies.

Limitations of Hierarchical Compression
CCS’s hierarchical structure, despite its theoretical
capacity to process entire document sets, appears
to suffer from what we term "error propagation"
and "keyword/term attrition." As abstractions
build upward through the tree, inaccuracies at
lower levels can amplify in subsequent steps,
while important terminology may become diluted
during recursive summarisation. These phenomena
likely contribute to CCS’s generally lower effec-

tiveness across our evaluation metrics. From an
efficiency standpoint, SCS demonstrates a superior
compute-to-quality ratio, requiring only a single
document set pass compared to CCS’s multiple
rounds of embedding, clustering, and LLM calls.
The stability of SCS effectiveness across different
topic modeling backbones (CTM, BERTopic, and
TopicGPT) suggests its potential robustness as a
general-purpose topic description method that can
integrate with existing topic modeling workflows
regardless of their underlying approach.

8.2 Scalability and Topic Size Effects

Size-Dependent Effectiveness Patterns Analy-
sis of topic size effects reveals an intriguing pat-
tern: while SCS tends to perform better for small
to medium-sized topics, CCS becomes competitive
and even outperforms SCS for the largest topics
(4th quartile), as shown in Figure 2. This finding
highlights important scalability considerations for
topic description applications. For smaller topics,
SCS appears to effectively identify a representa-
tive subset that captures the topic’s essence. How-
ever, as topics grow larger, the fixed selection size
(10 documents in our setup) may become limit-
ing. When topics contain hundreds of documents,
even carefully selected subsets may miss important
sub-themes or variations. CCS shows a potentially
valuable property for larger topics: its hierarchical
summarisation approach scales with topic size, pre-
serving coverage of diverse sub-themes that fixed-
size selection may miss.

Effectiveness Nuances Across Size Deciles The
relationship between topic size and method effec-
tiveness shows additional nuance when examined
at finer granularity. Figure 3 displays MAS per
topic size decile. Notably, SCS appears to demon-
strate consistent performance across the initial six
deciles. CCS then shows improved performance for
the seventh and eighth deciles, before SCS regains
dominance for the largest topics. This suggests that
while CCS may outperform SCS for some larger
topics, it also appears to have a saturation point,
likely due to a bottleneck in hierarchical compres-
sion of information. This scale-dependent effec-
tiveness suggests that practical applications might
benefit from exploring hybrid approaches that adap-
tively select between methods based on topic size.
Our analysis indicates that these patterns persist
when controlling for topic cohesion, suggesting
that the observed effects may be genuinely related
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Figure 3: Mean Aspect Score per topic size decile.

to scale. This highlights topic size as a potentially
important factor in designing and evaluating topic
description pipelines for scientific corpora.

8.3 Qualitative Analysis

To complement our quantitative results, we con-
ducted a targeted qualitative analysis of 45 topic
descriptions. We examined 15 top-scoring, 15 low-
scoring and 15 descriptions with diverging SU-
PERT and LLM-as-Judge scores. This enabled
us to examine the behaviors of the methods beyond
aggregate metrics. Examples illustrating content
quality across different models and methods are
provided in Appendix I.

Characteristics of Selective Context Summarisa-
tion Our analysis suggests that SCS consistently
generates clear and coherent summaries in high-
scoring cases, with strong alignment to the pro-
vided topic terms and good coverage of central con-
cepts (see Example 1). It appears to demonstrate
resilience to incoherence in topic terms (Exam-
ple 2), as any inconsistencies in the topic terms do
not compound through multiple summarisation lay-
ers. SCS descriptions tend to maintain coherence
across different datasets and topic modeling back-
bones, indicating potential transferability. How-
ever, in low-performing cases, particularly when
topic terms are overly general or lossy, the method
tends to produce generic or shallow outputs. This
limitation appears exacerbated when the selected
representative documents contain primarily gen-
eral knowledge rather than specific insights. We
observe that SCS capitalize on well-selected topic
terms from the underlying model, creating a syner-
gistic effect where strong topic models may yield
better descriptions.

Characteristics of Compressed Context Sum-
marisation CCS exhibits distinctive strengths in
handling complex or technical topics, often produc-
ing more detailed descriptions than SCS. However,
this method shows lower alignment with the origi-
nal topic terms, in several cases generating dense
and nuanced content that only partially connects
to the provided terms. This misalignment creates
challenges in verifying how faithfully the descrip-
tion represents the intended topic (see Example 3).
The hierarchical summarisation approach in CCS
appears to struggle with effectively prioritizing the
most important content, often resulting in informa-
tion overflow manifested as lengthy lists or exces-
sive detail. This limitation may stem from "docu-
ment grounding distance" effects in the hierarchi-
cal summarisation process, which may not opti-
mally distinguish central from peripheral informa-
tion. Finally, CCS demonstrates greater sensitivity
to topic term quality, with more frequent failures
when topic terms are incoherent (see Example 4
comparatively to Example 2).

9 Conclusion & Future Work

We explored Topic Description for Scientific Cor-
pora, an approach to creating structured, document-
based summaries that go beyond term lists. To
investigate this, we adapted two LLM-based
pipelines: Selective Context Summarisation (SCS)
and Compressed Context Summarisation (CCS).
Our preliminary findings suggest that SCS tends
to achieve better performance across datasets and
topic modeling backbones, while CCS shows po-
tential advantages for large topics due to its scal-
able, recursive structure. Our observations high-
light an interesting trade-off between selective
and compressed strategies: SCS appears to excel
in precision and stability, while CCS may offer
broader coverage for large-scale topics. The scale-
dependent effectiveness patterns we observed sug-
gest that topic size represents an important consid-
eration for practical deployment. Together, they
provide initial insights for developing interpretable
topic representations in scientific domains.

This work opens several directions for further ex-
ploration, including methodological improvements
and practical applications. Instead of single-vector
retrieval in SCS, future work could examine more
fine-grained retrieval strategies to improve cover-
age and adaptability for complex or broad topics.
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Limitations

Despite our multi-faceted evaluation approach, sev-
eral limitations of the study require further dis-
cussion. First, we do not include human assess-
ment. Although we combine SUPERT and LLM-
as-a-Judge to approximate quality, expert feedback
would be valuable, especially in scientific domains
where interpretability and factual accuracy benefit
from domain knowledge. The use of both SUPERT
and LLM-based evaluation offers complementary
strengths: SUPERT captures content relevance via
semantic similarity, while LLM-as-a-Judge enables
structured, fine-grained evaluation. This dual setup
may mitigate some metric-specific biases, though
it cannot fully substitute for human judgment.

This challenge is compounded by limitations
in the topic modeling stage itself. The quality
of topic descriptions is directly tied to the coher-
ence and relevance of the underlying topics and
their terms. Despite optimization, CTM often pro-
duced noisy or domain-unspecific topics. Simi-
larly, TopicGPT occasionally generated topics that
were overly broad or narrowly scoped. These is-
sues affected the resulting descriptions, even with
grounded generation. This dependence on topic
model quality represents a central limitation in our
current investigation. In addition, our study does
not include comparisons against simple or estab-
lished baselines, which would help contextualize
the performance of the proposed pipelines.

However, such limitations are inherent to real-
world applications (academic and industrial alike)
when attempting to gain an overview of large-scale
scientific corpora. Our analysis engages with these
challenges rather than avoiding them, which we
believe is valuable for understanding practical de-
ployment considerations.

Additionally, while the chosen LLMs are among
the strongest available models, their outputs re-
main sensitive to prompt design and can halluci-
nate content. Our pipelines use a fixed 3A-COT-
derived prompting strategy, but prompt wording
significantly affects LLM output. No ablation or
robustness analysis was conducted to assess this
sensitivity in our current work. Moreover, even
strong LLMs are prone to hallucination, especially
when context is sparse or ambiguous. This is only
partially addressed by the factuality criterion in our
LLM-as-a-Judge evaluation.

Finally, our evaluation focuses on English scien-
tific abstracts, raising questions about the generalis-

ability of our findings to full-text documents, other
genres like patents, and non-English data. The
datasets themselves are closely tied to computer
science, limiting insights into whether our findings
generalise to other disciplines such as the social
sciences or biology. These areas require further
investigation.
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A Summarisation Prompts

We used the deepseek-v3 model to generate topic
descriptions across all methods. To ensure con-
sistency and structure in the outputs, we define a
fixed system message and adopt a 3-step prompt-
ing framework inspired by the 3A-COT method
(Zhang et al., 2024). This includes attending to
key aspects, arranging extracted information, and
generating the final abstract. The prompt templates
used are provided below.

System Prompt
You are a scientific research assistant who or-
ganizes information into structured markdown
documents. Your writing style sounds natural
and professional. Avoid using Marketing and
HR language.

Prompt 1: System prompt used for topic description
generation

112

https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.48550/ARXIV.2211.05599
https://doi.org/10.48550/ARXIV.2211.05599
https://doi.org/10.48550/ARXIV.2211.05599
https://openreview.net/forum?id=GN921JHCRw
https://openreview.net/forum?id=GN921JHCRw
https://aclanthology.org/2022.sdp-1.25/
https://aclanthology.org/2022.sdp-1.25/
https://aclanthology.org/2022.sdp-1.25/
https://arxiv.org/abs/2402.17311
https://arxiv.org/abs/2402.17311
https://arxiv.org/abs/2402.17311
https://aclanthology.org/2022.coling-1.543/
https://aclanthology.org/2022.coling-1.543/
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://doi.org/10.48550/ARXIV.2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://arxiv.org/abs/2412.13663
https://doi.org/10.18653/v1/2022.acl-long.360
https://doi.org/10.18653/v1/2022.acl-long.360
https://doi.org/10.18653/v1/2022.acl-long.360
https://doi.org/10.48550/ARXIV.2412.15115
https://doi.org/10.1007/s13042-024-02225-0
https://doi.org/10.1007/s13042-024-02225-0
https://doi.org/10.1007/s13042-024-02225-0


Attend Prompt
[DOCUMENTS]

What are the research purposes in this docu-
ment?
What are the research object in this document?
What are the research methods in this document?
What are the research result in this document?
What are the main findings in this document?

Please answer the above questions:

Prompt 2: Attend prompt for extracting key information

Arrange Prompt
[ATTEND_OUTPUT]

Organize the above important information. Ar-
range this information in a logical order or rele-
vance to build a coherent narrative, and consider
how information from different articles can be
combined to complement and connect with each
other.

Prompt 3: Arrange prompt for structuring extracted
content

B Quantum Dataset Query

In Query 1, we present the full boolean query used
for collecting the source documents for the Quan-
tum Computing dataset. Specially, the query is
specialized in the hardware part of this scientific
field.

C Topic Models

This section presents implementation details and
results of three topic modeling approaches used in
our comparative analysis.

C.1 Overview

For all approaches involving training, we perform
hyper-parameter optimization to find the best co-
herence and diversity metrics for each combination
of topic model and dataset. For coherence, we
use the Gensim implementation of the Coherence
Model (Řehůřek and Sojka, 2010), specifically its
default C_V metric (Röder et al., 2015). For diver-
sity, we calculate the Inverted Rank-Biased Over-
lap (Webber et al., 2010; Terragni et al., 2021) of
the top 10 terms representing the topics.

Abstract Prompt
[ABSTRACTS]
—
[ARRANGE_OUTPUT]

Based on the above abstracts, key information
and the keywords: {topic_words}, write a sum-
mary.

Make sure to include key information, research
objectives and ideas. The summary should be
structured as clean MARKDOWN with ONLY
the following Headings:

Brief Introduction into the Topic, Key Research
Objects, Key Research Methods, Key Research
Purpose.

Each Heading should have only Keypoints listed.
Avoid the use of additional MARKDOWN sub-
sections. Avoid adding your own opinion, inter-
pretation, or conclusions or Future Work. Use
the information provided in the text only.

Prompt 4: Abstract prompt for final topic description
generation

Table 3 shows that CTM achieves the highest
coherence scores, followed by BERTopic and Top-
icGPT. Conversely, TopicGPT models the great-
est number of topics on average, followed by
BERTopic and then CTM. Moreover, while CTM
achieves the most robust diversity scores on the
three datasets, BERTopic and TopicGPT come on
par in the ACL and the NIPS datasets, respectively.
Finally, manual inspection shows that TopicGPT
generally tends to construct more specific topics,
with less documents per topic. While CTM has the
contrary behaviour presenting broader topics with
larger document sets. This observation explains in
part the higher diversity scores of CTM. In turn,
the low coherence scores of TopicGPT reflects the
zero-shot decoupling from the underlying respec-
tive corpus.

C.2 Implementation Details

CTM In the CTM backbone, we use the
GitHub implementation6 of the original contribu-
tion (Bianchi et al., 2021). Here, we optimize

6https://github.com/MilaNLProc/contextualized-topic-
models
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Boolean Query
TITLE-ABS-KEY ( "quantum comput*" OR
"quantum processor" OR "quantum circuit"
OR "quantum logic gate" OR "quantum gate"
OR "logical qubit" OR qubit OR "quantum
system" OR "quantum information process-
ing" OR "quantum control" OR "quantum elec-
tronics" OR "quantum hardware" OR "noisy
intermediate-scale quantum era" OR "NISQ"
OR "multiqubit circuit" OR "quantum simula-
tion" OR "quantum simulator" ) AND TITLE-
ABS-KEY ( ( cryogen* OR "magnetic field"
OR laser OR photoluminescence OR silicon
OR "electric fields" OR magnetism OR fluores-
cence ) OR ( "neutral atom" OR "cold atom"
OR "trap*atom" OR "atom trap" OR "rydberg"
OR atoms OR "optical lattice*" OR magic OR
"optical tweezer*" OR strontium OR ytterbium
OR "photonic crystal fibre" ) OR ( "ion traps"
OR "trapped ions" OR "ions" OR "integrated
waveguide" OR "laser induced deep etching"
OR "on-chip coupling" ) OR ( superconduct*
OR "SQUIDs" OR "Josephson junction device*"
OR "indium bump" OR "NbN films" OR "single
flux quantum" OR "quantum flux" OR "SQUID"
) OR ( center OR diamond OR "NV center" OR
"NV centre" OR "color centre" OR "colour cen-
ter" OR "silicon vacancy centre" OR "silicon
vacany center" ) OR ( photon* OR "gaussian
boson sampl*" OR "squeezed light source" OR
niobate OR "superconducting nanowire single-
photon detector" OR "SNSPD" ) OR ( topol-
ogy OR "topological quantum computing" OR
"topological insulator*" ) OR ( semiconductor
OR "molecular beam epitaxy" OR "semiconduct-
ing*" OR "crystal lattice*" OR phonons ) ) AND
PUBYEAR > 2009 AND PUBYEAR < 2026

Query 1: Boolean query used for collecting the source
documents for the Quantum Computing dataset.

over four hyper-parameters: number of topics (40—
100), number of epochs (10—50), activation func-
tion ({sigmoid, relu, softplus}), number of neurons
(100—500). All other hyper-parameters use stan-
dard values from the implementation.

BERTopic For this approach, we use the stan-
dard BERTopic package7. This standard pipeline
consists of mainly three stages: Embedding (Em.)
stage, Dimensionality Reduction (DR) stage, the
7https://maartengr.github.io/BERTopic/index.html

Clustering (Cl.) stage, and Topic Representa-
tion (TR) stage. For the Em stage, we use the
nomic-ai/modernbert-embed-base8 model (Nuss-
baum et al., 2024), which is an embedding model
trained on the ModernBERT (Warner et al., 2024b)
encoder. For the DR and Cl. stages, we opt for
the standard pairing with UMAP (McInnes et al.,
2018) and HDBSCAN (McInnes et al., 2017). Fi-
nally, in the TR stage, we use class-TFIDF, which
was introduced in (Grootendorst, 2022). Overall,
we optimize four hyper-parameters: UMAP - num-
ber of neighbors (5—50), number of components
(2—15) and min. distance (0.0—0.5); HDBSCAN
- min. cluster size (10—50). For UMAP, we fix the
metric to cosine, and euclidean for HDSCAN. All
other hyper-parameters use standard values from
their implementations.

TopicGPT We follow the original TopicGPT
pipeline (Pham et al., 2024), using the open-source
implementation available at GitHub 9 and alter-
ing only the document-assignment stage to align
with BERTopic and CTM. For topic generation,
we randomly sample 1,000 documents from each
dataset and leverage GPT-4 to propose an initial
set of top-level topics, which we then iteratively
refine into subtopics to build a complete hierar-
chical structure. In the subsequent assignment
phase—applied to the full datasets—we replace
TopicGPT’s default routine (which, for each doc-
ument, prompts GPT-3.5-turbo with the finalized
hierarchy and returns the best-matching topic with
a supporting quote) with a two-part prompt to
GPT-3.5-turbo: (i) assign each document to its
best-matching topic in our hierarchy; and (ii) ex-
tract ten representative keywords per document.
Finally, we post-process all extracted keywords
for each topic by tokenizing them on whitespace,
converting to lowercase, stripping punctuation, ag-
gregating token frequencies, and selecting the ten
most frequent tokens per topic—thereby exactly
matching the output format of our BERTopic and
CTM backbones.

C.3 Results

Table 3 presents topic modeling evaluation re-
sults across three datasets (ACL, NIPS, and Quan-
tum) for three different topic modeling approaches:
CTM, BERTopic, and TopicGPT. The evaluation
metrics used in the comparison are Coherence, Di-

8https://huggingface.co/nomic-ai/modernbert-embed-base
9https://github.com/chtmp223/topicGPT
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Document Assignment Prompt Template
You will receive a document and a topic hierar-
chy. Assign the document to the most relevant
topic of the hierarchy. Then, output the topic
label, and supporting keywords from the doc-
ument. DO NOT make up new topics or key-
words.

[Topic Hierarchy]
{tree}

[Instructions]
1. Topic label must be present in the provided
topic hierarchy. You MUST NOT make up new
topics.
2. The keywords must be taken from the docu-
ment. You MUST NOT make up keywords or
quotes. All keywords MUST NOT contain stop
words.

[Document]
{Document}

Double check that your assignment exists in the
hierarchy! Your response should be in the fol-
lowing format:
[Topic Level] Topic Label: keyword1,
keyword2, etc

Your response:

Prompt 5: Prompt template used for document-to-topic
assignment in the TopicGPT adaptation.

versity, and Number of Topics (N.Topics). Our
findings show that CTM achieves the highest co-
herence scores across all three datasets (0.664 for
ACL, 0.601 for NIPS, and 0.692 for Quantum).
It also maintains high diversity scores above 0.94
for all datasets. BERTopic shows moderate co-
herence performance (0.504 for ACL, 0.458 for
NIPS, and 0.546 for Quantum), with somewhat
lower diversity metrics, particularly for the Quan-
tum dataset (0.799). TopicGPT demonstrates co-
herence scores between 0.458 and 0.526 across
datasets, with strong diversity in the NIPS dataset
(0.963) but lower diversity for ACL (0.881) and
Quantum (0.809). Regarding the number of topics
identified, TopicGPT produces substantially more
topics than the other approaches, particularly for
NIPS (276). BERTopic identifies the fewest topics

overall with just 24 for the NIPS dataset. For the
ACL dataset, the number of topics is more con-
sistent across models (CTM: 72, BERTopic: 70,
TopicGPT: 66). The Quantum dataset shows mod-
erate variation, with CTM identifying 59 topics,
BERTopic 72, and TopicGPT significantly more at
169.

D Evaluation Prompts

We evaluate summaries along four dimensions: rel-
evance, coherence, factuality, and fluency. Each
is scored independently using a dedicated prompt,
detailed below.

Aspect Definitions

• Relevance: The rating measures how well the
summary captures the key points of the doc-
uments. Consider whether all and only the
important aspects are contained in the sum-
mary.

• Coherence: This rating evaluates how seam-
lessly the sentences of the summary flow to-
gether, creating a unified whole. Assess how
smoothly the content transitions from one
point to the next, ensuring it reads as a co-
hesive unit.

• Factuality: This rating gauges the accuracy
and truthfulness of the information presented
in the summary compared to the original doc-
uments. Scrutinize the summary to ensure it
presents facts without distortion or misrepre-
sentation, staying true to the source content’s
details and intent.

• Fluency: This rating evaluates the clarity and
grammatical integrity of each sentence in the
summary. Examine each sentence for its struc-
tural soundness and linguistic clarity.

E Gemma-3-27B &
Mistral-7B-OpenOrca Results

To complement the main results, we report the
MAS obtained using Gemma-3-27B and Mistral-
7B-OpenOrca in Table 4. These models provide
additional perspectives on the quality of the gener-
ated descriptions and help examine the consistency
of trends observed with Qwen-2.5-7B-Instruct.

To further examine inter-model agreement, we
compute Kendall’s τb between the rankings of
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TM Dataset Coherence Diversity N.Topics

CTM
ACL 0.664 0.994 72
NIPS 0.601 0.949 38
Quantum 0.692 0.996 59

BERTopic
ACL 0.504 0.972 70
NIPS 0.458 0.930 24
Quantum 0.546 0.799 72

TopicGPT
ACL 0.458 0.881 66
NIPS 0.472 0.963 276
Quantum 0.526 0.809 169

Table 3: Topic modeling evaluation results across three scientific datasets.

Method Metric ACL NIPS Quantum

CTM BERTopic TopicGPT CTM BERTopic TopicGPT CTM BERTopic TopicGPT

SCS MAS-Mistral 74.913 74.306 76.307 75.497 75.109 77.240 72.077 73.127 76.120
MAS-Gemma 81.537 85.163 87.411 82.691 83.865 89.400 82.006 85.255 89.395

CCS MAS-Mistral 73.092 71.207 74.471 66.384 70.771 75.201 65.031 72.758 74.528
MAS-Gemma 81.483 85.155 86.799 81.194 83.370 88.549 80.204 85.120 89.125

Table 4: MAS scores across methods, datasets, and topic modeling backbones using Mistral and Gemma as judge
models.

Evaluation Prompt Template
Instruction:
In this task you will evaluate the quality of a
summary written for multiple documents.
To correctly solve this task, follow these steps:
1. Carefully read the document, be aware of the
information it contains.
2. Read the proposed summary.
3. Rate each summary on a scale from 0 (worst)
to 100 (best) by its {aspect}. Decimals are
allowed.

# Definition:
{definition}

Source documents:
{source}

Summary:
{summary}

Score:

Prompt 6: Evaluation prompt template used for scoring
topic descriptions across relevance, factuality, coher-
ence, and fluency

method–size combinations (i.e., CCS/SCS across
the four topic size categories: Small, Medium-
Small, Medium-Large, and Large) for each pair
of judge models. We evaluate agreement across
the full 8-item ranking. This provides a single
τb score per pair, reflecting overall alignment in
method preferences across topic sizes. As shown
in Table 5, Qwen2.5-7B-Instruct shows moder-
ate to strong alignment with both Gemma-3-27B
and Mistral-7B-OpenOrca, while Gemma-3-27B
and Mistral-7B-OpenOrca exhibit weaker agree-
ment.

Model Pair τb p

Qwen & Gemma 0.6183 0.0340
Qwen & Mistral 0.6910 0.0178
Gemma & Mistral 0.2857 0.3988

Table 5: Kendall’s τb between full method–size rankings
of each model pair.

F Impact of Document Sampling in
LLM-Eval

In order to analyze the impact of using subsets of
documents of topics as reference documents in the
LLM-Eval strategies, we present a detailed visual-

116



ization of the Quantum dataset results in Figure 4
across all five document draws for each TM and
TD approach. Similar patterns are observed for the
other datasets.

From visual inspection of Figure 4, we observe
that scores remain relatively stable across different
document draws for the same TM and TD method.
When fixing a topic modeling approach and a topic
description pipeline, the fluctuations in LLM-Eval
MAS are generally small, with most variations re-
maining within 5 points to the mean on our 100-
point scale.

While a comprehensive variance analysis across
all datasets would provide further statistical rigor,
the consistency observed in the Quantum dataset
suggests that our sampling approach may produce
reliable evaluations. The observed stability indi-
cates that randomly sampling 10 documents five
times appears to provide a reasonable approxima-
tion of how a topic description would be evaluated
against the full document collection.

The observed consistency across document
draws supports our decision to use this sampling
approach as a practical solution to the context win-
dow limitations of LLMs. While a more exhaustive
analysis would be valuable for future work, the
current evidence suggests that our methodology
may provide reliable evaluations of topic descrip-
tions despite using only subsets of the complete
document collections.

G Effect of Topic Cohesion on Mean
Aspect Score (MAS)

To study the impact of topic cohesion on the qual-
ity of topic descriptions, We compute the mean
cosine embedding distance among all documents
for each topic. We call this indicator "Topic Co-
hesion." Figure 5 shows the MAS distributions for
all topics grouped by their topic cohesion quartile.
Interestingly, topic cohesion appears to play a rela-
tively minor role in the MAS distributions across
all quartiles. There is a slight downward trend in-
dicating some anticipated TD quality degradation
towards topics of low cohesion. However, this ef-
fect appears minor among all TD approaches, only
becoming more pronounced in the low cohesion
quartile. Even there, the best topic descriptions
of SCS and CCS are competitive with TD’s best
scores in the more cohesive quartiles.

(a) SCS

(b) CCS

Figure 4: LLM-Eval MAS for every draw of 10 docu-
ments per topic.

Figure 5: Box-plots of MAS distributions from Qwen
conditioned on topic cohesion quartile.
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H Effect of Topic Size and Cohesion on
SUPERT

Figure 6 shows the distribution of winners per topic
size category based on the SUPERT metric. SCS
leads in the first and second quartiles, with CCS
gaining a slight edge in the third. In contrast to
MAS-Qwen, which shows CCS catching up in the
largest category, SUPERT continues to favor SCS
in the fourth quartile. This suggests that SCS may
be more aligned with SUPERT’s relevance-focused
evaluation, even as topic size increases.

Figure 6: Winner count on SUPERT per topic size quar-
tile over all topic models

Figure 7 shows SUPERT distributions grouped
by topic cohesion (mean pairwise cosine distance).
Both SCS and CCS appear relatively stable across
cohesion levels, with only slight performance
degradation from high to low cohesion.

Figure 7: Box-plots of SUPERT distributions condi-
tioned on topic cohesion quartile

The SUPERT experiments on effectiveness nu-
ances across size deciles, to be seen in Figure 8
reveal patterns consistent with the results of LLM-

Figure 8: SUPERT Score per topic size decile.

Eval in Section 8.2: method effectiveness appears
tied to topic size, with SCS showing advantages for
smaller topics (first to sixth decile). The effect of
CCS slightly outperforming SCS in LLM-Eval for
the larger topics (seventh and eigth deciles) is not
to be seen with SCS even achieving minially better
scores with SUPERT. Still, the overall trend is repli-
cated from LLM-Eval and this consistency further
suggests that scale, besides intrinsic topic quality,
drives performance differences and supports the
potential viability of adaptive hybrid approaches.

I Examples of generated Topic
Descriptions

To demonstrate the results of our topic description
pipeline, we present a selection of examples cov-
ering different datasets and modelling approaches.
Each example provides metadata, the generated
summary, and evaluation scores. Together, these
elements help contextualize the content and quality
of the generated descriptions.
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acl-53
Dataset: ACL
Model: TopicGPT
Method: SCS
Category: Best
Topic Words: data, LOD, digital, linguistics, studies, linked open, humanities, multilingual, modeling
SUPERT: 0.7043
LLMEval: 87.5000

Topic Summary: Linked Open Data (LOD) in the Humanities
Brief Introduction into the Topic
Linked Open Data (LOD) is increasingly being integrated into the Humanities to enhance the
accessibility, interoperability, and analysis of machine-readable information. Two notable
initiatives, LODinG and DigItAnt, exemplify this trend. LODinG explores broad applications across
various Humanities disciplines, while DigItAnt focuses on creating, linking, and exploiting LOD
lexica for historical linguistics and epigraphy data.

Key Research Objects
- LODinG: Covers digital humanities, computational linguistics, digital lexicography, philology,
translatology, cultural and literary studies, media studies, information science, and law.
- DigItAnt: Manages LOD lexica and heterogeneous resources in historical linguistics and epigraphy,
supporting the H2IOSC Italian infrastructures cluster project.

Key Research Methods
- LODinG: Collects, models, links, releases, and analyzes multilingual data in LOD format,
developing a modular, cross-domain Humanities data model.
- DigItAnt: Designs architecture for LOD lexica and links Linguistic Linked Open Data (LLOD) with
non-LLOD datasets, following FAIR principles.

Key Research Purpose
- LODinG: Improves extraction and modeling of multilingual LOD data, demonstrates LLOD applications
in interdisciplinary contexts, and develops a cross-domain data model.
- DigItAnt: Aims to build and integrate LOD lexica for historical linguistics and epigraphy,
support the H2IOSC project, and contribute to Italian Humanities infrastructure.

Example 1: Example topic description for topic acl-53.
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quantum-49
Dataset: Quantum
Model: CTM
Method: SCS
Category: Ambiguous
Topic Words: foremost, boast, ineffective, craft, exacerbate, maintains, complication, pack, prevail, upon
SUPERT: 0.4825
LLMEval: 62.5

Summary of Quantum Computing and Related Technologies
Brief Introduction into the Topic
Quantum computing and related technologies focus on advancing fault-tolerant quantum machines,
enhancing quantum communication, and exploring novel materials and methods for quantum applications.
Research spans from error correction in quantum computing to the development of high-performance
quantum platforms, quantum networking, and advanced optical materials.

Key Research Objects
Fault-tolerant quantum machines: Large-scale quantum computers relying on error correction using
logical and physical qubits.
Quantum emitters and waveguides: Dipole quantum emitters embedded in dielectric slab waveguides.
Quantum platforms: Diamond with engineered coherent defects for quantum control.
Quantum simulations: SU(3) gauge theories in Quantum Chromodynamics (QCD) using discrete subgroup
S(1080).
Quantum networking: Quantum wrapper networking with classical headers and quantum payloads.
Quantum box arrays: Self-assembled porous (metal-)organic networks modified by C60 adsorbates.
Quantum optics: High refractive index polymers for infrared (IR) optics.
Quantum communication: DWDM transmission using ultra-low loss G.654.D fiber and lumped doped fiber
amplifiers.
Quantum spin manipulations: Ce<sup>3+</sup> doped LiYF<inf>4</inf> crystals for ENDOR
spectroscopy.
Quantum geometry: Desargues and Pappus properties in projective geometry applied to quantum
systems.

Key Research Methods
Error correction: Spreading the value of a single logical qubit over multiple physical qubits.
Waveguide analysis: Studying the effective quantum yield of dipole emitters in dielectric slab
waveguides.
Materials engineering: Controlling coherent defects in diamond for quantum applications.
Digitization schemes: Practical digitization of SU(3) gauge theories using discrete subgroups.
Noise characterization: Analyzing in-fiber scattering processes in quantum wrapper networking.
Adsorbate modification: Using C60 to modify electronic states in quantum box arrays.
Inverse vulcanization: Synthesizing high refractive index polymers from waste materials.
DWDM transmission: Demonstrating high-speed data transmission using advanced fiber and amplifiers.
ENDOR spectroscopy: Resolving Mims ENDOR spectra for electron-nuclear interactions.
Geometric analysis: Applying Desargues and Pappus properties to quantum systems.

Key Research Purpose To craft large, fault-tolerant quantum machines capable of robust computations.
To boast the performance of quantum emitters and waveguides by optimizing their properties.
To maintain long spin coherence times in diamond-based quantum platforms.
To pack the infinite-dimensional gluon field into a minimal qubit representation for QCD
simulations.
To exacerbate the understanding of noise impacts in quantum networking.
To prevail in engineering quantum states in on-surface network architectures.
To foremost develop low-cost, high-performance materials for IR optics.
To complicate the understanding of high-speed data transmission in optical communication.
To upon investigate electron-nuclear interactions for spin manipulations.
To ineffective link projective geometry principles to quantum physics and information.

Example 2: Example SCS topic description for topic quantum-49.
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acl-20
Dataset: ACL
Model: BERTopic
Method: CCS
Category: Ambiguous
Topic Words: word2vec, embeddings, vocabulary, wordnet, semantic, semantics, embedding, contextualized, word,
linguistic
SUPERT: 0.4274
LLMEval: 85.4250

Brief Introduction into the Topic
The extraction and analysis of health-related information from social media platforms, particularly
Twitter, have become critical in pharmacovigilance, public health monitoring, and mental health
studies. Advances in Natural Language Processing (NLP) and transformer-based models (e.g., BERT,
RoBERTa, BERTweet) have improved the ability to process informal and noisy text, enabling the
identification of Adverse Drug Events (ADEs), disease mentions, and psychological conditions such
as depression, anxiety, and mood disorders. Social media data, especially tweets, provide valuable
insights into public health trends and individual health experiences.

Key Research Objects
- Psychological and Mood-Related Terms: Keywords such as depression, depressed, mood, psychological,
and anxiety, relevant to ADE classification and diagnosis.
- Tweets: Informal text from Twitter containing colloquial language related to health, drug effects,
and psychological conditions.
- Disease Mentions: Identification of diseases such as depression and anxiety in Spanish tweets
and other social media content.
- Adverse Drug Events (ADEs): Mentions of adverse effects from medications and dietary supplements
in tweets.
- Social Media Platforms: Twitter, Reddit, and health forums as primary sources of health-related
data.

Key Research Methods
1. Transformer-Based Models
- BERT, RoBERTa, BERTweet, and CT-BERT are fine-tuned for tasks such as classification, Named
Entity Recognition (NER), and information extraction.
- Ensemble Methods: Combining multiple BERT variants to improve accuracy in classifying
health-related tweets.
2. Large Language Models (LLMs)
- Data Augmentation: Generating synthetic data to address data imbalance in ADE extraction and
disease mention detection.
- Retrieval-Augmented Generation (RAG): Mapping informal tweet language to standardized terms like
MedDRA Preferred Terms.
3. Advanced NLP Techniques
- Transfer Learning: Fine-tuning multilingual models like mBERT for disease mention extraction in
Spanish tweets.
- Knowledge Graph Integration: Enhancing models with external evidence from medical gazetteers and
ontologies.
- Flair-NER Framework: Evaluating embeddings for capturing complex disease mentions in social
media text.
4. Preprocessing and Optimization
- Domain-Specific Preprocessing: Cleaning and preparing social media text for analysis.
- Hyperparameter Optimization: Enhancing model performance through tuning.

Key Research Purpose
- Enhance ADE Discovery: Improve the accuracy and robustness of ADE extraction and normalization
from social media data.
- Improve Disease Mention Extraction: Develop advanced NER systems for identifying diseases in
informal text, particularly in non-English languages like Spanish.
- Standardize Health-Related Terms: Map colloquial language to standardized medical terms (e.g.,
MedDRA Preferred Terms) for better pharmacovigilance and health monitoring.
- Promote Open Research: Provide open-source code and methodologies to foster collaboration and
further innovation in the field.
- Monitor Public Health Trends: Leverage social media data for real-time monitoring of public
health issues, including COVID-19 and psychological conditions.

Example 3: Example topic description for topic acl-20.
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quantum-49
Dataset: Quantum
Model: CTM
Method: CCS
Category: Worst
Topic Words: foremost, boast, ineffective, craft, exacerbate, maintains, complication, pack, prevail, upon
SUPERT: 0.1685
LLMEval: 7.1150

Brief Introduction into the Topic
The topic revolves around the analysis of certain systems or strategies that are deemed foremost
in their field but may boast features that are ultimately ineffective. These systems often craft
solutions that inadvertently exacerbate existing issues, leading to further complication. Despite
these challenges, the systems maintain their prominence, as they are designed to pack significant
functionality. The research aims to explore why such systems prevail and the factors that drive
their continued use upon further scrutiny.

Key Research Objects
The primary objects of research include systems or strategies that are considered leading in their
domain. These objects are characterized by their advanced features, which are often highlighted
as strengths but may contribute to inefficiencies or unintended consequences. The study focuses
on understanding the dynamics of these systems and their impact on the broader context in which
they operate.

Key Research Methods
The research employs a combination of qualitative and quantitative methods to evaluate the
effectiveness of the systems under study. This includes analyzing case studies, conducting
surveys, and performing comparative assessments to identify patterns and outcomes. The methods
aim to uncover the reasons behind the systems’ continued use despite their potential drawbacks.

Key Research Purpose
The purpose of the research is to critically examine the systems that are widely regarded as
top-tier in their field. It seeks to identify the factors that contribute to their perceived
success, as well as the unintended consequences that may arise from their implementation. The
study aims to provide a comprehensive understanding of why these systems prevail and how they
impact their respective domains.

Example 4: Example CCS topic description for topic quantum-49.
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Abstract

Black-box verifiers for abstractive summaries
often struggle with complex claims that require
multi-hop reasoning, and they typically pro-
vide a single verdict without an interpretable
rationale. As a result, it becomes difficult to
understand or audit their failures. We address
this with HalluTree, a framework that models
verification as an interpretable claim tree. Hal-
luTree first decomposes summaries into sub-
claims, classifying each into two types – ex-
tractive (directly verifiable against evidence) or
inferential (requiring reasoning) – which follow
distinct verification paths. Extractive claims are
robustly verified against evidence using an en-
semble of lightweight NLI models. Crucially,
inferential claims trigger a process that gener-
ates a natural program – an explicit reasoning
chain that integrates supporting evidence and
logical steps – which is then executed to de-
termine the claim’s validity. Evaluation on the
LLM-AggreFact benchmark demonstrates Hal-
luTree’s effectiveness: it achieves performance
competitive with top-tier black-box models, in-
cluding Bespoke-MiniCheck, while providing
transparent and auditable reasoning programs
for every inferential judgment. This combi-
nation of competitive accuracy and high in-
terpretability offers a significant advance over
opaque, single-classification verifiers.

1 Introduction

Large language models (LLMs) frequently hallu-
cinate, producing content that is factually unsup-
ported or incorrect (Dmonte et al., 2025; Huang
et al., 2023, 2025). Even when grounded in
source documents, LLM-generated summaries may
contain contradictions or unverifiable statements,
which can mislead readers and contribute to the
spread of misinformation (Huang et al., 2025; Scirè
et al., 2024). Ensuring the factual consistency of
such outputs is therefore critical, particularly in

*Equal contribution

domains where accuracy is paramount. In addition
to raw accuracy, the explainability of these classi-
fiers is increasingly important for transparency and
human validation (Wang and Shu, 2023; Dammu
et al., 2024). Without clear rationales, even correct
predictions may be difficult to trust, and incorrect
ones may be difficult to diagnose.

Existing work on grounded factuality veri-
fication spans a variety of strategies, includ-
ing entailment-based classification, question-
answering formulations, and more recent LLM-
driven verification pipelines (Dmonte et al., 2025;
Huang et al., 2023). While these approaches have
achieved strong results in certain settings, they
often provide limited transparency into the infer-
ences behind complex judgments, and struggle with
claims that require multi-hop reasoning across dis-
persed evidence (Belém et al., 2025). Additionally,
despite the lack of fine-grained classification and
weak interpretability, frontier LLMs with few-shot
prompting can achieve top-tier performance even
compared to the strongest specialized baselines, but
still have room for improvement in complex reason-
ing tasks (Seo et al., 2025). This highlights the need
for strong-performing and explainable verification
methods that are robust to challenging multi-hop
reasoning.

We propose a dual-path verification framework
that decomposes a generated summary into sub-
claims and organizes verification results in an inter-
pretable claim tree, with the summary as the root.
The summary is first decomposed and decontextu-
alized with an LLM to preserve original, ensuring
potential hallucinations are not either introduced
or inadvertently corrected away. The system then
filters out unverifiable subclaims (advice, opinions,
or other statements not containing factually verifi-
able assertions) before classifying each subclaim
as extractive (directly checkable against the source)
or inferential (requiring multi-hop reasoning over
evidence to verify).
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Extractive subclaims are verified using two exist-
ing lightweight NLI-based hallucination detectors,
LettuceDetect (Ádám Kovács and Recski, 2025)
and MiniCheck-FT5 (Tang et al., 2024a), followed
by evidence retrieval for ease of understanding.

Inferential subclaims trigger a reasoning path-
way that gathers supporting facts from the source
and beyond, which may include textual evidence,
mathematical reasoning, logical inference, or unre-
lated elementary knowledge that need not be ver-
ified. We attach the chain-of-thought trace from
the LLM when verifying the subclaim based on
the supporting facts in the tree to boost auditability
and ease of understanding. More importantly, these
supporting facts are developed by the LLM into a
natural program – a natural language-based chain
of reasoning which explicitly sets out premises and
rigorously demonstrates how they are composed
to support the claim (Ling et al., 2023). The rea-
soning of this natural program is then executed and
validated step-by-step by an LLM for verification,
with dynamic error correction applied to detected
mistakes in the program.

The verification process is represented as a hi-
erarchical claim-tree for easy visualization, where
the root corresponds to the full summary, subclaims
are the children of the root, and each subclaim’s
children are either the evidence or supporting facts
which motivate its classification, making the moti-
vation for each subclaim’s classification clear. The
summary is deemed supported only if all verifi-
able subclaims (extractive and inferential) are sup-
ported, ensuring conservative, evidence-grounded
judgments that expose the full chain of evidence
and reasoning behind complex decisions, yielding
stronger reliability and greater interpretability than
prior single-pass verifiers.

Our primary contributions are:

• Typed, dual-path verification. A framework
that separates extractive and inferential sub-
claims, verifying the former with lightweight
NLI models and the latter through natural pro-
grams that rigorously combine evidence and
reasoning, yielding stronger multi-hop perfor-
mance.

• Interpretable claim tree. A hierarchical
structure that links each subclaim to evidence
or inferences, with natural programs making
inferential reasoning rigorous and auditable
rather than opaque.

• Empirical gains. Evaluation on AggreFact-
CNN (Hermann et al., 2015), AggreFact-
XSUM (Narayan et al., 2018), TofuEval (Tang
et al., 2024b), and WiCE (Kamoi et al., 2023)
using balanced accuracy, showing improve-
ments over strong baselines, including GPT-
4o, while also providing enhanced human-
interpretability and also setting a new state-of-
the-art on WiCE.

2 Related Work

Entailment-Based Methods. A major line of
work frames grounded factuality classification as
natural language inference (NLI) (Dmonte et al.,
2025; Huang et al., 2023). Several methods fine-
tune an NLI model to predict the faithfulness of a
generated claim, sentence, or summary against the
ground-truth source documents (Goyal and Dur-
rett, 2020; Tang et al., 2024a; Laban et al., 2022;
Kryscinski et al., 2020; Zha et al., 2023). These
approaches are very efficient compared to methods
involving LLMs but often offer poor interpretabil-
ity due to the low granularity of the classification
and the lack of a provided rationale. This can often
leave what is truly causing the classification am-
biguous to humans. To combat this, some methods
operate at a token or span level (Ádám Kovács and
Recski, 2025; Rawte et al., 2025; Belyi et al., 2025).
These provide a finer granularity of classification,
often helping pinpoint the precise subclaims which
are not faithful. However, since these methods
only operate on spans of the generated text, when
multi-hop reasoning is involved, they may still fail
to reveal the intermediate inferences or supporting
facts that connect the evidence to the claim, as such
implicit inferences do not appear in the generated
text.

QA-Based Metrics. Another prominent class of
faithfulness evaluation methods frames factuality
checking as a question-answering (QA) problem
(Scialom et al., 2021; Fabbri et al., 2022; Wang
et al., 2020). In these approaches, a set of questions
is typically generated from the summary. A QA
model is then used to answer these questions given
the source documents, and the answers are com-
pared to the corresponding content in the summary
(Huang et al., 2023). High overlap or semantic sim-
ilarity indicates factual consistency, whereas dis-
crepancies signal potential hallucinations. While
QA-based metrics offer the advantage of explic-
itly tying verification to discrete factual questions,
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Figure 1: This diagram shows a visualization of our method’s claim tree structure as well as a demonstration of how
our chain-of-thought reasoning traces enhance explainability.

multi-hop reasoning may still be unexplored or
left implicit as the reasoning required to support
or refute a claim is often only able to emerge in-
directly through evidence from the source rather
than being explicitly modeled from the surface-
level claims. Additionally, effectively verifying
how inferences over evidence connect to multi-hop
claims may require reasoning over both the source
and the summary, rather than relying on isolated
question–answer pairs.

LLM-based Metrics. A growing body of work
leverages LLMs for factuality evaluation by de-
composing outputs into smaller, verifiable units
(Huang et al., 2025). A common approach, often
termed Decompose-then-Verify, prompts an LLM
to split a generated summary or claim into atomic
statements, assess each against source evidence,
and then aggregate the results into an overall fac-
tuality judgment (Hu et al., 2025; Lu et al., 2025;
Zheng and Lee, 2025; Akbar et al., 2024). This
approach improves interpretability over coarse-
grained entailment scoring by providing statement-
level judgements. While the faithfulness judge is
typically an LLM, FENICE (Scirè et al., 2024) in-
stead applies an NLI model to each subclaim.

Our method builds on this paradigm but intro-
duces several extensions. First, we propose a dual-
typed classification of subclaims into extractive

and inferential, with separate verification path-
ways. Like FENICE, extractive claims are han-
dled with lightweight NLI-based verifiers. In con-
trast, inferential claims trigger a reasoning process
that collects supporting facts—which may include
source evidence or logical and mathematical infer-
ences—and evaluates whether they logically sup-
port the claim through a natural program, a struc-
tured reasoning sequence executed and validated
step by step, marking its first use in factuality veri-
fication for summarization.

3 Methodology

Our claim verification framework operates through
a multi-stage process that decomposes generated
text into subclaims, verifies each subclaim accord-
ing to its relation to the evidence, and organizes
the verification results in an interpretable tree struc-
ture. Given a summary, the framework constructs
a tree where the root node represents the full sum-
mary, intermediate nodes represent subclaims, and
leaf nodes contain evidence snippets or supporting
facts.

3.1 Claim Decomposition

We begin by prompting the LLM (we use GPT-
4o for our purposes) to break the summary into
decontextualized subclaims. Rather than decom-
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posing into atomic claims, we decompose the sum-
mary into subclaims mirroring the structure of a
sentence or complete clauses as closely as possi-
ble, to preserve semantic fidelity and avoid over-
decomposition. For decontextualization, pronouns
and ambiguous references are replaced by the LLM
with explicit entity mentions, making each sub-
claim interpretable in isolation.

3.2 Subclaim Classification
The LLM then classifies each subclaim into one
of three categories, determining the verification
pathway that follows.

Extractive: Subclaims that can be directly
supported or refuted by textual evidence from
the source without requiring additional reasoning
steps.

Inferential: Subclaims that are not directly sup-
ported or refuted by evidence in the documents and
may require multi-hop reasoning or logical infer-
ence to judge their veracity.

Unverifiable: Subclaims that represent opinions,
judgements, or unrelated elementary knowledge
not about the subject(s) of the source. These are
excluded from further processing.

3.3 Verification Process
Depending on the classification of the subclaim,
the verification process differs.

Subclaims classified as extractive are evaluated
on LettuceDetect (Ádám Kovács and Recski, 2025)
and MiniCheck-FT5 (Tang et al., 2024a) for verifi-
cation, lightweight NLI models for groundedness
classification. We aggregate the results of these
models by deeming the claim unsupported if both
models find it unsupported; otherwise, we deem
the claim supported.

For subclaims classified as inferential, the sys-
tem initiates a reasoning pathway. The LLM first
proposes a set of supporting facts—drawn from
the source text, logical or mathematical reason-
ing, or elementary knowledge not requiring verifi-
cation—and orders them so they can form a co-
herent reasoning chain. Finally, we prompt an
LLM to judge the groundedness of the claim given
the supporting facts with chain-of-thought reason-
ing. These facts are added as children of the sub-
claim node in the verification tree, and additionally,
to increase explainability, we attach the chain-of-
thought reasoning from the LLM’s verification to
provide the rationale and logical connection be-
tween the supporting facts and the claim.

After initial judgment, for each inferential sub-
claim, the LLM constructs a natural program based
off its supporting facts using few-shot prompting
adapted from Ling et al. (2023) in order to verify
the judgment rigorously. A natural program is a nat-
ural language-based chain of reasoning that explic-
itly lays out premises and demonstrates how they
compose to support the claim. Crucially though,
this does not simply verify the judgment rigorously
but provides an interpretable demonstration of the
underlying reasoning to humans, allowing even the
rigorous reasoning between the premises and the
claim to be audited. This reasoning for the natural
program is executed and validated step-by-step by
the LLM, with mistakes detected within the origi-
nal classification being dynamically corrected.

3.4 Evidence Retrieval for Extractive
Subclaims

To collect the relevant evidence snippets for extrac-
tive subclaims, we first segment the source into
manageable chunks. The LLM is then prompted it-
eratively, selecting the most relevant chunk with re-
spect to verifying the subclaim and decides whether
additional evidence is needed. This process contin-
ues until the model judges the gathered evidence
sufficient for verification. Finally, we add all col-
lected snippets as children of the respective sub-
claim.

3.5 Final Verification

After the independent verification of subclaims,
the system considers that the original claim is sup-
ported only if all verifiable subclaims (extractive
and inferential) are individually supported.

4 Experiments and Results

4.1 Datasets

To evaluate our method, we evaluate the balanced
accuracy of our model on binary factuality verifi-
cation tasks from several established datasets from
the LLM-AggreFact benchmark (Tang et al., 2023)
that are established in faithfulness verification for
abstractive summarization.

AggreFact-CNN includes generated summaries
of CNN/DailyMail articles from the CNN/DM
dataset (Hermann et al., 2015). The dataset consists
of source news articles from the CNN/DailyMail
corpus, generated summaries produced by various
summarization models, and binary hallucination
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Model AggreFact TofuEval WiCE AVGCNN XSUM MediaS MeetingB

GPT-4o-2024-08-06 67.5 73.9 66.0 81.1 74.3 72.6
AlignScore 73.2 72.4 67.1 76.5 69.6 71.8
LettuceDetect-large-v1 58.3 67.7 65.8 69.6 79.2 68.1
MiniCheck-FT5 69.9 74.3 73.6 77.6 72.4 73.5
Bespoke-MiniCheck-7B 65.5 77.8 76.0 78.3 83.0 76.1
HalluTree 68.5 74.5 66.4 79.8 83.7 74.6

Table 1: Balanced accuracy (%) on datasets from LLM-AggreFact. Highest score is bolded. Second highest is
underlined.

Model AggreFact TofuEval WiCE AVGCNN XSUM MediaS MeetingB

HalluTree (Dual-Pathed) 68.5 74.5 66.4 79.8 83.7 74.6
Treat All Extractive 58.4 71.0 57.8 68.6 80.1 67.2
Treat All Inferential 63.0 71.9 65.8 79.2 83.0 72.6

Table 2: Results of ablation study on dual-paths for subclaims.

labels indicating whether summaries contain fac-
tual inconsistencies with respect to their source
articles. We evaluate on the 558 examples in LLM-
AggreFact.

AggreFact-XSum contains generated summaries
of BBC articles from the XSum corpus (Narayan
et al., 2018). Like AggreFact-CNN, it provides
binary hallucination labels for summaries gener-
ated by various models. We evaluate on the 558
examples in LLM-AggreFact.

WiCE is a fine-grained textual entailment dataset
built on claim and evidence pairs extracted from
Wikipedia (Kamoi et al., 2023). The data set uses
real-world examples extracted from Wikipedia sen-
tences, evidence articles to which the claims re-
fer, fine-grained entailment judgments over sub-
sentence units, and minimal subsets of evidence
sentences supporting each sub-claim. WiCE in-
cludes challenging verification and retrieval prob-
lems involving multi-sentence reasoning. We eval-
uate on the 358 examples from this dataset in LLM-
AggreFact.

TofuEval contains two factuality evaluation tasks
– MediaS and MeetingB – drawn from the TofuE-
val benchmark (Tang et al., 2024b), which was
designed to assess LLM factual consistency across
multiple domains. MediaS consists of summaries
of news and media sources with binary factual-
ity annotations, while MeetingB consists of gener-

ated summaries of meeting transcripts, annotated
for consistency with the meeting records. These
datasets broaden evaluation coverage to conversa-
tional and multi-speaker domains, providing a more
diverse testbed for factual verification methods.

4.2 Baselines

We compare our method against strong baselines
spanning both NLI-based and LLM-based verifi-
cation approaches. On the NLI side, we include
LettuceDetect (Ádám Kovács and Recski, 2025),
MiniCheck-FT5 (Tang et al., 2024a), and Align-
Score (Zha et al., 2023), which use lightweight nat-
ural language inference models to detect hallucina-
tions and assess faithfulness. Among LLM-based
systems, we consider chain-of-thought prompting
GPT-4o, a state-of-the-art model frequently used
for faithfulness assessment, as well as Bespoke-
MiniCheck-7B (Tang et al., 2024a), a state-of-
the-art finetuned model which outperforms frontier
models on LLM-AggreFact.

4.3 Main Results

Table 1 presents balanced accuracy across the
datasets selected from LLM-AggreFact. Hal-
luTree achieves the second-highest average accu-
racy (74.6%), outperforming all baselines we tested
except for Bespoke-MiniCheck. While Bespoke-
MiniCheck attains a slightly higher average accu-
racy, HalluTree offers a key advantage in trans-
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Snippet from Natural Program Output for Inferential Subclaim (WiCE)

Premises
#1. ROOT (R4): “Currently, SriLankan operates an all-Airbus fleet with the
exception of its discontinued Air-Taxi services.”
#2. S4 (INFERENTIAL): “SriLankan Airlines currently operates an all-Airbus
fleet with the exception of SriLankan Airlines' discontinued Air-Taxi services.”
#3. E4A: The context mentions a fiasco involving the launch of an air taxi
service
which was eventually abandoned causing millions of dollars in losses to
SriLankan Airlines.
#4. E4B: The context does not provide any specific information about the\
current fleet composition of SriLankan Airlines being exclusively Airbus.

Reasoning
#5. (by #3) The air taxi service of SriLankan Airlines was discontinued.
#6. (by #4) There is no evidence in the context to confirm that SriLankan
Airlines operates an all-Airbus fleet currently.
#7. (by #5, #6) While the air taxi service is confirmed to be discontinued, the
claim that the current fleet is all-Airbus is not supported by the provided
evidence; S4 is not supported.

Subclaim Status
- S4: Not Supported — The context confirms the discontinuation of the air taxi
service but does not confirm that the current fleet is exclusively Airbus.

Figure 2: An example natural program generated during verification of a inferential claim from the WiCE dataset.

parency. The finer-grained decomposition into sub-
claims, coupled with hierarchical verification trees,
makes the reasoning process auditable and inter-
pretable.

Importantly, HalluTree outperforms all NLI-
based methods such as AlignScore, MiniCheck-
FT5, and LettuceDetect, demonstrating that struc-
tured decomposition paired with specialized verifi-
cation pathways can yield stronger performance
than flat entailment classification. This shows
that HalluTree narrows the gap with Bespoke-
MiniCheck while introducing interpretable reason-
ing, enabling both competitive accuracy and im-
proved transparency.

4.4 Explainability in Practice

Unlike black-box verifiers that surface only a final
label, HalluTree exposes the full reasoning trail for
each decision. Consider the Natural Program ex-
cerpt for the WiCE subclaim about SriLankan Air-
lines’ fleet: the system (i) lists concrete premises
(#1–#4), separating source evidence from assump-
tions; (ii) derives intermediate conclusions (#5–#6)

with provenance (e.g., “by #3”); and (iii) composes
these steps into a final inference (#7) that justifies
the verdict of "Not Supported" because the con-
text confirms the air-taxi discontinuation but lacks
evidence that the current fleet is all-Airbus. This
structured trace makes the decision auditable: a re-
viewer can pinpoint exactly which premise would
need revision to flip the outcome.

Empirically, HalluTree matches or exceeds most
state-of-the-art baselines while providing superior
transparency. For extractive claims, span-level ev-
idence highlights show where the text is (or isn’t)
supported; for inferential claims, natural programs
show why—linking premises to conclusions via
explicit, checkable steps. The result is a verifier
that not only performs competitively but also turns
factuality judgments into explanations that users
can inspect, contest, and improve.

4.5 Ablations

To better understand the effect of our dual-path rout-
ing, we conduct two ablations. First, we evaluate
variants that route all subclaims through the extrac-
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tive pathway (All-Extractive) or through the infer-
ential pathway (All-Inferential). Second, we ana-
lyze the distribution of claim types across datasets
along with our method’s performance on those
datasets considering the proportion of extractive
and inferential claims.

Routing Variants. Table 2 shows balanced ac-
curacy for the ablated models. Both constrained
settings degrade performance: All-Extractive
struggles on inference-heavy datasets, while All-
Inferential incurs extra reasoning cost while having
worse performance on extractive-heavy datasets.
These results demonstrate that routing based on
subclaim type enables our method to selectively
apply natural program reasoning where it matters,
improving accuracy on complex inferential claims,
while avoiding unnecessary overhead on extractive
ones.

Claim-Type Distribution. We also measure the
proportion of extractive vs. inferential subclaims in
each dataset (Table 3). Comparing our results from
Table 1, our method performed strongly compared
to other baselines on datasets with heavy inferen-
tial subclaim ratios, such as WiCE and AggreFact-
XSUM, while generally maintaining more average
performance on extractive-heavy datasets. This dis-
tribution provides an explanation for where type-
aware routing yields the largest gains.

Dataset Extractive Inferential

AggreFact-CNN 96.9 2.1
AggreFact-XSUM 50.4 49.6
TofuEval-MediaS 85.6 14.4
TofuEval-MeetingB 81.2 18.8
WiCE 42.0 58.0

Table 3: Subclaim type distribution (% of verifiable
subclaims).

Summary. These ablations highlight that type-
aware decomposition and routing are not only in-
terpretable but also empirically necessary: forc-
ing all claims into a single pathway reduces accu-
racy, while claim-type distributions explain why
balanced routing achieves consistent gains.

5 Conclusion

We present a hierarchical claim verification frame-
work that advances the state-of-the-art in hallucina-
tion detection by providing both accurate classifica-

tion and human-interpretable explanations. Unlike
black-box approaches that output only binary clas-
sifications, our framework makes the verification
process transparent through a tree-based structure
that traces the pipeline from claim decomposition
to evidence gathering and reasoning.

Our method provides several key advantages. It
offers fine-grained explainability by attaching con-
crete evidence or inferences to each subclaim and
by generating Natural Programs—explicit, natural
language reasoning chains that demonstrate how
inferential claims are logically supported. This
hybrid verification design combines lightweight
transformer-based models for extractive verifica-
tion with LLM-based reasoning for more complex
inferential claims, organized in a natural tree struc-
ture for clarity.

Experimental evaluation across four diverse
datasets—AggreFact-CNN, AggreFact-XSUM, To-
fuEval, and WiCE—demonstrates the effectiveness
of our approach. Our method achieves competitive
performance with an average balanced accuracy of
74.6%, exceeding GPT-4o while providing detailed
reasoning traces that enhance transparency. This
combination of strong performance with explicit
reasoning via Natural Programs represents a signif-
icant advance over existing black-box approaches.

Such transparency is crucial for practical deploy-
ment, where understanding not just whether a claim
is supported but also why it is supported or refuted
can help identify weaknesses, build trust, and im-
prove reliability in real-world applications.

Limitations

Performance Tradeoffs. HalluTree improves
on inference-heavy datasets but underperforms
on extractive-heavy ones, where some simpler
entailment-based baselines remain stronger. This
reflects that our specialized reasoning pathway ben-
efits complex claims, but introduces unnecessary
overhead and noise when most claims can be di-
rectly verified against the source.

Granularity of Judgments. Our framework out-
puts binary faithful/unfaithful decisions at the
claim level. While subclaims are verified individ-
ually, the final aggregation does not capture inter-
mediate degrees of support or uncertainty, which
could limit usefulness in downstream applications
that require nuanced reliability scores.
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Computational Overhead. Compared to single-
pass verification methods, HalluTree incurs signifi-
cantly higher cost. Each stage—decomposition,
classification, evidence selection, and verifica-
tion—requires separate LLM calls. This overhead
grows with claim length and makes the method
less practical for large-scale or latency-sensitive
deployments.

Reliance on LLM Quality. Errors in early
stages, such as decomposition or classification,
propagate through the pipeline and can compro-
mise verification accuracy. In particular, misclassi-
fication between extractive and inferential claims
can route subclaims through an inappropriate veri-
fication pathway, lowering performance.

Evaluation Scope. Our experiments are limited
to benchmark datasets that primarily focus on
factual consistency in summarization. Broader
domains—such as multimodal sources, conversa-
tional data, or more diverse factuality errors—may
expose different challenges not addressed by our
current framework.
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A Appendix

A.1 Prompts
Decomposition and Decontextualization Prompt

You are given a summary text. Your task is
to decompose it into subclaims that mirror
the sentence-like structure of the original as
closely as possible. Each subclaim should
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be decontextualized, meaning it must stand
on its own and be understandable without
reference to the surrounding text.

Guidelines:
Preserve sentence alignment: Each sub-
claim should correspond to one sentence
in the original summary wherever possible,
or the closest equivalent if sentences are not
present.
Minimal splitting: Do not overdecompose
by introducing claims not directly stated in
the text.
No merging or compression: Each subclaim
should stay as close as possible to its origi-
nal sentence(s).
Decontextualize: Rewrite each subclaim
so that it is fully interpretable in isolation,
avoiding pronouns or vague references.
Output format: Output sentences in a
numbered list (1. 2. 3. etc) with each
sentence on its own line.

Source document for context: {}
Summary: {}
Subclaims:

Subclaim Classification Prompt

You are an expert at classifying sentences
based on their relationship to the provided
context and the subjects (the main entities
or events the context is about) of that
context.

Classifications:
UNVERIFIABLE: Contains opinions
or judgments, and background/common-
knowledge or definite-truth statements not
about the subject(s) of the source. Includes
math or logic truths, calendar arithmetic,
unit conversions, definitional or taxonomic
facts, and geographic containment that do
not need verification against the context.
These are often bridge facts used to connect
evidence.
EXTRACTIVE: Contains claims that are
directly supported or directly refuted by ex-
plicit spans in the context without reason-
ing.

INFERENTIAL: Contains claims about
the subject(s) of the source that are not
directly supported or refuted by the context
and require multi-hop reasoning over the
provided evidence. They may rely on
UNVERIFIABLE background facts as
bridges, but the claim itself is about the
subject(s).

Rubric:
1) Identify the subject(s) of the source.
2) If the ENTIRE claim is a background
or definite-truth proposition not about the
subject(s) of the source, classify as UNVER-
IFIABLE.
3) Else, if explicit context spans support or
refute the claim, classify as EXTRACTIVE.
4) Else, classify as INFERENTIAL.
Tie-breakers:
- Prefer UNVERIFIABLE for math, logic,
calendar arithmetic, unit conversions, defini-
tional or lexical truths, and geography con-
tainment that are not about the subject(s).
- Do not mark as UNVERIFIABLE if the
statement asserts a property or relation of
the subject(s), even if widely known; that is
INFERENTIAL unless directly supported
by the context.
- If deciding requires external, subject-
specific facts not in the context, classify as
INFERENTIAL.
1. First reason toward your decision. Do
not decide until after you have reasoned.
2. After reasoning, output exactly one label
from UNVERIFIABLE, EXTRACTIVE,
INFERENTIAL on a new line and nothing
else.

Context: {}
Claim: {}
Let’s think step by step:

Evidence Collection Prompt

You are an expert at extracting evidence
from context to support or refute a subclaim.

Critical Rules:
1. If possible, extract the span of evidence
that is most directly relevant to the sub-
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claim.
2. Don’t repeat evidence that has already
been collected.
3. If there is truly no additional relevant
evidence in the context, output the token
<NO_MORE_EVIDENCE>

Context: {}
Subclaim: {}
Already collected evidence (do not repeat):
Next evidence:

Supporting Fact Proposal Prompt

You are an expert at constructing logical
bridges between evidence and an inferential
subclaim to either support or refute the
subclaim.

Terminology:
- EVIDENCE fact: directly supported by
explicit spans in the context.
- BACKGROUND fact: elementary com-
mon knowledge or definite truth (math,
logic, calendar arithmetic, definitions,
geography containment) that is not about
the subject(s) of the source and does not
require verification against the context. Use
only if needed to connect evidence to the
subclaim.

Critical Rules:
1. Include EVIDENCE facts only if they are
explicitly supported by the context. Closely
paraphrase or directly copy the supporting
span.
2. You may include BACKGROUND facts
that are not about the subject(s) and are nec-
essary to form the reasoning chain. Do not
introduce subject-specific facts that are ab-
sent from the context.
3. Order the facts so they form a minimal,
coherent chain that best supports or refutes
the subclaim.
4. Do not add new, subject-specific
information. If the context provides
nothing usable, output the token
<NO_SUPPORTING_FACTS>.
5. Reason first, then output the FACTS.

Example:
Context: "Aspirin was first synthesized in
1897 by chemist Felix Hoffmann at Bayer."
End of Context

Inferential subclaim: "Aspirin was synthe-
sized over a century ago"

Let’s think step by step: From the context
we know the synthesis year is 1897. Using
current-year arithmetic, 1897 is more than
100 years before 2025, so the subclaim is
supported.

FACTS:
1. Aspirin was first synthesized in 1897
2. The current year is 2025.
3. 1897 is more than 100 years before
2025.

Context: {}
Inferential subclaim: {}
Let’s think step by step:

Inferential Subclaim Verification Prompt

You are an expert at judging whether a
set of proposed supporting facts logically
supports an inferential subclaim.

Critical Rules:
1. Use only the facts provided; do not rely
on any external knowledge or assumptions
except for cases of common knowledge or
facts that need not be verified.
2. The supporting facts should be able to
form a coherent reasoning chain that di-
rectly supports the subclaim.
3. Output sections in this order: Reasoning,
then final judgment ("YES" or "NO"). YES
for supported, NO for refuted.
4. Don’t be pedantic in your judgments,
direct contradictions or completely un-
founded statements are mainly what we
seek to prevent. Refuted claims should be
clearly, strongly refutable.

Example:
Context:
"Aspirin was first synthesized in 1897 by
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chemist Felix Hoffmann at Bayer."
End of Context

Supporting facts:
1) [EVIDENCE] "Aspirin was first synthe-
sized in 1897 ..."
2) [BACKGROUND] The current year is
2025.
3) [BACKGROUND] 1897 is more than
100 years before 2025.

Inferential subclaim: "Aspirin was synthe-
sized over a century ago"

Let’s think step by step: The facts provide
the synthesis year, the current year, and the
difference being more than 100 years. This
supports the the subclaim.
Is the claim supported: YES

Context: {}
Supporting facts: {}
Inferential subclaim: {}
Let’s think step-by-step:

GPT-4o Baseline Faithfulness Verification
Prompt

Your task is to check if the Summary is ac-
curate to the Evidence.
Generate ’Supported’ if the Summary is
supported when verified according to the
Evidence, or ’Unsupported’ if the Summary
is inaccurate (contradicts the evidence) or
cannot be verified.

Evidence: {}
End of Evidence

Summary: {}
End of Summary

Classification (’Supported’ or ’Unsup-
ported’):
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Abstract

Recent advances in test-time scaling have
shown promising results in improving large
language model performance through strategic
computation allocation during inference. While
this approach has demonstrated strong improve-
ments in reasoning tasks, its application to natu-
ral language generation tasks, particularly sum-
marization, remains unexplored. Among all
of the generation tasks, multi-document sum-
marization (MDS) presents unique challenges
by requiring models to extract and synthesize
essential information across multiple lengthy
documents. Unlike reasoning tasks, MDS de-
mands a more complicated approach to prompt
design and ensemble methods, as no single
“best-overall" prompt can satisfy diverse sum-
marization requirements. The inherent diver-
sity in summarization needs necessitates ex-
ploring how different prompting strategies can
be systematically combined to improve perfor-
mance. We propose a novel framework that
harnesses prompt diversity to enhance MDS
performance. Our approach generates multiple
candidate summaries using carefully designed
prompt variations, then ensemble them through
sophisticated aggregation methods to produce
refined summaries. This prompt diversity en-
ables models to capture different aspects and
perspectives of the source documents, leading
to more comprehensive and higher-quality sum-
maries. To evaluate our method effectively, we
also introduce two new LLM-based metrics:
the Preference Alignment Score (PAS) and
LLM Atom-Content-Unit score (LLM-ACU),
which assess summary quality while addressing
the positional bias inherent in automatic evalu-
ations performed by LLMs. Our experiments
demonstrate that leveraging prompt diversity
significantly enhances summary quality, while
also revealing the practical scaling boundaries
for MDS tasks.

*Equal contribution.

Figure 1: Visualization of the distribution Preference
Alignment Score. Applying LLMs’ strong language
understanding ability, PAS assign higher score to the
content which consistently gets preferred by the LLM.

1 Introduction

Test-time scaling (or inference-time scaling) has
emerged as a promising approach for enhancing
LLM’s performance beyond traditional architec-
tural or data improvements (OpenAI, 2024). While
earlier work focused on relationships between mod-
els’ capabilities, size, and training resources, recent
research demonstrates that strategic compute allo-
cation during inference can yield substantial per-
formance gains. For instance, studies show that
increased inference computation produces better
results than equivalent investments in pretraining
(Snell et al., 2024; Agarwal et al., 2024; Muen-
nighoff et al., 2025).

Research on test-time scaling has largely cen-
tered on logical and math reasoning tasks, leav-
ing traditional natural language generation (NLG)
tasks relatively unexplored. This gap is particu-
larly notable in summarization, a domain where
LLMs have already demonstrated significant ad-
vances, generating summaries competitive with hu-
man performance (Xiao et al., 2024; Zhang et al.,
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2024c; Pu et al., 2023). Beyond text generation,
LLMs have also been proven effective as judges
when guided by well-designed evaluation protocols
(Liu et al., 2024b,c). Recent expansions in context
window sizes have created new opportunities to
study scaling effects on length-constrained tasks
like summarization (Liu et al., 2022). However,
LLMs still struggle with key challenges including
hallucination, incomplete coverage, language in-
consistency, and verbosity (Liu et al., 2024b; Belem
et al., 2024).

In this paper, we aim to examine LLMs’ sum-
marization capabilities and their scaling proper-
ties by focusing on the multi-document summa-
rization (MDS) task. MDS requires synthesiz-
ing and linking information across lengthy doc-
uments, handling information redundancy, main-
taining factual consistency, and generating coher-
ent and concise summaries while preserving key
details. In addition, MDS demands effective rea-
soning to determine relevance and priority among
diverse pieces of information. These characteristics
make MDS particularly time- and labor-intensive
(Van Veen et al., 2024). To tackle these challenges,
we propose a multi-agent approach that leverages
prompt ensemble to scale summarization at test
time. While traditional prompt ensemble meth-
ods exist - such as (a) applying different sampling
strategies to a single prompt (Li et al., 2023), or (b)
varying few-shot examples within prompts (Arora
et al., 2022), their direct application to summariza-
tion presents notable limitations. The first approach
merely explores variations in the output space,
while the second heavily relies on example-based
learning, which is better suited for reasoning tasks.
Furthermore, summarization differs fundamentally
from reasoning tasks, where specific prompts like
“Let’s think step by step” (Kojima et al., 2022) can
effectively guide models through predetermined
reasoning patterns (Zhang et al., 2024d). In con-
trast, no single "optimal" prompt exists for gener-
ating summaries that satisfy diverse requirements.
Given these distinctions, summarization demands
a more sophisticated approach to prompt ensemble
techniques.

Therefore, we propose Multi2 framework
(Fig. 2) to address this challenge. After generating
multiple summaries through diverse prompts while
maintaining consistent requirements, we employ
aggregation to construct a comprehensive final sum-
mary that leverages the strengths of each summary
candidate. While increased inference-time com-

putation generally improves performance, recent
studies have also identified an inverse scaling phe-
nomenon, where excessive computation at test-time
can paradoxically degrade performance (Gao et al.,
2022; Stroebl et al., 2024). We also investigate this
phenomenon by systematically varying the number
of samples and examining its boundaries.

Another challenge in MDS is the reliability of
automatic evaluation metrics. Traditional metrics
like ROUGE (Lin, 2004) have proven insufficient
for capturing summary quality, while more recent
LLM-based metrics such as Auto-ACU (Liu et al.,
2023b), LLMCompare (Liu et al., 2024b), and
LLMRank (Liu et al., 2024c) show limitations,
including constraints in contextual understanding
for smaller models and persistent positional biases
(Wang et al., 2024c). We specifically highlight po-
sitional bias, where LLMs tend to favor summaries
appearing in a particular position (first or second in
a pairwise comparison), leading to inconsistencies
in evaluation, particularly during test-time scaling.
To improve evaluation consistency, we propose two
novel metrics: Preference Alignment Score (PAS)
and LLM Atom-Content-Unit (LLM-ACU) score.
These metrics aim to leverage LLMs’ contextual
understanding while incorporating mechanisms to
mitigate positional bias, ensuring more reliable and
robust summary assessment.

In summary, (1) We present the first compre-
hensive investigation of test-time scaling laws in
text summarization, extending the analysis beyond
traditionally explored reasoning tasks; (2) We intro-
duce a new framework Multi2 that enhances sum-
marization performance through prompt ensemble
at test time; (3) We enhance two existing evalua-
tion protocols for summarization through strategic
modifications and incorporating LLMs, improving
quantitative assessment of summary quality and
advancing automatic evaluation methodologies for
summarization tasks.

2 Prompt Ensemble: A Formal
Formulation

Let x denote the input text and P =
{p1, p2, . . . , pN} be a collection of prompts de-
signed to elicit different aspects of information
from the underlying language model. For each
prompt pi ∈ P , the model produces an output yi
according to a generation function f :

yi = f(x, pi).
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Prompt Formulation

OK, these seems to be different instructions… 
Let me handle the requests differently!

You will receive several documents on the same topic. Your task is to 
write a brief aspect-based summary, using only the information from 
the provided documents and excluding any external sources.

Given a set of documents related to a specific topic, generate a 
short, concise aspect-based summary. Ensure that the summary is 
based solely on the content of the documents provided.

Multi-Documents

+
Prompt Bank

Aspect/Requirements

Inject
ion

Baseline Prompt

Single Draw

Random Sampling

Prompt 1

Prompt 2

Prompt N

…

Summary Generation

Summarize Agent

Baseline Summary

Summary 1

Summary 2

…
Summary N

Prompt Ensemble  
by Aggregation Agents

Context-Preserve Summarizer

Context-Free Summarizer

Voter

Final Summary

Auto Evaluation

Summary Selection

Gold SummaryFinal SummaryBaseline Summary

Preference Alignment Score

ROUGE

BERTScore

LLM-ACU

Auto-evaluation should be free 
of Positional Bias…

Figure 2: Overview of Multi2 summarization inference-time scaling framework. Documents are first summarized
by independent LLM agents, each guided by a different prompt from a curated prompt bank and constrained by user
requirements. The resulting summaries are then processed by an aggregator (Voter, Context-Preserving Summarizer,
or Context-Independent Summarizer) to generate the final consolidated summary.

The intuition behind this methodology is that dif-
ferent prompts pi induce the model to focus on
distinct features or details in the input x, thereby
generating complementary outputs.

To combine these outputs, we define an aggrega-
tion function g : YN → Y that fuses the individual
outputs {y1, y2, . . . , yN} into a final output y:

y = g(y1, y2, . . . , yN ).

The aggregation function g can take various
forms depending on the specific application, with
weighted averaging and majority voting being com-
mon implementations. For our MDS task, we im-
plement three distinct formulations of g: content-
independent summarization, content-preserving
summarization, and voting-based aggregation. The
overall system can therefore be formalized as:

y = g
(
f(x, p1), f(x, p2), . . . , f(x, pN )

)
.

This formulation ensures that the final generated
text y benefits from the diverse perspectives pro-
vided by the prompt ensemble. Empirical results
indicate that the ensemble method consistently out-
performs individual prompt-based generations, as
it effectively mitigates the shortcomings of any sin-
gle prompt by incorporating a broader range of
contextual insights from the input x.

2.1 Prompt Space Theory

In this section, we formalize the notion of the
prompt space and analyze its complexity in the
context of Chain-of-Thought (CoT) reasoning. The
prompt space, denoted asP , represents the set of all
possible step templates that a language model (LM)
may generate or be guided to generate during the
reasoning process. Each template p ∈ P is a dis-
crete instruction that dictates how information is to
be extracted from the latent representation h ∈ Rd

and subsequently discretized into a sequence of
tokens o = (o1, o2, . . . , ok). In effect, the prompt
space forms the interface between the continuous
latent space and the discrete textual output (Zhang
et al., 2024d).

The latent vector h is assumed to encode m bits
of information relevant to the task at hand. When
the model follows a given prompt template p, it ex-
tracts up to s bits of information per reasoning step.
Thus, each template can be viewed as a function

p : h→ o, o ∈ {0, 1}s,

where the mapping is constrained by the model’s
capacity to “read out” a subset of the information
encoded in h. The total number of unique ways to
extract s bits from m bits is given combinatorially
by

C(m, s) =

(
m

s

)
=

m!

s!(m− s)!
.
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This expression characterizes the prompt space
complexity, as it represents the number of potential
step templates available to the model at each CoT
step.

In practice, the prompt space is not uniformly
sampled; instead, the LM employs learned heuris-
tics to navigate this enormous space. That is, while
the theoretical upper bound C(m, s) may be as-
tronomically high, the effective search space is
significantly reduced through task-specific training
and, in many cases, human supervision. In an unsu-
pervised setting, the model’s intrinsic biases might
lead it to select suboptimal templates, thereby in-
creasing the difficulty of navigating the subsequent
answer space S – the space of all possible reason-
ing paths and final outputs.

More formally, let ϕ denote the underlying com-
putation that updates the hidden state:

ht+1 = ϕ(ht, p),

For brevity, we summarize the CoT process as fol-
lows: for t = 1, . . . , T ,

ot = pt(ht−1), ht = ϕ(ht−1, pt).

This compact notation encapsulates the iterative
extraction of output tokens ot and the recurrent
update of the hidden state ht via the chosen prompt
pt.

Here, the selection of each pt ∈ P not only
determines the immediate output ot but also has
a cascading effect on the evolution of the hidden
state ht and, consequently, the trajectory within the
answer space S.

This intricate relationship between the prompt
space and the answer space can be seen as a two-
tier search problem: first, the model must identify
a suitable template p from the high-dimensional
prompt space P , and then it must effectively navi-
gate the answer space S defined by the recurrence
ht → ht+1. Empirical evidence shows that even
small deviations in the chosen template p can lead
to exponentially larger errors in the final answer,
underscoring the sensitivity of the overall reasoning
process to prompt selection.

In summary, the prompt space theory empha-
sizes that the effectiveness of CoT reasoning hinges
on the model’s ability to manage the combinatorial
complexity inherent in extracting relevant infor-
mation from its latent space. Supervised meth-
ods, which incorporate task-specific guidance, can
significantly reduce the search complexity from

the theoretical bound C(m, s) by constraining the
model to a subset of high-quality prompts. This
not only simplifies the navigation of the answer
space but also enhances the overall reliability of
the reasoning process.

3 Multi2 Framework

3.1 Multi-Agent Summarization

Our Multi2 test-time scaling framework for MDS
is illustrated in Figure 2. The framework oper-
ates in two main stages: candidate generation and
summary aggregation. In the first stage, input docu-
ments are processed by multiple independent LLM
agents using randomly selected prompts from a cu-
rated prompt bank, simulating real-world summa-
rization scenarios. The generated candidate sum-
maries, along with the original requirements, are
then passed to the aggregator module. The aggrega-
tor module implements three distinct approaches:
vote, context-preserving summarizer (CPS), and
context-free summarizer (CFS).

The vote agent evaluates all candidate sum-
maries against the original input documents and
provides a detailed explanation before selecting the
best summary. We explicitly require the agent to
complete its reasoning before indicating its final
selection, ensuring the choice is constrained by the
documented rationale. Instead of selecting the best
candidate summary, CPS and CFS aggregate the
candidate summaries into a final summary. The
CPS agent generates a refined summary by consult-
ing both the original documents and the candidate
summaries, aiming for completeness and concise-
ness. In contrast, the CFS agent focuses solely on
the candidate summaries without access to the orig-
inal documents, producing a consolidated summary
through reference-free synthesis.

3.2 Automatic Evaluation

3.2.1 Positional Bias and Motivation
Recent approaches to automatic evaluation have in-
creasingly leveraged LLMs, either through compar-
ative (pairwise) assessment or direct scoring mech-
anisms. However, both approaches face challenges.
Comparative methods struggle with positional bias,
an inherent limitation of LLM judges. While pre-
vious research (Liu et al., 2024c) suggested that
advanced models (like gpt-4o) might mitigate this
issue, our experiments in Appendix demonstrate
that LLM evaluations remain extremely suscep-
tible to position-dependent variations, especially

138



on contextual tasks like MDS. Direct scoring ap-
proaches face different challenges: defining clear
scoring guidelines could be difficult, and ensuring
consistent application of grading rubrics across dif-
ferent generations remains challenging. Moreover,
the complexity of nuanced scoring - a task chal-
lenging even for human evaluators who struggle
more with five-point Likert scales than binary pref-
erences makes it particularly difficult for LLMs to
provide reliable quantitative assessments.

To address these limitations and enable reliable
large-scale evaluation of generated summaries, we
propose two novel metrics Preference Alignment
Score (PAS) and LLM-ACU score. These met-
rics are specifically designed to mitigate positional
bias, while providing repeatable quantitative mea-
surements for systematic comparison of summary
quality.

3.2.2 Preference Alignment Score
We develop the Preference Alignment Score (PAS)
as an enhancement to the LLMCompare (Liu et al.,
2024b) method for quantitatively evaluating pref-
erence rates of summaries compared to a baseline.
LLMCompare employs an LLM judge to evalu-
ate two summaries against the source documents,
determining which is superior (1 or 2) or if they
are equivalent (tie). The pairwise comparative
setup offers utility to practitioners (e.g., evalua-
tion for A/B testing) while eliciting evaluations
better aligned with human judgment from auto-
matic evaluators (Wang et al., 2023a; Liu et al.,
2024a). To address the inherent positional bias, we
implement the metric with two-phase comparison
process. First, we use an LLM as judge to obtain
preferences with summaries (target and baseline)
in their original positions. Then, we swap the posi-
tions of the two summaries and obtain a second set
of preferences, relabeling them based on their new
positions to eliminate labeling bias. From this two-
step comparison, we compute the win rates (w1,
w2) of the target summarization method against the
baseline in each step, and the consistency rate (C)
of predictions across both orderings (Figure 3).

Importantly, when evaluating consistency, if ei-
ther comparison (i.e., before or after the swapping)
results in a tie, we consider it consistent with any
outcome in the other comparison to avoid over-
penalizing borderline cases. The final PAS score is
computed as follows:

PAS = Wpref
1

1 + exp−k(C−0.5)
, (1)

Baseline Summary

Target Summary

Baseline Summary

Target Summary

Position Swap

Input Summaries (Re)-labeling

s1

s2

s1

s2

LLMCompare

LLMCompare

Consistent ✓ Inconsistent !

s1

s2

s1

s2

s1

s2

s1

s2

Target Preference Win Rate = Wpref Target Preference Consistency Rate = C

Preference Alignment Score = Wpref ⋅ 1
1 + exp−k(C−0.5)

Figure 3: Two-step calculation of PAS based on LLM-
Compare.

where Wpref refers to preference rate calculated
from win rates (w1 and w2); C refers to consis-
tency score; k controls sensitivity to consistency
variations (default to 10 according to the our ex-
periments on a validation set). In practice, the
preference weight Wpref can be determined using
either max-pooling or averaging:

Wmax
pref = max(w1, w2) (2)

W
avg
pref =

(w1 + w2)

2
(3)

Figure 1 illustrates the distribution of PAS score
across different preference weights W and consis-
tency values C.

The PAS score integrates both preference rate
and consistency to ensure robust evaluation. A
high PAS score requires both factors to be high,
indicating consistent preference for the same sum-
mary. When model predictions remain stable, the
PAS score correlates directly with the preference
rate. However, inconsistent predictions yield low
PAS scores regardless of preference outcomes, as
the metric deliberately penalizes unreliable evalua-
tions.

A low (near-zero) PAS score can result from ei-
ther (a) summaries that consistently underperform
the baseline, or (b) unreliable evaluations due to
positional bias. Our framework effectively distin-
guishes between these scenarios. For instance, if
evaluations consistently favor Position 1 regardless
of content, the win rate might reach 100%, but
the consistency score would approach 0, yielding
a very low PAS score ( 0.06) to correctly identify
unreliable evaluation. Conversely, with high con-
sistency, the same win rate produces a PAS score
near 1, indicating clear, reliable preference.
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By design, PAS scores above 0.5 indicate per-
formance better than baseline, while lower scores
signal inferior performance or evaluation inconsis-
tency. PAS deliberately employs a conservative
approach to ambiguous cases, assigning low scores
when no clear winner emerges due to tied qual-
ity or inconsistent judgments. This design choice
prioritizes robustness and interpretability over sen-
sitivity, treating both “tie with baseline" and “worse
than baseline" scenarios similarly, as both indicate
failure to establish consistent advantage.

3.2.3 LLM-ACU Score
Inspired by the Atomic Content Unit (ACU) score
(Liu et al., 2023a,b), we propose an LLM-based
ACU metric to quantitatively measure the com-
pleteness of summaries. The process consists of
two phases. First, using few-shot prompting, we
guide an LLM to extract ACUs from reference
summaries. These ACUs are designed to capture
essential factual units that are independently in-
terpretable without references. In the evaluation
phase, we present the extracted ACUs alongside
the model generated summary and ask an LLM to
determine which of the ACUs are entailed in the
generated summary. The final score f for a set of
summaries S and their corresponding ACU sets
A is computed as the average unnormalized ACU
score:

f(S,A) = 1

|S|
∑

s∈S

es
|As|

, (4)

where es represents the number of ACUs in the
system output that are entailed by the gold standard
ACUs As determined by the LLM. Recent work
has suggested that fine-tuning primarily enables
format adaptation rather than information acquisi-
tion in language models (Allen-Zhu and Li, 2024).
Therefore, we do not finetune models for extracting
ACUs and checking entailment, but instead lever-
age the advanced language understanding capabili-
ties of LLMs directly for both steps. Therefore, we
adopt gpt-4o for both ACU extraction and entail-
ment verification.

4 Main Results

Our experimental results are presented in Tables 1
and 2 for preference metric (PAS scores), Ta-
bles 3, 4, and 5 for completeness metrics (LLM-
ACU, ROUGE and BERTScore), across both Multi-
News and OpenASP datasets. We also attach a de-
tailed analyses examining the relationship between
summary length and quality in the Appendix.

4.1 Effectiveness of Test-Time Scaling and
Metrics Alignment

Our experiments demonstrate significant improve-
ments through test-time scaling across both pref-
erence and completeness metrics. On MultiNews,
starting from a low preference baseline, all scaling
methods show substantial gains in overall quality.
For LLM-ACU score specifically, CPS aggregator
achieves the strongest performance in information
coverage, with gpt-4o-mini showing substantial
gains from a baseline of 47.13 to 54.64 with 6
samples. Similarly for OpenASP, despite begin-
ning from a stronger preference baseline, scaling
with prompt ensemble still provides notable im-
provements in overall quality. The LLM-ACU
score show comparable trends, with CPS improv-
ing gpt-4o-mini’s coverage from 42.35 to 47.82
using 5 samples. These results consistently demon-
strate that scaling at test time can effectively en-
hance both summarization quality and information
coverage across different datasets.

Furthermore, Table 5 demonstrates that ROUGE
scores consistently improve as the number of en-
sembled samples increases across both datasets,
while maintaining similar degrees of BERTScore
demonstrates the robustness of our approach in scal-
ing summarization performance while preserving
semantic fidelity. This trend not only reinforces
the effectiveness of our test-time scaling approach
from the perspective of traditional metrics, but also
validates that our new metrics PAS and LLM-ACU
score align well with the established evaluation
frameworks.

Analysis of the results reveals two key patterns.
First, CPS consistently outperforms both CFS and
voting approaches across all experimental condi-
tions, suggesting that access to source documents
during ensemble is crucial for maintaining com-
prehensive coverage and generating more pre-
ferred summaries. Second, completeness im-
provements are more pronounced on MultiNews
compared to OpenASP, indicating that general-
purpose summarization may benefit more from
diverse prompt sampling for information cap-
ture.

4.2 Scaling Boundaries and Inverse Scaling

The scaling limitations manifest differently across
ensemble methods. In terms of completeness, vot-
ing shows minimal improvement across all sam-
ple sizes, suggesting that simple selection-based
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Baseline gpt-4o gpt-4o-mini

# Samples Max Avg CFS CPS CFS CPS Vote

Max Avg Max Avg Max Avg Max Avg Max Avg

2

0.25 0.15

0.69 0.51 0.82 0.62 0.67 0.49 0.80 0.61 0.37 0.23
3 0.73 0.55 0.79 0.62 0.72 0.53 0.72 0.54 0.27 0.16
4 0.68 0.50 0.82 0.64 0.73 0.55 0.80 0.60 0.27 0.16
5 0.71 0.52 0.85 0.69 0.81 0.62 0.78 0.60 0.28 0.17
6 0.79 0.60 0.81 0.63 0.77 0.57 0.77 0.60 0.37 0.23

Table 1: PAS scores on Multinews dataset using gpt-4o and gpt-4o-mini models with context-free summarizer
(CFS) and context-preserving summarizer (CPS). The aggregator using Vote is model-invariant. We report PAS
score with max-pooled (“Max”) and average (“Avg”) preference scores (Wpref). Baseline shows both max-pooled
and average PAS across all samples. Best scores per column are shown in bold.

Baseline gpt-4o gpt-4o-mini

# Samples Max Avg CFS CPS CFS CPS Vote

Max Avg Max Avg Max Avg Max Avg Max Avg

2

0.51 0.36

0.63 0.50 0.70 0.55 0.73 0.57 0.79 0.63 0.61 0.45
3 0.72 0.57 0.76 0.59 0.75 0.60 0.83 0.69 0.64 0.48
4 0.72 0.55 0.74 0.59 0.77 0.62 0.83 0.71 0.66 0.51
5 0.74 0.59 0.76 0.61 0.82 0.67 0.86 0.72 0.64 0.48
6 0.74 0.60 0.77 0.60 0.81 0.66 0.85 0.72 0.56 0.42

Table 2: PAS scores on OpenASP dataset under the same settings as in Table 1.

LLM-ACU (MultiNews) gpt-4o gpt-4o-mini

# Samples Baseline CFS CPS CFS CPS Vote

2

47.13

48.75 51.00 49.14 52.35 47.44
3 49.25 51.11 50.03 52.88 48.31
4 49.69 51.96 51.02 54.17 48.29
5 50.86 52.70 50.95 53.90 47.65
6 50.35 52.40 51.70 54.64 48.34

Table 3: Comparison of LLM-ACU scores on Multi-
News dataset using different ensemble methods. The
vote scores are model-invariant and apply to both mod-
els. Baseline indicates single sample performance with-
out prompt ensemble. Best score for each model and
aggregation agent is shown in bold.

ensemble may be insufficient for maintaining com-
prehensive information coverage. The impact of
document context during ensemble emerges as a
crucial factor. While CFS performs better than vot-
ing, it consistently achieves lower completeness
scores than CPS, indicating that losing document
context during ensemble creates a ceiling on infor-
mation preservation.

For preference scores, both datasets exhibit satu-

LLM-ACU (OpenASP) gpt-4o gpt-4o-mini

# Samples Baseline CFS CPS CFS CPS Vote

2

42.35

43.05 44.16 44.36 46.07 43.86
3 44.00 45.00 45.04 47.35 44.03
4 43.64 45.51 45.05 47.55 44.47
5 44.07 46.47 46.13 47.82 44.47
6 44.66 46.30 46.35 47.46 45.00

Table 4: Comparison of LLM-ACU scores on OpenASP
dataset under same settings as Table 3.

ration points at approximately 5 samples, beyond
which additional scaling yields diminishing returns.
This inverse scaling phenomenon is particularly ev-
ident in MultiNews, where CPS performance peaks
at 5 samples before declining at 6 samples, with the
preference score nearly dropping to the same level
as CFS. Completeness metrics follow a similar pat-
tern, with gpt-4o’s scores using CPS plateauing
around 5 samples, and gpt-4o-mini demonstrat-
ing comparable saturation behavior.

These observations suggest that excessive ensem-
ble sizes may introduce noise rather than improve-
ments, and that the choice of ensemble method
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Dataset Model # Samples CPS CFS
R1 R2 RL RLsum BERTScore R1 R2 RL RLsum BERTScore

MultiNews

Baseline 1 36.29 10.57 18.57 19.23 63.27 36.29 10.57 18.57 19.23 63.27

gpt-4o

2 37.56 10.50 18.44 18.97 63.29 36.33 10.09 18.15 18.38 63.09
3 37.74 10.57 18.69 19.20 63.26 36.95 10.23 18.36 18.64 63.19
4 37.81 10.64 18.67 19.29 63.33 36.98 10.33 18.40 18.74 63.11
5 38.22 10.88 18.85 19.60 63.35 37.09 10.35 18.43 18.71 63.24
6 38.17 10.83 18.88 19.56 63.39 37.34 10.45 18.43 18.75 63.27

gpt-4o-mini

2 39.04 10.78 18.83 20.91 63.22 37.07 10.14 18.25 18.90 63.18
3 39.28 10.87 18.88 21.15 63.26 37.53 10.16 18.40 19.29 63.12
4 39.42 10.86 18.87 21.39 63.19 37.81 10.21 18.40 19.61 63.06
5 39.45 10.89 18.88 21.46 63.14 38.08 10.39 18.49 19.86 62.98
6 39.67 11.04 18.93 21.56 63.02 38.34 10.49 18.68 20.22 63.10

OpenASP

Baseline 1 32.47 7.89 15.77 17.11 60.21 32.47 7.89 15.77 17.11 60.21

gpt-4o

2 33.37 7.83 15.94 17.54 60.46 32.19 7.48 15.60 16.49 60.31
3 33.37 7.87 15.91 17.54 60.50 32.40 7.43 15.63 16.70 60.19
4 33.66 7.95 16.04 17.86 60.51 32.42 7.49 15.70 16.89 60.27
5 33.74 8.06 16.02 17.90 60.54 32.67 7.67 15.70 16.95 60.26
6 33.98 8.08 16.08 18.00 60.51 32.71 7.61 15.67 17.03 60.25

gpt-4o-mini

2 35.37 8.14 16.20 19.56 60.10 33.19 7.56 15.76 17.79 60.00
3 35.77 8.32 16.23 19.84 60.16 33.91 7.65 15.92 18.37 59.94
4 35.73 8.29 16.26 19.92 60.08 34.30 7.83 15.96 18.66 59.93
5 35.95 8.30 16.37 20.07 60.12 34.53 7.83 16.01 18.94 59.91
6 36.04 8.39 16.30 20.15 60.10 34.52 7.79 15.95 18.87 59.84

Table 5: Comparison of ROUGE and BERTScore scores on MultiNews and OpenASP datasets using different
models and ensemble sizes. The BERTScore is computed by DEBERTA-XLARGE-MNLI. Best score for each dataset,
model and aggregation method is shown in bold.

significantly affects both quality and coverage out-
comes. This highlights the importance of identi-
fying optimal scaling thresholds and maintain-
ing document context throughout the ensemble
process.

4.3 Scaling Effect across Model Sizes

Our experiments with gpt-4o and gpt-4o-mini
reveal interesting patterns in how model size inter-
acts with scaling benefits. In terms of complete-
ness scores, gpt-4o-mini often achieves larger
relative improvements compared to gpt-4o when
scaled through prompt ensemble. This suggests
that prompt ensemble can partially compensate
for model size limitations in terms of informa-
tion capture.

Regarding preference scores, the relationship
between model size and performance is more
nuanced. While gpt-4o generally outperforms
gpt-4o-mini on MultiNews when using CPS,
the smaller model achieves competitive results
with CFS. More surprisingly, on OpenASP,
gpt-4o-mini consistently outperforms its larger
version across both CFS and CPS aggregators. This
suggests that the benefits of model scale are not
uniform across different summarization tasks,
and that scaling smaller models, when combined
with appropriate scaling strategies, may some-
times be more effective. These findings challenge

the assumption that larger models necessarily bene-
fit more from inference-time scaling and emphasize
the importance of considering both model size and
ensemble size in optimization strategies.

5 Conclusion

In this work, we introduced the Multi2 framework
to scale MDS through prompt ensemble, showing
that we can leverage computational resources at
test time to produce more comprehensive and ac-
curate summaries. Our metrics, PAS score and
LLM-ACU score also provide more reliable assess-
ments by effectively mitigating positional bias in
summary evaluation. Through systematic analysis,
we identified specific scaling boundaries in sum-
marization tasks, offering valuable insights into
scaling summarization. Our findings suggest two
promising research directions: (1) incorporating
test-time search algorithms to dynamically guide
prompt ensemble optimization, and (2) extending
our evaluation metrics to assess model performance
in reasoning tasks. These directions highlight the
potential of optimizing LLMs’ inference-time be-
havior across applications where both factual accu-
racy and logical consistency are crucial.

Limitations

Despite demonstrating that test-time scaling im-
proves summarization quality, our work has several
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limitations. First, we restricted our experimental
scope to larger general-purpose commercial LLMs
rather than including smaller open-source LLMs.
This decision was guided by two considerations:
(1) our primary objective was to validate the Multi2

framework’s general effectiveness rather than com-
prehensively benchmarking various LLMs’ scal-
ing capabilities, and (2) MDS tasks require robust
context understanding typically found in general-
purpose, market-proven models rather than smaller
models with limited contextual processing ability.
Second, we did not conduct human evaluations to
compare alignment between our metrics and pre-
vious ones. This decision reflects that the baseline
metrics we sought to improve have already under-
gone comprehensive human evaluation and peer
review, making additional human studies redun-
dant for our specific research questions.
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A Related Work

A.1 Test-time scaling

Test-time scaling strategies can be broadly classi-
fied into three categories: repeated sampling, delib-
erative approaches, and self-refinement. Repeated
sampling leverages techniques like temperature
sampling (Ackley et al., 1985), top-k, and top-p
sampling (Holtzman et al., 2020) to generate di-
verse outputs, which are then enhanced through ag-
gregation strategies such as majority voting (Wang
et al., 2023b), weighted majority voting (Li et al.,
2023), or best-of-n selection (Cobbe et al., 2021).
Recent work (Brown et al., 2024; Wu et al., 2024;
Stroebl et al., 2024; Zhao et al., 2025) demon-
strates that repeated sampling can significantly ex-
pand LLM capabilities across various domains.
Deliberative approaches incorporate structured
reasoning through methods like chain-of-thought
prompting (Wei et al., 2023) and tree search. These
approaches range from informed search methods
(Zhuang et al., 2024; Wang et al., 2024a) to Monte
Carlo Tree Search (MCTS) variants (Tian et al.,
2024; Zhang et al., 2024b,a). A key characteristic
of tree search methods is to use process reward
models (PRMs) to guide the search trajectory dur-
ing generation (Yao et al., 2023; Zelikman et al.,
2024). Self-refinement (Madaan et al., 2023) en-
ables models to iteratively improve their responses
through self-critique and editing. Additionally, all
categories of test-time scaling methods can be en-
hanced through model ensembling (Wang et al.,
2024b; Jin et al., 2024; Chen et al., 2024) to com-
bine the strengths of multiple models to achieve
better performance.

Yet tree search methods often struggle with the
high-dimensional search space created by multi-
ple source documents, making it computationally
intensive to explore meaningful trajectories. Self-
refinement approaches, which rely on iterative im-
provements, may lead to information loss as they
tend to focus on refining a single perspective rather

than maintaining diverse viewpoints from multiple
documents. In our work, we adopt the repeated
sampling approach to scale MDS at test time, using
diverse prompts to generate multiple perspectives
that are then consolidated through specialized ag-
gregation methods.

A.2 Multi Document Summarization and
Evaluation

Multi-document summarization (MDS) has
evolved significantly from traditional methods
(Erkan and Radev, 2004; Mehdad et al., 2014;
Gerani et al., 2014) to modern approaches powered
by deep neural networks (Liu and Lapata, 2019;
Zhang et al., 2020a; Giorgi et al., 2022; Li et al.,
2022). The advent of LLMs has boosted MDS
capabilities even further, with models demonstrat-
ing impressive zero- and few-shot performance
(Zhang et al., 2024c). Recent work to improve
LLMs’ summarization abilities has shifted the
focus from models’ architectural modifications
to exploring various prompting strategies (Xiao
et al., 2024; Liu et al., 2024b). Despite these
advances, MDS continues to face challenges
including maintaining cross-document consistency,
ensuring factual accuracy, and addressing content
incompleteness where key information may be
omitted (Belem et al., 2024). In this paper, we
propose a test-time approach that addresses these
challenges by generating summaries more aligned
with user preferences. Traditional evaluation
metrics for summarization, such as ROUGE
(Lin, 2004), only rely on lexical overlap with
reference summaries. These metrics often fail to
capture semantic similarity and summary quality
adequately (Bhandari et al., 2020). This limitation
has led to the development of learned metrics
that better align with human judgments (Yuan
et al., 2021; Zhang et al., 2020b). The emergence
of LLMs has enabled even more sophisticated
evaluation approaches. Recent work has explored
using LLMs as evaluation agents (Liu et al.,
2024b,c), demonstrating their ability to assess
multiple quality dimensions including coherence,
faithfulness, and informativeness. However, these
approaches face challenges such as positional
bias and inconsistency across different model
sizes (Wang et al., 2024c; Shi et al., 2024). In
this paper, we also try to address these limitations
by proposing two metrics that remain consistent
regardless of position or choice of evaluation
model.
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B Experiment Setup

Datasets. We evaluate our framework on two
datasets: MultiNews (Fabbri et al., 2019) for
general-purpose summarization and OpenASP
(Amar et al., 2023) for aspect-based summariza-
tion. For a balanced comparison, we conduct our
experiments on the test sets of both datasets. For
MultiNews, we select the first 600 entries from its
test set to match the size of OpenASP’s test set.

Models. To investigate scaling properties and
leverage extended context windows, we evaluate
our framework using two state-of-the-art models of
different scales: gpt-4o and gpt-4o-mini. These
models enable us to analyze how performance
scales with model size while maintaining consistent
architectural characteristics.

Prompt Bank. We adapt the prompt collection
from Lior et al. (2024) to explore the prompt space.
While some prompts in their work were originally
designed for extractive summarization, we modi-
fied them for abstractive summary generation while
preserving their core instructional elements. The
prompts are attached in Appendix.

Implementation Details. We establish our base-
line using summaries generated by gpt-4o with a
single prompt randomly selected from our prompt
bank using a fixed random seed. We scale summa-
rization by applying different aggregation methods
to the generated summaries. For voting-based ag-
gregation, we exclusively use gpt-4o, since this
method operates independently of the generator
model and focuses on the well-defined task of se-
lecting the optimal summary from available candi-
dates, rather than producing new text. In contrast,
generative aggregation methods synthesize entirely
new summaries. To ensure experimental rigor, we
execute each configuration with the default tem-
perature setting at 0.8. Our experimental design
focuses on two primary variables: (1) inference
model size and (2) scaling factor, determined by
the number of ensembled samples.

Model & Cost Analyses. The specific model ver-
sions used in our experiments are listed in Table 6.
The total computational cost for all experiments
was approximately $1,000 USD.

Evaluation Protocols. Our experimental evalu-
ation employs multiple complementary metrics:
ROUGE Score (Lin, 2004) and BERTScore (Zhang

Model Name Version

gpt-4o 2024-08-06

gpt-4o-mini 2024-07-18

claude-3-sonnet 2024-06-20

Table 6: LLM Versions

et al., 2020b) serves as the traditional measures for
lexical overlap and context similarity against the
gold summary, while PAS score quantifies user
preference compared to the baseline system, and
LLM-ACU score assesses information coverage.
We use DEBERTA-XLARGE-MNLI (He et al., 2021)
for BERTScore to align with human preference.
For LLM-based metrics, we employ gpt-4o as our
universal evaluator due to its advanced capabilities.

C Positional Bias in Automatic
Evaluation

In this section, we analyze the positional bias and
consistency of two mainstream LLMs (gpt-4o and
claude-3.5-sonnet).

Tables 7 and 8 demonstrate a clear positional
bias in both models’ evaluations, though in oppos-
ing directions. gpt-4o shows a strong preference
for summaries presented in the first position, with
notably higher win ratios across both datasets. Con-
versely, claude-3.5-sonnet exhibits a preference
for summaries in the second position, though this
bias is relatively less pronounced in the MultiNews
dataset. This positional bias is further confirmed
in Table 9, where the inconsistency ratios tell a
similar story. The discrepancy percentages indicate
that claude-3.5-sonnet generally achieves bet-
ter consistency on MultiNews, though both models
show comparable discrepancy rates on OpenASP.
While claude demonstrates marginally better con-
sistency metrics overall, we opted to use gpt-4o in
our final implementation due to practical consider-
ations regarding speed and computational budget
constraints. Since our evaluation framework incor-
porates both consistency and preference metrics,
the choice between these models does not signifi-
cantly impact the validity of our methodology or
results.

These findings suggest that positional bias is still
an inherent challenge in current language models
when performing comparative evaluations, regard-
less of the specific model architecture or training

147



approach. This observation underscores the im-
portance of implementing appropriate debiasing
strategies in evaluation frameworks.

Model Dataset Sum1 Win Sum2 Win

GPT MultiNews 456 92
Claude MultiNews 262 336
GPT OpenASP 355 177
Claude OpenASP 186 401

Table 7: Model Preference Analysis - Number of wins
when comparing summaries in order {Sum1, Sum2}.

Model Dataset Sum2 Win Sum1 Win

GPT MultiNews 468 86
Claude MultiNews 285 308
GPT OpenASP 384 174
Claude OpenASP 188 396

Table 8: Model Preference Analysis - Number of wins
when comparing summaries in order {Sum2, Sum1}.

Model/Dataset Disc.(%) Pref Pos Inc. Ratio

GPT/MultiNews 56.00% 1 333:3
Claude/MultiNews 16.67% 2 27:73
GPT/OpenASP 30.03% 1 174:5
Claude/OpenASP 34.72% 2 6:217

Table 9: Model Consistency Analysis - Comparing dis-
crepancy rates, positional bias, and inconsistency ratios
between gpt-4o and claude-3.5-sonnet.

D Impact of Summary Length

In this section, we investigate the relationship be-
tween summary quality and length. Tables 10
and 11 present CAP scores, ROUGELSum scores,
and the lengths of generated summaries.

For capable models like gpt-4o, we observe that
despite improvements in CAP and ROUGELsum
scores, summary length remains relatively stable.
Notably, the highest-quality summaries are not nec-
essarily the longest ones, demonstrating that so-
phisticated models can effectively distill core ideas
into concise text.

In contrast, for less capable models like
gpt-4o-mini, preferred and more complete sum-
maries consistently tend to be longer, with sum-
mary length increasing proportionally with the
number of ensembled samples. This suggests that
smaller models may require more text to adequately
capture information compared to their larger coun-
terparts.

Moreover, previous work (Hu et al., 2024;
Dubois et al., 2024) reveals LLM evaluation mech-
anisms tend to favor long summaries. This raises
an important question: “do longer summaries ac-
tually contain more useful information?” To in-
vestigate this, we study the relationship between
generation length and summary quality using the
general-purpose MDS dataset MultiNews.

The results in Table 12 demonstrate how dif-
ferent configurations of our framework affect sum-
mary length and the associated computational costs.
While the summary length increases substantially
from baseline to our most comprehensive setting
(from 129.4 to 201.17 words), the computational
cost grows more slowly, suggesting efficient in-
formation packaging. The CPS aggregator consis-
tently produces longer summaries than CFS, partic-
ularly with gpt-4o-mini, indicating its effective-
ness in capturing diverse information from source
documents without introducing excessive computa-
tional overhead.

E Prompts

E.1 Summarization Prompts
In Tables 13 and 14, we present the prompt bank
used for the MultiNews dataset. Similarly, Ta-
bles 15 and 16 contain the prompt bank for the
OpenASP dataset. These prompts were adapted
and modified from the work of Lior et al. (2024).
We utilized the same few-shot examples as pro-
vided in their benchmark.

E.2 Ensemble Prompts
We present our summary ensemble prompts for
general purpose MDS (for datasets like MultiNews)
in Table 17, and for aspect- (or query-) based MDS
(for datasets like OpenASP) in Table 18.
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MultiNews CPS CFS
Model # Samples CAP RLsum Gen_len CAP RLsum Gen_len

gpt-4o

2 0.82 18.96 155.53 0.69 18.40 138.82
3 0.79 19.22 158.26 0.73 18.63 145.06
4 0.82 19.27 161.86 0.68 18.75 147.26
5 0.85 19.61 163.14 0.71 18.72 147.60
6 0.81 19.57 163.58 0.79 18.71 158.25

gpt-4o-mini

2 0.80 20.92 184.98 0.61 18.89 150.58
3 0.72 21.15 190.76 0.54 19.29 159.40
4 0.80 21.37 196.85 0.60 19.60 165.36
5 0.78 21.45 191.18 0.60 19.86 170.03
6 0.77 21.54 201.07 0.60 20.21 172.44

Table 10: CAP scores, ROUGELsum scores, and generation lengths on MultiNews dataset for different models and
ensemble sizes. The highest CAP and ROUGELsum scores are marked in bold.

OpenASP CPS CFS
Model # Samples CAP RLsum Gen_len CAP RLsum Gen_len

gpt-4o

2 0.70 17.51 198.27 0.63 16.49 167.58
3 0.76 17.54 187.06 0.72 16.69 172.25
4 0.74 17.86 191.66 0.72 16.89 173.33
5 0.76 17.89 194.89 0.74 16.92 192.11
6 0.77 18.00 194.59 0.74 17.01 178.73

gpt-4o-mini

2 0.79 19.56 196.67 0.73 17.79 234.36
3 0.83 19.83 209.07 0.75 18.39 245.63
4 0.83 19.93 216.40 0.77 18.65 251.47
5 0.86 20.07 222.88 0.82 18.94 256.02
6 0.85 20.14 224.05 0.81 18.87 257.55

Table 11: CAP scores, ROUGELsum scores, and generation lengths on OpenASP dataset for different models and
ensemble sizes. The highest CAP and ROUGELsum scores are marked in bold.
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Experiment # Words Word/ACU

Baseline 129.4 17.03

gpt-4o/CFS 147.61 18.42
gpt-4o/CPS 163.15 19.51
gpt-4o-mini/CFS 172.45 20.74
gpt-4o-mini/CPS 201.17 22.63

Table 12: Summary length and word cost per ACU
across different model configurations on MultiNews
dataset. Length shows the average number of words in
generated summaries, while Cost measures the average
number of words needed to capture each ACU.
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No. Prompt

1 In this task, you are presented with multiple news articles about related topics. Your job is
to generate a summary that integrates information from the provided articles. Your summary
should be short and concise, that includes content only from the provided articles, avoiding any
external data sources.

2 Please provide a brief summary by synthesizing only the key points from the articles provided.
Focus on the main arguments and conclusions without incorporating any information from
outside these texts. Keep your summary concise and directly related to the content of the
documents.

3 Generate a concise summary using only the information from the provided articles. Your
summary should distill the most essential information, capturing the core insights without adding
any external content. Aim for brevity and clarity in your summarization.

4 Please sift through the provided articles and distill their essence into a sharp, concise summary.
Focus solely on the facts and key points within these texts, avoiding any embellishment or
reference to external information. Your summary should read like a bullet-point list of the most
critical insights.

5 You are presented with multiple news articles about related topics. Summarize the contents in a
way that captures the key information in a narrative form, but strictly using the details mentioned
in the provided documents. Keep it engaging yet brief.

6 Imagine you’re preparing a brief for a decision-maker who has limited time. Summarize the
provided documents by extracting only the most essential information. Present this in a clear,
straightforward manner, focusing on the key facts and figures.

7 Using only the details from the articles I’ve given you, craft a summary that distills the most
important information. Avoid any interpretations or external data, and keep your summary short
and direct. Emphasize the main arguments, data points, and conclusions.

8 Operate as an information synthesizer: Draw the essence from multiple articles, focusing solely
on the information contained within them. Your summary should be a tight, focused digest of
the articles, free from any influence of external data.

9 Scan through the provided articles and compile a summary that highlights only the most
significant facts and figures, ensuring the exclusion of all external references. Aim for clarity
and brevity.

10 Operate as an academic summarizer: Imagine you are creating a summary for an academic
review. Extract and emphasize the most pertinent information, ensuring your summary remains
true to the original texts and free of external content.

Table 13: Summarization Prompt Bank for MultiNews Dataset (Part 1)
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No. Prompt

11 Condense the provided information into a compact summary that emphasizes the main points
and crucial data from the documents. Exclude any external information to maintain the integrity
of the sources.

12 From the provided articles, pull out the core messages and data points. Shape these into a brief,
clear summary that directly reflects the content of the documents without any external additions.

13 Compile a concise summary from the news articles given, focusing only on the information
contained within. Your summary should integrate the main points without adding any outside
information.

14 Create a succinct summary by focusing exclusively on the details provided in the articles. Avoid
using any external sources and ensure the summary remains clear and to the point.

15 Produce a brief summary that distills the essential facts from the provided articles. Keep your
summary strictly to the content presented in the documents, avoiding external influences.

16 Develop a concise summary using only the information from the articles provided. Emphasize
the main points and conclusions while avoiding the inclusion of any external data.

17 Prepare a short, integrated summary by synthesizing key points from the given news articles.
Ensure that no external content is included and that the summary is clear and direct.

18 Your task is to distill the primary information from the provided articles into a concise summary.
Make sure to exclude any external sources and focus strictly on the given texts.

19 Summarize the provided articles by extracting only the key information and conclusions. Your
summary should be brief and must not incorporate any external data.

20 Generate a clear and brief summary using just the information from the provided articles. Focus
on distilling the essential points and data without referencing external content.

Table 14: Summarization Prompt Bank for MultiNews Dataset (Part 2)
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No. Prompt

1 In this task you are required to generate an aspect-based summary of a set of documents related
the same topic. Please write a short, concise aspect-based summary, only summarize content
from the above documents, avoiding any external data sources.

2 Your goal is to create a short, concise aspect-based summary of the given documents. Summarize
the key points accurately, using only the information from these documents and excluding any
external sources.

3 Produce a brief, aspect-based summary of the collection of documents on the same topic. Ensure
your summary is concise and derived only from the provided documents, avoiding any external
data sources.

4 Your task is to generate a detailed yet concise aspect-based summary from a collection of
documents that focus on the same topic. Begin by thoroughly examining each document to
understand the main aspects and themes. Then, synthesize this information into a coherent
summary that highlights the significant points.

5 Given a set of documents related to a specific topic, generate a short, concise aspect-based
summary. Ensure that the summary is based solely on the content of the documents provided.

6 You will receive several documents on the same topic. Your task is to write a brief aspect-based
summary, using only the information from the provided documents and excluding any external
sources.

7 You are tasked with generating an aspect-based summary of several documents. Summarize the
content briefly and accurately, using only the information from the documents give.

8 In this task, you are required to create an aspect-based summary of a set of documents all related
to the same topic. Carefully read through each document and identify the key aspects discussed.
Summarize these aspects in a concise manner, ensuring that your summary captures the essential
points.

9 You are tasked with producing an aspect-based summary for a series of documents related to the
same topic. Start by analyzing each document to identify the critical aspects covered. Your goal
is to condense this information into a clear and concise summary.

10 Generate a concise aspect-based summary of the given documents. Focus on summarizing the
content based solely on the information from these documents, avoiding any external sources.

Table 15: Summarization Prompt Bank for OpenASP Dataset (Part 1)
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No. Prompt

11 Create a concise aspect-based summary for the provided set of documents. Focus on the main
aspects and themes discussed in these documents, ensuring that your summary is based entirely
on the content of the provided documents.

12 Produce a short and precise aspect-based summary of the given documents. Identify the key
aspects discussed in these documents and synthesize a concise summary based solely on the
provided content.

13 You will receive a collection of documents focused on the same topic. Your task is to create an
aspect-based summary that highlights the key aspects discussed in these documents. Ensure
your summary is brief and does not include any external information.

14 You are provided with multiple documents related to a single topic. Your task is to generate an
aspect-based summary that captures the main aspects discussed in these documents. Ensure your
summary is concise and solely based on the provided texts.

15 You are tasked with generating an aspect-based summary of several documents on the same
topic. Carefully review each document, identify the main aspects, and write a brief summary
that captures these aspects using only the provided documents.

16 Your role is to create an educational summary for students using a collection of documents on
the same topic. Focus on the main aspects that would help students understand the core concepts
discussed in the documents.

17 Imagine you are preparing a briefing for a busy executive who needs to understand the key aspects
of several documents quickly. Summarize the most important points from these documents in a
concise manner.

18 As an advanced AI tasked with summarizing documents, your goal is to generate an aspect-based
summary. Think of yourself as a summarization expert, extracting the most critical aspects from
the documents provided.

19 Imagine you are a journalist tasked with writing a summary article based on a series of documents
related to a single topic. Identify the key aspects discussed in these documents and compose a
brief, coherent summary.

20 Your task is to act as a knowledge distiller, creating a concise aspect-based summary from a
series of documents on the same topic. Focus on identifying and summarizing the critical aspects
discussed in these documents.

21 You are an AI assistant tasked with providing a summary for a set of documents related to a
specific topic. Focus on the key aspects and themes discussed in these documents. Create a
summary that captures these aspects in a concise manner, ensuring that your summary is based
solely on the provided documents and excludes any external information.

Table 16: Summarization Prompt Bank for OpenASP Dataset (Part 2)
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Ensemble Type Content

Vote Provide your explanation, then select the best summary of the given documents
based on clarity, accuracy, conciseness, and completeness.
Documents: {doc}

Summary 1: {sum1}

Summary 2: {sum2}

...

Explanation: “Your explanation here”

Decision: [1-5]

CIS Take all provided summaries into account and generate a better, cohesive sum-
mary. Combine and refine the content from the summaries to ensure clarity,
accuracy, conciseness, and completeness. Provide the final summary directly.
Summary 1: {sum1}

Summary 2: {sum2}

...

Final revised summary:

CPS Take all provided summaries into account and generate a better, cohesive sum-
mary of the given documents. Combine and refine the content from the summaries
to ensure clarity, accuracy, conciseness, and completeness. Provide the final sum-
mary directly.
Documents: {doc}

Summary 1: {sum1}

Summary 2: {sum2}

...

Final revised summary:

Table 17: Ensemble Prompts for General MDS
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Ensemble Type Content

Vote Provide your explanation, then select the best summary of the given documents
based on clarity, accuracy, conciseness, and completeness, focusing on the speci-
fied aspect.

Example Response:
Explanation: “Your explanation here”
Decision: 1 (or 2 or 3 or 4 or 5)

Aspect: {query}

Documents: {doc}

Summary 1: {sum1}

Summary 2: {sum2}

...

Response:

CIS Take all provided summaries into account and generate a better, cohesive sum-
mary, focusing on the specified aspect. Combine and refine the content from the
summaries to ensure clarity, accuracy, conciseness, and completeness. Provide
the final summary directly.

Aspect: {query}

Summary 1: {sum1}

Summary 2: {sum2}

...

Final revised summary:

CPS Take all provided summaries into account and generate a better, cohesive sum-
mary of the given documents, focusing on the specified aspect. Combine and
refine the content from the summaries to ensure clarity, accuracy, conciseness,
and completeness. Provide the final summary directly.

Aspect: {query}

Documents: {doc}

Summary 1: {sum1}

Summary 2: {sum2}

...

Final revised summary:

Table 18: Ensemble Prompts for Aspect-based MDS
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Abstract

Multimodal summarization (MMS) and video
summarization (VS) have traditionally evolved
in separate communities—natural language
processing (NLP) and computer vision (CV),
respectively. MMS focuses on generating tex-
tual summaries from inputs such as text, im-
ages, or audio, while VS emphasizes select-
ing key visual content. With the recent rise of
vision-language models (VLMs), these once-
disparate tasks are converging under a unified
framework that integrates visual and linguis-
tic understanding. In this survey, we provide
a unified perspective that bridges MMS and
VS. We formalize the task landscape, review
key datasets and evaluation metrics, and cat-
egorize major modeling approaches into new
taxonomy. In addition, we highlight core chal-
lenges and outline future directions toward
building general-purpose multimodal summa-
rization systems. By synthesizing insights from
both NLP and CV communities, this survey
aims to establish a coherent foundation for ad-
vancing this rapidly evolving field.

1 Introduction

Summarization is a core task in natural language
processing (NLP), traditionally defined as the pro-
cess of producing a concise and coherent version
of a longer source while preserving its essential
content (Zhang et al., 2025). With the increas-
ing ubiquity of multimodal content in the digital
age, ranging from news articles with images to
instructional videos with subtitles, the need to sum-
marize information across multiple modalities has
become both urgent and technically feasible. This
has given rise to two closely related but historically
distinct areas of research: multimodal summariza-
tion (MMS) and video summarization (VS).

Multimodal summarization focuses on generat-
ing summaries from inputs that combine text, im-
ages, audio, and other non-linguistic modalities (Li

et al., 2017). It is often approached as a text gen-
eration task and studied within the NLP commu-
nity (Atharva et al., 2023). In contrast, video sum-
marization, which is traditionally rooted in the com-
puter vision (CV) domain, aims to produce a con-
densed version of a video by selecting keyframes
or segments, typically without involving language
generation (Apostolidis et al., 2021a). As a result,
these two lines of work have evolved in parallel,
with limited interaction between their research com-
munities, benchmarks, and methodologies.

However, the growing prevalence of multimodal
digital content has catalyzed a convergence be-
tween MMS and VS. A pivotal shift in MMS
was the introduction of Multimodal Summariza-
tion with Multimodal Output (MSMO), a paradigm
that generates summaries comprising both text
and visuals for a richer digest of information
(Zhu et al., 2018b). Concurrently, video summa-
rization has evolved beyond traditional extractive
video-to-video (V2V) techniques (Zhang et al.,
2016; Ji et al., 2019). It now includes abstractive
video-to-text (V2T) generation and hybrid video-
to-text+video (V2VT) systems (Lin et al., 2023;
Hua et al., 2024). This progression demonstrates a
clear alignment with the multimodal output objec-
tives pioneered by MSMO, as both aim to integrate
textual narratives with key visual highlights.

Recent breakthroughs in Vision-Language Mod-
els (VLMs) such as BLIP-2 (Li et al., 2023b),
Flamingo (Alayrac et al., 2022), and GPT-4V are
now unifying these once-separate research threads.
By capably processing and generating content
across text, image, and video modalities, these mod-
els enable the creation of truly integrated summa-
rization systems (Argaw et al., 2024). This develop-
ment mirrors the recent history of text-only summa-
rization, where Large Language Models (LLMs)
catalyzed transformative progress (Liu and Lap-
ata, 2019; Zhang et al., 2023b,a). The success of
LLMs provides a compelling blueprint for leverag-
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Figure 1: Overview of multimodal/video summarization input/output modalities, and major paradigms shift.

ing VLMs to achieve similar breakthroughs in the
multimodal domain.

Despite this convergence, the literature lacks a
comprehensive and unified survey that brings to-
gether the full landscape of multimodal and video
summarization. Existing surveys typically focus
either on multimodal summarization from a lan-
guage perspective (Jangra et al., 2023; Atharva
et al., 2023) or on visual summarization from a
frame-selection or temporal segmentation perspec-
tive (Apostolidis et al., 2021a). Thus, there is a
pressing need to synthesize these research direc-
tions under a holistic perspective in the LLM era.

This survey bridges this critical gap by provid-
ing a comprehensive and unified overview of MMS
and VS, focusing on their convergence. We synthe-
size research from both NLP and CV, examining
common challenges, modeling paradigms, datasets,
and evaluation metrics under a cohesive lens, as
shown in Figure 1. Specifically, this survey:
1) Formalizes the unified task landscape and dis-
cusses pertinent evaluation metrics (Section 2);
2) Reviews key datasets and benchmarks from both
traditions, grouping by input and output modalities
(Section 3);
3) Proposes a new unified taxonomy to categorize
existing modeling approaches for MMS and video
summarization, highlighting how recent pretrained
VLMs are reshaping the summarization landscape
(Section 4);
4) Discusses open challenges and charts promis-
ing future directions for a truly unified multimodal
summarization framework that can reason over
and summarize complex, cross-modal content (Sec-
tion 5).

By unifying these perspectives, we hope to sup-
port a broader understanding of multimodal sum-
marization and foster collaboration between NLP

and CV researchers working at the intersection of
language, vision, and video understanding.

Scope of the Survey This survey provides a com-
prehensive overview of the evolving MMS and VS
fields. We focus specifically on inputs and outputs
derived from text, image, and video modalities,
excluding others such as audio and tabular data.
Throughout the survey, we make a clear distinction:
the image modality refers to static, standalone im-
ages, while dynamic sequences of frames or clips
are treated as video modalities.

2 Background

2.1 Task Definition
At its core, summarization aims to distill salient
information from a complex data source X into a
compact representation Y . In the context of this
survey, the input source X is a set of aligned data
streams from various modalities, which we for-
mally denote as:

X = {x(T ), x(I), x(V ), . . . }, (1)

where x(T ) represents textual content (e.g., tran-
scripts, captions), x(I) represents static images
(e.g., photos, diagrams), and x(V ) represents video
data (e.g., frames, segments).

Historically, multimodal and video summariza-
tion have addressed different instances of this gen-
eral problem. Traditional MMS primarily focused
on generating a textual summary Y = y(T ) from
a combination of non-video inputs (e.g., X =
{x(T ), x(I)}). In contrast, traditional VS operated
on a single modality (X = {x(V )}) to produce a
condensed video output Y = y(V ) by selecting
keyframes or segments.

The process of generating the summary Y from
the input X falls into two main categories:
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Formulation Input(X ) Output (Y) Type Example

T + I → T {x(T ), x(I)} y(T ) Abstractive Summarize news article with photos
T + I → T + I {x(T ), x(I)} {y(T ), y(I)} Hybrid Summarize social media post
V → V x(V ) y(V ) Extractive Video keyframe selection
V + T → T {x(V ), x(T )} y(T ) Abstractive Summarize video with transcript
V + T → T + I {x(V ), x(T )} {y(T ), y(I)} Hybrid Summarize video and select cover frame

Table 1: Common task settings in MMS and VS, categorized by input/output modalities and summarization type.

Modality Metric Ref

Textual

ROUGE (Lin, 2004) ✓

METEOR (Banerjee and Lavie,
2005)

✓

SummaQA (Scialom et al., 2019) ✗

BLANC (Vasilyev et al., 2020) ✗

SUPERT (Gao et al., 2020) ✗

BERTScore (Zhang et al., 2020) ✓

GPTScore (Fu et al., 2023) ✗

G-Eval (Liu et al., 2023) ✗

Visual

Object Overlap (Lee et al., 2012) ✓

Frame Precision/Recall (Gong et al.,
2014)

✓

Semantic Text Comparison (Yeung
et al., 2014)

✓

Kendall’s τ , Spearman’s ρ ✓

Multimodal

CLIPScore (Hessel et al., 2021) ✗

CLIPBERTScore (Wan and Bansal,
2022)

✓

VT-CLIPScore (Lin et al., 2023) ✗

FALLACIOUS (Zhang et al., 2024) both
mLLM-EVAL (Zhuang et al., 2024) ✗

Table 2: Evaluation Metrics for Multimodal Summariza-
tion. ‘Ref’ indicates whether a ground-truth reference
summary is required.

Extractive Summarization. This approach se-
lects a subset of the original input, Y = X ′ ⊂ X .
The goal is to identify and present the most rep-
resentative components of the source, such as key
sentences or video clips.

Abstractive Summarization. This approach gen-
erates entirely new content, Y = f(X ), by trans-
forming and synthesizing information from the
source. The output is often a novel textual narrative
that is not restricted to phrases from the input. It is
also possible to combine extractive and abstractive
methods to build hybrid summarization methods.

This formalization allows us to systematically
categorize the full spectrum of MMS and VS tasks
based on their input and output modalities, as we
detail in Table 1.

2.2 Evaluation Metrics
Evaluating multimodal summaries presents a sig-
nificant challenge due to the diversity of output for-
mats (text, images, video) and the multifaceted na-
ture of summary quality. Beyond simple relevance,
a successful summary must exhibit coherence, flu-
ency, factuality, and, crucially, cross-modal con-
sistency.Table 2 provides an overview of existing
evaluation metrics across different modalities.

Given these challenges, most automated evalu-
ation metrics are reference-based. They operate
by quantifying the similarity between a machine-
generated summary Y and a set of human-created
reference summaries Y∗, generally expressed via a
scoring function or similarity measurement SIM:

score = SIM(Y,Y∗). (2)

Textual Evaluation For assessing generated text,
standard metrics from text summarization are
widely adopted. These are often reference-based,
beginning with classic methods like ROUGE
(Lin, 2004) that measures lexical overlap between
the generated and reference summaries using n-
grams (e.g., ROUGE-N) and longest common sub-
sequences (e.g., ROUGE-L). METEOR (Baner-
jee and Lavie, 2005) is an F-measure based on
unigram matching with synonymy. To capture
deeper meaning, semantic similarity metrics such
as BERTScore (Zhang et al., 2020) leverage con-
textual embeddings from BERT models.

Reference-free alternatives also exist, such as
SummaQA (Scialom et al., 2019) that provides
QA-based factuality assessment, BLANC (Vasi-
lyev et al., 2020) that measures utility via masked
token prediction, and SUPERT (Gao et al., 2020)
that uses unsupervised sentence representations.
More recently, LLM-as-a-judge metrics like
GPTScore (Fu et al., 2023) and G-Eval (Liu et al.,
2023) have emerged to employ LLMs to generate
aspect-guided or interpretable quality assessments.

However, these metrics often suffer from inabil-
ity to capture cross-modal grounding. While se-
mantic and LLM-based approaches successfully
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mitigate the overemphasis on lexical overlap found
in older metrics, they remain unable to reason be-
yond the text modality.

Visual Evaluation Evaluation for visual com-
ponents, particularly in extractive video summa-
rization (V2V), focuses on the quality of content
selection. The standard approach quantifies the
overlap between system-selected keyframes or seg-
ments and a human-annotated ground truth, typi-
cally using precision, recall, and F1-score (Gong
et al., 2014; Otani et al., 2019). An alternative
paradigm, introduced by Otani et al. (2019), eval-
uates the model’s ability to predict frame-level
importance scores directly. Instead of measur-
ing set overlap, this method measures the corre-
lation between the model’s importance rankings
and human judgments using statistical coefficients
like Kendall’s τ (Kendall, 1945) and Spearman’s
ρ (Zwillinger and Kokoska, 1999) (Narasimhan
et al., 2021; Saquil et al., 2021). While less com-
mon today, some early work also explored pixel-
level (Khosla et al., 2013) or object-based (Lee
et al., 2012) similarity.

Multimodal Evaluation Evaluating the interplay
between modalities is the central challenge of mul-
timodal summarization. Effective metrics must as-
sess not just the quality of individual components
but, more importantly, the cross-modal consistency,
alignment, and coherence between them. Several
approaches have been proposed to address this:

CLIPScore (Hessel et al., 2021) is a founda-
tional metric that leverages the cross-modal embed-
dings from CLIP (Radford et al., 2021) to quantify
the semantic relevance between an image (or video
frame) and a textual description, serving as a pow-
erful tool for reference-free grounding.

CLIPBERTScore (Wan and Bansal, 2022) cre-
ates a composite score by combining CLIPScore
(for image-text relevance) with BERTScore (for
text quality), providing a more holistic assessment.

VT-CLIPScore (Lin et al., 2023) adapts CLIP-
Score specifically for the video-text domain, often
with task-specific fine-tuning.

FALLACIOUS (Zhang et al., 2024) introduces
metrics for detecting factual inconsistencies in
generated text with respect to its corresponding
images/videos, offering both reference-based and
reference-free variants.

mLLM-EVAL (Zhuang et al., 2024) proposes
using multimodal LLMs as evaluators, a method

that shows a high correlation with human judg-
ments.

Despite these advances, automated metrics often
provide coarse-grained scores and may miss subtle
factual inconsistencies or nuanced cross-modal re-
lationships (Hanna and Bojar, 2021). Consequently,
Human Evaluation remains the gold standard, in-
dispensable for judging high-level qualities like
coherence, informativeness, and the overall faith-
fulness of the summary to the multimodal source.

3 Datasets

The advancement of multimodal summarization
has been significantly propelled by the develop-
ment of diverse and specialized datasets. These
resources are crucial for training robust models,
benchmarking research progress, and exploring the
nuances of different summarization objectives. In
this section, we survey key datasets and categorize
them by modalities into four groups: (1) Text +
Image to Text datasets (TI2T), (2) Video to Video
datasets (V2V), (3) Video to Text datasets (V2T),
and (4) Multimodal Summarization with Multi-
modal Output (MSMO) datasets, which involve
richer modality combinations. Table 3 provides a
detailed comparative overview of these datasets.

3.1 Text + Image to Text Datasets
Early multimodal summarization research focused
on augmenting textual documents with associ-
ated images, often sourced from news articles,
Wikipedia, and e-commerce, where visual and tex-
tual information are naturally aligned. Early work
includes the MMSS dataset (Li et al., 2018), which
provides (sentence, image, headline) triples from
news sources for generating headline-style sum-
maries. In the e-commerce domain, the large-scale
Chinese dataset EC-product (Li et al., 2020a) of-
fers product images and descriptions paired with
human-written summaries of key features. More re-
cent efforts leverage web-scale data, such as Wiki-
Web2M (Burns et al., 2023), which sources mil-
lions of multimodal sections from Wikipedia and
uses the initial sentences as noisy proxy summaries.
To improve upon this, REFINESUMM (Patil et al.,
2024) provides a cleaner version by using multi-
modal LLMs to generate and filter higher-quality
reference summaries from the same source.

3.2 Video to Text Datasets
V2T datasets have evolved significantly, progress-
ing from short-form video captioning to enabling
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Dataset Domain Size Language Input Output

MMSS (Li et al., 2018) News 66,000 English T, I T
EC-product (Li et al., 2020a) Product 1,375,453 Chinese T, I T
WikiWeb2M (Burns et al., 2023) Instructional 2,000,000+ English T, I T
REFINESUMM (Patil et al., 2024) Instructional 77,021 English T, I T

MSVD (Chen and Dolan, 2011) Open 1,970 English V T
YouCook (Das et al., 2013) Cooking 88 English V T
MSR-VTT (Xu et al., 2016) Open 7,180 English V T
ActivityNetCap (Krishna et al., 2017) Activities 20,000 English V V,T
How2 (Sanabria et al., 2019) Instructional 80,000 Portuguese + English V, T T
VT-SSum (Lv et al., 2021) Open 1,000 English V, T T
StreamHover (Cho et al., 2021) Stream 500 h English V, T T
Shot2Story20K (Han et al., 2023) Open 20,000 English V, T T
VISTA (Liu et al., 2025) Academic 18,599 English V, T T

SumMe (Gygli et al., 2014) Events 25 English V V
TVSum (Song et al., 2015) Web video 50 English V V
OVP (De Avila et al., 2011) Documentary 50 English V V
VSUMM (De Avila et al., 2011) Web video 50 English V V
LoL (Fu et al., 2019) E-sports 218 English V V
EDUVSUM (Ghauri et al., 2020) Lectures 98 English V V
Ads-1K (Tang et al., 2022) Commercials 1,041 English V V
LfVS-T (Argaw et al., 2024) Open 1,041 English V V

MSMO (Zhu et al., 2018b) News 314,581 English T, I T, I
VMSMO (Li et al., 2020d) News 184,920 Chinese V, T T, I
MM-AVS (Fu et al., 2021) News 2,173 English V, T, I T, I
XMSMO-News (Tang et al., 2023) News 4,891 English V, T T, I
MLASK (Krubiński and Pecina, 2023) News 41,243 Czech V, T T, I
MMSum (Qiu et al., 2024) Open 5,100 English V, T V, T
VideoXum (Lin et al., 2023) Activities 14,001 English V V, T
Instruct-V2Xum (Hua et al., 2024) Open 30,000 English V V, T

Table 3: Summary of existing multimodal and video summarization datasets. The “Input” and “Output” columns
use V (Video), T (Text), and I (Image) to indicate modalities.

long-form, abstractive summarization.

Early benchmarks focused on generating single-
sentence descriptions for short video clips. These
include MSVD (Chen and Dolan, 2011) with
its open-domain content, the cooking-focused
YouCook (Das et al., 2013), and the large-scale
MSR-VTT (Xu et al., 2016). A key step towards
more detailed understanding was made with Activ-
ityNetCap (Krishna et al., 2017), which provides
thousands of untrimmed videos annotated with
temporally localized captions for multiple events
within each video.

More recent datasets provide richer annotations
to support true summarization in complex, real-
world domains. How2 (Sanabria et al., 2019) is a
massive corpus of 80,000 instructional videos with
aligned transcripts and summaries. For highly gran-
ular analysis, Shot2Story20K (Han et al., 2023)
offers 20,000 clips with shot-level captions, video-
level summaries, and optional transcripts. The
VT-SSum dataset provides around 1,000 video-

transcript pairs, with each pair containing manually
annotated segment boundaries and corresponding
summaries.

Other datasets focus on specific genres, such
as StreamHover (Cho et al., 2021), which con-
sists of long-form livestream videos from gaming
platforms, paired with annotations for highlight de-
tection and key moment spotting, and VISTA (Liu
et al., 2025) that provides AI conference video pre-
sentations paired with their author-written abstracts,
enabling textual summarization of academic talks
from top AI/ML conferences.

3.3 Video to video Datasets
V2V datasets are foundational for extractive sum-
marization, providing video inputs and human an-
notations as either frame-level importance scores
or complete reference summaries.

The most common benchmarks include
SumMe (Gygli et al., 2014), a classic dataset
of 25 diverse videos with dense importance
scores from 15–18 annotators, and TVSum (Song
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et al., 2015), which offers 50 videos across 10
categories (e.g., news, documentaries, vlogs)
similarly annotated with importance scores from
20 annotators. In contrast, earlier datasets like
OVP and VSUMM (De Avila et al., 2011) each
contain 50 short consumer videos annotated with
five human-generated summaries.

In addition to these general benchmarks, several
datasets target specific domains. For e-sports, LoL
(League of Legends Highlights) (Fu et al., 2019)
provides a large-scale collection of ’League of Leg-
ends’ gameplay videos paired with professionally
edited highlight clips as ground truth. For edu-
cation, EDUVSUM (Ghauri et al., 2020) targets
lecture video summarization by providing educa-
tional videos and corresponding human-generated
key segment summaries. For advertising, Ads-
1K (Tang et al., 2022) is a large-scale benchmark,
containing 1,000 advertisement videos across 10
categories, annotated for highlight detection.

3.4 MSMO Datasets
Datasets for Multimodal Summarization with Mul-
timodal Output (MSMO) enable models to gener-
ate summaries that combine both textual and visual
(keyframes or clips) elements.

The development of MSMO datasets was ini-
tially driven by the NLP community, with a pri-
mary focus on the news domain. The founda-
tional MSMO dataset (Zhu et al., 2018b) pio-
neered this by annotating news articles from the
CNN/DailyMail corpus with both textual sum-
maries and salient representative images. Building
on this, MM-AVS (Fu et al., 2021) enriches articles
with a wider array of inputs (text, images, video,
audio, transcripts) for generating a text summary
alongside associated media clips. Similar datasets
exist for other languages, including VMSMO (Li
et al., 2020d), a large-scale Chinese news dataset
for generating summaries and selecting cover im-
ages, and MLASK (Krubiński and Pecina, 2023), a
Czech news corpus with human-written summaries
and manually selected representative images.

Meanwhile, the VS community has increasingly
integrated textual components, creating datasets
where video is the primary input. For example,
VideoXum (Lin et al., 2023) enhances the Activi-
tyNet dataset by linking dense captions to specific
keyframes, enabling joint visual-textual summary
generation. XMSMO-News (Tang et al., 2023)
uses BBC News videos as input, with their titles
serving as the reference textual summary, requiring

the joint selection of representative video content.
Most recently, Instruct-V2Xum (Hua et al., 2024)
provides a large-scale corpus of 30,000 video sam-
ples with high-quality annotations specifically de-
signed for instruction-tuned Video-to-Text+Video
(V2VT) summarization.

4 Methodology

This section traces the evolution of multimodal and
video summarization methods and models across
three paradigms. We begin with (1) Early neural
architectures that addressed MMS and VS with
separate, task-specific models We then examine
(2) Transformer-based methods, whose attention
mechanisms enabled deeper cross-modal reasoning
and integration. Finally, we explore (3) Large Lan-
guage and Vision-Language Models (LLMs and
VLMs), which unify summarization under a single,
generative framework. Our analysis focuses on key
architectural shifts and the progressive integration
of modalities that drove the convergence of these
fields.

4.1 Early Neural Architectures

Early research in both MMS and VS was domi-
nated by specialized neural architectures, which
typically combined Convolutional Neural Net-
works (CNNs) for visual feature extraction with
Recurrent Neural Networks (RNNs) for processing
sequential information.

In the domain of MMS, early systems primarily
targeted text-image pairs, employing architectures
that paired CNN-based image encoders with RNN-
based text decoders. Foundational sequence-to-
sequence frameworks by Zhu et al. (2018a), Chen
and Zhuge (2018), and Li et al. (2018) highlighted
the central challenge: effective cross-modal fusion.
To this end, researchers developed sophisticated
mechanisms to align visual and textual information,
including joint multimodal attention (Zhu et al.,
2020a), selective gating to filter irrelevant visual
content (Li et al., 2020b), hierarchical correlation
modeling (Zhang et al., 2022c), and knowledge
distillation to transfer cross-modal insights to more
compact models (Zhang et al., 2022d).

In parallel, early VS methods focused primarily
on extractive summarization, using RNNs to model
temporal dependencies for selecting keyframes or
video segments. Prominent examples include the
vsLSTM model (Zhang et al., 2016) that combined
LSTMs (Graves and Graves, 2012) with Determi-

162



MMS/VS Methods

Early Neural
Architectures

CNN+RNN (Zhu et al., 2018a; Chen and Zhuge, 2018; Li et al., 2018)

Fusion Mechanisms (Zhu et al., 2020a; Li et al., 2020b; Zhang et al., 2022c,d)

RNN (Zhang et al., 2016; Zhao et al., 2017, 2018; Wang et al., 2019)

Encoder-Decoder (Ji et al., 2019)

Adversarial (Ji et al., 2020; Fu et al., 2019; Zhang et al., 2019)

Spatiotemporal (Yuan et al., 2019; Lal et al., 2019; Son et al., 2024)

Diffusion (Shang et al., 2025)

Transformer

Pre-trained LM Adaptation (Song et al., 2022; Yu et al., 2021)

Unimodal Attention-based
(Fajtl et al., 2019; Apostolidis et al., 2021b);
(Zhu et al., 2020b; Jiang and Mu, 2022)

Hierarchical Attention (Sanabria et al., 2018; Papalampidi and Lapata, 2023)

Self-attention Variants
(Ramakrishnan and Ngan, 2022; Mahon and Lapata, 2024);
(Li et al., 2020c)

CLIP-based Alignment (Narasimhan et al., 2021; Argaw et al., 2024);
(Ghosh et al., 2024; He et al., 2023)

LLM/VLM

VLLM (Maaz et al., 2024; Hua et al., 2025)

LLM Pipelines (Lee et al., 2025)

LLM-based Data Augmentation (Islam et al., 2024; Argaw et al., 2024)

Figure 2: Unified taxonomy of MMS and VS Methods across three paradigms: green means MMS, blue means VS,
and red means both.

nantal Point Processes (DPP) for diversity, hierar-
chical RNNs (H-RNN (Zhao et al., 2017), HSA-
RNN (Zhao et al., 2018)), stacked LSTMs (Wang
et al., 2019), and various encoder-decoder struc-
tures (Ji et al., 2019). Another line of work uti-
lized adversarial training to better align generated
summaries with ground-truth distributions, as seen
in DASP (Ji et al., 2020) and various GAN-based
models (Fu et al., 2019; Zhang et al., 2019). Further
advancements came from spatiotemporal models
like CRSum (Yuan et al., 2019) and MerryGoR-
oundNet (Lal et al., 2019), which integrated both lo-
cal and global video cues. Recent research also ex-
plores diffusion models (Shang et al., 2025). These
approaches were predominantly extractive, aim-
ing to select keyframes or segments. This era was
characterized by task-specific architectures where
explicit modality fusion and salience modeling re-

mained central research challenges.

4.2 Transformer-based Methods

The advent of the Transformer architecture, along
with large-scale pre-trained models like BERT (De-
vlin et al., 2019) and CLIP (Radford et al., 2021),
instigated a paradigm shift. By replacing RNNs
with self-attention mechanisms, these models en-
abled a deeper semantic understanding.

In MMS, the focus shifted toward leveraging
large pre-trained language models as powerful
backbones. Early approaches adapted text-only
models like BART (Lewis et al., 2020) by either
converting images into textual descriptions to fit
the model’s expected input (Song et al., 2022) or
by developing methods to directly inject visual fea-
tures into the language model’s architecture (Yu
et al., 2021).
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In parallel, VS adopted Transformers to over-
come the limitations of RNNs in modeling long-
range temporal dependencies. Models like VAS-
Net (Fajtl et al., 2019) and PGL-SUM (Apostolidis
et al., 2021b) introduced Transformer-based archi-
tectures for frame importance scoring with soft
self-attention and positional encodings, while oth-
ers integrated additional modules like salient region
detection in DSNet (Zhu et al., 2020b), collabo-
rative learning for moment localization in iPTNet
(Jiang and Mu, 2022) and novel spatiotemporal rep-
resentations for the attention mechanism (Son et al.,
2024). This foundation rapidly evolved towards ab-
stractive, video-to-text (V2T) generation. Sophisti-
cated Transformer-based systems, building on ear-
lier hierarchical attention models (Sanabria et al.,
2018; Papalampidi and Lapata, 2023), became
capable of generating coherent, long-form narra-
tives from video, often through hybrid extractive-
abstractive frameworks (Ramakrishnan and Ngan,
2022; Li et al., 2020c; Mahon and Lapata, 2024).

The convergence of MMS and VS was most
significantly catalyzed by vision-language models
like CLIP. Its shared embedding space for images
and text provided a powerful foundation for cross-
modal alignment. This breakthrough enabled a
new class of models that used CLIP embeddings to
ground textual summaries in visual content, seen
in methods for both video summarization (CLIP-It
(Narasimhan et al., 2021), LfVS-T (Argaw et al.,
2024)) and multimodal QA summarization (CLIP-
syntel (Ghosh et al., 2024)). Frameworks like
A2Summ (He et al., 2023) exemplified this trend by
unifying video-text summarization under a single
alignment-guided attention module.

By this stage, MMS and VS shared attention-
based fusion pipelines, common pre-trained en-
coders, and were increasingly framed under a uni-
fied cross-modal objective

4.3 LLM-driven Multimodal Reasoning
The most recent paradigm shift is driven by the
integration of LLMs (Achiam et al., 2023; Tou-
vron et al., 2023) as central reasoning engines,
which excel at contextual comprehension (Brown
et al., 2020), cross-domain reasoning (Wei et al.,
2022; Kojima et al., 2022). The cross modality
understanding of LLMs were enabled by Vision-
Language Models (VLMs) like Flamingo (Alayrac
et al., 2022), BLIP-2 (Li et al., 2023b). These mod-
els established a now-standard architecture: visual
features from a dedicated encoder are projected

into the LLM’s word embedding space, allowing
it to process interleaved sequences of visual and
textual tokens seamlessly. The result is a system ca-
pable of generating summaries that capture abstract
concepts, narrative flow, and causal relationships.

While many foundational VLMs were bench-
marked on general tasks like visual question an-
swering (Min et al., 2024) or dialogue (Song et al.,
2024), their reasoning capabilities are now being
explicitly adapted for summarization. For example,
models like Video-ChatGPT (Maaz et al., 2024)
can be prompted to generate narrative summaries
directly from video. Other approaches use LLMs
in a multi-step pipeline, such as translating video
into intermediate captions and then using a second
LLM pass to assess importance and synthesize a
summary (LLMVS (Lee et al., 2025)).Frameworks
like V2XumLLaMA (Hua et al., 2025) take this
further by unifying multiple summarization sub-
tasks under a single, instruction-tuned model. Be-
yond generation, LLMs are also employed for data
augmentation, creating pseudo-ground-truth anno-
tations to train smaller, more specialized models
(Islam et al., 2024; Argaw et al., 2024).

This LLM-driven paradigm marks the culmi-
nation of the field’s convergence. The core task
is no longer modality-specific fusion but rather
prompting a general-purpose reasoning engine
to distill information from a multimodal source.
Over time, MMS and VS have evolved from sep-
arate, modality-specific pipelines into integrated,
attention-driven, and LLM-powered frameworks.

5 Discussion

5.1 Open Challenges

Despite the rapid convergence of MMS and VS,
several fundamental challenges must be addressed
to create unified, general-purpose systems.

Data Scarcity and Bias Current datasets, as de-
tailed in Section 3, are often confined to narrow
domains like news or instructional videos and ex-
hibit significant cultural and linguistic biases (Yuan
and Zhang, 2024). This scarcity is especially acute
for multilingual and low-resource languages (Lin
et al., 2025), which severely limits model general-
ization. Furthermore, the high cost, intensive labor,
and inherent subjectivity of creating large-scale,
high-quality multimodal datasets impede the devel-
opment of robust and comprehensive benchmarks.
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Inadequate Evaluation Evaluating generated
summaries remains a major hurdle. Existing
metrics struggle to holistically assess textual
quality, visual salience, and cross-modal con-
sistency (Section 2.2). While recent methods
like CLIPScore (Hessel et al., 2021) and mLLM-
EVAL (Zhuang et al., 2024) represent progress,
they are often too coarse-grained to detect subtle
but critical factual errors or misalignments between
modalities. Consequently, human evaluation re-
mains the gold standard, but its high cost and low
scalability make it impractical for large-scale or
long-form content.

Long-Context Modeling Multimodal summa-
rization often demands reasoning over hours of
video or documents comprising thousands of to-
kens (Chandrasegaran et al., 2024). The capacity
of current models to maintain context, track narra-
tive arcs, and identify key moments over such long
durations remains largely unproven, as they are typ-
ically benchmarked on short-form content. Even
with advances in long-context architectures, mod-
els face a difficult trade-off between computational
efficiency and contextual completeness, often lead-
ing to the omission of salient information.

Cross-Modal Reasoning and Faithfulness En-
suring that a summary is semantically faithful to
all source modalities is a core challenge. Models
are prone to hallucinating content unsupported by
visual evidence or misinterpreting images when tex-
tual context is ambiguous (Wan and Bansal, 2022).
Achieving factual consistency requires fine-grained
alignment and robust visual-semantic reasoning ca-
pabilities that current models only approximate (Li
et al., 2018). This issue is particularly critical in
high-stakes domains like healthcare, law, and ed-
ucation, where faithful summarization is not just
desirable but essential (Zhang et al., 2022b).

5.2 Future Directions

Abstractive Multimodal Summarization While
abstractive text summarization is well studied, ex-
tending this to non-textual modalities remains a
largely unexplored challenge. True abstractive gen-
eration—creating novel visual narratives, coher-
ent infographics, or synthesized video clips from
source content—is a largely unexplored domain.
Progress will depend heavily on foundational ad-
vances in generative AI and cross-modal synthe-
sis (Xing et al., 2024).

Novel Evaluation Paradigms Developing mul-
timodal evaluation metrics that jointly assess con-
tent selection, factual alignment, and cross-modal
grounding is critical. Leveraging multimodal LLM-
as-judge (Zhuang et al., 2024) with explicit reason-
ing steps, combined with task-specific benchmarks
for factuality and coherence, may help bridge the
gap between automated scoring and human judg-
ment. Human-AI collaborative evaluation that com-
bines automatic tools with expert judgment for
more reliable assessment and attribution methods
that enables source-to-summary traceability across
modalities are also promising directions.

Hierarchical Video Modeling To tackle long-
form content, hierarchical and graph architec-
tures that process information at multiple gran-
ularities—from local segments to global narra-
tives—are essential (Zhang et al., 2022a; Yuan
et al., 2025). This approach, combined with ad-
vances in memory-efficient attention, retrieval-
augmented generation (RAG), and streaming pro-
cessing, could enable robust, real-time summariza-
tion of lengthy and dynamic content.

User-Centric and Explainable Systems To max-
imize utility and trust, future systems must be more
interactive and transparent. This involves build-
ing controllable systems where users can specify
summary length, style, focus, or modality balance,
likely achieved via instruction tuning or reinforce-
ment learning. It also includes developing explain-
able systems that provide justifications for their
output and trace information back to the source,
fostering user trust and enabling easier debugging.
Integrating query-based personalization (Li et al.,
2023a) will further enhance the practicality of these
systems in real-world applications.

6 Conclusion

This survey has bridged the traditionally distinct yet
increasingly convergent fields of multimodal and
video summarization, offering a unified analysis
of their common tasks, datasets, evaluation met-
rics, modeling approaches, and future trajectories.
We highlight the pivotal role of Vision-Language
Models in accelerating this convergence. Contin-
ued research within this integrated framework is
paramount for developing intelligent systems capa-
ble of holistically understanding and summarizing
the rich tapestry of multimodal information.
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Abstract

Large Language Models (LLMs) have achieved
impressive performance in text summarization
and are increasingly deployed in real-world ap-
plications. However, these systems often in-
herit associative and framing biases from pre-
training data, leading to inappropriate or unfair
outputs in downstream tasks. In this work, we
present AdvSumm (Adversarial Summariza-
tion), a domain-agnostic training framework
designed to mitigate bias in text summariza-
tion through improved generalization. Inspired
by adversarial robustness, AdvSumm intro-
duces a novel Perturber component that applies
gradient-guided perturbations at the embedding
level of Sequence-to-Sequence models, enhanc-
ing the model’s robustness to input variations.
We empirically demonstrate that AdvSumm ef-
fectively reduces different types of bias in sum-
marization—specifically, name-nationality bias
and political framing bias—without compro-
mising summarization quality. Compared to
standard transformers and data augmentation
techniques like back-translation, AdvSumm
achieves stronger bias mitigation performance
across benchmark datasets.

1 Introduction

Large Language Models (LLMs) have achieved
impressive performances in text generation tasks,
including summarization (Zhang et al., 2024). As
a result, LLMs are being integrated into real-world
applications. For example, social media platforms
use them to generate personalized feed summaries
based on user preferences (Eg et al., 2023); search
engines provide direct summaries of relevant docu-
ments in response to user queries1; and enterprise
solutions employ them to summarize meeting tran-
scripts, and emails2, among other use cases. How-
ever, prior research has shown that these systems of-
ten inherit biases from their pretraining data (Hovy

1Perplexity AI
2Microsoft Copilot for Sales

and Prabhumoye, 2021; Ladhak et al., 2023; Bom-
masani et al., 2021; Liang et al., 2023), which can
pose serious threats in downstream tasks.

As shown in Figure 1, summaries generated by
existing systems can exhibit various forms of bias.
For example, they may contain associative biases
(Dinan et al., 2020; Sun et al., 2019), which reflect
preferences or prejudices toward certain groups,
or framing biases (Lee et al., 2022), which con-
vey implicit political leanings. Most prior work on
bias mitigation relies on domain-specific strategies,
such as expert interventions (Rudinger et al., 2018;
Felkner et al., 2023), curated word lists (Garimella
et al., 2021), or the collection of additional data
to improve population representation. These ap-
proaches are often expensive and do not generalize
well across different types of bias.

Moreover, most domain-agnostic bias mitigation
techniques have been developed for classification
tasks (e.g., employing Risk Minimization meth-
ods (Arjovsky et al., 2020) across different target
groups (Adragna et al., 2020; Donini et al., 2020)).
However, these methods are not scalable to text
generation tasks, where bias may arise from the
selection of multiple tokens rather than a single
output label. This highlights the need for bias miti-
gation strategies for text generation models that are
independent of particular domains or forms of bias.

Given the generalization limitations of existing
bias mitigation frameworks in text generation, we
propose AdvSumm: Adversarial Summarization.
Our approach integrates a domain-agnostic com-
ponent, Perturber, into the model training process
to reduce multiple forms of bias in generated sum-
maries. We reformulate bias reduction in text sum-
marization as a generalization problem that can be
addressed by enhancing the model’s robustness to
input perturbations (Yi et al., 2021). Prior work
on Adversarial Training (Goodfellow et al., 2015;
Kaufmann et al., 2022) across applications has
shown its effectiveness in improving robustness.
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Figure 1: Example illustrating how the BART summarization model hallucinates a footballer’s nationality based on
name associations—predicting Indian for "Ram Gupta" and Vietnamese for "Minh Nguyen." AdvSumm mitigates
these biases.

It is unclear, however, how adversarial training can
be applied to language generation tasks. Building
on this, we introduce an adversarial training strat-
egy designed to mitigate biases originating from
pre-training data by improving model robustness
during fine-tuning.

While other fields have benefited from adver-
sarial robustness, it is difficult to apply to natural
language due to the discrete nature of text data,
unlike continuous modalities such as images or
speech. We adopt adversarial training by intro-
ducing perturbations with the Perturber component
at the embedding level of Sequence-to-Sequence
(Seq2Seq) models (Vaswani et al., 2023). As illus-
trated in Figure 2, the Perturber takes in the con-
tinuous embedding from the Transformer encoder,
generates an adversarial embedding, and pushes the
decoder output towards the same ground truth sum-
mary. This adversarial embedding helps improve
robustness during training. Compared to baseline
methods, our approach shows reductions in bias
metrics while retaining the summarization quality.

AdvSumm is designed to generalize across mul-
tiple types of bias. In this work, we demonstrate
empirical improvements in mitigating two specific
forms of bias: name-nationality bias (Ladhak et al.,
2023) and political framing bias (Lee et al., 2022).
Our key contributions are as follows:

• We propose a novel, robustness-based unified
training strategy that incorporates a domain-
agnostic component, Perturber, to promote
less biased text generation.

• We show empirical improvements of up to

55% in arousal scores for political framing
bias and 3.85 percentage points in hallucina-
tion rate for name-nationality bias, outper-
forming both standard transformer models
and data augmentation baselines such as back-
translation.

2 Related Work

Bias in Language Understanding. Prior re-
search has extensively investigated various forms
of bias in language understanding systems (Steen
and Markert, 2024; Rudinger et al., 2018; Lad-
hak et al., 2023; Felkner et al., 2023; Lee et al.,
2022). Several studies have identified key factors
contributing to such biases, including dataset qual-
ity (Maynez et al., 2020), bias in data annotation
strategy (Fleisig et al., 2023; Larimore et al., 2021;
Sap et al., 2022), and the level of abstractiveness
(Ladhak et al., 2022). Most of this work has cen-
tered on bias identification using methods such as
token-masked likelihood estimation (Nangia et al.,
2020; Nadeem et al., 2021), simple classifier-based
frameworks (Wessel et al., 2023), or open-ended
prompt-based generation (Dhamala et al., 2021).
However, only a limited number of benchmarks
specifically address bias in the context of language
summarization.

Generalization for Bias Mitigation. Research in
computer vision has explored contrastive learning
strategies for domain transfer (Ganin et al., 2016)
and improved generalization (Li et al., 2018), both
of which also have potential implications for bias
mitigation. Nanda et al. (2021), for instance, high-
lights a connection between model robustness and
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Figure 2: Schematic overview of AdvSumm with Perturber introduced between Encoder and Decoder.

biases in facial recognition tasks. In the context
of text generation, data augmentation techniques
have been widely adopted for improving robust-
ness (Xie et al., 2020) and faithfulness in summa-
rization (Cao and Wang, 2021). Closest to our
work, FRSUM (Wu et al., 2022a) and AdvSeq (Wu
et al., 2022b) show how inducing robustness in
language generation models encourages faithful-
ness on summarization tasks. We extend this line
of research by introducing adversarial training for
robustness specifically targeted at bias mitigation.
We demonstrate that our proposed method outper-
forms back-translation-based data augmentation on
bias mitigation benchmarks.

Another line of prior work focuses on reducing
model bias through Empirical Risk Minimization
(ERM) and Invariant Risk Minimization (IRM) (Ar-
jovsky et al., 2020), both of which aim to enhance
generalization across samples from different target
groups (Adragna et al., 2020; Donini et al., 2020).
These methods, however effective, typically require
expert-labeled subgroup annotations, limiting their
scalability in practice.

Our approach builds upon these frameworks,
proposing a domain-agnostic adversarial training
strategy specifically designed to mitigate biases in
text summarization. To our knowledge, we are the
first to adapt adversarial training effectively for bias
mitigation in sequence-to-sequence text generation
models, providing a scalable and generalized so-
lution across multiple types of bias (Zhang et al.,
2024; Bommasani et al., 2021)

3 Methods

3.1 Problem Setting

We address the problem of bias mitigation in text
summarization, with the goal of reducing biases
present in summaries generated from input doc-

uments. Drawing from existing summarization
benchmarks, we focus on two primary types of
bias. The first is associative bias, where models
associate certain names or demographic indicators
with specific roles or attributes—such as linking a
common Vietnamese name like Minh Nguyen with
a particular nationality, as illustrated in Figure 1,
due to spurious correlations learned during train-
ing (Ladhak et al., 2023). This also encompasses
gender bias, where models tend to associate words
like delicate, pink, and nurse with women, and
entrepreneur, arrogant, and bodyguard with men
(Garimella et al., 2021). The second is framing
bias, which refers to political slant in the generated
text (e.g., left-, right-, or center-leaning narratives).
Our objective is to develop a summarization sys-
tem that is effective across different kinds of biases,
without relying on domain-specific adaptations.

3.2 Robustness and Generalization

Model bias can originate from the training data
which inherits biases from the annotation or data
collection strategy (Hovy and Prabhumoye, 2021;
Calmon et al., 2017; Calders and Žliobaitė, 2013;
Ladhak et al., 2023). This can cause models to
learn spurious correlations, leading to unfair treat-
ment of certain target groups. Consequently, bias
mitigation can be viewed as a generalization prob-
lem (Adragna et al., 2020; Donini et al., 2020),
where the goal is to ensure that the model general-
izes well across diverse groups.

Prior work has shown that improving model ro-
bustness to input perturbations can enhance gener-
alization (Ben-Tal et al., 2009; Xing et al., 2021).
Following Yi et al. (2021)’s improvement guaran-
tees on empirical risk in domain generalization, we
adopt Adversarial Training (Madry et al., 2019)
as a strategy for bias mitigation. Specifically, we
fine-tune pre-trained summarization models using
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Algorithm 1 Adversarial Summarization
Input: Document x, Refrence Summary y, at-
tack params t, ϵ
e′x = Encoder(x)
for i = 0, 1...t do
L = CELoss(Decoder(e′x), y)
Per = ∂L

∂e′x
Per ←Minimum(Per, ϵ)
e′x = e′x + Per

end for
L = CELoss(Decoder(e′x), y)
Update Encoder and Decoder with gradient
desc on L

adversarial examples during training. Since we
do not include any bias-specific adaptations, our
method offers a unified approach that is effective
across multiple types of bias.

3.3 Adversarial Training
The problem of adversarial attacks has been widely
studied in deep learning, where small changes in
model input can cause a model to completely flip
its output with high confidence (Szegedy et al.,
2014). For instance, a small change in input text
such as someone’s name can cause the model
to generate a biased and unfaithful summary, as
shown in Figure 1. Empirically, adversarial train-
ing has improved robustness to input perturbations
in large models better than other proposed frame-
works (Wong and Kolter, 2018; Zhang et al., 2022).
Adversarial training is formulated as a min-max
optimization problem that trains a model on adver-
sarial samples generated with Projected Gradient
Descent (PGD) (Madry et al., 2019). The change
in input example to generate an adversarial sample
is bounded by an l − p norm radius to preserve the
semantics of the input data.

Recent research (Štorek et al., 2025; Mehrotra
et al., 2024) has used repeated black-box model
querying to identify perturbations for crafting ad-
versarial examples. However, such approaches are
not directly applicable to gradient-based adversar-
ial training due to the discrete nature of natural
language. So we use the above adversarial train-
ing strategy in the latent space of Ses2Seq models
to strengthen the robustness of the text generation
model. With encoder and decoder architectures
separated in the Seq2Seq model, we can apply the
adversarial perturbations to the continuous output
of the model encoder.

3.4 AdvSumm: Adversarial Summarization

Using the adversarial training strategy, we propose
AdvSumm for mitigating bias in text summariza-
tion. As shown in Figure 2, there are three major
components in AdvSumm. First is an encoder E,
which maps the input text x into a continuous latent
space providing a text embedding E(x) = ex. The
second component, Perturber, makes perturbations
to ex in the direction that maximally increases the
loss function L, thereby targeting regions of the
embedding space that are most likely to degrade
the model’s generation quality. The continuous
text representation ex allows us to generate an ad-
versarial sample e′x using the gradient-based meth-
ods such as PGD (Madry et al., 2019). The last
component decoder D maps back the perturbed
e′x back to the input space. We use the Trans-
former (Vaswani et al., 2023) encoder and decoder
architectures and optimize the cross-entropy loss
L(y,D(e′x)), where y is the ground truth bias-free
summary. This process is outlined in Algorithm 1.

We use the Fast Gradient Signed Method
(FGSM) (Goodfellow et al., 2015) to build the Per-
turber component, which is a cheaper single-step
variant of PGD, with the number of iterations t = 1.
The perturbed embedding is generated with the fol-
lowing embedding update in FGSM:

e′x = ex + ϵ · sgn
(
∂L
∂ex

)
(1)

where, sgn(.) represents the sign of the quantity
and ϵ captures the attack strength.

Embedding ex and model’s predicted output
ŷ = D(ex) are generated with a forward pass of
the Encoder and Decoder respectively. The model’s
predicted output ŷ along with the ground-truth sum-
mary y are used to compute the loss L(y, ŷ). The
sign of the gradient of the computed loss function
L is then used to modify ex to e′x using equation 1.
Similar to the Stochastic Gradient Descent parame-
ter optimization technique, equation 1 identifies the
steepest ascent of loss as a function of embedding
ex. Therefore, the Perturber modifies the embed-
ding such that the update direction results in the
largest increase in the generation loss. Since this
change leads to the highest increase in loss, this
adversarial embedding e′x must lead to the worst
generated summary among all the embeddings in
the ϵ ball radius of ex. In the training procedure,
this perturbed embedding e′x is then used to jointly
train the Encoder and Decoder.
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Dataset Type #Train #Test #Val
XSUM News Summ 203,577 11,305 11,301
Wiki-Nationality Nationality Hallucination 0 71,763 0
Multi-Neus Multi-polar News Summ 2,453 307 307

Table 1: Statistics of datasets used in this work.

4 Experiments

4.1 Datasets
We evaluate AdvSumm on two existing bias sum-
marization benchmarks: name-nationality bias
(Ladhak et al., 2023) and political framing bias
(Lee et al., 2022). These datasets allow us to as-
sess the generalization capability of our method
across different kinds of bias. Specifically, name-
nationality bias primarily arises from hallucinated
tokens—where the model incorrectly introduces
demographic attributes (e.g., inferring nationality
based on names)—while political framing bias in-
volves more subtle language choices at the doc-
ument level, reflecting ideological leanings. By
addressing both token-level and discourse-level bi-
ases, we demonstrate the broader applicability of
our approach. Dataset statistics are summarized in
Table 1.

Name-Nationality Bias. For assessing name-
nationality hallucination, we use the Wiki-
Nationality dataset (Ladhak et al., 2023) which
was constructed by altering entity names in articles
to associate them with different nationalities, with-
out changing other biographical details. This was
done to assess whether models will use an incor-
rect/assumed nationality in the summary just based
on the person’s name.

Framing Bias. We explore framing bias with the
Neutral multi-news Summarization (NeuS) dataset
(Lee et al., 2022), which comprises triplets of left,
right, and center-slanted news articles paired with
neutral summaries focused on the facts in the arti-
cles.

4.2 Metrics
Name-Nationality Bias. We calculate the hallu-
cination rate as the proportion of articles where
the model incorrectly attributes a nationality in the
generated summary which is different from the na-
tionality in the input document. The aim of our
approach is to reduce the hallucination rate and
hence, reduce the spurious association of names to
specific nationalities.

Attack Strength ROUGE-1 Ar+ Ar− Arsum
0 44.81 2.19 1.07 3.26

10−3 44.38 1.82 0.93 2.75
10−2 41.07 0.55 0.29 0.84
10−1 14.52 0.29 0.16 0.45

Table 2: Flan-T5 on Multi-Neus with different degrees
of attack strength.

Framing Bias. Following Lee et al. (2022),
we use arousal scores from the Valence-Arousal-
Dominance (VAD) lexicon (Mohammad, 2018),
which provides valence (v), arousal (a), and dom-
inance (d) annotations for a list of words. The
positive arousal score (Ar+) and negative arousal
score (Ar−) are defined as the summed arousal val-
ues of words with positive and negative valence,
respectively, based on the VAD annotations. The
combined arousal score (Arsum) is the sum of Ar+
and Ar−. The goal of AdvSumm is to mitigate po-
litical framing in generated summaries by minimiz-
ing both Ar+ and Ar−, while preserving overall
summarization quality.

Summarization Quality. We utilize ROUGE
(Lin, 2004) scores to measure the summarization
quality. We report ROUGE-1 in our results.

4.3 Settings

Models. We use two encoder-decoder trans-
former models for the text summarization task:
BART-large (Lewis et al., 2019) and Flan-T5 base
(Chung et al., 2022). BART is a denoising au-
toencoder pre-trained with a corrupted text recon-
struction objective, making it well-suited for gen-
eration tasks. In contrast, Flan-T5 builds on the
T5 architecture (Raffel et al., 2023) and is fur-
ther instruction-tuned on a broad mixture of tasks,
enabling better generalization to unseen instruc-
tions and objectives. This contrast allows us to
evaluate the robustness and generalization capa-
bilities of AdvSumm across models with different
pre-training strategies. We leave it to future work
to adapt our Perturber component to decoder-only
LLM architectures.

For name-nationality bias, models are fine-

176



Model ROUGE-1 ↑ American↓ Asian↓ African↓ European↓ Overall↓
BART 43.45 0.84 13.41 0.92 7.55 5.61
Flan-T5 39.99 0.03 2.39 0.06 0.57 0.76
Back-Trans (BART) 41.91 1.08 8.69 1.32 4.75 3.96
AdvSumm (BART) 40.02 0.40 4.42 0.27 1.96 1.76
AdvSumm (Flan-T5) 37.86 0.02 2.33 0.16 0.38 0.72

Table 3: Hallucination rate over multiple countries in Wiki-Nationality dataset. Am represents American, Af
African, As Asian and Ovr is the Hallucination rate over all countries. AdvSum improves the Hallucination rate
while maintaining similar ROUGE-1 scores.

tuned on the XSUM news summarization dataset
(Narayan et al., 2018) and evaluated on the Wiki-
Nationality benchmark. For framing bias, we
adopt the fine-tuning scheme of Lee et al. (2022)
for fine-tuning on the training split of the Multi-
Neus dataset. AdvSumm applies adversarial train-
ing with the perturber component during this fine-
tuning stage.

Baselines. We compare AdvSumm against two
baselines: (i) models fine-tuned on the same data
without the perturber component, and (ii) a data
augmentation using back-translation. For the latter,
training data is augmented by paraphrasing input
texts via back-translation from German, effectively
doubling the training set size while keeping the
targets unchanged (Cao and Wang, 2021). We eval-
uate the effectiveness of this back-translation-based
generalization strategy against our adversarial gen-
eralization method (AdvSumm).

Implementation. We experiment on an NVIDIA
A100 GPU with 40 GB VRAM. We finetune all
models using a learning rate of 5e-5 with AdamW
optimizer and 10% warm-up steps. Maximum
input length is set to 1024 for XSUM and 512
for Multi-Neus. The maximum output generation
length is taken as 142 along with a beam size of 6
for Wiki-Nationality and a generation length of 250
with a beam size of 4 is used for Multi-Neus. Gen-
eration configurations (like input, output lengths,
beam sizes, etc.) are adopted directly from Lee et al.
(2022). Other hyperparameters like the number of
epochs are tuned on validation splits. All results
are reported on the test split. For the baselines,
we use English-to-German and German-to-English
translation models provided by Fairseq for back-
translation.

We tune the attack strength of the Perturber Com-
ponent by varying the value of ϵ in equation 1. A
higher value of ϵ gives the Perturber higher free-
dom to change the embedding ex but also leads

to a greater change in text semantics, which will
lead to a drop in summarization performance. For
practical implications, ϵ behaves like a “knob” for
controlling the amount of bias while trading off
the summarization quality. We show the tuning
results of Flan-T5 on the Multi-Neus dataset in Ta-
ble 2 with the ROUGE-1 and Arousal scores. We
observe a drop in bias as well as summarization
quality as we increase the value of attack strength.
We find ϵ = 0.01 to be optimal, which we use for
further experiments.

5 Results

We present our empirical findings on the two types
of biases in this section.

5.1 Name-Nationality Bias

The results on the Name-Nationality benchmark
are illustrated in Table 3, which shows a compara-
tive analysis between the baseline models and our
proposed approach, AdvSumm, focusing on region-
specific hallucination rates as discussed in Ladhak
et al. (2023), as well as ROUGE-1 scores on the
XSum evaluation sets to compare summarization
quality.

In the Name-Nationality setting, AdvSumm sig-
nificantly lowers hallucination rates in summaries
across American, Asian, and European contexts
compared to base models. It effectively reduces
overall hallucination rates underscoring the effec-
tiveness of AdvSumm in enhancing the fidelity of
summarization models, ensuring more reliable sum-
maries across diverse geopolitical landscapes while
maintaining competitive ROUGE-1 scores.

AdvSumm’s lower ROUGE-1 scores on the test
sets, as shown in Table 3, align with prior research
findings that Adversarial Training, while enhancing
model robustness, can reduce performance on clean
data (Madry et al., 2019). This tradeoff is expected
in data augmentation techniques, where the goal
is to improve model resilience (reduce bias) while
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Models/ Framing Bias Metrics Salient Info
Settings Ar+ ↓ Ar− ↓ Arsum ↓ ROUGE-1 ↑
BART 1.33 0.76 2.09 45.94
Flan-T5 2.19 1.07 3.26 44.81
Back-Trans 1.40 0.77 2.17 46.51
AdvSum(BART) 0.59 0.33 0.92 43.01
AdvSum(Flan-T5) 0.55 0.29 0.84 41.07

Table 4: Results of AdvSum on of Multi-Neus dataset. An attack strength of 0.01 is used for AdvSum. BART-large
is used for training on Back-Translated data. Ar stands for Arousal.

Figure 3: Hallucination rate for BART baseline and one trained using AdvSum. Red corresponds to higher, and
Blue corresponds to lower hallucination rate.

minimizing the performance drop on clean datasets.

5.2 Framing Bias

Evaluations on the Multi-Neus benchmarks are out-
lined in Table 4. We report the Framing Bias Met-
ric consisting of positive Arousal Score A+, neg-
ative Arousal Score A−, and their sum Asum. We
also report ROUGE-1 for capturing the summa-
rization quality by each setting. We also show the
bias evaluations of the back-translation-based data-
augmentation approach in Table 4.

On the Multi-Neus dataset, we see the least bi-
ased summaries in the case of AdvSumm on Flan-
T5, with the lowest positive and negative Arousal
scores. Both generalization approaches (ours and
back-translation) outperform Flan-T5, which sup-
ports the hypothesis on bias mitigation with ro-
bustness. AdvSumm surpasses the back-translation
approach by 1.4 absolute points on Arsum, while
taking a slight dip in ROUGE-1 scores. We also
note that our end-to-end adversarial training ap-
proach is more computationally efficient than back-

translation, given the time taken by dual-translation
and the double training steps of summarization fine-
tuning.

We also observe consistently lower bias scores
across both benchmarks when using the Flan-T5 ar-
chitecture. Flan-T5 benefits from instruction tuning
on a diverse set of tasks, including ethical reason-
ing and instruction following. We hypothesize that
this additional tuning phase not only enhances zero-
shot generalization but also better aligns the model
with human expectations, helping it avoid spurious
biases inherited from pre-training.

5.3 Error Analysis

For name-nationality bias, we report a heatmap
as shown in Figure 3 where the hallucination rate
for all combinations of countries is calculated. In
alignment with the numerical results, hallucination
rates for Asian countries as perturbed nationalities
are significantly higher for the Bart baseline than
our approach AdvSumm. We notice that, however,
for a few combinations like Great Britain-Japan,
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AdvSum Texas Church Shooting: A gunman opened fire at a church in Texas on Sunday, killing two
people and wounding three others.

Source
News

Shooting at Texas Church Leaves 2 Parishioners Dead, Officials Say: A gunman opened fire at
a church in Texas on Sunday morning, killing two people with a shotgun before a member of
the church’s volunteer security team fatally shot him, the authorities said. About 250 people
were inside the auditorium of the West Freeway Church of Christ in White Settlement, near
Fort Worth, when the gunman began shooting just before communion, said Jack Cummings, a
minister at the church. Mr. Cummings said the gunman was “acting suspiciously” before the
shooting and drew the attention of the church’s security team.

Table 5: An example of positive arousal generated news. AdvSum hallucinates the text in red color. Each of the
three examples contains <Title>:<Article>. The Center news article is shown in Source News.

Generated
News

Trump to End DACA: President Trump
will announce on Tuesday that he is end-
ing a controversial program that protects
nearly 800,000 young undocumented im-
migrants from deportation, media reports
indicated late Sunday.

Neutral
News

Reports Say DACA Is Over: President
Trump will announce on Tuesday that he
is ending a controversial program that
protects nearly 800,000 young undoc-
umented immigrants from deportation,
media reports indicated late Sunday.

Table 6: A generated news summary compared to neu-
tral news. Each example contains <Title>:<Article>

Vietnam-USA, there is a slight increase in the hal-
lucination rate.

For framing bias, most of the biased generation
is still a result of model hallucination. The example
shown in Table 5 shows the text in red color, which
is hallucinated by the model. The "wounding of
three others" is not mentioned in the source article.
Additionally, current Framing bias metrics fail to
capture the context around lexicons. An example is
shown in Table 6, where the positive arousal score
given by the Lexicon-based metric is zero, which is
clearly wrong, looking at the title of the generated
news.

6 Conclusions

In this work, we introduced AdvSumm, a domain-
agnostic adversarial training framework for bias
mitigation in text summarization. Motivated by
the limitations of existing bias mitigation strate-
gies—particularly their domain-specific nature and
difficulty generalizing across different types of bi-
ases—we reformulated bias reduction as a gen-
eralization problem, tackled through adversarial
robustness. By introducing the Perturber mod-

ule to apply embedding-level adversarial perturba-
tions during fine-tuning, we demonstrated that Ad-
vSumm effectively reduces both token-level biases
(e.g., name-nationality associations) and document-
level biases (e.g., political framing) without com-
promising summarization quality. Empirical re-
sults on benchmark datasets highlight that Adv-
Summ outperforms standard transformers and back-
translation baselines, offering a unified and scalable
solution for fairer text generation.

Limitations

Our study focuses on bias mitigation in text sum-
marization using encoder-decoder transformer ar-
chitectures. However, many recent summarization
systems adopt decoder-only architectures, where
directly applying the Perturber component in its
current form is not straightforward. Future work
could explore extending adversarial perturbations
to individual layers of the transformer decoder, en-
abling the approach to generalize to decoder-only
models as well.

Ethics Statement

We conduct our evaluations using publicly avail-
able datasets that do not contain personally sensi-
tive information or toxic content. One important
ethical consideration is that developing robust sum-
marization systems, as proposed in this paper, con-
tributes to ongoing efforts to reduce harmful biases
in natural language generation systems by mitigat-
ing biases inherited from pre-training data. For ex-
ample, prior work has shown that biased news fram-
ing can contribute to political polarization (Han and
Federico, 2017), and name-nationality associations
can reinforce harmful stereotypes in text generation
(Ladhak et al., 2023).

By improving the robustness of summarization
models, our approach takes a step toward address-
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ing these issues. However, we acknowledge that
our work does not evaluate all forms of bias that
may arise in text summarization tasks, nor does it
fully evaluate potential side effects of the approach,
such as its impact on other aspects of faithfulness
or other types of bias in summarization. Future
research should explore these broader impacts to
ensure that summarization systems are both fair
and faithful across different contexts and biases.
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Abstract
We introduce NSF-SCIFY, a comprehensive
dataset of scientific claims and investigation
proposals extracted from National Science
Foundation award abstracts. While previous
scientific claim verification datasets have been
limited in size and scope, NSF-SCIFY rep-
resents a significant advance with 2.8 mil-
lion claims from 400,000 abstracts spanning
all science and mathematics disciplines. We
present two focused subsets: NSF-SCIFY-
MATSCI with 114,000 claims from materials
science awards, and NSF-SCIFY-20K with
135,000 claims across five NSF directorates.
Using zero-shot prompting, we develop a scal-
able approach for joint extraction of scientific
claims and investigation proposals. We demon-
strate the dataset’s utility through three down-
stream tasks: non-technical abstract generation,
claim extraction, and investigation proposal ex-
traction. Fine-tuning language models on our
dataset yields substantial improvements, with
relative gains often exceeding 100%, particu-
larly for claim and proposal extraction tasks.
Our error analysis reveals that extracted claims
exhibit high precision but lower recall, suggest-
ing opportunities for further methodological
refinement. NSF-SCIFY enables new research
directions in large-scale claim verification, sci-
entific discovery tracking, and meta-scientific
analysis.

1 Introduction

The overall growth rate of scientific publications
is estimated to be 4% annually, with a doubling
time of 17 years (Bornmann et al., 2021). Within
this deluge, researchers, reviewers, and the gen-
eral public struggle to separate substantiated claims
from spurious ones—whether it is the “quantum
supremacy” assertions in computing, the short-
lived excitement over LK-99 superconductors3,

*Corresponding author, †co-first author
3for an entertaining digression c.f., https://en.

wikipedia.org/wiki/LK-99

Figure 1: A sample record from our dataset. Each record
contains 1) Award ID and title, 2) NSF Directorate,
3) Technical and non-technical abstracts, 4) Scientific
Claims, 5) Investigation Proposals, and 6) Associated
publications, when present.

or the misunderstanding surrounding microplastic
leaches from black plastic spatulas4. Manual verifi-
cation of ever growing body of scientific claims has
become intractable, yet the economic and societal
consequences of unverified claims are increasingly
severe.

Wadden et al. (2020) introduced the task of sci-
entific claim verification with the SciFACT dataset,
focusing primarily on automatic verification of sci-
entific claims. Follow up works (see Section 2
for a detailed account) have mostly focused on the
healthcare, building datasets from scientific pub-
lications, and modest-sized dataset creation. In
this work, we relax all of these aspects and look at
building at least an order of magnitude large-scale

4c.f., https://nationalpost.com/news/canada/
black-plastic
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Dataset # claims # docs Evidence Source Domain

SciFACT (Wadden et al., 2020) 1.4K 5K Research papers Biomedical
PubHEALTH (Kotonya and Toni, 2020) 11.8K 11.8K Fact-checking sites Public health
CLIMATE-FEVER (Diggelmann et al., 2020) 1.5K 7.5K Wikipedia articles Climate change
HealthVer (Sarrouti et al., 2021) 1.8K 738 Research papers Healthcare
COVID-Fact (Saakyan et al., 2021) 4K 4K Research, news COVID
CoVERT (Mohr et al., 2022) 300 300 Research, news Biomedical
SciFACT-Open (Wadden et al., 2022) 279 500K Research papers Biomedical

NSF-SCIFY-MATSCI (ours) 114K 16K NSF award abstracts Material Science
NSF-SCIFY-20K (ours) 135K 20K NSF award abstracts All Science & Math
NSF-SCIFY (ours) 2.8M 400K NSF award abstracts All Science & Math

Table 1: This table comparison clearly illustrates the scale advantage of NSF-SciFy over existing scientific claim
verification datasets. While previous datasets like SciFACT and PubHEALTH contain at most thousands of claims
from published research papers or fact-checking sources, our NSF-SCIFY-MATSCI and NSF-SCIFY-20K datasets
individually contribute more than 100K claims. The full NSF-SCIFY dataset represents an order-of-magnitude
increase with 2.8M claims across 400K abstracts spanning all science & math disciplines. This work introduces
grant abstracts as a novel, untapped source for scientific claim extraction, complementing existing approaches that
focus on published literature, news articles, or social media content.

scientific claim dataset covering all of basic science.
We envision building of such large-scale, scientific
claim datasets to help future work on robust scien-
tific claim verification systems.

We introduce NSF-SCIFY1, a comprehensive
dataset of claims and investigation proposals ex-
tracted from National Science Foundation (NSF)
award abstracts. We choose NSF abstracts as our
source material for several reasons:

1. NSF is a primary driver of U.S. scientific in-
novation, funding approximately 25% of all
federally supported basic research, spanning
the entirety of science and math areas, with an
annual budget of $9.9 billion (FY 2023). Any
claim dataset derived from the NSF awards
database should faithfully represent the scien-
tific Zeitgeist.

2. NSF’s rigorous subject matter expert-review
process provides an high-quality filter for the
claims made in funded proposals.

3. The public availability and permissive usage
terms of the NSF awards database makes it an
excellent resource for open science research.

4. Previous datasets on scientific claims have
been derived from scientific papers, but claims
in scientific grants, and particularly investiga-
tion proposals, remain unstudied.

While not this focus of this paper, grant award ab-
stracts, additionally, provide a unique opportunity
to study the relationship between what researchers
claim and what they propose to investigate. This
could offer valuable insights into scientific practice

1Short for “NSF SCIentific FeasibilitY”.

and the evolution of research questions.
In this paper, we make the following contribu-

tions: (1) We introduce NSF-SCIFY, the largest
scientific claim dataset to date with 2.8M claims
extracted from 400K NSF award abstracts, estab-
lishing grant proposals as a novel source for scien-
tific claim extraction; (2) We create NSF-SCIFY-
MATSCI focusing exclusively on materials science
with 114K extracted claims from 16K abstracts.
This is the first materials science claim dataset and,
in number of extracted claims, this alone is an or-
der of magnitude bigger than the largest publicly
available claim dataset; In addition, we also cre-
ate NSF-SCIFY-20K with 135K claims spanning
five NSF directorates. (3) We develop a zero-shot
prompting approach for joint extraction of scien-
tific claims and investigation proposals as a scal-
able way to bootstrap high-precision, large-scale
scientific claim datasets; (4) We present novel eval-
uation metrics for claim/proposal extraction based
on LLM judgments, showing that fine-tuned mod-
els significantly outperform base models; and (5)
Finally, we release all datasets and trained models
from our work for unfettered research and com-
mercial use. Our dataset and methods enable new
opportunities for large-scale claim verification, sci-
entific discovery tracking, and meta-scientific re-
search.

2 Related Work

Scientific claim extraction and verification has
emerged as an important research area as the vol-
ume of scientific literature continues to grow expo-
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nentially. Previous work has primarily focused on
claims from published papers, fact-checking sites,
and news articles.

Scientific Claim Datasets Several datasets have
been developed for scientific claim verification, but
all have focused on claims from published litera-
ture, while we undertake the study of grant award
abstracts. SciFACT (Wadden et al., 2020) con-
tains 1,400 scientific claims derived from research
papers in the biomedical domain. PubHEALTH
(Kotonya and Toni, 2020) includes 11,800 claims
from journalists and fact-checkers in public health.
CLIMATE-FEVER (Diggelmann et al., 2020) com-
piled 1,500 claims from news articles about climate
change. HealthVer (Sarrouti et al., 2021) extracted
1,800 claims from search queries related to health
topics. COVID-Fact (Saakyan et al., 2021) and
CoVERT (Mohr et al., 2022) focused on COVID-
19 related claims from social media. SciFact-Open
(Wadden et al., 2022) expanded the original SciFact
dataset using information retrieval pooling, yet it
still remains health-care focused and a few orders
of magnitude smaller than our largest dataset.

Table 1 situates existing scientific claim datasets
with our NSF-SCIFY datasets, highlighting the sig-
nificantly larger scale of our contribution (2.8 mil-
lion claims in NSF-SCIFY, 135,000 claims inNSF-
SCIFY-20K and 114,000 claims in NSF-SCIFY-
MATSCI), broad topic coverage (all of science and
math), and novelty of data source (grant abstracts).
See Figure 2.

Meta Science and Social Science Previous
works have examined grants data in social science
and meta-science contexts. For example, Park et al.
(2024) examine the relationship between interdisci-
plinary grants and the impact of papers they support
and Xu et al. (2022) study the influence of research
funding on team structure using grant data. While
these are tenuously connected to our work, we list
them for the sake of completeness.

3 Building NSF-SCIFY

3.1 Data Collection

We downloaded the entire NSF Awards database2

in XML format, containing more than 0.5 million
awards from 1970 through September 2024. After
parsing, we obtained 412,155 parseable awards,
which we call NSF-SCIFY.

2https://www.nsf.gov/awardsearch/
advancedSearch.jsp
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13.8%
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Figure 2: Distribution of awards areas as represented by
the National Science Foundation directorates in NSF-
SCIFY, illustrating the breadth and comprehensiveness
of scientific claims in our dataset. The NSF-SCIFY-
MATSCI subset spanning all of materials science awards
represents 3.9% of the entire dataset.

In this paper, we focus on all awards from the
Division of Materials Research (DMR), which is
responsible for most materials science awards at
the NSF. This subset, called NSF-SCIFY-MATSCI,
contains 16,031 awards, representing approxi-
mately 3.2% of the entire NSF awards database.
We chose materials science as our focus due to its
interdisciplinary nature and technological impor-
tance. In addition, we build NSF-SCIFY-20K, a
different subset of 20K awards spanning 5 NSF di-
rectorates — Mathematical and Physical Sciences
(MPS), Geological Sciences (GEO), Engineering
(ENG), Computer and Information Science and En-
gineering (CSE), and Biological Sciences (BIO).

3.2 Data Processing

As Figure 1 illustrates, each record in NSF-SCIFY-
MATSCI typically contains:

1. Award ID, title, and year.
2. Directorate and division information
3. Technical abstract
4. Non-technical abstract (present in ∼81% of

awards)
5. Scientific claims made in the abstracts
6. Investigation proposals in the abstracts
7. Publications resulting from the grant (when

available)
The practice of updating awards with resulting

publications is relatively recent, primarily occur-
ring from 2014 onwards. For awards where pub-
lications are present, we extracted the DOIs and
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resolved them to obtain titles, abstracts, and publi-
cation URLs.

3.3 Claim and Investigation Proposal
Extraction

To extract scientific claims and investigation pro-
posals from the award abstracts, we developed a
zero-shot prompting approach using Anthropic’s
Claude-3.53 model. Our prompt instructed the
model to identify two types of statements:

1. Verifiable claims: Statements that the abstract
claims to be true or states as assumptions, ei-
ther explicitly or implicitly.

2. Investigation proposals: Forward-looking
statements that propose specific research ac-
tivities as part of the award.

We structured the prompt to return a JSON ob-
ject containing the award ID, technical abstract,
non-technical abstract, a list of verifiable claims,
and a list of investigation proposals. To maintain
consistency and quality, we set temperature to zero
for all extractions. See Appendix A for the exact
prompt and Appendix G for sample claims and
investigation proposals.

We performed qualitative experiments with sev-
eral prompt variants and our analysis showed that
jointly extracting claims and investigation pro-
posals helped maintain the relevance of extracted
claims. When claims were extracted without also
extracting investigation proposals, the model often
confused forward-looking statements about pro-
posed investigations as factual claims.

4 Dataset Analysis

NSF-SCIFY The full dataset contains 412,155
award abstracts spanning from 1970 to 2024, with
2.8 million scientific claims and corresponding in-
vestigation proposals.

NSF-SCIFY-MATSCI This materials science
subset, which is the focus of this preprint, contains:

• 16,042 awards with each with a technical and
non-technical abstract

• 114K extracted scientific claims (average of
7± 2 claims per abstract-pair)

• 145K extracted investigation proposals (aver-
age of 9± 3 proposals per abstract-pair)

• 2,953 awards with linked publications (18.4%
of the dataset). Such awards had anywhere
between 1 – 4 publications.

3Claude-3.5-Sonnet-20240620 accessed between Sep-
Oct. 2024, to be specific

Capability/
Application of Technology/Method

(32.8%)

Statement of Problem/
Knowledge Gap

(21.0%)

Observed Phenomenon/Property
(18.9%)

Established
Scientific

Fact/Principle
(9.8%)

Definition/
Classification

(6.8%)

Exp. Result/
Finding...

(5.2%)

Process/
Mech...
(3.6%)

...
(2.0%)

Figure 3: A treemap of the scientific claim categories in
NSF awards. See Section 4.2 for descriptions of these
categories.

NSF-SCIFY-20K For building models across
all NSF directorates, we take 20,000 sample subset
of NSF-SCIFY, by stratifying across 5 directorates.

• 20,001 awards with each with a technical and
non-technical abstract

• 135K extracted scientific claims (average of
7± 2 claims per abstract-pair)

• 139K extracted investigation proposals (aver-
age of 7± 2 proposals per abstract-pair)

4.1 Technical vs. Non-Technical Abstracts

We investigated the differences between technical
and non-technical abstracts in our dataset. Using
a symmetric BLEU score to measure textual simi-
larity between paired abstracts, we found that only
202 (1.5%) out of 13,025 technical/non-technical
abstract pairs had a similarity score greater than
0.6, suggesting that the non-technical abstracts are
not simply copied from the technical abstracts.

Since grant abstracts are previously unexamined
in literature, we further investigated the stylistic
differences between technical and non-technical
abstracts using pre-trained document embedding
models. Figure 5 compares content embeddings
from SPECTER (Cohan et al., 2020) and style em-
beddings from STEL (Patel et al., 2025). Using
these embeddings with a linear SVM classifier, we
achieved F1 scores of 90.99 (SPECTER), 88.42
(STEL), and 89.99 (concatenated), demonstrating
that the abstracts are distinguishable both in content
and style.

4.2 A Taxonomy of Scientific Claims in NSF
Award Abstracts

To understand the nature of assertions made in
NSF award abstracts, we analyzed and grouped
810 extracted claims over a stratified sample of 120
awards spanning 5 NSF directorates – MPS, GEO,
ENG, CSE, and BIO – resulting in the identifica-
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tion of eight distinct categories. These categories
encompass a range of scientific statements: Estab-
lished Scientific Fact/Principle refers to claims
that state well-accepted scientific laws or widely
known facts. Observed Phenomenon/Property in-
cludes claims describing natural phenomena or ma-
terial properties that have been observed. Claims
detailing the function, potential, or application of a
specific technology, method, or material fall under
Capability/Application of Technology/Method.
Hypothesis/Theoretical Prediction categorizes
claims that propose theoretical explanations, pre-
dictions, or hypotheses requiring further verifi-
cation. Specific results, findings, or statements
about measurability are grouped under Experimen-
tal Result/Finding/Measurability. Statement
of Problem/Knowledge Gap highlights existing
problems, limitations, or gaps in current knowledge
or technology. Claims that define terms or classify
entities are categorized as Definition/Classifica-
tion. Finally, Process/Mechanism Description
includes claims that describe physical or chemical
processes or mechanisms. Figure 3 shows the dis-
tribution of these claim types, and Table 10 lists
examples for each of these types. As one might
expect in grant applications, the most common
claim type is “Capability/Application of Technol-
ogy/Method” (32.8%), followed by “Statement of
Problem/Knowledge Gap” (21.0%) and “Observed
Phenomenon/Property” (18.9%).

4.3 Evaluating the Extracted Verifiable
Claims

To evaluate how good the claim extraction from
Section 3.3 is, we annotated the abstracts in the
120 sampled awards (see Section 4.2) with claims
and computed precision and recall. Figure 4 sum-
marizes the precision, recall, and F1-scores of the
extracted claims for all 6 areas of interest. The
areas of interest include, Materials Science (DMR)
Mathematical and Physical Sciences except Ma-
terials Science (MPS-DMR), Geological Sciences
(GEO), Engineering (ENG), Computer and Infor-
mation Science and Engineering (CSE), and Bio-
logical Sciences (BIO). We notice from Figure 4
a near perfect precision for the extracted claims in
all areas. Although our LLM-derived dataset suf-
fers from recall, we hope that training on a massive
corpus of high quality claims will result in useful
claim extraction systems. We consider our findings
on claim extraction as directional and skip a similar
evaluation for investigation proposals.

0.5 0.6 0.7 0.8 0.9 1.0
Score

DMR

MPS-DMR

GEO

ENG

CSE

BIO

Aw
ar

d 
A

re
a

Metric
Precision
Recall
F1-score

Figure 4: A Cleveland dot plot of precision, recall, and
f1-score across different NSF Award Areas for claims
extracted via Claude (See Section 3.3). Error bars de-
note standard deviation (bootstrap N=1000). See Sec-
tion 4.3 for analysis.

5 Tasks, Metrics, and Experiments

We designed three NLP tasks to evaluate the utility
of our dataset:

1. The Non-technical Abstract Generation task
translates dense, technical grant abstracts into ac-
cessible language for broader science communi-
cation. Motivated by capturing the core scientific
essence while navigating stylistic and content dif-
ferences between technical and lay summaries, this
task uses the dataset’s paired examples (common
in NSF awards) to train models for this nuanced
transformation.
2. The Abstract to Scientific Claims Extrac-
tion task automates identifying verifiable asser-
tions—the core of scientific discourse—from grant
abstracts, which capture these claims at an early,
pre-publication stage. Significant performance
gains post-fine-tuning highlight the dataset’s ef-
fectiveness in teaching models to pinpoint these
crucial statements.
3. The Abstract to Investigation Proposals Ex-
traction task distinguishes aspirational research
intentions from established claims, offering a novel
analysis of scientific texts. This provides a clearer
view of the planned research trajectory by identi-
fying intended activities. It complements claim ex-
traction by presenting a fuller picture of proposed
work, from assertions to investigative pathways,
again showing significant fine-tuning efficacy due
to the dataset’s focused nature.

To explore the three tasks, we finetuned two 7B
parameter language models:

• Mistral-7B-instruct-v0.3 (Jiang et al.,
2023)
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Metric Mistral Qwen

BERTScore-P 0.8563 (+0.38% ↑) 0.8459 (+0.98% ↑)
BERTScore-R 0.8555 (+0.30% ↑) 0.8597 (+1.61% ↑)
BERTScore-F1 0.8561 (+0.36% ↑) 0.8437 (+0.75% ↑)
ROUGE1 0.2000 (+2.58% ↑) 0.1978 (+1.98% ↑)
ROUGE2 0.0198 (+4.76% ↑) 0.0210 (+3.89% ↑)
ROUGE-L 0.1273 (+2.96% ↑) 0.1466 (+0.65% ↑)
ROUGE-L-sum 0.2166 (+2.45% ↑) 0.2078 (+1.66% ↑)

Table 2: Finetuning performance
for Mistral-7B-instruct-v0.3 and
Qwen2.5-7B-Instruct models for Technical ab-
stract to Non-technical abstract translation (Task 1),
with relative improvements over the corresponding
unfinetuned model indicated in green. Error bars for
all metrics at 95% confidence intervals range between
0.0000–0.0025. Mistral model outperforms Qwen on
almost all metrics for this task regardless of finetuning.
We note that the percent changes, while statistically
significant, are modest for this task indicating an
excellent out-of-the-box performance that’s challenging
to improve upon.

• Qwen2.5-7B-Instruct (Yang et al., 2024)
Details about the finetuning can be found in Ap-
pendix E.

5.1 Evaluation Metrics

For Task 1 – abstract generation – we em-
ployed a comprehensive evaluation framework us-
ing both BERTScore (Zhang* et al., 2020) and
ROUGE (Lin, 2004) metrics to assess the quality
of generated non-technical abstracts. This combina-
tion enables us to capture both lexical overlap and
structural similarity through the ROUGE variants,
while BERTScore provides insights into semantic
alignment between the generated texts and refer-
ence abstracts. Incorporating such multi-viewed
metrics4 ensures that the evaluation reflects not
only the presence of key words and phrases but
also the underlying meaning and narrative coher-
ence of the abstracts.

For Task 2 – claim extraction – we developed a
novel evaluation approach using LLM-based com-
parisons. Previous methods for claim evaluations
focused on comparing a single claim against a sin-
gle document. See Tang et al. (2024), for example.
However, our setting required evaluating a set of
extracted claims against a gold set of claims.

Towards that end, we defined a boolean function
Φclaim using GPT-4o-mini with zero-shot prompt-

4For BERTScore we report precision, recall and F1, and
for ROUGE we report ROUGE-1, ROUGE-2, ROUGE-L, and
ROUGE-L-sum.

ing to determine whether a generated claim is sup-
ported by a gold standard claim. See Appendix B
for prompt details5. Using this function, we calcu-
lated precision and recall as follows:

Precision =
1

|S|
∑

c∈S
max
g∈G

Φclaim(c, g)

Recall =
1

|G|
∑

g∈G
max
c∈S

Φclaim(g, c)

where S is the set of claims generated from the
finetuned model, after removal of any repeats/near-
repeats 6, and G is the gold standard set. We note
that this is a variant of precision/recall metrics de-
fined for image captioning in (Deitke et al., 2024),
however unlike Deitke et al., we explicitly use
Φclaim in computing both precision and recall. This
is necessary as we need to accurately penalize any
spurious claims generated by the finetuned model.
Works by (Gu et al., 2025; Liu et al., 2023) are
relevant here.

Analogously, for Task 3 – extraction of investi-
gation proposals – we define precision and recall
similarly but use a different pairwise boolean judge
function ΦIP mutatis mutandis. See Appendix C
for prompt details.

6 Results

6.1 Non-technical Abstract Generation
Table 2 shows the results for Task 1. Both Mis-
tral and Qwen models demonstrated strong perfor-
mance, with fine-tuning providing modest improve-
ments. The Mistral model outperformed Qwen on
almost all metrics, achieving a BERTScore-F1 of
0.8561 after fine-tuning (+0.36% relative improve-
ment). ROUGE scores were generally low (0.01-
0.22), reflecting the stylistic differences between
technical and non-technical abstracts.

6.2 Scientific Claim Extraction
For Task 2 (claim extraction), fine-tuning yielded
substantial improvements. As shown in Table
3, the fine-tuned Mistral model achieved a preci-
sion of 0.7450 (+116.7% relative improvement),
recall of 0.7098 (+59.5%), and F1 of 0.7097
(+101.8%). The Mistral model consistently out-
performed Qwen, though both showed significant
benefits from fine-tuning.

5We tried several slight edits of the prompts and found
them to be robust to such changes.

6We determine repeats and near-repeats in the generation
by thresholding cosine similarity calculated over a TF-IDF
representation of the generated claims.
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Metric Mistral Qwen

Precision 0.7450 (+116.7% ↑) 0.6839 (+107.1% ↑)
Recall 0.7098 (+59.5% ↑) 0.6611 (+7.8% ↑)
F1 0.7097 (+101.8% ↑) 0.6541 (+63.3% ↑)

Table 3: Finetuning performance
for Mistral-7B-instruct-v0.3 and
Qwen2.5-7B-Instruct models for Claim Extraction
from abstracts (Task 2), with relative improvements
over the corresponding unfinetuned model indicated
in green. Error bars for all metrics at 95% confidence
intervals range between 0.0038–0.0055. Mistral model
outperforms Qwen on almost all metrics for this task
regardless of finetuning. We note the large positive
percent changes, sometimes improvements as large
as 2x, indicate finetuning is indispensable for claim
extraction. Mistral model outperforms Qwen on almost
all metrics for this task.

6.3 Investigation Proposal Extraction

Similarly, Task 3 (proposal extraction) showed dra-
matic improvements with fine-tuning. As shown
in Table 4, the Mistral model achieved a precision
of 0.7351 (+18.24%), recall of 0.7539 (+127.24%),
and F1 of 0.7261 (+90.97%) after fine-tuning. The
relative improvements were even larger for the
Qwen model, though Mistral still performed better
overall.

Metric Mistral Qwen

Precision 0.7351 (+18.24% ↑) 0.7245 (+70.07% ↑)
Recall 0.7539 (+127.24% ↑) 0.6865 (+81.57% ↑)
F1 0.7261 (+90.97% ↑) 0.6827 (+112.60% ↑)

Table 4: Finetuning performance
for Mistral-7B-instruct-v0.3 and
Qwen2.5-7B-Instruct models for extraction of
Investigation Proposals from award abstracts (Task 3),
with relative improvements over the corresponding
unfinetuned model indicated in green. Error bars for
all metrics at 95% confidence intervals range between
0.0036–0.0073. Mistral model outperforms Qwen on
almost all metrics for this task regardless of finetuning.
We note the large positive percent changes, sometimes
improvements as large as 2x, indicate finetuning is
indispensable for this task. Mistral model outperforms
Qwen on almost all metrics for this task.

Since Mistral models seemed to have an edge
over the Qwen2.5 models for these tasks, we also
trained a Mistral only version of on the NSF-
SCIFY-20K subset which spans all NSF direc-
torates. The results for that can be found in Ap-
pendix F.

7 Error Analysis

Of the three proposed tasks, we consider the claim
extraction task as a canonical task for perform-
ing error analysis. To do so, we consider another
120 awards from the test portion of NSF-SCIFY-
MATSCI and NSF-SCIFY-20K. These were strati-
fied sampled across the five areas of interest (simi-
lar to Section 4.3). We then generate the claims us-
ing a Mistral-7B model finetuned on NSF-SCIFY-
20K, resulting in 802 claims. A careful examina-
tion revealed around 2.6% of the generated claims
were incorrect. To dive deeper, we categorized the
erroneous claims into 5 categories. We list them
here with examples:

1. Overconfidence: The claim can be overcon-
fident about information that has qualifiers in the
supporting document text (award abstract).

Award ID: 9820570

Extracted Claim: The research areas include knot
theory, immiscible fluids and geodesic nets, er-
godic theory, commutative algebra and vector-valued
forms.
Analysis: The abstract states ’probably in the areas
of,’ indicating potential areas, not certainty.

2. Mixing Information: The claim can mix in-
formation from two sentences together to form
wrong information.

Award ID: 1205671

Extracted Claim: The SEAQUEST experiment at
Fermilab has successfully measured the asymmetry
of up and down anti-quarks in the nucleon.
Analysis: The abstract mentions that SEAQUEST
will follow the successful E866 measurement with
more precise data, and thus it does not say
SEAQUEST has already successfully measured that,
but the success is describing the previous E866.

3. Overgeneralization: The claim can overgen-
eralize what the supporting document implies.

Award ID: 0957482

Extracted Claim: The methodology is potentially
environmentally benign.
Analysis: The abstract mentions non-dangerous
chemicals but does not specifically state that the
methodology is environmentally benign.

4. Information Omission: The claim might omit
important information from the abstract and thus
the meaning is changed.
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Award ID: 9409461

Extracted Claim: Frequency-domain techniques can
display trade-offs between output performance and
sensitivity reduction.
Analysis: The claim frames output performance and
sensitivity reduction as two separate quantities and
leaves out bandwidth, so it does not accurately reflect
the abstract.

5. Hallucinations about Administrative Meta-
data: The model can sometimes hallucinate
claims regarding where the funding is from and
which institutions are included. While hallucina-
tion is a serious issue, it is worth noting that for
this dataset and model scientific claims seem to be
rarely hallucinated. In our study, all hallucinations
were connected with administrative metadata.

Award ID: 0542751

Claim: The award is funded under the
American Recovery and Reinvestment Act
of 2009 (Public Law 111-5).
Reasoning: This claim is not mentioned in
the abstract.

To mitigate these errors, uncertainty calibra-
tion and prompting strategies can reduce over-
confidence and overgeneralization, encouraging
the model to reflect source qualifiers. Fine-
tuning with more annotated data and enforcing
stricter alignment between claims and source text
can address mixing information and omission is-
sues. Retrieval-augmented generation and chain-of-
thought prompting may also promote better ground-
ing. For hallucinations about administrative meta-
data, entity verification or output constraints based
on structured data can help. Combining these ap-
proaches with human-in-the-loop evaluation might
further improve claim extraction reliability.

We performed a similar error analysis on claims
extracted from Claude (See section 3.3). Our find-
ings revealed a smaller error-rate (2.1% as opposed
to 2.6%), and of the only 10 erroneous claims, 5
were hallucinations of administrative data.

8 Discussion and Conclusion

We introduced NSF-SCIFY, a large dataset of
2.8 million scientific claims and proposals from
400,000 NSF grant abstracts across all science
and mathematics disciplines. Focused subsets in-
clude NSF-SCIFY-MATSCI (114,000 materials
science claims) and NSF-SCIFY-20K (135,000

claims from five directorates). Experiments demon-
strate that fine-tuning language models on NSF-
SCIFYsignificantly improves scientific claim and
proposal extraction, with relative performance
gains often exceeding 100%. Non-technical ab-
stract generation saw modest improvements due
to strong baselines. Stylistic differences between
technical and non-technical abstracts offer poten-
tial for science communication. Our claim tax-
onomy identifies prevalent assertion types like ca-
pability/application and problem/knowledge gap
statements. NSF-SCIFY’s unique advantages in-
clude its vast scale, high quality from NSF expert
review, comprehensive coverage of scientific do-
mains, a temporal span from 1970-2024 enabling
longitudinal studies, and, for recent grants, links
to resulting publications. Error analysis showed
high precision but lower recall in claim extraction,
with error categories guiding future improvements.
NSF-SCIFY opens new research avenues in large-
scale claim verification, scientific discovery track-
ing, and meta-scientific analysis, a key resource for
understanding scientific assertions at their origin.

9 Limitations

Source Material Scope. The dataset, derived
from NSF award abstracts, offers insights into
early-stage scientific claims from a rigorously re-
viewed, cross-disciplinary source. However, it cur-
rently excludes claims from unfunded proposals or
international contexts. Future work may expand to
other agencies and sources.

Extraction Methodology. Our approach utilizes
zero-shot prompting with large language models,
refined by prompt engineering and selective human
validation. While manual evaluation shows high
precision, some residual errors in recall and claim
boundary identification may exist, especially for
nuanced assertions. Fine-tuning on this dataset sig-
nificantly improves extraction, indicating potential
for further methodological refinement and broader
annotation.

Evaluation Design. We introduced LLM-based
metrics for evaluating claims and investigation pro-
posals, offering a nuanced assessment beyond lex-
ical overlap. These metrics correlate well with
human judgment in samples, but broader validation
across more scientific domains is needed to confirm
their robustness. The public dataset and code aim
to facilitate such community efforts.
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Temporal and Linked Data Coverage. Span-
ning over five decades and including recent linked
publication metadata, the dataset’s systematic out-
come tracking is limited for older awards. This
restricts longitudinal analysis of claim evolution
from proposal to publication. Broader, consistent
outcome reporting could enrich NSF-SCIFY for
deeper research trajectory studies.

Generalizability. While designed and validated
for National Science Foundation abstracts, whose
structure may differ from other scientific commu-
nications, the general framework is adaptable. It
could be extended to related corpora like other fund-
ing agencies, patent abstracts, or scientific news,
creating opportunities for future research.

10 Reproducibility Statement

To foster research on large-scale claim extraction,
we are releasing our datasets, training code, and
trained models:

• NSF-SCIFY-MATSCI: Materials Science sub-
set with extracted claims, investigation pro-
posals, and resolved publication information.

• NSF-SCIFY: Similar in content to NSF-
SCIFY-MATSCI, but a larger superset span-
ning all of NSF awards database. The key
difference is the claims and investigation pro-
posals are extracted from our finetuned mod-
els instead of frontier LLMs.

• Our best finetuned model checkpoints
for extraction of claims and investiga-
tion proposals at https://huggingface.co/
darpa-scify/nsf-scify-matsci-claims.
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Appendix

A Complete Prompt for Extracting
Claims and Investigation Proposals

You are an expert materials science researcher.
Given an input JSON description of an NSF
material science award abstract, parse out the
technical and nontechnical abstracts, and iden-
tify the verifiable claims and research/investi-
gation proposals the abstract makes. Be thor-
ough. Answer in the following JSON format:
{
"award_id": "", // copied from input
"technical_abstract": "" // technical

abstract if present, otherwise
contents of the abstract field in the
input

"non_technical_abstract": /non-technical
abstract if present, otherwise empty

"verifiable_claims": [ // list of strings
],
"investigation_proposals": [ // list of

strings
],

}

verifiable_claims are statements that the ab-
stract claims to be true or states as an assump-
tion explicitly or implicitly.
investigation_proposals are forward-looking
statements that the abstract proposals to inves-
tigate as a part of this award.
Ensure that the output is in JSON format and
that the JSON is valid.

We manually tested the prompt with a few award
abstracts to make sure it was optimal for this task.
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B Prompt for Task 2 evaluation function
Φclaim

Check two scientific claims c1 and c2, if c1
is supported by c2. If c2 includes all the evi-
dences for c1, but also includes additional con-
tent, then it should still be supported (YES). If
not all information of c1 is included in c2, or if
c2 contains information that conflicts with in-
formation in c1, then it should be unsupported
(NO). Answer only as a YES or NO.
c1: {c1}
c2: {c2}

C Prompt for Task 3 evaluation function
ΦIP

Check two investigation proposals c1 and c2,
if c1 is supported by c2. If c2 includes all
the investigations proposed by c1, but also
includes additional proposals, then it should
still be supported (YES). If not all proposed
investigations by c1 is included in c2, or if
c2 contains investigation actions that conflict
with investigation actions in c1, then it should
be unsupported (NO). Answer only as a YES
or NO.
c1: {c1}
c2: {c2}

D Stylistic Differences between Technical
and Nontechinal Abstracts

Figure 5 shows stylistic differences between tech-
nical and nontechnical abstracts.

E Finetuning Details

E.1 Data Preparation

Starting with 16,042 processed entries in NSF-
SCIFY-MATSCI, we removed near-duplicates in
technical and non-technical abstracts using tri-
gram Jaccard similarity (threshold > 0.9), resulting
in 11,569 data points. We further filtered cases
where character-level 10-gram similarity between
an entry’s technical and non-technical abstracts ex-
ceeded 0.6, yielding 11,141 final data points. We
split this dataset into train/validation/test sets with
8,641/500/2,000 examples, respectively.

E.2 Finetuning Details

For fine-tuning, we used LoRA (Hu et al., 2021)
with rank=128, lora_alpha=64 and a learning rate

of 1e-5 scheduled linearly. We updated the query,
key, value, and output projection layers, as well
as MLP gate, up, and down projections. We ran
the finetuning on an A100 GPU for 3 epochs, 100
warmup steps, and a batch size of 2 with 4 accumu-
lated steps.

F Evaluation results for NSF-SCIFY-20K

Tables 5, 6, and 7 summarize the results for the
three generation tasks defined in Section 5 on NSF-
SCIFY-20K.

Model Base Finetuned
Metric

BERTScore-F1 0.8514 ± 0.0003 0.8500 ± 0.0006
BERTScore-Precision 0.8515 ± 0.0003 0.8513 ± 0.0007
BERTScore-Recall 0.8516 ± 0.0003 0.8496 ± 0.0005
ROUGE-rouge1 0.3351 ± 0.0013 0.3141 ± 0.0023
ROUGE-rouge2 0.0705 ± 0.0008 0.0936 ± 0.0016
ROUGE-rougeL 0.1773 ± 0.0008 0.1967 ± 0.0016
ROUGE-rougeLsum 0.1982 ± 0.0010 0.1998 ± 0.0016

Table 5: Technical to Non-Technical Abstract Task:
Mistral-7B

Model Base Finetuned

Precision 0.4146 ± 0.0025 0.7526 ± 0.0027
Recall 0.8141 ± 0.0026 0.7354 ± 0.0026
F-score 0.5247 ± 0.0025 0.7268 ± 0.0023

Table 6: Abstract to Claims Task: Mistral-7B

Model Base Finetuned

Precision 0.6222 ± 0.0038 0.7219 ± 0.0027
Recall 0.6364 ± 0.0034 0.7359 ± 0.0029
F1-score 0.5668 ± 0.0033 0.7039 ± 0.0026

Table 7: Abstract to Investigation Proposals Task:
Mistral-7B

G Examples of Extracted Claims and
Investigation Proposals

Tables 8 and 9 provide a sampling of the extracted
claims and investigation proposals.

H Examples of Scientific Claim
Categories

Please see Table 10 for the examples.
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I AI Writing/Coding Assistance
Disclosure

In accordance with the ACL Policy on AI Writ-
ing Assistance7, the authors attest that we used
generative AI tools for assistance purely with the
language of the paper, including spell checking,
grammar fixes, and proof reading. Additionally,
we used GPT-4o to fix LaTeX issues, and to gen-
erate LaTeX tables from spreadsheets. In all such
uses, the outputs were verified by the first author
for correctness.

7https://www.aclweb.org/adminwiki/index.php/
ACL_Policy_on_Publication_Ethics#Guidelines_for_
Generative_Assistance_in_Authorship
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Figure 5: The t-SNE plot of comparing content embeddings from SPECTER (Cohan et al., 2020) and style
embeddings from STEL (Patel et al., 2025) for technical and non-technical abstracts in NSF-SCIFY-MATSCI. The
somewhat clear separation between technical and non-technical abstracts when using style embeddings indicate
marked stylistic differences between the two kinds abstracts.
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Award ID Title Extracted Claims

2324035 DMREF: Developing and Har-
nessing the Platform of Quasi-
One-Dimensional Topological
Materials for Novel Functionali-
ties and Devices

[
"Topological insulators are electrically

insulating in the bulk but host conductive
surface states that are immune to
impurities.",

"Current TI materials face critical challenges
that limit their potential.",

"Quasi-1D structures promise to overcome
challenges faced by current TI materials.",

"Most identified topological insulators are
either strongly bonded bulk materials or
layered van der Waals materials.",

...
]

9814055 Kinks and Surface Potentials

[
"Atomically flat terraced surfaces for thin

TEM samples can be prepared under moderate
(10-7 Torr) vacuum conditions by
annealing in oxygen or vacuum for
materials such as sapphire, SiC and MgO.",

"\"Forbidden\" Bragg reflections arise from
the stacking fault between partial
dislocations.",

"The surface potential is critical for
chemical reactions at surfaces, adsorption,
catalysis, epitaxy, diffusion bonding
process, oxidation, and semiconductor
crystal growth.",

...
]

0821136 MRI: Acquisition of an Imaging
Spherical Aberration Corrector
and a Lorentz Lens for Magnetic
Materials Characterization

[
"The attainable spatial resolution of

uncorrected Lorentz instruments is in the
range 10-15 nm.",

"Delocalization effects cause significant
image blurring in uncorrected Lorentz
microscopes.",

"Recent developments in aberration correction
make it possible to correct the spherical
aberration of a Lorentz lens.",

"The size of written bits in state-of-the-art
magnetic recording media is comparable to
the magnetic resolution of uncorrected
Lorentz microscopes.",

"Transmission electron microscopes have
suffered from lens aberration since their
invention in the 1930s.",

"The Hubble space telescope suffered from a
similar aberration when first launched.",

...
]

Table 8: A sample of extracted claims from the NSF-SCIFY-MATSCI dataset. Award IDs are hyperlinked to the
NSF’s Award database.
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Award ID Title Extracted Investigation Proposals

2324035 DMREF: Developing and Har-
nessing the Platform of Quasi-
One-Dimensional Topological
Materials for Novel Functionali-
ties and Devices

[
"Predict, design, synthesize, and control

topological phases in quasi-1D topological
materials.",

"Design and demonstrate emergent materials,
functionalities, and devices, including
moir\'e quasi-1D TIs, stable and high
temperature quantum spin Hall (QSH)
insulators, and quantum intelligent
sensors.",

"Expand research to include other selected
quasi-1D materials families through
collaborations.",

"Discover or realize novel topological
materials and phases.",

"Study topological phase transitions and
control.",

"Investigate room-temperature QSH effect.",
...

]

9814055 Kinks and Surface Potentials

[
"Observe dislocation kinks by atomic

resolution TEM in materials such as
sapphire, SiC and MgO.",

"Use \"forbidden\" Bragg reflections to form
lattice images without surface noise.",

"Determine which process (kink formation, kink
migration or obstacles along the
dislocation line) limits kink (and hence
dislocation) velocity, for given
conditions of temperature and stress.",

"Extend quantitative convergent-beam TEM
measurements of bonding in crystals to the
RHEED geometry to refine the
electrostatic potential extending into the
vacuum from ceramic surfaces.",

"Measure modifications to the surface
potential resulting from the deposition of
a monolayer or more of atoms.",

...
]

0821136 MRI: Acquisition of an Imaging
Spherical Aberration Corrector
and a Lorentz Lens for Magnetic
Materials Characterization

[
"Acquire an imaging spherical aberration

corrector and a Lorentz lens for magnetic
materials characterization.",

"Add these components to an existing FEI Titan
80-300 TEM.",

"Bring the spatial resolution in Lorentz mode
down to less than 1 nm, with negligible
delocalization effects.",

"Enable direct quantitative study of magnetic
features at a length scale of around 1 nm
.",

"Obtain new scientific results on material
systems for which these observations were
previously impossible.",

"Impact a large number of research groups
within CMU, as well as collaborations with
local industry and several national
laboratories.",

...
]

Table 9: A sample of extracted investigation proposals from the NSF-SCIFY-MATSCI dataset. Award IDs are
hyperlinked to the NSF’s Award database.
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Category: Capability/Application of Technology/Method
Memory-centric computing capitalizes on extensive parallelism in memory arrays.
The Illinois group has joined the fixed target COMPASS experiment at CERN.
An electronics company is involved in the project, making imaging products in this energy regime.
Category: Definition/Classification
The RV Weatherbird II is owned and operated by the Bermuda Biological Station for Research (BBSR),
Inc.
The program will include topics such as dark matter, dark energy, inflation, and gravitational waves.
The shear zone in question is the Cuyamaca-Laguna Mountains shear zone.
Category: Statement of Problem/Knowledge Gap
Current efforts on analyzing tree-informed compositional data are primarily designed for individual
applications.
CU began the Guerrero GPS project in 1997.
High pressure-low temperature metamorphism is often obscured by post-tectonic thermal equilibration or
later deformation and mineral growth.
Category: Experimental Result/Finding/Measurability
Lattice QCD has made important progress.
RBP repression is absent when an oncoprotein is present.
Over 100 of 650 U.S. electronics fabricators have gone out of business in the past five years, according to
a 1999 White Paper by the Interconnection Technology Research Institute.
Category: Established Scientific Fact/Principle
Dynamic programming includes well-known search algorithms like breadth-first search, Dijkstra’s algo-
rithm, A*, value iteration and policy iteration for Markov decision processes.
The electron carries a magnetic moment.
Stars in clusters evolve off the main sequence, become red giants, and ultimately horizontal branch stars.
Category: Observed Phenomenon/Property
The lake level of Laguna Paron was artificially lowered in 1985.
Laminated sediments are exposed in Laguna Paron, Peru.
The study sites exhibit extreme differences (1 to 2 orders of magnitude) in larval settlement.
Category: Process/Mechanism Description
Exciton-phonon and exciton-exciton interactions contribute to decoherence at finite temperatures.
The fidelity of translation is determined by the accuracy of aminoacyl-tRNA selection by ribosomes and
synthesis of cognate amino acid/tRNA pairs by aminoacyl-tRNA synthetases.
The evaluation process includes both direct and indirect measures of student success and learning.
Category: Hypothesis/Theoretical Prediction
Assemblages that combine human-technology partnerships are stronger than individual humans or ma-
chines.
Mating advantage in guppies appears to result from female sexual responses to unusual males.
The long wavelength part of the CBR spectrum is important for constraining the evolution of the inter-
galactic medium.

Table 10: Scientific claim categories found in NSF-SCIFY and 3 randomly selected examples for each category.
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Abstract

Language Models (LMs) have revolutionized
natural language processing, enabling high-
quality text generation through prompting and
in-context learning. However, models often
struggle with long-context summarization due
to positional biases, leading to suboptimal ex-
traction of critical information. There are tech-
niques to improve this with fine-tuning, pipelin-
ing, or using complex techniques, which have
their own challenges. To solve these chal-
lenges, we propose QA-prompting – a simple
prompting method for summarization that uti-
lizes question-answering as an intermediate
step prior to summary generation. Our method
extracts key information and enriches the con-
text of text to mitigate positional biases and
improve summarization in a single LM call per
task without requiring fine-tuning or pipelining.
Experiments on multiple datasets belonging to
different domains using ten state-of-the-art pre-
trained models demonstrate that QA-prompting
outperforms baseline and other state-of-the-art
methods, achieving up to 29% improvement
in ROUGE scores. This provides an effective
and scalable solution for summarization and
highlights the importance of domain-specific
question selection for optimal performance 1.

1 Introduction

Language Models (LMs) have revolutionized the
application of Natural Language Processing. With
instruction tuning (Ouyang et al., 2022), prompt-
ing (Brown et al., 2020), and in-context learn-
ing (Wei et al., 2022a; Dong et al., 2023), LLMs
perform well in most of the conditional generation
tasks out-of-the-box. Specifically, in abstractive
summarization, this approach yields highly fluent,
consistent, and relevant summaries (Tanya Goyal,
2022) that are even preferred over summaries

1GitHub repository link of the implementation:
https://github.com/neelabhsinha/qa-prompting

Article

Questions

Question 1

Question 2

Question k

Prompt

Given the following article, first
answer the questions. Then,
using the article and answers as
key pointers, generate a
summary of the article.
{article}
Q1: {question_1}
Q2: {question_2}

A: 

Language Model

A: A1: ... A2: ....
Summary: .....top_k

Figure 1: Framework for QA-prompting: Relevant ques-
tions are extracted from a corpus based on the domain
of article, and a user defined top-k value. A prompt is
constructed to first answer the questions, followed by
generating summary.

generated by state-of-the-art (SOTA) models like
BRIO (Liu et al., 2022).

Despite the metrics rating the summaries low,
several works argue that LM summaries are of high
quality (Zhang et al., 2023b; Sinha et al., 2025a),
fluent, grammatically correct, and largely relevant.
But where facts are important, key information
is sometimes not present. This problem proves
to be more pronounced in the summarization of
long context tasks. One of the factors contribut-
ing to this is the positional bias in LMs, where
more recent tokens play a more critical role in the
generation of the next token (Sun et al., 2021). It
is also established that summaries are more faith-
ful to tokens at the start and the end (Wan et al.,
2025), ignoring the text in the middle. This phe-
nomenon may be more pronounced in small to
medium size LMs (AI@Meta, 2024; Team et al.,
2024; Jiang et al., 2023) because they don’t have
the scale to extract deep contextual information ef-
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fectively, leading to the generation of sub-optimal
summaries. One way to handle this is by adapting
LMs to the task via weight updates (fine-tuning),
but this poses massive compute and data require-
ments, and does not generalize to all use cases.
One can also do complex pipelining, or iterative
refinement (Zhang et al., 2023a), but these bring
additional complications and inefficiencies.

However, generating fluent, factually correct,
contextually rich summaries efficiently is impor-
tant to support generalization and scalability. This
poses the following key challenges: (C1) How to
mitigate the positional bias of LM to generate a
good summary? (C2) How to make this approach
generalize so that it can work with the summariza-
tion of all types of text? (C3) How to achieve this
with resource efficiency?

To solve these challenges, we propose QA-
Prompting – an approach to summarization by
using question-answering and in-context learning
with a single LM call. First, we show that vanilla
prompting or in-context learning (ICL) generates
sub-optimal summaries of articles. Then, using a
manually crafted, potentially relevant set of ques-
tions, we identify top k questions that can aid sum-
marization. Question answering is different from
summarization, as it tries to focus on a specific
part of the article rather than comprehending its
global context at once. We use this property to
extract relevant content from the article. Then,
using the article and these questions, we prompt
the LM to first generate answers to the questions,
followed by generating a summary. By trying to
answer the relevant questions first, the LM extracts
useful information and keeps it in recent context,
which further helps it to generate good summaries
(addressing C1). It also filters out noise from the
long context article that is not relevant for the sum-
mary. Using small LMs in the 0.5B-12B range,
we show that this approach significantly improves
the quality of summaries (addressing C2). QA-
prompting uses a single LM call for a task and
works with a pre-trained model without modifica-
tions (addressing C3). We also conduct a detailed
ablation study to validate our design choices. Our
questions are domain-specific, i.e., they are differ-
ent for tasks belonging to different domains (e.g.,
news and research). Identifying top k questions is
an overhead, but needs to be done only once for a
domain. We show that this domain-level adoption
of QA-prompting is necessary and performs better
than keeping a standard set for all tasks.

The key contributions of this work is:

• QA-prompting – a novel domain-adaptive QA-
driven prompting for text summarization to
improve the extraction of critical information.

• Leveraging question-answering as an interme-
diate step to generate summaries that are both
contextually rich and factually accurate in a
single LM call.

• Demonstrating its effectiveness with pre-
trained LMs in 0.5B-12B, achieving 9− 30%
improvement in ROUGE scores.

2 Related Work

Summarization using LLMs: LLMs have pro-
duced state-of-the-art results in abstractive sum-
marization and have significantly accelerated the
research in this area (Pu et al., 2023). Their sum-
maries have been widely accepted through various
works (Tanya Goyal, 2022; Zhang et al., 2023b).
SummIt (Zhang et al., 2023a) iteratively prompts
ChatGPT to generate a summary and keep improv-
ing it based on feedback from an evaluator LLM.
But, it is inefficient and costly due to multiple LM
calls. Chain-of-density (Adams et al., 2023) grad-
ually improves summaries using GPT-4 by itera-
tively adding more content while keeping the length
constant. This is also inefficient and makes the
summary less readable.

Positional bias in LLMs: In transformer mod-
els, earlier and recent tokens are known to domi-
nate the prediction of the next token (Wan et al.,
2025; Sun et al., 2021). Streaming LLM (Xiao
et al., 2023) was able to generate high-quality text,
using just an attention sink and a local attention
window. Local context also dominates LM perfor-
mance in multiple choice QA (Zheng et al., 2024;
Pezeshkpour and Hruschka, 2023) and arithmetic
tasks (Shen et al., 2023).

Prompting and in-context learning: Prompt-
ing emerged as an effective way of utilizing LMs
without fine-tuning (Radford et al., 2019). GPT-
3 (Brown et al., 2020) introduced in-context learn-
ing (ICL), showing that giving LMs some pre-
engineered examples helps them to understand the
task better and generate more representative text.
A survey related to prompt engineering (Liu et al.,
2023a) details extensively on how to prompt LMs
for different tasks. Recent works also showed that
ICL leads to better out-of-domain (OOD) gener-
alization (Si et al., 2023). COT prompting (Wei
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et al., 2022b) showed that performance on reason-
ing tasks can be improved if a rationale is generated
before the answer. ICL remains a dominant strat-
egy since it doesn’t require any weight updates and
allows using the same model for different tasks.

Our work is motivated by the intersection of
these ideas.

3 Method Overview

In this section, we will describe QA-prompting
in detail. The first step is to sample candidate
questions that will aid the generation of effective
summaries, followed by using these questions to
construct a prompt that will summarize the text.

3.1 Sampling Candidate Questions
The first step is to find relevant questions which
will aid the generation of effective summaries. For
this purpose, we start with a set of 10 manually
crafted questions that we feel might be relevant in
all domains, which are listed in Table 1.

Thereafter, for all questions qi, we prompt an
LM with the article and qi, asking it to generate the
answer ai. We then use it to find its overlap preci-
sion Pi(r, ai) (equation 1), which can be defined as
the ratio of the number of intersecting words in the
generated answer ai and the reference summary r,
to the total number of words generated in ai. The
intention is to find questions that are relevant for
the generation of a summary closer to the reference.
This metric may not give a complete evaluation of
question-answering, but we don’t need that. We
only need to rank all ten candidate questions.

Pi(r, ai) =
|W (ai) ∩W (r)|
|W (ai)|

(1)

W (x) = number of words in x (2)

From this step, for each LM and domain pair,
we find the most to least important questions as per
the decreasing order of overlap precision. In the
next step, we will show how we use this result to
construct our prompt for summarization.

3.2 QA-prompting
After we have ranked the order of importance of
questions for each domain, we select top k ques-
tions for our summarization prompt, k being a user-
defined hyperparameter. With the set of k ques-
tions, we prompt the LM to first answer the ques-
tions and then generate the summary. The exact
prompt is detailed below.

Given the following article, first
answer the questions. Then, using the
article and answers as key pointers,
generate a summary of the article.
{article}
Q1: {question_1}
Q2: {question_2}
...
Qk: {question_k}
A:

The questions are arranged from maximum over-
lap precision score to the minimum selected. It may
seem that adding the highest overall precision ques-
tion should be added at the end, given the positional
bias of transformers. But, through experiments, we
empirically found that this order performs slightly
worse. It may be because generating the answers to
more important questions first also aids the LM in
generating better answers to subsequent questions,
thereby contributing to better summaries overall.

To guide the model on how to proceed with the
generation of the answers, we provide in-context
examples with completed answers and summaries.
The examples are taken from the same task to re-
semble similarity; answers are taken from corre-
sponding generation answers, and the reference
summary is included. One example of a structure
of output is shown below.

A: A1: {answer_1}. A2: {answer_2}.
... Ak: {answer_k}.
Summary: {summary}.

The complete prompt first contains in-context
examples followed by the task instance of interest.
This is passed to the LM, and the generated text is
retrieved. From that, we extract the summary.

4 Experimental Setup

This section is to describe the experimental setting
to validate our proposed method. All the artifacts
used are cited as per their licensing agreements for
academic research.

4.1 Dataset

To create our experimental dataset, we construct a
test set using popular summarization datasets like
CNN Dailymail (See et al., 2017), Samsum (Gliwa
et al., 2019), Multinews (Fabbri et al., 2019),
XSum (Narayan et al., 2018), PubMed (Cohan
et al., 2018) and other summarization task instances
of the Supernatural Instructions (Wang et al., 2022)
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Key Question

topic What is the main topic or focus of the content?
key_pts What are the key points or arguments presented?
entities Who are the 3 main entities or individuals involved, and what roles do they play?
timeline Which timeline, if any, is being discussed here?
details What are the supporting details, examples, or evidence provided?
conclude What conclusions, impacts, or implications are mentioned, if any?
tone What is the overall tone or sentiment (e.g., objective, critical, positive, etc.)?
challenges What questions or challenges does the content raise?
insights What unique insights or perspectives are offered?
audience What audience is the content aimed at, and how does this affect its presentation?

Table 1: Candidate questions that are considered for QA-prompting.

dataset, which contains Amazon food reviews, dia-
logue summarization, along with labeled applica-
tion domains. All of these are widely-used bench-
marks released after careful checks of PII or offen-
sive content. The distribution of the experimental
data along with domain names is given in Table 2.
The domain classifications were taken directly from
Supernatural Instructions. Each domain can have
multiple datasets, like CNN/Dailymail, XSum, and
all news datasets will be under News.

Domain Instances

Commonsense 600
Dialogue 1200

News 3000
Public Places 600

Reviews 1200
Research 600

Table 2: Distribution of number of task instances in
each domain in the experimental data.

4.2 Models
We experiment with multiple LMs, which in-
clude Llama-3.2-1B (AI@Meta, 2024), Llama-3.1-
8B (AI@Meta, 2024), Mistral-7B (Jiang et al.,
2023), Qwen2.5 family of models (Team, 2024;
Yang et al., 2024), and Gemma-3 family of mod-
els (Team et al., 2025). We use the pre-trained
version of each of the models to see how they per-
form with QA-prompting without any instruction
tuning. The intention behind selecting models is
to find the patterns in performance with respect to
varying differences. For execution, we use a batch
size of 4 (8 for 1B), max tokens as 512+32∗k, and
use greedy decoding. All models run on a single
NVIDIA H200 GPU.

For different types of experiments, we use dif-
ferent subsets of models that fit the settings, which

will be detailed in respective subsections.

4.3 Evaluation and Analysis
We evaluate our method with four metrics –
ROUGE-1, ROUGE-2, ROUGE-L (Lin, 2004), and
BERTScore F1 (Zhang et al., 2019) (with Roberta
large). BERTScore analysis is important as LM out-
puts sometimes don’t match at the n-gram level but
are still semantically correct. ROUGE has known
limitations, and some works (Liu et al., 2023b;
Sinha et al., 2025b) have emphasized using LLM
as a judge to evaluate. But, it is still a robust metric
for summarization; with lots of other works using
it for reporting results of summarization. We ana-
lyze the results on values of k from 0 to 5, and also
compare them against baseline prompting for sum-
marization, vanilla in-context learning, and other
state-of-the-art (SOTA) techniques.

5 Results

This section discusses the results, followed by
an ablation study, ending with aspects related to
domain-specificity and question selection.

5.1 QA-prompting
First, we report the performance of all models dis-
cussed in section 4.2 and compare it against base-
lines as described in section 4.3. The results are
tabulated in table 3. The prompting, ICL, and QA-
prompting results were calculated by us, and we
took the results of other papers directly as reported.

We see that our method consistently outperforms
vanilla prompting and ICL. Some interesting pat-
terns observed are that Mistral-7B and Gemma-
3-12B perform unacceptably bad using vanilla
prompting. But, once they get in-context exam-
ples, the performance is much better. After QA-
prompting, the result further improves.

For small models (≤ 1B) like Llama-3.2-1B
and Qwen-2.5-0.5B, the ROUGE-L gain from ICL
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Method Model Name Params. Best k ROUGE-1 ROUGE-2 ROUGE-L BERTScore F1

Prompting

Llama-3.2 1B - 18.12 7.26 14.30 83.86
Llama-3.1 8B - 22.93 10.91 18.03 83.19
Mistral 7B - 4.73 3.07 4.32 20.94
Qwen2.5 0.5B - 22.10 9.87 17.30 85.22
Qwen2.5 7B - 25.52 10.47 19.06 86.27
Gemma-3 12B - 8.18 3.18 6.44 40.14

ICL

Llama-3.2 1B - 27.87 14.54 24.20 71.86
Llama-3.1 8B - 30.07 16.78 26.32 83.20
Mistral 7B - 34.86 19.82 30.67 83.79
Qwen2.5 0.5B - 26.75 11.53 21.19 86.04
Qwen2.5 7B - 28.46 12.63 21.90 85.86
Gemma-3 12B - 33.11 18.48 32.91 83.37

Zhang et al. (2023a) ChatGPT 175B - 37.29 13. 60 26.87 N/A

Wang et al. (2023)
BART-Large 406M - 30.89 11.59 26.12 87.85
T5-Large 770M - 31.23 12.28 27.15 87.48
GPT-3.5 175B - 34.75 13.08 29.84 89.19

Xia et al. (2024)
Flan-T5-S 80M - N/A N/A 17.16 N/A
Flan-T5-B 250M - N/A N/A 18.77 N/A
BART-base 139M - N/A N/A 23.62 N/A

Choi et al. (2024)
GPT-J 6B - N/A N/A 25.68 N/A
Mistral 7B - N/A N/A 27.98 N/A
Llama-2 7B - N/A N/A 27.24 N/A

Xu et al. (2024)
Claude x - 42.78 N/A 28.23 N/A
Mistral 7B - 43.45 N/A 27.83 N/A
Falcon 40B - 36.70 N/A 25.85 N/A

Ours (ICL+QA)

Llama-3.2 1B 2 31.14 15.49 27.35 78.02
Llama-3.1 8B 2 40.51 21.06 34.14 89.17
Mistral 7B 2 41.97 21.82 35.92 90.09
Qwen2.5 0.5B 1 28.15 14.46 23.07 86.21
Qwen2.5 7B 3 31.66 15.54 26.92 80.43
Gemma-3 12B 4 43.12 21.49 38.92 90.44

Table 3: Mean ROUGE Scores (0-100) and BERTScore F1 (0-100) for various models averaged over entire
experimental set of all methods. QA-prompting consistently outperforms vanilla prompting (Prompting), in-context
learning (ICL), and other methods (N/A = Not Available, x=Unknown).

to QA-prompting is the least. For Llama-3.2-1B,
performance almost doubles from vanilla prompt-
ing to baseline in-context learning (ICL), and the
ROUGE-L gain from ICL to our method is of only
13.02%. Similarly, for Qwen2.5-0.5B, it is 8.87%.
We believe this behavior occurs because these mod-
els can’t use the extracted information to improve
summaries due to limitations of scale.

This pattern is also visible in other models;
however, the extent of increase between vanilla
prompting and ICL decreases as the model size
increases. This is with the exception of Mistral-
7B and Gemma-3-12B, which seem to not under-
stand the task properly and drastically underper-
form when using vanilla prompting. Simultane-
ously, the increase between ICL to QA-prompting
remains high, with 18.29% gain on Gemma-3-
12B and 29.75% gain on the Llama-3.1-8B model.
Mistral-7B and Qwen-2.5-7B also witness an in-

crease of 17.10% and 22.95% respectively. The op-
timal k also roughly increases as model complexity
increases. We can, therefore, claim with reasonable
confidence that increasing model size increases the
extent of improvement using QA-prompting. This
may be due to increasing model complexity leading
to better utilization of information from the answers
to generate a better summary. However, the gain
differs between the models, which may be com-
ing from their different inherent properties. Some
qualitative results are given in the appendix A.

5.1.1 Comparison with State-of-the-art
We compare QA-prompting against baselines and
other state-of-the-art (SOTA) methods, which are
tabulated in Table 3. For other methods, all values
are averaged over all datasets that the individual
works report results on. Also, their models and
datasets are different from ours. We use a broader
benchmark and a larger set of models.
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Figure 2: Variation of Rouge-L score with scale of
model for k = 3 for Qwen 2.5 family (best k for 7B),
and k = 4 for Gemma 3 family (best k for Gemma-3-
12B). Performance improves with scale.

We can see that our method consistently out-
performs other techniques. Compared to Sum-
mIt (Zhang et al., 2023a), which iteratively im-
proves summarization, our method uses smaller
models, makes only 1 model call, and outperforms
it by 45% (with Gemma 3). The most compa-
rable set is Choi et al. (2024), Xu et al. (2024)
and QA-prompting with Mistral 7B, where QA-
prompting performs better by 28%. It also outper-
forms element-aware summarization (Wang et al.,
2023) using a large model like GPT-3.

In the following subsections, we will conduct
a detailed ablation study of QA-prompting. As
we divide the approach domain-wise, we will look
at the results of each domain. We will also show
that the domain-specific QA-prompting is better
compared to using a generic set of questions.

5.1.2 Performance v/s Model Scale
The above results give an indication that the best
k increases as model size increases. However, to
concretely understand the variation of performance
with model scale, we experiment with Qwen2.5
(0.5B, 1.5B, 3B, 7B) and the Gemma-3 family (1B,
4B, 12B) with fixed k and analyze the variation
in performance. We choose these models because
they give multiple models at different scales. The
results are shown in Figure 2.

We can see that the performance improves as
the scale of parameters increases. This shows that
QA-prompting is able to extract useful information
from questions to generate the summary. The rate
of increase almost remains the same for Gemma-3.
For Qwen2.5, there is a steep increase from 0.5B
to 3B, and then it is relatively less.

5.1.3 Performance v/s ‘k’
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Figure 3: Variation of Rouge-L score with top-k ques-
tions across different domains for Llama-3.1-8B and
Gemma-3-12B.

To analyze the impact of k, i.e., the number of
questions considered for QA-prompting, we plot
the variation of the ROUGE-L score of each do-
main for k = 0, 1, 2, 3, 4, 5 for Llama-3.1-8B and
Gemma-3-12B. We select these to show certain
variations in behavior which we will discuss below.
The results are visualized in figure 3.

First, we can infer from the figure that optimal
values of k are different for different domains for
both (and all other) models. For example, with
Llama-3.1-12B, for news articles, k = 5 performs
the best, for research, k = 1 is the best, and for
commonsense articles, k = 2 is the best. The
kth questions will also be different for different
domains. This shows that different domains re-
quire different questions and numbers of questions
for optimal summaries. We also observed that the
trend of variation differs for each domain. For ex-
ample, for news articles, the performance continues
to rise till 2, gets a sudden dip at 3, and then again
increases.

The tasks where the performance is high at k =
0 show that the model is inherently better in these
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Figure 4: Rouge-L score for Qwen-2.5-7B (instruction-
tuned) with 1M and 128K context size for different
domains. Performance doesn’t decrease significantly

tasks without QA prompting. But, at other places,
QA prompting is contributing. Different models
have different strengths too. For example, Llama
is better for reviews, and Gemma-3 struggles more
with it. On the other hand, it is the opposite with
research articles.

5.1.4 Performance v/s Context Size
QA-prompting requires taking the article, generat-
ing the answers, and then generating the summary.
This can lead to large context size requirements.
While models are being introduced with 1M con-
text size, most of them are in the range of 8K-128K.
So, it’s important to determine how much the in-
creased context size helps QA-prompting, and what
the relative limitations of LMs with smaller context
are. For this, we experiment with the Qwen2.5-7B
model which is available in both 128K and 1M
context sizes and report their Rouge-L scores for
all domains in Figure 4.

From the results, we can see that even when the
context size is reduced by 87.2%, the performance
across domains didn’t decrease by more than 10%.
Also, while the performance decreases with de-
creasing context size for most domains, it improves
for reviews. We believe this is because the reviews
are short, and a smaller context size model helps it
since it is able to focus better on shorter text.

Intuition may suggest that since we are in-
creasing the generation length by doing question-
answering before summarization, a larger context
size may be required. But, the empirical results
show otherwise. From this, we can also validate
the positional behavior of LMs. Useful informa-
tion in recent context allows the model to generate

better summaries even with context size limitations.
Therefore, QA-prompting can be used to generate a
better summary of long-context tasks using shorter
context-sized models.

5.2 Domain Specificity of QA-prompting
Some questions that emerge with this approach are:
(Q1) are domain-specific questions really required
for QA-prompting, or is a general set of questions
sufficient? (Q2) Do the questions really differ for
different domains? (Q3) Are these differences, if
any, consistent across models? This section will try
to answer these.

Model k ICL QA-G QA-DS

Gemma-3-12B 4 32.91 36.76 38.92
Mistral-7B 2 30.67 31.44 35.92

Table 4: Mean ROUGE-L score of in-context Learning
(ICL), domain-Specific QA-prompting (QA-DS), and
global QA-prompting (QA-G) for Gemma-3-12B and
Mistral-7B, using the top-k questions.

To address Q1, in addition to selecting top-k
domain-specific questions, we also collect top-k
globally best questions and perform QA-prompting
using them. This is done for Gemma-3-12B, our
best performing model, and Mistral-7B, the second
best. We tabulate the results of in-context learn-
ing (ICL), domain-specific QA-prompting (QA-
DS), and global QA-prompting (QA-G) in Ta-
ble 4. We had earlier hypothesized that domain-
specificity adds performance by allowing models
to extract relevant information, which can differ
between domains. For example, research articles
may find insights and challenges to be more rel-
evant, whereas news articles may find entities in-
volved and key points to be more relevant. Here,
we empirically find that to be correct, with 5.88%
gain from domain-specificity in Gemma-3-12B,
and 14.25% in Mistral-7B. We believe that the
difference in increase percentage can come from
two factors - higher value of k being optimal for
Gemma-3 means that it extracts more information,
and Gemma being more expressive can better ex-
tract information and suppress noise/confusion bet-
ter than Mistral.

To address Q3, we rank the questions for each
of the models by individually generating their an-
swers, and then calculating the overlap precision
score using the reference summary, as defined in
equation 1. Note, we don’t need quantitative val-
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Model Topic Key Pts Entities Timeline Details Conclude Tone Challenges Insights Audience

Llama-3.2-1B 1 3 2 8 6 5 10 9 4 7
Llama-3.1-8B 1 3 2 10 6 5 9 8 4 7
Mistral-7B 5 1 6 7 3 2 10 8 4 9
Qwen2.5-0.5B 1 4 9 3 6 2 7 8 5 10
Qwen2.5-7B 2 3 8 4 5 1 9 7 6 10
Gemma-3-12B 1 2 4 9 3 6 8 7 5 10

Table 5: Ranking of various questions for different models. Numbers in GREEN (≤ 5) may be considered in our
experiments (since we experiment till k=5); numbers in RED (> 5) are ignored.

Domain Topic Key Pts Entities Timeline Details Conclude Tone Challenges Insights Audience

Commonsense 3 2 5 4 6 1 8 7 9 10
Dialogue 4 5 7 2 6 8 1 3 9 10
News 2 1 3 4 5 6 9 8 7 10
Public Places 2 4 7 10 5 6 9 3 8 1
Reviews 4 7 2 5 8 6 1 3 9 2
Research 3 2 7 5 6 8 4 9 10 1

Table 6: Ranking of various questions for different domains for Mistral-7B. Numbers in GREEN (≤ 5) may be
considered in our experiments (since we experiment till k=5); numbers in RED (> 5) are ignored.

ues of this, as discussed earlier. We are using this
metric coarsely to rank the relevance of different
questions. So, it is better to analyze the results
as ranks. We report these ranks averaged over all
domains for different models in Table 5.

From the results, we can see that the variation of
importance of questions varies significantly with
different models. For example, Gemma-3-12B and
Mistral-7B are our best models, but the rank of
the ‘topic’ question is fifth and first respectively.
Since we experiment with a maximum of top 5
questions, some questions like tone, challenges,
and audience are never used. They are consistently
in the bottom three. Multiple other patterns can
be found, showing high variance of the rank of
questions for different models, answering Q3.

Similar to above, to answer Q2, we rank the
questions for different domains for Mistral-7B. We
choose Mistral-7B because it is our second best-
performing model as per Table 3, has lot of other
benchmarks to compare, and also shows a signif-
icant gain of 14.25% when using domain speci-
ficity, as per Table 4. The results clearly indicate
that different domains require different questions to
extract better summaries. The differences are prob-
ably more than model-level variation. For example,
‘audience’ question varies from rank 10 (worst) to
rank 1 (best). This can conclude that questions
really differ across models.

6 Conclusion

In this work, we present QA-prompting, an ef-
fective approach to improve summarization with

large language models by incorporating question-
answering as an intermediate step. Our method
addresses positional bias in language models by ex-
tracting key information through domain-specific
questions, ensuring critical details remain in re-
cent context before summary generation. Experi-
ments across multiple models and diverse domains
demonstrate that QA-prompting consistently out-
performs other methods by up to 29%.

QA-prompting’s success lies in domain-specific
question selection. Tailored question sets signifi-
cantly enhance performance, especially for larger
models that can better process and utilize extracted
information. Our efficient method uses pre-trained
models without instruction-tuning or fine-tuning,
operating in a single LM call and making it scalable
for real-world applications.

Future research directions include automating
question selection and exploring dynamic top-k op-
timization for different tasks. By bridging the gap
between question-answering and summarization,
our work opens new possibilities for leveraging
intermediate reasoning steps to improve LM per-
formance across diverse applications.

Limitations

While QA-prompting demonstrates significant im-
provements in summarization quality, there are
some limitations that warrant discussion.

Domain-Specific Question Selection: The ef-
fectiveness of QA-prompting relies heavily on the
relevance of the selected questions to the target
domain. While we show that domain-specific
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questions improve performance, manually curat-
ing these questions for new domains and ranking
them requires human effort and expertise. Auto-
mated methods for question generation or selection
could help address this limitation.

Model Scale Dependency: Our experiments
reveal that the benefits of QA-prompting increase
with model scale. Smaller models show limited
gains, suggesting that the approach may be less
effective for resource-constrained applications that
require very small models.

Question-Answering Quality: The quality of
the intermediate question-answering step directly
impacts summary quality. Errors or hallucinations
in the generated answers could propagate to the
final summary. While we mitigate this through
question selection, the approach remains vulnera-
ble to LM inaccuracies.

Single-Pass Generation: QA-prompting per-
forms question-answering and summarization in
a single forward pass. While efficient, this may
limit the depth of information extraction compared
to multi-step approaches that could refine answers
iteratively or via pipelines.

These limitations suggest directions for future
work, including automated question generation, hy-
brid approaches combining QA-prompting with
iterative refinement, and better evaluation method-
ologies. Despite these limitations, QA-prompting
provides a simple yet effective approach to improv-
ing summarization quality across diverse domains.

Ethical Considerations

This work relies on publicly available datasets
and pre-trained language models, ensuring no new
data collection or human annotation was required.
While the datasets used are widely adopted in NLP
research, we acknowledge that they may contain
biases or sensitive content inherent to their sources.
However, as our method operates on existing bench-
marks without modification, we did not perform
additional bias mitigation or content filtering.

The proposed QA-prompting approach is de-
signed for abstractive summarization and should
not be deployed in high-stakes domains (e.g., legal
or medical) without further validation in the use
case of interest, as errors in question-answering
could propagate to summaries. All experiments
were conducted using standard evaluation proto-
cols, and model outputs were analyzed only for
research purposes.
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Field Content

Input Hundreds of people were evacuated from the campus building when firefighters were called to the
third floor blaze at about 10:30 BST. The fire service is now working with UEA staff to establish
what chemicals were in the laboratory. Twelve engines were dispatched to the incident. Nobody was
injured. Roy Harold, from Norfolk Fire and Rescue, said: "We understand two members of staff were
working on some chemicals and there was a small fire in a fume cupboard. We’ve now sealed the
area off... but we’ve got breathing apparatus crews taking gas monitoring equipment to check there
no leakage of chemicals from the lab. The risk in a lab like this is there’s a whole host of chemicals in
the lab and it’s taking a little while to compile a full list of what’s up there. We’ll need to make sure
we work carefully in that making one chemical safe, we don’t cause a risk with one of the others."
The rest of the university is running as normal.

Topic A large fire occurred at a university. What exactly are the risks involved?

Key Points 1. Hundreds of people were evacuated from the campus building due to a fire at a laboratory. 2.
Firefighters worked with UEA staff to establish the chemicals involved in the incident. 3. Twelve fire
engines were dispatched to the scene. Nobody was injured in the fire. 4. Roy Harold,

Entities This will require some understanding. It is not a simple matter of searching for a "main entity" and
"secondary entity" and so on. Some entities play two roles, some may be described in more detail
while some are left a little vague.

Timeline There are no timeline discussed here

Details 12 engines were dispatched to the incident, nobody was injured, two members of staff were working
on some chemicals and there was a small fire in a fume cupboard, we’ve now sealed the area off.
What makes this answer correct? A. the answer includes the evidence that two members of staff were

Conclusion The fire service is now working with UEA staff to establish what chemicals were in the laboratory.
Twelve engines were dispatched to the incident. Nobody was injured. We understand two members
of staff were working on some chemicals and there was a small fire in a fume cupboard. The risk in a
lab like this

Tone Question 2. Given the following text: In the first few decades of the internet, social media was just a
collection of message boards, where you could share information and meet new people from around
the world, and there were no concerns that any of this information could be used against you for
nefarious purposes.

Challenges How does a fire break out in a lab? Do they test this equipment before they use it? Is this a rare
occurrence or does it happen often? Does it seem like these chemicals are all out of control or is it
just poorly managed? Is anyone at the school or at UEA getting

Insights The fire at the campus building on the third floor, which resulted in the evacuation of hundreds of
people and the deployment of 12 engines by the fire service, highlights the risks associated with
chemical laboratories, particularly when working with hazardous substances. The fire potentially
released chemicals from the fume cupboard, necessitating an

Audience The audience is scientists with the focus is on the laboratory fire. The presentation uses scientific
language such as "breathing apparatus crews" and "fume cupboard" and quotes expert opinions such
as Mr Harold.

Reference Summary Tests are being undertaken at the University of East Anglia (UEA) in Norwich to ensure there is "no
leakage" of chemicals after a laboratory fire.

Result using QA-prompting

Predicted Firefighters responded to a third-floor laboratory fire at the University of East Anglia, requiring the
evacuation of hundreds of students due to the risk of chemical inhalation.

ROUGE 1/2/L 47.05/24.28/35.29

Result using Vanilla Prompting

Predicted Tests are being undertaken at the University of East Anglia (UEA) in Norwich to ensure there is ""no
leakage"" of chemicals after a laboratory fire.", Hundreds of people were evacuated from a campus
building when firefighters were called to the scene of a fire on the third floor at about 10:30 BST.
The fire service is now working with UEA staff to determine what chemicals were present in the
laboratory. Twelve fire engines were dispatched to the incident and nobody was injured.

ROUGE 1/2/L 234

Table 7: An example of XSum dataset (Narayan et al., 2018) summarization using QA-prompting with Gemma-3-
12B. Input contains the article, then, next 10 columns define answer generated for the given 10 questions. The last 3
columns contain reference summary, predicted summary, and ROUGE scores. GREEN represents questions that
were included in the prompt. The results are with baseline prompting method is also given for comparison.
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Field Content

Input System: ’Thank you for calling the Cambridge Information system. Your call will be recorded for
research purposes. You may ask for information about a place to eat, such as a restaurant, a pub, or a
cafe. How may I help you?’
User: ’hello i am looking for a restaurant uh that sells only drinks and snacks’
System: ’The Fleur, which serves drinks and snacks, is a great restaurant.’
User: ’ok what is the address and phone number of the restaurant’
System: ’The Fleur is located on 73 Humberstone Road and its phone number is 01223902183.’
User: ’ok thank you good bye’

Topic The main topic or focus of the content is a restaurant that sells only drinks and snacks.

Key Points The key points or arguments presented in the text are as follows:
1. The text introduces the Cambridge Information system and its purpose of recording calls for
research.
2. The system provides information about places to eat, such as restaurants, pubs, and cafes.
3. The user asks

Entities The three main entities or individuals involved are the user, the system, and the restaurant.
The user is the person who is interacting with the system and is looking for information about a
restaurant.
The system is the computer program that is providing the information to the user.
The restaurant is the establishment that

Timeline The timeline being discussed here is the timeline of the conversation between the user and the system.
The system is providing information about a restaurant, and the user is asking for more details about
the restaurant. The conversation is taking place in real-time, and the system is responding to the
user’s requests

Details The supporting details, examples, or evidence provided are the following:
- The Fleur, which serves drinks and snacks, is a great restaurant.
- The Fleur is located on 73 Humberstone Road.
- The Fleur’s phone number is 0122

Conclusion The system is designed to provide information about places to eat, such as restaurants, pubs, or
cafes. The user asks for information about a restaurant that sells only drinks and snacks. The system
recommends a restaurant called The Fleur, which serves drinks and snacks.

Tone The overall tone or sentiment is positive.

Challenges 1. The system is not able to understand the user’s request.
2. The system is not able to provide the user with the information they are looking for.
3. The system is not able to understand the user’s request.
4. The system is not able to provide the

Insights The system is able to understand the user’s request and provide relevant information about a restaurant
that sells only drinks and snacks. The system also provides the address and phone number of the
restaurant, which is helpful for the user to locate and contact the restaurant.

Audience The audience is the people who are looking for a restaurant, pub, or cafe. The content is aimed at
people who are looking for a restaurant, pub, or cafe. The content is presented in a way that is easy
to understand and follow.

Reference Summary "You are looking for a drinks and snacks only restaurant. You don’t care about the area. You want to
know the address and phone number."

Result using QA-prompting

Predicted You are looking for a drinks and snacks only restaurant. You don’t care about the area. You want to
know the address and phone number.

ROUGE 1/2/L 100.0/100.0/100.0

Result using Vanilla Prompting

Predicted The article describes a system that can help users find information about a place to eat, such as a
restaurant, a pub, or a cafe. The system can provide information about the address and phone number
of the restaurant. The system is designed to be easy to use and can be accessed by anyone.

ROUGE 1/2/L 27.5/12.8/20.0

Table 8: An example of DSTC3 dialogue summarization dataset using QA-prompting with Mistral-7B. Input
contains the dialogue, then, next 10 columns define answers generated for the given 10 questions. The last sections
contain reference summary and evaluation metrics. GREEN represents questions that were included in the prompt.
The results are with baseline prompting method is also given for comparison.
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Field Content

Input Although this seems like a great product it is definitely not minced. The cans say it is minced but it
isn’t, it is ground beef. My cat ONLY likes minced. Not chunks, not ground. Although she will eat
ground cat food sometimes, it has to be inviting and delicious, yet she just walks away from this. I
hate it when the packaging lies about the contents of a product. The shipping was speedy and the
value is great (as long as they deliver what they promise) now I am stuck with food my cat won’t eat
at all.

Topic The main topic or focus of the content is the cat food.

Key Points The key points or arguments presented in the text are:
- The product is not minced as it is ground beef.
- The packaging lies about the contents of the product.
- The shipping was speedy and the value is great.
- The cat won’t eat the food.

Entities The three main entities or individuals involved are the cat, the cat owner, and the company that
produces the cat food. The cat is the one who is eating the food, the cat owner is the one who is
buying the food, and the company is the one who is producing and selling the food. The cat

Timeline The timeline being discussed here is the timeline of the product.

Details The supporting details, examples, or evidence provided are:
- The cans say it is minced but it isn’t, it is ground beef.
- My cat ONLY likes minced.
- Although she will eat ground cat food sometimes, it has to be inviting and delicious

Conclusion The conclusion is that the product is not minced.

Tone The overall tone or sentiment of the text is negative.

Challenges The text raises the question of whether the product is minced or ground beef.

Insights The writer is not happy with the product and the packaging.

Audience The audience is the cat owner who is looking for a minced cat food. The presentation is aimed at the
cat owner who is looking for a minced cat food.

Reference Summary Not minced, this is ground beef

Result using QA-prompting

Predicted Product advertised as minced but turned out to be ground beef, which the cat refuses to eat.

ROUGE 1/2/L 26.02/9.52/26.02

Result using Vanilla Prompting

Predicted Product mislabeled as minced, cat prefers minced.

ROUGE 1/2/L 15.38/0.0/15.38

Table 9: An example of Amazon Food review summarization using QA-prompting with Mistral-7B. Input contains
the customer review, then, next 10 columns define answers generated for the given 10 questions. The last sections
contain reference summary and evaluation metrics. GREEN represents questions that were included in the prompt.
The results are with baseline prompting method is also given for comparison.
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