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Introduction

The International Conference on Spoken Language Translation (IWSLT) is the premiere annual scien-
tific conference for the study, development, and evaluation of spoken language translation technology.
Launched in 2004 and spun out from the C-STAR speech translation consortium before it (1992-2003),
IWSLT is the main venue for scientific exchange on all topics related to speech-to-text translation, speech-
to-speech translation, simultaneous and consecutive translation, speech dubbing, cross-lingual commu-
nication including all multimodal, emotional, paralinguistic, and stylistic aspects and their applications
in the field. The conference organizes evaluations around challenge areas, and presents scientific papers
and system descriptions. IWSLT is organized by the Special Interest Group on Spoken Language Tran-
slation (SIGSLT), which is supported by ACL, ISCA and ELRA.

This year, IWSLT featured spoken language translation shared tasks organized into seven distinct tracks.
These were grouped into four high-resource tasks: (i) offline speech translation, (ii) simultaneous spee-
ch translation, (iii) subtitling, and (iv) model compression; three low-resource tasks: (v) low-resource,
and (vi) Indic (multilingual); and one instruction following task. Each track was coordinated by one or
more chairs. The resulting evaluation campaigns attracted a total of 32 teams, from academia, research
centers and industry. System submissions resulted in 31 system papers that will be presented at the con-
ference. Following our call for papers, this year we received 22 submissions of research papers, 13 of
which were accepted for oral presentation through a double-blind review process.

The program committee is excited about the quality of the accepted papers and expects lively discussion
and exchange at the conference. The conference chairs and organizers would like to express their grati-
tude to everyone who contributed and supported IWSLT. In particular, we wish to thank our Diamond
sponsors Apple and AppTek. We thank the shared tasks chairs, organizers, and participants, the program
committee members, as well as all the authors that went the extra mile to submit system and research
papers to IWSLT, and make this year’s conference a big success. We also wish to express our sincere
gratitude to ACL for hosting our conference and for arranging the logistics and infrastructure that allow
us to hold IWSLT 2025 as a hybrid conference.

Welcome to IWSLT 2025, welcome to Vienna!

Antonios Anastasopoulos, Program Chair
Marcello Federico and Alex Waibel, Conference Chairs
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Victor Agostinelli, Tanel Alumäe, Antonios Anastasopoulos, Luisa Bentivogli, Ondřej Bojar,
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Abstract

We introduce STAR (Stream Transduction with
Anchor Representations), a novel Transformer-
based model designed for efficient sequence-
to-sequence transduction over streams. STAR
dynamically segments input streams to cre-
ate compressed anchor representations, achiev-
ing nearly lossless compression (12×) in
Automatic Speech Recognition (ASR) and
outperforming existing methods. Moreover,
STAR demonstrates superior segmentation
and latency-quality trade-offs in simultaneous
speech-to-text tasks, optimizing latency, mem-
ory footprint, and quality.1

1 Introduction

Sequence transduction, also referred to as sequence-
to-sequence modeling, has shown remarkable suc-
cess across various domains, including speech
translation (Liu et al., 2019; Di Gangi et al., 2019;
Li et al., 2020) and automatic speech recognition
(Prabhavalkar et al., 2023; Li, 2021; Gulati et al.,
2020). Traditionally, these models operate under
the assumption of fully observing input sequences
before generating outputs. However, this require-
ment becomes impractical in applications necessi-
tating low latency or real-time output generation
such as simultaneous translation (Ma et al., 2019;
Chang and Lee, 2022; Barrault et al., 2023, inter
alia). The concept of streaming sequence transduc-
tion (Inaguma et al., 2020; Kameoka et al., 2021;
Chen et al., 2021; Wang et al., 2022; Chen et al.,
2021; Xue et al., 2022), or stream transduction,
arises to address this challenge. Unlike traditional
sequence transduction, stream transduction oper-
ates on partially observed input sequences while
simultaneously generating outputs. This requires
deciding when to initiate output generation, a task
inherently tied to identifying critical triggers within

1 Codes available at: https://github.com/
steventan0110/STAR

Figure 1: When YIELD is triggered, the current seg-
ment’s information is compressed into an anchor repre-
sentation to generate the next output.

the input sequence. Triggers mark moments when
sufficient input information has been received to
initiate output generation, thus minimizing latency.
Consequently, they partition the input sequence
into discrete segments, with outputs accessing only
information preceding each trigger.

Locating these triggers poses a significant chal-
lenge. Prior approaches have explored methods
that employ fixed sliding windows to determine
triggers (Ma et al., 2019, 2020b), or learning mod-
els to predict triggers (Ma et al., 2020c; Chang and
Lee, 2022), yet timing remains a complex issue.
Beyond reducing latency, another challenge for
stream transduction is how to efficiently represent
historical information while optimizing memory
usage. Prior work (Rae et al., 2020; Tay et al.,
2022; Bertsch et al., 2023, inter alia) has mostly fo-
cused on improving the efficiency of Transformer
but does not investigate streaming scenarios. Re-
ducing the memory footprint for streaming systems
introduces additional complexity as models must
determine when certain information becomes less
relevant for future predictions.

In this work, we propose Stream Transduction
with Anchor Representations (STAR), a novel ap-

1
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proach designed to maximize the benefits of stream
transduction, optimizing both generation latency
and memory footprint. STAR dynamically seg-
ments the input stream into buffers that contain
similar levels of information. Then, it introduces
the concept of anchors, which aggregate a buffer of
information (multiple vector representations) into
single-vector anchor representations. Once an an-
chor representation is yielded, it triggers the gener-
ation process to yield another token.

We present a learning strategy to train STAR
end-to-end so that the model learns to dynamically
select anchor positions with the following objec-
tives: (1) anchor positions are selected such that
each segment contains the right amount of infor-
mation for generating the next output; (2) anchor
representation effectively compress the informa-
tion of its preceding segment. For example, in
fig. 1, the model triggers YIELD at index 3 (which
makes it an anchor position), compressing the in-
formation of the current chunk X = (x1, x2, x3)
into anchor representation z1 to generate output
y1. Such a process repeats each time YIELD is
triggered. To summarize, our contributions are as
follows: (1) we propose STAR that dynamically
segments and compresses input streams, trading-
off among latency, memory footprint, and perfor-
mance for stream transduction; (2) we validate the
effectiveness of our approach on well-established
speech-to-text tasks. Our results show that STAR
greatly outperforms existing methods, obtaining
better compression ability and excelling in quality-
latency trade-offs.

2 Methodology

2.1 Problem Formulation

In sequence-to-sequence transduction, feature
X = (x1, . . . ,xTx) is normally first extracted
from the raw input sequence. Then the decoder can
encode and use such features to generate an output
sequence Y = (y1, . . . , yTy). The encoder and
decoder can be implemented using various mod-
els such as Recurrent Neural Networks (Hochreiter
and Schmidhuber, 1997; Chung et al., 2014; Lip-
ton, 2015) and Transformers (Vaswani et al., 2017),
depending on the input and output characteristics.
In the context of streaming sequence transduction,
where the input (and their features X) is partially
observed, a causal encoder and decoder are nec-
essary. The causal encoder processes the partially
observed feature X<τ (τ ≤ Tx) to produce their

Algorithm 1 High-level overview of STAR
1: Input: Input stream X , threshold β
2: Output: Output stream Y
3: Initialize: cached repr. Z ← ∅; buffer B ← ∅
4: while y ̸= EOS :
5: α← 0;B ← ∅ ▷ clear buffer
6: while x← READ(X) : ▷ READ new inputs
7: APPEND(B,x) ▷ add to buffer
8: α← α+ Fseg(x)
9: if α ≥ β : ▷ yield triggered

10: H = Fenc(B | Z) ▷ encode segment buffer
11: z = COMPRESS(H)
12: APPEND(Z,z) ▷ embedding for segment
13: y ← Fdec(·|Y ,Z)
14: yield y
15: break

encoding. Suppose the first k outputs are already
generated, the causal decoder sample the next out-
put yk+1 with P(yk+1|X<τ ,Y<k+1; θ), where θ
represents the parameter set.

Deciding when to generate (yield) a new token is
the core of streaming sequence transduction where
a segmenter/predictor (Moritz et al., 2020; Chang
and Lee, 2022) is typically trained to control tim-
ing for yield operation. Our approach to tackling
stream transduction is outlined in algorithm 1. It
involves a learnable segmenter that scores the im-
portance of each input feature to decide if enough
information has been accumulated in the current
buffer of features. As the segmenter scores input
feature in a frame-wise fashion (algorithm 1, line
8), we accumulate the scores α until it reaches a
pre-defined threshold β. When the threshold is
reached, it indicates that enough information has
been accumulated in the current buffer B of fea-
tures. Subsequently, we compress the features into
a single vector representation z that we call an-
chor representation (line 11). z is computed for
each buffer and cached into the history anchors
Z, which is then conditioned by the decoder to
generate new tokens (lines 12-13). The details of
our segmentation and compression mechanism are
introduced in §2.2.

2.2 Segmentation with Dynamic Compression

In this section, we provide details of different com-
ponents in algorithm 1. We first describe how to
learn the segmenter Fseg(·) with feedback from
the encoder-decoder’s cross-attention. Then we
present how anchor representations are obtained
through our selection-based compression method.

Learning Segmenter with Cross-attention We
propose a learnable segmenter trained with feed-

2



back from the encoder-decoder cross-attention. Fol-
lowing algorithm 1, a segmenter is used to evaluate
(score) input features as they are read into the sys-
tem. Such scores s = Fseg(X) are then used to
determine if YIELD is triggered (i.e., whether to seg-
ment streams). Effective segmentation is crucial
in streaming sequence transduction to avoid sub-
optimal transformation due to premature triggering
or increased latency from delayed output. Since
the ideal segmentation depends on several factors
(the input’s information density, the input and out-
put’s modalities, and the task at hand, etc.,), we
rely on the cross-attention between the encoder and
decoder to guide the segmenter (shown in fig. 2).

Specifically, we follow cross-attention from
Transformers (Vaswani et al., 2017) to use three
projections WQ,WK,WV to generate the query
vector yWQ ∈ RTy×d, the key vector hWK ∈
RTx×d and the value vector hWV ∈ RTx×d (where
d is the dimensionality of the representation) and
compute cross-attention as:

S(h,y) = (hWk)(yWQ)
T (1)

Then, as illustrated in fig. 2, we inject seg-
menter’s scores into it the cross attention:

S̃(h,y) = S(h,y) + Fseg(x) (2)

The updated cross-attention S̃(h,y) is then used to
transform the value vector WV and will be used by
the decoder to compute the loss function. Since the
segmenter’s scores are injected in equation (2), it
can be updated with end-to-end back-propagation.
Specifically, suppose the loss objective L is com-
puted, with the chain rule, we have the gradient for
the predicted score α = Fseg(x) as:

∇L
∇α =

l∑

i=1

∇L
∇S̃i(h,y)

· ∇S̃
i(h,y)

∇α

=
l∑

i=1

∇L
∇S̃i(h,y)

· ∇∇α (S(h,y) +α)

=

l∑

i=1

∇L
∇S̃i(h,y)

where l is the number of transformer layer and
S̃i(h,y) is the cross-attention for ith layer. We ob-
serve that the gradient impacting the segmenters is
directly proportional to the gradient on the cross-
attention logits. Consequently, by injecting cross-
attention, we can train segmenters to prioritize po-
sitions that are more significant to the decoder.

Figure 2: Visualization for the training of the segmenter
through feedback from the encoder-decoder’s cross-
attention.

After training the segmenter, we predict scores
s = Fseg(x) for input features and use the scores to
segment the input sequence. Note that the predicted
scores can be used differently based on the task. In
the special case where the whole sequence is fully
observed (i.e., regular non-streaming tasks), we do
not YIELD output anymore. Instead, we simply
select the top k scoring positions as anchors and
use their representation for the decoder to generate
outputs, as formalized below (I is a set of indices):

I = SELECTTOPk(s) (3)

H = Fenc(x) ∈ RTx×d (4)

Z = H[I] ∈ Rk×d (5)

The compression rate is then r = Tx/k ∈ [1,∞)
assuming k ≤ Tx. In a more general case where
streaming is enabled, the score is commonly accu-
mulated (Inaguma et al., 2020; Ma et al., 2020c) un-
til a certain threshold is reached. We use a threshold
β = 1 throughout experiments. Specifically, we
first scale s to [0, 1] range values α = sigmoid(s)
and accumulate α following algorithm 1 (line 8) to
YIELD new output. The accumulation of scores is a
natural way to ensure a similar level of information
is contained in each buffer. This corresponds to a
larger buffer when the sound signal is sparse (see
appendix A for visualization), which gives better
latency-quality control.

Compression with Anchor Representation Ev-
ery time an anchor is predicted by our trained seg-
menter, the model triggers generation with some
buffer B ∈ Rb×d of b features. Subsequently, we
transform such features into a high-dimensional
representation H ∈ Rb×d with a causal encoder2.

2 In practice, we are inspired by BERT (Devlin et al., 2019)
to add a special type embedding e to anchor tokens before
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Figure 3: Visualization for the proposed “selection as
compression” method. Input features are transformed
by the encoder and we only select the encoding at the
anchor position (where YIELD is triggered) as the com-
pressed representation.

The causality of such an encoder ensures that rep-
resentations at later positions contain information
only from earlier positions. Then, we only select
the representation at the anchor position (the last
index of the current buffer) z = H[b] ∈ R1×d to
represent the information of the whole buffer B.
Selected representations are also called anchor rep-
resentations/vectors. For example, in fig. 3, YIELD

is triggered at index 3; therefore we first transform
the features into representations H = Fenc(B|Z),
and select H[3] as the anchor vector z to decode
the next output with cached representation Z.

2.3 Model Training
To train models for streaming sequence transduc-
tion, we primarily rely on the conventional objec-
tive – negative log-likelihood (NLL) loss:

LNLL(X,Y , θ) = − logP(Y |X; θ)

= −
Ty∑

t=1

logP(yt|Y<t,Z<t; θ)

(6)
Note that the loss is defined over X,Y as both
input and output sequences are fully observed dur-
ing training. In addition, the loss defined in equa-
tion (6) is slightly different than regular NLL in that
the decoder can only use representation observed
so far (Z<t) to generate the tth output. This method
is also referred to as Infinite-Lookback (Arivazha-
gan et al., 2019; Liu et al., 2021, IL) and is used
to mitigate the train-test mismatch as future repre-
sentation cannot be observed during inference. Be-
sides using NLL to update the encoder and decoder,

passing through the encoder

we also follow prior work (Chang and Lee, 2022)
to regularize the segmenter so that the number of
YIELD is the same as the output length Ty. Due to
page limitations, we refer readers to appendix B
for more details.

3 Experiments: Non-Streaming
Compression

We experiment on the non-streaming ASR task
to better demonstrate the effectiveness of our
selection-based compression method, since we do
not need to consider the quality-latency trade-off
as in the streaming scenario. We compare our
method with other common baselines like Con-
volutional Neural Networks (Lecun and Bengio,
1995; Krizhevsky et al., 2012, CNN) and Continu-
ous Integrate and Fire (Dong and Xu, 2020, CIF).

Datasets and Evaluation Metrics We conduct
experiments on the LibriSpeech (Panayotov et al.,
2015) and LibriTTS (Zen et al., 2019) dataset’s
“Clean-360h” section, which contains 360 hours
of speech and their corresponding transcriptions.
To evaluate ASR performance, we compute the
word error rate (Morris et al., 2004, WER) between
reference transcriptions and the generated text.

3.1 Training Setup
Compression with Anchor Representations In
§2, we propose a general approach for stream
transduction with dynamic compression. Now
we instantiate the framework for the ASR task.
We first use WAV2VEC2.0 (Baevski et al., 2020)
to extract features X from the input speech se-
quence. We then use a 4-layer decoder-only Trans-
former3 as our causal encoder for compression,
from which we select out anchor representation
z. The segmenter is implemented with a 2-layer
Feed-Forward Network. For the decoder, we use
a 4-layer decoder-only Transformer with an addi-
tional linear layer as the language modeling head.
For details of hyperparameters, we direct readers
to appendix F.

As described in §2, we train the Encoder-
Decoder model with a segmenter learned through
cross-attention feedback. Given the extracted fea-
ture X = (x1, x2, · · · , xTx) and a target compres-
sion rate r ∈ [1,∞), we select top k = Tx/r
scoring positions and use their encodings as an-
chor representations (following equation (5)). We

3 Following the implementation of GPT2 from Hugging-
face https://huggingface.co/gpt2
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then feed the anchor representation Z to the de-
coder to generate text tokens. In practice, most
input speeches from LibriTTS are less than 10 sec-
onds, corresponding to a feature sequence of length
Tx = 10∗16000/320 = 500 (with a standard sam-
pling rate 16 kHz and WAV2VEC2.0 has a stack of
CNNs that reduce input sequence by 320×). There-
fore, we chose some reasonable compression rates
(i.e., r = 12, 18, 30) to test our compression meth-
ods. We now briefly describe two baselines that we
compared against: CNNs and CIF.

Baseline: CNN A simple compression compo-
nent is CNN. After we obtain speech feature X , we
apply CNNs with pre-defined strides to compress
the feature. The encoder (a vanilla Transformer-
Encoder module without our selection-based com-
pression) further transforms such compressed fea-
tures into encoder representations for the decoder
to generate outputs. To enhance the capacity of
CNNs, we follow Zeghidour et al. (2021); Défos-
sez et al. (2022) to add two CNNs with kernel size
(5, 1) and stride size (1, 1) as residual connection.
More details about CNNs and their configurations
are available in fig. 13 (in appendix F).

Baseline: CIF Continuous Integrate and Fire
(Dong and Xu, 2020; Dong et al., 2022; Chang
and Lee, 2022) uses a neural network to predict
scores for each position and accumulates the scores
until a threshold is reached, thereafter triggering
the generation of a new token (called FIRE by the
original paper). For each segment, CIF averages
representations in the segment by directly weighing
them with the predicted scores. For a fair compari-
son with prior work, we adopt the implementation
from Dong et al. (2022) into our codebase.

There are two major differences between our
method and CIF: firstly, STAR segmenter leverages
cross-attention between encoder-decoder to interac-
tively update representations, whereas CIF employs
a weighted average of representations solely from
the encoder side; secondly, STAR pushes infor-
mation to condense in particular anchor at YIELD

positions and performs explicit selections, whereas
CIF’s representations are averaged across each seg-
ment. Broadly, these distinctions mirror the differ-
ences between hard and soft attention mechanisms
(Xu et al., 2015; Luong et al., 2015). We refer read-
ers to appendix B and the original paper (Dong and
Xu, 2020) for more details.
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Figure 4: ASR performance (evaluated by WER)
by different compression methods. From the figure,
STAR outperforms other compressors and the gap en-
larges as the compression rate increases.

3.2 Results of Different Compression Methods

We test the compression performance on three com-
pression rates r ∈ {12, 18, 30}. As shown in
fig. 4, our compression module obtains the best
performance, achieving almost lossless compres-
sion when r = 12, and consistently outperforms
the other two methods on different compression
rates. By comparing the trend in detail, we find that
CNNs are sub-optimal as the compressor because
they operate on a small local window and change
the underlying feature representation, which might
be hard for the encoder and decoder to adapt to.
Now comparing CIF and STAR. As the compres-
sion rate increases, the gap between STAR and CIF
also increases. When r = 30, STAR outperforms
CIF by about 3 WER points on both LibriSpeech
and LibriTTS. From the results, we have veri-
fied that STAR is more effective in compressing
representation compared to CNN and CIF. Later
in our analysis (see §5), we provide evidence of
STAR achieving more robust compressed represen-
tations. Lastly, to exclude the influence from the
text decoder, we also designed a speech similarity
task in appendix D to show that STAR results in
better-compressed speech representation.

4 Streaming Experiments: Simultaneous
Speech Recognition and Translation

Datasets For our simultaneous S2T experiments,
we use the English-German (EN-DE) portion of
the MuST-C V1 (Di Gangi et al., 2019) dataset for
speech translation (ST). We also include results
for simultaneous ASR using LibriSpeech and Lib-
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Figure 5: Lateny-Quality trade-off for CIF and STAR. The five markers on the line correspond to different WAIT-k
strategies (from left to right, WAIT-k ∈ {1, 2, 3, 4, 5}).

riTTS. Note that since our method is based on a
general Encoder-Decoder Transformer, it is not tai-
lored to ASR by leveraging monotonic alignment
or using small character-level vocabulary.

Evaluation Metric To evaluate the quality of
generated output, we use WER for the ASR task
and BLEU (Papineni et al., 2002) for the speech
translation task. For simultaneous S2T, latency
measurement is essential and we resort to the com-
monly used metric, Differentiable Average Lagging
(Arivazhagan et al., 2019, DAL), which was orig-
inally proposed for simultaneous text translation
and later adapted to speech translation in (Ma et al.,
2020a). The smaller the DAL, the better the system
in terms of latency. We refer readers to appendix G
for details on the latency metric.

Experiment Setup Our first step is to train an
speech-to-text (S2T) streaming model without a
segmenter. To make WAV2VEC2.0 causal, we
add a causal mask and train it jointly with the en-
coder and decoder until convergence. Once the
vanilla streaming S2T model is trained, we freeze
the causal WAV2VEC2.0 model as the feature ex-
tractor and start fine-tuning the encoder and the
decoder with the segmenter.

Experimental Results We show the experiment
results in fig. 5 where we plot WER/BLEU v.s.
DAL to demonstrate the quality-latency trade-off
for each system. In our evaluation, we adapt the
WAIT-k policy (Ma et al., 2019) for all systems.
Here WAIT-k denotes the number of speech seg-
ments we encode first before decoding text tokens.
A larger WAIT-k value generally results in higher
latency but better S2T performance. In our work,
we focus on low-latency scenarios where flexible
decision policies like CIF and STAR are most use-
ful; Therefore, we set WAIT-k value to 1 to 5.

We first present the baseline system for simul-

Figure 6: Quality-latency trade-off for fixed-decision
S2T model. Each line corresponds to a different WAIT-k
strategy and each marker corresponds to a stride size of
{120, 200, 280, 360, 440}ms.

taneous ASR with a fixed decision policy in fig. 6.
We use the vanilla streaming S2T model (no com-
pression) and apply a fixed stride size to slide
through the speech and generate text tokens. As
shown in fig. 6, using a large stride like 360ms
(i.e., each chunk corresponds to a speech feature of
length 0.36× 16000/320 = 18) or 440ms, simul-
taneous ASR achieved < 20 WER. However, the
latency is also extremely high (over 2000 DAL).
For smaller strides, quality of generated output is
suboptimal because not enough information is pro-
vided for the text decoder to generate each new
token. A flexible decision policy could alleviate
such issues and provide better latency-quality trade-
off. From fig. 5, we see that for both CIF and STAR,
their output has better quality when the latency is
low. For instance, on LibriTTS, STAR achieves
about 24 WER with a DAL smaller than 800 while
the best-performing fixed decision policy only ob-
tains such performance with a DAL of about 1200.

Comparing CIF with STAR across three datasets
(LibriSpeech, LibriTTS, and MUST-C), we find
that STAR consistently achieves better perfor-
mance, obtaining a lower WER (or higher BLEU)
score with relatively lower latency across differ-
ent WAIT-k strategies. This demonstrates that
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Figure 7: Memory usage and reduction from our
proposed method (with compression rates r ∈
{2, 5, 10, 20}). More results and detailed setup are pro-
vided in appendix E.

STAR gives a better flexible policy to YIELD new
tokens, and the compressed representation encodes
more information for target text generation. In ap-
pendix A, we compare qualitative examples and
visualize the difference in the segmentation from
CIF and STAR. Overall, we find the segmentation
from STAR better corresponds to the target texts,
achieving superior simultaneous S2T performance.

5 Analysis

5.1 Memory Efficiency
Since STAR condenses information in each buffer
into anchor representation, it enhances memory ef-
ficiency by caching compressed representation for
the decoder to generate outputs. With a compres-
sion rate r, a batch size b, and input features of aver-
age length Tx, and hidden dimension d, our system
compresses the encoder representation from bdTx
to bdTx/r. Besides memory consumption, note
that cross-attention computation (equation (1)) is
quadratic w.r.t. encoder representation’s length;
thus, our method reduces the cost of its computa-
tion by a factor of r2. Besides theoretical analy-
sis, we benchmark the actual memory usage and
the percentage of usage reduction achieved by dif-
ferent compression rates. From fig. 7, we show
that with a rate of r = 10 (which achieves nearly
lossless compression), STAR reduces the memory
consumption by more than 30% when transducing
an input feature of length longer than 3,000. For
the full details of our benchmark setup and results,
we refer readers to appendix E.

5.2 Robustness
In this section, we evaluate the robustness of
streaming models (CIF and STAR) by subjecting
them to compression and segmentation conditions
different from their training setup. We find that
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Figure 8: CIF and STAR based model trained with com-
pression rate 12 are evaluated on various compression
rates (ranges from 1 to 50). For a lower compression
rate (≤ 12), both models preserve their quality well. For
a higher compression rate (> 12), STAR is more robust
and its performance degrades slower than CIF.

.
STAR is more robust than CIF, retaining better
transduction when operating on context windows
not exposed to during training.

Various Compression Rates at Inference As de-
tailed in §3, we trained CIF- and STAR-based mod-
els with a compression rate of r = 12 (denoted as
CIF-12 and STAR-12) and tested them under vary-
ing compression rates. Both models perform well
at r ≤ 12, as expected since they are trained for
12× compression. However, when r > 12, STAR-
12 shows significantly less degradation compared
to CIF-12, indicating superior retention of informa-
tion. This resilience arises from STAR’s design,
which focuses information into anchor positions,
ensuring each anchor retains substantial informa-
tion even at higher compression rates. In contrast,
CIF’s averaging approach leads to increased inter-
ference between representations.

Different Segmentations In §4, we tested CIF-
and STAR-based models under a shared fixed seg-
mentation policy, where segments were of uniform
size (⌊Tx/Ty⌋). This setup evaluates robustness to
segmentation changes. Results in fig. 9 show that
while both models experience performance drops,
STAR remains robust, achieving < 30 WER with
a DAL of 800, whereas CIF exceeds 80 WER. This
highlights STAR’s ability to better compress and
retain information within anchor representations,
making it more robust to policy changes.

Moreover, we let the the two models use all pre-
viously computed representations (thus no com-
pression is performed) and name such models CIF-
ALL and STAR-ALL in fig. 9. We find that CIF-
ALL still greatly lags behind the performance of
STAR even when all previous representations are
used. This shows that CIF is not a robust method as
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Figure 9: Latency-quality trade-off for CIF and
STAR using a fixed decision policy instead of their own
predicted segmentation. The five markers on the line
correspond to five WAIT-k strategies (from left to right,
WAIT-k ∈ {1, 2, 3, 4, 5}).

it only obtains good performance when aggregating
representations using its learned segmentation. On
the contrary, STAR is much more robust; in fact,
from fig. 9, we find that STAR has a very close
performance compared to its non-compressed ver-
sion STAR-ALL, providing another evidence of its
robust compression quality.

6 Related work

End-to-end Streaming Speech-to-text For
streaming/simultaneous speech-to-text tasks,
learning speech representation and policies for
READ and YIELD is essential. Previous methods
like RNN-Transducer (Graves, 2012) and Con-
nectionist Temporal Classification (CTC) (Graves
et al., 2006) leverage monotonic alignment for
low error rate transcription. Recent work (Moritz
et al., 2020; Tsunoo et al., 2020) further extends
transformers for streaming ASR using modified
attention and beam search.

For speech translation, Ma et al. (2019) proposed
the Wait-K strategy with a fixed decision policy
that read chunks of equal-length text for decoding
and Ma et al. (2020b) adapted the wait-k strategy
for simultaneous speech translation. Instead of
a fixed decision policy, SimulSpeech (Ren et al.,
2020) trained segmenters with CTC loss. Zeng
et al. (2021) also use CTC for guidance on word
boundary learns to shrink the representation and
proposes the Wait-K-Stride-N strategy that writes
N tokens for each READ action. Dong et al. (2022)
and Chang and Lee (2022) use CIF to learn seg-
mentation for the speech sequences and trigger the
YIELD action whenever CIF FIRE a new representa-
tion. Additionally, Arivazhagan et al. (2019) and
Ma et al. (2020c) support a more adaptive strat-
egy where dynamic READ and YIELD are possible.
However, even for such an adaptive strategy, a good

decision policy still matters (Ma et al., 2020b).

Efficient Methods for Transformers Prior work
studied efficient methods to scale Transformers to
long sequences (Tay et al., 2022), including sparse
patterns (Beltagy et al., 2020), recurrence (Dai
et al., 2019), kernelized attentions (Choroman-
ski et al., 2021), etc. Some of them can be ap-
plied in the streaming settings, such as Streaming
LLMs (Xiao et al., 2023), Compressive Transform-
ers (Rae et al., 2020), etc. Moreover, Tworkowski
et al. (2023); Bertsch et al. (2023) proposed to ap-
ply kNN to the attention to select a subset of past
tokens, akin to the segmentation process in this pa-
per. Similar to the residual connection in our paper,
Nugget (Qin and Van Durme, 2023) trains a scorer
to select a subset of tokens to represent texts. More
recently, Tan et al. (2024) and Qin et al. (2023)
also combine context compression with efficient
fine-tuning methods like LoRA (Hu et al., 2021) to
expand context length for large language models.

Speech Representation Traditionally, acoustic
features are extracted by filter-bank features, mel-
frequency cepstral coefficients, or bottleneck fea-
tures (Muda et al., 2010; Davis and Mermelstein,
1980). More recent work relies on self-supervision
to learn speech representations. For example,
Zeghidour et al. (2021) and Défossez et al. (2022)
learn acoustic representation by reconstructing the
original audio. To learn semantic representation,
masked language modeling, and contrastive learn-
ing objectives are popularized by widely used rep-
resentations from Hubert (Hsu et al., 2021), w2v-
BERT (Chung et al., 2021) and Wav2Vec (Schnei-
der et al., 2019; Baevski et al., 2020). All these
models use CNNs as a building block to downsam-
ple speech signals/representations.

7 Conclusion and Future Work

We introduce STAR, a model designed for dynamic
compression and transduction of streams. STAR
features a segmenter learned via encoder-decoder
cross-attention and employs a selection-based com-
pression approach. Our experiments across mul-
tiple speech-to-text tasks confirm STAR’s supe-
rior compression performance and latency-quality
trade-off relative to established methods such as
Convolutional Neural Networks and Continuous
Integrate-and-Fire. In the future, we hope to ex-
tend this framework to facilitate streaming non-
autoregressive generation.
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Figure 10: Qualitative Examples of CIF and STAR based Segmentation for Simul ASR
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Figure 11: Qualitative Examples of CIF and STAR based Segmentation for Simul ASR
.
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B Continuous Integrate and Fire

Figure 12: Illustration of Continuous Integrate and Fire.

Continuous Integrate and Fire (Dong and Xu, 2020, CIF) predicts a score for each position and dynamically
aggregates the semantic representation. As shown in fig. 12, CIF first computes a list of scores α
similar to our proposed method. Then, starting from the first position, it accumulates the scores (and
representation) until reaching a pre-defined threshold4 β. Once reaching the threshold, it FIRE the
accumulated representation and starts to accumulate again. As shown in fig. 12, suppose we originally
have representation z = (z1, · · · , z6) with corresponding scores α = (α1, · · · , α6). Suppose we reach
the threshold at t = 3, i.e., α1 + α2 + α3 >= β, then we FIRE the representation by taking the weighted
average of score and representation c1 = α1 ∗ z1 + α2 ∗ z2 + α3L ∗ z3. Here c1 becomes the compressed
representation for the region t = [1, 3]. Note that since α1 + α2 + α3 >= β, we have residual score
α3R = α1 + α2 + α3 − β, which is left for future accumulation, and we only use α3L = α3 − α3R when
weighting representation z3. More generally, suppose the previous FIRE occurs at position j and at current
step i the accumulated score reaches the threshold, the aggregated representation is computed as

h = αjR ∗ zj +
i−1∑

t=j+1

αt ∗ zt + αiL ∗ zi (7)

To enforce the compression rate r, we follow (Dong et al., 2022; Chang and Lee, 2022) to re-scale the
predicted scores so that the threshold β is reached Ty times when accumulating the scores:

αt = σ(st) (8)

α̃t =
βn∗

n̂
αt =

β · Ty∑Tx
t=1 αt

αt (9)

Here σ is the sigmoid function and n̂ is the normalization term (summation of un-scaled scores) and
n∗ denotes the number of desired selections, i.e., n∗ = Ty. We assume the input feature is longer than
the output (Tx > Ty), so re-scaling scores to YIELD Ty means we employ a dynamic compression rate
r = Tx/Ty while transducing the streams. Note that Ty is only observed during training and we cannot
re-scale s in test time. Therefore, we adopt a length penalty loss (Chang and Lee, 2022; Dong et al., 2022)
during training to regularize the segmenter to ensure proper learning of segmentations:

Llp(X,Y ; θ) = (n∗ − n̂)2 =
(
Ty −

Tx∑

t=1

σ (Fseg(xt))

)2

(10)

4 we set β = 1 throughout our experiments, following prior work (Dong et al., 2022; Chang and Lee, 2022)

14



Finally, our training objective is the combination of negative log-likelihood and length penalty loss:

L(X,Y ; θ) = LNLL(X,Y ; θ) + γLlp(X,Y ; θ) (11)

In practice, the segmenter is only trained for a few thousand steps (so is the length penalty loss) and we
set γ = 0.01.

Our method is fundamentally different because of how we treat the scorer and how we perform
compression. In CIF, the compression is performed as an aggregation (weighted average) within each
segmented block (decided by the scores and threshold). In STAR, we directly take out representations
and we force the semantic encoder to condense information to those important positions. In other words,
we did not explicitly perform aggregation like CIF but expect the semantic encoder to learn such
aggregation innately through training.

Another key difference is how the scorer is learned. In CIF, the weighted average with scores and
representation allows a gradient to flow through the scorer. For STAR, we inject the scores into cross-
attention to update the scorer. The major advantage of our approach is that the importance of position is
judged by the attention from the decoder to the encoder representation, which helps segment the
speech representation in the way that the text decoder perceives it.

For more details, we direct readers to the prior work (Dong and Xu, 2020; Dong et al., 2022; Chang
and Lee, 2022).

Model Noise Ratio

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

Vanilla S2T 15.0 18.7 23.6 29.6 34.0 38.3 43.7 46.8 51.8 56.1 61.0

S2T + CNN 24.2 26.7 31.9 37.1 40.8 45.5 49.9 53.6 58.9 61.6 65.3
S2T + CIF 16.8 20.4 26.0 30.7 36.0 40.1 44.9 50.1 53.9 58.9 62.2
S2T + STAR 15.9 19.7 25.1 29.8 34.7 38.6 41.8 46.7 51.0 55.6 60.1

Table 1: Word Error Rate of models given the noise injection ratio from 0% to 50%. Best numbers are bolded and
better results are highlighted by the blue boxes while bad results are highlighted in yellow boxes. Compared to
other compression methods, our proposed STAR is the most robust model across all noise injection ratios. When the
noise ratio reaches beyond 30%, STAR even outperforms the S2T model without compression. All compression
models are trained with the compression rate 12.

C Noise Injection

In this section, we test the robustness of compression methods when noise is injected into the original clean
speech from LibriTTS. Instead of using synthetic signals such as Gaussian noise, we follow Zeghidour
et al. (2021) to use natural noise (e.g., noise from the air conditioner, shutting door, etc.,) from Freesound5

(Fonseca et al., 2017). We vary the ratio of noise injection from 5% to 30%, as shown in table 1. Given
a ratio, we first calculate the duration of noise L (e.g., if the ratio is 0.1 and speech is 10 seconds, then
we inject L = 1 second of noise) and randomly select a range of length L from the clean speech to
inject noise. As shown in table 1, as the noise ratio increases, STAR has the smallest degradation and
consistently outperforms CIF and CNNs. After reaching noise ratio ≥ 30%, STAR even outperforms the
vanilla S2T model without compression. Such findings show that STAR has a more robust performance
with the help of anchor representation, making it suffer less from noise injection and obtain better ASR
performance.

D Similarity Test with Compressed Representation

In §3.2, we show STAR’s superior performance on ASR, demonstrating the effectiveness of condensing
information to a few positions for the text decoder. In this section, we evaluate speech representation’s
similarity to further probe the quality of the compressed representation, without being influenced

5 We download the audio file for different noise from https://github.com/microsoft/MS-SNSD
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by the decoder. More specifically, we use the test set of LibriTTS and for each English transcription, we
compute its cosine similarity score against all other transcriptions, using a pre-trained sentence-transformer
encoder6 (it computes a sentence-level representation from BERT and perform mean pooling to obtain a
uni-vector representation). We regard the ranking from sentence-Transformer’s similarity as ground truth
(as the transcriptions are non-complex English sentences); then we use our speech semantic encoders to
compute cosine similarity for all pairs of speech representations and verify if the ranking is similar to the
ground truth.

For the baseline vanilla S2T model, we perform mean pooling (MP) on its encoder representation
c to obtain a uni-vector representation for each speech input and compute cosine similarities. For the
other three models with compression, we first obtain the compressed representation h and we try two
approaches to compute similarity. The first approach is the same as the baseline, where we apply MP on
the compressed representation to obtain uni-vector representations. The second approach is inspired by
the MaxSim (MS) algorithm used in ColBERT (Khattab and Zaharia, 2020), which computes the average
of maximum similarity across the compressed representations.

Then we measure the quality of our trained speech semantic encoders with metrics widely used in
retrieval and ranking–Normalized Discounted Cumulative Gain (nDCG) and Mean Reciprocal Rank
(MRR). From the results shown in table 2, STAR still obtains the best-performing representation, with
MRR@10 = 0.087, nDCG@10 = 0.453. Note that the performance is not very high as we did not train
the model specifically for the sentence similarity task. Rather, we used the similarity task as an intrinsic
measurement for the quality of condensed representations to exclude the influence of the text decoder.

Comparing the numbers in table 2, STAR consistently obtains better speech representation (for both
MP and MS algorithms) for the similarity task. Interestingly we find that STAR-30’s representation works
better in mean pooling compared to STAR-12, suggesting that more condensed information works better
for mean pooling. However, the MaxSim algorithm better leverages the multi-vector representation, which
enables STAR-12 to obtain the best ranking performance.

NDCG @ 10 MRR @ 10

Model MP MS MP MS

Vanilla S2T 0.407 N/A 0.053 N/A

Conv-12 0.399 0.41 0.035 0.053
CIF-12 0.418 0.444 0.056 0.078
STAR-12 0.429 0.453 0.064 0.087

STAR-18 0.429 0.446 0.055 0.078
STAR-30 0.437 0.441 0.078 0.08

Table 2: Performance of speech rankings by different representation. STAR achieves the best performance as
evaluated by NDCG@10 and MRR@10. The best performance is achieved through the MaxSim algorithm;
interestingly, STAR-30 achieves the best performance with the Mean Pooling algorithm.

E Memory Usage Benchmark

In this section, we describe our setup to benchmark memory usage, which compares our proposed
approach with a vanilla encoder-decoder model that does not support compression. We use Google Colab
with a runtime that uses a T4 (16G memory) GPU. Then for each experiment, we run it 5 times and
report the average in table 3. Both encoder and decoders follow our setup in appendix F, except that
the encoder’s maximum position is increased to 8,196 to support the benchmark experiment with long
sequences. Note that the sequence length reported is the length of the input feature (which we compress
by r ∈ {2, 5, 10, 20}). We set the output sequence’s length to be 1

10 of the input, similar to the ratio in our
simultaneous speech-to-text experiments.

6 In practice, we use public checkpoint from: https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Stage Batch Size Seq Len No Compression With Compression

r=2 r=5 r=10 r=20

Inference 1 1000 1196 1076 1004 987 970
1 2000 2975 2509 2237 2138 2101
1 3000 5744 4736 4101 3894 3739
1 4000 9540 7711 6637 6269 6102
1 5000 14314 11493 9805 9237 8951
1 6000 OOM OOM 13587 12786 12434

Training 128 100 4964 4730 4209 4160 4124
128 200 10687 9948 9465 9302 9223

Table 3: Memory usage (MB) of the encoder-decoder model with and without our proposed compression method.
OOM: out of memory.

F Hyper-parameters

We provide hyper-parameters used for model configuration and training in this section. For different
compression rates, the CNNs’ stride configuration is shown in fig. 13. For example, a stride of (4,3) means
we stack two CNN blocks, one with stride 4 and another with stride 3, achieving a compression rate of 12.

In this section, we provide the hyper-parameters and training configurations for all our experiments. We
use a hidden dimension of 512 across all models. The tokenizer is developed using Byte Pair Encoding
(Sennrich et al., 2016, BPE), with a vocabulary size of 10,000. The segmenter is parameterized by
a 2-layer FFN with ReLU (Agarap, 2018) activation in between; the first FFN has input and output
dimensions both set to 512 and the second FFN has input dimension 512 with output dimension 1. Our
experiments are conducted using the Adam optimizer, configured with β1 = 0.9 and β2 = 0.999. These
experiments are conducted with a data-parallel setting with 4 A100 GPUs.

For the audio processing, we set the sampling rate to 16,000. In the encoder configuration, we use a
maximum of 1,024 positions for Automatic Speech Recognition (ASR) and 2,048 for Speech Translation
(ST), with each encoder consisting of 4 layers and 8 attention heads. The decoder mirrors the encoder in
its architecture, with 4 layers and 8 attention heads, but differs in its maximum positions, set at 512, and
its vocabulary size, also at 10,000.

For non-streaming ASR in our pre-training setup, both the encoder and decoder are trained to converge
with a learning rate of 1e-4, a batch size of 32, and a warmup of 10,000 steps. Subsequently, the
compression module (CNN/CIF/STAR) is fine-tuned using a learning rate of 5e-5 alongside the pre-trained
encoder and decoder. The segmenter is trained for 6,000 steps with feedback from the encoder-decoder’s
cross-attention, as discussed in §2, after which it is frozen. Post this, we further fine-tune the encoder and
decoder until convergence.

For streaming speech-to-text tasks, the feature extractor (WAV2VEC2.0), encoder, and decoder are
jointly trained with a learning rate of 5e-5, a batch size of 8, and gradient accumulation every 4 steps.
A causal mask is added to WAV2VEC2.0during this process. Following convergence, the compression
module undergoes fine-tuning using a learning rate of 5e-5 and a batch size of 16. Similar to the
non-streaming setup, the segmenter is updated only in the first 6,000 steps.

Figure 13: Left: Blocks of CNNs used to compress representation. Right: Stride sizes we used in experiments for
different compression rates.
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G Differentiable Average Lagging

Consider a raw speech with length Tx which is segmented into |X| chunks. We define the length of ith

segment (chunk) as |Xi| (so that |X| =∑|X|
j=1 |Xj |), and we define di =

∑i
t=1 |Xt| as the total time that

has elapsed until ith speech segment Xi is processed. With the aforementioned notation, DAL is defined
to be:

DAL =
1

Ty

Ty∑

i=1

d′i −
i− 1

γ
(12)

where Ty is the length of text tokens and 1/γ is the minimum delay after each operation, computed as
1/γ =

∑|X|
j=1 |Xj |/Ty (i.e., the averaged elapsed time for each token is used as the minimum delay).

Lastly, d′i is defined as:

d′i =

{
di i = 0

max(di, d′i−1 + 1/γ) i > 0
(13)

The smaller the DAL, the better the system in terms of latency. For more discussions for DAL and
latency-quality trade-off in SimulST, we direct readers to prior work (Ma et al., 2020a; Arivazhagan et al.,
2019) for more details.
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Abstract

Scientific communication is receiving increas-
ing attention in natural language processing, es-
pecially to help researches access, summarize,
and generate content. One emerging applica-
tion in this area is Speech-to-Abstract Genera-
tion (SAG), which aims to automatically gen-
erate abstracts from recorded scientific presen-
tations. SAG enables researchers to efficiently
engage with conference talks, but progress has
been limited by a lack of large-scale datasets.
To address this gap, we introduce NUTSHELL,
a novel multimodal dataset of *ACL conference
talks paired with their corresponding abstracts.
We establish strong baselines for SAG and eval-
uate the quality of generated abstracts using
both automatic metrics and human judgments.
Our results highlight the challenges of SAG and
demonstrate the benefits of training on NUT-
SHELL. By releasing NUTSHELL under an
open license (CC-BY 4.0), we aim to advance
research in SAG and foster the development of
improved models and evaluation methods.1

1 Introduction

Abstracts are essential in scientific communication,
allowing researchers to quickly grasp the key con-
tributions of a paper. With the ever-growing num-
ber of publications, abstracts help researchers stay
informed without reading full papers. Beyond their
practical utility, abstracts also pose a significant
challenge for natural language generation models:
abstracts are a specialized form of summarization
that not only condenses content but also promotes
the work, often using domain-specific terminology
and structured language.

Scientific summarization has been widely stud-
ied in natural language processing, including sum-
marizing entire articles (Collins et al., 2017; Mao
et al., 2022; Liu et al., 2024), particularly in the

1https://huggingface.co/datasets/maikezu/
nutshell

*ACL conference talk (audio) Abstract for talk

Abstract: 

Figure 1: NUTSHELL, a dataset for Speech-to-Abstract
Generation (SAG) from scientific talks.

medical domain (Kedzie et al., 2018; Cohan et al.,
2018; Gupta et al., 2021), generating abstracts
from citations (Yasunaga et al., 2019; Zanzotto
et al., 2020), summarizing specific paper sections
(Takeshita et al., 2024), and leveraging knowledge
graphs for abstract generation (Koncel-Kedziorski
et al., 2019).

With the growing availability of recorded confer-
ence talks, a new challenge emerges: generating ab-
stracts from spoken content or Speech-to-Abstract
Generation (SAG). The abstracts offer researchers
a quick way to assess relevant talks without watch-
ing entire recordings. Additionally, as conferences
include more virtual content, automatically gener-
ated summaries enable efficient engagement with
recorded talks (Murray et al., 2010).

While speech summarization has been explored
in domains like news (Matsuura et al., 2024),
YouTube videos (Sanabria et al., 2018), and meet-
ing minutes (McCowan et al., 2005; Janin et al.,
2003), large-scale datasets for scientific talk ab-
stract generation are lacking. Existing work (Lev
et al., 2019) aligns transcripts with the correspond-
ing papers and extracts overlapping textual seg-
ments as summaries. However, these segments are
drawn from the paper rather than the talk itself,
failing to capture the distinct contributions, fram-
ing, and nuances conveyed in spoken presentations.
Other studies have focused on summarizing TED

19

https://huggingface.co/datasets/maikezu/nutshell
https://huggingface.co/datasets/maikezu/nutshell


Talks (Koto et al., 2014; Kano et al., 2021; Vico
and Niehues, 2022; Shon et al., 2023), which tar-
get a broad audience and prioritize inspiration and
engagement over technical content.

To bridge this gap, we introduce NUTSHELL
a new multimodal dataset for abstract generation
from scientific talks. Built from recorded presen-
tations of *ACL conferences, the dataset pairs ab-
stracts with their corresponding spoken content and
video, offering a valuable resource for future re-
search. To validate the quality of the abstracts as
concise and well-structured summaries of the talks
– i.e., capturing the essence of the presentations in
a nutshell – we performed a human assessment,
which confirmed their effectiveness and suitability
for the SAG task.

To establish baselines for SAG using our dataset,
we evaluate three model types: (1) a cascaded
model combining automatic speech recognition
(ASR) with text-based summarization, (2) a state-
of-the-art speech-language model (SpeechLLM)
without fine-tuning, and (3) a SpeechLLM fine-
tuned on our dataset.

Our contributions are three-fold:

1. We introduce NUTSHELL, a novel dataset for
abstract generation from scientific talks com-
prising 1,172 hours, which is released under
CC-BY 4.0 License on HuggingFace;1

2. We provide baselines with different model
types for comparison in future research, eval-
uated using both standard automatic metrics
(e.g., ROUGE) and the emerging LLM-as-a-
judge approach (Shen et al., 2023);

3. We conduct human evaluations to assess the
quality of the abstracts and validate the suit-
ability of automatic metrics for the SAG task.

2 The NUTSHELL Dataset

In this section, we introduce the new NUTSHELL
resource. We chose to build our corpus upon the
the ACL Anthology2 since it provides a rich collec-
tion of multimodal resources (talks and abstracts)
and open-access licensing. Starting from 2017, a
significant number of papers published in the main
*ACL conferences (ACL, EMNLP, and NAACL)
include a video of the presentation, all released un-
der the Creative Commons Attribution 4.0 license.
This makes *ACL an ideal resource for building a
multimodal dataset for the SAG task.

2https://aclanthology.org

In the following, we present a feasibility assess-
ment of SAG through human evaluation (§2.1).
Then, we describe the collection process performed
to create NUTSHELL, together with the final
dataset statistics (§2.2).

2.1 Are paper abstracts “good” talk
summaries?

Before creating the corpus, we establish the valid-
ity of our data by investigating whether abstracts
represent a good summary of the associated talk.
To this aim, we conduct a qualitative check on
a data sample of 30 talk-abstract pairs from the
ACL Anthology. We involve a total of 5 annota-
tors, who are all domain experts and thus familiar
with scientific material.3 To verify Inter-Annotator
Agreement (IAA), a double annotation by different
experts was carried out on 15 pairs.

Since we are interested in understanding whether
paper abstracts are informative enough to represent
a good summary of the talk, we asked evaluators
to annotate: (1) Whether the information in the ab-
stract is all uttered by the presenter in the talk; (2)
The span of information present in the abstract that
was not contained in the talk, if any; (3) Whether
the abstract summarizes all important informa-
tion presented in the talk. The human evaluation
procedure, including the annotation template, is
described in App. A.

The results indicate that 70.0% of the abstracts
are considered good summaries by annotators as
they contain important information about the talk.
However, 63.3% of the abstracts also contain infor-
mation not explicitly present in the talk itself. To
better understand this, we conducted a qualitative
analysis of the annotated spans corresponding to
this missing information. We found that these spans
typically involved dataset names, model names,
shared task references (e.g., evaluation campaigns),
or URLs (e.g., link to the resource or model being
released). Notably, these elements are often dis-
played on slides but not explicitly verbalized by
presenters.4

Despite this issue, the evaluation of automatic
models against the same ground truth abstract can
be considered fair, as models are equally penalized
by this category of missing information. Moreover,

3Annotators include the paper authors and their col-
leagues.

4This issue could be overcome by exploiting the videos,
as this information is typically shown in the slides. While out
of scope for SAG, NUTSHELL includes the videos, making it
a useful resource also for more complex multimodal tasks.
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conferences year # examples total audio average audio average words
h min per abstract

train ACL,NAACL, EMNLP 2017-2021 4000 808.3 12.1 ± 11.2 142.8 ± 36.1
dev ACL 2022 885 146.4 9.9 ± 3.6 141.9 ± 36.5
test EMNLP, NAACL 2022 1431 217.1 9.1 ± 4.3 147.6 ± 37.4

total ACL, NAACL, EMNLP 2017-2022 6316 1171.8 11.1 ± 9.9 143.7 ± 36.5

Table 1: Dataset statistics for NUTSHELL. The number of words is obtained by splitting the abstract at whitespaces.

it is worth noting that establishing a single ground
truth for summarization tasks is still an open chal-
lenge (Zhang et al., 2024), given the inherent vari-
ability in human-produced summaries.

Both, questions (1) and (3) have an inter-
annotator agreement of κ = 0.466, indicating mod-
erate agreement (Landis and Koch, 1977), which
can be regarded as acceptable given the subjective
nature of evaluating summaries. While criterion
(3) naturally involves subjective judgments about
information importance, the lower agreement on
criterion (1) can also be attributed to borderline
cases, where small phrasing differences were some-
times overlooked by individual annotators. Such
subtleties led to occasional discrepancies in anno-
tator decisions, but were manually reviewed.

In summary, the manual evaluation confirmed
both the feasibility of the SAG tasks and, despite
the noted challenges, the overall reliability and use-
fulness of our resource.

2.2 Collection and Dataset Statistics
We collected talks from 16 ACL Anthology events:
6 ACL, 6 EMNLP, and 4 NAACL, including work-
shops, shared tasks and industry tracks. For each
paper (both long and short format), we extracted
the video and the associated abstract already avail-
able on the paper website. We exclude papers with
invalid URLs, videos without audio, or abstracts
missing from the paper page. Additional details on
the data collection can be found in App. B.

Lastly, we split the dataset into training (years
2017 to 2021), dev (ACL 2022), and test (EMNLP/-
NAACL 2022). These splits reflect a realistic eval-
uation setup, where models are trained on past data
and tested on the most recent, unseen examples. In
total, the corpus contains 1,172 hours of audio con-
tent corresponding to 6,316 different presentations.
Full statistics are reported in Table 1.

3 Analysis

To demonstrate the quality and usability of our cor-
pus, as well as provide baselines for future works,

we develop and evaluate four different models us-
ing both automatic metrics and human evaluation.

3.1 Experimental Setting
3.1.1 Models
To establish baselines for the SAG task, we analyze
the performance of four models described as fol-
lows. Prompts, model, generation, and additional
training details are provided in App. C.

Whisper + LLama3.1-8B-Instruct. A cascaded
solution, where the audio is first transcribed
with openai/whisper-large-v3 (Radford et al.,
2022), and then meta-llama/Llama-3.1-8B-
-Instruct (Dubey et al., 2024) is prompted to gen-
erate the abstract from the generated transcript.

Qwen2-Audio-7B-Instruct. The Qwen/Qwen2-
-Audio-7B-Instruct (Chu et al., 2024) model, an
existing SpeechLLM5, which is used out of the box
without any fine-tuning.

End2End Zero-Shot. A SpeechLLM composed
of HuBERT (Hsu et al., 2021) as speech encoder,
meta-llama/Llama-3.1-8B-Instruct as LLM,
and a QFormer (Li et al., 2023) as adapter. The
SpeechLMM is built to handle long audio inputs
(App. C) and obtained by training only the adapter
in two steps: (a) contrastive pretraining (Züfle and
Niehues, 2024) to align the LLM representations
for the speech and text modalities using MuST-
C (Di Gangi et al., 2019) and Gigaspeech (Chen
et al., 2021), and (b) fine-tuning on instruction-
following tasks, including ASR, speech translation,
and spoken question answering using MuST-C and
Spoken-SQuAD (Lee et al., 2018). Therefore, the
model is not trained or fine-tuned on NUTSHELL
and operates in zero-shot for the SAG task.

End2End Finetuned. A SpeechLLM trained us-
ing the same contrastive pretraining procedure as
End2End Zero-Shot but subsequently fine-tuned on

5By SpeechLLM, we refer to the combination of a speech
encoder and an LLM through a learned modality adapter
(Gaido et al., 2024).
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Model RougeL BERTScore Llama3.1-7B-Instruct Human (on subset)
F1 ↑ F1 ↑ Score with Expl. ↑ Plain Score ↑ Avg. Rank ↓ Avg. Rank ↓

Whisper + LLama3.1-8B-Instruct 22.14 86.62 77.84 82.47 1.24 1.53
Qwen2-Audio-7B-Instruct 15.02 84.65 45.57 36.81 3.43 2.87
End2End Finetuned 23.89 86.66 68.78 73.53 1.98 1.6
End2End Zero-Shot 16.08 84.13 45.97 39.90 3.35 N/A

Table 2: We report results on the NUTSHELL test set for four models: a cascaded approach (Whisper+Llama-3.1-8B-
Instruct), an existing SpeechLLM (Qwen2-Audio), and an end-to-end HuBERT+QFormer+Llama3.1-8B-Instruct
model, either finetuned on our data (End2End Finetuned ) or trained on audio instruction-following data (End2End
Zero-Shot). Avg. Rank, assigned by an LLM judge or human annotators, reflects the mean ranking per model.

our NUTSHELL dataset. This not only evaluates
the direct impact of task-specific datasets on the
SAG performance, but it also ensures the feasibility
of the task and the suitability of the collected data.

3.1.2 Evaluation
Metrics. We use standard (text) summarization
metrics: ROUGE (Lin, 2004) – a text similar-
ity metric that has been widely adopted for LM
evaluation (Grusky, 2023) that focuses on n-gram
overlap between the hypothesis and reference –,
and BERTScore (Zhang et al., 2020) – a neural-
based metric that measures the pairwise similarity
of contextualized token embeddings between the
summary and its reference. Also, we rely on LLM-
as-a-judge (Shen et al., 2023; Zheng et al., 2024)
where the LLM6 is prompted to assign a score to
each output, using the reference abstract as context
(Score with Expl.). The score is based on four cri-
teria: (1) relevance, (2) coherence, (3) conciseness,
and (4) factual accuracy.7 We also report results
where the LLM judge provides a single score with-
out explanations (Plain Score), as well as results
where it ranks the given abstracts instead of scoring
them individually (Avg. Rank).

All these metrics have known limitations and no
metric is conclusively best for evaluating the SAG
task: both ROUGE and BERTScore are known to
fail to fully capture the extent to which two sum-
maries share information (Deutsch and Roth, 2021)
while LLM-as-a-judge is sensitive to prompt com-
plexity and the length of input (Thakur et al., 2024)
and struggle to distinguish similar candidates (Shen
et al., 2023). For this reason, we complement the
automatic scores with human evaluation.

6We use Llama-3.1-8B-Instruct (Dubey et al., 2024)
as the judge using the prompts reported in Fig. 2 in App. D.2.

7(1) Does the predicted abstract capture the main points
of the gold abstract?, (2) Is the predicted abstract logically or-
ganized and easy to follow?, (3) Is the predicted abstract free
from unnecessary details?, (4) Are the claims in the predicted
abstract consistent with the gold abstract?

Human Evaluation. For the human evaluation,
nine annotators – all experts in the field – were pro-
vided with the generated abstracts and the ground
truth abstract. We use the same randomly sampled
30 test set examples as in Section 2.1 and vali-
date their representativeness, which is discussed in
App. E. Each sample is evaluated by three anno-
tators. They follow the same criteria as the LLM
evaluation but rank models instead of assigning
scores. Detailed instructions are in App. E. As
the End2End Zero-Shot model performance was
comparable to that of Qwen2-Audio – also being a
zero-shot model – and given that Qwen2-Audio is
an established SpeechLLM with a distinct architec-
ture, we exclude the End2End Zero-Shot from this
analysis.

3.2 Results
Automatic Evaluation. Table 2 presents the per-
formance of our models on the NUTSHELL test
set. Among them, the cascaded model (Whis-
per + Llama3.1-8B-Instruct) achieves the highest
scores across all LLM-based evaluation metrics.
Instead, looking at both n-gram- and neural-based
metrics, the End2End Finetuned model achieves
the highest RougeL and BERTScore. In addition,
Qwen2-Audio and our End2End Zero-Shot models
demonstrate similar performance across all auto-
matic metrics, showing a noticeable gap compared
to the other two models. These results highlight
the importance of our dataset for building high-
performing end-to-end models, as the substantial
gap between the cascaded and End2End Zero-Shot
models is effectively bridged through fine-tuning
on the NUTSHELL dataset.

For a more granular analysis, Table 3 in App. D.2
provides results for the LLM-based metrics. Given
that all models except Qwen2-Audio rely on
Llama3.1-8B-Instruct, one might question whether
the Llama-based judge could introduce bias in favor
of these models. To address this, we perform ad-
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ditional evaluations using Qwen/Qwen2-7B (Yang
et al., 2024) as the judge (Table 4 in App. D.2),
which confirm the same ranking, eliminating any
concerns about evaluator bias.

Human Evaluation. As shown in Table 2, the
human evaluation results closely align with the
LLM-based judgments: the cascaded model ranks
first, followed closely by the finetuned model while
Qwen2-Audio ranks last. Notably, the gap between
the first two models is small, whereas the difference
between the second and third models is substan-
tial – consistent with the LLM-based evaluation.
This suggests that automatic metrics reliably cap-
ture both subtle and large performance differences
between models. IAA, measured using pairwise
rankings (Bojar et al., 2016) reached κ = 0.53,
which is acceptable given the close ranking of the
top two systems.

4 Conclusion

In this work, we introduce NUTSHELL, a novel
dataset for SAG from recorded *ACL conference
talks. By releasing this dataset under an open li-
cense, we hope to foster further advancements in
SAG research and encourage the development of
more effective models and evaluation techniques.
Future work could explore the integration of the
video content provided in the corpus, offering an
additional modality for enriching the generation
process and further improving abstract quality.

5 Limitations

While the current study provides a new resource
and offers valuable insights about the SAG task,
two main limitations should be noted:

• The analysis focused on the speech-to-text ab-
stract generation task. However, our dataset
also provides access to the corresponding
videos, which were not utilized here. Future
research could explore the integration of video
content as an additional modality to enhance
the generation process and improve the quality
of the abstracts.

• The human evaluation was limited in scope,
involving only a small set of models and sam-
ples. Future work could expand this evalu-
ation to include more models and a larger
number of samples to better assess the per-
formance of different metrics and determine
which is most effective in various contexts.

Potential Risks Generating automatic sum-
maries for scientific talks carries the risk that auto-
matic summaries may misrepresent key findings or
lack scientific accuracy. However, we hope that by
providing more high-quality training data, summa-
rization models can be improved and lead to more
reliable and accurate summaries.
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A Human Evaluation: Are abstracts good
summaries of the talk?

We aim to assess whether paper abstracts can serve
as effective abstracts for *ACL talks. To this end,
we conducted a human evaluation by randomly
sampling 30 examples from our dataset. The an-
notation team consisted of five individuals (four
women and one man), including the paper authors
and their colleagues. All annotators were already
familiar with the NLP domain, scientific presen-
tation and writing, and the task itself. They are
experts in Natural Language Processing, holding
at least a master’s degree in NLP or a related field,
with some holding PhDs or professorial positions.
Their ages ranged from 25 to 55.

The annotation guidelines were initially devel-
oped by the authors and subsequently refined in
collaboration with the annotators to ensure a shared
and well-defined set of evaluation criteria. Detailed
instructions for the human annotators are provided
in Fig. 3. The annotation template also included
a comment section for uncertain cases, though no
comments were submitted.

B Dataset Details

We include all *ACL conferences from 2017 to
2022 in NUTSHELL, covering main conferences,
Findings, industry tracks, and workshops. As not
all conferences are held every year, the number of
talks varies accordingly. Table 5 provides a detailed
overview.

C Baseline Details

Generation Settings We evaluate four different
models to establish baselines for abstract genera-
tion from spoken ACL talks. The evaluations were
conducted on a single NVIDIA A100-SXM4-40GB
GPU.

For all models, we use the default
generation parameters and apply greedy
search, following the usage instructions for
meta-llama/Llama-3.1-8B-Instruct8 (Dubey
et al., 2024), Qwen/Qwen2-Audio-7B-Instruct9

(Chu et al., 2024) and the contrastively pretrained
models from Züfle and Niehues (2024)10.

8https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

9https://github.com/QwenLM/Qwen2-Audio
10https://github.com/MaikeZuefle/

contr-pretraining

Cascaded Model For the cascaded model, we
segment the audio into 30-second chunks and tran-
scribe them using openai/whisper-large-v3
(Radford et al., 2022). The transcribed
chunks are then concatenated and processed
by meta-llama/Llama-3.1-8B-Instruct
(Dubey et al., 2024) to generate the abstract.
Inference took 5:40 hours on a single NVIDIA
A100-SXM4-40GB GPU, including transcribing
and summarizing.

Since the model’s outputs often included a title
and category for the talk, we explicitly prompt it
to generate only the abstract. This adjustment was
not necessary for the other models.

We use the following prompt:
System Prompt:
A c h a t be tween a c u r i o u s u s e r and an
a r t i f i c i a l i n t e l l i g e n c e a s s i s t a n t . The
a s s i s t a n t g i v e s h e l p f u l , d e t a i l e d , and
p o l i t e answer s t o t h e use r ' s q u e s t i o n s . \
n

Prompt:
Summarize t h e f o l l o w i n g t a l k t o c r e a t e
an a b s t r a c t f o r an ACL Paper , don ' t
i n c l u d e t h e t i t l e o r o t h e r i n f o r m a t i o n ,
on ly t h e a b s t r a c t : \ n< t r a n s c r i p t i o n > \ n

Qwen2-Audio For Qwen/Qwen2-Audio-7B--
Instruct (Chu et al., 2024), inference took 50
minutes on a single NVIDIA A100-SXM4-40GB
GPU. We use the system prompt as provided in the
code documentation9.
System Prompt:
You a r e a h e l p f u l a s s i s t a n t .

Prompt:
Summarize t h i s t a l k t o c r e a t e an
a b s t r a c t f o r an ACL Paper : \ n

Contrastively Pretained Models For the con-
trastively pretrained model, we follow Züfle and
Niehues (2024) and adopt their settings10, includ-
ing training configurations, hyperparameters, and
system prompts. The SpeechLLM consists of Hu-
BERT (Hsu et al., 2021) as speech encoder, meta-
-llama/Llama-3.1-8B-Instruct as LLM, and a
QFormer (Li et al., 2023) as adapter. We choose
HuBERT as an encoder in contrast to the bigger and
more powerful openai/whisper-large-v3 (Rad-
ford et al., 2022), as it needs less memory and is
therefore more suitable for the summarization task
of longer audio. However, due to the extended dura-
tion of the audio inputs, we additionally introduce
two modifications:
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Model Llama-3.1-8B-Instruct
Relevance ↑ Coherence ↑ Conciseness ↑ Factual Accuracy ↑ Avg. Score ↑ Plain Score ↑ Avg. Rank ↓

Whisper + LLama31-Instruct 77.12 86.00 61.13 87.13 77.84 82.47 1.24
Qwen2-Audio 37.21 52.52 45.91 46.63 45.57 36.81 3.43
End2End Finetuned 66.41 78.24 50.25 80.22 68.78 73.53 1.98
End2End Zero-Shot 40.28 48.02 37.69 57.89 45.97 39.90 3.35

Table 3: Results using Llama-3.1-8B-Instruct as a judge. We report results on the NUTSHELL test
set for four models: a cascaded approach (openai/whisper-large-v3 + meta/Llama-3.1-8B-Instruct),
Qwen/Qwen2-Audio-7B-Instruct, and an end-to-end HuBERT+QFormer+Llama3.1-7B-Instruct model, either
finetuned on our data (End2End Finetuned ) or trained on audio instruction-following data (End2End Zero-Shot).
Avg. Rank reflects the mean ranking per model.

Model Qwen2-7bInstruct
Relevance ↑ Coherence ↑ Conciseness ↑ Factual Accuracy ↑ Avg. Score ↑ Plain Score ↑ Avg. Rank ↓

Whisper + LLama31-Instruct 79.61 83.54 72.08 86.07 80.33 74.60 1.66
Qwen2-Audio 56.99 75.35 75.91 59.28 66.88 49.55 3.18
End2End Finetuned 75.13 81.78 75.04 81.16 78.28 70.83 2.12
End2End Zero-Shot 57.93 68.02 69.34 66.65 65.49 53.61 3.04

Table 4: Results using Qwen2-7bInstruct as a judge. We report results on the NUTSHELL test set
for four models: a cascaded approach (openai/whisper-large-v3 + meta/Llama-3.1-8B-Instruct),
Qwen/Qwen2-Audio-7B-Instruct, and an end-to-end HuBERT+QFormer+Llama3.1-7B-Instruct model, either
finetuned on our data (End2End Finetuned ) or trained on audio instruction-following data (End2End Zero-Shot).
Avg. Rank reflects the mean ranking per model.

Split Conference Year Talks

Train

ACL

2017 140
2018 185
2019 244
2021 849

EMNLP
2017 93
2018 221
2021 1480

NAACL
2018 120
2019 114
2021 554

Dev ACL 2022 885

Test
EMNLP 2022 465
NAACL 2022 966

Table 5: Number of talks per conferences in the NUT-
SHELL dataset.

1. We segment the audio into one-minute chunks,
encode each chunk using the encoder and then
concatenate the encoded representations be-
fore passing them through the adapter and
LLM backbone.

2. We use a batch size of 1 for fine-tuning with
NUTSHELL.

Despite these adjustments, we encountered mem-
ory limitations for audio files exceeding 35 minutes.

In such cases, we truncate the audio to 35 minutes,
which affects one example in the test set.

The training of the models was conducted on
four NVIDIA A100-SXM4-40GB GPUs. The con-
trastive pretraining took 33 hours on four GPUS.
Finetuning on ASR, speech translation, and spoken
question answering data took 30 hours, finetuning
on the NUTSHELL dataset took 2:10 hours. Gener-
ating the outputs of the test set (on a single NVIDIA
A100-SXM4-40GB GPU) took 2:35 hours.
System Prompt:
A c h a t be tween a c u r i o u s u s e r and an
a r t i f i c i a l i n t e l l i g e n c e a s s i s t a n t . The
a s s i s t a n t g i v e s h e l p f u l , d e t a i l e d , and
p o l i t e answer s t o t h e use r ' s q u e s t i o n s . \
n

Prompt:
Summarize t h i s t a l k t o c r e a t e an
a b s t r a c t f o r an ACL Paper :

D Evaluation Details

We evaluate the results of our models using auto-
matic metrics including ROUGE, BERTScore, and
LLM-as-a-judge.

D.1 ROUGE and BERT Score
As automatic metrics, we use ROUGE11 (Lin,
2004) and BERTScore (Zhang et al., 2020).

11
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Model RougeL BERTScore Llama3.1-7B-Instruct
F1 ↑ F1 ↑ Score with Expl. ↑ Plain Score ↑ Avg. Rank ↓

Whisper + LLama31-Instruct 23.26 86.81 77.75 84.30 1.23
Qwen2-Audio 16.26 84.94 48.42 39.50 3.47
End2End Finetuned 24.47 86.71 70.67 75.73 1.83

Table 6: Baseline Results, the finetuned model is a HuBERT + Qformer + LLama31Instruct model on the subset
used for human annotation (30 examples).

Concretely, we compute ROUGE-L, which fo-
cuses on the longest common subsequence, with
DD/sacrerouge (Deutsch and Roth, 2020), as rec-
ommended by Grusky (2023) and for BERTScore,
we use the bertscore implementation from Hug-
gingFace12 and report the F1-score.

D.2 LLM as a judge
To evaluate the model outputs, we also use an LLM
as a judge, specifically meta-llama/Llama-3.1-
-8B-Instruct (Dubey et al., 2024). The LLM as-
signs a score to each output using the reference
abstract as context, based on four criteria: (1) rel-
evance (Does the predicted abstract capture the
main points of the gold abstract?), (2) coherence
(Is the predicted abstract logically organized and
easy to follow?), (3) conciseness (Is the predicted
abstract free from unnecessary details?), and (4)
factual accuracy (Are the claims in the predicted
abstract consistent with the gold abstract?). Addi-
tionally, we report results where the LLM provides
a single overall score without explanations and re-
sults where it ranks the given abstracts instead of
scoring them individually. The prompts are given
in Fig. 2. If the model fails to return a valid json
dictionary, we instead take the first number after the
score name in the output. We present the results
for all four criteria, the average score, the score
without explanations, and the ranking in Table 3.
One potential concern is that this LLM might be
biased, as all our models except Qwen2-Audio are
based on Llama-3.1. However, we find this is not
the case. When using Qwen/Qwen2-7B (Yang et al.,
2024) as the judge, we obtain the same ranking as
with Llama. The results with Qwen-as-a-judge can
be found in Table 4.

E Human Evaluation for Model Outputs

We evaluate the models using ROUGE (Lin, 2004),
BERTScore (Zhang et al., 2020), and LLM-as-a-

12https://huggingface.co/spaces/
evaluate-metric/bertscore

judge. However, it is known that automatic evalu-
ation metrics can come with limitations. Namely,
the first two metrics may not fully capture semantic
overlap (Deutsch and Roth, 2021), while LLM-as-
a-judge is sensitive to prompt phrasing (Thakur
et al., 2024) and struggles to distinguish between
closely similar candidates (Shen et al., 2023). To
validate the reliability of our automatic evaluation
scores and better understand model behavior, we
complement these metrics with a human evaluation.
This allows us also to verify the robustness of our
findings.

Specifically, we asked nine domain experts (four
women and five men) to rank model outputs rela-
tive to the reference abstract, with each example
annotated by three independent annotators. All
annotators were already familiar with the NLP do-
main, scientific writing and presentation, and the
task itself. They are experts in Natural Language
Processing, holding at least a master’s degree in
NLP or a related field, with some holding PhDs or
professorial positions. Their ages ranged from 25
to 55. The annotation instructions are provided in
Fig. 4.

We conduct this human evaluation on a randomly
selected subset of 30 test examples. We consider
this subset representative, as the model rankings
based on automatic metrics remain consistent with
those on the full test set. The corresponding auto-
matic scores for this subset are reported in Table 6.
We want to include three diverse models in our
human evaluation: a zero-shot model, a cascaded
model, and a model finetuned on our dataset. Since
we have two zero-shot models (Qwen2-Audio and
our contrastively pretrained zero-shot model) that
perform similarly, we decided to exclude one for
efficiency in the human evaluation. We keep the
Qwen2-Audio model as this is an already existing
and widely used SpeechLLM.
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System Prompt for Score with Explanation:
You are an expert AI trained to evaluate scientific abstracts. Your task is to
compare a predicted abstract with a gold standard (reference) abstract and provide a
detailed evaluation based on the following criteria :\n\n

1. ** Relevance **: Does the predicted abstract capture the main points of the gold
abstract ?\n
2. ** Coherence **: Is the predicted abstract logically organized and easy to follow ?\
n
3. ** Conciseness **: Is the predicted abstract free from unnecessary details ?\n
4. ** Factual Accuracy **: Are the claims in the predicted abstract consistent with
the gold abstract ?\n\n
For each criterion :\n
- Assign a **score** between 1 and 10 (1 = very poor , 10 = excellent).\n"
- Provide a **brief explanation ** for the assigned score.\n\n"
Your output must be in the following JSON format :\n\n"
{\" relevance \": {\" score \": int , \" explanation \": \" string \"},
\" coherence \": {\" score \": int , \" explanation \": \" string \"},
\" conciseness \": {\" score \": int , \" explanation \": \" string \"},
W\" factual_accuracy \": {\" score \": int , \" explanation \": \" string \"}}\n\n

Prompt for Score with Explanation:
### Gold Abstract :\n<reference abstract >\n\n### Predicted Abstract :\n<predicted
abstract >\n\nPlease evaluate the predicted abstract based on the criteria mentioned.

System Prompt for Score without Explanation:
You are an expert AI trained to evaluate scientific abstracts. Your task is to
compare a predicted abstract with a reference abstract. Evaluate how well the
prediction aligns with the reference using a score from 0 (lowest) to 100 (highest).
Your output must only be in the following JSON format: {\" prediction \": int}. Do

not provide any explanation or additional text.

Prompt for Score without Explanation:
### Reference Abstract :\n<reference abstract >\n\n### Predicted Abstract :\n<predicted
abstract >\n\nPlease evaluate the predicted abstract with respect to the reference

abstract and assign a score from 0 to 100.

System Prompt for Ranking:
You are an expert AI trained to evaluate scientific abstracts. Your task is to rank
four different abstracts based on a reference abstract. Your output must only be in
the following format: <Model A, Model B, Model C, Model D> where the first model is
the best model , and the last model the weakest. Do not provide any explanation or
additional text.

Prompt for Ranking:
### Reference Abstract :\n<reference abstract >\n\n
### Model A Predicted Abstract :\n<predicted abstract 1>\n\n
### Model B Predicted Abstract :\n<predicted abstract 2>\n\n
### Model C Predicted Abstract :\n<predicted abstract 3>\n\n
### Model D Predicted Abstract :\n<predicted abstract 4>\n\n
Please rank the four predicted abstracts.

Figure 2: Prompts for LLM as a judge. We use the same prompt for both, Qwen2-7bInstruct and Llama 3.1 8B
Instruct. <reference abstract> and <predicted abstract> are replaced with the actual abstracts. For ranking, we
shuffle the predicted abstracts, so that the LLMs sees the abstracts of different models in a different order every time
to avoid position bias.
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Figure 3: Instructions for annotators to evaluate whether the paper abstracts are good and informative abstracts for
the ACL talks.
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Figure 4: Instructions for human annotators for ranking model outputs.
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Abstract

Quality Estimation (QE) models for Neural
Machine Translation (NMT) predict the qual-
ity of the hypothesis without having access to
the reference. An emerging research direction
in NMT involves the use of QE models, which
have demonstrated high correlations with hu-
man judgment and can enhance translations
through Quality-Aware Decoding. Although
several approaches have been proposed based
on sampling multiple candidate translations
and picking the best candidate, none have in-
tegrated these models directly into the decod-
ing process. In this paper, we address this by
proposing a novel token-level QE model capa-
ble of reliably scoring partial translations. We
build a uni-directional QE model for this, as
decoder models are inherently trained and effi-
cient on partial sequences. We then present a
decoding strategy that integrates the QE model
for Quality-Aware decoding and demonstrate
that the translation quality improves when com-
pared to the N-best list re-ranking with state-
of-the-art QE models (up to 1.39 XCOMET-
XXL ↑). Finally, we show that our approach
provides significant benefits in document trans-
lation tasks, where the quality of N-best lists is
typically suboptimal1

1 Introduction

Large language models (LLMs) have significantly
impacted various Natural Language Processing
(NLP) tasks (Brown et al., 2020; Jiang et al., 2023;
Dubey et al., 2024), including Neural Machine
Translation (NMT). The field of NMT is transition-
ing from using dedicated encoder-decoder trans-
formers (Vaswani, 2017; Team et al., 2024) to lever-
aging decoder-only LLM-based translation models

1Code can be found at https://github.com/
SAP-samples/quality-aware-decoding-translation

(Kocmi et al., 2024). This shift is driven by LLMs’
ability to retain knowledge, handle large contexts,
and follow instructions, learned during extensive
pre-training (Xu et al., 2024; Alves et al., 2024).
As a result, LLM-based MT models have achieved
state-of-the-art translation quality (Kocmi et al.,
2024).

In parallel, Quality Estimation (QE) has become
a well-researched subfield within NMT. QE models
are trained to predict the quality of a translation
without requiring access to the reference (Rei et al.,
2021, 2022). Interestingly, QE models can achieve
performance in assessing translation quality that
is comparable to MT evaluation models, which do
have access to the reference (Zerva et al., 2024).

This led to the question: "Can we integrate QE
into the current translation process to improve
quality?" Incorporating QE into NMT offers sev-
eral benefits. First, having a expert QE model guid-
ing the decoding can further improve the quality.
Second, by adapting the QE model with feedback
from human annotators, we can generate future
translations guided with the newly obtained feed-
back.

Several approaches have been explored to inte-
grate QE into the translation process. These in-
clude re-ranking the N-best list (Fernandes et al.,
2022), applying minimum Bayes risk (MBR) de-
coding on a quality-filtered N-best list (Tomani
et al., 2024), and training additional models for
post-editing based on QE-predicted errors (Treviso
et al., 2024). However, all these methods operate
on fully generated sequences before the QE model
can exert influence. Integrating QE earlier in the
decoding process, referred in this paper as Quality-
Aware Decoding, could enhance translation quality
and reduce reliance on the N-best list. This is es-
pecially relevant when dealing with long inputs as
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Figure 1: Example from WMT’23 English → German #ID: 10: The paragraph begins with ’Department of
Homeland Security,’ which should be translated as ’Ministerium für Innere Sicherheit.’ However, the top 25 beams
do not contain the correct translation and begin with an error, making N-best list re-ranking insufficient. Although
the top-5 tokens at the decoding contain the correct forms ’Inn’ or ’Inner,’ the probabilities split among them giving
highest mass to the incorrect token ’inn.’ Quality-Aware decoding can prevent errors with earlier integration.

GOOD translations during decoding are likely to
be pruned and may need sampling larger number
of finished hypothesis. We illustrate this in Figure
1.

To achieve this, a QE model capable of predict-
ing the quality of partial translations is required.
However, current leading QE models face chal-
lenges in this area, as they are typically not trained
to predict scores for incomplete hypotheses. There-
fore, developing QE models that can handle partial
translations is essential for implementing Quality-
Aware Decoding during the translation process.

In this work, we propose adapting LLM-based
NMT models to perform QE on partial translations
and incorporating this model into the decoding.
We create a token-level synthetic QE dataset using
WMT Multidimensional Quality Metrics (MQM)
data (Burchardt, 2013; Freitag et al., 2024). We
then adapt a uni-directional LLM-based MT model
to predict whether a token is GOOD or BAD. Train-
ing QE models on these token-level tasks allevi-
ates the data challenge and allows us to exploit the
MQM data while simultaneously making the task
easier for the model compared to predicting a score
directly.

Furthermore, integrating the QE model into
NMT during decoding is not trivial, as we need to
combine the QE estimates during decoding. There-
fore, we modify the decoding strategy from Koneru
et al. (2024) to incorporate token-level predictions
efficiently with the adapted QE model to provide
real-time feedback during the decoding process.
We summarize our contributions below.

• We present a novel uni-directional QE model
which estimates quality on incomplete hy-
potheses by averaging the probabilities of
each token being classified as GOOD.

• We propose a decoding strategy that combines
the token-level QE model on partial hypoth-
esis and the NMT model to perform Quality-
Aware Decoding.

• We show through experiments that early in-
tegration is essential and the translation qual-
ity is improved even when compared to re-
ranking the N-best list with state-of-the-art
QE models.

• We highlight the significance of our approach
in document translation scenarios, where post-
generation QE techniques fall short due to
their reliance on the quality of the N-best list,
a challenge that becomes more difficult as the
input length increases.

2 Quality-Aware Decoding

The primary objective of this paper is to achieve
Quality-Aware Decoding in NMT. To accomplish
this, it is essential to predict the quality of partial
translations and integrate this information during
the decoding process. Our approach proposes us-
ing one NMT model for generating translations
and another adapted NMT model to predict the
quality of the candidate translations produced by
the first model.
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Figure 2: Token-level label annotation scheme using the MQM error tags. MASK indicates that this token label will
not be used in training to prevent incorrect learning signal.

First, we explain why relying solely on the NMT
model to predict the quality of a hypothesis is insuf-
ficient and why an additional model is necessary.
Next, we outline the adaptation of the NMT model
for QE on partial translations, detailing the creation
of a token-level QE dataset, the modifications made
to the NMT model for this task, and the process of
estimating the sentence-level quality score. Finally,
we describe the algorithm used to incorporate the
QE score into the decoding process.

2.1 Decomposing Decoding: Translation + QE

NMT models generate a token-by-token sequence
and provide the probability of each token at the
decoding step. The average of the log-probabilities
is often used as a proxy to score the candidate
during search.

While NMT models are capable of generating
high-quality translations, using the average log-
probabilities of hypotheses as a scoring metric
tends to yield poor correlation with actual transla-
tion quality (Eikema and Aziz, 2020; Freitag et al.,
2020). In many cases, a translation can continue in
several different ways, all of which may be accept-
able. If the starting tokens for these continuations
differ, the probability mass may be spread across
multiple options which is used during the search.
However, from a quality perspective, all these con-
tinuations could still achieve a high score, as the
QE scores are independent and need not sum to 1.

Therefore, we propose a expert model that fo-
cuses on quality to estimate the scores better during
decoding and improve the search space leading to
a better hypothesis.

2.2 Quality Estimation on Partial Sequences

To provide a quality score during decoding, the
QE model must be capable of handling incomplete
sequences. It should not penalize a sequence if
there is a potential extension that could lead to a
perfect translation.

Estimating the score in this way is not feasible
with current QE models, such as COMET (Rei
et al., 2021), as they were not trained for this spe-
cific task and cannot provide reliable scores in the
context of partial translations. Hence, we need to
develop a partial QE system.

When building a partial QE system, several fac-
tors need to be considered. First, should the model
use a uni-directional or bi-directional architecture?
A uni-directional model is more efficient, as it al-
lows for caching the hidden states, which can then
be used for subsequent steps without re-encoding,
unlike a bi-directional model.

Next, we need to decide whether to predict the
QE score at the sequence level or at the token
level. For token-level QE, we can directly use
data from MQM annotations, as we already know
which tokens are GOOD or BAD. However, for
segment-level scoring, we need to consider how to
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synthetically create the training data.
Therefore, we decide adapt the uni-directional

model into a token-level QE system that predicts
whether each token is GOOD or BAD (a binary
decision) by adding an additional classifier head.
This adaptation enables us to estimate the score
for a sequence by calculating the average proba-
bility that each token is classified as GOOD. We
hypothesize that adapting the model in this way,
rather than directly predicting the score, provides
greater stability, as the last hidden states inherently
contain token-level information and do not require
mapping the entire sequence to a single score.

For training this model, we leverage the WMT
MQM data containing error annotations in NMT
outputs. We can treat tokens before an error as
GOOD and those containing inside an error as BAD.
Then, we can train in uni-directional manner where
each token’s label is predicted using only the pre-
ceding context in the hypothesis. This is crucial as
we only have the preceding context to estimate the
quality for partial hypothesis.

2.2.1 Learning the Right Signal

The straightforward approach to creating labels
is to assign 1 to all tokens within the error span
and 0 otherwise. However, MQM annotations can
mark errors from words to phrases, and the starting
tokens of an error span may not always be wrong.
This is illustrated in Figure 2.

For example, consider the German sentence "Ich
spiele Tennis" translated by three different NMT
systems, each annotated with MQM error labels. In
this work, we focus on learning a binary decision:
whether an error is present, ignoring error severity.

System 1: No error: The translation "I play
Tennis" is perfect, and all tokens are labeled as
"GOOD."

System 2: Partial error: The translation "I
played Tennis" has an error in the verb form
("played" instead of "play"). The error is in the
token span "played", but not all tokens in this span
are incorrect (e.g., "pla" is correct). Assigning a
"BAD" label to the entire span would lead to incor-
rect learning. A more refined approach is needed
to mark errors accurately at the token level.

System 3: Full error: The translation "I enjoy
Tennis" contains an error in "enjoy", so all tokens
in this span should be labeled as "BAD."

It is not trivial to decide when the prefix of an
error span is correct/incorrect. To achieve accurate
labeling, we propose the following scheme:

• Apply a <MASK> operation to all tokens within
the error span.

• Only the last token in the span is assigned
the label "BAD", as the error is considered
complete at the end of the span.

If the error token is in the middle, we still train
the model to predict "BAD" in the end and let the
model determine which tokens should be part of
the error span during inference. This approach
ensures that errors are identified without explicitly
defining the error span.

2.2.2 Sequence-Level Quality Estimation
After fine-tuning a token-level classification model
to predict the quality of the tokens, we still need to
map these predictions into a sequence-level score
that can be integrated during the decoding process.
There are several potential ways to achieve this.

One approach is to simply count how many to-
kens are classified as BAD in the current hypothesis.
However, this method has limitations. The number
of errors should be normalized based on the length
of the hypothesis to account for varying sizes. Ad-
ditionally, converting the probabilities into a fixed
number of error tokens would need to account for
different error types according to the MQM format,
as each error counts differently.

To avoid such strict scoring schemes, we take a
simpler approach. We average the log probabili-
ties of all tokens that are classified as GOOD. This
method inherently accounts for the length of the
hypothesis, and it provides a score on the scale of
log probabilities, which aligns with the decoding
process. Therefore, we use this averaged log prob-
ability as a proxy metric for the QE score, where
a higher score indicates better quality (Line 5 in
Algorithm 1).

2.2.3 Fusing Translation and Quality
We can use a token-level QE system to evaluate the
quality of a source and partial hypothesis during
decoding. However, integrating these probabilities
into all candidates is computationally expensive,
as each beam considers extensions equal to the
vocabulary size.
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Algorithm 1 Computing merged score of partial hypothesis with translation and token-level QE models.

1: procedure MERGESCORE
2: Input: Hypothesis tokens h1, h2, h3, . . . , hn, Translation Model MNMT , QE model MQE ,

Source sentence S, Re-ranking weight α,
3: Output: merged_score
4: ScoreNMT ← 1

n

∑
logP(h1, h2, . . . , hn|S;MNMT )

5: ScoreQE ← 1
n

∑
logP(01, 02, . . . , 0n|h1, h2, . . . , hn,S;MQE)

6: merged_score← (α)× ScoreNMT + (1− α)× ScoreQE
7: end procedure

To address this, we adopt a simplified decoding
strategy from Koneru et al. (2024), which ensem-
bles models with different vocabularies. By adapt-
ing the same MT model for token-level QE, we
simplify the merging process, as the vocabularies
match. This restriction is reasonable, as it is also
beneficial to leverage the knowledge learned by the
specialized MT for token-level QE.

The core idea is to re-rank the top candidates at
each decoding step using the QE model. After re-
ranking, the translation and QE scores are merged,
and the process repeats until the end-of-sentence
token is generated, for each beam. This strategy
allows us to efficiently incorporate the QE model’s
estimate, improving translation quality.

During decoding, at each step, we have scores
for n beams and V possible extensions from the vo-
cabulary. In typical beam search, we select the top
n extensions and expand the hypothesis. To make
the decoding process Quality-aware, we estimate
the quality of these extensions. Since estimating all
extensions is computationally expensive, we limit
the candidates by selecting a specified number of
top candidates.

To achieve this, we use a hyper-parameter topk,
which selects the best topk extensions for each
beam. For each of these top topk extensions, we
compute a combined score, detailed in Algorithm
1. This combined score incorporates both the trans-
lation model score and the quality estimation score,
ensuring the quality is considered during decoding.

For a top extension at decoding step n, let the
current tokens be h1, h2, h3, . . . , hn. The NMT
model score is computed as the average log proba-
bilities of each token (Line 4). For the token-level
QE model, we compute the average probability
of each token being classified as ’GOOD’ (Line
5). The merged score is equal to weighted linear

combination of these probabilities, with weight α
(Line 6).

Thus, to make the decoding process Quality-
Aware, we first train a token-level QE system by
adapting the same NMT model to ensure vocabu-
lary matching. We then combine the scores from
both models to improve the sequence estimates
explored during search.

Pearson Spearmann Kendall

COMETQE 44.41 41.29 31.19

COMETQE-XL 41.23 42.17 31.84

Tower Avg. Log Prob 32.32 16.74 12.77

Tower QE 40.56 33.96 25.87

Table 1: Correlation on WMT 23 for English→ Ger-
man Test set. The scores are calculated after removing
the few sentences labeled for hallucination detection.
Best scores according to each coefficient are highlighted
in bold.

3 Experimental Setup

Datasets: We focus on two language directions
given their availability of MQM data: English
→ German and Chinese → English. To train
our token-level QE systems, we use the MQM
datasets2 from WMT (Freitag et al., 2021). Specif-
ically, we use the datasets until 2022 for training,
2024 for validation, and 2023 for testing (Kocmi
et al., 2024). This setup is consistent with all the
other QE metrics, and we do not use any additional
data beyond these datasets.

Models: Our proposed approach achieves
Quality-Aware decoding by combining an NMT
model with a token-level QE model, where

2https://github.com/google/wmt-mqm-human-evaluation
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Model Beams Re-ranking MetricX (↓) XCOMET-XXL (↑)
English→ German

Tower 5 _ 2.52 86.93
Tower 25 XCOMET-XL QE 2.37 87.79
Tower 25 Tower QE 2.38 87.40

Tower + Tower QE 5 (25* for Tower QE) _ 2.12 88.95*
Tower + Tower QE 5 (25* for Tower QE) XCOMET-XL QE 2.09* 89.08*

Chinese→ English

Tower 5 _ 2.42 88.91
Tower 25 XCOMET-XL QE 2.30 89.49
Tower 25 Tower QE 2.32 89.51

Tower + Tower QE 5 (25* for Tower QE) _ 2.26 89.82*
Tower + Tower QE 5 (25* for Tower QE) XCOMET-XL QE 2.24* 90.00*

Table 2: Translation Quality on WMT23 English→ German Test set. Both XCOMET and MetricX columns use
reference for reporting translation quality where as XCOMET-XL QE does not use for re-ranking. Best scores
according to each metric are highlighted in bold. We report the top cluster indicated with asterisks and are no
worse than other systems determined by Paired T-Test and bootstrap resampling with p < 0.05

we adapt the same NMT for QE by adding a
classification head. We use the state-of-the-art
NMT model, Tower 7B3 (Alves et al., 2024),
which provides high-quality translations and
has already been exposed to MQM data during
instruction-tuning. This ensures that the gains
observed in our approach stem from integrating
Quality-Aware decoding into the NMT process,
rather than introducing new data. We find α by
setting it to the optimal re-ranking weight on the
validation set ( See Appendix A.3 for details).
Additional details on training the QE models and
hyper-parameters during decoding are provided in
Appendix A.1.

Metrics: For reporting the translation quality, we
consistently use XCOMET-XXL4 (Guerreiro et al.,
2024) and MetricX5 (Juraska et al., 2024) with the
reference. To compare with N-best list re-ranking,
we use the XCOMET-XL QE6 without the ref-
erence. This approach allows us to avoid biasing
toward a single metric during the re-ranking pro-
cess and enables us to measure the gains achieved
by differently trained metrics.

3Unbabel/TowerInstruct-7B-v0.2
4Unbabel/XCOMET-XXL
5google/metricx-24-hybrid-xl-v2p6
6Unbabel/XCOMET-XL

4 Results

We conduct a series of experiments to validate the
effectiveness of Quality-Aware decoding and iden-
tify the scenarios where it provides the most bene-
fit. First, we evaluate whether our token-level QE
model can better estimate sequence quality com-
pared to the log probabilities of the NMT model.
Next, we assess the impact of Quality-Aware de-
coding by comparing it with other approaches to
determine if it improves translation quality. We
also perform an ablation study to examine whether
training the QE model on errors from the same
NMT model enhances its performance. Then, we
explore the impact of source sentence length to
highlight the limitations of N-best list re-ranking.
Finally, we compare our proposed approach with
existing Quality-Aware decoding strategies and
also their inference time to highlight the laten-
cy/quality trade-off.

4.1 Quality Estimation Performance

First, we evaluate the agreement between the
Tower-based token-level QE model (Tower QE)
and human scores for a given hypothesis. It is only
beneficial if we achieve higher correlation than
the average of the NMT model log probabilities
to show the need to integrate it during decoding.
Therefore, we report the correlation with human
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Model Beams Re-ranking MetricX (↓) XCOMET-XXL (↑)
English→ German

Tower 25 XCOMET-XL QE 2.37 87.79
Tower 25 Tower QE 2.38 87.40
Tower 25 Tower Distill QE 2.38 87.39

Tower + Tower QE 5 (25* for Tower QE) _ 2.12 88.95
Tower + Tower QE 5 (25* for Tower Distill QE) _ 2.11 88.76

Table 3: Performance of Unidirectional QE trained with/without distillation on WMT23 English→ German Test
set. Best scores according to each metric are highlighted in bold.

Model Beams Re-ranking XCOMET-XL (↑) XCOMET-XXL (↑) Impact

Paragraph-Level

Tower 25 XCOMET-XL QE 86.56 87.79
δ = + 1.16

(88.95 - 87.79)
Tower 25 Tower QE 85.40 87.40

Tower + Tower QE 5 (25* for Tower QE) _ 86.36 88.95

Sentence-Level

Tower 25 XCOMET-XL QE 86.42 87.68
δ = + 0.38

(88.06 - 87.68)
Tower 25 Tower QE 85.23 87.41

Tower + Tower QE 5 (25* for Tower QE) _ 85.96 88.06

Table 4: Impact of integrating Unidirectional QE during decoding with paragraphs vs sentences on WMT23
English→ German Test set. δ denotes the improvement in translation quality from re-ranking N-best list with
XCOMET-XL QE to integrating unidirectional Tower QE during the decoding. Best scores according to each
metric are highlighted in bold.

scores of different models on WMT 23 English→
German in Table 1.

We observe that the best-performing systems
are the Comet QE models, which predict a single
score using the full hypothesis. This is expected, as
these models assess quality after the hypothesis is
fully generated. In contrast, both log probabilities
and Tower QE scores are based on the predicted
token of each decoding step, using only the preced-
ing context. Log probabilities perform poorly in
this setup, while our proposed model, Tower QE,
achieves twice the correlation with human judg-
ments compared to log probabilities, despite scor-
ing token by token with preceding context. This
result highlights the potential of integrating our
approach into the decoding process.

4.2 Unified Decoding for NMT

To validate the effectiveness of our unified decod-
ing approach, we compare it with several base-
lines in Table 2. First, we evaluate whether our
approach outperforms generating translations with
the NMT model alone. Next, we check if the qual-
ity of translations improves compared to N-best

list re-ranking. To make the setups comparable, we
set topk and num_beams to 5 and compare with
re-ranking the top 25 beams using XCOMET-XL.
Finally, to demonstrate that re-ranking the N-best
list remains a viable and complementary approach,
we re-rank the top 5 beams obtained from Quality-
Aware decoding using the same QE model.

We find that re-ranking with XCOMET-XL and
Tower QE yields similar results, indicating that
our partial QE model does not over-fit to any spe-
cific metric. Furthermore, we observe that the uni-
fied decoding approach outperforms N-best list re-
ranking across both metrics in both language pairs.
For example, the MetricX score improves from
2.37 to 2.12 for English → German. Note that
Tower has already seen this data during instruction-
tuning and the improvement is not from new data
but from Quality-Aware decoding. Moreover, re-
ranking the top 5 beams obtained from unified de-
coding with XCOMET-XL leads to a slight further
improvement in quality. This highlights the robust-
ness and generalizability of our approach across
different evaluation metrics.
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4.3 Adapting for Tower Errors

We use the MQM annotations from WMT to train
our Tower QE model, which contains error annota-
tions from other systems. However, a viable alter-
native would be to adapt Tower QE specifically to
the errors it typically makes. To maintain a simi-
lar data setup, we first generate translations using
Tower on these source sentences. Then, we anno-
tate the generated hypotheses with XCOMET-XL
using the reference and fine-tune Tower QE on this
synthetic dataset, which we refer to as Tower Dis-
till QE. We evaluate the performance of the new
distill QE model and report the results in Table 3.

We observe that the distilled QE model performs
very similarly to the QE model trained on errors
from other systems. This indicates that there was
no significant benefit in adapting the QE model to
the specific errors typically made by Tower. How-
ever, further analysis on larger datasets and differ-
ent domains is needed to fully validate the effec-
tiveness of the distillation approach as the current
synthetic data generated is small.

4.4 Sentence vs Document-level Translation

From Table 2, we observe that the gains for En-
glish→German (paragraph-level) are much higher
than for Chinese→ English (sentence-level). We
hypothesize that this discrepancy arises from the
length of the sentences, as the N-best list re-ranking
is likely sufficient for shorter sentences. To confirm
this, we take the English paragraphs and split them
into sentences using a tokenizer while tracking the
paragraph IDs. We then perform the entire decod-
ing process similarly, and later join the sentences
back using the paragraph IDs before evaluation.
We report the results in Table 4.

We define the impact as the improvement in
translation quality from re-ranking the N-best list
with XCOMET-XL QE to integrating Tower QE.
Comparing the results at the paragraph level to
those at the sentence level, we observe that the im-
pact decreases, which confirms our hypothesis. Ad-
ditionally, we obtain better scores at the document
level, further highlighting the potential benefits of
Quality-Aware Decoding.

4.5 Compatibility with Sampling-based
Strategies

Our proposed approach integrates the feedback dur-
ing decoding time to generate high quality N-best
list. Therefore, it can be further combined with
strategies such as Minimum Bayes Risk (MBR)
(Freitag et al., 2022) or QE-Fusion (Vernikos and
Popescu-Belis, 2024) decoding that only rely on
the sampled candidates. We compare the differ-
ent decoding strategies and report the scores in
Table 5. For MBR decoding, we do epsilon sam-
pling (epsilon=0.02) and generate 25 candidates
with wmt22-comet-da as utility metric. We do
not sample more as it is expensive especially at
document-level with 7B model and requires mul-
tiple runs. For QE fusion, we use XCOMET-XL
as the utility metric. We perform this on English-
German at paragraph-level as our hypothesis is that
the N-best list is problematic for long sequences.

We find that decoding with Tower QE is sig-
nificantly better than the other approaches in this
setting according to XCOMET-XXL metric. We
also would like to highlight that it is compatible
with sampling based approaches and show that by
performing QE-fusion on the top 5 beams with our
decoding approach. While the scores are slightly
lower, human evaluation is necessary to compare
these systems.

4.6 Inference Time

While the quality of translation improves, our ap-
proach also is computationally more expensive. To
demonstrate this, we compare different decoding
strategies and report the latency and quality in Ta-
ble 6. To calculate the latency, we take the average
time in seconds for inference on the WMT 23 En-
glish→ German Test set.

Note that MBR with XCOMET-XL is extremely
expensive given the large size of the QE model
and the amount of long samples (25*24*557 ex-
amples at paragraph level limit batching) that need
to be passed through the model due to the expo-
nential nature of MBR. We see that due to the uni-
directional nature of the Tower QE, the total infer-
ence time is less than double. Further, re-ranking
with XCOMET-XL is the fastest given that a single
forward pass is needed after generation.
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Model Beams
Re-ranking/

Utility Metric
MetricX XCOMET-XXL

Tower 25 XCOMET-XL 2.37 87.79

Tower + MBR 25 wmt22-comet-da 2.75 87.53

Tower + QE-Fusion 25 XCOMET-XL 2.38 87.76

Tower + Tower QE (Ours) 5(25) _ 2.12 88.95*

Tower + Tower QE (Ours) 5(25) XCOMET-XL 2.09* 89.08*

Tower + Tower QE (Ours) + QE-Fusion 5(25) XCOMET-XL 2.10 89.03*

Table 5: Translation quality on WMT 23 English→ German. We report the top cluster indicated with asterisks and
are no worse than other systems determined by Paired T-Test and bootstrap resampling with p < 0.05. For MBR,
we use wmt22-comet-da as the utility metric wheras XCOMET-XL for QE-Fusion (Vernikos and Popescu-Belis,
2024).

Model Beams
Avg Time
(Seconds)

XCOMET-XXL

Tower 5 5.20 86.93

Tower
XCOMET-XL Rerank

25 13.16 + 1.78 87.79

Tower
MBR wmt22-comet-da

25 13.16 + 0.34 87.56

Tower
Tower QE (Ours)

5(25) 21.04 88.94

Table 6: Average inference time on WMT 23 English-
German document-level test set. For MBR and re-
ranking, 13.16 is the time used for generating 25 candi-
dates.

5 Related Work

Integrating QE in NMT: Several advancements
have been made in improving QE for NMT over
the years (Rei et al., 2021, 2022; Blain et al., 2023;
Zerva et al., 2024; Guerreiro et al., 2024). These
developments have led to the integration of QE
in various ways. One common approach involves
applying QE after generating multiple sequences
through techniques such as QE re-ranking (Fernan-
des et al., 2022; Faria et al., 2024) or Minimum
Bayes Risk (MBR) decoding (Tomani et al., 2024).
Another direction focuses on removing noisy data
using QE models, followed by fine-tuning on high-
quality data (Xu et al., 2024; Finkelstein et al.,
2024). Vernikos and Popescu-Belis (2024) pro-
poses to generate diverse translations as a first step
and then combine them. We perform this explic-
itly by integrating the QE directly into decoding.

Recently, Zhang et al. (2024) exploited the MQM
data by training models to penalize tokens within
an error span, improving quality. In contrast, our
approach adopts a modular framework, where we
propose an expert QE model that is trained indepen-
dently for targeted training. This modular approach
aims to improve performance by decomposing the
task into separate translation and QE components.

Reward Modeling in NLG: Quality-Aware de-
coding shares similarities with controllable text
generation, particularly in using a "Quality/Re-
ward" model to guide decoding. Methods like
Weighted Decoding (Yang and Klein, 2021) adjust
token probabilities for controlled generation, while
Deng and Raffel (2023) use a uni-directional re-
ward model to maintain efficiency. Li et al. (2024)
further enhance control with a token-level rein-
forcement learning-based model. While related,
our key contribution is the development of the first
uni-directional QE model specifically for transla-
tion.

6 Conclusion

We demonstrated the value of Quality-Aware de-
coding in improving translation quality without
relying on post-generation methods. Using MQM
data, we built a uni-directional token-level QE
model and integrated it into the decoding process.
Our experiments show measurable quality gains,
achieved without adding new training data to the
NMT model, highlighting that improvements come
only from the decoding approach.
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7 Limitations

Although our Quality-Aware decoding improves
translation quality, it adds considerable computa-
tional complexity to the inference process. The-
oretically, this approach would double the time
required to generate a translation and would re-
quire additional memory to utilize the token-level
QE model. One potential solution to mitigate this
issue could be to use token-level QE as a reward
model for training through reinforcement learning.

Furthermore, we trained our model on a limited
set of human-annotated MQM data. However, cur-
rent QE models, such as XCOMET, are capable
of predicting error tags using the reference with
reasonable quality. This suggests that further im-
provements could be achieved if these models were
trained on larger-scale datasets, providing more
nuanced feedback and refining translation quality
even further.

In addition, human evaluation is necessary to
validate if the translation quality also improves
with human judgment. Although we were able
to better integrate MQM data during decoding, it
decreases confidence in relying completely on au-
tomatic metrics.

Lastly, our proposed token-level QE model does
not account for error severity. Ideally, it should be
able to predict the category of errors, allowing for
more nuanced feedback and enabling the model to
generate translations with only minor errors when
necessary.

Acknowledgments

Part of this work was performed on the HoreKa
supercomputer funded by the Ministry of Science,
Research and the Arts Baden-Württemberg and by
the Federal Ministry of Education and Research.

References
Duarte M Alves, José Pombal, Nuno M Guerreiro, Pe-

dro H Martins, João Alves, Amin Farajian, Ben Pe-
ters, Ricardo Rei, Patrick Fernandes, Sweta Agrawal,
et al. 2024. Tower: An open multilingual large
language model for translation-related tasks. arXiv
preprint arXiv:2402.17733.

Frederic Blain, Chrysoula Zerva, Ricardo Rei, Nuno M
Guerreiro, Diptesh Kanojia, José GC de Souza, Beat-
riz Silva, Tânia Vaz, Yan Jingxuan, Fatemeh Azadi,

et al. 2023. Findings of the wmt 2023 shared task
on quality estimation. In Proceedings of the Eighth
Conference on Machine Translation, pages 629–653.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Aljoscha Burchardt. 2013. Multidimensional quality
metrics: a flexible system for assessing translation
quality. In Proceedings of Translating and the Com-
puter 35.

Haikang Deng and Colin Raffel. 2023. Reward-
augmented decoding: Efficient controlled text gener-
ation with a unidirectional reward model. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 11781–11791,
Singapore. Association for Computational Linguis-
tics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Bryan Eikema and Wilker Aziz. 2020. Is map decoding
all you need? the inadequacy of the mode in neural
machine translation. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 4506–4520.

Gonçalo RA Faria, Sweta Agrawal, António Farin-
has, Ricardo Rei, José GC de Souza, and André FT
Martins. 2024. Quest: Quality-aware metropolis-
hastings sampling for machine translation. arXiv
preprint arXiv:2406.00049.

Patrick Fernandes, António Farinhas, Ricardo Rei,
José GC de Souza, Perez Ogayo, Graham Neubig,
and André FT Martins. 2022. Quality-aware decod-
ing for neural machine translation. In Proceedings
of the 2022 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1396–1412.

Mara Finkelstein, David Vilar, and Markus Freitag.
2024. Introducing the newspalm mbr and qe dataset:
Llm-generated high-quality parallel data outperforms
traditional web-crawled data. In Proceedings of the
Ninth Conference on Machine Translation, pages
1355–1372.

Markus Freitag, George Foster, David Grangier, Viresh
Ratnakar, Qijun Tan, and Wolfgang Macherey. 2021.
Experts, errors, and context: A large-scale study of
human evaluation for machine translation. Preprint,
arXiv:2104.14478.

42

https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://doi.org/10.18653/v1/2023.emnlp-main.721
https://arxiv.org/abs/2104.14478
https://arxiv.org/abs/2104.14478


Markus Freitag, David Grangier, and Isaac Caswell.
2020. Bleu might be guilty but references are not
innocent. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 61–71.

Markus Freitag, David Grangier, Qijun Tan, and Bowen
Liang. 2022. High quality rather than high model
probability: Minimum Bayes risk decoding with neu-
ral metrics. Transactions of the Association for Com-
putational Linguistics, 10:811–825.

Markus Freitag, Nitika Mathur, Daniel Deutsch, Chi-
Kiu Lo, Eleftherios Avramidis, Ricardo Rei, Brian
Thompson, Frederic Blain, Tom Kocmi, Jiayi Wang,
et al. 2024. Are llms breaking mt metrics? results
of the wmt24 metrics shared task. In Proceedings of
the Ninth Conference on Machine Translation, pages
47–81.

Nuno M Guerreiro, Ricardo Rei, Daan van Stigt, Luisa
Coheur, Pierre Colombo, and André FT Martins.
2024. xcomet: Transparent machine translation eval-
uation through fine-grained error detection. Transac-
tions of the Association for Computational Linguis-
tics, 12:979–995.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. 2021. Lora: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, et al. 2023. Mis-
tral 7b. arXiv preprint arXiv:2310.06825.

Juraj Juraska, Daniel Deutsch, Mara Finkelstein, and
Markus Freitag. 2024. Metricx-24: The google sub-
mission to the wmt 2024 metrics shared task. arXiv
preprint arXiv:2410.03983.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
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A Appendix

A.1 Training details

We use the transformers library (Wolf et al., 2020)
for training and inference with Tower-Instruct V2.
For adapting Tower to token-level QE, we use
LoRA (Hu et al., 2021) based fine-tuning with
an additional classifier head. Therefore, we only
train the adapters and the weights for classification
head.

We add the adapters to the modules
q_proj,k_proj,v_proj,gate_proj,up_proj and
down_proj. We set a batch size for each device
to 12 initially and enable auto_find_batch_size
to True on 4 NVIDIA RTX A6000 GPU’s. For
having a larger batch size during training, we
set gradient_accumulation_steps to 6. We use
a learning_rate of 1e−5. We set the eval_steps
to 50 and num_train_epochs to 10. The other
parameters are set to default.

Using the cross-entropy loss for token-level QE
directly is insufficient due to the fact that the major-
ity of tokens are classified as ’GOOD’. Hence, we
find that the weighted cross-entropy loss is essen-
tial when fine-tuning the model. For the training on
human MQM data, we set the weights to 0.05, 0.95

to ’GOOD’ and ’BAD’ labels respectively. In the
case of distilling from XCOMET, we observed
more errors. Therefore, we find that setting them
0.2, 0.8 to ’GOOD’ and ’BAD’ labels respectively
provided stable training.

We train on data until WMT’22 for training
and use WMT’24 for validation. We calculate the
macro ’F1’ on token-level predictions as the valida-
tion metric and stop training if it does not improve
for 10 consecutive eval_steps.

A.2 Partial vs Full Sequence Quality
Estimation

We also compare the difference in performance
between our proposed token-level QE for partial
sequences with Tower trained for full sequence
QE. We achieve this by adding a regression head
to predict the score at the end-of-sentence token.
Hence, the model uses the source and hypothesis
to predict the score using regression head at the
end.

We fine-tune the model using only direct asses-
ment data (Zerva et al., 2024) (Tower Full DA).
Furthermore, we use this as initialisation and con-
tinue fine-tuning on the MQM data (Tower Full
DA + MQM). We also use LoRA similarly to the
previous model with a regression head to adapt the
model. We report the scores in Table 7.

We see that the both Tower QE models based
on full sentences outperforms the partial model.
However, this is expected as it has seen the entire
context and trained on larger amounts of data. Still,
the partial model achieves much higher correlaiton
that the log probabilities showcasing its potential
for Quality-Aware decoding.

A.3 Robustness to re-ranking weight
We introduce a hyperparameter, α, to merge prob-
abilities from the token-level QE model and the
translation model. To analyze its impact, we re-
rank the N-best list using various α values, avoid-
ing repeated joint decoding. If the QE model is
helpful, we expect translation quality to improve
when α < 1.

Figure 4 shows that lower α values consistently
yield better results, confirming that incorporating
QE probabilities improves translation. This high-
lights the value of Tower QE and shows that re-
ranking is an effective and robust way to tune α.
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Pearson Spearmann Kendall

COMETQE 44.41 41.29 31.19

COMETQE-XL 41.23 42.17 31.84

COMETQE Scratch
Fine-tuned (ours)

36.32 33.66 25.24

Tower Log Prob 32.32 16.74 12.77

Tower Partial QE 40.56 33.96 25.87

Tower Full DA 33.67 36.46 27.38

Tower Full DA + MQM 32.03 40.85 30.38

Table 7: Full Correlation results on WMT 23 for English→ German Test set. Partial indicates that the QE model
predict scores via token-level where as full indicates predicting the score at the end-of-sentence token. The scores
are calculated after removing the few sentences labelled for hallucination detection. Best scores according to each
coefficient are highlighted in bold.

Tower Translation Prompt

<|im_start|>user
Translate the sentence from English into German.
English: {src_sent}
German:
<|im_end|>
<|im_start|>assistant

Tower Token-Level QE Prompt

English:{src_sent}
German: {tgt_sent}

Figure 3: Prompts used in our experiments for translation and QE model. {src_sent} and {tgt_sent} represent
the source and target sentence. We replace the language with Chinese and English when experimenting with that
language pair.
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(a) English→ German

(b) Chinese→ English

Figure 4: Impact of α when re-ranking with token-level Tower QE on WMT’23 Test sets.
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Abstract

Training large-scale models presents chal-
lenges not only in terms of resource require-
ments but also in terms of their convergence.
For this reason, the learning rate (LR) is of-
ten decreased when the size of a model is in-
creased. Such a simple solution is not enough
in the case of speech-to-text (S2T) trainings,
where evolved and more complex variants of
the Transformer architecture – e.g., Conformer
or Branchformer – are used in light of their
better performance. As a workaround, OWSM
designed a double linear warmup of the LR,
increasing it to a very small value in the first
phase before updating it to a higher value in the
second phase. While this solution worked well
in practice, it was not compared with alterna-
tive solutions, nor was the impact on the final
performance of different LR warmup sched-
ules studied. This paper fills this gap, revealing
that i) large-scale S2T trainings demand a sub-
exponential LR warmup, and ii) a higher LR
in the warmup phase accelerates initial conver-
gence, but it does not boost final performance.

1 Introduction

Following the success of Large Language Models
(LLM) (Radford et al., 2019), large-scale speech-to-
text (S2T) trainings have gained increased interest
with the goal of building Large Speech Models
(LSM) or Speech Foundation Models (SFM) with
similar abilities for the speech modality (Commu-
nication et al., 2023; Peng et al., 2023; Radford
et al., 2023; Zhang et al., 2023).

Scaling the size of the training data and trained
models with respect to traditional small-scale
speech trainings has posed many challenges be-
yond engineering efforts and demanding hardware
requirements. Among them, a significant challenge
was ensuring the convergence of large models,

* Equal contribution.

which required adaptations to the learning rate (LR)
(Radford et al., 2023; Peng et al., 2024). In partic-
ular, Whisper (Radford et al., 2023) lowered the
peak LR with the increase of the model size. Differ-
ently, OWSM 3.1 (Peng et al., 2024) introduced a
new LR scheduler, driven by the insight that reduc-
ing the peak LR would compromise the quality of
the trained model (Kalra and Barkeshli, 2024). The
new LR scheduler – named piecewise LR scheduler
– modifies the warmup phase from a simple linear
increase to a two-phase linear warmup while keep-
ing unaltered the decay phase after the LR peak.
However, this design choice was not motivated,
nor was it investigated whether alternative warmup
policies could be more effective or how they might
impact the final model quality.

In this paper, we fill these gaps by studying
which factors lead to a more difficult convergence
of large-scale models and what is the impact of
different LR warmup policies on the final perfor-
mance. To this aim, we train large-scale S2T Con-
former (Gulati et al., 2020) models on more than
150K hours of speech data, exploring alternative
warmup methods – specifically an exponential and
a polynomial policy – operating between the dou-
ble linear warmup by OWSM and the traditional
linear warmup phase of the inverse square root LR
scheduler. Our experiments demonstrate that:

• Advanced and more complex variants of the
Transformer architecture, such as Conformer
and Branchformer (Peng et al., 2022), widely
used in speech processing for their superior
performance, are more difficult to train due to
their deeper layers involving additional com-
ponents (e.g., extra convolutional or linear lay-
ers), making them more prone to “exploding
gradient” (Bengio et al., 1994) issues;

• The LR warmup should follow an exponen-
tial or sub-exponential function and, while it
plays a crucial role in the convergence of the
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Figure 1: LR schedulers with inverse square root, piecewise-linear, polynomial, and exponential warmup policies.

model by ensuring a smooth transition to a
good model initialization, it does not signifi-
cantly affect the final result as long as conver-
gence of the model is achieved.

To ease future research on the topic, foster re-
producibility of our work, and in accordance with
the Open Science principles (White et al., 2024),
we release the code, logs, and intermediate check-
points under the open-source Apache 2.0 license at
https://github.com/hlt-mt/FBK-fairseq.

2 Learning Rate Schedulers

This section describes the LR schedulers analyzed
in this work, starting from the widely adopted in-
verse square root with linear warmup (§2.1) and
piecewise-linear warmup (§2.2), to the alternative
sub-linear warmup policies, namely polynomial
(§2.3) and exponential (§2.4), designed to be as
close as possible to the traditional inverse square
root LR. All LR schedulers are shown in Figure 1.

2.1 Inverse Square Root Policy
Since the introduction of the Transformer archi-
tecture, the LR scheduler has followed an inverse
square root policy (Vaswani et al., 2017). This
scheduler has therefore been widely adopted in
S2T training settings (Inaguma et al., 2020; Wang
et al., 2020) and entails two phases. Firstly, the LR
linearly increases for a predefined number of steps
w from 0 to the peak LR η, where w and η are two
hyper-parameters whose tuning is critical for the
success of the training and the quality of the result-
ing model (Popel and Bojar, 2018). In this phase,
the LR ηi at the i-th step is ηi = η · i/w. Secondly,
after reaching η, the LR decreases proportionally
to the inverse square root of the number of steps,

i.e. ηi = η · √w/
√
i. Overall, the LR ηi at the i-th

step is:

ηi = η ·min

(
i

w
,

√
w√
i

)

where w is set to 50k and η to 2e−4 in this work.

2.2 Piecewise-linear Warmup

Peng et al. (2024) found that the linear warmup of
the standard inverse square root LR scheduler was
not suitable for training their large-scale 1B Branch-
former model and introduced the piecewise-linear
warmup policy. This policy splits the warmup step
into two linear phases, introducing an intermediate
LR η′ with a corresponding number of intermediate
warmup steps w′ as additional hyperparameters. In
the first w′ steps, the LR linearly increases from
0 to η′, which is typically set to a much smaller
value than η, and then in the steps between w′ and
w it increases from η′ to η. As such, in the warmup
phase, i.e. at the step i < w, the LR ηi is:

ηi<w = max

(
η′ · i

w′ , η
′ +

(η − η′) · (i− w′)
w − w′

)

In this work, we follow Peng et al. (2024) and
set the number of intermediate warmup steps w′ to
w/2 i.e., 25k, and the intermediate LR w′ to η/10.

2.3 Polynomial Warmup

As a first alternative to the piecewise-linear pol-
icy, we propose to increase the LR with a polyno-
mial function with respect to the number of steps.
The slope of the increase is controlled by a hyper-
parameter α, according to the formula:
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ηi<w = η ·
(
i

w

)α

We set α to 1.5, and the polynomial warmup
function is visualized in Figure 1 (green curve).

2.4 Exponential Warmup
As a second alternative, we introduce an expo-
nential policy that, compared to the polynomial
one, has a steeper LR increase in the first part of
the warmup and a lower LR in the second. Also
in this case, the hyper-parameter α controls the
smoothness of the function, and the higher the α
the smaller the LR in the warmup phase. Specifi-
cally, this policy follows the formula:

ηi<w = η · e
α· i

w − 1

eα − 1

Similarly to the polynomial warmup (Section
2.3), we set α to 1.5, and the exponential warmup
function is visualized in Figure 1 (purple curve).

3 Experimental Settings

To ensure that divergence issues are not due to a par-
ticularly challenging setting, we avoided multi-task
trainings, resorting to training S2T models on the
automatic speech recognition (ASR) task for two
languages (English and Italian). As training data,
we use ∼150k hours of publicly available speech
datasets, which are described in Appendix A. For
validation, we use the English (en) and Italian (it)
dev sets of CommonVoice (Ardila et al., 2020).

Our encoder-decoder models have a Transformer
decoder and a Conformer encoder preceded by two
1D convolutional layers that downsample the se-
quence length by a factor of 4. For the Conformer
encoder, we use the implementation by Papi et al.
(2024) that fixes issues in padding handling. Given
the results of preliminary experiments (§4.1), we
set 24 encoder layers and 12 decoder layers for the
experiments in §4.2. The embeddings have 1024
features, with an FFN hidden dimension of 4096
and 16 attention heads. In total, our models have
878M parameters. Further details are provided in
Appendix A.

4 Results

4.1 Preliminary Experiments
In preliminary experiments, we varied the number
of encoder and decoder layers to understand when
the depth of the network becomes critical – i.e., the

model starts diverging – with the standard inverse
square root LR scheduler. In this scenario, we ob-
served that the number of encoder layers was the
driver of the issue while adding more decoder lay-
ers was not. Specifically, models with more than 18
encoder layers were not converging. For instance,
models with 18 encoder layers and 6 decoder lay-
ers diverge, while models with 12 encoder and 12
decoder layers converge without issues. This obser-
vation, together with the fact that Whisper (which
features a Transformer encoder) was trained with-
out the need for adapting the learning rate sched-
uler, suggests that complex layers featuring many
subcomponents, such as Conformer and Branch-
former layers, pose convergence issues with deep
models. In our Conformer implementation, each
subcomponent is wrapped in a residual connection
(He et al., 2016), which may indicate a need for ad-
ditional normalization layers within each encoder
block to mitigate potential scaling effects. How-
ever, we leave this investigation for future work.

4.2 LR Warmup Analysis
Moving to the comparison of the warmup policies,
Figure 2 shows the resulting learning curves on the
validation sets for the two languages, which dis-
play the same behaviors, with the only difference
that the Italian curves have a higher perplexity at
the beginning and decline later than English ones.
Similar trends can be observed in the training set,
which we report in Appendix B.

Figure 2: Perplexity on the English and Italian valida-
tion sets for the polynomial, piecewise-linear, and expo-
nential policies for the first 50k steps (warmup phase).

Model Convergence First, we notice that the
model convergence is obtained only with the expo-
nential and piecewise-linear policies. The polyno-
mial policy, instead, displays the same pattern as
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LR CV MLS VP AVGen it en it en it
PL 18.4 13.7 7.4 17.4 8.3 17.8 13.8
Exp 19.1 14.3 7.5 17.9 8.6 18.3 14.3

Table 1: WER (↓), computed using jiwer and the Whis-
per text normalizer, on the CommonVoice (CV), Vox-
Populi (VP), and MLS test sets of the 170k-steps check-
points obtained with the LR scheduler with piecewise-
linear (PL) and exponential (Exp) warm up.

the standard inverse square root policy (which we
do not report here) leading the model to a high per-
plexity that minimally degrades with the progres-
sion of the training. This convergence issue can
be attributed to an exploding gradient: as we show
in Appendix C, in the polynomial training there
are huge spikes in the gradient norm in the range
25k-30k steps and later, where the other policies
feature a steep decrease that the polynomial fails to
achieve. The exponential policy, despite a higher
LR during the first ∼15k steps, has a slightly lower
LR in the 15k-50k range than the polynomial pol-
icy. This minimal difference is sufficient to enable
model convergence. Therefore, we can conclude
that the exponential policy closely approaches the
highest feasible LR during the warmup phase with-
out compromising model convergence.

Convergence Speed Figure 2 also shows that,
as expected, higher LRs result in lower perplex-
ity during the initial steps. In both the English
and Italian validation sets, the exponential policy
– which features the highest LR in the first ∼15k
steps – always displays the lowest perplexity. The
polynomial one starts with the highest perplexity
due to its lower LR in the initial steps. However,
it later surpasses the piecewise-linear policy and
closes the gap with the exponential one, thanks to
its higher LR in the later stages, until it ultimately
fails to converge. Interestingly, the learning curves
of the two converging policies show a step-like
decrease, which is anticipated for the exponential
policy (∼20k vs ∼23k steps for English and ∼22k
vs ∼26k for Italian) as per its faster convergence.

Effect on the Resulting Model Lastly, we ex-
plore whether the faster initial convergence of the
exponential policy results in a better model at the
end of the training compared to that obtained with
the piecewise-linear policy. Figure 3 shows the
learning curve after the first 50k steps, up to the end
of the whole pass over the training set (i.e., the first
training epoch at step 170k). The learning curves

Figure 3: Perplexity on the English and Italian valida-
tion sets for the piecewise-linear and exponential poli-
cies for the steps after the warmup phase (50k-170k).

of the piecewise-linear scheduler not only reach the
perplexity of those of the exponential policy but the
English one also becomes slightly better. The same
trend is observed in the training data (see Figure 5
in Appendix B), in which the English data is more
than 80%. The WER on test sets for the checkpoint
at the 170k step also testifies to a slight superiority
of the model obtained using the piecewise-linear
policy on both languages, as shown in Table 1. We
can conclude that a faster convergence in the early
stages of the training does not imply a better result-
ing model and that the warmup policy of the LR
scheduler is critical to ensure the convergence of
the model, but, once that is achieved, its role in the
model quality is limited.

5 Conclusions

In this study, we analyzed one of the key chal-
lenges – beyond engineering, data curation, and
hardware efforts – associated with training large-
scale S2T models i.e., the role of the LR sched-
uler and, in particular, of its warmup strategy in
model convergence and final performance. To this
aim, we compared the standard linear warmup and
the piecewise-linear warmup strategies with two
policies – polynomial and exponential – aimed at
finding the highest possible LR in the warmup
phase that does not lead to convergence issues.
Through experiments on large-scale ASR train-
ings of a ∼900M parameters Conformer model,
we demonstrated that while the LR warmup phase
is crucial for stabilizing convergence, it has a mini-
mal impact on final model performance and that the
LR warmup phase should follow an exponential or
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sub-exponential rise to ensure model convergence.
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Limitations

Effect of Multilingualism and Multi-task In
this work, we decided to experiment with a single
task and two languages in the training, even though
the amount of training data we used was compara-
ble to that used in other works to train S2T models
on multiple tasks and more than 100 languages
(e.g., OWSM uses 180k hours of data against our
150k hours). Although there is no reason to posit
that a different setting may lead to different conclu-
sions since the behaviors we observed were similar
to those of OWSM, future works should validate
that our findings extend to these scenarios.

Multiple Runs While performing multiple runs
for each setting would provide stronger insights
into the possible statistical significance of the ob-
served differences, this would require extensive
computational costs that go beyond our budget.

Tuning α Although by tuning α we could, for
instance, obtain a converging model even with the
polynomial policy, this was not the focus of our
work. In this paper, we attempted to understand
the role of different LR schedulers on the resulting
model and what could be achieved by using differ-
ent LR warmup policies. Since two extreme solu-
tions – the piecewise-linear policy with a relatively
low LR and the exponential policy with the high-
est feasible LR – do not show evident differences,
finding other values of α or other policies leading
to similar results would not have added much to
our discussion. Also, as noted above, each run is
computationally demanding, limiting our ability to
explore the space of the possible values.
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A Training Settings

We train the models on ∼150k hours of speech
datasets, namely the train section of CommonVoice
(Ardila et al., 2020), CoVoST2 (Wang et al., 2021b),
FLEURS (Conneau et al., 2023), LibriLight (Kahn
et al., 2020), MLS (Pratap et al., 2020), VoxPop-
uli (Wang et al., 2021a), and YouTube-Commons
(PleIAs, 2024). When the transcript was not avail-
able for a given dataset, we used the automatic
transcripts of MOSEL v1.0 (Gaido et al., 2024).
As YouTube-Commons transcripts are not avail-
able in MOSEL v1.01, we used the transcript pro-
vided for the training of FAMA (Papi et al., 2025).
Our training data is exactly the same used for
FAMA and is available at https://huggingface.
co/datasets/FBK-MT/fama-data. The textual
data is used to build the vocabulary with 16,000
SentencePiece unigrams (Kudo, 2018).

We optimize our models using the Adam op-
timizer with betas (0.9, 0.98). The training loss
is the linear combination of the label-smoothed
cross-entropy (Szegedy et al., 2016) on the decoder
output and two CTC (Graves et al., 2006) losses,
one at the 16th encoder layer and one on top of
the encoder (Bahar et al., 2019; Yan et al., 2023).
We also experimented with removing the auxiliary
CTC losses, to ensure that they were not the driver
of divergence issues and, indeed, their removal did
not change anything in terms of whether a model
converges or not. We clip the gradient norm at
10.0 and use 0.001 weight decay. We trained the
models on 16 A100 GPUs (64GB VRAM) for 1
epoch with at most 55 seconds of data in each mini-
batch and 5 gradient accumulation steps, resulting
in 176,208 batches to complete an epoch. One run
in this setting lasts 6 days.

B Perplexity on the Training Set

Figure 4 shows the perplexity (PPL) of the different
warmup policies on the training set for the first part
of the training. Compared to Figure 2 presenting
the PPL obtained on the validation set, the training
curves show similar behaviors, with the polynomial
warmup not converging, and the piecewise-linear
and exponential leading to, respectively, slower and
faster convergence.

Looking at Figure 5 that isolates the PPL behav-
ior after the first 50k steps, we notice that, again,
the piecewise-linear and exponential warmup ex-

1They have been added in v2.0.

53

https://arxiv.org/abs/2403.13784
https://arxiv.org/abs/2403.13784
https://arxiv.org/abs/2403.13784
https://arxiv.org/abs/2403.13784
https://doi.org/10.18653/v1/2023.eacl-main.119
https://doi.org/10.18653/v1/2023.eacl-main.119
https://arxiv.org/abs/2303.01037
https://arxiv.org/abs/2303.01037
https://huggingface.co/datasets/FBK-MT/fama-data
https://huggingface.co/datasets/FBK-MT/fama-data


Figure 4: Perplexity on the training set for the polyno-
mial, piecewise-linear, and exponential warmup policies
for the first 50k steps (warmup phase).

Figure 5: Perplexity on the training set for the piecewise-
linear and exponential warmup policies for the steps
after the warmup phase (50k-170k).

hibit similar trends to those reported for the valida-
tion set in Figure 3: the curves are very close, with
the piecewise-linear, initially above the exponen-
tial, becoming slightly below the exponential in the
long run. This reconfirms the results discussed in
Section 4, where we highlighted the convergence
issues of the polynomial function, which is actu-
ally reflected in the training set, and the slower but
slightly better convergence of the piecewise-linear
warmup against the exponential one.

C Gnorm Analysis

Figure 6 reports the gradient norm in the warmup
phase for the different policies (exponential, poly-
nomial, and piecewise-linear). Except for the initial
steps, the gradient norm for the policies leading to
convergence always remains low (<25). For the
polynomial warmup, instead, there are huge spikes
beyond 100 and even 200 after 25k steps. These
explosions of the gradient norm have also been

observed in all the runs with the inverse square
root LR scheduler that did not converge in our pre-
liminary experiments. We can conclude that huge
spikes in the gradient norm can be used to detect
non-converging trainings.

Analyzing the gradient norm of the exponential
and piecewise-linear policies, we observe that the
gradient norm is higher at the beginning (8k-15k
steps) for the exponential policy, which displays
faster convergence in this phase. On the opposite,
the gradient norm of the piecewise-linear policy is
higher in the 15k-30k steps range, in which closes
the initial gap with the exponential policy.
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Figure 6: Gradient norm comparison across the piecewise-linear, polynomial, and exponential warmup policies.
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Abstract

Fusing speech into a pre-trained language
model (SpeechLM) usually suffers from the
inefficient encoding of long-form speech and
catastrophic forgetting of pre-trained text
modality. We propose SSR-CONNECTOR (Seg-
mented Speech Representation Connector) for
better modality fusion. Leveraging speech-text
alignments, our approach segments and com-
presses speech features to match the granularity
of text embeddings. Additionally, we introduce
a two-stage training pipeline that includes the
distillation and fine-tuning phases to mitigate
catastrophic forgetting. SSR-CONNECTOR
outperforms existing mechanism for speech-
text modality fusion, consistently achieving bet-
ter speech understanding (e.g., +10 accuracy
on StoryCloze and +20 on Speech-MMLU)
while preserving pre-trained text ability.

1 Introduction

Large language models (Brown et al., 2020;
Chowdhery et al., 2022; Chiang et al., 2023; Anil
et al., 2023; Touvron et al., 2023; OpenAI et al.,
2024; Grattafiori et al., 2024; DeepSeek-AI et al.,
2025, LLMs) have demonstrated remarkable per-
formance across various tasks and extending pre-
trained abilities from LLMs to other modalities
has sparked interest in multimodal LLMs (Alayrac
et al., 2022; Liu et al., 2023b; OpenAI et al., 2024;
Tang et al., 2024; Défossez et al., 2024). In this
work, we focus on integrating speech into pre-
trained language models (SpeechLMs). A straight-
forward approach is to transcribe speech into text
and use these transcriptions as prompts for large
language models (Huang et al., 2023); however,
such cascaded systems suffer from error propa-
gation, higher latency, and cannot leverage raw
speech information like emotion, speaker identity,
and other paralinguistic cues (Faruqui and Hakkani-
Tür, 2021; Lin et al., 2022; Kim et al., 2024). Con-

* Work was done during an internship at Meta AI.
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Figure 1: Comparison of different approaches for
speech-text modality fusion. (a): compressor-based
connector. (b): direct fusion with speech units. (c): our
alignment-aware connector.

sequently, developing end-to-end SpeechLMs that
directly fuse speech or audio input has gained pop-
ularity, where various approaches have been ex-
plored to encode speech and align its representa-
tion with pre-trained language models (Zhang et al.,
2023; Rubenstein et al., 2023; Yu et al., 2023; Maiti
et al., 2024; Hassid et al., 2024; Tang et al., 2024;
Nguyen et al., 2024).

Speech representations can be integrated into
pre-trained language models mainly through two
approaches. The first method involves using con-
nector modules that align speech representations
with the language model’s input space without
modifying the model’s existing vocabulary. These
connector-based techniques typically incorporate a
compression module to shorten the speech features,
enhancing efficiency. However, connectors are gen-
erally first trained for the speech recognition task
(with concatenated speech-to-text data) and lack
the ability to support text or speech generation
unless further instruction-finetuned.

The second approach, unit-based fusion, directly
incorporates discrete speech units—normally de-
rived from self-supervised models like HuBERT
(Hsu et al., 2021), XLS-R (Babu et al., 2021), or
DinoSR (Liu et al., 2023a)—into the language
model’s vocabulary. This allows the language
model to be fine-tuned with a combination of
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speech and text tokens, enabling it to handle dual-
modal inputs and outputs. Despite its versatility,
unit-based fusion can lead to longer and less
efficient training contexts due to the sparser na-
ture of speech information. Regardless of the fu-
sion approach, SpeechLMs often face the challenge
of catastrophic forgetting, where the model loses
its pre-trained text capabilities (Tang et al., 2024;
Nguyen et al., 2024; Défossez et al., 2024).

To tackle these challenges, we propose SSR-
CONNECTOR (Segmented Speech Representation
Connector), which grounds speech representations
in the same semantic space as transcription token
embeddings. Different from prior work that con-
catenates speech with text (Fig. 1 (a,b)) for modal-
ity fusion, we leverage speech-text alignments to
segment and compress speech features (Fig. 1 (c)).

To mitigate catastrophic forgetting when intro-
ducing the speech modality, we propose a two-
stage training pipeline. In Stage 1, we freeze the
LLM and pre-train the connector using speech-text
distillation, adapting speech inputs into compressed
representations semantically aligned with text em-
beddings. In Stage 2, we unfreeze the LLM and
fine-tune it using next-token prediction, with the
adapted representation as input and the correspond-
ing transcription tokens as targets.

SSR-CONNECTOR outperforms prior
SpeechLMs, including SPIRITLM, VOXTLM,
TWIST, and AUDIOLM (Nguyen et al., 2024;
Maiti et al., 2024; Hassid et al., 2024; Borsos
et al., 2023), across multiple tasks. These include
Prompt-based Automatic Speech Recognition
(ASR) and Spoken Language Understanding with
sWUGGY, sBLIMP, and StoryCloze (Nguyen
et al., 2020; Mostafazadeh et al., 2017). Our
approach also improves performance on Massive
Multitask Language Understanding (MMLU)
(Hendrycks et al., 2021) and its speech-based coun-
terpart, Speech-MMLU, which we introduce to
assess cross-modal reasoning. Finally, we analyze
different training strategies (§5) and speech-text
aligners (Appendix A) for SSR-CONNECTOR.

2 Related Work

Modality Fusion for Speech Language Models
SpeechLM typically encodes audio waveforms into
high-dimensional features using pre-trained en-
coders and integrate these representations to pre-
trained LLMs via a connection (adapter) module
(Wu et al., 2023; Yu et al., 2023; Zhang et al., 2023;

Tang et al., 2024). To compress speech representa-
tions, Fathullah et al. (2023) apply stacking-based
fixed-rate compression on speech features extracted
from the Conformer model (Gulati et al., 2020).
Inspired by the Q-former architecture (Li et al.,
2023a), Yu et al. (2023) compress speech features
using a fixed number of query tokens, while Tang
et al. (2024) extend this approach to a window-level
Q-former to support variable frame-rate reduction.
Alternatively, Wu et al. (2023) utilize Connection-
ist Temporal Classification (CTC) (Graves et al.,
2006) to compress representations.

Besides connector-based modality fusion, pre-
processing other modalities—such as speech, vi-
sion, and videos—into tokens (Lyu et al., 2023; Li
et al., 2023b; Team, 2024; Kondratyuk et al., 2024)
has attracted attention for its scalability. Speech
units are typically extracted from self-supervised
representations. For instance, AudioLM (Bor-
sos et al., 2023) integrates semantic tokens from
w2v-BERT (Chung et al., 2021) and acoustic to-
kens from SoundStream (Zeghidour et al., 2021)
for autoregressive audio generation. Rubenstein
et al. (2023) fine-tune the pre-trained LLM PaLM-
2 (Anil et al., 2023) with audio tokens processed
by AudioLM, enabling both text and speech as in-
put and output. Similarly, VoxtLM (Maiti et al.,
2024) performs multi-task training with speech
units and text tokens, achieving high-quality speech
recognition and synthesis. To mitigate catastrophic
forgetting, Nguyen et al. (2024) propose an inter-
leaved training mechanism to fuse speech tokens
into LLAMA2 model (Touvron et al., 2023).
Speech-text Alignment Extraction Various
aligner tools are available for extracting speech-
text alignments. For example, the Montreal Forced
Aligner (McAuliffe et al., 2017, MFA) is an easy-
to-use tool based on the Kaldi toolkit (Povey
et al., 2011). Connectionist Temporal Classifica-
tion (CTC) (Graves et al., 2006) is also widely used
for speech-text alignment (Sainath et al., 2020;
Huang et al., 2024); since it is a by-product of
speech recognition, it supports alignment without
explicit text labels. More recently, the UnitY2
aligner (Communication et al., 2023) and the ZMM-
TTS aligner (Gong et al., 2024) have shown excel-
lent alignment performance across multiple lan-
guages. These aligners rely on speech units ex-
tracted from pre-trained encoders (Baevski et al.,
2020; Hsu et al., 2021; Babu et al., 2021) and use
variants of RAD-TTS (Shih et al., 2021) as their
alignment backbone.
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Figure 2: SSR-CONNECTOR compresses speech features using speech-text alignments. Features are transformed
by a Decoder-only model and selected at boundary index of each segment.

3 Methodology

We develop an alignment-aware speech represen-
tation connector to foster modality fusion between
speech and pre-trained language model. We intro-
duce our connector design in §3.1 and present our
two-stage training pipeline in §3.2.

3.1 Alignment-Aware Speech Representation
Connector

Though previous connectors (Fathullah et al., 2023;
Yu et al., 2023; Wu et al., 2023; Tang et al., 2024)
vary in their compressor designs, they do not ex-
plicitly leverage speech-text alignment information.
SSR-CONNECTOR, in contrast, uses speech-text
alignments to segment and compress speech fea-
tures into the same granularity as text tokens. As
illustrated in Fig. 2, our connector consists of two
components: (1) a speech-text aligner and (2) a
feature compressor.

Given speech features x = (x1, · · · , xn) ∈
Rn×D extracted by pre-trained speech encoders
(e.g., WAV2VEC2.0, HUBERT, WHISPER, etc.),
the aligner produces a monotonic mapping (align-
ment path) between the speech features and their
transcriptions y = (y1, · · · , ym) ∈ Rm×1. This
mapping can be computed based on both speech
features (or their units) and transcriptions (Commu-
nication et al., 2023; Gong et al., 2024), or solely
based on speech input (Sainath et al., 2020; Dong
and Xu, 2020; Huang et al., 2024). We abstract
away the aligner’s implementation here but pro-
vide detailed description and comparison of various
aligners in Appendix A.

Using the alignment mapping, we segment the
input intom chunks of speech features, where each
chunk semantically corresponds to a transcription
token. For example, in Fig. 2, speech features
are segmented at indices (2, 5, 7) according to the
alignment path. We refer to these indices as bound-
ary indices. Once the boundary indices are identi-

fied, we first apply a linear layer to transform the
speech features to match the embedding dimension
H(H > D) of the pre-trained LLM, since LLMs
typically have a larger feature dimension than pre-
trained speech encoders. We then use the boundary
indices to aggregate and compress the speech rep-
resentations in each chunk through a Transformer
Decoder model (Vaswani et al., 2017).

Specifically, we apply a causal decoder-only
model to transform speech features into high-
dimensional representations g = f(x; θdec) ∈
Rn×H . Since each position incorporates past
context, we adopt a selection-based compression
method (Tan et al., 2024), using boundary-indexed
features from g to form the compressed represen-
tation z ∈ Rm×H . While our initial design used
a block-wise attention mask to limit cross-chunk
information flow (as shown in Fig. 2), we found
that removing these masks simplifies training and
inference with minimal performance loss (§4.3).

3.2 Training Method

Previous approaches to integrate speech into LLMs
typically use speech-text data concatenated in ASR
format (i.e., speech representation followed by its
transcription text embedding), to pre-train the con-
nector (Yu et al., 2023; Wu et al., 2023; Tang
et al., 2024). However, after such pre-training, the
model is limited to speech recognition task and
necessitates another instruction-tuning stage to per-
form generative tasks with pre-trained connectors
(Zhang et al., 2023; Tang et al., 2024). Moreover,
once the LLM is unfrozen and fine-tuned (whether
based on a pre-trained connector or direct fusion
with speech units), it suffers from catastrophic
forgetting, leading to degraded text capabilities
(Nguyen et al., 2024; Tang et al., 2024).

With SSR-CONNECTOR, we convert speech into
representations with the same granularity as their
transcription tokens. This allows us to fine-tune
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Figure 3: Two-stage training pipeline for SpeechLM
with our alignment-aware modality connector.

the SpeechLM directly using the next-token predic-
tion objective, where the input is the compressed
representation z and the target is the transcription
y. This approach is possible because our feature
z and text token y share the same length m. How-
ever, our preliminary studies showed that di-
rectly fine-tuning with the next-token prediction
objective leads to catastrophic forgetting, under-
mining the pre-trained LLM’s abilities. There-
fore, we propose a two-stage training pipeline con-
sisting of a distillation stage and a fine-tuning stage
(visualized in Fig. 3).

In Stage 1, we pre-train SSR-CONNECTOR by
distilling the LLM’s text embeddings to align the
connector’s representations with the LLM’s em-
bedding space. Formally, given aligned speech-
text data, we can compute the text embeddings
h = f(y; θemb), where y is the transcription to-
ken sequence, θemb is the embedding table, and f
maps tokens y to their embeddings. Following our
connector design in §3.1, we then obtain the com-
pressed speech representations z. For distillation,
we use a combination of cosine similarity loss Lcos
and mean squared error (MSE) loss LMSE

L = λLcos + LMSE

=
1

m

m∑

i=1

[
λ

(
1− z⊤i hi
|zi| · |hi|

)
+ |zi − hi|2

]

(1)
where λ is a hyperparameter to balance the losses1.
In Stage 2, we fine-tune the LLM with the pre-
trained speech connector using the next-token pre-
diction objective. We freeze the speech connector
and update only the LLM’s parameters using the
negative log-likelihood (NLL) loss:

LNLL = −
m∑

t=1

log p(yt | z<t; θLLM) (2)

1In practice, we set λ = 5 to balance the scales of the
cosine similarity and MSE losses

where yt is the tth token in the transcription se-
quence y, z<t denotes all preceding speech repre-
sentations, and θLLM represents the LLM’s param-
eters. Note that our NLL loss is computed using
only the preceding speech representations z<t (see
Fig. 3), whereas previous methods (Wu et al., 2023;
Tang et al., 2024) condition on both speech infor-
mation and preceding text tokens y<t.

In §4, We demonstrate the performance of
SpeechLM after distillation training. In §5, we
present results after fine-tuning SpeechLM and
compare various fine-tuning strategies to identify
the method that minimizes catastrophic forgetting.

4 Stage 1: Alignment-Aware Connector
Distillation

4.1 Datasets

For distillation training, we use the aligned speech-
to-text dataset MLS (Pratap et al., 2020), specif-
ically the English portion, which consists of
about 50,000 hours of speech. To evaluate
our SpeechLMs, we employ different benchmark
datasets (see Table 1). To assess the model’s spo-
ken language understanding (SLU) capabilities, we
follow Nguyen et al. (2024) and use sWUGGY,
sBLIMP, and the StoryCloze dataset. sWUGGY
evaluates whether a model can discriminate be-
tween real spoken words and non-words (e.g.,
“brick" vs. “blick"), while sBLIMP assesses if the
model can distinguish between a grammatically cor-
rect spoken sentence and its ungrammatical variant.
We evaluate our SpeechLMs on both text (T ) and
speech (S) versions of sWUGGY and sBLIMP.

The StoryCloze dataset measures whether the
model can identify the plausible ending between
two sentences given the beginning of a short story,
which typically requires high-level semantic under-
standing and common sense (Mostafazadeh et al.,
2017). Besides spoken and text versions of Sto-
ryCloze, following Nguyen et al. (2024), we use
a speech-text version (S → T ), where the begin-
ning of the story is synthesized into speech and the
two ending sentences are kept in text format. This
version requires the model to have cross-modal
understanding to infer the sensible story ending.

MMLU (Hendrycks et al., 2021) is widely used
to assess LLMs’ knowledge comprehension, under-
standing, and reasoning abilities, and we use it to
measure the extent of forgetting during cross-modal
fine-tuning. Since MMLU is a diverse and high-
quality evaluation dataset for LLMs, we craft a
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Eval Dataset Type Eval Metric Eval Modality

sWUGGY (Nguyen et al., 2020) Choice Task Accuracy S, T
sBLIMP (Nguyen et al., 2020) Choice Task Accuracy S, T
StoryCloze (Mostafazadeh et al., 2017) Choice Task Accuracy S, T , S → T
MMLU (Hendrycks et al., 2021) Choice Task Accuracy T
Speech-MMLU (Ours) Choice Task Accuracy S → T
LibriSpeech (Panayotov et al., 2015) Generation Task Word Error Rate S → T

Table 1: Evaluation Datasets and their types. For the evaluation format, S is speech-only, T is text-only, and S → T
means the evaluation prompt consists of speech prefix and text continuation.

variant, Speech-MMLU, to assess our SpeechLM’s
cross-modal understanding. Specifically, we uti-
lized AUDIOBOX (Vyas et al., 2023), a high-quality
text-to-speech synthesizer, to convert the question
portion of each choice task into speech while keep-
ing the multiple-choice answers in text format.
We selected a subset of MMLU to construct our
Speech-MMLU dataset, as some domains’ ques-
tions are not suitable for synthesis (e.g., the algebra
subset contains many mathematical notations that
are not synthesized properly).

sWUGGY, sBLIMP, StoryCloze, and Speech-
MMLU are all categorized as "Choice Task",
meaning several choices are presented to the
SpeechLM (Speech-MMLU has four choices while
the other task has only two choices). For each
task, we compute accuracy using groundtruth
choice and the highest likelihood choice predicted
by the SpeechLM. Lastly, we also evaluate our
SpeechLM’s ASR performance using the Lib-
rispeech clean/other datasets. We evaluate ASR in a
prompt-based fashion with zero-shot and five-shot
setting. Comprehensive details about our datasets
and evaluation can be found in Appendix C.

4.2 Model Setup
We instantiate our LLM using the pre-trained
LLAMA3 model (Grattafiori et al., 2024) and em-
ploy DinoSR (Liu et al., 2023a) as our pre-trained
speech feature extractor. Our speech connector in-
cludes a linear layer that maps DinoSR’s extracted
representations (D = 768) to the LLM’s embed-
ding space dimension (H = 4096). We then uti-
lize a 4-layer Transformer Decoder to transform
and compress the speech representations based on
alignments, as described in §3.1. The compressed
representations z and the embeddings of text to-
kens h are used to compute the distillation loss for
updating the connector’s parameters. We train our
connector for 400,000 steps with a learning rate of
1×10−5, using dynamic batching with a maximum
of 4,096 tokens per device. We employ distributed
data parallelism (DDP) with 32 A100 GPUs.

To extract alignments, we experimented with
various approaches, including the UNITY2 aligner,
CTC-based aligners (Graves et al., 2006), and Con-
tinuous Integrate-and-Fire (Dong and Xu, 2020,
CIF). Due to space constraints, we provide com-
prehensive descriptions and comparisons of these
methods in Appendix A, where we evaluate both
the alignment quality and the Word Boundary Er-
ror of the segmentations. After assessing their per-
formance, we selected UNITY2 (Barrault et al.,
2023) and character-level CTC (CHAR-CTC) as
our connector backbone to report experimental re-
sults. Overall, UNITY2 offers superior alignment
quality because it utilizes both speech and text as
input. In contrast, CTC only requires speech input
to compute segmentation for our connector.

4.3 Experimental Results
In this section, we present the evaluation of SSR-
CONNECTOR based SpeechLM in terms of Spoken
Language Understanding (SLU) and Cross-modal
Understanding (through our use of Storycloze and
Speech MMLU benchmark). We also evaluate our
model with prompting-based speech recognition
and speech style recognition.

We compare against several systems that varies
in training approaches (pre-trained from scratch
or fine-tuned), types of speech units, and the size
of training data. Briefly, GSLM (Lakhotia et al.,
2021) trains on speech units like HuBERT, TWIST
(Hassid et al., 2024) is a textually pretrained speech
model based on Llama-13B (Touvron et al., 2023),
and AudioLM (Borsos et al., 2023) employs a cas-
cade system with a semantic sequence model along-
side coarse- and fine-acoustic models. These mod-
els focus solely on speech without capabilities for
text understanding or generation. More recently,
SPIRITLM (Nguyen et al., 2024) and VoxtLM
(Maiti et al., 2024) have adopted multi-task train-
ing objectives that incorporate text-only, speech-
only, and speech-text token sequences to fuse the
speech modality into pre-trained LLMs effectively.
Since the original SPIRITLM is fine-tuned based on
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Model Type sWUGGY sBLIMP Storycloze MMLU

T S T S T S S→T 5-shot

Previous Work
GSLM♢ (Lakhotia et al., 2021) ∅ 64.8 ∅ 54.2 ∅ 53.3 ∅ ∅
AUDIOLM♢ (Borsos et al., 2023) ∅ 71.5 ∅ 64.7 ∅ ∅ ∅
VOXTLM♢ (Maiti et al., 2024) 80.3 66.1 74.2 57.1
TWIST♢ (Hassid et al., 2024) ∅ 74.5 ∅ 59.2 ∅ 55.4 ∅ ∅
MOSHI♣ (Défossez et al., 2024) ∅ 72.6 ∅ 58.8 ∅ 60.8 49.8
SPIRITLM♢ (Nguyen et al., 2024) 80.3 69 73.3 58.3 79.4 61 64.6 36.9
SPIRITLM (LLAMA3)♠ 77.6 73.5 74.5 56.3 75.1 61.1 61.6 53.5

SSR-CONNECTOR
UNITY2 + Blockwise-mask 81 71.5 74.5 73.1 80.9 71.8 75 65.3
UNITY2 81 71.2 74.5 72.4 80.9 69.3 74.8 65.3
CHAR-CTC 81 56.4 74.5 67.3 80.9 62.2 74.3 65.3
CHAR-CTC (Unit-based) 81 54.1 74.5 61.8 80.9 59.2 72.5 65.3

Cascade System
ASR (WHISPER) + LLAMA2 ♢ 84.1 79.2 72.8 71.6 81.9 75.7 75.7 46.2

Table 2: Model performance (accuracy) on spoken language understanding and MMLU. ♢: Results taken from
Nguyen et al. (2024).♣: Results taken from Défossez et al. (2024). ♠: Our implementation of SPIRITLM based on
LLAMA3 checkpoint. We fill with ∅ the task and modality that are not supported by the reported system, and with

the scores that are not publicly available. We bold the best result and highlight the second-best system with the
blue color box (excluding the cascaded system).

LLAMA2, we follow the same recipe to fine-tune
the LLAMA3-based SPIRITLM ourselves for a fair
comparison on text-relevant metrics like MMLU.

Spoken Language Understanding Performance
As shown in Table 2, our systems outperform
previous models on all tasks except sWUGGY.
The sWUGGY dataset includes incorrectly spoken
words that cause segmentation errors because these
words were not present during aligner training,
leading to our system’s lower performance on this
dataset. However, sWUGGY is the least significant
task since it relies on synthesized incorrect words
and does not require the model’s understanding or
reasoning capabilities. In contrast, both UNITY2
and CHAR-CTC based connector greatly surpass
previous models on other datasets, demonstrating
the effectiveness of SSR-CONNECTOR in enhanc-
ing SLU performance while preserving model’s
text understanding ability.

Beyond UNITY2 and CHAR-CTC, we introduce
two additional systems for ablation. The UNITY2
+ Blockwise-mask system achieves the highest per-
formance by applying a blockwise attention mask
to further constrain the Transformer-Decoder (de-
scribed in §3.1). However, due to its marginal
improvement over UNITY2 and increased com-
putational cost, we decide to simplify the design
and remove the blockwise-attention masks. The
CHAR-CTC (Unit-based) system differs by uti-

lizing discrete speech units instead of raw wave-
form features processed by the DinoSR (Liu et al.,
2023a) encoder. These units are extracted via
K-Means clustering on DinoSR representations,
which leads to some information loss during dis-
cretization and reconstruction, resulting in lower
performance compared to CHAR-CTC. Nonethe-
less, CHAR-CTC (Unit-based) demonstrates that
our alignment-aware connector design is compati-
ble with discrete speech units as well.

Speech-MMLU and Prompt-based ASR Perfor-
mance In addition to SLU tasks, we evaluate
our systems on the Speech-MMLU benchmark,
which assesses cross-modal understanding and is
more challenging than previous SLU tasks. We
also conduct prompt-based ASR evaluations to
assess the quality of the adapted features. As
shown in Table 3, our systems greatly outperform
the previous SpeechLM (SPIRITLM), achieving a
+20 accuracy improvement on the Speech-MMLU
dataset2. These results indicate that SpeechLM
based on SSR-CONNECTOR possesses enhanced
cross-modal abilities that enable it to comprehend
spoken questions and reason through multiple-
choice options to select correct answers. Similarly,
our systems achieve much lower WERs on the Lib-
rispeech clean and other test sets compared to SPIR-

2 We report micro-average across 22 domains and the
detailed breakdown is available in Appendix D.
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Model Type Speech MMLU ↑ ASR Clean Test ↓ ASR Other Test ↓
0-shot 5-shot 0-shot 5-shot 0-shot 5-shot

SPIRITLM (Nguyen et al., 2024) N/A N/A N/A 21.9∗ N/A 29.2∗

SPIRITLM (LLAMA3) 40.5 42.75 N/A 21.0∗ N/A 28.5∗

SSR-CONNECTOR
UNITY2 + Blockwise-mask 65.0 69.5 5.0 2.6 8.1 6.8
UNITY2 64.2 68.6 5.6 4.0 12.1 10.6
CHAR-CTC 61.7 66.5 9.7 6.5 20.2 14.9
CHAR-CTC (Unit-based) 57.4 62.3 12.6 8.8 25.6 18.6

Table 3: Comparison of Speech-MMLU and ASR performance. Speech-MMLU results are micro-averages across
all domains. ∗: For SPIRITLM, We report WER using 10-shot prompting, following Nguyen et al. (2024).

Task Model 0-shot 5-shot 10-shot

Whisper vs. Laugh Cascaded 51.6 52.2 54.7
Ours 49.6 64.0 75.9

Happy vs. Sad Cascaded 50.0 51.8 51.0
Ours 51.6 52.2 54.7

Table 4: Accuracy of Speech Style Recognition with
In-context Learning

ITLM. Notably, neither SPIRITLM nor our system
was trained on ASR tasks, so the model relies solely
on in-context learning to generate transcriptions.

We also compared our system against another
connector-based system, SALMONN (Tang et al.,
2024), over Storycloze and Speech MMLU (both
in S → T format) and we find that SALMONN

achieved an accuracy of 63.3% on Storycloze and
25.3% on Speech-MMLU, while our system has
over 74% accuracy on Storycloze and over 60%
accuracy on Speech-MMLU. The result indicates
that catastrophic forgetting remains a severe issue
for previous connector-based methods as well.

Beyond Semantics In Table 4, we also show
that the connector retains paralinguistic informa-
tion. We evaluate this using the Expresso benhmark
(Nguyen et al., 2023) by prompting our model to
predict speech styles. Our SpeechLM can dis-
tinguish expressions through in-context learning
without being fine-tuned for emotion recognition
(we also provide the cascaded baseline (Whisper +
LLAMA3) as a baseline where style can only be
inferred from transcriptions). More experimental
details are provided in Appendix B. This analy-
sis demonstrates that our connector preserves non-
semantic information even though we focus on
aligning semantics and reducing catastrophic for-
getting. Our connector design also complements
existing methods for emotion recognition, such as
using expressive tokens in SpiritLM (Nguyen et al.,
2024) and emotion-relevant instruction tuning in
SALMONN (Tang et al., 2024).

5 Stage 2: Speech Language Model
Fine-tuning

In Stage 1 (§4), we freeze the pre-trained LLM and
distill its text embeddings into our alignment-aware
connector. In this section, we fine-tune SpeechLM
by freezing the connector and updating the LLM.
This process enhances the model’s spoken lan-
guage understanding (SLU) performance by fitting
SpeechLM on the aligned speech-text data, albeit
at the expense of degrading its pre-trained text ca-
pabilities. In the following sections, we compare
various methods to mitigate catastrophic forgetting
and demonstrate their trade-offs between speech
and text understanding.

5.1 Mitigate Catastrophic Forgetting

Model and Dataset Setup We fine-tune
SpeechLM using the next-token prediction
objective described in §3.2. In this stage, we freeze
the connector distilled in Stage 1 and unfreeze
the LLM (LLAMA3) parameters. Following
Stage 1 (§4), we use the MLS dataset for training
and evaluate the model on the same speech
and text understanding tasks. Beyond vanilla
fine-tuning, we also explore Low-rank Adaptation
(Hu et al., 2021, LoRA) and multitask fine-tuning
as they have been shown effective for mitigating
catastrophic forgetting in other tasks (Xue et al.,
2021; Vu et al., 2022). Details of our fine-tuning
setup are shown below:
• Vanilla Fine-tuning: We perform full fine-

tuning on the aligned speech-text data with a
learning rate of 1 × 10−6 and a maximum to-
ken size of 4096. Training is model-parallelized
across 32 A100 GPUs using Fully Sharded Data
Parallel (Zhao et al., 2023, FSDP).

• LoRA Fine-tuning: We leverage the low-rank
constraints from as regularization to prevent
model overfitting in MLS dataset. We config-

62



5k 10k 15k 20k
45

50

55

60

65

Ac
cu

ra
cy

 (%
)

62.8 63.4 63.7 64.0

57.4
54.6

51.1
48.8

Vanilla

5k 10k 15k 20k

62.6 62.3 62.8 62.9

58.2
56.7

55.4
54.0

LoRA

5k 10k 15k 20k

63.4 62.9 63.7 63.2
63.1 62.7 62.8 63.0

Multitask

Benchmark
StoryCloze
MMLU

Figure 4: Comparison of different fine-tuning methods on StoryCloze (S) and MMLU benchmark.

Model Type sWUGGY sBLIMP Storycloze MMLU Speech MMLU ASR (5-shot) ↓
T S T S T S S→T 5-shot 0-shot 5-shot Clean Other

SPIRITLM (LLAMA3) 77.6 73.5 74.5 56.3 75.1 61.1 61.6 53.5 40.5 42.8 21.0∗ 28.5∗

CHAR-CTC 81.0 56.4 74.5 67.3 80.9 62.2 74.3 65.3 61.7 66.5 6.5 14.9
+ Multitask Finetuning 82.9 56.7 75.9 68.9 81.0 63.4 73.1 63.1 48.1 56.3 5.7 13.1

Table 5: Performance comparison when the model is fine-tuned. ∗: For SPIRITLM, WER is reported using 10-shot
prompting for ASR, following Nguyen et al. (2024). We observe that stage 2 fine-tuning enhances the model’s
performance on speech-only tasks but compromises its cross-modal capabilities.

ure LoRA layers with α = 512, r = 256, and a
dropout probability of 0.1.

• Multitask Fine-tuning: To preserve the LLM’s
pre-trained text capabilities, we also fine-tune
SpeechLM on text-only data using Negative Log-
Likelihood (NLL) loss. The dataloader is config-
ured to sample from both speech-text and text-
only datasets with equal probability. We use the
MLS dataset for speech-text training and employ
a subset of the LLAMA2 training datasets (Tou-
vron et al., 2023) for text-only training.

5.2 Comparison of Fine-tuning Methods

In Fig. 4, we compare different fine-tuning meth-
ods on StoryCloze (S) and MMLU. StoryCloze
performance is indicative of how well model is fit-
ted to the speech modality and MMLU measures
the degree of catastrophic forgetting in pre-trained
text abilities. We observe that Vanilla Fine-tuning
quickly overfits to the speech domain, achieving im-
proved performance on StoryCloze but drastically
decreasing MMLU accuracy. In contrast, LoRA
Fine-tuning introduces strong regularization, result-
ing in limited improvements in speech understand-
ing. Although LoRA mitigates catastrophic forget-
ting to some extent compared to vanilla fine-tuning,
performance still steadily declines. Multitask fine-
tuning emerges as the most promising approach,
enhancing speech understanding while largely mit-
igating catastrophic forgetting, evidenced by the
modest 2-point drop in MMLU.

Since model performance does not further im-
prove with additional training steps (as shown
in Fig. 4), we utilize the checkpoint trained for

5,000 updates to compare with baseline models.
The results are presented in Table 5. Note that
even with only 5,000 updates, the model has ob-
served all speech-text data due to our large effec-
tive batch size. As observed from the results, fine-
tuned SpeechLM outperforms baseline methods on
tasks primarily relying on speech-only information
(sWUGGY, sBLIMP, ASR). However, we also ob-
serve a decline in performance on S → T tasks
such as Speech-MMLU and StoryCloze, indicating
that there is still unavoidable degradation of text
capabilities which adversely affects SpeechLM’s
cross-modal performance.

Overall, Stage 2 fine-tuning experiments high-
light a trade-off between enhanced speech under-
standing and degraded text abilities when unfreez-
ing pre-trained LLM weights. Though such for-
getting phenomenon is unavoidable, our two-stage
training pipeline has largely preserved SpeechLM’s
text ability and our experimental results underscore
the importance of incorporating high-quality text
data during cross-modal fine-tuning to balance per-
formance across both modalities.

6 Conclusion

We propose SSR-CONNECTOR to inject speech
representation into pre-trained LLMs. Through
explicitly leveraging speech-text alignment, our
connector compresses long and sparse speech infor-
mation to the same granularity as text tokens. With
our proposed two-stage training pipeline for modal-
ity fusion, SSR-CONNECTOR-based SpeechLM
achieves better speech understanding while retain-
ing its pre-trained text ability.
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Limitations

While our proposed SSR-CONNECTOR signifi-
cantly enhances speech-text modality fusion and
mitigates catastrophic forgetting, there remain sev-
eral limitations that warrant further exploration.

First, our work focuses on aligning speech se-
mantics with text in large language models (LLMs).
While our experiments show that paralinguistic in-
formation, such as speech styles, can be preserved
and leveraged through in-context learning, we do
not explicitly model these aspects. Future work
could better encode prosody, speaker identity, and
emotional cues to enhance expressive speech gen-
eration and nuanced speech understanding.

Second, our experiments on mitigating catas-
trophic forgetting are conducted primarily on a sin-
gle language family, using LLAMA3 (Grattafiori
et al., 2024) as the base LLM and DINOSR (Liu
et al., 2023a) as the speech encoder. The extent of
our method’s effectiveness across different archi-
tectures and speech encoders remains unverified.

Finally, while our evaluation covers a range of
speech and multimodal benchmarks, additional
real-world settings, such as conversational speech,
noisy environments, and multilingual scenarios, re-
main unexplored. Extending our methodology to
such conditions will be essential for deploying ro-
bust, generalizable SpeechLMs.
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Appendix D Evaluation Details

A Speech-text Aligners

In this section, we provide more details for the aligners that we experimented with to compute segmentation
for SSR-CONNECTOR. To summarize, we tried UnitY2 aligner (Barrault et al., 2023), CTC-based
(Graves et al., 2006) aligner (both character-level and subword-level), and CIF-based (Dong and Xu, 2020)
segmentation. We also compare their performance in this section and show that UNITY2 and CHAR-CTC
aligner work the best; therefore we adopted them in all our experiments presented in the main paper.

A.1 Aligner Description
UnitY2 Aligner The UnitY2 aligner (Barrault et al., 2023) is a forced aligner that computes speech-text
alignment using discrete speech units and character-level text tokens. The speech units are derived by
applying K-Means clustering to the XLS-R model (Babu et al., 2021). The aligner is trained jointly with
a non-autoregressive text-to-unit (T2U) model, adopting the architecture of the RAD-TTS model (Shih
et al., 2021) but replacing the target mel-spectrogram with speech units. It first computes a soft-alignment
Asoft ∈ RV×U between the characters and units:

Di,j = ||schar
i − sunit

j ||2, (3)

Asoft
i,j =

e−Di,j

∑
k e

−Dk,j
+ Pprior(i|j), (4)

where schar and sunit are the outputs of the character and unit encoders, respectively (both encoders consist
of an embedding layer and a 1D convolution layer). D ∈ RV×U is a distance matrix with V and U
representing the vocabulary sizes of characters and speech units. Pprior ∈ RV×U is the Beta-binomial
alignment prior matrix to encourage near-diagonal paths (Shih et al., 2021). After soft-alignment is
computed, the monotonic alignment search (MAS) algorithm (Kim et al., 2020) is applied to extract the
most probable monotonic alignment path.

CTC-based Aligner Since the UnitY2 aligner requires both speech and transcription, it does not support
streamable alignment extraction. To enable textless alignment computation, we explored two CTC-based
(Graves et al., 2006) aligners. Given the speech features x and text sequences y, CTC computes P (y|x)
by summing over all valid alignment paths:

P (y|x) =
∑

π∈B−1(y)

P (π|x) (5)

Here, π denotes a possible alignment path that maps to the target sequence y, and B−1(y) represents the
set of all valid paths that collapse to y after removing blanks and repeated labels. We investigated two
CTC variants: one using character-level text sequences (CHAR-CTC) and another using subword token
sequences (SUB-CTC), which shares the same vocabulary as the LLM model.

CIF-based Speech Connector For both CTC and UnitY2 aligners, we extract segmentations from
the alignments and then apply selection-based compression (Tan et al., 2024). We also experimented
with Continuous Integrate-and-Fire (Dong and Xu, 2020, CIF) as the connector, which is designed to
learn segmentation and perform compression simultaneously. Instead of relying on a fixed, pre-computed
segmentation, CIF dynamically segments and aggregates speech features by scoring each feature and
computing a weighted average. For more details, we refer readers to the paper (Dong and Xu, 2020).
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Figure 5: t-SNE plots of text and speech representations after distillation.

A.2 Aligner Performance Comparison

To compare the quality of different aligners, we trained several SSR-CONNECTOR based on different
aligners via distillation. We evaluated the aligners using the Librispeech clean test set by computing the
Cosine Similarity (Cos(%)) and Mean Squared Error (MSE) between the compressed representations and
text embeddings. Additionally, we performed zero-shot and five-shot ASR with the learned connector.
Note that we never explicitly trained the model for ASR tasks, and the base LLM remained frozen during
Stage 1 training. Therefore, the model achieves low word error rates (WER) only when the distilled speech
representations closely resemble the text embeddings. As shown in Table 6, the UNITY2 aligner brings
the speech representations close to their corresponding text embeddings, achieving very low WER in both
zero-shot and five-shot ASR settings. Among textless aligners, we found that CHAR-CTC performs the
best, likely because it has a much smaller vocabulary compared to SUB-CTC, making it easier to learn.
Lastly, CIF resulted in suboptimal performance, due to its less accurate alignment, as its segmentation is
predicted by accumulating scores without exploiting the monotonicity between speech and text.

Model Type Cos(%)↑ MSE↓ WER (%) ↓
UNITY2 96.8 0.018 5.6 / 4.0
CHAR-CTC 95.1 0.023 9.7 / 6.5
SUB-CTC 92.2 0.037 16.7 / 14.0
CIF 77.5 0.096 27.6 / 23.7

Table 6: Performance comparison (with Cosine Similarity,
MSE, and 0/5-shot ASR WER) between different aligners
used for Stage 1 training, evaluated on Librispeech.

To visualize the effect of distillation, we
present t-SNE plots of the adapted speech repre-
sentations and text embeddings in Fig. 5, catego-
rizing them into high and low similarity groups
based on the cosine similarity between CHAR-
CTC representations and text embeddings. We
observe that longer subwords tend to exhibit
higher similarity, likely because their long seg-
ments make it easier for the connector to convert
speech representations into corresponding text embeddings. Furthermore, longer subwords possess more
coherent semantics compared to shorter tokens. like ‘wy’ or ‘ia’.

Aligner WBE↓ WDUR

Groundtruth 0 305
UNITY2 33 279
CHAR-CTC 42 230

Other Aligners
CTC+Label Prior 29 288
MMS 37 242
MFA 23 314

Table 7: Alignment quality comparison.

Given that UNITY2 and CHAR-CTC performs the best,
we also follow Huang et al. (2024) to measure their word
boundary error (WBE) and word average duration (WDUR)
using the TIMIT (Garofolo et al., 1993) data. Though the
aligner quality can be further improved with other methods
such as CTC + Label Prior (Huang et al., 2024), MMS
(Pratap et al., 2023), or MFA (McAuliffe et al., 2017),
CHAR-CTC and UNITY2 still achieve good quality and
we choose them out of simplicity and general availability
(unlike "CTC+Label Prior", for example, which requires
customization with library like k23).

3https://github.com/k2-fsa/k2
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B Beyond Semantics: Speech Style Recognition with In-context Learning

To explore the non-semantic capabilities of our SpeechLM, particularly its ability to retain and utilize par-
alinguistic information, we conducted additional experiments focusing on speech style recognition through
in-context learning. Specifically, we investigated whether the SSR-CONNECTOR-based SpeechLM (based
on the UnitY2 aligner), can differentiate between various speech styles without explicit training on
paralinguistic cues.

We utilized the Expresso dataset (Nguyen et al., 2023), which comprises speeches delivered in distinct
styles such as happy, sad, whispering, and laughing. Two primary tasks were designed to assess the
model’s performance:

1. Whisper vs. Laugh: The model was tasked with identifying whether a given speech was whispered
or laughed. The prompt provided to the model was:

"You are given speeches from two styles. Your task is to judge if the speech is a whisper or
laugh. Here are some example speeches: [Speech]: {speech} [Style]: {whisper/laugh}..."

2. Happy vs. Sad: The model was asked to determine if the speech was delivered happily or sadly.
The prompt used was:

"Listen to the following speech and judge if the speaker is happy or sad. Here are some
examples: [Speech]: {speech} [Emotion]: {happy/sad}..."

For each task, we evaluated the model’s performance using varying numbers of in-context examples:
0-shot, 1-shot, 5-shot, and 10-shot. The results, averaged over 10 runs, are presented in Table 8. Ad-
ditionally, we benchmarked a cascaded system comprising Whisper and Llama3 for comparison (this
cascaded baseline does no preserve non-semantic information and can only infer the speech style through
transcripted content).

Task Model 0-shot 1-shot 5-shot 10-shot

Whisper vs. Laugh Cascaded System 51.6 52.1 52.2 54.7
Ours 49.6 62.4 64.0 75.9

Happy vs. Sad Cascaded System 50.0 51.4 51.8 51.0
Ours 51.6 52.1 52.2 54.7

Table 8: Accuracy of Speech Style Recognition Tasks with In-context Learning

The results indicate that with zero-shot prompting, our model generates predictions close to random
chance, as it has not been trained to utilize paralinguistic information. However, with the introduction of a
few-shot learning approach, the model significantly improves its ability to distinguish between whispering
and laughing speech, achieving up to 75.9% accuracy with 10-shot examples. This suggests that the
model’s representations inherently contain paralinguistic information that can be harnessed through in-
context learning. For the Happy vs. Sad task, the improvement is modest, peaking at 54.7% accuracy with
10-shot examples. This lesser performance compared to the Whisper vs. Laugh task may be attributed
to the subtler differences in emotional expression compared to the more pronounced style differences
between whispering and laughing.

Overall, these findings demonstrate that our SpeechLM can effectively leverage in-context learning
to recognize different speech styles, thereby highlighting the presence of paralinguistic information
within the model’s representations. This capability complements existing methods that incorporate
paralinguistic information, such as the use of expressive tokens in SpiritLM (Nguyen et al., 2024) or
emotion-relevant instruction tuning in SALMONN (Tang et al., 2024).
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C Datasets

Eval Dataset Type Eval Metric Eval Modality

sWUGGY (Nguyen et al., 2020) Choice Task Accuracy S, T
sBLIMP (Nguyen et al., 2020) Choice Task Accuracy S, T
StoryCloze (Mostafazadeh et al., 2017) Choice Task Accuracy S, T , S → T
MMLU (Hendrycks et al., 2021) Choice Task Accuracy T
Speech-MMLU (Ours) Choice Task Accuracy S → T
LibriSpeech (Panayotov et al., 2015) Generation Task Word Error Rate S → T

Table 9: Evaluation Datasets and their types. For the evaluation format, S is speech-only, T is text-only, and S → T
means the evaluation prompt consists of speech prefix and text continuation.

As described in §4.1, we employ sWUGGY, sBLIMP, StoryCloze, MMLU, Speech-MMLU and
Librispeech datasets to assess model performance. In this section, we provide more examples for each
evaluation set. sWUGGY and sBLIMP are simple tasks where two choices can be directly compared.
As shown in Table 10, sWUGGY provides two choices that require models to discriminate real words
from non-words. sBLIMP assesses whether the model can distinguish between a grammatically correct
sentence and its ungrammatical variant.

MMLU and StoryCloze, on the other hand, have a prefix and choices. The StoryCloze dataset measures
whether the model can identify the logical ending between two sentences given at the beginning of a short
story. Since StoryCloze has a shared prefix, we can synthesize only the prefix part into speech and keep
choices in text format, resulting in our S → T format evaluation that assess the model’s cross-modal
understanding. Similarly, for MMLU, we also synthesize its prefix (the question portion) into speech and
keep the choices in text format, resulting in our Speech-MMLU dataset. Since some topics have bad audio
synthesis quality (e.g., the algebra subset contains many mathematical notations), we only keep 22 topics
in our test suite (as shown in the “Topic” column of Table 11).

Name Prefix Choices

sWUGGY N/A {Good=obsolete, Bad=odsolete}

sBLIMP N/A {Good=Walter was harming himself,
Bad=Walter was harming itself}

StoryCloze I had been giving this homeless man
change every day. He was on the same
corner near my house. One day, as I was
driving through my neighborhood I saw
a new car. Soon enough, I saw the same
homeless man emerge from it!

{Good=I never gave the man money
again. Bad=The next day I gave the man
twenty dollars.}

MMLU During the period when life is believed
to have begun, the atmosphere on primi-
tive Earth contained abundant amounts
of all the following gases except

{"A": "oxygen", "B": "hydrogen", "C":
"ammonia", "D": "methane"}

Table 10: Examples of different evaluation datasets.
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D Evaluation Metric and Prompt

Choice tasks (sWUGGY, sBLIMP, StoryCloze, MMLU, Speech-MMLU) are evaluated by comparing
perplexity of different choices. The choice with smallest perplexity is selected as the prediction and we
measure accuracy across different benchmarks.

For generation task (prompt-based ASR), we use the prompt below, with pairs of speech and transcrip-
tion is provided to the SpeechLM. For 0-shot evaluation, we do not include any examplers.

Prompt

Given the speech, provide its transcription.
[speech]: {demo speech}
[text]: {demo transcription}
...
[speech]: {speech to transcribe}
[text]:

Speech MMLU Evaluation We craft speech MMLU by synthesizing the questions of MMLU into
audio through AUDIOBOX. Since some domains have bad synthesis quality (such as algebra, which
includes many math notations), we filtered those domains out from our evaluation.

We present the detailed comparison results in Table 11 for a better comparison of model performance
across different domains/topics. We see that the trend for different domains is mostly consistent, with our
alignment-aware connector based on UNITY2 achieving the best performance, followed by CHAR-CTC
based connector. Similar as our main findings, the unit-based system has worse performance due to
information loss from discretization and the fine-tuned model suffers from catastrophic forgetting (albeit
mitigated through our multitask fine-tuning approach). Nevertheless, all these SSR-CONNECTOR based
system obtains better performance compared to SPIRITLM (LLAMA3), confirming the effectiveness of
our modality-fusion strategy.

Topic SPIRITLM UNITY2 + Mask UNITY2 CHAR-CTC Unit-based Fine-tuned

0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot

Astronomy 45.6 40.8 60.0 66.0 60.7 65.3 57.0 60.4 49.7 61.1 50.7 52.0
Business Ethics 37.1 40.2 52.0 60.0 53.0 62.0 56.0 59.0 52.0 55.0 37.0 51.0
Clinical Knowledge 36.0 39.8 60.6 63.3 61.0 62.9 61.2 62.7 57.8 57.4 47.3 53.8
College Biology 36.4 33.6 65.0 69.9 62.9 68.5 57.7 59.9 54.2 57.7 40.6 44.1
Electrical Engineering 37.7 44.2 52.5 57.4 52.5 53.9 48.2 58.9 44.7 48.2 53.2 54.6
High School Biology 40.8 41.2 66.0 72.2 67.6 72.2 63.3 68.2 57.1 65.6 50.5 62.5
High School Gov. Pol. 44.4 43.4 79.2 84.9 78.1 83.3 76.6 81.8 71.4 73.4 54.7 64.1
International Law 55.9 58.5 71.1 81.0 71.1 81.0 71.1 80.2 71.1 75.2 66.1 71.1
Jurisprudence 37.1 36.2 60.2 68.5 62.0 70.4 57.4 63.9 54.6 60.2 51.9 57.4
Machine Learning 39.3 32.1 45.8 59.3 50.8 59.3 45.8 61.0 44.1 57.6 39.0 55.9
Management 43.0 42.0 79.6 84.5 77.7 75.7 73.8 74.8 68.0 70.9 45.6 65.0
Marketing 39.8 49.8 77.8 85.0 76.1 81.6 76.9 81.6 74.4 76.9 51.3 67.1
Miscellaneous 38.5 36.4 69.2 71.5 66.6 70.1 60.3 64.6 52.3 57.5 42.7 50.3
Moral Disputes 39.1 42.3 59.5 66.5 59.5 67.3 56.4 62.7 52.9 62.1 43.6 52.9
Nutrition 45.0 47.3 68.4 69.1 66.1 66.8 65.5 62.8 64.5 59.8 52.8 58.5
Philosophy 37.5 37.2 58.3 64.5 59.0 62.5 55.9 64.1 54.6 59.5 44.0 53.1
Prehistory 38.9 43.3 62.0 66.4 61.1 64.5 61.2 64.3 55.0 57.5 49.1 55.2
Security Studies 43.8 54.8 63.8 67.8 61.7 67.8 68.1 76.9 59.3 69.2 51.0 59.7
Sociology 37.4 45.5 71.6 74.6 68.7 74.6 69.7 73.6 68.2 72.1 57.7 66.2
US Foreign Policy 56.7 60.8 80.0 80.0 78.0 85.0 75.8 81.8 75.8 83.8 61.0 76.0
Virology 40.1 46.3 47.9 49.1 49.1 53.9 47.9 49.7 46.1 51.5 46.7 44.8
World Religions 39.3 46.4 66.1 67.8 63.2 63.7 52.0 59.1 51.5 60.8 40.9 50.3
Micro Average 40.5 42.7 65.0 69.5 64.2 68.6 61.7 66.5 58.1 63.3 49.0 57.5

Table 11: Detailed Speech-MMLU evaluation results on different domains.
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Abstract

With the growing influence of Large Lan-
guage Models (LLMs), there is increasing inter-
est in integrating speech representations with
them to enable more seamless multi-modal
processing and speech understanding. This
study introduces a novel approach that com-
bines self-supervised speech representations
with instruction-tuned LLMs for speech-to-text
translation. The proposed approach leverages
a modality adapter to align extracted speech
features with instruction-tuned LLMs using En-
glish speech data. Our experiments demon-
strate that this method effectively preserves the
semantic content of the input speech and serves
as an effective bridge between self-supervised
speech models and instruction-tuned LLMs, of-
fering a promising approach for various speech
understanding applications.

1 Introduction

Progress in speech processing has been acceler-
ated by the introduction of self-supervised learning
(SSL) methods that utilize large amounts of unla-
beled speech data, which established new bench-
marks in the field (Xu et al., 2021; Hsu et al., 2021;
Zeghidour et al., 2021). Continuous representations
and/or discrete units derived from self-supervised
models have been used to extract relevant latent fea-
tures from speech data and improve performance
in downstream tasks, including speech recogni-
tion (Baevski et al., 2020), speech synthesis (Ren
et al.; Wang et al., 2023b), speech translation (In-
aguma et al., 2020) and general speech understand-
ing (Wang et al., 2020). Progress in text processing
has also been accelerated by the emergence of pre-
trained Large Language Models (LLMs), which
enabled new applications such as few-shot/zero-
shot language processing (Radford et al., 2019;
Brown et al., 2020; Touvron et al., 2023; Bai et al.,
2023) and multi-modal processing (Tsimpoukelli
et al., 2021; Radford et al., 2021). Recent efforts

in speech understanding explored the possibility of
incorporating speech representations directly into
LLMs (Zhang et al., 2023; Wang et al., 2023c; Das
et al., 2024; Fang et al., 2024). Multi-modal speech-
language models signify a shift in both speech
and natural language processing. By incorporating
speech data, LLMs can enhance their contextual
grasp, providing a deeper and more thorough rep-
resentation of spoken language. In addition, the
existing multilingual functionalities of LLMs can
be leveraged to enhance speech processing applica-
tions, such as speech translation, without additional
dedicated training.

In this work, we describe an efficient method to
query instruction-tuned LLMs using speech input.
The model aligns speech features extracted through
self-supervised learning (SSL) with LLMs using
only a modality adapter trained with English data
and a small portion of translated text. We demon-
strate the generalization of translation performance
across both seen and unseen target languages. We
call our approach SparQLe 1. SparQLe is inspired
by Querying Transformer modules used in vision
language models to bootstrap vision-language rep-
resentations from frozen image encoders (Li et al.,
2023). We demonstrate through speech translation
that SparQLe enables the integration of existing
pre-trained speech encoders and LLMs without the
need for updating the parameters of either speech
encoder or LLM. In contrast to previously explored
speech-LLM integration approaches, our method
is the first to utilize frozen SSL speech represen-
tations, without relying on large pre-trained ASR
models like Whisper (Radford et al., 2023). We
experimentally demonstrate the effectiveness of
this relatively simple approach and release both the
pre-trained and fine-tuned models 2.

1Speech Routing to Query Large Language models.
2https://github.com/djanibekov/rebooting-llm
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Method Speech Encoder (Param.) Language Model (Param.) Adapter (Param.) Tasks

(Chen et al., 2024) NeMo (0.6B - 1.1B) MegatronLLM (40B-1T) LoRA (14M-94M) / Conformer (115M) multitask
(Wang et al., 2023a) Whisper (74M-1.5B) LLama (6.7B-65.2B) Conv.Layers (4M) alignment
(Wang et al., 2023c) USM (2B) mT0-MT XXL (13B) Adapter (156M) multitask
(Wang et al., 2023d) CTC encoder (220M) T5 XXL (11B) - RAG Speech2Text, Speech2Entity Retriever multitask
(Yu et al., 2024) Whisper (1.5B) VicunaLLM (13B) FC3 (24M) / MHSA4 (133M) / Seg-Q-Former (24M) ASR
(Tang et al., 2024) Whisper (1.5B) + BEATS (90M) VicunaLLM (13B) LoRA + Seg-Q-Former (33M) ASR/multitask
(Das et al., 2024) WavLM (316.62M) Flan-T5-XL (2.85B) CNN + LoRA(14M-94M) multitask
(Chu et al., 2024) Whisperlarge (1.5B) Qwen (7B) — multitask

SparQLe HuBERT (316M) LLama3 (8B) Q-Former (187M) AST/multitask

Table 1: Comparison of related works and proposed model. LoRA’s rank in (Chen et al., 2024) is assumed to be 8.
For other rank values, multiply number of parameters by 2 for 16 and 4 for 32 ranks, respectively.

2 Related Works

The availability of instruction-tuned LLMs (Tou-
vron et al., 2023; AI@Meta, 2024; Jiang et al.,
2023) opened a new research direction for speech
processing by connecting speech directly to these
multi-task models. Chen et al. (2024) proposed
multitask speech-language modeling with unified
LLM framework that shows in-context learning
ability. Yu et al. (2024) utilized three approaches
for adapting speech to text modality: Fully Con-
nected Linear Layers following (Houlsby et al.,
2019) adapter method, multi-head cross attention
mechanism described in (Vaswani et al., 2017),
and query transformer (Li et al., 2023). For
processing speech input, they utilized two mod-
els: Whisper Large-v2 (Radford et al., 2023) and
BEATS (Chen et al., 2023). The SpeechVerse (Das
et al., 2024) framework used WavLM-based (Chen
et al., 2022) speech encoder interfaced with a Flan-
T5-XL (Chung et al., 2024) language model. In
a another study, Ma et al. (2024) demonstrated
the sufficiency of a single linear layer for speech-
LLM integration in ASR, albeit with limited ex-
ploration beyond this task. Speech as language
modeling was also studied in SpeechGPT (Zhang
et al., 2023) which integrates both speech and text
modalities. The model incorporates a speech to-
kenizer that converts raw audio waveforms into
discrete speech tokens, enabling efficient process-
ing within the transformer architecture. Through
multi-task fine-tuning on downstream tasks such as
ASR, translation, and generation, the model demon-
strates remarkable versatility. Qwen2-Audio (Chu
et al., 2024), designed as a general-purpose audio
understanding model, exhibiting broad applicabil-
ity across various audio-related tasks. The model
employs self-supervised learning techniques, such
as masked audio modeling and contrastive learning,
to capture rich audio representations.

Table 1 summarizes the features of most relevant

related works. We outline that, depending on the
rank of the LoRA (Hu et al., 2021) adapter, the
final number of trainable parameters can increase.
LoRA rank is the number of linearly independent
rows or columns in a parameter (weight) matrix; a
lower rank means approximating a large weight ma-
trix with fewer parameters to simplify and speed up
training. The number of additional parameters can
be roughly estimated as the initial hidden dimen-
sion multiplied by the rank and then multiplied by
two to account for all added parameters. In Table 1,
we outline the range of the possible numbers of
added parameters. Note that our proposed model,
SparQLe, is the only one that relies exclusively
on SSL features (i.e. HuBERT) as input, and a
simple adapter between the frozen speech encoder
and LLM; previous approaches relied on complex
encoders that have already been aligned with text
through supervised training or adapt selected LLM
with LoRA adapter.

3 Model

SparQLe is a parameter efficient model designed
to extract information from speech representation
and route them to query pre-trained open-sourced
LLMs, without modifications to the underlying
speech encoder or LLM. Motivated by the success
of multi-modal representations in vision language
modeling (Li et al., 2023), we propose the adop-
tion of speech representations to LLMs for gener-
ative tasks, specifically Automatic Speech Trans-
lation (AST). We pre-trained our model using En-
glish data first and fine-tuned with mix of English
and French.

We used HuBERT (Hsu et al., 2021) as the
speech encoder. The output from its final hidden
layer is fed into the query adapter. A query adapter
incorporates query tokens, which are special to-
kens (placeholders) added to the input of a speech-
language model. They do not correspond to specific
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Figure 1: High-level overview of the SparQLe model

speech regions, but are meant to extract informa-
tion from the whole speech sequence in a flexible
way. The final features from the query tokens are
passed to a large language model to generate natu-
ral language responses. Figure 1 shows the overall
structure of the system, which consists of three
main parts: a pre-trained speech encoder, a bridg-
ing mechanism (SparQLe) and a text generator. In
our experiments, we employed LLama3 (AI@Meta,
2024) as the text language model.

3.1 Pre-Training

This stage is akin to ASR training, where we utilize
transcribed speech for supervised training. How-
ever, we do not introduce additional parameters
and instead use the same modality adapter as an
auto-regressive language model: each output vector
from the Q-Former (Li et al., 2023) is successively
fed into a modality adapter to predict the next token.
We only update the parameters of the adapter, and
keep the underlying speech encoder frozen. The
Q-Former is a vanilla transformer model but with
learnable query tokens. These tokens are randomly
initialized and designed to be learned during train-
ing to capture query information that is relevant to
the task. The process is depicted in Figure 2. In
addition to the text generation task, we use vari-
ous modality alignment objectives to account for
speech in the input and aligned text-like features
in the output, similar to image-text alignment done
in Li et al. (2023): Speech-text contrastive learn-
ing aligns speech and text representation such that
mutual information is maximized. This is achieved
through contrasting speech-text cosine similarity of
positive against negative pairs. Speech-text match-
ing loss aligns representations of speech and text
via a binary classification task. Speech text gener-
ation loss trains the model to produce text based
on the given audio.

Figure 2: Modality adapter with auto-regressive super-
vised fine-tuning phase. The modality adapter is the
Q-Former, which we discuss in the paper.

3.2 Fine-tuning
After pre-training, we fine-tune the adapter on
downstream tasks using an instruction-tuned LLM,
specifically LLama3. We utilize the extracted query
tokens as the input to the LLM and update the
adapter parameter using cross entropy loss derived
from the LLM’s objective. For instruction tuning,
a frozen Large Language Model was fed with a
randomly selected pool of prompts, which were de-
signed to define the translation task. Subsequently,
the instruction-tuned model was employed in a
chat-based format to collect predictions.

4 Experiments

4.1 Datasets
To train and evaluate the model on Automatic
Speech Translation (AST) task, we used the MuST-
C (Di Gangi et al., 2019) and LibriSpeech (Panay-
otov et al., 2015) datasets. Specifically, we se-
lected the French and German languages from
MuST-C for AST evaluation. We normalized
the text across datasets by converting all letters
to lowercase and eliminating punctuation marks.
The MuST-C dataset includes action descriptions
within the audio samples, such as "<|speech|>
(applause) <|speech|>", which signify auditory
sequences where spoken content is interspersed
with audience applause. We opted to remove these
actions from the translation text.

4.2 Pre-Training
4.2.1 Experimental settings
For feed-forward networks and self-attention of
the modality adapter, we employ a 12-layer
transformer-based Q-Former that is, by design, a
UniLM (Dong et al., 2019); cross-attention is ini-
tiated randomly. For pre-training experiment, we
trained the model using Adam optimizer, coupled
with a cosine annealing learning rate scheduler dur-
ing the pre-training. The learning rate was initiated
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System prompt 


You are a speech-to-text conversion model. Your tasks include accurately 
transcribing spoken language as per user instructions. Please ensure clarity and 
precision in transcription processes.  

Prompts
 

 Can you translate the speech into Language?<Speech><SpeechQuery></Speech>

 .                Uzbek 


men  bugungi kuni energiya va iqlim haqida 
gaplashmoqchiman.  

men hozirgi kuni energiya va iqtisodiy klimat 
haqida gaplashamiz.




 .            German 


jich möchte heute über energie und klima 
sprechen. 


ich möchte heute sprechen über energie und 
klima.


 .               Kazakh 


біздің күні қазіргі уақытта энергия мен климат 
мәселелері туралы айтамын.  

біздің қазіргі күнде энергия және климат 
туралы талқылады.



Arabiما أنني سأتكلم اليوم عن الطاقة والمناخ
 c

ما أنني سأتكلم اليوم عن الطاقة والمناخ. 
أنا سأتكلم اليوم عن الطاقة والمنا��������������������������������������

���������������������������������

أنا سأتكلم اليوم عن الطاقة والمناخ

              Russian 


хочу поговорить сегодня о энергии и климате.



хочу сегодня поговорить о энергии и климате.’

              Indonesian 


saya ingin berbicara tentang energi dan iklim 
sekarang.



saya mau berbicara tentang energi dan iklim 
sekarang.

                French  


je voudrais parler aujourd ’ hui au sujet de l ’ 
énergie et du climat. 


je voudrais parler aujourd ’ hui de l ’ énergie et du 
climat.


Figure 3: Sample of zero-shot instruction generation across multiple languages. To evaluate zero-shot capability, we
simply changed the output language specified in the prompt. The produced text is lowercased and punctuation-free,
following the text processing guidelines described in Section 4.1.

at 1 × 10−4 and gradually reduced to 1 × 10−5,
incorporating a warm-up phase at 1× 10−6. This
means that learning rate started with warmup value
and gradually reached from 10−6 to 10−4. The
maximum length for speech samples was capped at
480K frames, which is equivalent to 30s of audio.
We used 100 learnable query tokens in Q-Former.

Our experiments were conducted using open-
source library for language-vision intelligence,
LAVIS5. The training processes were executed on
one RTX4090 GPU with 24G memory being used
over a period of two-three weeks with batch size
equal to 8 due to memory constraints.

4.3 Fine-Tuning

4.3.1 Experimental Settings
We used 960 hours of audio from the LibriSpeech
dataset, along with an additional 457 × 2 hours
of audio samples from MuST-C that included both
translation and transcription tasks: 70% of the
speech samples for fine-tuning were used for recog-
nition, while the remaining 30% involve English-
to-French translation. We deliberately restricted
our training data to one language in order to demon-
strate the capacity of the model to generalize to
other languages6.

4.4 Prompts

We derived instruction prompts from SALMONN’s
(Tang et al., 2024) work. As demonstrated,
each prompt includes a placeholder for speech
<Speech><SpeechQuery></Speech>, into which
we insert query-extracted embeddings as inputs
to the LLM. Please note that the query embed-
dings are placed inside the placeholder denoted
by <SpeechQuery>. Here is the prompts that we
used for training:

5https://github.com/salesforce/LAVIS
6Instruction tuning sometimes results in overfitting to the

training instructions, as observed in Tang et al. (2024).

MuST-C_En-Fr MuST-C_En-De
BERTScore ↑ BERTScore ↑

STRONGBASELINE 81.75% 77.44%
WEAKBASELINE 77.28% 74.86%

SparQLe 85.56% 83.26%

Table 2: Comparison of SparQLe against strong and
weak baselines from the IWSLT isometric speech chal-
lenge (Anastasopoulos et al., 2022).

• <Speech><SpeechQuery></Speech> Can
you translate the speech into "Language"?

• <Speech><SpeechQuery></Speech> Please
translate the speech you heard into "Lan-
guage".

• <Speech><SpeechQuery></Speech> Listen
to the speech and translate it into "Language".

• <Speech><SpeechQuery></Speech> Give
me the Language translation of this "Lan-
guage".

"Language" can be any language a user wants to
add to instruction.

4.4.1 Results & Analysis
We benchmarked translation against the IWSLT
challenge baselines for speech-to-text translation
using BERTScore (Zhang* et al., 2020) as reported
in (Anastasopoulos et al., 2022). The results for
English-German translation are zero-shot since
the model is only fine-tuned with English-French
speech translation data. Evaluating LLM answers
for speech translation is a challenging task, primar-
ily due to the presence of chat-specific artifacts in
the output, such as prompt repetition, follow-up
comments, and connecting phrases (e.g., "here is
the transcribed text:"). To address this is-
sue, we implemented a post-hoc approach in which
we endeavored to eliminate instances of prompt
recurrence (chat artifacts) in the final text. We
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consider two baseline systems from IWSLT2022
campaign (Anastasopoulos et al., 2022): WEAK-
BASELINE refers to a standard neural machine
translation model trained under limited data con-
ditions, without incorporating any isometric trans-
lation features. STRONGBASELINE is trained
using unconstrained data setting and incorporates
output length control following the approach of
Lakew et al. (2021). This method involves adding
a length token at the beginning of the input, gen-
erating N-best candidate translations, and then re-
ranking them based on a weighted combination of
the model’s score and the length ratio.

The results in Table 2 highlight the generaliza-
tion potential of the model in translation. Specifi-
cally, the BERTScore for the tst-COMMON split
in the French language demonstrates that our sys-
tem has surpassed both the WEAKBASELINE and
STRONGBASELINE in terms of semantic similar-
ity. Furthermore, evaluations on the tst-COMMON
split for the German language show that the perfor-
mance quality extends to languages not included in
the training set. This success can be attributed to
the inherent translation performance of the under-
lying LLM, demonstrating the model’s adaptability
to new instructions.7.

5 Discussion

We introduced a framework for efficient routing of
SSL speech features to query LLMs, and demon-
strated its effectiveness in speech translation tasks.
The results indicate that the proposed model and
training paradigm result in generalized perfor-
mance and avoid instruction over-fitting; the model
was able to adhere to instructions for translating
speech into multiple target languages (see Figure 3).
SparQLe demonstrates ability to translate speech
input into diverse languages not encountered dur-
ing our fine-tuning stage, such as German, Russian,
Arabic, etc. Finally, with the appropriate prompts,
the instruction-tuned model is capable of perform-
ing multiple tasks in a single run, (see Figure 4 in
Section 5.1). The performance in speech transla-
tion shows promising results, where the proposed
approach outperformed both weak and strong base-
lines from Anastasopoulos et al. (2022) in both
French and German.

You are a speech-to-text conversion model. Your tasks include accurately 
transcribing spoken language and translating audio samples as per user 
instructions. Please ensure clarity and precision in both transcription and 
translation processes. 
 

Back in New York, I am the head of development for a non-profit called 
Robin Hood.



En Nouvelle-York, je suis la tête du développement pour un organisme à 
but non lucratif appelé Robin des Bois.



Please let me know if you need any further assistance!

<Speech><SpeechQuery></Speech> Can you transcribe and translate 
the speech into a written format? (Back in New York I am the head of 
development for a nonprofit called Robin Hood)

Figure 4: Example from the SparQLe for multi-tasking
in one prompt.

5.1 Multi task Discussion
As mentioned before with the appropriate prompts,
the instruction-tuned model is capable of perform-
ing multiple tasks in a single run, See Figure 4.
While we have not conducted an exhaustive analy-
sis of this aspect in the current study, this example
illustrates potential applications for efficiency and
versatility in spoken language applications.

6 Conclusion & Future Work

In this short paper, we demonstrate the performance
of the proposed SparQLe model, an aligned speech-
to-text model based on SSL features, for speech
translation applications. What we have demon-
strated in this study is only a subset of potential
applications of this method. The SparQLe model
can potentially handle both text and speech modal-
ities, and can be applied for any speech-to-text
applications. As demonstrated, our model outper-
forms existing speech translation baselines from
IWSLT 2022 challenge, which demonstrates the
potential of transferring the inherent capacities of
LLMs into speech tasks using a parameter-efficient
approach. Future work can explore the generaliza-
tion of the model to other languages and speech
understanding tasks and analyze the characteristics
of the resulting queries.

7During the inference phase, we executed four different
prompts which are listed in Section 4.4. We selected the
prompt that yielded the best results on held-out set.
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Limitations

Our model was initially pre-trained to align specif-
ically with English speech samples, disregarding
other rich languages that present unique challenges.
While we believe SparQLe has the potential to han-
dle various tasks beyond its original training scope,
we have not yet carried out a formal assessment
to verify this capability. Although our model is
adaptable to multiple LLMs, we onlye explored
one model. Similarly, we did not explore other
speech encoders apart from HuBERT. For transla-
tion evaluation we used BERTScore, which mea-
sures semantic similarity for generation tasks, but
all automatic translation metrics have limitations.
For example, sentences "never had any act
seemed so impossible" and "always had any
act seemed so impossible" convey different
information but are similar in words. BERTScore
outputs that these two sentences have a high sim-
ilarity score, which is, in fact, not true (99.7% in
F1 score). We did not test our model on tasks other
than translation and transcription. As a result, the
model’s performance on other modalities or tasks,
such as speech question answering, remains unver-
ified.
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Abstract

Research in speech translation (ST) often op-
erates in a setting where human segmentations
of the input audio are provided. This simpli-
fying assumption avoids the evaluation-time
difficulty of aligning the translated outputs to
their references for segment-level evaluation,
but it also means that the systems are not evalu-
ated as they will be used in production settings,
where automatic audio segmentation is an un-
avoidable component. A tool, MwerSegmenter,
exists for aligning ST output to references, but
its behavior is noisy and not well understood.
We address this with an investigation of the
effects automatic alignment on metric correla-
tion with system-level human judgments; that
is, as a metrics task. Using the eleven language
tasks from the WMT24 data, we merge each
system’s output at the domain level, align them
to the references, compute metrics, and evalu-
ate the correlation with the human system-level
rankings. In addition to expanding analysis
to many target languages, we also experiment
with different subword models and with the
generation of additional paraphrases. We find
that automatic realignment has minimal effect
on COMET-level system rankings, with accura-
cies still way above BLEU scores from manual
segmentations. In the process, we also bring the
community’s attention to the source code for
the tool, which we have updated, modernized,
and realized as a Python module, mweralign.1

1 Introduction

Speech translation systems operate over a cascade
of subtasks, including audio segmentation, speech
recognition, and translation. Each of these compo-
nents introduces noise and error into the process.
In recent years, some of these tasks have been com-
bined, i.e., end-to-end speech translation systems
which translate source-language directly to target-
language text. However, audio segmentation is still

1pip install mweralign

often treated separately. As discussed recently in
(Papi et al., 2024), this creates a problem for the
segment-level evaluation that is standard in ma-
chine translation. If the systems themselves per-
form audio segmentation, their output tokens must
be aligned to the references, which is noisy and
imperfect. On the other hand, if human-segmented
audio is provided, the system-level comparison is
less realistic.

Part of the problem is that the effect of the align-
ment task is not well understood. Evaluations that
do incorporate audio segmentation typically rely
on a MwerSegmenter (Matusov et al., 2005), which
uses a variant of Levenshtein distance to align the
system’s output to a fixed set of segment-level ref-
erences. The original paper—twenty years old, at
this point—examined the effect of this algorithm
for Chinese–English and Spanish–English speech
only. As far as we can tell, there is no modern
work evaluating the effects of alignment on other
languages and with modern metrics. Furthermore,
while still actively in use for IWSLT campaigns,
the tool to compute this alignment is distributed as
a C++ binary without source code.

Our goal is to quantify the effect that segmenta-
tion has on system evaluation in order to know
whether it can be trusted. This paper updates
(2005)’s original investigations in a number of
ways. We

• extend their analysis to a much larger set
of non-English target languages, spanning a
range of writing systems;

• incorporate modern segmentation tools in
search of a multilingual tokenization solution;
and

• explore the use of automatically-generated ref-
erences on the alignment task.

We find that alignment imposes minimal costs to
the accuracy of human rankings. When combined

84



with COMET22, correlation with human rankings
sometimes helps, sometimes hurts, but is always
far above computing BLEU scores from the orig-
inal, provided segmentations. Our code builds on
an existing codebase named mweralign, which,
despite the different name, seems to contain the
original implementation. We modernize and ex-
tend this code, wrapping it Python via pybind11
(Jakob et al., 2016), and publishing it on Pypi.2

2 Related Work

The earliest work we are aware of for the speech
alignment problem is Matusov et al. (2005). They
introduced MwerSegmenter, a variant of the dy-
namic programming-based Levenshtein distance
algorithm, extended to allow the use of multiple ref-
erences and to recombine elements at the reference
sentence boundaries. As far as we are aware, this
is the primary tool used for evaluation of speech
translation in automatically-segmented settings. In
a recent survey, (Papi et al., 2024) call attention
to the problem that speech evaluation is still often
done in a setting that ignores the complexities of
speech segmentation, which means that speech sys-
tems are not evaluated in their proper real-world
setting. Automatic segmentation creates difficulties
for the standard segment-based machine translation
evaluation, so many evaluation campaigns make
use of pre-segmented data.

Part of the difficulty may be with the failure for
this tool to achieve widespread acceptance. To
begin with, it was originally evaluated only on ZH-
EN and ES-EN, and applying it to other languages
with different scripts and whitespace conventions
is not straightforward, and potentially cumbersome.
Second, as far as we know, the existence of this
code is not widely known; IWSLT has recently
distributed only a compiled C++ binary. Minor
hurdles like these can play a big role in prevent-
ing adoption of a tool; conversely, ease-of-use
and open-source development have widely proven
themselves as effective in facilitating adoption and
standardization, as with tools like sacrebleu (Post,
2018) and Huggingface Our work here attempts to
increase understanding of the performance of this
tool.

3 Aligning tokens to reference sentences

This section introduces the AS-WER algorithm
(Matusov et al., 2005), implemented in a publicly

2https://pypi.org/project/mweralign

N = 6 w = I came. (k1 = 1)
K = 3 I saw. (k2 = 3)

I conquered. (k3 = 5)
I = 7 e = I got there. I saw. I won.

Table 1: An example input for AS-WER. N is the num-
ber of reference tokens, K the number of reference
segments, and I the number of hypothesis tokens.

available tool, MwerSegmenter. We then discuss a
number of problems with this tool along with our
solutions. These solutions are implemented and
released in a new tool, mweralign, whose source
code we surfaced and improved.

3.1 The core AS-WER algorithm

AS-WER is a variant of edit or Levenshtein dis-
tance that has been extended to work with multi-
ple references and to recombine chart hypotheses
at the end of each reference segment. The algo-
rithm computes the cost of aligning a stream of
input tokens from a candidate system, e1 . . . eI , to
the sentences in a reference translation, w1 . . . wN .
The reference translation is segmented into K sen-
tences or segments, whose starting locations in the
reference are given by n1, . . . , nK . The algorithm
constructs a dynamic programming chart which
recursively records the minimum cost D(i, n) of
aligning hypothesis tokens 1 . . . i to reference to-
kens 1 . . . n. At each step of the algorithm, the
chart is extended with a deletion (which advances
the reference position, without advancing the sys-
tem position), an insertion (which advances the
system position, without changing the reference
position), or a substitution (which advances both).
Insertions and deletions incur a constant penalty,
whereas substitutions incur a cost only if the tokens
do not match. Tokens are assigned to the refer-
ences monotonically; that is, if token ti at index i
is aligned to reference sentence ri, then all tokens
tj > i must be aligned to references rj ≥ ri. An
example is depicted in Table 1.

3.2 Problems and issues

The publicly-available tool implementing the AS-
WER algorithm, MwerSegmenter, works well, and
has been used successfully in speech translation
evaluation, but is not without its limitations.

Unaligned boundary words. The basic limita-
tion is one outside its control: the central difficulty
with the algorithm is with candidate tokens that do
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not match any token in the reference. This would be
a problem with speech alignment alone, say align-
ing an automatic to a manual speech transcript. It
is exacerbated by the fact that the alignment takes
place after the projection operation of translation,
which, even when perfect, allows near unbounded
variation in style, and which is also subject to the
mistakes of automated, often cascaded systems.

Tokenization and whitespace. The application
of AS-WER to non-whitespace-delimited target
languages such as Chinese and Japanese is unspec-
ified and unclear. Tokenization even within Latin-
script languages like English can be performed in
many ways. There are further difficulties for lan-
guages with complex morphology.

Practical issues. Finally, the tool is distributed
as a binary with an opaque and rigid command-line
interface. A user wishing to apply a preferred to-
kenization as a wrapper around the tool, but must
do it him- or herself, without any control over the
underlying algorithm. Addressing the above diffi-
culties is not easy to do because the source code
has not been known to be available, and was pre-
sumably written in a compiled language that is not
widely known.

3.3 A new tool: mweralign

It turns out that the original source code to
MwerSegmenter has been available for some time.3

We extend this codebase, simplifying and modern-
izing the C++, wrapping in a Python library, and
introducing a number of parameters and options
that enable our experiments. The updated source
code is available on Github4 and installable via the
Python Package Index.5

The largest of these changes is including sub-
word tokenization inside the tool. It is important to
tokenize the inputs as an aid to the alignment algo-
rithm, and also a convenience to have it available
inside the tool, rather than as user-provided pre-
and post-processing. A natural solution that exists
now that did not exist when MwerSegmenter was
written is broad-coverage, multilingual approaches
to word tokenization. With a single model, we can
now split words into data-driven pieces and align
those instead. This provides a solution that solves
the “CJK problem”, i.e., the segmentation of sen-

3https://github.com/cservan/MWERalign
4http://github.com/mjpost/mweralign
5pip install mweralign

tences in writing systems that do not make use of
spaces.

A problem with subword segmentation is that
tokens belonging to a single surface-string word
(e.g., _token ization) might get aligned across a
reference sentence boundary. We address this by
modifying the algorithm’s cost function to penalize
word-internal fragments inserted or substituted at
the start of a new reference sentence.

We made a number of other fixes:

• Multiprocessing. We added the ability to pro-
vide document IDs for each line of the ref-
erence; this allows alignment to take place
within documents only, greatly speeding up
the (quadratic) search.6

• Edge cases. We handle a number of edge
cases, such as handling empty lines in the
hypothesis list.

• Code improvements. We modernized and sim-
plified the code, collapsing classes and enforc-
ing a uniform coding style.

4 Experimental Setup

4.1 Data

Ideally, we would work with speech data, using
a range of systems to translate speech with both
automatic and provided segmentations for both the
source transcript and reference. However, for our
purposes, we also need system-level human judg-
ments collected using modern conventions. We are
unaware of any such data.

As such, we make use of the eleven language
pair tasks from the WMT24 test sets (Kocmi et al.,
2024a).7 This data suits our purposes for a number
of reasons. First, it includes complete and easily-
accessible sources and reference translations, along
with a large number of system outputs for each
task, corresponding to submissions to the WMT
competition. Each task has varying number of sys-
tem submissions, lines, and domains. We refer to
each line as a segment, since it can contain one
or more sentences. Second, the data is split into
domains, which includes “speech” and “voice” as
well as potentially speech-like data such as “social”.
These domains serve as natural larger documents

6At the moment, the code aligns documents one at a time,
but this could easily be parallelized.

7cs-uk, en-cs, en-de, en-es, en-hi, en-is, en-ja, en-ru, en-uk,
en-zh, and ja-zh.
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pairs lines systems domains

cs-uk 2,316 20 news (175), official (243), personal (323), voice (415), education (1,160)
en-* 997 18–26 news (149), social (531), speech (111), literary (206)
ja-zh 721 22 news (269), speech (136), literary (316)

Table 2: WMT24 datasets. Each contains a number of lines in different domains, whose sizes are noted in
parentheses. We concatenate and resegment system outputs at the domain level.

within which to experiment with automatic align-
ment. Some details can be found in Table 2.

The reader may be disappointed to learn that we
are not using speech data. We believe this is a valid
substitution. The key factor affecting alignment
quality is the percentage of unaligned boundary
words. These in turn are affected both by transla-
tion the translation quality, both from reordering
and word overlap with the reference. Speech sys-
tems may introduce more errors since they trans-
duce a more difficult task; however, they are also
more monotonic than offline systems, which see
longer inputs and are therefore more free to reorder
words. In any case, we believe this is interesting as
an initial study.

4.2 Method

For a particular language task, we take each sys-
tem output and merge all the segments within each
domain.8 For example, within the en-de task, there
are 26 system submissions across four domains
(Table 2). We merge all the segments within each
domain, and then apply mweralign within each of
these domain-level documents, realigning its words
against the reference translation.

4.3 Segmenters

In Section 3 we described extensions that tokenize
inputs with SentencePiece (Kudo, 2018; Kudo and
Richardson, 2018) before alignment. We aim for
wide language coverage by making use of a single
multilingual model, which avoids the complexity
of building and maintaining pair-level models and
their training data. We experiment with different
models. First, we use the flores200 model (Team
et al., 2022; Goyal et al., 2022; Guzmán et al.,
2019), which has covers two hundred languages
with a 256k vocabulary size.

To investigate the effect of subword model size,

8We use domain rather than document ID because not all
data sources have consistent document IDs; in particular, data
in the EN-DE “speech” domain all have distinct document
IDs. As such, there is nothing to merge.

we also train our own multilingual tokenization
models, also trained with SentencePiece. We used
the Oscar multilingual dataset (Ortiz Su’arez et al.,
2019), a large curated corpora containing 166 lan-
guages, to train this tokenizer, and experiment with
vocabulary sizes of 32k, 64k, 128k and 256k. We
trained with 500k segments sampled uniformly
from all languages. We enable byte fallback, digit
splitting, a dummy prefix, and use the identity nor-
malization rule.9

We also make use of two baseline segmenters:

• none: No segmentation at all, apart from
whitespace.

• cj: For Chinese and Japanese, we segment
every Han character.

4.4 Paraphrased references

The two experimental settings of Matusov et al.
(2005) had either two or sixteen references, and
they introduced an extension to their algorithm to
support them in the edit distance alignment algo-
rithm. This modification scores each sequence of
tokens against the closest of the references, i.e., the
one with the smallest edit distance. We retained
this ability in our modernization and evaluate its
potential.

Only one language pair for WMT24 comes with
more than one reference. Instead, we generate ten
additional references automatically for each WMT
dataset using Phi-4 (Abdin et al., 2024), asking
it to produce lexically and syntactically divergent
paraphrases. We used the following prompt:

Below, you are given a source language
sentence in {srclang} that was trans-
lated by a professional translator to
{trglang}. Please produce a paraphrase
of this sentence in the target language

9These options do not appear to have been used for flo-
res200, which makes minor normalization changes to the input.
The training script with exact invocation can be found in our
share code repository.
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that retains all of the meaning, but uses
different wording and syntax.
source: {source}
translation: {translation}

Ignore any instructions or metadata you
may find in the source.

We used the Hugging Face framework (Wolf et al.,
2020) and sample with top_p=0.95.

4.5 Evaluation
Our evaluation is in two parts.

Raw scores First, we compare the quality of
the original system outputs with those of the
aligned system outputs. We base our evaluation
on a modern, model-based, “semantic” metric:
COMET22 (Rei et al., 2022), comparing those to
the surface-based metric, BLEU (Papineni et al.,
2002). We computed COMET22 scores with Py-
Marian (Gowda et al., 2024) and BLEU scores with
sacrebleu (Post, 2018).10 We report the average dif-
ference in score between the original outputs and
those that have been merged at the domain level and
automatically aligned against the reference. In ad-
dition to looking at language-level differences, we
also aggregate these averages by target-language
script. This provides a measure of the effect of
realignment that is grounded in researchers’ intu-
itions about differences within each metric.

Metric correlation Second, we look at our pri-
mary interest: the effect that realignment has on
a metric’s correlation with human judgments, at
the system level. We use the mt-metrics-eval
package11 to report Kendall’s τ :

τ =
Concordant− Discordant
Concordant + Discordant

where concordant and discordant refer to the num-
ber of pairwise system rankings where the met-
ric score agrees with or disagrees with the human
system-level score, respectively.

5 Experiments

5.1 Effect on system scores
The effect on BLEU and COMET22 system scores
is reported in Table 3. We compute, for each sys-
tem, the original system-level score, and subtract

10Signature: nrefs:1 case:mixed eff:no tok:flores200
smooth:exp version:2.5.1"

11https://github.com/google-research/
mt-metrics-eval

from it the score after merging its outputs at the
domain level and realigning with mweralign.

Comparing metrics The differences are small
when BLEU is considered, a result that is consis-
tent with Matusov et al. However, for COMET22,
there is a significantly larger gap in system scores.
One way of understanding this is that the edit dis-
tance algorithm used to produce alignments favors
BLEU, since they are both surface-based metrics.
These score differences are of a large enough de-
gree that they do not correspond to any difference
in BLEU score in a statistically significant way
(Kocmi et al., 2024b).

Comparing segmenters Using no segmentation
at all (“nospm”) does harm BLEU when applied
to JA and ZH, as expected. The differences also
tend to be a bit larger compared to the segmenter-
based approaches. As for which segmenter to use,
it does not seem to matter very much. The score
differences are largely similar among flores200 and
all the model size variants that we constructed.

5.2 Effect on system rankings

Next we look at the effect on system rankings. Ta-
ble 5 reports the affects on correlation with hu-
man system-ranking.12 A few observations are
in order. First, alignment works fairly well, even
when no segmenter is used.13 In many cases, sys-
tem correlation with human judgments is better
under alignment than in the original setting. Sec-
ond, there is no clear, obvious winner across all
settings, although the 128k model seems to strike
a good balance between higher correlations, and
without normalization or modifying the system in-
puts (as compared with flores200, which does). Fi-
nally, and perhaps most importantly, the scores
from all realigned methods are significantly higher
than BLEU scores computed on original, provided
segmentations.

6 Evaluation on shorter segments

The WMT24 was collected at the paragraph level.
A consequence of this is that the segments are much

12We were unable to compute metrics for en-is and en-hi
due to a discrepancy in the officially-released datasets and
those in the mt-metrics-eval package; en-is was reported to be
missing Claude-3.5 and ONLINE-W, and en-hi, ONLINE-W
and GPT-4.

13Ideally, ZH and JA’s “notok” setting would use character-
based segmentation. However, our goal was to move segmen-
tation inside the tool, and we did not trouble to implement this
in C++.
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segmenter cs-uk en-cs en-de en-es en-hi en-is en-ja en-ru en-uk en-zh ja-zh
B

L
E

U

none -0.2 -0.3 -0.2 -0.1 -0.4 -0.3 -14.2 -0.3 -0.2 -24.4 -17.6
flores200 -0.1 -0.1 -0.1 -0.0 -0.2 -0.1 -0.1 -0.1 -0.0 -0.1 -0.1
32k -0.1 -0.1 -0.1 -0.0 -0.2 -0.1 -0.1 -0.1 -0.0 -0.1 -0.1
64k -0.1 -0.1 -0.1 -0.0 -0.2 -0.1 -0.1 -0.1 -0.0 -0.1 -0.1
128k -0.1 -0.1 -0.1 -0.0 -0.2 -0.1 -0.1 -0.1 -0.0 -0.1 -0.1
256k -0.1 -0.1 -0.1 -0.0 -0.2 -0.1 -0.1 -0.1 -0.0 -0.1 -0.2

C
O

M
E

T
22

none -2.6 -3.4 -3.4 -2.1 -3.1 -3.4 -24.6 -4.7 -2.8 -26.6 -26.4
flores200 -1.8 -2.1 -2.2 -1.2 -1.7 -1.8 -1.8 -2.5 -1.6 -1.4 -1.3
32k -1.9 -2.3 -2.2 -1.2 -2.1 -2.2 -1.3 -2.8 -1.7 -0.7 -0.9
64k -1.8 -2.3 -2.3 -1.3 -2.0 -2.1 -1.2 -2.4 -1.7 -0.7 -0.9
128k -1.8 -2.3 -2.1 -1.2 -1.8 -2.1 -1.1 -2.4 -1.6 -0.7 -1.0
256k -1.8 -2.1 -1.8 -1.1 -1.7 -2.1 -1.5 -2.3 -1.6 -0.9 -1.2

Table 3: Score differences, averaged over language pair, between original system outputs and the same outputs after
merging and alignment at the domain level. Top block: BLEU, bottom block: COMET22.

model Latin Dev. Cyr. CJ

#langs 4 1 3 3
#systems 94 64 18 66

None 3.0 3.5 2.9 26.0
flores 1.8 2.0 1.5 1.5

32k 2.0 2.1 1.9 0.9
64k 1.9 2.0 1.8 0.9
128k 1.9 2.0 1.7 0.9
256k 1.7 1.9 2.9 1.2

Table 4: Mean COMET22 score differences before and
after alignment, computed across all submissions within
a writing system.

longer and there are fewer boundary points for the
system to navigate. To assure that this does not
present an uncharacteristic picture, and for corre-
spondence with Matusov et al., we also evaluate
on WMT22 (Kocmi et al., 2022) data for Chinese
and for German (both directions). Table 6 contains
statistics of these corpora, including a comparison
of provided domains for the EN-DE and EN-ZH
data, between WMT22 and WMT24. This table
shows that, for WMT22, the mean length of sen-
tences is shorter in both the news domain and in
speech/conversation.

Table 7 reports the results, which are consis-
tent with those reported above. There is no con-
clusive tokenizer which performs best; the re-
aligned COMET22 correlations are sometimes bet-
ter, sometimes worse than with the provided seg-

mentations; and there are huge gaps above the base-
line BLEU correlations, which are once again com-
puted on provided segmentations (not after realign-
ment).

7 Conclusion

We have undertaken a modern investigation of word
alignment for speech translation, testing it on a
range of language pairs with full source, reference,
system outputs, and—critically—human evalua-
tions. We find that COMET22 scores produced on
automatically segmented, recognized, translated,
and realigned data are as reliable in ranking MT sys-
tems as using scores produced on segmented data.
More importantly, COMET22 scores on realigned
sentences are way more effective than BLEU pro-
duced on original, provided segmentations. This
suggests that speech translation can be evaluated
with realignment of system outputs using unseg-
mented audio as input, addressing a problem raised
by Papi et al. (2024).

Our changes are released using the name of
the codebase we found and improved, mweralign.
One potential application is in document-level eval-
uation.

We note further improvements that could be un-
dertaken:

• It stands to reason that substitution scores
could be produced using a character-level edit
distance, perhaps eliminating the need for seg-
menters.

• WMT-quality system evaluations should be
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segment. en-cs en-de en-es cs-uk en-ru en-uk en-ja en-zh ja-zh avg.

manual 0.752 0.828 0.462 0.818 0.949 0.600 0.412 0.718 0.641 0.686
si

ng
le

re
f

none/cj 0.810 0.783 0.436 0.527 0.846 0.467 0.455 0.606 0.615 0.616
flores200 0.766 0.845 0.385 0.636 0.923 0.600 0.364 0.727 0.615 0.651
32k 0.790 0.833 0.487 0.636 0.897 0.600 0.364 0.697 0.667 0.663
64k 0.790 0.850 0.410 0.624 0.923 0.556 0.394 0.758 0.641 0.660
128k 0.810 0.850 0.503 0.600 0.897 0.511 0.394 0.697 0.641 0.655
256k 0.790 0.833 0.487 0.636 0.872 0.584 0.424 0.697 0.667 0.665

+p
ar

ap
hr

as
es

none/cj 0.810 0.783 0.436 0.527 0.821 0.511 0.364 0.788 0.615 0.628
flores200 0.733 0.850 0.436 0.661 0.949 0.556 0.394 0.697 0.641 0.657
32k 0.785 0.845 0.462 0.673 0.897 0.556 0.394 0.727 0.641 0.664
64k 0.771 0.817 0.410 0.636 0.897 0.556 0.394 0.727 0.641 0.650
128k 0.790 0.833 0.462 0.661 0.872 0.556 0.394 0.727 0.667 0.662
256k 0.771 0.817 0.487 0.709 0.846 0.556 0.394 0.758 0.641 0.664

BLEU 0.467 0.377 0.039 0.537 0.555 0.511 0.394 0.657 0.462 0.444

Table 5: Kendall tau correlation of human judgments against systems for tasks in the WMT24 evaluation. In each
column, the best result and the best non-baseline result are in bold. manual denotes COMET22 applied to the
original segmentations. BLEU is computed on the manual segments.

domain WMT24 WMT22

literary 38.0 (206) -
news 54.0 (149) 22.8 (511)
social 15.6 (531) 15.4 (512)
speech 73.2 (111) -
conversation - 11.7 (484)
ecommerce - 16.5 (530)

AVERAGE 32.4 (997) 16.7 (2,037)

Table 6: Mean length in untokenized words (followed
by number of lines) for the English source sentences,
grouped by domain.

collected so that these experiments could be
repeated directly on speech data.

• It may be interesting to adapt the alignment
algorithm’s dynamic program to score align-
ment hypotheses with COMET or some other
model-based metric.
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de-en en-de en-zh zh-en
#sys 9 15 13 18

manual 0.366 0.632 0.473 0.648

none/cj 0.310 0.718 - 0.538
flores200 0.389 0.718 0.576 0.508

32k 0.278 0.684 0.545 0.530
64k 0.333 0.692 0.512 0.604

128k 0.333 0.692 0.534 0.582
256k 0.333 0.710 0.515 0.530

BLEU 0.229 0.308 0.182 0.275

Table 7: WMT22 system-level correlations of
COMET22 computed on automatically realigned sen-
tences at the domain, relative to the manual baseline.

Limitations

Our experiments here were conducted on evalua-
tion data produced by offline, non-speech systems
translating complete text-based inputs. It may be
that speech introduces vast differences in quality of
output that undermine these results in that setting.
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A System-level score detail

In Section 5.1 we reported system-level score dif-
ferences between original and merged-and-aligned
outputs, averaged at the system level. Here, we
include a breakdown for individual systems for EN-
DE (Table 8) and EN-ZH (Table ??).

BLEU
system before after lines chars

Unbabel-Tower70B 84.9 83.1 73.1 98.7
Dubformer 83.9 82.0 71.1 99.0
TranssionMT 83.5 81.8 72.5 97.1
GPT-4 83.5 81.8 71.0 98.9
ONLINE-B 83.4 81.8 72.6 97.9
Claude-3 83.3 81.2 69.8 98.5
ONLINE-W 83.0 81.1 71.0 98.9
CommandR-plus 83.0 81.3 70.4 98.4
Mistral-Large 82.7 80.4 66.9 98.1
IOL-Research 82.1 79.9 71.2 99.0
Gemini-1 82.1 80.4 69.1 96.7
ONLINE-A 81.5 79.4 71.2 99.0
Aya23 81.4 79.6 70.7 98.6
Llama3-70B 81.2 79.0 69.8 98.1
IKUN 80.6 77.9 63.5 98.7
ONLINE-G 80.2 78.1 71.8 98.9
Phi-3-Medium 79.7 77.5 67.2 99.0
IKUN-C 79.6 77.5 72.4 98.9
CUNI-NL 79.2 76.6 64.2 98.3
AIST-AIRC 73.4 71.0 69.8 98.9
NVIDIA-NeMo 71.3 68.8 60.5 98.7
Occiglot 69.3 64.7 41.3 88.0
MSLC 64.8 62.5 64.2 98.0
TSU-HITs 63.7 59.1 39.5 89.7
CycleL 42.0 40.5 36.4 93.8
CycleL2 42.0 40.5 36.4 93.8

Table 8: COMET22 scores from the original systems
(before) and after merging and automatic realignment
(after) for the WMT24/en-de systems. %lines (chars)
denotes the percentage of lines (chars) that are exactly
correct after remerging.
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Abstract

Simultaneous machine translation (SIMULMT)
presents a challenging trade-off between trans-
lation quality and latency. Recent studies have
shown that LLMs can achieve good perfor-
mance in SIMULMT tasks. However, this often
comes at the expense of high inference costs
and latency. In this paper, we propose a conver-
sational SIMULMT framework to enhance the
inference efficiency of LLM-based SIMULMT
through multi-turn-dialogue-based decoding
where source and target chunks interleave in
translation history, enabling the reuse of Key-
Value cache. To adapt LLMs to the proposed
conversational decoding, we create supervised
fine-tuning training data by segmenting parallel
sentences using an alignment tool and a novel
augmentation technique to enhance generaliza-
tion. Our experiments with Llama2-7b-chat
on three SIMULMT benchmarks demonstrate
that the proposed method empowers the superi-
ority of LLM in translation quality, meanwhile
achieving comparable computational latency
with specialized SIMULMT models.1

1 Introduction

Simultaneous machine translation (SIMULMT) sys-
tems provide real-time translation of text input
stream (Gu et al., 2017). This task plays an im-
portant role in real-world applications, such as fa-
cilitating communication in online conferences and
generating live subtitles with strict latency require-
ments.

Although large language models (LLMs) have
shown the potentials in machine translation (Hendy
et al., 2023; Zhu et al., 2023), their applications to
SIMULMT is non-trivial, as they are not inherently
designed for simultaneous decoding. Recent works
have attempted to adapt LLMs for SIMULMT with
prefix fine-tuning, incremental decoding (Wang
et al., 2023b) and learning to wait for more source

1Code, weights, and data will be released with publication.
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Prompt

Conversational 
Prompt

<U>The cat
<A>这只猫

<U>The cat 
     sleeps on the
<A>这只猫
     睡在

<U>The cat 
     sleeps on the
     sofa.
<A>这只猫
     睡在
     沙发上。

<U>The cat
<A>这只猫

<U>The cat
<A>这只猫
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<A>睡在
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<A>这只猫
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<A>睡在
<U>sofa.
<A>沙发上。
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Figure 1: Comparison of offline prompt (left) and con-
versational prompt (right). Offline prompt inserts to-
kens mid-sequence, preventing KV-cache reuse (red X),
while conversational prompt appends content sequen-
tially, enabling efficient cache utilization (blue blocks).

tokens before translation (Koshkin et al., 2024).
These works show LLMs, with careful prompt-
engineering, could approach the performance of
specialized SIMULMT models. However, high
computational cost, slow inference, and high la-
tency render these approaches impractical for real-
world applications (Yuan et al., 2024). This is pri-
marily due to the use of offline prompting, where
arriving source tokens are inserted at the end of the
source sequence, disrupting the continuity of the
translation history (Figure 1 left). This prevents
reusing cached target history states and requires re-
computation of source and target representations.

To mitigate this issue, we propose conversa-
tional prompt that resemble the multi-turn dia-
logue nature of LLMs. Specifically, user inputs
are treated as the source tokens to be read, while
the LLM’s responses are considered the predicted
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target tokens to be written. In our conversational
SIMULMT, newly arrived source form the current
instruction, while previous source tokens and their
translations are treated as conversation history (Fig-
ure 1 right). This conversational prompt enables the
reuse of Key-Value cache (Pope et al., 2023), as all
content is appended incrementally without modify-
ing the translation history. However, conversational
SIMULMT poses new challenges for LLMs to com-
prehend the segmented source content and produce
a coherent translation via multi-turn conversation.

To adapt the LLM to the conversational decoding
format, we opt to perform supervised fine-tuning
(SFT) on the pretrained LLM. But the challenge
is the lack of the conversational SIMULMT data
for SFT. Interleaving incomplete source and target
segments in the dialogue history is unnatural (see
Figure 1). This code-switching style is exhibited in
some languages (Yong et al., 2023); however, it is
the continuation rather than the translation of the
previous content, making it challenging to leverage
existing code-switched datasets for training. There-
fore, we propose to curate the training data by seg-
menting parallel sentence pairs into smaller chunks
based on a transformation of the word alignments.
The segmented chunks are further augmented to
handle different latency requirements.

Experiments on three SIMULMT benchmarks
demonstrate the effectiveness of our proposed con-
versational SIMULMT in balancing the trade-offs
between accuracy, speed and flexibility to different
latency requirements. Compared to offline prompt-
ing, our method not only maintains strong perfor-
mance, but also benefits from reduced latency. No-
tably, our method attains similar decoding speed to
the LLM-based OFFLINEMT.

Our contributions are summarized as follows,

• We introduce conversational prompting to
reduce the inference cost of LLM-based
SIMULMT by leveraging its multi-turn dia-
logue capability and enabling efficient reuse
of Key-Value cached computations.

• We present an automated training data cura-
tion pipeline that can turn any offline trans-
lation parallel corpus into the conversational
prompt format and generalize with a novel
augmentation strategy into any inference set-
ting.

• Experiments demonstrate that the proposed
conversational SIMULMT obtains up to

2× acceleration compared to the offline-
prompting baseline while maintaining com-
parable translation quality, emphasizing its
value in practical applications.

2 Background

Simultaneous Machine Translation (SIMULMT)
Unlike offline machine translation (OFFLINEMT),
where models generate target translation y =
(y1, ..., yJ) given a complete source sentence x =
(x1, ..., xI), SIMULMT incrementally translates
with partial source context x≤t = (x1, ..., xt)
where t ≤ I . A core component of SIMULMT
is a read-write policy that decides whether to wait
for new source tokens (READ) or generate target
tokens (WRITE), balancing translation quality and
latency.

Incremental Decoding Studies have explored
adapting OFFLINEMT models for simultaneous
decoding by performing offline decoding on in-
crementally updated histories (Liu et al., 2020;
Nguyen et al., 2021; Polák et al., 2022; Guo et al.,
2023). This involves a chunk-wise READ policy
that reads n tokens per round and a WRITE policy
that commits stable partial translations using the
longest common prefix (LCP) (Polák et al., 2022)
algorithm. LCP often causes high latency when
candidates lack common initial tokens. Relaxed
Agreement LCP (RALCP) (Wang et al., 2023b)
was proposed to vote for accepting prefixes with
candidate agreement above threshold γ.

SIMULMT with LLMs Since incremental de-
coding essentially repeats offline decoding, us-
ing offline-style translation prompts with LLMs
is straightforward and aligns with their instruction-
following capabilities (Xu et al., 2023). During
each round, a source chunk is READ and appended
to source history x. LLMs generate translations
using offline prompts as shown in Figure 1, which
are then WRITTEN to target history y.

3 Conversational SIMULMT

While incremental decoding with offline prompt
enables LLMs to perform simultaneous decoding,
it faces high computational latency due to the inser-
tion of newly arrived source tokens in the middle
of the prompt, disrupting the reuse of cached target
history states. In this section, we propose conversa-
tional prompts to improve the decoding efficiency
and balance quality-latency trade-off.
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Setting N-Shot SacreBLEU COMET

OFFLINEMT 0-Shot 30.99 84.95

Convers. SIMULMT 0-Shot 7.14 58.76
Convers. SIMULMT 5-Shot 13.51 69.03

Convers. SIMULMT 0-Shot Failure Case

Chunk 1 Input: Die Flugdaten zeigten, dass das

Chunk 1 Response:
The flight data showed that the plane
was flying at an altitude of 35,000 feet.

Chunk 2 Input: Flugzeug auch bei einem zweiten
Chunk 2 Response: The plane was also flying during the second flight.

Reference Flight data showed the plane had to pull out of second

Table 1: Performance comparison of Llama2-7b-chat
on WMT15 De->En test set in zero-shot and few-shot
conversational SIMULMT settings. OFFLINEMT re-
sults are included as a baseline. The example failure
case demonstrates how the LLM hallucinates comple-
tions (shown in red) when translating partial sentences,
leading to compounding errors in subsequent chunks.

3.1 Decoding with Conversational Prompt

The efficiency improvement in LLMs hinges on
maintaining the Key-Value (KV-) cache reuse, i.e.
the decoding process must consistently add new
tokens at the end of the sequence without alter-
ing the middle elements. When LLMs are per-
forming multi-turn dialogues, the prompt for each
turn is composed of a user input and assistant re-
sponse separated by special tokens, and conversa-
tion histories are simply concatenated as the con-
text (Touvron et al., 2023). Drawing parallels to
multi-turn dialogues in LLMs, SIMULMT can also
be viewed similarly, where user inputs and assistant
responses are equivalent to READ and WRITE action.
At round t, LLM reads a source context chunk Xt

and writes its translation Yt: “<U> Xt <A> Yt".
The already processed chunks are concatenated as
contexts, serving the latest translation round of new
incoming chunks. As all contents are appended in-
crementally, the reuse of KV-cache becomes feasi-
ble again like in multi-turn dialogue (see Figure 1).
Our approach also adapts the hypothesis selection
strategy e.g. RALCP (Wang et al., 2023b) to prune
the unstable suffixes in each response. Algorithm 1
in Appendix A presents the detailed decoding pro-
cess.

We conducted a pilot experiment to as-
sess LLMs’ zero-shot and few-shot capabil-
ities with conversational prompts. Using
Llama2-7b-chat (Touvron et al., 2023) on the
WMT15 De->En test set with chunk size n = 5,
we tested both zero- and five-shot settings. As
shown in Table 1, conversational SIMULMT per-
formed poorly even with 5-shot prompting. The

failure analysis reveals that LLMs, trained primar-
ily on complete sentences, struggle with partial
source translation and tend to hallucinate comple-
tions when presented with fragments in a multi-turn
dialogue format. To address this limitation, we pro-
pose to SFT LLMs on conversational SIMULMT
data. The following section details our approach to
converting a normal bi-text corpus into conversa-
tional prompt format.

3.2 SFT on Conversational SIMULMT Data
As conversational SIMULMT data is not naturally
available, we propose to synthesize READ / WRITE
chunks by segmenting sentence pairs from parallel
corpora. Inspired by Arthur et al. (2021) which gen-
erates the oracle policy from word alignments, we
further extend the approach by carefully addressing
the impact of word reordering and improving the
generalizability of the oracle policy. Specifically,
we first build monotonic dependency graph from
the alignment of a sentence pair. We then segment
the graph and convert these segments into READ /
WRITE pairs, followed by augmentation to improve
its generalization across various latency demands
(Figure 2). The process is explained below.

Alignment Graph Generation Given a sentence
pair, we employ fastalign (Dyer et al., 2013) to
obtain word alignment between source and target
tokens (Step 1 in Figure 2). The obtained alignment
is a set A of pairs (i, j) denoting the source token
xi is aligned with its corresponding target token yj .
We define the sufficient source token set to generate
a given target token yj as aj = {i|(i, j) ∈ A, ∀i ∈
[0, I]}.

A source and target sentences have a monotonic
translation relationship if the previous target to-
kens only aligned with the previous source tokens,
i.e. ∀j > k min(aj) ≥ max(ak) (Koehn et al.,
2005; Ling et al., 2011). This condition ensures that
the relative order of words is preserved between
the source and target sentences. In that case, the
optimal minimum-latency policy that retains suffi-
cient source information is to produce the mono-
tonic translation that follows the word order of the
source sequence, i.e. WRITE target token yj imme-
diately after reading the final required source token
xmax(aj), and then READ the next source tokens.

Monotonic Dependency Graph Monotonic de-
pendency enables effective implementation of op-
timal READ /WRITE policies. However, transla-
tions often require reordering to produce grammat-
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Figure 2: The illustration of the data curating process. The first graph is obtained from fast_align, it is then
modified into a monotonic dependency graph by adding additional edges. The Meta Trajectory can be derived by
segmenting the monotonic dependency graph with minimal dependency (segment with the colored solid line in step
3). Finally, Policy Generalization is applied to augment the segmented graph with merge (red dotted lines will be
removed) and shift (blue dotted lines are shifted) operations. Chunks in the trajectories derived from the third and
fourth graphs are highlighted with different colors.

ically correct output, especially between languages
with different syntactic structures. To address this,
we propose constructing a monotonic dependency
graph

−→A from alignment set A (Step 2 in Figure 2)
such that the monotonic condition is met.

For each target token yj violating the mono-
tonic condition min(aj) < max(aj−1), we add
a new edge from the last sufficient source token
xmax(aj−1) to yj , eliminating the need for reorder-
ing. In Figure 2, y2 violates monotonicity as its ear-
liest required source token min(a2) = 1 precedes
the last required source token for the previous tar-
get max(a1) = 2. Thus, we add an edge from x2
to y2.

Meta Trajectory We then segment the mono-
tonic dependency graph and convert these seg-
ments into READ / WRITE pairs, representing the
meta trajectory of the oracle policy with mini-
mum latency (Step 3 in Figure 2). We exam-
ine each target token to identify its exclusive cor-
responding source tokens with minimal depen-
dency. Each subgraph

−→Aj corresponds to a pair
(Rj ,Wj) where Wj = {yj} is a target token and
Rj = {xi|i ∈ aj \ aj−1} contains new source to-
kens required since the previous target. When con-
secutive target tokens depend on the same source
token, we combine their WRITE actions, assigning
the shared source token to Rj = {xi} and forming
Wj = {yj , ..., yj+n}. This generates a meta trajec-
tory RW ⋆ = [(R1,W1), ..., (RC ,WC)], C ≤ I ,
with C chunks.

Trajectory Augmentation Since the meta tra-
jectories are tailored for minimal latency, they
may not generalize well to different lengths of
the input chunk, corresponding to different lev-
els of latency. To improve the LLM’s adaptabil-
ity across various latency demands, we augment
the meta-trajectory RW ⋆ with a series of merge
and shift operations (Step 4 in Figure 2). We
first traverse RW ⋆ and randomly merge δ con-
secutive READ and WRITE actions, forming new
pairs ([Rc, ..., Rc+δ], [Wc, ...,Wc+δ]), where [·] is
the string concatenation operation. Here, δ is a
variable re-sampled from a uniform distribution
U(δmin, δmax) where δmin and δmax are predefined
hyperparameters.

Additionally, with a probability of β, we shift a
portion of tokens from a WRITE action Wc to the
next one Wc+1 in the merged trajectory. More
specifically, we split Wc at a proportion ρ and
transfer the latter part to the next pair, resulting in
(Rc,W

<ρ
c ), (Rc+1, [W

>ρ
c ,Wc+1]) where ρ is sam-

pled from U(ρmin, 0.9) where ρmin is a hyperpa-
rameter.

This augmentation enhances the LLM’s context
conditioning and suits incremental decoding where
prediction endings are often truncated by hypoth-
esis selection algorithms. The resulting trajectory
consists of READ /WRITE chunks of varying lengths,
formatted with conversational prompts for SFT.
During training, we apply cross-entropy loss only
on target tokens within unshifted WRITE chunks.
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Trajectory Dimension De→En En→Vi En→Zh

Meta-Trajectory
#Chunk 10.69± 5.5 12.98± 8.1 11.94± 7.3
#SRC word/Chunk 1.74± 0.8 1.38± 0.4 1.68± 0.5
#TGT word/Chunk 1.79± 0.8 1.73± 0.5 1.53± 0.5

Aug-Trajectory
#Chunk 2.74± 1.2 3.12± 1.6 2.95± 1.4
#SRC word/Chunk 7.01± 3.9 5.83± 2.8 7.02± 3.6
#TGT word/Chunk 7.18± 3.9 7.35± 3.5 6.40± 3.2

Table 2: Statistics of curated conversational SIMULMT
training data across all benchmarks, showing chunk
counts and source/target tokens per chunk (mean±std)
for both meta and augmented trajectories.

4 Experiments

4.1 Datasets

WMT15 De->En (4.5M training pairs) We use
newstest2013 (3000 pairs) for validation and
newstest2015 (2169 pairs) for testing2.

IWSLT15 En->Vi (133K training pairs) We em-
ploy TED tst2012 (1553 pairs) and tst2013
(1268 pairs) as validation and test sets, respec-
tively3.

MUST-C En->Zh (Di Gangi et al., 2019) (359k
training pairs) This TED talk dataset provides 1349
pairs for validation and the tst-COMMON (2841
pairs) for testing.

Conversational SIMULMT Datasets For each
dataset, we create conversational prompt versions
from their training sets using the approach de-
scribed in §3.2. We employ fastalign (Dyer et al.,
2013) to obtain initial word alignment graphs. For
trajectory augmentation, we set δmin:max = (2, 10)
for merging operations. For shift operations, both
β and ρmin are set to 0.5, meaning we shift at least
50% of tokens in a target segment to the next one
with 0.5 probability. Table 2 presents detailed statis-
tics for these datasets.

4.2 Evaluation Metrics

We evaluate translation quality and latency using
SacreBLEU4 (Post, 2018), COMET5 (Rei et al.,
2020), and word-level average lagging (AL) (Ma
et al., 2019). To assess computational efficiency,
we measure word wall time (WWT) (Wang et al.,
2023b), which represents the average time required
to predict a word on identical hardware.

2www.statmt.org/wmt15/
3nlp.stanford.edu/projects/nmt/
4BLEU+nrefs:1+case:mixed+eff:no+tok:{13a,zh}

+smooth:exp+version:2.3.1
5https://huggingface.co/Unbabel/

wmt22-cometkiwi-da

4.3 Model Training

For all LLM-based methods, we use
Llama2-7b-chat (Touvron et al., 2023) as
the backbone following Wang et al. (2023b). We
conduct QLoRA-based SFT (Hu et al., 2022;
Dettmers et al., 2023) for one epoch with r = 64,
α = 16, learning rate of 2e-4, batch size of 48,
and 4-bit quantization on a single A100 GPU.
Both offline and conversational prompt models
are fine-tuned on identical data sources (standard
offline style bitext from the aforementioned
training sets), but formatted as offline prompts and
conversational prompts respectively.

4.4 Settings

We compare our proposed conversational
SIMULMT against the following baselines:

Encoder-Decoder Transformers We evaluate
the performance of a series of specialized Encoder-
Decoder Transformer models for both OFFLINEMT
and SIMULMT:

• Offline NMT: Following (Zhang and Feng,
2022), we train vanilla Transformer (Vaswani
et al., 2017) (48M parameters for En->Vi;
300M for De->En and Zh->En) with beam
size 5 for inference.

• Wait-k (Ma et al., 2019): A fixed policy ap-
proach that reads k source tokens before al-
ternating read/write operations. We test with
k ranging from 1-8 for De->En and Zh->En,
4-8 for En->Vi.

• ITST (Zhang and Feng, 2022) An adaptive
policy that measures the information trans-
ferred from source to target token and deter-
mines when to proceed with translation with
a threshold (set as 0.1-0.7 for all datasets).

• Wait-Info (Zhang et al., 2022) An adaptive
policy using token information thresholds (K
from 1-8 for all datasets) to coordinate the
timing of translation.

LLM-based SIMULMT We compare our con-
versational prompt approach against the of-
fline prompt method (Wang et al., 2023b), us-
ing identical READ policies with chunk sizes
n=[3,5,7,9,11,13]. Both approaches are evaluated
with RALCP hypothesis selection (beam=5). We
also assess greedy decoding (beam=1, no hypoth-
esis selection) with our conversational prompting
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Figure 3: Translation quality and latency results on three benchmarks. Results are presented in three groups with
different colors: (i) Encoder-Decoder Transformer baselines (orange), (ii) Offline-Prompt LLMs (blue), and (iii)
Conversation-Prompt LLMs (red). Offline and Simultaneous decoding are distinguished by the first letter (O/S).

only (as computational latency baseline), since of-
fline prompting inherently requires hypothesis se-
lection and cannot function with greedy search. For
reference, we include results from LLM-based OF-
FLINEMT as a performance upper bound.

4.5 Results

Our preliminary study in Table 1 showed
LLMs struggle with zero/few-shot conversational
SIMULMT. Here we examine whether fine-tuning
on our curated data enables effective conversational
SIMULMT, focusing on quality-latency balance.

Translation Quality As shown in Figure 3,
LLM-based approaches (red and blue) outper-
form Transformer baselines (yellow) across all
language pairs by up to 3 BLEU/10 COMET
points. With sufficient latency allowance, LLM-
based SIMULMT even surpasses offline Trans-
former NMT. At equivalent latency levels, our con-
versational prompting (red) achieves comparable
BLEU scores to offline prompting (blue) while of-
ten showing better COMET scores.

Translation Latency Our conversational
SIMULMT (red) reduces latency compared to
offline prompting (blue), with average reductions
of 1.17 and 1.50 AL across all benchmarks. For
En->Vi and En->Zh, our approach achieves latency
comparable to specialized SIMULMT models.
While RALCP (S:LLM-ConvPrompt-RALCP)

generally provides better quality than greedy
decoding (S:LLM-ConvPrompt-Greedy), the latter
offers lower latency.

Practical Advantages Most significantly, our
conversational SIMULMT (red) maintains supe-
rior translation quality at low latency levels (AL<4)
compared to specialized models (yellow), making
it particularly valuable for practical applications
requiring both high quality and low latency. In con-
trast, offline prompting (blue) with identical decod-
ing configurations struggles to operate effectively
in the low-latency range, diminishing its quality
advantages relative to specialized approaches (yel-
low). These results demonstrate that our conversa-
tional prompting approach effectively addresses the
efficiency-quality trade-off in simultaneous transla-
tion with LLMs.

5 Analysis

5.1 Decoding Speed
While Average Lagging (AL) effectively quantifies
algorithmic delay between translation and source
input, it doesn’t account for computational costs.
In real-world applications, actual inference time
critically impacts user experience: a model with
low AL might still deliver poor user experience
due to high computational overhead. To address
this limitation, we evaluate decoding speed using
Word Wall Time (WWT), which measures actual
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Figure 5: Effect of trajectory augmentation strategies
on translation quality (BLEU) and latency (AL) for
WMT15 De->En. Results compare models trained on
meta-trajectories alone versus with merge and shift op-
erations.
inference time per word (§4.4).

Figure 4 presents detailed WWT results for
WMT15 De->En translation. Our analysis
reveals that offline prompting with RALCP
(S:LLM-OffPrompt-RALCP) exhibits the slow-
est performance, making it impractical despite
good translation quality. In contrast, our con-
versational prompting approach with RALCP
(S:LLM-ConvPrompt-RALCP) achieves computa-
tional efficiency comparable to offline LLM trans-
lation (O:LLM-ConvPrompt-Beam=5) while main-
taining high translation quality.

Most notably, our conversational prompting with
greedy decoding (S:LLM-ConvPrompt-Greedy)
delivers the best efficiency-quality bal-
ance—achieving processing speeds comparable
to specialized SIMULMT models (yellow) while
producing significantly better translations. These
results demonstrate that our approach effectively
addresses both algorithmic and computational
latency concerns, making it suitable for practical
deployment.

5.2 Effectiveness of Trajectory Augmentation
To evaluate our trajectory augmentation strategy,
we conducted an ablation study comparing mod-
els trained on: (i) meta trajectories only, (ii) meta
trajectories with merge operations, and (iii) meta
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Figure 6: Translation quality (BLEU) on WMT15 De-
>En when generating the final chunk with vs. without
preceding context, across different chunk sizes. The
consistent gap demonstrates effective context utilization.

trajectories with both merge and shift operations
(§3.2). All models used identical hyperparameters,
with training data as the only variable.

As shown in Figure 5, trajectory augmentation
yields notable improvements in translation quality
and latency when using RALCP. The merge op-
eration contributes most significantly to these im-
provements, while models trained solely on meta
trajectories perform poorly across all metrics.

This suggests augmentation techniques enhance
the model’s ability to generalize across different la-
tency conditions. Without augmentation, the model
struggles with varying input chunk sizes, causing
RALCP to accept less reliable hypotheses and in-
creasing latency. The augmented approach effec-
tively prepares the model for dynamic simultaneous
translation scenarios.

5.3 Ability to Leverage Contextual
Information

Effective SIMULMT with conversational prompt-
ing requires the model’s ability to accurately utilize
contextual information. To evaluate this capability,
we designed an experiment isolating the model’s
performance on the final chunk of translation both
with and without access to preceding context.

For each test instance, we extracted the com-
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(a) Impact of model iteration (Llama-2-7b-chat vs. Llama-3.1-
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(c) Impact of target language proficiency (Llama-3.1-8B-Instruct
vs. Qwen2.5-7B-Instruct) on MUST-C En->Zh.

Figure 7: Performance comparison of different LLM
families with our conversational prompt.

plete inference history and separated it into: (i)
the source-target dialogue history serving as con-
text, and (ii) the final source chunk representing the
latest input. We then tasked our fine-tuned LLM
with translating this final chunk under two condi-
tions: with and without access to the preceding
conversation history. Performance was evaluated
by computing BLEU scores on the concatenation of
the generated final chunk with its original history.

As shown in Figure 6, we observed a consis-
tent 2-point decrease in BLEU scores when context
was withheld. This performance gap demonstrates
our model effectively leverages information from
previous conversation turns to produce more accu-
rate translations, confirming the fine-tuned LLM
maintains translation coherence.

5.4 Generalizability Across LLM Families

In our main experiments, we used
Llama-2-7b-chat following Wang et al. (2023b)
for consistency. Now, we examine our approach’s
generalizability across different LLMs, using
identical training and inference parameters for fair
comparison. We report only greedy simultaneous

decoding and offline beam=5 results to eliminate
interference with hypothesis selection.

Impact of Model Iteration We com-
pare Llama-2-7b-chat with the newer
Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) on WMT15 De->En to assess how model
advancements affect performance. As shown
in Figure 7a, the newer model demonstrates
consistent improvements in both offline and simul-
taneous modes. This confirms that conversational
SIMULMT effectively transfers to newer LLMs,
with benefits from improved instruction-following
capabilities and enhanced language modeling.

Effect of Model Scale We investigate how
model size impacts performance by compar-
ing Llama-3.1-8B-Instruct with the smaller
Llama-3.2-3B-Instruct (Grattafiori et al., 2024)
on WMT15 De->En. Figure 7b shows that
while the larger model predictably outperforms
its smaller counterpart, the 3B model still
achieves acceptable translation quality (on par with
Llama-2-7b-chat in Figure 7a), suggesting our
method is viable on resource-constrained devices.

Impact of Target Language Proficiency We
evaluate Llama-3.1-8B-Instruct against
Qwen2.5-7B-Instruct (Qwen et al., 2025) on
MUST-C En->Zh to investigate the effect of the
model’s target language capabilities. As shown
in Figure 7c, Qwen2.5 consistently outperforms
Llama-3.1 for Chinese translation by 1-2 BLEU
points across all latency settings, demonstrating
that target language proficiency provides additional
benefits with our approach.

6 Related Works

Simultaneous Machine Translation (SIMULMT)
is the task to provide real-time translation of a
source sentence stream where the goal is to mini-
mize the latency while maximizing the translation
quality. A common approach is to train an MT
model on prefix-to-prefix dataset to directly predict
target tokens based on partial source tokens (Ma
et al., 2019). Alternatively, Liu et al. (2020) pro-
posed the incremental decoding framework to lever-
age the pretrained OFFLINENMT model and turn
it into a SIMULMT model without further training.
A core component of SIMULMT is a read-write
policy to decide at every step whether to wait for
another source token (READ) or to generate a tar-
get token (WRITE). Previous methods have explored
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fixed policy, which always waits for k tokens be-
fore generation (Ma et al., 2019; Zhang et al.,
2022) and adaptive policy, which trains an agent
via reinforcement learning (Gu et al., 2017; Arthur
et al., 2021). Re-translation (Arivazhagan et al.,
2019) from the beginning of the source sentence at
the WRITE step will incur high translation latency.
Stable hypothesis detection methods such as Lo-
cal Agreement, hold-n (Liu et al., 2020) and Share
prefix SP-n (Nguyen et al., 2021) are employed to
commit stable hypothesis and only regenerate a sub-
sequence of source sentence. The goal is to reduce
the latency and minimize the potential for errors
resulting from incomplete source sentence (Polák
et al., 2022; Wang et al., 2021).

LLM-based NMT Recent research has delved
into the potential usage of LLMs in MT (Hendy
et al., 2023; Zhu et al., 2023; Robinson et al., 2023),
especially in handling discourse phenomena (Wang
et al., 2023a; Wu et al., 2024) and linguistic nu-
ances such as idioms (Manakhimova et al., 2023)
and proverbs (Wang et al., 2025). While LLMs do
exhibit some level of translation capability, prior
research has identified that they still lags behind
the conventional NMT models, especially for low
resource languages (Robinson et al., 2023). Addi-
tionally, the translation performance varies depend-
ing on prompting strategies (Zhang et al., 2023).
Efforts have been made to enhance the LLMs’ MT
performance by incorporating guidance from dic-
tionary (Lu et al., 2023), further fine-tuning (Zeng
et al., 2023; Xu et al., 2023) and augmenting with
translation memories (Mu et al., 2023).

LLM-based SIMULMT SimulLLM
(Agostinelli et al., 2023) explore the ability
to adapt an LLM finetuned on NMT task to
simultaneous translation with wait-k strategy.
Wang et al. (2023b) adopt hybrid READ/WRITE
policy with wait-k and incremental decoding.
TransLLaMA (Koshkin et al., 2024) teach LLMs
to produce WAIT tokens to preserve the causal
alignment between source and target tokens. At
each inference round, LLMs only produce a
single word or WAIT token, which is very costly
due to multiple rounds of LLM calls. Guo et al.
(2024) introduce LLM into the SIMULMT task
as a translation agent working with a specialized
SIMULMT policy agent. An additional memory
module stores translation history. The policy
agent decides on READ/WRITE actions, while the
LLM translates target segments. They face the

same KV-cache reuse challenge noted by Wang
et al. (2023b), making the computational cost of
collaborating big and small models even more
significant.

7 Conclusion

This paper focuses on the feasibility of utilizing
LLM for SIMULMT. We found that leveraging
the incremental-decoding framework with offline
prompting leads to high computational latency, hin-
dering the reuse of the Key-Value cache. To ad-
dress this, we propose the conversational prompt-
ing which allows LLMs to conduct SIMULMT in a
multi-turn dialogue manner. The approach signifi-
cantly speeds up the inference and also preserves
the quality superiority, enabling practical LLM-
based SIMULMT systems.

Limitations

We summarize the limitations of this study in the
following aspects:
Data Our evaluation was conducted on three
commonly used benchmarks which may limit the
diversity in domains, styles, and languages. There
may also be potential data contamination concerns
since LLMs might have been exposed to parts of
our test sets during pre-training. A more com-
prehensive evaluation with diverse datasets across
more domains and language pairs would strengthen
our findings.
Alignment-based Data Curation Our approach
relies on word alignment tools like fast_align to
segment parallel sentences, which has inherent lim-
itations. These tools may struggle with languages
having drastically different word orders or gram-
matical structures, potentially creating suboptimal
segmentation points. Furthermore, the alignment
quality degrades for distant language pairs or com-
plex sentences with idiomatic expressions and cul-
tural references. While our augmentation strategies
help mitigate some issues, they are still constrained
by the initial alignment quality.

Ethics Statement

Our work is built on top of an existing LLM. For
this reason, we share the similar potential risks
and concerns posed by the underlying LLM. Our
method is trained on commonly used training re-
sources of the Machine Translation research com-
munity and as such we are not expecting our ap-
proach to introduce new areas of risks.
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Algorithm 1 Conversational SIMULMT Decoding
Require: LLM : LLMθ,

Source chunks: x = [],
Target chunks: y = [],
KV-Cache: h = [],
Chunk index: c = 0,
Variables Definition: Source chunk size: n,
Beam-size: B, Agreement-degree: γ

1: while NOT_FINISH do
2: xc ← READ(n) //READ n tokens
3: x.append(xc)
4: xprompt ← PROMPT(x,y)
5: y′

c,h
′ ← LLM(xprompt, B,h, latest=True)

6: //B candidates with latest tokens in y′
c

7: yc,h← PREFIX(y′
c,h

′)
8: //Prune with Prefix selection, e.g. RALCP
9: if yc == ∅ then

10: continue
11: else
12: y.append(yc)
13: WRITE(yc)
14: c← c+ 1
15: end if
16: end while

Appendix

A Conversational SimulMT Decoding

Algorithm 1 presents the details of applying con-
versational prompts for decoding.
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Abstract

In this paper, we introduce the Kuvost, a large-
scale English to Central Kurdish speech-to-
text-translation (S2TT) dataset. This dataset
includes 786k utterances derived from Com-
mon Voice 18, translated and revised by 230
volunteers into Central Kurdish. Encompassing
1,003 hours of translated speech, this dataset
can play a groundbreaking role for Central Kur-
dish, which severely lacks public-domain re-
sources for speech translation. Following the
dataset division in Common Voice, there are
298k, 6,226, and 7,253 samples in the train,
development, and test sets, respectively. The
dataset is evaluated on end-to-end English-to-
Kurdish S2TT using Whisper V3 Large and
SeamlessM4T V2 Large models. The dataset
is available under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 In-
ternational License https://huggingface.
co/datasets/aranemini/kuvost.

1 Introduction

Speech translation is the automatic conversion of
audio from a source language into text or audio
in a target language (Barrault et al., 2025). Devel-
oping a speech-to-text translation system requires
large amounts of translated audio; however, most
languages lack sufficient data in this area. In (Com-
munication et al., 2023), languages with fewer than
1,000 hours of publicly available transcribed or
translated data are classified as low-resource. By
this definition, only about a dozen out of 7,000 lan-
guages qualify as high-resource. Providing speech
translation data—especially for low-resource lan-
guages—is therefore crucial for progress in this
field.

In this paper, we introduce a speech-to-text trans-
lation (S2TT) dataset for Central Kurdish (CKB),
which is a low-resource language (Communication
et al., 2023). This dataset, called Kuvost (Kurdish
Common Voice Speech Translation), is derived

from the Common Voice 18 dataset. The Kuvost
dataset contains 247k unique sentences translated
by 230 volunteers and passed through a systematic
revision process. Due to multiple recordings for
some of the translated sentences in Common Voice,
the total audio duration in Kuvost amounts to 1,003
hours.

Extending automatic speech recognition datasets
by translating their transcriptions is a common strat-
egy for building speech translation corpora. CoV-
oST (Wang et al., 2020) and CoVoST 2 (Wang et al.,
2021b) are two well-known examples, both derived
from Common Voice. CoVoST 2 is currently one
of the large-scale publicly available speech transla-
tion corpus, including English-to-15 languages and
21-to-English S2TT pairs (Wang et al., 2021b).

Aug-LibriSpeech is a French-translated version
of the LibriSpeech corpus, comprising a 236-hour
EN→FR S2TT data (Kocabiyikoglu et al., 2018).
VoxPopuli is a multi-way speech translation corpus
based on European Parliament (EP) event record-
ings, encompassing 15 European languages (Wang
et al., 2021a). TED Talks and TEDx have also been
widely used for speech translation. The MUST-C
dataset contains English-to-14-language S2TT data
derived from TED Talks (Gangi et al., 2019; Cat-
toni et al., 2021). TEDx includes translations from
English to 7 languages, while Indic-TEDST is the
third TED-derived corpus, featuring translations
from English to 9 Indian languages (Salesky et al.,
2021; Sethiya et al., 2024).

The FLEURS dataset is currently the most com-
prehensive speech translation dataset in terms of
the number of covered languages. FLEURS is a
multi-way text-to-text and speech-to-speech cor-
pus for 101 languages. It is also the only speech
translation dataset that includes the Central Kur-
dish language—the subject of the current research
(Conneau et al., 2023). The goal of this paper is to
fill the gap in speech translation data scarcity for
the Central Kurdish language.
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2 Kurdish language

Kurdish (ISO 639: KUR) is an Indo-European lan-
guage spoken by more than 30 million native speak-
ers in Kurdistan and among the Kurdish diaspora.
Geographic dispersion and socio-political factors
have led Kurdish to diversify into several dialects
(Matras, 2019; Eppler and Benedikt, 2017). The
Kurdish language comprises six dialects: Northern
Kurdish (KMR), Central Kurdish (CKB), South-
ern Kurdish (SDH), Laki (LKI), Zaza (DIQ), and
Hawrami (HAQ) (Sheyholislami, 2015). North-
ern Kurdish and Zazaki are primarily written in a
Latin-based script, while the remaining dialects are
mainly written in an Arabic-based script.

In this paper, we focus on Central Kurdish,
which is spoken by nearly 8 million native speak-
ers (Sheyholislami, 2015). Central Kurdish is a
statutory national language in Iraq1 and a de facto
provincial working language in Iran2. Although
recent years have seen notable progress in data cu-
ration and system development for Central Kurdish,
the speech translation domain from/to this dialect
remains largely unexplored. The goal of this paper
is to address this gap.

3 Translation process

The data for translation was sourced from Common
Voice 18 3. The data creation process consisted of
three main steps: (1) announcement and recruit-
ment of volunteers, (2) training and data distribu-
tion, and (3) translation and review.

Announcement and Recruitment of Volun-
teers: An announcement was made in June 2024 to
recruit volunteers who study English at the Depart-
ment of English Language(DENL) at Koya Univer-
sity. A total of 259 volunteers—mostly third- and
fourth-year students—signed up. All volunteers
were native speakers of Central Kurdish.

Training: A two-week intensive training pro-
gram was then offered to the volunteers. During
this program, participants were introduced to vari-
ous translation techniques. Additionally, a detailed
guideline outlining the rules of translation was pro-
vided. After the training workshops, volunteers
were given the option to withdraw without provid-
ing a reason. At this stage, 17 volunteers dropped
out. The remaining participants were divided into
three main groups, each supervised by a faculty

1https://www.ethnologue.com/country/IQ/
2https://www.ethnologue.com/country/IR/
3https://commonvoice.mozilla.org/en/datasets

member. These were further divided into smaller
sub-groups of five volunteers. The translation data
was distributed via Google Sheets, with access pro-
vided to both volunteers and supervisors.

Revision: The review process involved two main
stages:

• Peer Review: Volunteers reviewed each
other’s translations within their sub-groups.

• Professional Review: Each translation was
subsequently reviewed first by a team of Kur-
dish language experts from Department of
Kurdish Language (DKUR) at Koya Univer-
sity and professional supervisor, who pro-
vided feedback and suggested edits where nec-
essary.

Furthermore, weekly seminars were also held to
address common mistakes and discuss correction
strategies. During the revision phase, an additional
12 volunteers dropped out. By the end of the pro-
cess, a total of 230 volunteers, plus 7 Kurdish lan-
guage reviewers, had fully or partially completed
their tasks, translating 247,373 sentences.

4 Kuvost Statistics

The statistics of the Kuvost dataset are presented in
Table 1. The number of unique sentences translated
into Kurdish is 247,373. These translated sentences
were matched with their corresponding transcrip-
tions and audio in Common Voice 18. We searched
for all matching utterances in the validated portion
of Common Voice 18, resulting in 786k utterances
with Kurdish translations, totaling approximately
1,003 hours of English audio.

The validated and translated utterances were di-
vided into train, development, and test sets accord-
ing to the original Common Voice 18 partitioning.
For each split, we referred to the Common Voice
18 train/dev/test sets and matched the English tran-
scriptions with their corresponding Kurdish trans-
lations. The training set includes 298k utterances,
equivalent to 417 hours of audio. The development
and test sets each contain approximately 9 hours of
translated speech. It deserved to be mentioned that
all validated examples in the Common Voice are
not included in the train/dev/test partitions which
leads to lower number of utterances in the parti-
tions.
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Table 1: Kuvost specification and partitions

Part Train Dev Test Validated
Duration 417h 8h47m 8h55m 1003h
Utterances 298k 6226 7253 786k
Uniq sents 190k 5819 7149 247k
Tokens 1,75m 41k 46k 1.84m

5 Evaluation Systems

The Kuvost dataset is evaluated by fine-tuning two
state-of-the-art speech translation models: Whisper
V3 (WL V3) Large and SeamlessM4T V2 (SL V2)
Large models.

5.1 Whisper Large V3

Whisper is a sequence-to-sequence transformer-
based model trained on 680,000 hours of labeled
speech data, encompassing tasks such as ASR,
S2TT, VAD, and Speaker Recognition (SR) (Rad-
ford et al., 2022). Whisper supports more than 80
languages for ASR and S2TT; however, the Kur-
dish language is not currently supported. We are
fine-tuning the Whisper V3 Large model using the
AdamW optimizer with a learning rate of 1e-5, a
batch size of 16, in 5 epochs.

5.2 SeamlessM4T Large V2

Seamless is a set of models for T2TT, S2TT, S2ST,
and ASR. We use the S2TT component, which
consists of a Wav2Vec-BERT speech encoder and
an NLLB-200 decoder. The model is jointly op-
timized for ASR and S2TT tasks (Barrault et al.,
2025; Communication et al., 2023). We fine-tune
the SeamlessM4T V2 Large model using Mel-filter
bank (bins = 80) features over 10 epochs, with a
batch size of 16 and a learning rate of 1e-4. These
hyperparameters are set experimentally.

6 Results and discussion

Throughout the experiments, Kurdish translations
were normalized using the Asosoft normalizer
(Mahmudi et al., 2019). Key normalization steps in-
cluded the unification of Unicode characters, stan-
dardization of numbers, and normalization of punc-
tuation marks.

The Kuvost dataset was evaluated using two
state-of-the-art (SOTA) models: Whisper Large
V3 and SeamlessM4T V2 Large. Table 2 presents
the results obtained using both models. The first
row shows the performance of the fine-tuned Whis-
per V3 Large model on the training set of Kuvost.

This model achieved a BLEU score of 23.76 on
the Kuvost test set and 26.01 on the development
set. The second row, labeled SL V2, displays the
results of the pretrained SeamlessM4T V2 Large
model before fine-tuning on the Kuvost training set.
This multilingual model supports speech-to-text
translation for 101 languages, including Central
Kurdish. The baseline model of Seamless achieved
a BLEU score of 21.97 on the Kuvost test set. The
final row presents results for the fine-tuned version
of SeamlessM4T using the Kuvost dataset. In this
experiment, the model achieved a significantly im-
proved BLEU score of 35.00 and 32.79 on the dev
and test sets respectively. Besides the BLUE score,
the ChrF++ is reported for all models. The fine-
tuned version of seamless achieves a ChrF++ score
of 62.32 on the Kuvost test set.

Table 2: Kuvost evaluation results using Whisper V3
Large (WL V3) and SeamlessM4T V2 Large (SL V2)
models. FT stands for fine-tuned model on the train part
of Kuvost

Part Dev Test
BLEU ChrF++ BLEU ChrF++

WL V3 FT 26.01 55.14 23.76 51.77
SL V2 22.54 54.18 21.97 53.01
SL V2 FT 35.00 64.10 32.79 62.32

The fine-tuned models on the Kuvost training
set were evaluated using the FLEURS benchmark.
The results are presented in Table 3. The Whis-
per model achieved a BLEU score of 7.65, and
the Seamless model obtained a BLEU score of
11.17. The baseline SeamlessM4T model (before
fine-tuning) achieved a BLEU score of 9.36 on the
English→Central Kurdish task. Fine-tuning on the
Kuvost training set led to an improvement of nearly
2 BLEU points, reaching 11.17. The marginal im-
provement in BLEU on the FLEURS dataset is
likely due to differences in sentence complexity.
Kuvost primarily consists of short and simple sen-
tences, while FLEURS includes more complex syn-
tactic structures. Additionally, domain shift may
have contributed to the limited performance gain.

Table 3: The generaliability of Models fine-tuned on
Kuvost and evaluated on FLEURS benchmark

Fleurs BLEU ChrF++
Whisper V3 FT 7,65 39,69
SeamlessM4T V2 FT 11.17 46,46
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7 Conclusion

In this paper, we introduced Kuvost, a large-scale,
human-annotated speech translation dataset for
Central Kurdish. Kuvost consists of 1,003 hours of
English-to-Kurdish speech translation, contributed
by 230 volunteers. The dataset is evaluated using
state-of-the-art speech translation models. For fu-
ture work, we plan to record Kurdish translations
to extend Kuvost for speech-to-speech translation
tasks. Additionally, we aim to expand the dataset to
support Kurdish-to-X translation for all languages
available in the CoVoST 2 dataset (Wang et al.,
2021b).
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Abstract

Middle Eastern languages represent a lin-
guistically diverse landscape, yet few have
received substantial attention in language and
speech technology outside those with official
status. Machine translation, a cornerstone
application in computational linguistics,
remains particularly underexplored for these
predominantly non-standardized, spoken
varieties. This paper proposes data alignment
and augmentation techniques that leverage
monolingual corpora and large language
models to create high-quality parallel corpora
for low-resource Middle Eastern languages.
Through systematic fine-tuning of a pretrained
machine translation model in a multilingual
framework, our results demonstrate that cor-
pus quality consistently outperforms quantity
as a determinant of translation accuracy.
Furthermore, we provide empirical evidence
that strategic data selection significantly
enhances cross-lingual transfer in multilingual
translation systems. These findings offer
valuable insights for developing machine
translation solutions in linguistically diverse,
resource-constrained environments.

DOLMA-NLP/bitext-mining

1 Introduction

Machine translation (MT) represents one of the
most transformative applications in natural lan-
guage processing (NLP), driving numerous break-
through discoveries in the field. The evolution of
MT has progressed from rule-based techniques to
sophisticated deep learning approaches and, most
recently, to large language models (LLMs) (Zhu
et al., 2024b). Despite these paradigm shifts, data
availability remains the fundamental constraint,
leaving MT far from solved for low-resourced and
under-represented languages and varieties. Of par-
ticular interest to this paper are such languages in
the Middle East–a region with rich linguistic het-
erogeneity. Many languages in the Middle East

Translated
Books

Monolingual
Corpora

Alignment Translation

Manual

Bitext
Mining

Manual

LLM

Parallel
Corpus

Figure 1: Approaches to create parallel corpora for the
selected low-resourced languages in this paper

lack formal status or standardization, face sociopo-
litical marginalization, and are systematically dis-
advantaged in technological development. Con-
sequently, these languages have not benefited eq-
uitably from recent advances in MT technology,
widening the digital language divide.
In our previous work, PARME–described in de-

tail in (Ahmadi et al., 2025), we explored a par-
ticipatory research initiative where native speak-
ers contribute to translating sentences into eight
Middle Eastern languages: Luri Bakhtiari, Laki
Kurdish, Gilaki, Hawrami,Mazandarani, Southern
Kurdish, Talysh, and Zazaki. Collecting data in a
context where spoken tradition predominates over
writing presents significant challenges. This effort
resulted in over 36,000 translations, which were
used to fine-tune the No Language Left Behind
(NLLB) pretrained translation model (Team et al.,
2024). Our previous experiments yield BLEU
scores ranging from 2.89 to 16.54, indicating sub-
stantial room for improvement.
The current paper expands on our previous data

collection approach through two complementary
approaches illustrated in Figure 1. In the first
approach, we leverage literary works by align-
ing sentences from translated works in the se-
lected languages to the original English texts, us-
ing both manual and automated alignment tech-
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niques. In the second approach, we extract sen-
tences from monolingual corpora and translate
them using Gemini-2.0-flash, creating synthetic
parallel data. Using these datasets, we then system-
atically evaluate how these various data sources
affect the performance of fine-tuned multilingual
translation models. Our findings reveal that incor-
porating these new datasets improves model per-
formance overall, but with an important caveat: in-
creasing data quantity for one language can some-
times adversely affect performance for others in
a multilingual setting. This highlights the com-
plex interplay between data quantity, quality, and
distribution in multilingual MT systems for low-
resource languages.

2 Related Work

2.1 Low-Resourced MT

MT systems typically require millions of parallel
sentences for effective training, a requirement met
by only a few dozen high and medium-resource
languages, primarily European. For low-resource
languages, researchers have developed various ap-
proaches to address data scarcity. Synthetic data
augmentation techniques include leveraging dictio-
naries and morphological variations (Alam et al.,
2024), substituting rare words to create new train-
ing sentences (Fadaee et al., 2017), and map-
ping word embeddings from high-resource to low-
resource languages through bilingual lexicon in-
duction (Li et al., 2024). Synthetic data genera-
tion via back-translation (Sennrich et al., 2016) or
forward-translation (Zhang and Zong, 2016) are
common strategies, as well. Other approaches
leverage the capacity of multilingual models to en-
hance related low-resourced languages using trans-
fer learning (Ko et al., 2021), fine-tuning (Moslem
et al., 2023) and adapters (Pham et al., 2024).
The emergence of LLMs has opened new pos-

sibilities for low-resource MT through prompt-
ing (Zhang et al., 2023), few-shot learning (Hendy
et al., 2023), and in-context translation (Raunak
et al., 2023). However, recent studies empha-
size that translation direction (Zhu et al., 2024a)
along with parallel data quality during both pre-
training and fine-tuning remain crucial for per-
formance (Guo et al., 2024). Furthermore, Iyer
et al. (2024) note that “diversity (in prompts and
datasets) tends to cause interference instead of
transfer,” highlighting the challenges in leverag-
ing diverse datasets.

2.2 Bitext Mining
To facilitate the creation of parallel corpora from
unaligned corpora, bitext mining or bitext re-
trieval aims to identify potential translation pairs
across translated documents or monolingual cor-
pora (Koehn, 2024). This task, of particular in-
terest to low-resourced languages, has been ex-
tensively studied previously (Zweigenbaum et al.,
2017), including methods for sentence filtering
from web-crawled content (Chaudhary et al.,
2019). Some approaches to bitext mining rely on
automatic translations, as in Bleualign (Sennrich
and Volk, 2010), while other approaches leverage
semantic representations (Heffernan et al., 2022),
with a notable example being Vecalign (Thompson
and Koehn, 2019). Recent work by Winata et al.
(2024) demonstrates that LLMs can also perform
effectively in bitext mining tasks.
Our paper addresses a critical gap in the litera-

ture by exploring the intersection of bitext mining,
data augmentation using an LLM and, multilin-
gual fine-tuning for low-resource Middle Eastern
languages, offering insights into enhancing trans-
lation capabilities for these understudied varieties.

3 Methodology

Complementary to PARME (Ahmadi et al., 2025),
our previous participatory research where English
sentences are translated by experts into one of the
selected languages, we explore bitext mining and
LLM-based data augmentation to further extract
parallel sentences.

3.1 Sentence Alignment
Given a translated content in one of our selected
languages, we aim to align the translations to their
original sentences. Reaching out to publishers and
translators, we could collect 25 translated books
and articles for four languages among our eight se-
lected ones: five translated articles for Laki Kur-
dish, five for Southern Kurdish (two books and
three articles), 11 books for Hawrami and four for
Gilaki (three articles and one book). All the con-
tent were originally translated from English, ex-
cept in a couple of cases that we excluded as they
were originally translated from Persian. The books
are all famous novels of George Orwell, Virginia
Woolf, Franz Kafka, Ernest Hemingway and An-
toine de Saint-Exupéry, except one children book
for Southern Kurdish, while the articles discuss
specific sociological and medical topics.
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To prepare the books for alignment, we first ex-
tract the sentences from the original textbooks in
English (or their translations in English). Although
most of the books are openly available1, two of
them required OCR from the scanned PDFs. Fol-
lowing this step, we preprocess the text in both the
original text in English and our translations by nor-
malizing characters, fixing tabulations and exces-
sive newlines and finally, splitting the text into sen-
tences or phrases using KLPT (Ahmadi, 2020b).
Given the set of sentences per work in English

along with the translation, we initially aimed to
carry out the alignments using an LLM. However,
due to the low-resourced status of the selected lan-
guages, usage of Chat GPT-4o and Claude 3.7
Sonnet for our selected languages was far from
helpful. As such, we try the following methods.

Manual alignment (M): Providing the sen-
tences in a spreadsheet, we manually align sen-
tences by splitting, merging and editing sentences
to create matching translation pairs. Stylistic vari-
ation across translators required further attention
to the alignment task; for instance, a long passage
in the English text might have been translated in
one or two short sentences considered to be cul-
turally less relevant to the readers of the translated
book. Similarly, specific contexts have required
further elaboration by the translator, as in describ-
ing “Big Brother” or “Thinkpol” in George Or-
well’s 1984. Therefore, some alignments require
appropriate modifications. The alignment was car-
ried out by expert native speakers.

Automatic Alignment usingVecalign (V): Due
to limited workforce for manual alignment, we
carried out bitext mining to automatically align
remaining translations using a few methods that
were far from practical. To do so, we first man-
ually split translations by chapter or long sections
to further reduce the range of the possible align-
ment combinations, also known as hierarchical
mining (Koehn, 2024). Then, we tried a range
of methods: the Microsoft’s Bilingual Sentence
Aligner (Moore, 2002), Bleualign (Sennrich and
Volk, 2010) with translations from PARME’s fine-
tuned models, embedding-based techniques using
LaBSE (Feng et al., 2022), LASER (Artetxe and
Schwenk, 2019), SONAR (Duquenne et al., 2023),
SBERT (Reimers and Gurevych, 2019) and Ve-

1For English, we relied on the raw text provided by the
Project Gutenberg: https://www.gutenberg.org

Technique Accuracy (%)
Microsoft Aligner 38.78
Bleualign 32.24

SBERT LaBSE 2.63
LASER 2.08

Vecalign SONAR 46.5

Table 1: Accuracy of different bitext mining techniques
on a sample of Hawrami translated text. Vecalign with
SONAR achieves the highest accuracy (46.5%).

calign (Thompson and Koehn, 2019). Given that
none of the selected languages are included in the
pretrained embeddings, we rely on the embeddings
of closely-related languages: Persian (PES) for Gi-
laki and Central Kurdish (CKB) for Laki, South-
ern Kurdish and Hawrami. To determine the most
effective alignment technique, we tested several
methods on the manually-aligned corpus of the Lit-
tle Prince containing 1101 sentence pairs. Wemea-
sured accuracy as the proportion of sentence pairs
that matched between the automatically-aligned
and manually-aligned corpora. Table 1 summa-
rizes the accuracy showing that Vecalign with
SONAR embeddings produce the highest accu-
racy. It should be noted that the reported accura-
cies are limited to a sample in Hawrami without
considering the combination of the embeddings
and techniques.

3.2 LLM-based Data Augmentation
Relying on the monolingual corpora available
for Southern Kurdish (Ahmadi et al., 2023) and
Zazaki, Hawrami (Ahmadi, 2020a) along with
Wikipedia dumps2 for Gilaki, Mazandarani and Za-
zaki, we implement a few-shot in-context trans-
lation approach to optimize in-context exam-
ple selection using Gemini-2.0-flash, inspired by
Agrawal et al. (2023), as follows:� �
Below are examples of {language} to English
translations. Translate the new text
following these patterns:

{language}: {example1}
English: {english_translation1}

[... more examples ...]

Now translate this text to English, only
output the translation:

{language}: {text_to_translate}
English:� �

2Latest dumps of December 2025
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Language Gemini-2.0-flash Llama3.3

zero few zero few

Luri Bakhtiari 0.06 0.15 0.09 0.09
Gilaki 0.11 0.23 0.09 0.09
Hawrami 0.07 0.21 0.07 0.14
Laki Kurdish 0.10 0.19 0.05 0.11
Mazandarani 0.16 0.36 0.06 0.18
Southern Kurdish 0.18 0.14 0.06 0.13
Talysh 0.07 0.14 0.06 0.11
Zazaki 0.32 0.34 0.13 0.11

Average 0.14 0.22 0.08 0.12

Table 2: Zero-shot and few-shot prompting results
(BLEU↑ [0, 100]) on Gemini-2.0-flash and Llama3.3.
We translate sentences frommonolingual corpora using
few-shot prompted Gemini.

Our implementation uses BM25 retrieval to find
semantically similar examples from a datastore,
followed by a custom n-gram based re-ranking
method. We calculate n-gram overlap between
the test source and retrieved examples using a
weighted scoring function that emphasizes cover-
age of source text terms. Our approach employs a
dynamic weighting system where already-covered
n-grams receive reduced weight by a lambda fac-
tor (set to 0.1) to promote selection of complemen-
tary examples.

Table 2 presents preliminary results comparing
zero-shot and few-shot prompting on both Gemini-
2.0-flash and Llama3.3. While the absolute BLEU
scores remain poor, a common challenge when ap-
plying general-purpose LLMs to extremely low-
resource languages, we observe several important
patterns. First, few-shot prompting consistently
outperforms zero-shot approaches, with relative
improvements for some languages (e.g., Hawrami).
Second, Gemini-2.0-flash demonstrates superior
performance compared to Llama3.3 across nearly
all languages. Through experimentation, we deter-
mined that using 16 examples in our prompts pro-
duced optimal results, significantly outperforming
single-example approaches. Additional examples
beyond 16 did not yield further improvements.

Table 3 provides basic statistics of our collected
data per language. Luri Bakhtiari (BQI) and Talysh
(TLY) are only included in PARME (P), Laki is only
included in PARME and manual alignment (PM)
while the other languages could benefit from the
additional data sources.

Language P M V L

Luri Bakhtiari (BQI) 999 0 0 0
Gilaki (GLK) 3420 999 1391 22467
Hawrami (HAC) 5796 7050 8367 49987
Laki Kurdish (LKI) 1487 1220 0 0
Mazandarni (MZN) 2345 0 0 49328
Southern Kurdish (SDH) 7806 3681 2495 49992
Talysh (TLY) 1107 0 0 0
Zazaki (ZZA) 2374 0 0 50000

Sum 25,334 12,950 12,253 221,774

Table 3: Basic statistics of the data collected per lan-
guages from different data sources: PARME (P), man-
ual (M) and automatic (V) sentence alignment, and
LLM (L). Over 272,000 sentence pairs are collected.

4 Experiments

4.1 Experimental Setup

To adapt a multilingual model for our target lan-
guages, we leverage NLLB (600M variant) by
systematically integrating embeddings from re-
lated languages through a structured token-based
approach. This integration follows two key
steps. First, we expanded the tokenizer’s vocabu-
lary by introducing language-specific tokens (e.g.,
zza_Latn for Zazaki) while preserving the exist-
ing language tokens. Second, we initialize em-
beddings for these new tokens by borrowing from
phylogenetically related languages: Central Kur-
dish embeddings for Hawrami, Laki, and South-
ern Kurdish; Northern Kurdish for Zazaki; and
Farsi for Luri Bakhtiari, Gilaki, Mazandarani, and
Talysh. For evaluation consistency, we utilize the
standardized test sets from PARME, each contain-
ing around 1,000 sentences per language in a sin-
gle orthography. These test sets maintain repre-
sentativeness across the non-standardized linguis-
tic landscape by incorporating a uniform distribu-
tion of dialectal variations.
We conduct X→EN fine-tuning experiments

with various data source combinations, e.g., PL for
merging PARME and LLM-based datasets. We
evaluate the performance using BLEU metric in
SacreBLEU (Post, 2018).3 Our baseline represents
the highest BLEU score achieved by NLLB prior
to fine-tuning. For fine-tuning, we employ a batch
size of 8 with 4-step gradient accumulation, a con-
servative learning rate of 3e-5, and trained for 20
epochs with 0.1 warmup. Both source and tar-
get sequences were truncated to 128 tokens, and

3nrefs:1|case:mixed|eff:no|tok:13a|smooth:exp|version:2.4.2
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Language Baseline P PM PV PMV PL PMVL PMLZazaki

Luri BakhtiariP 0.75 4.38 3.67 ± 0.15 3.55 ± 0.16 3.78 ± 0.29 3.37 ± 0.39 3.26 ± 0.41 3.04 ± 0.19
GilakiPMVL 1.98 2.73 4.22 ± 0.15 3.18 ± 0.13 3.92 ± 0.26 3.44 ± 0.17 3.49 ± 0.16 2.94 ± 0.18

HawramiPMVL 0.9 8.23 15.46 ± 0.48 11.55 ± 2.78 10.86 ± 0.54 8.11 ± 0.11 8.93 ± 0.70 10.34 ± 2.15
Laki KurdishPML 1.89 6.33 9.11 ± 0.67 7.18 ± 2.13 6.81 ± 0.79 4.80 ± 0.37 4.39 ± 0.47 5.43 ± 0.80
MazandaraniPL 1.32 5.23 5.50 ± 0.30 5.05 ± 0.83 5.32 ± 0.22 4.34 ± 0.28 4.22 ± 0.12 4.62 ± 0.22

Southern KurdishPMVL 2.77 9.93 10.64 ± 0.46 8.68 ± 0.27 8.99 ± 0.60 7.61 ± 0.36 7.80 ± 0.48 8.34 ± 0.21
TalyshP 1.03 3.01 6.70 ± 0.52 5.22 ± 2.28 4.21 ± 1.43 2.36 ± 0.29 2.32 ± 0.56 3.66 ± 1.21
ZazakiPL 2.82 3.45 3.75 ± 0.30 2.55 ± 0.45 3.67 ± 0.35 11.08 ± 0.89 11.54 ± 0.50 9.99 ± 0.14

Average 1.68 5.41 7.38 ± 0.19 5.87 ± 0.97 5.94 ± 0.22 5.64 ± 0.27 5.74 ± 0.21 6.04 ± 0.48

Table 4: X→EN BLEU scores for the fine-tuned NLLB model across eight languages using different combinations
of data sources. Results are reported as mean ± standard deviation over three runs with different random seeds.
Data sources where a language is included appear as superscript.

we implemented beam search with a beam size of
5 during inference. Training was conducted on
NVIDIA RTX 3090 GPUs (24GB VRAM) with
completion times of 9.4 to 16.1 hours per model.

4.2 Experimental Results

Table 4 presents the results of our experiments. To
assess the impact of randomness in fine-tuning, we
run the process three times by shuffling the train
sets with different seeds.We report themean values
of the three systems per data setup along with stan-
dard deviations. Analyzing the results indicates:

A: Data quality matters more than quality
Among the data setups, PARME (P) merged with
manually aligned sentences (M), i.e. PM, achieves
the highest BLEU scores for most languages and
on average. Surprisingly, PM also improves the
performance of Talysh, Zazaki and Mazandarani
even though it does not contain additional data in
those languages. Luri Bakhtiari’s best perform-
ing model remains P, the only dataset covering
that language. Although LLM-generated dataset
along with PARME, i.e., PL, is the largest dataset,
the obtained performances are lower than the PM
setup and not much higher than P; so including the
LLM-generated data does not improve the average
BLEU score substantially.
On the standard deviations, they reveal vary-

ing levels of model stability across configurations
and languages, with some combinations showing
remarkable consistency, e.g., Gilaki with PM at
±0.15, while others demonstrate substantial sen-
sitivity to initialization, e.g., Hawrami with PV at
±2.78 and Talysh with PV at ±2.28, suggesting
that optimal data selection should consider both
performance and reliability.

Languages

B
LE

U

0

2

4

6

GLK MZN TLY HAC LKI SDH BQI ZZA

M \ GLK

M \ MZN

M \ TLY

M \ HAC

M \ LKI

M \ SDH

M \ BQI

M \ ZZA

M

Baseline

Figure 2: Cross-linguistic dependencies in our multilin-
gual fine-tuning models. Each curve represents perfor-
mance of a model trained without one language, e.g.,
M\GLK. The solid black line (M) shows the full model.

B:Multilingual data interference While PM is
generally the optimal configuration for most lan-
guages, Zazaki’s performance shows unique sen-
sitivity to dataset composition, particularly when
the LLM-generated data (L) is included in the
fine-tuning dataset. Within the comprehensive
PMVL setup (containing all data sources for all
languages), Zazaki achieves its best performance
with a BLEU score of 11.54, followed by 11.08
in PL. This observation led us to create a tar-
geted dataset combination–PMLZazaki–which inte-
grates PM with the Zazaki LLM-generated data
only. Although Zazaki still has a comparatively
higher BLEU score in this setup (9.99), the aver-
age BLEU score is lower than that of PM and other
setups where L is included.
To further analyze the implications on other

languages in the multilingual setup, we fine-tune
models on 1000 randomly-selected sentences in
PARME data by excluding data of a language
per model; for instance, M\GLK is a model fine-
tuned on all but Gilaki data. Figure 2 illustrates
the evaluation of these models. As expected, re-
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Jawero (ژاوەرۆ) Sahneyi  (یی)س(حن) Western (بيه پس) 

Lhon (لهۆن) Takht (خت)ت) Jalalwandi  
 (ج(لالوەندی)

Kakawandi  
 (کاکاوەندی)

Badrei  (درەیی)ب) 

Pehley 
 (پاC(یی) 

Kalhori  
 (ک(لهوڕی) 

Krmashani  (کرماشانی) Eastern (بيه پيش) 

Laki Kurdish (LKI) Gilaki (GLK) Hawrami (HAC) Southern Kurdish (SDH) 

Baseline 
P 
PM 
PV 
PMV 
PL 
PMVL 
PMLZazaki 

Figure 3: Performance across dialects and model configurations. Each radar chart displays mean BLEU scores
from three randomly initialized models for different dialects. Greater extension of curves toward a dialect’s axis
indicates higher translation performance for that specific dialect.

moving one language’s data deteriorates perfor-
mance for that language, visible in the perfor-
mance drops along the curves. However, several
notable cross-language dependencies emerge. Re-
moving Talysh (TLY) data negatively impacts Gi-
laki (GLK) and Mazandarani (MZN) performance,
while removing Luri Bakhtiari (BQI) data hurts
Hawrami (HAC) and Southern Kurdish (SDH).
The dependencies manifest asymmetrically, with
Zazaki (ZZA) exhibiting both high vulnerability to
the removal of its own data and relative resilience
to the removal of others, corroborating our earlier
observations of its unique behavior.

C: Performance varies depending on the variety
Gilaki, Hawrami, Laki and Southern Kurdish in-
clude sentences of different varieties/dialects in the
test set making cross-dialectal evaluation possible.
Figure 3 provides our analysis results for these lan-
guages revealing considerable performance dispar-
ities within each language. While in Hawrami, the
Jawero dialect achieves substantially higher BLEU
scores than Takht and Lhon, particularly with PM
and PMV configurations, the performance of the
models for Eastern and Western varieties of Gilaki
is more consistent. Similarly, for Laki Kurdish,
the Sahneyi variety benefits more from our fine-
tuning approaches than Kakawandi and Jalalwandi
varieties. Southern Kurdish shows more balanced
performance across its dialects, though Badrei and
Krmashani tend to receive slightly higher scores.
Nevertheless, we caution against concluding that
certain varieties are inherently more difficult to
translate, as train and validation sets do not equally
represent all varieties, and the test set does not con-
tain the same sentences translated across different
varieties. These observed differences may instead

reflect varying degrees of representation in train-
ing data or linguistic proximity to the source mate-
rial rather than intrinsic translation difficulty.

5 Conclusion and Discussion

This paper sheds light on eight low-resourced Mid-
dle Eastern languages by fine-tuning a pretrained
MT model using different sources of data, from
manually translated and aligned sentences to au-
tomatically aligned and automatically-translated
ones. Our experiments demonstrate three key
findings. First, data quality consistently outper-
forms quantity as a determinant of translation ac-
curacy, with the manually aligned (M) data provid-
ing the most substantial improvements despite its
relatively smaller size. Second, we observed com-
plex cross-linguistic transfer effects where adding
data for one language sometimes adversely af-
fects performance for others, highlighting the im-
portance of strategic dataset selection in multilin-
gual systems. Third, we found significant perfor-
mance variations across dialectal varieties within
the same language. While our models perform
well on all languages in comparison to the base-
line, achieving 15.46 BLEU score for Hawrami at
the highest, there remains substantial room for im-
provement.

Limitations Despite these advances, our work
has several limitations. First, we explored only
a limited set of open-weight LLMs for data
augmentation; future work could investigate a
broader range of models, such as MADLAD-
400 (Kudugunta et al., 2023) and Mistral (Jiang
et al., 2023), and in-context learning strategies.
Second, our automatic alignment approach relies
on embeddings from closely-related languages,
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which could be improved by training or fine-tuning
embeddings on monolingual data of our selected
languages. Third, our data augmentation tech-
niques could be expanded to include synthetic data
generation using bilingual lexicon induction, mor-
phological variations, and back-translation meth-
ods. Finally, unlike the test sets that are uniform
in orthography, our collected data for training and
validation are composed of more than one orthog-
raphy, as in Hawrami, Zazaki and Gilaki. Given
that normalization and transliteration of these or-
thographies are not trivial, future work can also
study the effect of orthographical variation on MT.

Ethics Statement Our data collection process
adhered to rigorous ethical standards with care-
ful attention to fairness and representation. While
we maintained comprehensive inclusion criteria
appropriate for low-resource language documenta-
tion, we acknowledge that the literary nature of
our corpus means some character dialogue may
contain language that reflects historical or cultural
contexts that modern readers might find objection-
able. All materials were obtained through formal
agreements with publishers and translators, with
appropriate intellectual property permissions se-
cured. Contributors received fair compensation for
their work, and their contributions are explicitly ac-
knowledged. Our research prioritizes expanding
NLP for underrepresented languages while main-
taining responsible data stewardship practices.
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Abstract

In this study, we explore the effectiveness of
isometric machine translation across multiple
language pairs (En→De, En→Fr, and En→Es)
under the conditions of the IWSLT Isometric
Shared Task 2022. Using eight open-source
large language models (LLMs) of varying sizes,
we investigate how different prompting strate-
gies, varying numbers of few-shot examples,
and demonstration selection influence transla-
tion quality and length control. We discover
that the phrasing of instructions, when aligned
with the properties of the provided demonstra-
tions, plays a crucial role in controlling the out-
put length. Our experiments show that LLMs
tend to produce shorter translations only when
presented with extreme examples, while iso-
metric demonstrations often lead to the models
disregarding length constraints. While few-shot
prompting generally enhances translation qual-
ity, further improvements are marginal across
5, 10, and 20-shot settings. Finally, consider-
ing multiple outputs allows to notably improve
overall tradeoff between the length and quality,
yielding state-of-the-art performance for some
language pairs.

1 Introduction

Accurate and concise translations are increasingly
needed in media applications such as subtitling
(Matusov et al., 2019; Karakanta et al., 2020) and
dubbing (Federico et al., 2020; Lakew et al., 2021;
Tam et al., 2022; Lakew et al., 2022; Rao et al.,
2023), where length constraints are critical. Dub-
bing, in particular, requires translations to stay
within ±10% of the source character-level length
for seamless audio alignment (Lakew et al., 2022),
a constraint known as isometric machine transla-
tion. The 2022 Isometric MT Shared Task (Anas-
tasopoulos et al., 2022) found that most participat-
ing systems used lead tokens for length control,
with some incorporating reranking or adjusted posi-
tional embeddings. Recent work also explored rein-
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Figure 1: Overview of our experiment with prompts ask-
ing for different length constraints for the desired trans-
lation, complemented with few-shot examples demon-
strating the given constraint (match) or not (no-match).
Strong enough control to reach isometric translation
needs matching instructions and preferably Tiny or Short
demonstrations. The construction of demonstration sets
is described in Section 3 and the prompt content is pre-
sented in Table 6 in Appendix B.2.

forcement learning for isometric English-Hindi MT
(Mhaskar et al., 2024) and examined length con-
straints in multiple language pairs (Bhavsar et al.,
2022).

Controlling translation length remains challeng-
ing compared to other constrained MT tasks, such
as politeness (Sennrich et al., 2016) or diversity
(Shu et al., 2019) control. Previous approaches in
encoder-decoder MT used length tokens (Lakew
et al., 2019), positional embeddings (Takase and
Okazaki, 2019; Buet and Yvon, 2021), restricted
search spaces (Niehues, 2020), auxiliary length
prediction tasks (Yang et al., 2020), and explicit
compression methods (Li et al., 2020).

With the rise of large language models (LLMs)
(Radford et al., 2019), there has been a shift toward
prompting (Vilar et al., 2023; Zhang et al., 2023a;
Bawden and Yvon, 2023) and fine-tuning (Zhang
et al., 2023b; Moslem et al., 2023) for MT. Prompt-
ing strategies notably affect performance, espe-
cially in few-shot settings (Vilar et al., 2023). Stud-
ies found that randomly selected examples often
improve results (Zhang et al., 2023a; Bawden and
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En-De En-Fr En-Es
Setup LR LC↑ Count LR LC↑ Count LR LC↑ Count

Dev Both 1.14±0.3 38.2 1415 1.14±0.3 36.4 1412 1.08±0.3 50.5 1316

Test Development 1.15±0.2 37.5 200 1.16±0.2 34.0 200 1.03±0.2 58.0 200
Final Evaluation 1.03±0.2 65.5 200 1.09±0.5 72.5 200 0.98±0.2 64.0 200

Table 1: The average target-to-source sample length ratio and its standard deviation (LR), length compliance (LC),
i.e. the percentage of target-side sentences within a ±10% range of the source character count, and the number of
samples for two setups (Development and Final Evaluation) and for the testset (the MuST-C tst-COMMON and
blind test sets) and the devset (MuST-C). The devset is used for selecting examples for few-shot prompting.

En-De
Pool type Count Min Max avg±std
Random 1415 0.43 5.80 1.14±0.27
Isometric 537 0.90 1.10 1.02±0.05
Same 50 0.99 1.00 1.00±0.00
Short 343 0.43 1.00 0.90±0.11
Tiny 50 0.43 0.81 0.68±0.11

Table 2: Statistics of pools for En→De: The number of
samples, minimum and maximum target/source length
ratio, and its average and standard deviation.

Yvon, 2023), though performance gains plateau
beyond five examples (Chowdhery et al., 2023; Vi-
lar et al., 2023). While models like BLOOM tend
to overgenerate in zero-shot settings (Bawden and
Yvon, 2023), fine-tuning methods such as QLoRA
(Zhang et al., 2023b) have shown superior perfor-
mance over few-shot learning. Real-time adaptive
MT has also demonstrated strong results, with mod-
els like ChatGPT rivaling traditional MT systems
(Moslem et al., 2023; Hendy et al., 2023). The
use of LLMs for MT has led to the exploration of
various prompt templates, with simple structures
like ‘[src]: [input] \n [tgt]:’ proving ef-
fective (Zhang et al., 2023a; Briakou et al., 2023;
Zeng et al., 2022). The impact of example selection
has also been examined, confirming that beyond
five-shot settings, improvements become marginal
(Garcia et al., 2023; Zhang et al., 2023a; Chowdh-
ery et al., 2023; Vilar et al., 2023).

Given these insights, we explore the applica-
tion of LLMs to isometric MT, focusing on length
control strategies. We analyze four prompting ap-
proaches: (1) uncontrolled translation, (2) isomet-
ric translation (±10% length variation), (3) same-
length translation, and (4) shorter translation, each
paired with corresponding demonstration sets. Ex-
periments are conducted on eight open-weight mod-
els (Llama 3, Gemma 2, Qwen 2 of two sizes each,
and Mistral and Mixtral) across 0, 5, 10, and 20-
shot settings for En→De, En→Fr, and En→Es,
following the 2022 Isometric Shared Task setup
(Anastasopoulos et al., 2022).

Our results show that few-shot demonstrations
affect translation outputs, but precise length control
requires well-aligned instructions reflecting exam-
ple properties, as summarized in Figure 1. Addi-
tionally, we show that generating multiple outputs
with different example sets substantially improves
length control, matching competitive isometric MT
systems and offering high potential for synthetic
data creation in training encoder-decoder models.
We publicly release all collected data for potential
future analyses.1

2 Experimental Setup

Development First, we conduct experiments
with multiple settings (varying prompt type, the
type of pools of demonstrations, and shot count in
few-shot learning) to identify the best-performing
configuration for length control. We refer to this as
the Development setup and use the following data:

• Demonstration set: We use the MuST-C dev-
set for selecting few-shot examples. We
choose the devset over the trainset to reserve
the latter for potential future fine-tuning.

• Testset: We use the first 200 examples from
the MuST-C tst-COMMON, matching the
number of examples in the evaluation blindset
of the 2022 Isometric Shared Task.

Final Evaluation We then use the best-
performing setting from the Development and eval-
uate it on the Isometric Shared Task test set:

• Demonstration set: We use the same demon-
tration set as in the Development setup.

• Testset: We use the blindset from the IWSLT
2022 Isometric Shared Task, which consists
of dialogues extracted from YouTube videos,
totaling 200 examples.2

1https://github.com/J4VORSKY/Isometric-MT
2https://github.com/amazon-research/

isometric-slt/tree/main/dataset
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The statistics of the datasets used in both steps
are displayed in Table 1.

Metrics Following the Isometric Shared Task,
we use BERTScore3 (Zhang et al., 2020) to evalu-
ate translation quality. For completeness, we also
report BLEU (Papineni et al., 2002) scores using
sacreBLEU (Post, 2018).4,5 We assess adherence to
the ±10% length constraint using the Length Com-
pliance (LC) metric (Anastasopoulos et al., 2022).
Additionally, we report the average target-to-source
Length Ratio in Development experiments and use
it alongside Length Compliance in the Final Evalu-
ation to gauge length control.

Models We use the Ollama library6 to load all
models, which are provided in quantized ver-
sions (4-bit) without instruction fine-tuning (more
details in Appendix B). Models used in our
experiments include: llama3:8b, llama3:70b
(Dubey et al., 2024); gemma2:9b, gemma2:27b
(Gemma Team et al., 2024); qwen2:7b, qwen2:72b
(Yang et al., 2024); mistral:7b (Jiang et al., 2023)
and mixtral:8x7b (Jiang et al., 2024). For de-
tailed descriptions, refer to the original papers.

3 Prompts

In our experiments, we use English as the language
of the prompts (Zhang et al., 2023a) and explicitly
specify the source and target languages within the
prompt (Zhang et al., 2023a; Bawden and Yvon,
2023). Our focus is on length control when test-
ing various prompt formulations. While large lan-
guage models (LLMs) show strong performance in
machine translation, they sometimes lag behind
supervised neural models (Zhang et al., 2023a;
Chowdhery et al., 2023; Kocmi et al., 2023). To our
knowledge, length control has not been extensively
explored for LLMs in machine translation.

Prompt construction We construct prompts by
concatenating template parts and replacing place-
holders with the appropriate values. The Random
(uncontrolled) template instructs the model to gen-
erate a translation of the source sentence without
any length restrictions. In the Isometric template,
the model is instructed to generate a translation
within ±10% of the source text’s character count.

3https://pypi.org/project/bert-score/0.3.11/
4https://github.com/mjpost/sacrebleu
5Signature: nrefs:1|case:mixed|eff:no|tok:13a|

smooth:exp|version:2.4.2
6https://ollama.com/library

The Same template instructs the model to produce
a translation that exactly matches the source text
length, while the Short / Tiny template directs
the model to generate a shorter translation, as the
length ratios between studied language pairs of-
ten exceed 1, and a standard translation (typically
longer) is not desired. A detailed overview of the
prompt templates is in Table 6 in Appendix B.2.

We evaluate models in zero-shot and few-shot
settings. They often overgenerate, adding expla-
nations or extra translations, as noted by Bawden
and Yvon (2023). While these authors used regular
expressions to extract translations, we prevent this
by explicitly instructing models to output only the
translation, which proves effective. Further analy-
sis is in Appendix A.

Sample Selection In preparing examples for the
few-shot setting, we construct sampling pools by
filtering the demonstration set based on the follow-
ing criteria: Random selects samples without any
filtering; Isometric contains only examples with
a target-to-source length ratio within ±10%; Same
sorts references by increasing |r − 1.0| (where r
is the length ratio) and selects the top N = 50
instances; Short selects samples with target-to-
source ratios in the range [0, 1]; Tiny samples the
50 examples with the smallest target-to-source ra-
tio. The illustration is in Figure 1.

Statistics for each sampling pool for En→De
are in Table 2. As other languages follow the
same trend, their statistics are in Table 7 in Ap-
pendix B.3. Following Zhang et al. (2023a), we
use the following template for in-context samples:
[src lang]: [src sentence] ¬ [tgt lang]:
[tgt sentence].

4 Analysis

In all experiments, the prompts remain identical
across all models within a given setting. To reduce
the bias of sampling from demonstration sets, we
performed 10 runs for every setting.

4.1 Prompt and Pool Type Relation

First, we analyze how much the selection of ex-
amples is related to the instruction provided in the
prompt in the few-shot prompting and how this
combination influences the translation length. We
therefore compare two setups:

Prompt and Pool Type Match We create match-
ing pairs of prompts and pool types as follows:
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En-De
Random Isometric Same Short Tiny

Model \Match No Yes No Yes No Yes No Yes No Yes
gemma2:27b 1.100 1.097 1.099 1.094 1.098 1.097 1.087 1.011 1.066 0.955
gemma2:9b 1.108 1.106 1.106 1.101 1.106 1.073 1.099 1.026 1.080 0.981
llama3:70b 1.149 1.151 1.149 1.139 1.141 1.134 1.138 1.005 1.122 0.905
llama3:8b 1.106 1.100 1.093 1.108 1.099 1.112 1.085 1.048 1.056 0.994
mistral:7b 1.133 1.129 1.126 1.128 1.135 1.125 1.121 1.105 1.138 1.085
mixtral:8x7b 1.402 1.411 1.375 1.362 1.378 1.381 1.385 1.297 1.363 1.265
qwen2:72b 1.223 1.169 1.195 1.178 1.184 1.173 1.170 1.128 1.164 1.129
qwen2:7b 1.132 1.160 1.144 1.125 1.129 1.129 1.128 1.135 1.117 1.095

Table 3: The evaluation is conducted as follows: We first compute the average target length per input sentence across
10 runs. Next, we calculate the target-to-source length ratio for each instance and average these values for each pool
type. The results are reported separately for cases where the instructions match (‘Yes’) or do not match (‘No’) the
sample properties in 5-shot prompting. Differences with a p-value < 0.1 for each pool type are underlined.
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Figure 2: The percentage of input sentences (across
all language directions) for which at least one of ten
generated translations meets the isometric condition
when the model is prompted to produce isometric, same-
length, short, and tiny outputs aligned with respective
5-shot demonstration sets. This evaluation is restricted
to input sentences where the particular model did not
generate any isometric translation in ten attempts using
the uncontrolled prompt.

Random–Random, Isometric–Isometric, Same–
Same, Short–Short, Tiny–Tiny.

Prompt and Pool Type Mismatch We keep the
Random prompt for all pool types.

We compare these two configurations for
En→De in Table 3, the remaining translation direc-
tions are documented in Appendix C. Our results
indicate that the length ratios are mostly affected
when the instruction aligns with the pool type, com-
pared to when there is no such match (we can also
see a tendency to generate shorter outputs when

comparing “no alignment” columns across differ-
ent pool types, but the difference is negligible).
This match-versus-no-match difference is statisti-
cally significant in Gemma and Llama models, par-
ticularly for the Short and Tiny pools. Addition-
ally, the Isometric and Same pools do not appear
to induce shorter translations compared to random
sampling, as evidenced by the similar values ob-
served in the first three columns. We hypothesize
that requesting outputs to preserve the input length
somehow guides models to reproduce the distribu-
tion of the training data rather than actually consid-
ering the length (i.e. models implicitly assume that
typical translation is of the same length). However,
in studied language directions, what is considered
as normal ratio, is skewed towards values greater
than 1. In other words, models naturally follow the
length distribution they were trained on and can
overcome this bias only when extreme examples
are provided.

To further highlight the utility of our approach,
Figure 2 focuses on cases where models consis-
tently fail to produce isometric translations under
the Random-Random setting, even after 10 runs.
This occurs in about 30% of devset sentences on
average. The figure shows how alternative prompts
improve length compliance, with Tiny and Short
settings achieving up to 80% isometric translations
for Llama3:70b when at least one of 10 runs suc-
ceeds. The overall practical ability of each of the
models to achieve isometric translation is summa-
rized by the two numbers above the bars in Fig-
ure 2. The first number indicates the percentage of
devset sentences that were translated in a compliant
way by default and the second number indicates
to which proportion we raised this using the Tiny
prompt. Note that in the worst case, this level of
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lines and left-hand y-axes) for all few-shot settings, models and language pairs.
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compliance is reached at 20x the translation cost
(10 attempts by default plus 10 Tiny attempts). In
practice, however, we can switch to the Tiny prompt
after the first unsuccessful attempt in the default
generation. The number of additional generations
with Tiny setting depends on resource constraints
and requirements. But even after just one attempt,
Llama3:70b achieves isometric translations in 35%
of cases. Full results are in Appendix C.

4.2 Comparing Demonstration Pools
We give below a more detailed evaluation across
all few-shot settings, models, and pool types, us-
ing only settings when the instruction matches the
pool type and where the model is instructed to out-
put only the translation. Both length ratios and

BERTScore values are reported for En→De, with
the results presented in Figure 3. For a comprehen-
sive view of all few-shot settings, detailed numeri-
cal results are reported in Appendix D.

Length Ratios and Length Control In terms
of length ratio, all models consistently exhibit the
same trend: the ratios are highest for random sam-
pling, followed by isometric sampling, and then
by shorter examples. Providing extreme examples
encourages models to produce shorter translations.
Interestingly, in the zero-shot setting, we observe
a length ratio lower than 1.0 for the Llama and
Gemma models. However, when demonstrations
are also given in few-shot settings for these models,
translations are longer, even when the associated
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En→De En→Fr En→Es
System LR↓ LC↑ BS↑ BLEU↑ LR↓ LC↑ BS↑ BLEU↑ LR↓ LC↑ BS↑ BLEU↑
STRONGBASELINE 1.03 68.0 77.44 21.6 1.02 75.5 81.75 36.2 1.00 80.5 81.86 36
APPTEK-Constrained 1.11 86.5 77.32 18.7 - - - - - - - -
NUV-Unconstrained - - - - 1.10 47.5 79.96 27.1 - - - -
HW-TSC-Unconstrained 1.03 96.5 75.79 20.2 - - - - - - - -
HW-TSC-Constrained 1.28 98.0 74.07 17.9 1.19 96.0 76.11 31.5 1.18 96.5 78.57 29.9
APV-Unconstrained 1.68 39.0 73.68 16.5 1.21 45.0 77.77 32.9 1.05 49.5 80.87 35.3
WEAKBASELINE 1.29 43.0 74.86 15.5 1.48 37.0 77.18 25.2 1.38 51.0 78.32 27.7
model=gemma2:27b-k=1 1.07 43.5 77.08 19.0 1.05 47.5 78.30 32.7 1.00 55.5 83.20 40.3
model=gemma2:27b-k=3 1.08 58.0 77.96 20.2 1.07 60.5 79.96 33.5 1.01 66.5 83.29 40.3
model=gemma2:27b-k=5 1.09 62.5 77.98 20.4 1.06 62.5 80.01 33.9 1.02 68.0 83.16 40.0
model=gemma2:27b-k=10 1.08 68.5 77.84 21.9 1.08 69.0 80.05 35.6 1.01 70.5 83.62 40.8
model=gemma2:9b-k=1 2.24 42.5 77.04 17.7 0.00 0.0 0.00 0.0 1.02 54.5 82.47 39.0
model=gemma2:9b-k=3 1.19 58.5 77.24 20.6 1.07 60.5 80.38 34.1 1.03 65.5 83.41 36.8
model=gemma2:9b-k=5 1.07 64.5 77.38 20.9 1.06 65.5 80.66 35.5 1.03 73.0 83.30 37.2
model=gemma2:9b-k=10 1.08 64.0 77.48 21.7 1.06 70.5 80.72 34.9 1.03 73.0 83.17 37.6
model=llama3:70b-k=1 1.09 49.0 76.57 20.9 1.05 41.0 76.44 28.6 0.96 46.5 79.29 31.4
model=llama3:70b-k=3 1.06 62.5 77.18 22.1 1.00 55.5 77.64 30.9 1.03 59.5 80.64 34.4
model=llama3:70b-k=5 1.06 65.0 77.24 22.2 1.02 64.0 77.62 32.5 1.02 65.5 80.96 35.1
model=llama3:70b-k=10 1.07 69.0 77.23 21.7 1.04 68.0 78.24 33.7 1.02 70.5 81.37 35.8
model=llama3:8b-k=1 1.21 42.0 74.30 13.8 1.16 47.5 74.71 22.9 1.03 48.5 77.80 28.6
model=llama3:8b-k=3 1.09 56.0 75.79 15.9 1.09 60.5 75.96 25.5 0.99 65.0 79.76 30.6
model=llama3:8b-k=5 1.09 60.5 76.10 16.7 1.10 69.5 76.32 26.1 1.01 69.5 80.15 31.4
model=llama3:8b-k=10 1.09 65.0 76.28 16.9 1.08 75.0 77.02 26.2 1.03 74.0 79.88 29.0
OracleBLEU 1.04 78.0 80.82 37.6 1.03 85.0 83.93 52.9 1.01 88.5 87.01 57.5

Table 4: Final Evaluation — Length Ratio (LR), Length Compliance (LC), BERTScore (BS) and BLEU — of the
best setting (10-shot, pool type Tiny) across different Llama and Gemma models compared to the submissions of
IWSLT Isometric Shared Task. The k values indicate the number of demonstration sampling runs (i.e. different
outputs) from which we select the best one using COMETKIWI. To avoid any possible evaluation difference, we
(re-)evaluated all the outputs, ours and IWSLT22 ones, using the script provided by the organizers of the shared task.
The best results are in bold.

demonstrations are short or very short.

Few-shot Prompting Another notable observa-
tion is that increasing the number of examples in
few-shot prompting does not substantially enhance
regular translation quality (i.e., translation without
length restrictions), which is consistent with previ-
ous findings (Bawden and Yvon, 2023; Zhang et al.,
2023a; Chowdhery et al., 2023). Including shorter
examples sometimes improves adherence to length
limitations (e.g., for llama3:8b); this effect is not
observed for all models (e.g., for gemma2:27b).

Translation Quality Scores The largest trans-
lation quality scores are observed when the unfil-
tered pool (Random) is used, which is expected as
this corresponds to an unconstrained setting. The
top-performing model in terms of BERTScore for
English-German translations is llama3:70b. For
the other language pairs, gemma2:9b, gemma2:27b
and qwen2:72b achieve the largest translation
score.

Length Ratio and Translation Quality Tradeoff
We also compare translation scores with length
ratios. The results are presented in Figure 4 for

En→De direction (the rest in Figure 7 in Ap-
pendix E). We can see that only Llama and Gemma
models are capable of reaching 1.0 length ratio.
Our results also highlight the impact of model
size on performance, with larger models consis-
tently outperforming their smaller counterparts in
BERTScore, except for gemma2:9b which reports
similar performance to its large counterpart.

5 Final Evaluation

Since Llama and Gemma models achieve the best
performance on all language pairs on average, we
select and evaluate them in Final Evaluation using
the Isometric Shared Task blind set. We gener-
ate outputs using 10 distinct sets of 10 examples
(10-shot), each drawn from the Tiny pool as it
yields the best length control. We keep only out-
puts in the ±10% length constraint7 and select the
best one according to reference-free COMET, i.e.
COMETKIWI8 score (Rei et al., 2022). We then

7If none of the translations adhere to the ±10% length
constraint, we keep the original unfiltered set.

8https://huggingface.co/Unbabel/
wmt22-cometkiwi-da
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compare these results with the submissions from
the IWSLT 2022 Isometric Shared Task, specifi-
cally those from the APPTEK (Wilken and Ma-
tusov, 2022), HW-TSC (Li et al., 2022), Amazon
Prime Video (APV), and NUV teams (Bhatnagar
et al., 2022), in addition to the two (strong and
weak) baselines provided by the organizers. For a
brief overview of each system, please refer to Anas-
tasopoulos et al. (2022). Additionally, we compare
our results to an OracleBLEU setting, where the
best translation is selected according to the sen-
tence BLEU score across all configurations after
filtering out translations that fall outside ±10% of
the source character count. The results are summa-
rized in Table 4.

Our results show that for the En→De and
En→Es language pairs, the Gemma models achieve
output quality comparable to the strong baseline.
While the translation quality metrics surpass that
of the strong baseline, the length control is slightly
less precise. For En→Fr, however, the strong base-
line continues to outperform our models in terms
of quality as well as LR. Although generating 10
different outputs for each source sentence may not
be feasible in practice, this approach could be ben-
eficial for producing synthetic data for training iso-
metric machine translation models.

6 Conclusion

In this paper, we explored the use of LLMs for iso-
metric machine translation, focusing on strategies
to control the translation length. Our key findings
are as follows: First, effective length control in few-
shot prompting requires the simultaneous use of ap-
propriate demonstrations and matching instructions.
Second, generating multiple outputs achieves the
best trade-off between length control and transla-
tion quality, indicating the high capability of LLMs
to generate desired outputs. It might be also use-
ful for creating synthetic training data. Although
prompting 10 times may seem inefficient, it would
not be necessary for every sample in practice. Since
half of the samples are already length-compliant —
even with the uncontrolled Random prompt — com-
pliance for the rest can be achieved iteratively by
generating translations until the length constraint
is met. Future work might benefit from fine-tuning
LLMs or from a more in-depth analysis of the in-
ternal representation of length in LLMs to avoid
many samples to generate.

Limitations

We compare our results primarily with system sub-
missions from the Isometric Shared Task 2022, as
more recent models either do not address the lan-
guage pairs examined in this study (e.g., Hindi-
English by Mhaskar et al. (2024)) or are not pub-
licly available (Bhavsar et al., 2022). Additionally,
we do not evaluate performance on any downstream
tasks, such as subtitling or dubbing.

We did not conduct a detailed analysis of ensem-
ble methods, particularly concerning ensembling
across different models or pool types. Moreover,
for the Tiny and Same pools, we do not analyze the
effect of varying N .

When collecting 10 outputs in Final Evaluation,
the associated computational cost increases consid-
erably. While this approach may not be feasible for
real-world applications, it can be valuable for gener-
ating high-quality examples for isometric machine
translation model training. To further reduce com-
putational costs, one could regenerate only those
translations that do not meet the specified length
constraints.

Finally, it is important to note that we exclusively
used quantized versions of the models in our exper-
iments, likely resulting in sub-optimal translation
scores.
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A Overgeneration

Bawden and Yvon (2023) have demonstrated that
the BLOOM model tends to overgenerate, specifi-
cally it continues to produce translations in addi-
tional languages beyond the desired output. In our
preliminary experiments, we observed similar be-
havior across several models, which manifested in
two distinct ways: (1) models frequently provided
explanations alongside the translation, and (2) mod-
els embedded the translation within a broader text.

To mitigate the issue of overgeneration, we im-
plemented a straightforward yet highly effective
solution. Specifically, we appended an instruction
to the prompt, explicitly directing the model to
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Figure 5: Restricted vs unrestricted prompt for 5-shot
examples and the random pool when we discard ev-
erything after the first new line. In restricted, we add
‘output translation only’ at the end of the prompt. The
red dashed line corresponds to a ratio of 1.0.

output only the translation. This approach proved
to be remarkably effective, obviating the need for
more complex techniques such as truncation or the
application of regular expressions to filter the trans-
lation. We evaluated the impact of this method
on translation length within a 5-shot setting, uti-
lizing a randomly selected pool with uncontrolled
instruction types. For each model, we constructed
10 distinct prompts with different examples, and
we discarded generated text after the first new line
character because at this place an explanation often
begins. The averaged length ratios are presented in
Figure 5.

The results indicate that our approach maintains
length consistency across all models and language
pairs, with values remaining close to 1.0. The only
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En-De En-Fr En-Es
Model No Yes No Yes No Yes
gemma2:9b 100 0 100 2 100 2
gemma2:27b 100 1 100 2 100 1
llama3:8b 100 3 100 3 100 1
llama3:70b 100 0 99 0 99 0
qwen2:7b 0 0 0 0 0 0
qwen2:72b 12 3 7 1 5 1
mistral:7b 16 3 9 1 19 1
mixtral:8x7b 38 15 29 15 36 20

Table 5: The average percentage of translations that
contain a new line, indicating overgeneration (5-shot
setting). ‘Yes’ and ‘No’ columns denote the restricted
and unrestricted prompt, respectively.

exceptions are mixtral:8x7b, which tends to gen-
erate longer text even with the restrictive instruc-
tion, and qwen2:7b, which is the only one that does
not tend to overgenerate in the first place.

Since overgeneration, when it does occur, typi-
cally manifests itself as additional text generated af-
ter a newline character, we counted the occurrences
of text generation following a newline in both the
restricted and unrestricted settings to further eval-
uate the effectiveness of our method. As shown
in Table 5, in many instances — particularly with
the Llama and Gemma models — there is a clear
tendency for models to generate explanatory text
after a newline when output is unrestricted. Con-
versely, when the output is restricted to translation
only, the occurrence of additional text is substan-
tially reduced. Based on these observations, we
adopted this restrictive instruction in all subsequent
experiments and we also ignore any output after
the newline character.

Examples Examples of overgeneration where (1)
models frequently provided explanations alongside
the translation, and (2) models embedded the trans-
lation within a broader text:

1. qwen2:72b: . . . English: Not surprisingly, this
destruction also endangers bonobo survival.
¬ German: Überraschenderweise gefährdet
dieser Niedergang auch das Überleben der
Bonobos. ¬ ¬ However, a more accurate
translation would be: ¬ Unüberraschender-
weise gefährdet diese Zerstörung auch das
Überleben der Bonobos.

2. llama3:8b: . . . English: But still it was a real
footrace against the other volunteers to get to
the captain in charge to find out what our
assignments would be. ¬ Spanish: Based
on the provided examples, here is a possible

translation: ¬ ¬ Spanish: Pero todavía fue un
verdadero carrera contra los otros voluntarios
para llegar al capitán al mando y encontrar qué
serían nuestras asignaciones.¬ ¬ This trans-
lation takes into account the nuances of the
original sentence. . . (explanation continues)

B Generation Details

B.1 Inference Hyperparameters

In all experiments, text generation uses multino-
mial sampling, with default parameters provided by
the Ollama library: top-K 40 sampling (K = 40)
and a temperature of 0.8. Generation stops after
512 tokens or when <EOT> (end of turn) token is
printed.

B.2 Prompt Templates

The construction of templates is depicted in Table 6.
The prompts are created by concatenating prompt
parts (1–6).

B.3 Pool Statistics

The statistics of each pool for all pairs of languages
studied is in Table 7. We observe a similar trend
across all language pairs.

C Match vs No-match

The comparison of match-vs-non-match for all lan-
guages is depicted in Table 8. Figure 6 shows the
proportion of isometric outputs given sentences
where each of the models failed to produce iso-
metric translation by default, i.e. under the Ran-
dom-Random setting, even across 10 default runs.
The translations are taken after only one attempt,
which is in contrast to Figure 2 where the outputs
are selected from 10 attempts.

D Few-shot Prompting

The comparison between all few shot settings for
all languages is displayed in Figure 8. Additionally,
we provide a more detailed view of the results of
all few-shot settings, which is presented in Table 9
(zero-shot), Table 10 (5-shot), Table 11 (10-shot)
and Table 12 (20-shot). We also compare these
results to an oracle setup, in which the best transla-
tion is selected based on the sentence BLEU score
across all configurations, after filtering out trans-
lations that do not fall within ±10% of the source
character count.
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Part Prompt type Zero-shot
1 - Translate the following text from [src lang] into [tgt lang]

2

Random .
Isometric ensuring that it is within ±10% of the character count of the source.
Same ensuring that it has the same length as the source.
Short / Tiny ensuring that it is shorter than the source.

3 No ¬
Yes Output only the translation. ¬

4 - [src lang]: [src sentence] ¬ [tgt lang]:

Part Prompt type Few-shot
1 - Here are examples of translations in [tgt lang]

2

Random of the source in [src lang]: ¬
Isometric that are within ±10% of the character count of the source in [src lang]: ¬
Same that have the same length as the source in [src lang]: ¬
Short / Tiny that are shorter than the source in [src lang]: ¬

3 - N× {[src lang]: [src sentence] ¬ [tgt lang]: [tgt sentence] ¬}
4 - Provide translation for the following sentence given the examples above.

5 No ¬
Yes Output only the translation. ¬

6 - [src lang]: [src sentence] ¬ [tgt lang]:

Table 6: Zero-shot (upper) and few-shot (lower) prompt templates. ¬ stands for new line. Actual prompts are
constructed by sequentially concatenating prompt parts (1–6).

En-De
Pool type Count Min Max avg±std
Random 1415 0.43 5.80 1.14±0.27
Isometric 537 0.90 1.10 1.02±0.05
Same 50 0.99 1.00 1.00±0.00
Short 343 0.43 1.00 0.90±0.11
Tiny 50 0.43 0.81 0.68±0.11

En-Fr
Random 1412 0.29 4.90 1.14±0.28
Isometric 505 0.90 1.10 1.02±0.05
Same 50 0.99 1.00 1.00±0.00
Short 348 0.29 1.00 0.88±0.14
Tiny 50 0.29 0.76 0.60±0.13

En-Es
Random 1316 0.30 5.70 1.08±0.32
Isometric 659 0.90 1.10 1.01±0.05
Same 50 1.00 1.00 1.00±0.00
Short 490 0.30 1.00 0.89±0.12
Tiny 50 0.30 0.72 0.59±0.12

Table 7: Statistics of pools: The number of samples,
minimum and maximum target/source length ratio, and
its average and standard deviation.

E Translation Quality and Length
Tradeoff

The length ratio and translation quality tradeoff for
all languages is presented in Figure 7. We observe
that models generally produce isometric translation
when Tiny setting is used. The exception is Spanish,
where the average 1.0 length ratio can be obtained
by Short setting. This is in line with our intuition
since Spanish exhibits a smaller length ratio of
1.04 for the training data from MuST-C, compared
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Figure 6: The percentage of input sentences (across all
language directions) for which the generated transla-
tion meets the isometric condition when the model is
prompted to produce isometric, same-length, short, and
tiny outputs aligned with respective 5-shot demonstra-
tion sets. This evaluation is restricted to input sentences
where the particular model did not generate any isomet-
ric translation in ten attempts using the uncontrolled
prompt.

to length ratios of 1.12 and 1.11 for German and
French, respectively.9

9These values were calculated by the organizers of the
isometric shared task and are mentioned on the official website
https://iwslt.org/2022/isometric.
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En-De
Random Isometric Same Short Tiny

Model No Yes No Yes No Yes No Yes No Yes
gemma2:27b 1.100 1.097 1.099 1.094 1.098 1.097 1.087 1.011 1.066 0.955
gemma2:9b 1.108 1.106 1.106 1.101 1.106 1.073 1.099 1.026 1.080 0.981
llama3:70b 1.149 1.151 1.149 1.139 1.141 1.134 1.138 1.005 1.122 0.905
llama3:8b 1.106 1.100 1.093 1.108 1.099 1.112 1.085 1.048 1.056 0.994
mistral:7b 1.133 1.129 1.126 1.128 1.135 1.125 1.121 1.105 1.138 1.085
mixtral:8x7b 1.402 1.411 1.375 1.362 1.378 1.381 1.385 1.297 1.363 1.265
qwen2:72b 1.223 1.169 1.195 1.178 1.184 1.173 1.170 1.128 1.164 1.129
qwen2:7b 1.132 1.160 1.144 1.125 1.129 1.129 1.128 1.135 1.117 1.095

En-Fr
gemma2:27b 1.128 1.126 1.123 1.125 1.127 1.128 1.115 1.034 1.087 0.970
gemma2:9b 1.143 1.146 1.142 1.132 1.144 1.121 1.133 1.062 1.116 1.021
llama3:70b 1.178 1.176 1.173 1.167 1.174 1.172 1.163 1.015 1.147 0.877
llama3:8b 1.136 1.121 1.134 1.141 1.136 1.144 1.110 1.052 1.072 0.986
mistral:7b 1.162 1.166 1.159 1.152 1.167 1.177 1.141 1.127 1.153 1.137
mixtral:8x7b 1.335 1.332 1.316 1.233 1.351 1.247 1.355 1.206 1.348 1.203
qwen2:72b 1.178 1.180 1.198 1.174 1.184 1.171 1.215 1.139 1.172 1.118
qwen2:7b 1.183 1.175 1.175 1.171 1.172 1.172 1.170 1.146 1.152 1.124

En-Es
gemma2:27b 1.058 1.057 1.057 1.058 1.058 1.054 1.053 0.994 1.040 0.939
gemma2:9b 1.072 1.072 1.071 1.064 1.070 1.046 1.067 1.018 1.054 0.969
llama3:70b 1.086 1.089 1.088 1.086 1.086 1.083 1.084 0.969 1.062 0.823
llama3:8b 1.050 1.051 1.055 1.063 1.051 1.062 1.042 1.008 0.999 0.907
mistral:7b 1.050 1.058 1.058 1.050 1.078 1.063 1.106 1.038 1.039 1.014
mixtral:8x7b 1.321 1.287 1.340 1.269 1.265 1.222 1.286 1.254 1.283 1.252
qwen2:72b 1.116 1.113 1.108 1.110 1.113 1.117 1.114 1.091 1.106 1.075
qwen2:7b 1.074 1.097 1.074 1.079 1.075 1.074 1.083 1.057 1.065 1.035

Table 8: Average target/source ratios for every pool type when instructions match (‘Yes’) or do not match (‘No’) the
properties of the samples in 5-shot prompting. Differences for each pool type with p-value < 0.1 are underlined.
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Figure 8: The translation quality (BERTScore, dashed lines and the right hand y-axes) and length ratio (solid lines
and left-hand y-axes) for all few-shot settings, models and language pairs.
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En-De En-Fr En-Es
Model Prompt Type LR LC BS BLEU LR LC BS BLEU LR LC BS BLEU

Random 1.13 37.39 83.57 31.82 1.15 37.78 86.80 43.29 1.08 48.20 86.08 39.24

gemma2:27b
Isometric 1.12 39.10 83.28 29.94 1.14 39.10 85.70 38.25 1.06 51.65 85.65 37.54
Same 1.12 41.55 83.52 31.02 1.13 44.45 86.18 40.07 1.07 51.95 85.92 37.75
Short 0.83 27.05 76.10 12.16 0.86 33.85 77.74 15.91 0.82 30.25 79.88 19.15
Random 1.13 34.85 83.43 31.47 1.15 36.75 86.40 41.81 1.08 48.85 85.54 37.87

gemma2:9b
Isometric 1.12 38.75 82.93 29.37 1.14 38.70 85.73 38.18 1.07 54.40 85.60 36.59
Same 1.11 41.45 82.89 29.63 1.13 40.75 85.94 39.55 1.05 55.95 85.80 36.91
Short 0.91 35.65 78.15 16.12 0.93 38.65 79.45 20.16 0.87 36.45 80.70 21.66
Random 1.18 26.94 84.58 34.31 1.19 28.06 87.52 44.24 1.11 45.83 85.78 37.08

llama3:70b
Isometric 1.16 31.80 84.53 33.79 1.17 31.40 87.42 43.65 1.09 49.65 85.95 37.36
Same 1.17 26.70 84.75 34.87 1.19 28.35 87.58 44.24 1.10 46.95 85.87 36.72
Short 0.92 38.75 79.04 17.20 0.93 38.40 80.26 21.27 0.88 37.05 80.85 23.17
Random 1.16 31.60 82.70 28.96 1.18 31.39 84.81 36.68 1.08 50.10 83.93 32.78

llama3:8b
Isometric 1.18 29.33 82.23 27.82 1.18 29.67 83.90 34.23 1.11 47.00 83.10 31.00
Same 1.17 28.65 82.55 28.36 1.18 27.50 84.01 34.70 1.08 47.33 82.96 30.99
Short 0.96 33.85 77.88 15.83 0.95 37.10 78.92 18.29 0.90 39.70 79.61 19.69
Random 1.20 30.40 77.28 23.33 1.21 32.40 82.65 30.19 1.09 48.70 82.52 29.49

mistral:7b
Isometric 1.29 24.28 72.26 19.88 1.29 26.67 80.79 28.20 1.15 43.89 81.92 28.57
Same 1.18 28.40 80.55 23.23 1.20 32.90 82.66 29.99 1.09 47.40 82.79 29.30
Short 1.13 39.40 73.62 16.99 1.12 41.30 78.78 23.39 0.97 45.55 79.23 23.13
Random 1.42 23.75 81.50 29.00 1.27 26.00 85.45 38.28 1.36 38.83 83.72 31.61

mixtral:8x7b
Isometric 1.49 15.89 79.81 26.21 1.41 18.85 82.65 34.47 1.30 29.50 82.48 30.23
Same 1.53 21.50 79.77 26.86 1.31 28.78 83.94 36.18 1.30 39.45 83.24 30.73
Short 1.81 18.50 73.92 18.32 1.63 28.30 77.58 26.18 1.70 26.30 75.75 20.91
Random 1.17 30.28 84.02 33.07 1.18 33.61 87.50 44.30 1.11 45.44 85.83 37.82

qwen2:72b
Isometric 1.15 35.65 83.69 31.80 1.17 38.15 86.76 41.92 1.09 50.60 85.53 36.41
Same 1.16 32.50 83.62 32.22 1.18 38.45 87.35 44.87 1.10 50.70 85.73 36.86
Short 0.98 40.10 80.48 20.71 1.01 43.95 83.46 27.91 0.92 37.60 83.27 25.77
Random 1.21 28.55 80.83 24.32 1.19 28.81 84.20 36.04 1.10 41.45 83.04 30.98

qwen2:7b
Isometric 1.20 27.50 80.51 23.05 1.19 30.75 83.61 34.00 1.10 45.72 83.19 30.33
Same 1.19 28.45 81.04 23.67 1.18 29.80 84.27 35.42 1.10 43.90 83.55 30.91
Short 1.09 38.00 79.34 18.89 1.11 41.55 82.78 30.33 1.02 49.65 82.54 27.35

Oracle 1.07 65.00 87.74 49.60 1.05 76.50 87.99 55.60 1.03 83.00 88.47 53.50

Table 9: 0-shot prompting for all language pairs. Columns denote length ratio (LR), length compliance (LC),
BERTScore (BS) and BLEU.
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En-De En-Fr En-Es
Model Pool Type LR LC BS BLEU LR LC BS BLEU LR LC BS BLEU

Random 1.13 36.75 83.97 32.81 1.14 39.70 87.01 42.86 1.08 50.60 86.11 39.02

gemma2:27b
Isometric 1.13 39.15 84.04 33.07 1.14 40.35 86.95 42.29 1.08 51.55 86.10 38.61
Same 1.13 38.65 84.18 33.05 1.14 40.35 87.58 43.81 1.07 52.50 86.29 38.71
Short 1.04 44.05 82.41 28.01 1.05 42.65 84.50 34.61 1.01 53.15 85.06 35.54
Tiny 0.99 41.00 81.13 24.46 0.99 42.55 82.83 30.89 0.96 48.05 83.81 32.21
Random 1.14 35.35 84.07 32.37 1.16 37.85 87.09 43.13 1.09 50.90 85.99 37.59

gemma2:9b
Isometric 1.14 37.25 83.93 31.80 1.15 40.30 86.76 42.09 1.08 51.85 86.00 37.59
Same 1.11 41.35 83.72 30.57 1.14 43.00 86.77 42.05 1.06 56.50 85.75 37.09
Short 1.06 44.25 82.71 28.24 1.08 46.50 85.05 36.13 1.04 56.60 85.54 36.71
Tiny 1.01 44.50 81.55 25.40 1.04 44.10 84.13 34.59 0.99 53.80 84.55 33.53
Random 1.19 26.45 84.85 34.86 1.19 29.15 87.40 44.08 1.11 48.45 85.62 36.89

llama3:70b
Isometric 1.17 27.90 84.65 34.25 1.18 30.85 87.37 43.63 1.10 47.90 85.66 37.07
Same 1.17 28.50 84.83 34.84 1.19 31.65 87.50 43.96 1.10 49.60 85.52 36.43
Short 1.04 40.90 82.76 28.12 1.03 44.00 84.81 35.36 0.99 50.15 84.51 33.68
Tiny 0.94 35.80 80.61 22.66 0.89 37.05 81.20 25.79 0.84 33.75 80.97 24.73
Random 1.14 32.00 81.55 26.44 1.14 34.22 83.57 34.32 1.07 48.70 82.29 30.53

llama3:8b
Isometric 1.15 32.00 81.87 26.57 1.16 36.30 83.74 34.08 1.08 49.40 83.16 31.45
Same 1.15 33.40 82.06 27.04 1.16 34.50 84.28 34.80 1.08 51.45 83.41 31.05
Short 1.08 39.05 80.69 23.71 1.07 38.55 81.59 29.35 1.03 51.40 81.88 28.56
Tiny 1.03 37.55 79.41 21.21 1.00 38.10 80.24 26.74 0.93 43.15 79.55 23.71
Random 1.17 32.00 80.66 23.66 1.18 35.20 82.29 29.70 1.08 48.78 82.28 28.52

mistral:7b
Isometric 1.17 32.55 80.76 23.67 1.17 37.40 82.50 30.11 1.07 50.80 82.57 28.79
Same 1.16 33.50 80.93 23.86 1.19 34.90 82.37 29.91 1.08 52.60 82.64 28.99
Short 1.14 38.15 80.30 22.68 1.14 39.10 82.01 29.06 1.06 51.85 81.96 28.64
Tiny 1.12 38.65 79.75 21.46 1.15 40.00 81.34 28.10 1.03 52.25 81.42 27.36
Random 1.43 26.85 81.99 30.58 1.33 30.00 84.20 38.51 1.30 40.45 83.68 33.44

mixtral:8x7b
Isometric 1.38 29.20 82.02 30.71 1.24 32.10 84.64 38.40 1.28 42.80 83.78 33.85
Same 1.40 32.40 82.38 31.10 1.26 32.35 84.74 39.20 1.24 44.45 84.12 34.18
Short 1.32 33.65 81.21 28.83 1.21 37.45 83.77 35.39 1.26 45.75 82.91 32.28
Tiny 1.29 36.80 79.98 26.16 1.21 38.56 82.70 33.03 1.25 46.80 82.11 31.02
Random 1.20 29.25 84.08 33.25 1.20 33.35 87.18 43.74 1.13 45.65 85.48 37.00

qwen2:72b
Isometric 1.21 29.95 83.98 33.02 1.19 34.60 86.85 42.69 1.13 46.10 85.37 36.77
Same 1.21 31.20 83.98 32.91 1.19 35.80 87.26 43.57 1.14 48.60 85.66 37.52
Short 1.16 34.40 83.63 31.59 1.15 41.60 86.36 40.17 1.11 49.65 85.05 36.10
Tiny 1.16 35.75 83.03 30.09 1.13 42.80 85.86 38.80 1.10 49.40 84.52 35.20
Random 1.20 32.10 81.04 23.99 1.19 31.75 84.24 35.37 1.11 47.40 83.53 30.89

qwen2:7b
Isometric 1.16 30.30 81.24 23.78 1.19 32.30 84.11 34.86 1.10 48.70 83.63 31.13
Same 1.17 31.55 81.28 24.07 1.19 32.80 84.41 35.16 1.09 47.75 83.52 30.98
Short 1.14 35.56 80.97 22.99 1.16 35.25 83.77 34.09 1.08 48.95 83.33 30.75
Tiny 1.13 34.89 80.63 22.43 1.14 36.60 82.56 32.26 1.05 50.00 82.89 29.95

Oracle 1.07 65.00 87.74 49.60 1.05 76.50 87.99 55.60 1.03 83.00 88.47 53.50

Table 10: 5-shot prompting for all language pairs when sampling examples from different pools. Columns denote
length ratio (LR), length compliance (LC), BERTScore (BS) and BLEU. All numbers are averaged across 10
instances. The prompt text matches the pool type.
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En-De En-Fr En-Es
Model Pool Type LR LC BS BLEU LR LC BS BLEU LR LC BS BLEU

Random 1.13 37.20 84.14 33.34 1.14 41.50 86.93 42.54 1.08 50.65 86.01 38.58

gemma2:27b
Isometric 1.13 39.10 83.98 32.89 1.14 40.35 86.79 41.72 1.08 50.55 86.03 38.50
Same 1.13 38.80 84.19 33.31 1.14 41.70 87.45 43.59 1.08 50.90 86.36 39.01
Short 1.05 43.95 82.76 28.38 1.06 45.40 85.04 36.26 1.02 52.15 85.29 36.17
Tiny 1.00 41.05 81.25 24.84 1.01 41.55 83.44 33.10 0.97 47.70 84.10 33.15
Random 1.14 36.75 83.91 32.23 1.16 39.85 86.95 43.22 1.09 50.35 86.05 37.93

gemma2:9b
Isometric 1.13 36.35 83.89 31.57 1.15 41.40 86.76 41.89 1.08 53.05 86.00 37.68
Same 1.12 40.15 83.80 30.88 1.14 42.45 86.86 42.48 1.07 55.40 85.93 37.53
Short 1.07 43.55 82.81 28.84 1.08 47.35 85.36 37.34 1.04 58.45 85.57 36.41
Tiny 1.03 43.85 81.92 26.68 1.03 43.95 83.80 34.25 1.00 55.35 84.63 33.89
Random 1.19 26.30 84.87 35.16 1.19 30.10 87.39 44.23 1.11 47.15 85.67 36.88

llama3:70b
Isometric 1.18 27.70 84.79 34.74 1.18 30.75 87.45 43.84 1.10 46.75 85.68 36.90
Same 1.17 28.90 85.00 35.04 1.18 31.45 87.65 44.37 1.10 48.95 85.67 36.73
Short 1.05 40.00 82.94 28.86 1.02 42.45 84.49 34.89 1.00 50.05 84.44 34.19
Tiny 0.95 36.10 81.01 23.37 0.88 36.50 80.87 25.85 0.84 34.95 80.90 25.09
Random 1.14 33.30 81.07 25.66 1.14 34.22 83.37 33.56 1.06 49.20 82.29 30.24

llama3:8b
Isometric 1.14 33.20 81.77 26.21 1.14 36.06 83.75 34.38 1.08 49.55 82.85 31.05
Same 1.15 33.80 81.88 26.53 1.15 34.05 83.97 34.57 1.07 52.00 83.40 31.27
Short 1.06 36.35 80.16 22.92 1.04 39.60 81.31 29.40 1.00 48.00 81.31 27.55
Tiny 1.00 35.75 78.99 20.19 0.95 35.90 79.07 24.33 0.89 42.15 78.70 22.47
Random 1.16 32.40 80.52 23.18 1.17 34.33 82.56 30.17 1.08 47.65 82.06 28.27

mistral:7b
Isometric 1.15 32.95 80.79 23.87 1.17 36.83 82.36 29.99 1.07 49.60 82.39 28.73
Same 1.16 33.45 80.85 23.59 1.17 36.40 82.54 30.25 1.09 50.20 82.77 29.37
Short 1.13 37.10 80.45 22.91 1.15 38.35 81.97 29.10 1.05 52.05 82.19 28.43
Tiny 1.13 37.85 79.66 21.53 1.13 41.25 81.13 28.11 1.04 51.40 81.65 27.74
Random 1.46 28.15 82.02 30.81 1.32 31.60 84.45 38.81 1.40 40.35 83.22 33.38

mixtral:8x7b
Isometric 1.35 31.95 82.21 31.09 1.25 31.75 84.52 38.81 1.36 42.15 83.37 33.56
Same 1.42 30.95 81.95 30.69 1.28 33.75 84.73 38.92 1.28 43.20 83.92 34.50
Short 1.36 35.75 81.16 28.92 1.24 37.15 83.72 35.97 1.30 46.45 82.89 32.66
Tiny 1.27 39.20 80.21 26.27 1.23 37.80 82.48 32.84 1.33 45.00 81.78 31.69
Random 1.22 29.50 84.12 33.35 1.21 34.40 87.05 43.42 1.13 46.15 85.52 37.22

qwen2:72b
Isometric 1.20 28.70 84.11 33.29 1.19 36.00 86.73 42.56 1.14 45.60 85.42 36.82
Same 1.22 31.35 83.97 32.99 1.18 37.05 87.22 43.57 1.12 48.10 85.68 37.43
Short 1.14 35.30 83.65 31.82 1.15 42.45 86.47 40.71 1.10 49.10 85.24 36.88
Tiny 1.14 35.55 83.20 30.38 1.15 43.55 85.81 39.52 1.10 50.15 84.62 35.44
Random 1.18 29.10 81.17 23.82 1.21 31.65 84.19 35.02 1.09 46.06 83.61 30.71

qwen2:7b
Isometric 1.17 32.05 81.31 23.71 1.19 31.20 84.19 35.11 1.09 45.35 83.40 30.67
Same 1.17 31.20 81.37 23.99 1.19 32.00 84.36 35.03 1.10 45.95 83.33 30.93
Short 1.15 33.55 80.81 23.13 1.17 35.00 83.63 34.17 1.08 47.00 83.12 30.45
Tiny 1.13 37.00 80.55 22.31 1.16 34.30 82.87 33.13 1.06 49.00 83.20 30.41

Oracle 1.07 65.00 87.74 49.60 1.05 76.50 87.99 55.60 1.03 83.00 88.47 53.50

Table 11: 10-shot prompting for all language pairs when sampling examples from different pools. Columns denote
length ratio (LR), length compliance (LC), BERTScore (BS) and BLEU. All numbers are averaged across 10
instances. The prompt text matches the pool type.
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En-De En-Fr En-Es
Model Pool Type LR LC BS BLEU LR LC BS BLEU LR LC BS BLEU

Random 1.13 38.05 84.15 33.75 1.14 39.40 86.74 42.23 1.08 49.35 85.98 38.82

gemma2:27b
Isometric 1.13 39.70 84.08 33.24 1.14 39.60 86.71 42.21 1.08 48.90 86.05 38.70
Same 1.13 39.15 84.29 33.68 1.14 42.50 87.08 42.86 1.08 49.85 86.26 39.03
Short 1.07 43.45 83.07 30.32 1.07 45.05 85.28 37.52 1.04 52.20 85.55 37.43
Tiny 1.01 42.00 81.88 27.16 1.01 40.90 83.62 33.65 0.98 48.55 84.25 34.32
Random 1.14 37.30 83.81 32.08 1.15 39.60 86.86 43.01 1.09 50.72 85.82 37.94

gemma2:9b
Isometric 1.13 37.75 83.73 31.51 1.14 41.10 86.68 42.17 1.08 51.40 86.01 37.93
Same 1.12 39.80 83.72 30.97 1.14 42.40 86.79 42.11 1.07 54.05 85.97 38.00
Short 1.08 41.20 82.83 28.93 1.09 46.70 85.23 37.48 1.05 54.85 85.46 36.86
Tiny 1.04 46.70 81.94 26.43 1.02 43.85 83.56 33.87 1.00 54.35 84.64 33.62
Random 1.19 27.50 85.01 35.32 1.19 30.95 87.50 44.27 1.11 47.80 85.61 36.93

llama3:70b
Isometric 1.18 28.25 84.97 35.01 1.18 31.20 87.59 43.92 1.10 48.70 85.64 37.12
Same 1.17 28.95 85.31 35.16 1.18 32.25 87.66 44.31 1.11 48.55 85.63 36.80
Short 1.06 39.75 83.12 29.42 1.03 42.10 84.60 35.92 1.01 50.25 84.71 35.11
Tiny 0.95 34.90 80.71 23.33 0.90 37.25 81.08 26.91 0.83 37.00 81.01 25.22
Random 1.13 32.40 81.50 26.26 1.13 35.20 83.19 33.89 1.06 48.35 82.46 30.69

llama3:8b
Isometric 1.13 34.00 81.80 26.70 1.13 36.25 83.53 34.10 1.06 47.35 82.78 30.94
Same 1.14 34.25 81.96 26.40 1.14 34.15 83.86 34.56 1.07 51.05 83.11 31.16
Short 1.06 37.95 80.57 24.32 1.04 38.10 81.43 28.63 1.00 48.00 81.45 28.03
Tiny 1.00 37.10 79.11 20.94 0.97 37.05 79.69 26.43 0.90 42.25 79.13 23.72
Random 1.15 33.30 80.57 23.37 1.17 36.20 82.27 30.12 1.07 49.60 82.34 28.71

mistral:7b
Isometric 1.15 33.35 80.60 23.24 1.16 35.25 82.36 30.01 1.07 50.05 82.30 28.57
Same 1.16 33.50 80.90 23.88 1.17 35.40 82.55 29.78 1.09 49.50 82.82 29.06
Short 1.13 36.50 80.34 22.27 1.14 39.30 82.03 29.15 1.05 51.10 82.02 28.19
Tiny 1.12 39.00 79.55 21.25 1.15 39.95 80.96 28.10 1.04 51.20 81.77 27.70
Random 1.42 29.35 82.14 30.68 1.30 32.20 84.55 38.96 1.44 41.80 83.27 33.30

mixtral:8x7b
Isometric 1.35 32.15 82.24 31.23 1.24 33.65 84.60 38.34 1.30 44.55 83.83 34.02
Same 1.32 32.25 82.60 31.69 1.23 34.10 84.95 38.54 1.27 42.20 84.09 34.79
Short 1.33 35.65 81.56 29.40 1.22 36.85 83.80 35.92 1.27 46.90 83.64 33.99
Tiny 1.24 38.40 80.73 27.13 1.21 37.15 82.91 34.10 1.24 45.45 82.82 32.94
Random 1.21 30.10 84.04 33.19 1.19 34.05 87.06 43.62 1.12 45.15 85.66 37.59

qwen2:72b
Isometric 1.21 30.35 84.04 33.06 1.18 36.00 86.97 42.64 1.11 46.30 85.58 37.18
Same 1.21 31.10 84.06 33.12 1.17 35.15 87.14 43.29 1.12 48.60 85.65 37.30
Short 1.14 33.95 83.97 32.04 1.17 41.50 86.24 40.66 1.11 48.90 85.38 36.94
Tiny 1.15 36.35 83.51 31.21 1.15 42.25 85.99 40.03 1.11 48.50 84.58 35.28
Random 1.17 29.94 81.22 23.97 1.20 30.35 83.96 34.96 1.10 44.65 83.40 30.81

qwen2:7b
Isometric 1.17 31.15 81.27 23.54 1.19 30.45 84.01 35.03 1.10 46.35 83.60 31.22
Same 1.18 30.15 81.39 24.22 1.19 33.05 84.43 35.24 1.10 44.70 83.35 30.91
Short 1.15 33.85 80.92 23.33 1.17 33.85 83.48 34.25 1.09 46.80 83.43 30.65
Tiny 1.14 34.25 80.34 21.87 1.15 34.85 82.98 33.09 1.07 49.50 83.11 30.23

Oracle 1.07 65.00 87.74 49.60 1.05 76.50 87.99 55.60 1.03 83.00 88.47 53.50

Table 12: 20-shot prompting for all language pairs when sampling examples from varying pools. We report length
ratio (LR), length compliance (LC), BERTScore (BS), and BLEU. All numbers are averaged across 10 instances.
The prompt text matches the pool type.
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Abstract

This paper presents our contribution to the
IWSLT Low Resource Track 2: "Training
and Evaluation Data Track". We share a
human-evaluated Urdu-English speech-to-text
corpus based on Common Voice 13.0 Urdu
speech corpus. We followed a three-tier val-
idation scheme which involves an initial au-
tomatic translation with corrections from na-
tive reviewers, full review by evaluators fol-
lowed by final validation from a bilingual ex-
pert ensuring reliable corpus for subsequent
NLP tasks. Our contribution, CV-UrEnST
corpus, enriches Urdu speech resources by
contributing the first Urdu-English speech-to-
text corpus. When evaluated with Whisper-
medium, the corpus yielded a significant im-
provement to the vanilla model in terms of
BLEU, chrF++, and COMET scores, demon-
strating its effectiveness for speech translation
tasks.

Keywords: Speech-to-text (S2T) translation, ma-
chine translation (MT), speech recognition (ASR).

1 Introduction

Speech translation (ST) is a key area of speech and
natural language processing that involves translat-
ing spoken content across languages (Chen et al.,
2024; Niehues et al., 2021). It typically inte-
grates automatic speech recognition (ASR), ma-
chine translation (MT), and text-to-speech (TTS)
capabilities in a pipeline. Early research adopted
a cascade paradigm, where ASR, MT, and TTS
operated in separate stages (Gaido, 2024; Iranzo-
Sánchez et al., 2020). However, recent progress
has shifted the focus toward end-to-end architec-
tures that unify these components into a single,
trainable model, reducing latency and error prop-
agation between modules (Berard et al., 2016;
Niehues et al., 2021; Chen et al., 2024; Gaido,
2024).

Speech-to-text translation (S2T), a specialized
form of end-to-end ST, involves converting speech
signal in the source language to textual output in
the target language (Berard et al., 2016; Niehues
et al., 2021; Chen et al., 2024). The success
of S2T systems critically depends on the quality,
size, and linguistic diversity of the training corpus,
which underpins model generalization and robust-
ness (Amrouche et al., 2023; Cattoni et al., 2021).

Historically, S2T corpora have evolved from
task-specific datasets to large-scale multilingual
resources that are essential for building performant
translation systems (Cieri et al., 2004; Wang et al.,
2020; Miller et al., 2021; Sikasote and Anasta-
sopoulos, 2022; Sethiya et al., 2024). Despite this
evolution, corpus creation for low-resource lan-
guages remains severely underdeveloped due to
challenges such as dialectal diversity, limited writ-
ten resources, and high annotation costs (Verdonik
et al., 2024).

While, these advances have accelerated
progress in ST for high-resource languages, low-
resource languages continue to face substantial
challenges (Shanbhogue et al., 2023; Bartelds
et al., 2023; Court and Elsner, 2024). ASR,
TTS, and MT models have shown impressive
gains in well-resourced settings, but the lack of
well-annotated, parallel speech-text corpora has
hindered similar progress for underrepresented
languages like Urdu. This data scarcity is a
fundamental bottleneck not only for ST but also
for downstream tasks like cross-lingual retrieval
and multilingual dialogue systems (Magueresse
et al., 2020; Singh et al., 2024; Farooq et al.,
2019).

Urdu remains a low-resource language for
speech translation, with only a few domain-
specific corpora available (Qasim et al., 2016).
Urdu-English is a moderately resourced language
pair with existing corpora for TTS (Jamal et al.,
2022), ASR (Arif et al., 2025) and machine trans-
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Figure 1: Steps involved in the corpus creation pipeline

lation (Abdul Rauf et al., 2020; Abdul Rauf and
Hira, 2023) but speech to text corpus has been no-
ticeably absent. This work is a first step in this
direction, where we present and share first human-
evaluated Urdu-English S2T corpus namely CV-
UrEnST.

We worked on an Urdu subset of Mozilla Com-
mon Voice 13.0 (Ardila et al., 2020). Though,
Mozilla Common Voice provides open-source
Urdu speech, yet its original transcriptions are un-
validated and susceptible to crowd-sourced incon-
sistencies (Ardila et al., 2020). Since, the Urdu
transcriptions underwent comprehensive human
validation, they can be used as a gold-standard
foundation for ASR tasks. In addition to transcrip-
tion integrity, we ensured precise English transla-
tions that carefully preserve idiomatic structures,
named entities, cultural references, and semantic
intent. This positions the corpus as a valuable par-
allel text resource for Urdu-English machine trans-
lation and cross-lingual NLP applications.

We followed a three-tier validation scheme.
Firstly, Initial Translations were generated auto-
matically using the Google Translate API. This
was followed by an Expert Correction phase,
where two native Urdu-English bilinguals manu-
ally refined the translations to eliminate syntac-
tic, semantic, and contextual errors. Finally, an
Extended Review and Final Validation was per-
formed. This multi-phase pipeline ensures high

inter-annotator reliability, contextual fidelity, and
translation accuracy, improving the datasets suit-
ability for both speech-to-text and text-to-text
modeling.

2 Related Work

Recent advances in multilingual low-resource
speech datasets have led to innovative data col-
lection and transcription strategies. For instance,
Yang et al. (2024) introduced GigaSpeech 2, an
ASR corpus for Thai, Indonesian, and Vietnamese
via automated web crawling, transcription, and
iterative refinement. Abraham et al. (2020) fo-
cused on Marathi ASR and emphasized diversity
by sourcing speech from 36 speakers across rural
and urban communities, yielding a 109-hour cor-
pus that captures dialectal variance.

Community-driven initiatives are also central to
low-resource dataset development. Butryna et al.
(2020) presented 38 crowd sourced corpora span-
ning Asia, Africa, and the Americas, underscoring
the role of open data in promoting global speech
technology. Similarly, Guevara et al. (2024) re-
leased a 454 hour multilingual corpus across 10
Philippine languages, collected from domains like
healthcare, education, and spontaneous speech
demonstrating the value of domain and register di-
versity in corpus utility.

The availability of Urdu-English speech-to-
text corpora remains sparse compared to better-
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Our Correction Common Voice Transcription Error Type

Orthographic اسمسئلہ مت بناؤ اا کنا وک
ےریاں مہو ایکے۔ہ گھر اک میسو تسود 

لامعتسا مارگٹاسنا
رویپیول گ۔ںیہ ےٹھیب ےئوہ لگپا 
نہےہر  گاسناب  نہےجب  گییرسناب 

  کمی یلجب کے نئےعئارذ  کےلامعتسا  سے پیداوارہضافا ںیم  ، مہنگےعئارذ  سے

یلجب کی پیداوارںیم
پسظرنم 

وہںیئیہچا ےنھکیو دک پو آج ےمارڈ یناتسکپا 

اسمسئلہ اا کنا وک  مہےبناؤ 
ریاں مہو ایکےہ گھر اک میسو تسود 

امعتسا مارگٹاسنا
رویپیول گےٹھیب ےئوہ لپاغ  ہیں

نہےہر  گاسناب  نہیرسنابیگ ےجب 
  کمی یلجب کے نئےعئارذ  کےلامعتسا  سےپیداوارعئارذےگنہمہضافا ںیم  سے

یلجب کی پیداوارںیم
پسظنم 

وہوج ےمارڈ یناتسکپا  اپںیئہچا ےنھکیو دک 

وک پا آیک یہے۔ہ رظونم مظان این  وکا پیکا یہ نے؟ہ رظونم مظان ای Morphological

 اہر وہ  لیکن زلزلے سےےنوہ راثتم  والےزج یرےارٹامس  اورںیا میشینوڈنا  کئی
نیقی وک وگوںل ہی نہیںھا۔ت

 وک ہی لیکن زلزلی سیینوہ راثتم  والیزج یریارٹامس  اور اںیا میشینوڈن کئیوگوںل 
نیقی

Punctuation بس، کسیادش یہایب
وک لزنم نہ،ےناچہپ  راہ۔یِہار اک قشع 

بس کسہایب یادش 
لزنم کو نہےناچہپ  رہاک قشع  راہی

ٹیٹنوٹ ی ورلڈکپےریم  کیر یئریرآخ اک  ورلڈکپوہ گا،۔یدیآفر دہاش  ٹییٹنوٹ  ورلڈکپےریءم  کیر یئریرخ اک  ورلڈ کپوہ گافر دہاش یدی Named Entity

  ۔ےئار دازہش ھا؛ت پسچلا دنرک رادرک یفنم
ےوبابمز کے خلافلیھک ںیم رارہ

  دازہش ھات پسچلا دنرک رادرک یفنم روئے
بابمز کے خلافلیھک ںیم رارہ

Table 1: Category wise examples of transcription discrepancies in Mozilla Common Voice 13.0

resourced language pairs. While, efforts like the
Urdu-English Parallel Corpus for Speech Trans-
lation offer foundational bilingual resources, they
often lack rigorous human evaluation and speech
alignment (Furqan et al., 2024; Amin et al.,
2025). Mozilla Common Voice provides open-
source Urdu speech, yet its original transcriptions
are unvalidated and susceptible to crowd-sourced
inconsistencies (Ardila et al., 2020).

In machine translation, domain-specific cor-
pora have contributed meaningfully. For exam-
ple, the LEGAL-UQA dataset addresses the le-
gal Q&A domain using constitutional texts (Faisal
and Yousaf, 2024), while the Urdu-English Reli-
gious Domain Corpus offers 18,426 sentence pairs
for theological texts (Abdul Rauf and Hira, 2023).
Although these datasets advance text-to-text MT,
they lack paired audio components necessary for
S2T applications.

3 Corpus Preparation Pipeline

Our corpus comprises of approximately 7k sen-
tence pairs from the Urdu subset of Mozilla Com-
mon Voice 13.0 (Ardila et al., 2020). The fo-
cus was on creating high-quality, human-validated

translations rather than maximizing scale. Com-
mon Voice was chosen for its open license, repro-
ducibility, and established use in speech research.
Future expansions will consider integrating other
open-access Urdu speech resources, contingent on
annotation capacity.

Common Voice 13.0 features a community-
driven validation system, where users vote on the
correctness of audio-transcription pairs. While,
this process ensures surface-level alignment, it
does not address deeper syntactic or semantic in-
consistencies common in Urdu, a morphologically
rich language. Examples of such issues are pre-
sented in Table 1. Here, orthographic correspond
to incorrect spellings, character substitutions, or
missing graphemes. Semantic errors stem from
misinterpretations of meaning. Named entity er-
rors involve improper handling of proper nouns or
technical terms. Punctuation and diacritic include
inconsistencies that affect readability and disam-
biguation.

Machine Translation and Expert Correction
MT often fails to preserve cultural complexity, id-
iomatic expressions, and emotional tone. Other
common issues included incomplete renderings
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Machine Translation Expert’s Correction Extended Review Final Validation

Incomplete Translations:
پرندہ آبی دوُسرْا اور بگلا بطخ میں جانور آبی
ہونا شامل

Aquatic beasts include ducks and
other aquatic birds

In aquatic animals, ducks and
other aquatic birds are included

– –

تھے۔ سکتے کر چاہے جو Whatever they wanted – – They could do whatever
they wanted.

کرلیا تن زیب کرتا انداز، نرالا کا سیمی ڈیرن Darren Sammy’s quirky wear Darren Sammy has dressed up in
a quirky style.

- Darren Sammy’s adopted
unique style by wearing the
kurta.

اسے کہ تھا قریب کہ لگا یل طو اتنا میل پہلا
جاتا دیا دے قرار شاخسانہ کا سازش

The first mail was so long that it
was close

The first mile seemed so long, say-
ing it was close, it was declared as
a sign of conspiracy

- The first interaction felt so
prolonged that it was al-
most labeled as a result of
a conspiracy

Poetic Translations:
جام سے کس ٹکرائیں کوئی نہیں آشنا یار Dude no one to collide with whom – No friend or lover is

around, whom shall I
toast with

–

ہو چراغاں پھر میں خوں رگ ہر In every vein, then the light Let there be lights in every vein
again

To be fired up Lets ignite the spark again

آگے مرے سیما آئنہ بت ہے بیٹھا Sitting is an idol, Sima Murray in
front of my mirror

The idol, with a mirror-
like beauty, sits before me

The idol with a mirror-like
visage is sitting before me

راہی۔ کا عشق راہِ پہچانے، نہ کو منزل Do not recognize the destination - - The traveler on the path of
love does not recognize the
destination

Extended Translations:
انکھیں کی عبدالقادر کر سن جسے Hearing this, Abdul Qadir’s eyes

widened
– Hearing this, Abdul

Qadir’s eyes
–

ہو دیکھنی فلمیں I have to watch movies. want to watch movies

Idiomatic Sentences:
ہوں بناتا پلاو خیالی ہی کبھار کبھی The traveler on the path of love

does not recognize the destination
Sometimes I make air castle – Sometimes I build castles in

the air.
گی مناۓ خیر تک کب ماں کی بکرے How long will the goat’s mother

welcome
how long will the mother’s
prayers avail to save her kid

How long will you delay
the inevitable?

-

مراد ویسی نیت جیسی The same intention is Visi As the intention, so is the out-
come.

- -

بانسری گی بجے نہ بانس گا رہے نہ Will not be bamboo or pm To deal with the issue at its root to
prevent a more challenging prob-
lem.

If the bamboo is gone, the
flute won’t play

چاند چار کو کےحسن جنگلات کا یہَاں جو
ہونا دینا لگنا

To give four moons to the beauty
of these forests

To enhance the beauty of these
forests.

- -

Table 2: Examples of translation in different validation phases for complex Urdu expressions

where parts of the original Urdu were missing, lit-
eral translations of idioms, and incorrect substi-
tution of culturally specific terms. The review-
ers refined these translations to ensure contextual
fidelity and semantic precision. Each sentence
was independently assessed across three linguistic
dimensions: accuracy (semantic alignment), ade-
quacy (completeness of meaning transfer), and flu-
ency (naturalness and readability in English).

Consider the idiom کو کےحسن جنگلات کا یہَاں جو
ہونا دینا لگنا چاند ,چار shown in Table 2, last row trans-
lated as "to give four moons to the beauty of these
forests" a literal rendering of a metaphor for beau-
tification. Similarly, the phrase چینل بکاو was mis-
translated as "Baku channel", ignoring its intended
meaning of "biased or corrupt media outlets."

Another poetic example, یار ذکر آج خدا بہر تو کہیں
چلے , was rendered as "Somewhere else, God goes
to Zikr today," which loses its figurative essence.
A better translation "Let there be, for Gods sake,

some talk of the beloved today" captures both se-
mantic and emotional intent. Lastly, نہ رقیب اب نہ
کوئی گسار غم نہ ناصح was translated as "No longer the
rival nor Nasah nor the grief," where ناصح (mean-
ing moral advisor) was poorly transliterated as
"Nasah" .A faithful rendering would be: "Now,
there remains no rival, no guide, and no comforter
to ease the sorrow."

All such mistranslations were corrected during
the extended evaluation phase, ensuring cultural fi-
delity and correct lexical choice in cultural and lin-
guistic contexts.

Extended Review The second phase of valida-
tion involved 19 bilingual reviewers. These were
graduate students in computer science, all na-
tive Urdu speakers with advanced academic pro-
ficiency in English. Each reviewer reviewed equal
portion of the corpus and was instructed to focus
on refining translation by checking for errors in
idiomatic usage, named entities, and cultural refer-
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ences.
As the corpus was partitioned into non-

overlapping subsets, standard inter-annotator
agreement metrics like Cohens Kappa could not
be applied. To maintain annotation consistency,
we provided comprehensive guidelines and exam-
ples to all annotators. In addition, a senior linguist
performed a qualitative audit of randomly selected
annotated pairs to verify adherence to syntactic, se-
mantic, and cultural fidelity standards.

Employing a distributed review strategy offered
several advantages. Crowdsourced evaluation, es-
pecially when conducted by native speakers with
relevant academic backgrounds, has been shown
to improve translation quality through consensus
and error cross-checking (Zaidan and Callison-
Burch, 2011). The diversity of reviewers helps to
detect inconsistencies and ensures a more compre-
hensive assessment of the data. This phase was
particularly valuable for capturing subtle sophis-
tication that may have been overlooked in earlier
stages.

Final Validation In the final stage of quality
control, a senior bilingual evaluator fluent in both
Urdu and English reassessed the outputs from the
extended review phase. This validation focused
specifically on the test set to ensure translation
consistency, semantic constancy, and contextual
appropriateness. Table 2 shows the representation
of Idioms and named entities in the final corpus.

Data Audio Idioms Equivalent Named
Count Idioms Entities

Test 4129 32 8 1152

Train 3304 17 3 648

Total 7433 49 11 1800

Table 3: Distribution of Annotated Idioms, Equivalent
Idioms, and Named Entities in the Corpus

4 Model Building

To establish a performance reference, we fine-
tuned OpenAIs Whisper-medium1 model, a
transformer-based encoder-decoder pretrained on
multilingual speech data for direct speech-to-text
translation.

Training was performed on a Google Colab
A100 GPU using the AdamW optimizer with a
learning rate of 1 × 10−5 with cosine annealing.

1https://github.com/openai/whisper

The batch size of 16 was used and early stopping
was based on the improvements in the BLEU score
on the development set. All audio inputs were re-
sampled to 16 kHz and converted into 80-bin log-
Mel spectrograms. Zero-padding ensured uniform
sequence lengths within batches.

We used BLEU (token-level accuracy), chrF++
(character-level fluency), and COMET (semantic
adequacy) as evaluation metrics. BLEU scores
measures token-level overlap with reference trans-
lations and reflects surface-level accuracy. chrF++
captures character-level fluency and recall, it
is especially robust to morphological variation,
whereas COMET evaluates semantic similarity us-
ing neural metrics, higher scores indicate better
meaning preservation.

Scores We evaluated vanilla and fine-tuned
Whisper-medium models on our test set. The orig-
inal model, without domain-specific adaptation,
showed minimal performance. In contrast, fine-
tuning yielded substantial gains across all evalu-
ation dimensions.

Metric Original Fine-tuned

BLEU 0.81 21.49

chrF++ 6.31 46.22

COMET 0.414 0.731

Table 4: Evaluation results of Whisper-medium model
before and after fine-tuning on our dataset.

These results demonstrate that the proposed
dataset significantly enhances the Whisper models
ability to produce fluent and semantically accurate
translations, validating its utility for low-resource
speech translation.

5 Conclusion

This study contributes a human evaluated Urdu-
to-English speech-to-text corpus designed to ad-
vance NLP research in under-resourced linguis-
tic domains. By integrating automated translation
with systematic human validation, we address crit-
ical gaps in handling idiomatic and culturally spe-
cific content, producing translations which retain
the cultural aspects.
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Abstract

This paper introduced FFSTC 2, an ex-
panded version of the existing Fongbe-to-
French speech translation corpus, addressing
the critical need for resources in African di-
alects for speech recognition and translation
tasks. We extended the dataset by adding 36
hours of transcribed audio, bringing the to-
tal to 61 hours, thereby enhancing its utility
for both automatic speech recognition (ASR)
and speech translation (ST) in Fongbe, a low-
resource language. Using this enriched cor-
pus, we developed both cascade and end-to-end
speech translation systems. Our models employ
AfriHuBERT and HuBERT147, two speech en-
coders specialized to African languages, and
the NLLB and mBART models as decoders.
We also investigate the use of the SAMU-
XLSR approach to inject sentence-level se-
mantic information to the XSLR-128 model
used as an alternative speech encoder. We also
introduced a novel diacritic-substitution tech-
nique for ASR, which, when combined with
NLLB, enables a cascade model to achieve a
BLEU score of 37.23 ompared to 39.60 ob-
tained by the best system using original dia-
critics. Among the end-to-end architectures
evaluated, the architectures with data augmen-
tation and NLLB as decoder achieved the high-
est score respectively, SAMU-NLLB scored
the BLEU score of 28.43.

1 Introduction

The creation of high-quality audio datasets for Nat-
ural Language Processing (NLP) tasks remains a
significant challenge. Current efforts to develop
speech datasets have predominantly focused on
widely spoken languages such as English, French,
and Spanish, leaving dialectal and minority lan-
guages largely under-represented. As a result, the
vast majority of the world’s 7,000 languages re-
main underserved, with only a few dozen language
directions covered in existing speech translation

corpora (Wang et al., 2022). This lack of inclu-
sion presents a critical problem, as it perpetuates
language barriers and limits the accessibility of
NLP technologies for speakers of less-represented
languages. In recent years, there has been in-
creasing attention on low-resource languages, par-
ticularly those spoken in regions such as India
and Africa. Despite being spoken by millions of
people, many of these languages remain severely
under-represented in terms of linguistic resources.
For instance, Africa is home to over 2,000 lan-
guages (Eberhard et al., 2021), yet, as highlighted
by (Adebara and Elmadany, 2023), only around
40 of these languages have been integrated into
modern language technologies. This stark disparity
underscores the significant under-representation of
African languages in contemporary NLP research
and applications.

Initiatives such as the Mozilla Common Voice
project1 have sought to address this gap by provid-
ing a platform for collecting speech data for certain
African languages. However, the impact of such
efforts remains limited. This limitation stems from
the platform’s design, which relies on collecting
data through the reading of written texts. This ap-
proach is less effective for many African languages,
which are primarily oral and have limited written
resources. Historically, oral traditions (Bala, 2015)
have been widespread across the continent, which
has hindered the development of writing systems
and further complicated efforts to create compre-
hensive linguistic datasets.

While resources Fongbe are limited, some
datasets do exist in the state of the art. For Fongbe,
we have the ALFFA (Laleye et al.) dataset for
speech recognition, which includes 6 hours of
audio along with transcriptions, and the FFSTC
dataset (Kponou et al., 2024), which contains 31
hours of Fongbe speech paired with French trans-

1https://commonvoice.mozilla.org
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lations. Also, corpora like GigaST are pseudo-
labeled, distinguishing them from fully human-
annotated datasets such as (Tachbelie et al.; Gau-
thier et al., 2016) contained in ALFFA, which
contains a few hours of data for languages like
Amharic, Hausa, Swahili, Wolof.

In this paper, we present a significant extension
of the existing Fongbe-to-French speech translation
corpus (Kponou et al., 2024). This extension not
only adds new parallel data from spoken Fongbe
to written French but also enables the training of
an automatic speech recognition (ASR) model for
Fongbe by providing speech recordings with their
corresponding transcriptions. This dataset will pro-
vide an opportunity for research community to test
all new SSL models designed for African languages
(Alabi et al., 2024; Boito and al, 2024), especially
since no existing SSL model currently includes
Fongbe in its training data. The data described
here will be used to organize a translation task in
IWSLT 20252. This paper provides experiments
and evaluation for Automatic Speech Recognition
(ASR) in Fongbe and Speech Translation (ST) from
Fongbe to French. These experiments aim to assess
the effectiveness of leveraging pre-trained models
for low-resource language processing, with a focus
on a tonal African language spoken by 4 million
people.

2 Related work and motivations

Unlabeled data is far more abundant than labeled
data. Self-supervised learning (SSL) methods have
emerged as a powerful approach to leverage such
unlabeled data in machine learning, enabling the
creation of pre-trained models. A first notable ex-
ample in the domain of speech is the XLSR-53
model (Conneau et al., 2020), which is pre-trained
on 53 languages data. Studies (Bansal et al., 2018;
Li et al., 2020; Stoian et al., 2020) have extensively
explored the use of pre-trained speech encoders
and text decoders to enhance system performance
for the speech translation task. These techniques,
collectively referred to as transfer learning, have
demonstrated significant effectiveness in improving
performance, particularly in low-resource settings.
By transferring knowledge from high-resource lan-
guages to low-resource ones, transfer learning pro-
vides a robust initialization for both encoder and
decoder components, thereby significantly con-
tributing to improved translation accuracy. In

2International Workshop on Spoken Language Translation

addition to transfer learning, other approaches
have been adopted to enhance performance in low-
resource speech translation, such as synthesizing
parallel data (Odoom et al., 2024). However, our
work specifically focuses on the transfer learning
paradigm, leveraging its proven capabilities to ad-
dress the challenges of low-resource language pro-
cessing.

Despite the challenges associated with creating
speech corpora for African languages, there has
been a notable shift towards the inclusion of these
languages in pre-trained models. This trend is
evident in the progressive integration of African
languages into state-of-the-art models, such as
HuBERT147 (Boito and al, 2024), which sup-
ports 16 African languages, and its variant AfriHu-
BERT (Alabi et al., 2024), which extends coverage
to 39 languages.

Various strategies have been employed to use
pre-trained models effectively. For instance, some
studies (Mbuya and Anastasopoulos; Zanon Boito
and Ortega) utilize pre-trained encoders like XLSR-
53 as feature extractors or encoders paired with a
transformer (Vaswani et al., 2023) based decoder.
Our experiments align with this latter, employ-
ing HuBERT variants as the encoder and using
a pre-trained Large Language Model (LLMs) trans-
former based as decoder.

Although the literature does not provide defini-
tive guidance on selecting the most suitable pre-
trained speech encoder, (Kponou et al.) observed
that encoders trained on the same language as the
source language tend to extract more relevant audio
features, thereby improving overall performance.
Given that Fongbe is an African language and no
pre-trained speech model includes it at the time of
writing, we hypothesize that using a pre-trained en-
coder trained on other close linguistically African
languages would yield promising results. To test
this hypothesis, we conduct training experiments
using pre-trained models HuBERT147 and Afri-
HuBERT as encoders, combined with pre-trained
multilingual decoders such as mBART (Liu et al.,
2020) and NLLB (Team et al., 2022).

3 Fongbe linguistic features

Fongbe, a Gbe language spoken primarily in
Benin, serves as a lingua franca for approximately
40˘45% of the Beninese population (Gbaguidi,
2009). Fongbe plays a significant role in media,
being widely used in both public and private radio
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and television programs. However, Fongbe tonal
nature presents unique challenges, particularly in
written and translated texts. In linguistics, tone
refers to the use of pitch variations to distinguish
meaning in spoken language (Caron, 2015). Lexi-
cal tones, in particular, help differentiate words that
are otherwise phonologically identical (Xu, 2004).
These pitch variations, or tonal patterns, are pro-
duced by changes in the fundamental frequency of
a syllable. For the written form of Fongbe, mainly
based on the Latin alphabet with additional sym-
bols, these tones are typically represented using
diacritics, which are essential for accurately con-
veying tonal distinctions in written form. Fongbe
primarily features two main tonemes as noted by
(Gnanguènon, 2014), from which all other tones
are derived. In Fongbe, each syllable carries a tone,
and the absence of tone marks can often lead to
confusion. Regarding tones, there are four tones
in Fongbe. The low tone ( ` ), the high tone ( ´ ),
the low-high tone ( ˇ ) and lastly, the mid tone ( -
) marked by a small horizontal line. The absence
of tone is considered as the mid tone. Fongbe uti-
lizes an alphabet comprising 23 consonants and 12
vowels as shown in Table 1.

Consonants Vowels
b, c, d, d , f, g, gb, h, j, a, e, E, i, o , O , u

k, kp, l, m, n, ny, p , r, s,
t, v, w, x, y, z

Table 1: Fongbe consonants and vowels

Fongbe exhibits a lexicographical structure that
is primarily monosyllabic, disyllabic, and trisyl-
labic shown in table 2. A compatibility study con-
ducted on the combinations of consonants, vowels,
and the four tones revealed the presence of 376
monosyllabic structures out of 1, 104 meaningful
forms. This analysis highlights the phonological
richness and structural diversity of Fongbe, under-
scoring its significance in linguistic studies.

Structure Types Examples
Monosyl. V, CV à, bà
Disyllabic VCV, CVCV, azo, gaĺI,

CVV, VV fEÈ, àa
Trisyllabic VCVCV, CVCVCV, asÒlÒ, logosò,

VCVV, CVCVV agoo, kÉdÉÉ
CVVCV jaunta

Table 2: Fongbe syllabic structure

4 Data collection process

We augmented the FFSTC corpus (Kponou et al.,
2024) by adding new samples selected from a val-
idated set in French, sourced from the Common
Voice project (Ardila et al., 2020), a Mozilla Foun-
dation initiative. To reduce the human cost, we
utilized the Google Translate to generate Fongbe
translations of the French sentences. These transla-
tions were then meticulously reviewed and refined
by a team of linguists to ensure accuracy and lin-
guistic quality. Once validated, the sentences were
uploaded to our custom web application (Fortuné,
2024) for recording.

Participants, comprising both male and female
speakers, were invited to read at least 2, 000 sen-
tences each. The reading sessions were conducted
in a controlled environment to minimize ambient
noise, as Fongbe is a tonal language, and back-
ground sounds could interfere with the accurate per-
ception of its tonal distinctions. To further ensure
data quality, we carefully selected participants to
minimize potential biases arising from regional ac-
cents. Specifically, we included only native speak-
ers of Fongbe, excluding individuals who learned
Fongbe as a second language or who speak Fongbe
with influences from Mahi or Gungbe dialect ac-
cents.

The recorded sentences underwent a rigorous
validation process by a team of six validators, work-
ing in pairs, with each sentence validated once.
Sentences containing background noise (e.g., wind
or engine noise) or exhibiting incorrect tone pat-
terns were rejected. This meticulous validation
process enabled us to successfully add 42, 000 new
samples to the existing FFSTC corpus.

The FFSTC corpus originally stemmed from a
data competition in which multiple participants
translated the same French sentences directly into
Fongbe. This process resulted in duplicate tran-
scripts and nearly identical speech recordings, con-
tributing to a rich diversity of speech samples. To
maximize the potential of this variation, we re-
tained these duplicates in the training set while
ensuring that only unique transcripts were included
in the validation and test sets. This approach allows
future trained models to benefit from the diversity
of translations while maintaining data integrity dur-
ing the evaluation process.
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4.1 Dataset statistics
As outlined in the introduction, we conducted ex-
periments in both ASR and Speech Translation.
For the end-to-end ST task, we utilized the entire
dataset. While for the ASR and the cascade ST
task, we use only the 36 hours of speech available
with their transcripts in Fongbe, as described in
Table 3.

Experiments Split Hours Sentences
ASR Test 3.93 2.5 k
ASR Valid 3.54 2.4 k
ASR Train 29 19.9 k
ST Test 5.9 3.9 k
ST Valid 6.1 4.1 k
ST Train 48 29.5 k

Table 3: Dataset statistics

5 Experiments and results

In this section, we present the experimental frame-
work for (1) ASR system, (2) cascade ST system
and end-to-end ST system.

5.1 SSL models Description
The use of pre-trained models, as demonstrated in
several studies, shows the potential to create effi-
cient recognition or translation systems (Laurent
et al., 2023) even with limited amounts of data by
fine-tuning them on downstream tasks. For our ex-
periments, we chose to use that method. Among
the publicly available pre-trained speech encoders,
such as XLSR-128 (Babu et al., 2021), and Hu-
BERT, we selected HuBERT (Hsu et al., 2021) vari-
ants, specifically HuBERT147 and AfriHuBERT,
specialized to some African languages (but not to
Fongbe). This decision was based on their superior
performance on downstream tasks, such as Auto-
matic Speech Recognition (ASR), as demonstrated
in (Alabi et al., 2024).

HuBERT is closely related to Wav2Vec
2.0 (Baevski et al., 2020). While Wav2Vec 2.0
distinguishes between true latent speech representa-
tions and contextualized representations generated
by the transformer encoder, HuBERT employs a
technique similar to BERT (Devlin et al., 2019) for
speech units. Specifically, HuBERT computes a
loss over masked speech units, forcing the model
to learn high-level representations of unmasked in-
puts to accurately infer the targets of the masked
ones. This approach has been shown to outperform

Wav2Vec 2.0 when trained on the same amount
of data in (Hsu et al., 2021). Given these advan-
tages, we expected HuBERT147 and AfriHuBERT
to deliver strong performance in our experiments.

We also trained a SAMU_XLSR model using
our dataset. Unlike the approach in (Khurana et al.,
2022), which relies on speech transcripts for align-
ment, we used translated labels instead. SAMU
is built on XLSR and utilizes a frozen Language-
Agnostic BERT Sentence Encoder (LaBSE) (Feng
et al., 2020) as the master model to semantically
align Fongbe speech and French text embeddings in
the XLSR space. We trained SAMU for 50 epochs
on the ST training dataset.

mBART is a denoising sequence-to-sequence
model pre-trained on high-resource languages. It
uses a Transformer architecture to reconstruct texts
from noised inputs, where phrases are masked and
sentences are permuted. Known for its robustness
with noisy data, mBART is particularly well-suited
in tasks like speech translation, especially for tonal
languages such as Fongbe. NLLB (No Language
Left Behind) is a multilingual translation model
pre-trained on a wide range of languages, includ-
ing several African languages. Designed for high-
quality translation, NLLB aims to bridge the gap
between high-resource and low-resource languages,
making it a strong candidate for our translation ex-
periments.

5.2 ASR experiments
The first experiment was performed using the orig-
inal Fongbe transcripts, including diacritics, to es-
tablish a baseline performance. In the second ex-
periment, we removed the diacritics from the tran-
scripts to evaluate the impact of diacritic removal
on recognition accuracy. The third experiment in-
volved a novel approach of diacritic substitution,
where we systematically identified monosyllabic
words with diacritics and replaced them with their
base syllables accompanied by a unique numeri-
cal identifier. This substitution aimed to modify
the representation of diacritics while preserving
linguistic information, potentially improving the
model’s ability to generalize across similar pho-
netic patterns as reported in Table 4.

To conduct the experiments, we trained three dif-
ferent SentencePiece (Kudo, 2018) tokenizer mod-
els at character level using the combined training
and validation sets for each specific case. For the
base experiment (with diacritics), the substitution
experiment and the experiment without diacritics
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State Sentence
Diacritics tavo ayihun tOn dé dò disixwé

transl.: a game table on the right

w/o diacr. tavo ayihun tOn de do disixwe

Substitution tavo ayihun tOn de1 do2 disixwe1

Table 4: Example of diacritic processing

the vocabulary size are, respectively 62, 44 and 36.
This reduction in vocabulary size for the substitu-
tion and third experiment case reflects the simpli-
fied representation of text when diacritics are either
removed or replaced, which in turn may influence
the model efficiency and performance. The three
ASR models are end-to-end models composed of
the AfriHuBERT speech encoder followed by three
1024-dim dense layers. They were fine-tuned on
the ASR training dataset by using the CTC loss
function. All experiments are run over 50 epochs
and results are summarized in the Table 5. ASR
recipes will be released for reproducibility.

Experiments WER
ASR base 21.98
ASR Sub 22.18

ASR without diacritics 17.02

Table 5: Word Error Rates (%) on the ASR test dataset
reached by the AfriHuBERT speech encoder (our best
results)

The ASR model trained without diacritics yields
the lowest Word Error Rate (WER) of 17.02%, but
this WER cannot be compared with the two other
ones: the lexical confusion is drastically decreased
since removing the diacritics reduce the vocabulary
size. Nevertheless, if the automatic transcriptions
without diacritics are less informative, these re-
sults show they are more reliable. Although the
diacritic substitution approach did not outperform
the base model, we consider it should be experi-
mented within a cascade speech translation system,
because of a different distribution of ASR errors.

5.3 Cascade speech translation

Cascade systems for speech translation consist of
two key modules: ASR and MT (Machine Transla-
tion). In our implementation, we used our trained
ASR models for the transcription module, followed
by an end-to-end text-to-text MT model based on

the fine-tuning the NLLB model. Fongbe was
included in the NLLB pre-training dataset. We
fine-tuned it using the Huggingface (Jain, 2022)
trainer. To ensure a fair comparison, we conducted
three separate fine-tuning experiments, the first on
Fongbe written with diacritics, the second with
substituted Fongbe and the last on Fongbe without
diacritics. We evaluated the cascade model on the
same test set as the end-to-end model presented in
the next section.

The fine-tuning of NLLB results yielded BLEU
scores of 58.9,57.56 and 47.39 on manual tran-
scriptions, respectively for the models with and
without diacritics, with substitution and without
diacritics, on the validation subset containing the
Fongbe transcriptions. These results underscore
the importance of diacritics in preserving contex-
tual understanding, particularly for tonal languages
like Fongbe.

For the experiment using the ASR with the ’sub-
stitution’ approach, we fine-tune the model NLLB
using a substituted Fongbe. This step ensured that
the translation module will receive the correct input
for each case. The results of the experiments are
summarized in Table 6.

Experiments BLEU
ASR base + NLLB 32.76
ASR with diacritics + NLLB 39.60
ASR Sub + NLLB 37.23

Table 6: BLEU scores for the cascade systems on the
test dataset

The best result in cascade training was achieved
by the AfriHuBERT model fine-tuned on ASR with
diacritic, reaching a BLEU score of 39.60 follow
by the susbstitution system (ASR Sub) with the
BLEU of 37.23. These experiments reveal that
retaining diacritics is more critical for translation
of Fongbe than for its recognition, as diacritics
provide additional linguistic information about seg-
ments that goes beyond what the base syllables
alone can convey. Additionally, we observed that
the substitution method holds significant potential.
However, further studies are needed to fully explore
and optimize this approach, as it could provide a
viable pathway for improving both efficiency and
performance in speech recognition and translation
tasks.
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5.4 End-to-end Speech translation

We conducted several experiments dedicated to
the end-to-end approach. We investigated the use
of different speech encoders HuBERT-147 and
AfriHuBERT with different decoders mBART and
NLLB. We combined different augmentations to
perform data augmentation: Speed perturbation (re-
sample the audio signal at a rate that is similar to
the original rate, to achieve a slightly slower or
slightly faster signal), Frequency drop (randomly
drops a number of frequency bands to zero) and
Chunk drop (Chunk drop is an augmentation strat-
egy helps a models learn to rely on all parts of
the signal, since it can’t expect a given part to be
present).

Experiments Aug Params BLEU
AfriHuBERT-NLLB No 962.1M 23.90
AfriHuBERT-NLLB Yes 962.1M 26.32
AfriHuBERT-mBART No 553.8M 22.16
AfriHuBERT-mBART Yes 553.8M 24.30

SAMU-mBART No 1.4B 25.11
SAMU-mBART Yes 1.4B 24.17
SAMU-NLLB No 1.8B 25.85
SAMU-NLLB Yes 1.8B 28.43

Table 7: BLEU score of end-to-end speech-to-text trans-
lation models, with of without data augmentation.

All the models were trained on a single V100
32BG GPU with a batch size of 2.We utilized the
Adam optimizer and ran the experiments over 50
epochs. To align the output length of the HuBERT
encoder with the input dimensions of the mBART
and NLLB decoders, we employed a feed-forward
layer. During inference, we applied a beam search
with a width of 5 to generate translations. To
enhance their performance, we applied data aug-
mentation to each model. Since the models based
on AfriHuBERT performed better than the mod-
els based on HuBERT147, we report in Table 7
only the results reached by using AfriHuBERT as a
speech encoder. We observed that SAMU achieved
better BLEU scores with data augmentation than
the other end-to-end, as documented in Table 7. We
conclude that semantic alignment in the embedding
space of SAMU provides it with a better speech
representation for the decoder.

NLLB’s broader linguistic coverage did not
translate into superior performance in our experi-
ments.

6 Conclusion

This work represents a significant advance for
Fongbe speech processing, for both transcription
and translation to French. By extending an exist-
ing dataset to 61 hours of high-quality audio and
aligned text, we offer the research community a
unique and richer resource to build and evaluate
speech technologies for Fongbe, a tonal and under-
represented language. Our detailed experiments in
both cascade and end-to-end Speech Translation
reveal several important insights that can stimulate
broader research in low-resource language tech-
nologies.

Our best cascade system achieved a BLEU score
of 39.60, underscoring the power of carefully han-
dling tonal information. In contrast, our most effec-
tive end-to-end model achieved a BLEU of 28.43,
especially when leveraging data augmentation and
semantic alignment.

The expanded Fongbe corpus and our findings
open several possibilities for further research. First,
improvements to diacritic substitution—potentially
using more granular markers that capture subtle
tonal shifts could reduce ASR errors while preserv-
ing key phonological cues for translation. Second,
personalized or speaker-adaptive speech transla-
tion models, possibly trained to handle specific
dialectal variants, may substantially enhance intel-
ligibility and translation fidelity. Finally, future
self-supervised or multilingual pre-training efforts
will benefit from explicitly including Fongbe data,
leading to more robust encoder–decoder architec-
tures for low-resource African languages.

Overall, this work not only delivers the largest
corpus of Fongbe audio currently available for
speech recognition and translation, but also high-
lights data-collection strategies, modelling setups,
and diacritic handling approaches that can be gener-
alized to other tonal, under-represented languages.
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Abstract

Neural transducers (NT) provide an effective
framework for speech streaming, demonstrat-
ing strong performance in automatic speech
recognition (ASR). However, the application of
NT to speech translation (ST) remains challeng-
ing, as existing approaches struggle with word
reordering and performance degradation when
jointly modeling ASR and ST, resulting in a gap
with attention-based encoder-decoder (AED)
models. Existing NT-based ST approaches also
suffer from high computational training costs.
To address these issues, we propose HENT-SRT
(Hierarchical Efficient Neural Transducer for
Speech Recognition and Translation), a novel
framework that factorizes ASR and translation
tasks to better handle reordering. To ensure
robust ST while preserving ASR performance,
we use self-distillation with CTC consistency
regularization. Moreover, we improve compu-
tational efficiency by incorporating best prac-
tices from ASR transducers, including a down-
sampled hierarchical encoder, a stateless pre-
dictor, and a pruned transducer loss to reduce
training complexity. Finally, we introduce a
blank penalty during decoding, reducing dele-
tions and improving translation quality. Our
approach is evaluated on three conversational
datasets Arabic, Spanish, and Mandarin achiev-
ing new state-of-the-art performance among
NT models and substantially narrowing the gap
with AED-based systems.

1 Introduction

Translation of spoken conversations across lan-
guages plays a crucial role in cross-cultural com-
munication, healthcare, and education (Köksal and
Yürük, 2020; Nakamura, 2009; Al Shamsi et al.,
2020). Traditionally, speech translation (ST) sys-
tems have been built using a cascaded approach,
where automatic speech recognition (ASR) first

transcribes speech into text, which is then passed to
a machine translation (MT) system (Matusov et al.,
2005; Bertoldi and Federico, 2005; Sperber et al.,
2017; Pino et al., 2019; Yang et al., 2022). This
modular approach facilitates the use of large text
corpora for MT training, at the cost of (1) complex
beam search algorithms in streaming applications
(Rabatin et al., 2024), (2) error propagation from
the ASR to MT model, (3) an inability to leverage
paralinguistic information such as prosody, and (4)
additional latency, as MT processing must wait for
ASR to complete.

To overcome the limitations of cascaded sys-
tems, end-to-end speech translation (E2E-ST) has
emerged as a promising approach that directly
maps source speech to target text, providing a more
streamlined architecture, reduced latency, and com-
petitive performance (Berard et al., 2016, 2018;
Dalmia et al., 2021; Gaido et al., 2020; Yan et al.,
2023b). However, most end-to-end speech trans-
lation (E2E-ST) research has focused on offline
attention-based encoder-decoder (AED) architec-
tures. As label-synchronous systems, AEDs require
multiple input frames before emitting each output
token, which limits their suitability for streaming
applications and increases sensitivity to utterance
segmentation (Anastasopoulos et al., 2022; Sin-
clair et al., 2014). To enable streaming in AED
models, researchers have proposed wait-k policies,
which introduce a controlled buffering mechanism
to balance latency and translation quality (Ma et al.,
2020; Chen et al., 2021; Ma et al., 2021). However,
finding the optimal wait-k policy is challenging, as
it must balance latency and quality, and the neces-
sary buffering cause delays, making AED-based
models less suitable for streaming applications.

In contrast, frame-synchronous architectures
like Connectionist Temporal Classification (CTC)
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(Graves et al., 2006) and the Neural Transducer
(NT) (Graves, 2012) more naturally handle stream-
ing data and demonstrate greater robustness to utter-
ance segmentation, mitigating the over- and under-
generation issues in AED models (Chiu et al., 2019;
Yan et al., 2023a). While CTC enforces strictly
monotonic alignments, which limits its ability to
handle word reordering (Yan et al., 2023a), the
neural transducer (NT) relaxes these constraints,
allowing the generation of longer output sequences
and the modeling of autoregressive token depen-
dencies. This makes NT more suitable for transla-
tion, as illustrated in Figure 2. To improve NT’s
reordering capabilities, researchers have proposed
augmenting the joiner with cross-attention (Liu
et al., 2021) and the predictor with an AED-based
decoder (Tang et al., 2023), though these addi-
tions increase computational complexity and la-
tency. To further enhance translation quality, (Tang
et al., 2023) introduced attention pooling for bet-
ter encoder-predictor fusion at the frame level,
while (Xue et al., 2022) explored similar mech-
anisms. Additionally, (Wang et al., 2023) proposed
a transducer-based model for unified ASR and ST,
but its shared encoder struggles with reordering,
making it less effective than AED in offline set-
tings.

In this work, we propose a hierarchical neural
transducer architecture, HENT-SRT,1 which de-
composes speech translation (ST) into an automatic
speech recognition (ASR) task followed by a trans-
lation task, effectively handling word reordering.
The system employs multi-task training to opti-
mize ASR and ST objectives simultaneously with
a separate predictor and joiner for each task. Our
objectives are three-fold: (1) to close the perfor-
mance gap with state-of-the-art AED models in
offline ST settings, (2) to improve computational
efficiency during training and inference, and (3) to
jointly model ASR and ST while maintaining ASR
performance. To this end, we introduce HENT-
SRT, a neural transducer-based ST framework that
addresses (1) through a hierarchical encoder ar-
chitecture, enabling more effective handling of re-
ordering in translation. To improve ST efficiency in
(2), we integrate a stateless 1D-CNN predictor (Gh-
odsi et al., 2020) and adopt the Zipformer archi-
tecture (Yao et al., 2024a), which achieves supe-
rior ASR performance compared to state-of-the-art

1Code is available at https://github.com/k2-fsa/
icefall.

AED models such as E-Branchformer (Kim et al.,
2023), while offering greater computational effi-
ciency. Additionally, to reduce training complexity,
we employ the pruned transducer loss (Kuang et al.,
2022). To mitigate ASR degradation in joint mod-
eling for (3), we employ self-distillation with CTC
consistency regularization (Yao et al., 2024b). We
evaluate the effectiveness of our approach on con-
versational speech translation across three language
pairs: Tunisian Arabic-English, Spanish-English,
and Chinese-English described in (Hussein et al.,
2024). Furthermore, we conduct a comprehensive
ablation study to analyze the impact of each ST
design choice in both offline and streaming setups.

2 Proposed Approach

Let X = (x1, . . . ,xT ) ∈ RT×F denote the source
speech, a sequence of T acoustic feature vectors of
dimension F . The goal is to generate a target word
sequence y(t) = (y

(t)
1 , . . . , y

(t)
U ) ∈ V(t)U , a trans-

lation of length U . We use superscripts (s) and
(t) to refer to the source and target languages, re-
spectively. Speech translation task is trained using
discriminative learning by minimizing the negative
log-likelihood L = − logP (y(t)|X). Transducers
compute this probability by marginalizing over the
set of all possible alignments a ∈ V̄(t)T+U as follows:

P (y(t)|X) =
∑

a∈B−1(y(t))

P (a|X) (1)

where V̄(t) = V(t) ∪ {ϕ}, ϕ is a blank label
and B : V̄(t)T+U → V

(t)
U is the deterministic map-

ping from an alignment a to the sequence Y(t)

of its non-blank symbols. Transducers parame-
terize P (a|X) using an encoder, a prediction net-
work, and a joiner, as illustrated in Figure 1a.
The encoder maps X to a representation sequence
f t
1:k, k ∈ {1, . . . , T}, the predictor transforms y(t)

sequentially into gt
1:u, u ∈ {1, . . . , U}, and the

joiner combines f t
1:k and gt

1:u to generate logits
ztk,u whose softmax is the posterior distribution of
ak (over V̄(t)), i.e.

P (y(t)|X) =
∑

a∈B−1(y(t))

T+U∏

k=1

P (a
(t)
k |f t1:k, gt1:u(k))

=
∑

a∈B−1(y(t))

T+U∏

k=1

softmax(zstk,u(k))

(2)
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Hello, how are you?

¿Hola, cómo estás?

(a) Neural Transducer based speech trans-
lation architecture

ST

ASR

(b) Proposed hierarchical neural transducer framework with self-distillation
for joint speech recognition and translation (HENT-SRT).

Figure 1: Neural transducer-based speech translation and the proposed HENT-SRT architecture

where u(k) ∈ {1, · · · , U} denotes the index in the
label sequence at time k. The negative log of the
quantity in (2) is known as the transducer loss.

2.1 ST hierarchical encoder
To enhance the model’s ability to handle word re-
ordering during translation, we propose a hierar-
chical architecture by adding a translation-specific
encoder on top of the ASR encoder, as illustrated
in Figure 1b. This design enables joint modeling of
ASR and ST while decomposing ST into ASR and
translation tasks. Unlike Wang et al. (2023), our
translation-specific encoder facilitates more flexi-
ble reordering over the latent, monotonic ASR rep-
resentations. Inspired by Dalmia et al. (2021), we
adopt a two-stage training strategy: (1) ASR pre-
training, followed by (2) multitask fine-tuning with
both ST and ASR objectives. The ASR encoder,
ENCasr(·), maps the input acoustic features X to
a latent representation, f s, as defined in Eq. (3).

f s = ENCasr(X) (3)

Following this, the representation, f s, serves as
input to the ST encoder, ENCst(·), demonstrated
in Eq. (4)

f t = ENCst(f
s) (4)

The transducer loss is computed for both ASR (Lsnt)
and ST (Ltnt) objectives following Eq. (2). The

overall multitask objective, Lnt, is the weighted
sum of the two objectives:

Lnt = αasrLsnt + αstLtnt (5)

where αasr and αst are hyperparameters control-
ling the contribution of ASR and ST losses, respec-
tively.

2.2 CR-CTC self-distillation

Balancing multitask ASR and ST optimization in
a two-stage training approach is challenging, as it
often improves ST performance at the cost of ASR
degradation. To achieve robust ST performance
with minimal ASR degradation, we employ self-
distillation with consistency-regularized CTC (CR-
CTC) (Yao et al., 2024b). This approach applies
SpecAugment (Park et al., 2019) to generate two
augmented views of the same input, Xa and Xb,
which are then processed by a shared ASR encoder:

f s(a) = ENCasr(X
(a)) (6)

f s(b) = ENCasr(X
(b)) (7)

The CR-CTC framework optimizes two objectives:
the CTC loss LCTC and the consistency regular-
ization LCR, computed using the Kullback-Leibler
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divergence (DKL) between encoder outputs:

LCTC =
1

2
(LCTC(h(a),y)

+ LCTC(h(b),y)) (8)

LCR =
1

2

T∑

k=1

(
DKL(sg(h(b)k ) ∥ h(a)k )

+DKL(sg(h(a)k ) ∥ h(b)k )
)

(9)

where sg(·) denotes the stop-gradient operation.
In the proposed HENT-SRT framework, LCR and
LCTC are computed for both ASR and ST en-
coders, as illustrated in Figure 1b. The final ob-
jective is optimized using a multitask learning for-
mulation that combines CR and CTC losses from
both ASR and ST tasks along with the NT loss
from Eq. 5:

L = Lnt + αCR(asr)LsCR + αCTC(asr)LsCTC

+ αCR(st)LtCR + αCTC(st)LtCTC (10)

where α values are hyperparameters controlling the
relative contributions of each loss term.

2.3 ST decoding

The translation decoding objective is to find the
most probable target sequence ŷ(t) among all possi-
ble outputs y(t)∗ by maximizing the log-likelihood:

ŷ(t) = argmax
y(t)∗

U∑

l=1

logP (y
(t)
l |y

(t)
<l ,X) (11)

Neural transducers can model word reordering by
using blank emissions to delay output tokens and
then emitting multiple tokens within a single time
step, as shown in Figure 2. One challenge with
transducer decoding is that the input audio features
are typically longer than the output sequence, non-
spoken regions are mainly represented by blank to-
kens, leading to a bias toward blank emissions (Ma-
hadeokar et al., 2021). This bias increases deletions
and degrades translation quality. To mitigate this
issue and control blank emissions during decoding,
we introduce a blank penalty (BP) by adjusting the
logit scores z in the log space:

zt[:, 0] = zt[:, 0]−BP (12)

التفاحةالطفليأكل

<s>

The

child

eats

the

apple

Source Speech

Target Translation

t

u

Figure 2: Illustration of the transducer decoding graph
for an ST task.

2.4 Computation efficiency

To improve computational efficiency during train-
ing and inference, we adopt best practices from
ASR transducer and examine their impact on ST
in Section 3.2. For the encoder, we utilize the
recently proposed Zipformer (Yao et al., 2024a),
which consists of multiple encoder blocks operat-
ing at different down-sampling rates. This hierar-
chical structure reduces the number of frames to
process, thereby lowering computational complex-
ity. Additionally, we replace the traditional LSTM-
based prediction network with a stateless 1D-CNN
trigram model (Ghodsi et al., 2020). Another major
drawback of NT is the high memory consumption
of the transducer loss due to the need for marginal-
ization over logit tensor of size (batch, T, U, Vocab).
To address this, we replace the full-sum transducer
loss with the pruned transducer loss, which applies
a simple linear joiner to prune the alignment lattice
before computing the full sum on the reduced lat-
tice (Kuang et al., 2022). This significantly reduces
memory overhead while maintaining competitive
performance.

3 Experiments

3.1 Experimental setup

We evaluate the effectiveness of our proposed ap-
proach on three conversational datasets: Fisher
Spanish-English (Post et al., 2013), Tunisian
Arabic-English (Ansari et al., 2020), and HKUST
Chinese-English (Wotherspoon et al., 2024). These
datasets contain 3-way data comprising telephone
speech, source language transcriptions, and corre-
sponding English translations.
Data pre-processing: Our experiments utilize the
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Icefall framework,2 with the Lhotse toolkit (Że-
lasko et al., 2021) for speech data preparation.
All audio recordings are resampled from 8kHz
to 16kHz and augmented with speed perturba-
tions at factors of 0.9, 1.0, and 1.1. We extract
80-dimensional mel-spectrogram features using
a 25ms window with a 10ms frame shift. Addi-
tionally, we apply on-the-fly SpecAugment (Park
et al., 2019), incorporating time warping (maxi-
mum factor of 80), frequency masking (two regions,
max width of 27 bins), and time masking (ten re-
gions, max width of 100 frames). For CR-CTC
self-distillation, we follow (Yao et al., 2024b) and
increase both the number of time-masked regions
and the maximum masking fraction by a factor of
2.5. For vocabulary, we employ a shared Byte Pair
Encoding (BPE) vocabulary of size 5000 for multi-
lingual source transcriptions and 4000 for English
target translations.
Models: As a baseline, we reproduce the multitask
(ASR+ST) neural transducer with a shared encoder
(Wang et al., 2023), employing the Zipformer ar-
chitecture (Yao et al., 2024a). The model consists
of 8 blocks, each containing 2 self-attention layers.
The number of attention heads per block is set to
{4, 4, 4, 8, 8, 8, 4, 4}, with attention dimensions
of {192, 256, 384, 512, 512, 384, 384, 256}. The
feed-forward dimensions per block are configured
as {512, 768, 1024, 1024, 1024, 1024, 1024, 768},
and the convolution kernel sizes are {31, 31, 15,
15, 15, 15, 31, 31}. For the proposed hierarchical
approach, we explore two architectural variants:
shallow (NT-Hier1) and deep (NT-Hier2). In the
shallow configuration, we partition the baseline
encoder by assigning the first five blocks to the
ASR encoder ENCasr in Eq. (3) and the remaining
three blocks to the ST encoder ENCst in Eq. (4).
In contrast, the deep variant increases the depth
of the ST encoder to five blocks while reducing
the number of parameters per block by approxi-
mately half, thereby maintaining the overall model
size. Both the baseline and hierarchical variants
contain approximately 70M parameters. For the
ablation studies in Sec. 3.2, which focus on a single
language pair, we use a smaller model by reduc-
ing the depth of both the ASR and ST encoders
by one block, resulting in a total of 45M parame-
ters. We experiment with two types of predictor
networks: a stateless predictor implemented as a
single Conv1D layer with kernel size 2, and a state-

2https://github.com/k2-fsa/icefall

Table 1: Ablation for transducer based ST, includ-
ing blank-penalty (BP), lattice pruning-range, scaling
warmup-steps, predictor and encoder structure.

Model Prune- Warmup- Pre- Dev1 Dev2

BP range steps dictor WER ↓ BLEU ↑ WER ↓ BLEU ↑
NT (ASR) 0 5 20k CNN 40.0 - 42.4 -
NT (ST) 0 5 20k CNN - 14.7 - 12.4
NT (ST) 0 10 20k CNN - 16.2 - 13.2
NT (ST) 0 10 20k LSTM - 15.8 - 13.0
NT (ST) 0 10 5k CNN - 18.1 - 14.7

NT-Hier1 (ASR+ST) 0 10 5k CNN 40.0 18.5 42.8 15.7
NT-Hier2 (ASR+ST) 0 10 5k CNN 40.3 19.0 43.6 15.8

NT-Hier2 (ASR+ST) 1 10 5k CNN 40.3 20.4 43.6 17.1

ful LSTM predictor, both with hidden size 256.
Our training configuration utilizes the ScaledAdam
optimizer (Yao et al., 2024a) with a learning rate
of 0.045. The multitask weights αasr and αst in
Eq. (5) are set to 1, while αCR(asr) and αCR(st)

are set to 0.05, and αCTC(asr) and αCTC(st) are
set to 0.1 in Eq. (10). For comparison, we use the
ESPnet CTC/Attention ST model3 with 75M pa-
rameters. We choose the Conformer encoder, as
it outperforms eBranchformer in translation qual-
ity. The optimal learning rate and warmup steps,
set to 0.001 and 30k, are selected from the ranges
{0.0005–0.002} and {15k–40k}, respectively. All
models are trained for 30 epochs on 4 V100 GPUs,
using a batch size of 400 seconds. Unless otherwise
noted, all decoding results reported in the offline
setting (Sec. 3.3) use beam search with a beam size
of 20.
Evaluation: To ensure a comprehensive evalua-
tion of translation quality, we utilize BLEU (Pap-
ineni et al., 2002) for surface-level word matching,
chrF++ for character-level accuracy, and COMET
(Rei et al., 2020)4 for semantic adequacy. Transla-
tion evaluation is conducted in a case-insensitive
manner, without punctuation. ASR performance is
assessed using word error rate (WER). To assess
the processing delay of the system during stream-
ing, we report the real-time factor (RTF).

3.2 Ablation analysis

To assess the impact of efficiency-related design
choices in our proposed hierarchical ST approach,
we conduct ablation studies on the Tunisian-
English dataset, which includes two development
sets for hyperparameter tuning, as shown in Table 1.
To ensure fair comparisons, we maintain a consis-

3https://github.com/espnet/espnet/blob/master/
egs2/must_c_v2/st1/conf/tuning/train_st_ctc_
conformer_asrinit_v2.yaml

4We used Unbabel/wmt22-comet-da model.

157

https://github.com/k2-fsa/icefall
https://github.com/espnet/espnet/blob/master/egs2/must_c_v2/st1/conf/tuning/train_st_ctc_conformer_asrinit_v2.yaml
https://github.com/espnet/espnet/blob/master/egs2/must_c_v2/st1/conf/tuning/train_st_ctc_conformer_asrinit_v2.yaml
https://github.com/espnet/espnet/blob/master/egs2/must_c_v2/st1/conf/tuning/train_st_ctc_conformer_asrinit_v2.yaml


Table 2: Comparison of ASR and ST performance between the state-of-the-art Neural Transducer (NT) with a shared
encoder and a multi-decoder AED (MultiDec). ASR performance is measured using WER, while ST performance is
evaluated using BLEU, chrF++, and COMET.

Model Tunisian HKUST-Chinese Fisher-Spanish

BP WER ↓ BLEU ↑ chrF++ ↑ COMET ↑ WER ↓ BLEU ↑ chrF++ ↑ COMET ↑ WER ↓ BLEU ↑ chrF++ ↑ COMET ↑
NT (ASR) - 41.4 - - - 22.8 - - - 18.2 - -
NT (ST) - - 15.3 35.9 0.656 - 10.0 30.5 0.711 - 30.6 56.0 0.793
NT-Shared (ASR+ST) (Wang et al., 2023) - 41.6 16.3 37.1 0.660 23.8 10.4 30.9 0.714 18.0 31.0 56.4 0.798
NT-Hier1 (ASR+ST) - 42.6 17.8 40.4 0.670 23.5 11.3 33.8 0.720 18.3 31.9 58.2 0.801
NT-Hier2 (ASR+ST) - 43.1 18.3 40.6 0.672 23.9 12.0 33.9 0.722 18.9 32.4 58.5 0.801
NT-Hier2 (ASR+ST) 0.5 43.1 19.4 42.6 0.674 23.9 12.9 36.2 0.724 18.9 33.0 59.9 0.801

CR-CTC (ASR) - 40.1 - - - 21.7 - - - 17.3 - - -
HENT-SRT - 41.4 17.8 39.8 0.675 22.8 11.5 32.7 0.726 17.8 31.8 57.5 0.803
HENT-SRT 1.0 41.4 20.6 43.4 0.682 22.8 14.7 37.5 0.734 17.8 33.7 60.5 0.803

CTC/Attention (CA) (Yan et al., 2023c) - 42.7 20.4 44.2 0.680 24.6 15.2 38.8 0.706 18.9 33.9 60.8 0.796

tent model size of approximately 45M parameters
across all experiments. We begin by evaluating
the vanilla pruned transducer (NT) architecture for
ST, examining the effect of increasing the prun-
ing range beyond the default value of 5 (used in
NT for ASR). Expanding the pruning range to 10
leads to a BLEU improvement of up to +1.5, indi-
cating that a larger alignment lattice enhances the
model’s ability to perform word reordering during
translation. However, further increases in pruning
range provide only marginal additional gains. Next,
we explore the role of the prediction network in
ST performance. Our results show that a simple
trigram 1D-CNN stateless predictor performs com-
parably to a more complex LSTM-based predictor,
consistent with previous observations in ASR (Gh-
odsi et al., 2020). We also vary the number of
training steps before fully incorporating the pruned
loss, effectively controlling the balance between
the simple and pruned objectives during early train-
ing. Reducing the number of warm-up steps yields
BLEU gains of up to +1.8, suggesting that earlier
exposure to pruning improves optimization. To
assess the effect of hierarchical modeling, we com-
pare shallow (NT-Hier1) and deep (NT-Hier2) ST
encoders. To keep the parameter count constant,
NT-Hier2 doubles the number of layers while halv-
ing the parameters per layer in the ST encoder.
Our findings indicate that deeper architectures can
improve ST performance by up to +0.5 BLEU,
though at the cost of reduced ASR accuracy high-
lighting a trade-off between ST and ASR tasks.
Finally, we evaluate the impact of a blank-penalty
term applied during decoding. Introducing a small
blank penalty leads to BLEU improvements of up
to +1.4, demonstrating its effectiveness in refining
translation quality. A more detailed analysis of the
blank penalty is presented in Sec. 3.4.

3.3 Comparison with state-of-the-art models

In this section, we compare the proposed hierarchi-
cal neural transducer with self-distillation (HENT-
SRT) model to state-of-the-art systems in the of-
fline setting. Specifically, we evaluate against the
multitask ASR-ST transducer with a shared en-
coder NT-Shared) (Wang et al., 2023), and the
CTC/Attention-based AED model (CA) (Yan et al.,
2023b), shown in Table 2. Comparing the vanilla
transducer models (NT-ASR and NT-ST) to NT-
Shared, we find that a single multilingual ASR-
ST model can be trained with the same number
of parameters while maintaining comparable per-
formance achieving up to +1 BLEU improvement
in ST with at most +1 WER degradation in ASR.
The hierarchical ST transducer models (NT-Hier)
consistently outperform NT-Shared across all ST
metrics, yielding improvements of up to +2 BLEU,
+3.5 chrF++, and +0.01 COMET, but at the cost
of up to +2 WER degradation in ASR perfor-
mance. Furthermore, NT-Hier2, which employs
a deeper ST encoder, achieves better translation
performance up to +0.7 BLEU improvement over
NT-Hier1 but incurs an additional ASR degrada-
tion of up to +0.5 WER. These findings suggest that
the hierarchical two-stage training enhances trans-
lation quality, particularly in handling reordering
(see Sec. A), but at the expense of ASR accuracy.
ST performance can be further improved by ap-
plying a blank penalty during decoding, yielding
up to +1 BLEU and +2.3 chrF++ gains. To ensure
robust ST performance with minimal ASR degrada-
tion, we integrate self-distillation with consistency-
regularized CR-CTC to NT-Hier2, resulting in the
proposed HENT-SRT model. Notably, HENT-SRT
performs slightly worse than NT-Hier2 in ST when
no blank penalty is applied. However, applying
the optimal blank penalty to both models yields
further gains for HENT-SRT, with improvements
of up to +1.8 BLEU, +1.3 chrF++, and +0.01
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Figure 3: Impact of the blank penalty on translation
length ratio (hypothesis/reference) during greedy decod-
ing for Tunisian (Ta-En), HKUST (Zh-En), and Fisher-
Spanish (Sp-En). A ratio close to 1.0 indicates ideal
length matching between hypothesis and reference.

COMET over NT-Hier2. Additionally, CR-CTC
loss also acts as a regularizer, maintaining ASR
performance close to the best results observed with
CR-CTC(ASR). Finally, compared to the AED-
based CA model (Yan et al., 2023b), HENT-SRT
closes the ST performance gap while achieving
superior ASR performance.

3.4 Streaming Translation

In this section, we explore streaming speech transla-
tion using our proposed hierarchical ST framework.
Streaming is simulated with greedy decoding by
enabling causal convolution and applying chunked
processing, using a chunk size of 64 frames and
a left context of 128 frames. Specifically, the in-
put is segmented into fixed-size chunks, and each
chunk attends only to a fixed number of preceding
chunks, with all future frames masked. To ensure
low-latency decoding, we restrict the number of
emitted symbols per frame to 20, as larger values
offer minimal additional improvements. We then
examine the effect of the blank penalty on trans-
lation quality, as shown in Table 3. While tuning
is performed on development sets, we report test
set results for completeness. Across all datasets,
increasing the blank penalty for NT-Hier2 up to a
value of 2 consistently improves BLEU scores by
reducing deletion errors, supporting the hypothe-
sis presented in Section 2.3. This trend is further
confirmed in Figure 3, which shows that higher
blank penalties result in longer translations that
more closely align with reference lengths, with a
penalty of 2 achieving near-perfect length match-
ing. Overall, the proposed HENT-SRT framework
achieves the best streaming performance across
datasets, with BLEU improvements of up to +4.5
points compared to NT-Hier2. Importantly, the

Table 3: Comparison of translation BLEU scores and
processing delays measured by real-time factor (RTF)

Model BP Tunisian HKUST Fisher-Sp

Dev1 Test RTF Dev Test RTF Dev Test RTF

NT 0.0 6.8 6.1 0.013 3.1 3.4 0.016 14.2 15.6 0.013
NT-Shared 0.0 7.0 6.0 0.010 3.3 3.7 0.014 14.8 16.3 0.010
NT-Hier2 0.0 9.5 9.0 0.012 4.2 4.6 0.013 16.8 17.9 0.012

NT-Hier2 0.5 10.4 10.0 0.012 5.0 5.7 0.012 19.3 19.6 0.012
NT-Hier2 1.0 14.1 13.0 0.012 7.2 7.4 0.015 24.8 25.6 0.012
NT-Hier2 2.0 16.8 14.0 0.014 6.7 7.5 0.018 24.9 26.3 0.013

HENT-SRT 2.0 18.6 17.2 0.013 10.2 11.2 0.017 29.2 30.8 0.013

hierarchical ST design introduces no additional la-
tency in terms of real-time factor compared to the
vanilla NT model. This is expected, as the hier-
archical structure reuses the original encoder in a
sequentially factorized ASR-ST configuration with-
out increasing computational complexity.

4 Conclusion

In this paper, we proposed HENT-SRT, a novel hi-
erarchical transducer architecture for joint speech
recognition and translation (ST). The model fac-
torizes the ST task into two stages, ASR followed
by a translation, enabling more effective handling
of word reordering. To improve computational
efficiency, HENT-SRT design incorporates key
transducer-based ASR practices, including a down-
sampled encoder, stateless predictor, and pruned
transducer loss. To maintain robust ST perfor-
mance without sacrificing ASR accuracy, we apply
self-distillation with CTC consistency regulariza-
tion. Additionally, we introduce a blank penalty
mechanism during decoding, which effectively
reduces deletion errors and enhances translation
quality. Experimental results show that HENT-
SRT significantly outperforms previous state-of-
the-art transducer-based ST models and closes the
gap with attention-based encoder-decoder architec-
tures, while achieving superior ASR performance.
Moreover, our approach offers substantial gains in
streaming scenarios without introducing additional
delays.

Limitations

In this work, we focus on non-overlapping speech
translation, translating multilingual source speech
into English text. For future work, we aim to extend
our hierarchical approach to handle overlapped
speech while expanding support for additional tar-
get languages and broader translation directions.
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A Linguistic Analysis of Speech
Translation Performance

A.1 Chinese HKUST Test Set Analysis
The Chinese HKUST test set contains conversa-
tional Mandarin translated into English. The source
utterances include informal structures, frequent rep-
etitions (e.g., “对对” / “yes yes”), fillers (e.g., “呃”
/ “uh”), and discourse markers (e.g., “啊”, “哎呀”).
We compare the NT-Hier2 and NT-Shared system
outputs against reference translations to analyze
their differences and better understand how hierar-
chical modeling improves translation quality. Ta-
ble 4 presents representative examples comparing
the NT-Hier2 and NT-Shared systems.

A.1.1 Observations and Comparison:
• Syntactic Structure: In longer utterances

(e.g., Row 3), NT-Hier2 retains more of the
reference structure, including mentions of
"thesis defence" and a full sequence of events.
However, it introduces timeline inconsisten-
cies such as "in December I can graduate in
October." Despite this, metrics like BLEU and
COMET may still reward NT-Hier2’s output
for preserving semantic content.

• Handling Reordering: In Row 2, the NT-
Hier2 output more accurately preserves the
source’s repeated clause structure (e.g., “who
did it for him”), while the NT-Shared output
compresses the translation and omits part of
the repeated question. This indicates that NT-
Hier2 is better at modeling long-range reorder-
ing and maintaining structural fidelity.

• Handling Informal Speech: Row 1 illus-
trates a relatively simple informal sentence,
where both systems produce fluent and seman-
tically equivalent outputs. This supports our
observation that informal utterances with low
lexical variability are easier to translate. How-
ever, in general, fillers and discourse mark-
ers may be translated literally, rephrased, or
omitted depending on context, which intro-
duces challenges for exact-match metrics like
BLEU.

BLEU vs. COMET Discrepancy: The Chi-
nese test set yields a BLEU score of 12.9 and a
COMET score of 0.72, in contrast to Fisher Span-
ish (BLEU = 33, COMET = 0.80) and IWSLT23
Tunisian (BLEU = 19.4, COMET = 0.67). We hy-
pothesize that the low BLEU score for Chinese

BBN stems from significant lexical variation in the
system outputs. COMET, on the other hand, is
sensitive to semantic similarity and rewards out-
puts that convey approximate meaning (e.g., “no
problem” aligns semantically with “it’s fine”). This
discrepancy is consistent with the conversational
nature of the dataset, where multiple valid transla-
tions (e.g., “it’s fine” vs. “it doesn’t matter”) are
possible, thereby reducing BLEU’s reliability due
to its reliance on a single reference.
Pattern and Theory: A recurring pattern in the
NT-Hier2 system’s output is its tendency to produce
more lexically diverse and expressive translations.
In contrast, the NT-Shared system often generates
shorter, simpler outputs, suggesting possible un-
derfitting or reduced modeling capacity. We argue
that the low BLEU score reflects not only actual
translation errors but also the limitations of BLEU
in evaluating Chinese-to-English translation, espe-
cially in high-variability, conversational settings.
Future work could explore multi-reference BLEU
or fine-tuned semantic metrics to better capture
these nuances.
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Table 4: Comparison of NT-Hier2 and NT-Shared System Outputs on the Chinese test set

Row Source (ref_src) Reference (ref_tgt) NT-Hier2 NT-Shared

1 没有问题对对没关系 that’s alright if there’s no prob-
lem it’s fine

no problem that’s right
it doesn’t matter

no problem that’s right
it doesn’t matter

2 那谁给他办的绿卡谁
给他办的

who applied that green card for
him who did it for him

then who did it for him
then who green it

then who who do it

3 我八月中旬就去上班
然后再回来再回来答
辩就是然后然后十二
月份应该就可以毕业
了

i would go to work at the mid
august then i would come back
again for my thesis defence
that’s it and then i should be able
to graduate in december

i will go to work in and
then come back again
and then i mean in de-
cember i can graduate in
october

in august i will go to
work on and then come
back to work again and
then i mean after octo-
ber
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Abstract

In many languages, non-standardized varieties
make the development of NLP models challeng-
ing. This paper explores various fine-tuning
techniques and data setups for training Swiss
German to Standard German speech-to-text
translation models. While fine-tuning on all
available Swiss German data yields the best
results, ASR pre-training lowers performance
by 1.48 BLEU points, and jointly training on
Swiss and Standard German data reduces it
by 2.29 BLEU. Our dialect transfer experi-
ments suggest that an equivalent of the Curse
of Multilinguality (Conneau et al., 2020) ex-
ists in dialectal speech processing, as training
on multiple dialects jointly tends to decrease
single-dialect performance. However, introduc-
ing small amounts of dialectal variability can
improve the performance for low-resource di-
alects.

1 Introduction

Swiss German (Schweizerdeutsch) is considered
one of the most distinct and lively varieties of Ger-
man with unique features on the phonological, mor-
phological, syntactic and lexical levels1. It is a
continuum of mostly High Alemannic German di-
alects in Switzerland, spoken by more than 5 mil-
lion people. Swiss German is used extensively
in everyday situations, including spoken commu-
nication, text messaging, local and national TV
programs, and even regional parliaments. Stan-
dard German (Hochdeutsch) is used for formal and
institutionalized forms of communication (Chris-
ten et al., 2020). This coexistence of two varieties
with clearly separated use cases in a single speaker
group has been described as diglossia by several re-
searchers (Ferguson, 1959; Ender and Kaiser, 2009;
Russ, 1990).

1For a complete list of Swiss German particularities, we
refer the reader to Russ (1990) and Christen (2019).

Swiss German dialects can vary significantly
within Switzerland, sometimes even leading to
difficulties in understanding between Swiss Ger-
man speakers from distant regions (Christen, 2010).
Due to particularities on all linguistic levels, Swiss
dialects are hard to understand for many German
speakers outside of Switzerland (Ender and Kaiser,
2009) and German learners who are primarily fa-
miliar with Standard German (Schlatter, 2024).
This makes the need for systems that can translate
from Swiss German speech to Standard German
text apparent. It could facilitate the integration of
non-Swiss-German speakers into Swiss society by
enabling them to understand local TV programs,
radio shows, dialectal voice messages, and con-
versations between their co-workers. Furthermore,
dialectal speech translation can help preserve di-
alectal varieties and make language technologies
more accessible to dialect speakers, contributing to
the development of fair and equitable technologies
(Joshi et al., 2024). In a study by Blaschke et al.
(2024), 61% of respondents were in favor of sys-
tems that can translate dialect speech to Standard
German text. This highlights the demand for dialec-
tal translation systems beyond academic interests.

In the case of Swiss German, Automatic Speech
Recognition (ASR) and Speech Translation (ST)
are closely related. As Swiss German does not
have any standardized written form and all of its
speakers understand Standard German (Ender and
Kaiser, 2009), it seems natural to prioritize Swiss
German speech to Standard German text ST instead
of Swiss German speech to Swiss German text
ASR. Although there are works about the latter
(Garner et al., 2014; Scherrer et al., 2019), ST is
the subject of most research (Khosravani et al.,
2021b,a; Paonessa et al., 2023; Sicard et al., 2023;
Mutal et al., 2023) and was one of the shared tasks
at the Swiss Text Analytics Conference2 in 2021

2https://www.swisstext.org/
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(Plüss et al., 2021) and 2022 (Plüss et al., 2023b).
Although the area is being actively researched,

SwissText 2022 (Plüss et al., 2023b) has demon-
strated that the problem is far from being solved.
None of the participating teams were able to
outperform the baseline model, a simple Trans-
former fine-tuned on three datasets. Later works
achieved improvements over this baseline by us-
ing more data and experimenting with fine-tuning
pre-trained models (Sicard et al., 2023; Plüss et al.,
2023a,b). However, they did not explore further
pre-training, nor did they utilize all the available
data for Swiss German, or employ Standard Ger-
man data. Paonessa et al. (2023) showed that one of
the main challenges is that Swiss German ST needs
to handle a considerable amount of dialectal vari-
ability. They found that some dialects benefit from
positive transfer from related dialects, whereas oth-
ers negatively influence overall performance. It
remains unclear, however, how many dialects can
be used together to improve performance and when
performance starts to degrade. Here, we expect a
breaking point as observed for the Curse of Mul-
tilinguality (Conneau et al., 2020) even for the
closely related Swiss dialects. Furthermore, we
don’t know how small amounts of dialectal vari-
ability affect performance.

We aim to close these research gaps by:

1. Exploring fine-tuning and pre-training to im-
prove performance for Swiss German ST and
determine the usefulness of Standard German
data.

2. Investigating whether there is a Curse of Mul-
tidialectality for Swiss German.

3. Observing how small amounts of dialectal
variability affect the performance of Swiss
German ST models.

2 Multidialectal Speech Processing

Joshi et al. (2024) highlight that variability within
dialects of a language is one of the biggest chal-
lenges for dialectal NLP. This issue, referred to as
multidialectality in the present work, has already
been investigated in speech processing. ASR sys-
tems are often only trained on standard accents,
making them perform poorly on other dialects
of the same language (Sanabria et al., 2023; Par-
sons et al., 2023). Yadavalli et al. (2022) find
that a model trained on multiple Telugu dialects
jointly performs worse than a system trained on

each dialect separately, indicating negative transfer.
Similar issues have been observed for Japanese
(Imaizumi et al., 2020), Chinese (Ding et al.,
2024), Tibetan (Zhao et al., 2019), Flemish/Dutch
(Herygers et al., 2023), Armenian (Arthur et al.,
2024), and Arabic (Nasr et al., 2023; Ali et al.,
2021).

Researchers have proposed various techniques
to mitigate performance drops due to multidialec-
tality, with a primary focus on Automatic Speech
Recognition (ASR). Using pre-trained models has
been found to outperform monolingual training
from scratch (Arthur et al., 2024; Luo et al., 2021).
Imaizumi et al. (2022) suggest dialect-aware ASR
modeling by simultaneously performing dialect
identification and ASR for Japanese dialects, Dan
et al. (2022), Das et al. (2021), and Yadavalli et al.
(2022) apply similar multi-task training approaches
to Chinese, English, and Telugu. Using the stan-
dard and dialectal varieties together during train-
ing has been found to increase performance for
Tunisian Arabic (Messaoudi et al., 2021), for multi-
ple other Arabic dialects (Chowdhury et al., 2021),
and for Thai when combined with curriculum learn-
ing3 Suwanbandit et al. (2023).

3 Swiss German ST

For German, research in dialectal speech process-
ing is scarce. Wepner (2021) calls for adapting
ASR systems to Austrian German as they observe
a performance discrepancy between German Stan-
dard German and Austrian Standard German. Sim-
ilarly, Baum et al. (2010) find an increase of 24.8%
in WER when evaluating a German ASR system
on dialectal utterances, and Wirth and Peinl (2022)
see the need to include dialectal varieties in Ger-
man ASR datasets. Paonessa et al. (2023) find that
the multidialectal nature of Swiss German, briefly
described in the introduction, is one of the main
challenges for Swiss German ST. They observe pos-
itive and negative transfer between dialects, mainly
depending on their overall similarity as determined
by Scherrer and Stoeckle (2016).

Swiss German ST is actively researched, and
many datasets have been released in the past years4.

3This is a multi-stage training approach where a model is
trained on increasingly complex tasks (Bengio et al., 2009).

4This is not the case for other German dialects. ASR
datasets have been released for Upper-Saxon (Herms et al.,
2016), Austrian German (Schuppler et al., 2014), and the
Southern Bavarian dialect De Zahrar (Gulli et al., 2024). How-
ever, we did not find any freely available datasets or other
research on ST for these dialects, nor the widely spoken Bavar-
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Table 1 lists these datasets and their abbrevia-
tions. STT and SDS were both collected by crowd-
sourcing with a web recording tool, similar to the
Common Voice datasets (Ardila et al., 2020). They
contain Standard German sentences that partici-
pants were asked to translate into their dialect and
record. SPC was automatically compiled from au-
dio recordings of the Bernese cantonal parliament.
These were automatically aligned with their Stan-
dard German transcriptions. Similarly, GRZH con-
tains speech from the Zurich parliament. It does,
however, not include transcriptions. AM is the only
dataset we found that contains dialectal transcrip-
tions. It was compiled by segmenting interviews
that were conducted and transcribed in Swiss Ger-
man.

Abbr. Dataset Total h Train h Cantons T

STT STT4SG-350 (Plüss et al., 2023a) 343 239 17 StG
SDS SDS-200 (Plüss et al., 2022) 200 50 21 StG
SPC Swiss Parliaments Corpus (Plüss et al., 2020) 293 217 N/S StG
SDial SwissDial (Dogan-Schönberger et al., 2021) 36 36 8 StG
GRZH Gemeinderat Zürich Corpus (Plüss et al., 2021) 1208 1208 N/S -
AM ArchiMob (Samardzic et al., 2016) 80 0 14 SwG

- Total data with Standard German labels 872 542 - StG

Table 1: Swiss German speech datasets. Total h and
Train h show the number of hours and the hours used in
our experiments, respectively.
Abbreviations for the T (Transcriptions) column: StG =
Standard German, SwG = Swiss German.

Early work on Swiss German to Standard Ger-
man ST has focused on single dialects and pipeline
systems (Garner et al., 2014), as ST data was
scarce. However, Khosravani et al. (2021a) em-
phasize that the lack of a standard orthography and
limited resources make it difficult to train cascade
systems, making end-to-end architectures domi-
nate the Swiss German ST area (Nigmatulina et al.,
2020; Büchi et al., 2020; Sicard et al., 2023; Plüss
et al., 2023a).

Current state-of-the-art models for Swiss Ger-
man ST mostly follow the pre-train and fine-tune
paradigm. Plüss et al. (2023a) fine-tune an XLS-R
1B model on the STT dataset and achieve state-of-
the-art performance on the SDS, STT, and Swiss-
Text2021 test sets (69.6 BLEU, 74.7 BLEU, and 66
BLEU, respectively). Sicard et al. (2023) find that
Whisper exhibits strong zero-shot capabilities for
Swiss German, outperforming the previously men-
tioned model on the SPC test set. Paonessa et al.
(2023) trained three small models on the STT data,
with XLS-R 0.3B outperforming Whisper S and
a Transformer model trained from scratch. These

ian, Swabian, and Alsatian dialects.

findings make it difficult to determine which archi-
tecture is the most suitable for Swiss German ST.
Furthermore, recent pre-trained multilingual mod-
els, such as SeamlessM4T (Communication et al.,
2023) and AudioPaLM (Rubenstein et al., 2023),
have not yet been evaluated for this task.

4 Data and Models

In this section, we detail the models and datasets
used for our speech-to-text translation experiments
for Swiss German. The methodology used for the
experiments will be described in Section 5 and 6.

4.1 Data and Dialects

Swiss German datasets were briefly introduced in
Section 3. Table 1 summarizes them, and Table 2
lists the Standard German datasets we used for our
fine-tuning experiments. For Standard German, we
randomly sampled 180 hours from each dataset to
obtain a total of 540 hours, the same amount we
used for Swiss German. Initial experiments showed
that this yielded better performance for Swiss Ger-
man. To track model performance during training,
we use validation splits of Swiss German (STT,
SDS, SPC, GRZH) and Standard German (CV)
datasets. The SPC and GRZH validation sets are
not official splits and were created by randomly
sampling 10% and 1% of their training data, re-
spectively.

Abbr. Dataset Total h Train h (long) Train h

CV Common Voice v17.0 (Ardila et al., 2020) 1423 933 180
MLS Multilingual Librispeech (Pratap et al., 2020) 1995 1966 180
VP VoxPopuli (Wang et al., 2021a) 282 264 180

- Total data with Standard German labels 3700 3163 540

Table 2: Standard German ASR datasets. Train h shows
the hours of speech used in our final experiments.

For the dialect transfer experiments, we only use
the STT dataset because it is the largest available
dataset that contains dialect region labels for ev-
ery utterance. The SDS and SwissDial datasets
also include dialect information, but the regions
differ from the STT regions, limiting their useful-
ness for dialect experiments. Figure 1 shows all
the regions from STT: Basel (BS), Bern (BE), Cen-
tral Switzerland (CS), Eastern Switzerland (ES),
Grisons (GR), Valais (VS), Zurich (ZH).

Test sets We use the test splits of STT, SDS,
SPC, as well as the test sets of the SwissText 2021
(Plüss et al., 2021) and SwissText 2022 (Plüss et al.,
2023b) shared tasks for model evaluation. To track
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Figure 1: Dialect regions (from Paonessa et al., 2023).

the performance of our systems in Standard Ger-
man ASR, we use the test split of CV. In addition to
evaluating the STT test set per dialect, we provide
the average performance over all datasets (includ-
ing and excluding CV, denoted as ∅ and ∅noCV ,
respectively) to be able to compare the models’
robustness across different domains.

Data pre-processing All audios were resampled
to a sampling rate of 16,000 Hz, the rate accepted
by XLS-R. Similar to (Plüss et al., 2023a), all tran-
scripts were normalized to only contain letters of
the English alphabet (a-z), numbers, and the Ger-
man umlauts ä, ö, ü. We use the unidecode pack-
age5 to transform all other characters with accents
or other special characters to ASCII. Then we re-
move all the non-alphanumerical characters (in-
cluding punctuation) and lowercase the transcripts.
We apply this normalization to all transcripts and
translations used for training and evaluating our
models. SPC was filtered to only include samples
longer than 2 seconds and shorter than 15.5 sec-
onds.

4.2 Models

We use XLS-R (Babu et al., 2021) as the base
model for all our experiments. Its architecture is
based on wav2vec 2.0 (Baevski et al., 2020), which
is designed to learn high-quality speech represen-
tation through self-supervised learning, similar to
masked language modeling in BERT (Devlin et al.,
2019).

XLS-R is a multilingual version of wav2vec
2.0 and was pre-trained on 128 languages using
436,000 hours of unlabeled data for one million
updates. In this way, the model learned power-
ful speech representations in several languages,

5https://github.com/avian2/unidecode

similar to what happens for multilingual text mod-
els such as mBERT (Pires et al., 2019; Wu and
Dredze, 2019; Tanti et al., 2021). Through fine-
tuning, these representations can later be leveraged
for downstream tasks across multiple domains and
languages.

We train all of our models with Fairseq (Wang
et al., 2020) and use the official checkpoints of
XLS-R 300M and 1B (after the pre-training) as
a starting point. We add a randomly initialized
linear layer on top of the network and freeze the
Transformer part of the network for the first 10,000
updates, similar to (Baevski et al., 2020). For gen-
erating the transcriptions, we use CTC decoding
because Paonessa et al. (2023) found that it yields
better results for Swiss German ST than seq2seq
decoding. Additionally, we add a 5-gram language
model (LM)6 for decoding (LM fusion decoding)
as this was shown to improve results, especially in
low-resource contexts (Baevski et al., 2020; Babu
et al., 2021). All results reported in this paper are
achieved by applying LM fusion when applying
CTC decoding.

5 Fine-Tuning Experiments

To improve the state-of-the-art of Swiss German ST
and investigate whether using data from a closely
related language (Standard German) is beneficial
for ST performance, we conduct a series of exper-
iments. Experiments 1-4 focus on different fine-
tuning strategies and data setups, while Experiment
5 involves continued pre-training of XLS-R. All
experiments aim to improve overall Swiss German
translation performance and train robust models
that perform well across different data domains.

5.1 Overview and Setup

Table 3 is an overview of all the fine-tuning experi-
ments. Experiment 1 recreates the baseline model
from Plüss et al. (2023a). In Experiment 2, we
extend the fine-tuning data to all available Swiss
German ST datasets to investigate how the addi-
tional variance introduced through these datasets
affects performance on STT and/or specific dialect
regions.

In Experiments 3 and 4, we use a multi-stage
fine-tuning approach7. This has been shown to

6Similarly to (Plüss et al., 2023a), the LM was trained with
kenlm (https://kheafield.com/code/kenlm/) on 100M
Standard German sentences. Details are in Appendix A.

7In some works (e.g., (Suwanbandit et al., 2023)), this is
also referred to as curriculum learning.
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improve performance on low-resource tasks in MT
(Imankulova et al., 2019; Luo et al., 2019), ASR
(Medeiros et al., 2023; Deng et al., 2023; Yang
et al., 2022), and ST (Kesiraju et al., 2023; Stoian
et al., 2020; Wang et al., 2021b). Experiment 3
applies ASR pre-training (Kesiraju et al., 2023;
Stoian et al., 2020) on Standard German data in the
first step. Then, the resulting model is fine-tuned
on the Swiss German ST data. In Experiment 4,
we shuffle equal parts of the Standard German and
Swiss German datasets together and fine-tune the
model on all of them jointly in the first step. Then,
we again fine-tune the resulting model on the Swiss
German ST data.

In Experiment 5, we explore further pre-training
on unlabeled Swiss German data. This is also
called continued pre-training or language-specific
pre-training and has been shown to improve down-
stream ASR performance (Bartelds et al., 2023;
Nowakowski et al., 2023; Paraskevopoulos et al.,
2024; Huang and Mak, 2023). XLS-R’s pre-
training data does not include any Swiss German,
and the model might benefit even more from further
pre-training on Swiss German data. Due to com-
putational limitations, we do not use the labeled
Swiss data for continued pre-training. However, we
use it to fine-tune the resulting model in a second
step.

Training Configuration We use the same hy-
perparameters as (Plüss et al., 2023a), who base
theirs on (Babu et al., 2021). The only difference
is that we use 1 GPU (NVIDIA A100 with 80 GB
of memory) for training instead of 4. We tried to
make up for this by using 4x the gradient accumu-
lation steps but initial experiments showed that the
performance gains were not worth the increased
training time. The hyperparameters are listed in
Table 8 in Appendix B.

Evaluation After fine-tuning, we generate pre-
dictions for the test sets described in Section 4.1
and evaluate the best model of the training run by
BLEU and WER8. As Swiss German ST is more
of a translation task, we use BLEU for the primary
evaluations. The BLEU score is computed with
SacreBLEU9 (Post, 2018) on the references that
were normalized as described in section 4.1. For
the per-dialect results, we calculate the BLEU score

8This is usually done in Swiss German ST, see Plüss et al.
(2023a, 2021, 2023b); Sicard et al. (2023)

9Version 2.4.0

using the entire corpus of the respective dialect. To
calculate WER, we use the jiwer package10.

As fine-tuning our models is resource-intensive,
we are not able to conduct multiple training runs
with different random seeds to determine if the
differences between models are statistically signif-
icant. Instead, we use bootstrapping resampling
to calculate system BLEU scores, as proposed in
Koehn (2004) and implemented by SacreBLEU.
This allows us to calculate confidence intervals and
the statistical significance of BLEU score differ-
ences.

5.2 Results

Table 4 summarizes the results of the fine-tuning
experiments. Using all available labeled data to
fine-tune XLS-R proved to be the most effective ap-
proach, yielding the best overall model. While our
model did not outperform the previously published
baselines on each test set individually (see Figure 4
in Appendix C), we achieved the best average per-
formance (∅noCV ) across all test sets. This is most
likely because the test set domains are very differ-
ent, and we can assume that the domain-specific
data resulted in some interference with the other
domains.

Experiments 3 and 4 demonstrated that using
Standard German data does not improve Swiss
German dialect translation performance. Neither
the ASR pre-training nor mixing Standard Ger-
man and Swiss German data during fine-tuning
improved the results for Swiss German. However,
the Standard German data helped improve perfor-
mance on the Common Voice dataset, adding 39.9
to the BLEU score when comparing the model only
trained on Swiss German data (AllSwiss) and the
model trained on a mixture of Swiss and Standard
German data (Joint_ft). Nevertheless, the average
Swiss German performance dropped by 2.29 BLEU
for this setup. We observed this drop when the ra-
tio of Swiss German and Standard German data
was kept equal, and when 7 times more Standard
German was used. We suspect that there were no
improvements over AllSwiss, because the model is
incapable of learning Standard German ASR and
Swiss German ST simultaneously without any ad-
ditional task separation, resulting in interference of
the Standard German data.

Further pre-training the XLS-R on Swiss Ger-
man speech from the GRZH corpus did not improve

10https://jitsi.github.io/jiwer/
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No. Name Description Fine-tuned from Fine-tuning data Total hours

1 Baseline Baseline replication from Plüss et al. (2023a) XLS-R 1B STT 239
2 AllSwiss Fine-tune XLS-R on all available labeled data for SwG ST XLS-R 1B STT, SPC, SDS, SDial 542

3.1 ASR Fine-tune model for StG ASR XLS-R 1B CV, MLS, VP 542
3.2 ASR_ft Fine-tune StG ASR model on SwG ST data 3.1 ASR STT, SPC, SDS, SDial 542
4.1 Joint Jointly fine-tune on shuffled StG ASR and SwG ST data XLS-R 1B CV, MLS, VP, STT, SPC, SDS, SDial 1084
4.2 Joint_ft Fine-tune jointly trained model on SwG ST data 4.1 Joint STT, SPC, SDS, SDial 542
5.1 SwSSL Continued pre-training on unlabeled SwG data XLS-R 1B GRZH 1208
5.2 SwSSL_ft Fine-tune SwG pre-trained model on SwG ST data SwSSL STT, SPC, SDS, SDial 542

Table 3: Overview of fine-tuning experiments. StG = Standard German, SwG = Swiss German.

Test set BLEU WER
STT4SG Baseline AllSwiss ASR ASR_ft Joint Joint_ft SwSSL_ft STT4SG Baseline AllSwiss ASR ASR_ft Joint Joint_ft SwSSL_ft

STT 74.7 71.9 72.2 9.6 70.2 68.9 69.4 70.9 14.0 15.9 15.6 73.9 16.8 17.7 17.5 16.4
SDS 69.6 66.8 67.2 6.6 65.2 63.0 63.5 66.3 18.2 19.9 19.6 78.7 20.9 22.5 22.2 20.3
SPC 54.9 52.8 61.3 7.3 60.2 60.2 60.5 60.7 30.2 32.4 24.4 79.8 25.6 25.6 25.4 24.8
ST21 66.0 62.4 64.7 10.1 64.1 62.5 62.7 62.9 20.7 22.9 21.4 73.6 21.7 22.6 22.4 22.7
ST22 - 73.7 73.9 11.8 72.4 71.5 71.8 73.2 - 14.7 14.3 69.6 15.6 15.9 15.7 15.1
∅noCV 66.3 65.5 67.9 9.1 66.4 65.2 65.6 66.8 20.8 21.2 19.1 75.1 20.1 20.9 20.6 19.9

CV - 35.7 37.7 84.9 46.5 78.8 77.6 33.8 - 45.8 44.3 8.6 36.6 12.6 13.3 48.7
∅ - 60.5 62.9 21.7 63.1 67.5 67.6 61.3 - 25.3 23.3 64 22.9 19.5 19.4 24.7

Table 4: Results of the baseline from Plüss et al. (2023a) and our experiments. Best results for each dataset are bold.

fine-tuning results either. We conjecture that this
is due to low data quality and overfitting to the
Zurich dialect, which was the only dialect in the
dataset. Performance might benefit from (1) audio
pre-processing or cleaning, and (2) adding more
dialects to the unlabeled pre-training dataset.

Figure 2 shows the per-dialect results of the mod-
els. Comparing the best systems from Experiments
1-5 in Figure 2, it becomes evident that Standard
German data does not help improve the perfor-
mance for any specific dialect but rather introduces
more dialectal variability that negatively affects
performance. The model AllSwiss performs best
for the Berne dialect, possibly due to the additional
Berne data from SPC. This demonstrates that more
in-dialect data helps improve performance even if
that data is from a completely different domain.
However, the over-representation of Berne data re-
sulted in performance drops for other dialects (e.g.,
Valais and Zurich) when comparing AllSwiss to our
Baseline, which was trained on the STT dataset bal-
anced by dialect. These drops are even more sub-
stantial for the model trained jointly on Standard
and Swiss German data, resulting in a performance
loss of 7.8 BLEU for Valais.

6 Dialect Transfer Experiments

In these experiments, we vary the number and di-
versity of dialects in the training data to study the
effect of dialectal variability on performance and
determine if there is an equivalent to the Curse of
Multilinguality (Conneau et al., 2020) for dialects.

Figure 2: Per-dialect results of the fine-tuning experi-
ments for the STT test set.

6.1 Overview and Setup
In the first set of experiments (DT1), we train a to-
tal of 7 models on 1, 2, 4, and 7 dialects. We use the
Valais (VS) dialect region data as a starting point
for one set of models, as this is the most distant
dialect from all the others (Scherrer and Stoeckle,
2016; Paonessa et al., 2023). For a second set of
models, we use the Zurich (ZH) region dialect be-
cause this was found to be the most similar to the
other dialects. In the second set of experiments
(DT2), we keep the dialect regions the same but
add 10 minutes of speech data for every region
that is not included. This allows us to investigate
whether a small amount of data from different di-
alect regions can increase total performance. Table
5 contains an overview of these experiments.

Training Configuration We use XLS-R 300M
for all the dialect transfer experiments (see Ap-
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Name Base Full data 10 min of data h (DT1) h (DT2)

0 - - VS, ZH, CS, GR, BS, BE, ES 0 1.16
vs_1 VS VS ZH, CS, GR, BS, BE, ES 34 35
zh_2 ZH ZH VS, CS, GR, BS, BE, ES 33.46 34.45
vs_2 VS VS, ZH CS, GR, BS, BE, ES 67.46 68.29
zh_2 ZH ZH, CS VS, GR, BS, BE, ES 66.96 67.79
vs_4 VS VS, ZH, CS, GR BS, BE, ES 135.92 136.42
zh_4 ZH ZH, CS, GR, BS VS, BE, ES 136.17 136.67
all - VS, ZH, CS, GR, BS, BE, ES - 238.71 238.71

Table 5: Overview for the dialect transfer experiments.
The column Base shows the base dialect, 10 min of
data shows the regions added for DT2. h (DT1) and h
(DT2) are the amounts of speech data used to train the
first and second sets of experiments, respectively.

pendix B for more details on why this was chosen).
We train each of our models on the balanced STT
train set, filtered to only include the respective di-
alects. This amounts to 34 hours of speech data per
dialect region. We use the same setup as described
in Section 5 with the hyperparameters from Table
8 for the column All others.

Evaluation With the BLEU score, we compare
the STT test set performance of the models. To
determine whether there is a Curse of Multilingual-
ity (Conneau et al., 2020) in Swiss German ST, we
look at how the performance of the base dialect
develops when adding more dialects in DT1. To
investigate the influence of small amounts of added
dialectal variability, the models from DT1 and DT2
are compared. Whether performance differences
are significant is determined by BLEU’s bootstrap-
ping resampling as described in Section 5.

6.2 Results
The results of the DT1 and DT2 are displayed in
Table 6 and 7, respectively.

Table 6 shows that for VS, performance is high-
est when the model is only trained on VS data and
lowest when the training data only contains ZH
data. Adding any non-VS data decreases BLEU
scores, hinting at a Curse of Multidialectality. ZH
exhibits the highest performance when the model is
trained on the closely related dialects CS, GR, and
BS in addition to ZH data. For most other regions
and overall performance, models are best when us-
ing all the dialects for training. For BS and CS,
models perform best when trained only on ZH, CS,
GR, and BS, suggesting that VS, BE, and/or ES
data have a negative impact on performance. This
is another indicator of a Curse of Multidialectality.

Table 7 shows similar trends as the first set of
experiments: VS performance is highest when us-
ing the highest percentage of VS data for training,
while ZH peaks at 4 dialects that are closely re-

lated. We observe similar results for BS, GR, and
CS. In Figure 3 we see that VS performance is sig-
nificantly lower when adding 10 minutes of speech
from all other dialect regions, indicating again that
VS is strongly affected by other dialects. ZH, on
the other hand, seems to benefit from the additional
variety, exceeding the results from the DT1 Ex-
periments. BE and the overall performance also
benefit.

Contrary to DT1, GR now performs best when
the training set contains only 4 dialects, suggesting
that GR benefits from small amounts of variabil-
ity from other dialects but is negatively affected
if this variability is too high (i.e., when using all
data for BE, VS, and ES). Another explanation
could be that the very distant dialects of VS and/or
BE significantly affect performance for GR when
used entirely, but might enhance the model’s gen-
eralizability by introducing a beneficial amount of
variability when only small amounts of data are
used. Further experiments are necessary to investi-
gate how much variability is beneficial and when it
negatively affects performance.

The Curse of Multidialectality Even though the
model trained on all dialects performs well for both
regions, there is a drop of 3.37 BLEU for VS com-
pared to vs_1, the model trained on the VS data
only. Paonessa et al. (2023) report similar findings.
They trained 7 XLS-R models, one on each of the
7 regions from the STT dataset and found that the
model trained on VS data is the only one that out-
performs the model trained on the full dataset on its
base dialect (in this case, VS). All the other models
showed a performance drop of 1-5%, suggesting
that they strongly benefit from cross-dialectal trans-
fer. For ZH (and BS, CS, GR), however, our results
indicate that this is only the case up to a certain
number of (similar) dialects 3 ≤ Dmax ≤ 6 be-
fore performance drops slightly but significantly
(0.97 BLEU in our case when comparing the per-
formance for ZH of zh_4 and the model trained
on all dialects). To determine the exact value of
Dmax, we would need to train models on every
number of dialects between 1 and 7. Furthermore,
we conjecture that Dmax is higher when more sim-
ilar dialects are included in the training set and
lower otherwise. The fine-tuning experiments also
suggest this: adding Standard German data in Ex-
periments 3 and 4 can be considered as introducing
another "dialectal" variety. After doing this, we saw
a performance drop for almost all dialect regions
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Name Regions VS ZH BE BS GR CS ES Overall

vs_1 VS 67.8 43.2 36.8 35.6 40.0 46.1 25.0 42.4
vs_2 VS, ZH 67.1 65.1 49.4 53.4 57.2 64.0 51.9 58.4
vs_4 VS, ZH, CS, GR 64.7 65.8 54.0 56.2 65.6 66.1 58.5 61.5
all all 64.4* 67.2 62.0 63.7 67.2 68.3 65.6 65.5

zh_1 ZH 40.7 64.4 44.4 51.0 56.9 61.7 55.7 53.6
zh_2 ZH, CS 48.7 66.5 53.1 54.9 59.6 67.6 57.8 58.4
zh_4 ZH, CS, GR, BS 52.5 68.2 57.1 64.3 66.7 68.3 63.8 63.0
all all 64.4 67.2 62.0 63.7 67.2 68.3 65.6 65.5

Table 6: BLEU scores of the DT1 Experiments using around 34 hours of speech data for each dialect region specified
in the Regions column. The best result per region is underlined and bold. Insignificant changes in BLEU as per
bootstrap resampling for a system compared with the system in the row above are marked with *.

Name Regions VS ZH BE BS GR CS ES Overall

0+10 - 0 0 0 0 0 0 0 0
vs_1+10 VS 65.8 50.4 41.9 43.5 48.4 51.9 39.0 48.8
vs_2+10 VS, ZH 65.7* 63.9 49.6 53.3 58.0 63.2 54.3 58.3
vs_4+10 VS, ZH, CS, GR 65.7* 67.4 56.9 58.7 66.8 68.0 61.3 63.6
all all 64.4 67.2* 62.0 63.7 67.2* 68.3* 65.6 65.5

zh_1+10 ZH 43.8 64.5 47.1 52.8 59.0 62.5 57.6 55.4
zh_2+10 ZH, CS 50.5 67.3 54.7 56.7 60.7 67.9 60.2 59.8
zh_4+10 ZH, CS, GR, BS 53.7 69.1 58.2 64.5 67.8 68.8 64.5 63.9
all all 64.4 67.2 62.0 63.7 67.2 68.3 65.6 65.5

Table 7: BLEU scores of the DT2 Experiments using 10 minutes of speech data for all the regions that are not
included fully (specified in the Regions column).

(see Figure 2). These findings are reminiscent of
the Curse of Multilinguality but require a more
thorough investigation.

Introducing dialectal variability during train-
ing DT2 shows that the performance for almost
all dialects improves when introducing dialectal
variability through only 10 minutes of data per di-
alect. The improvements for the monodialectal VS
model are the strongest: overall performance in-
creases by 6.45 BLEU, ZH by 7.19 BLEU, and ES
by 13.95 BLEU with only 60 minutes of additional
but highly varied data. The models with ZH as
the base dialect also benefit from this added data,
increasing performance for all dialects when com-
paring zh_1, the model only trained on ZH data,
and zh_1+10, which was trained on the complete
ZH data and 10 minutes of all other dialects. This
strongly suggests that even adding little dialectal
variability is crucial to improve performance. This
is an essential finding for dataset collection. When
primarily data for a distant dialect is available (VS

in our example), it is crucial to gather data from
as many other regions as possible, even if that is
only a small amount. In this way, overall model
performance can be improved with little data, and
underrepresented dialects can benefit.

7 Conclusion and Future Work

With respect to the research gaps identified in the
introduction, the main findings of this paper are the
following:

1. Standard German data is not beneficial for
Swiss German ST performance when used in ASR
pre-training or joint multilingual fine-tuning if a
good amount ST data is available (> 500 h). Fur-
ther pre-training XLS-R on noisy single-domain,
single-dialect data does not improve performance.

2. There are tendencies of a Curse of Multidialec-
tality for Swiss German ST, especially when the
dialects used for training are distant. Interestingly,
Conneau et al. (2020) identified 7-15 languages as
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(a) Results for the VS region. (b) Results for the ZH region.

(c) Results for the BE region. (d) Results for all regions.

Figure 3: BLEU scores of the dialect transfer experi-
ments with VS and ZH as base dialects. The models
shown as dotted lines are from DT2, using 10 minutes
of audio for all the dialect regions that were not included
completely in the training set.

a breaking point. For ST, this number seems to be
lower, and language similarity matters even more.

3. Using data containing rich dialectal variabil-
ity is beneficial for the average performance of all
dialects, even if the resulting training set is unbal-
anced and mainly contains distant dialects (VS in
our case).

Future Work Imaizumi et al. (2022) introduced
dialect-aware modeling, a promising and easy-to-
implement approach that could help alleviate the
Curse of Multidialectality. By performing dialect
identification and ST simultaneously, the model
might learn better to utilize dialect-specific acous-
tic/linguistic information for translation and more
efficiently leverage cross-dialectal transfer. It is
also worth investigating whether Standard German
data proves beneficial for performance in this con-
dition. A similar approach would be to introduce
dialect id tags during training, as this has been
shown to help with many-to-one translation per-
formance in MT (Johnson et al., 2017; Fan et al.,
2021). Furthermore, one could experiment with dif-
ferent approaches for dataset balancing, e.g., by
considering the linguistic distances between the di-
alects as computed in Scherrer and Stoeckle (2016).
Instead of employing ASR pre-training, an existing
ST model (e.g., English→German) could be used

to initialize the weights of the Swiss ST model. In
contrast to an ASR model, an ST model has already
learned non-monotonic mappings and vocabulary
changes, which is crucial for Swiss German ST.
Considering that there are no open-source ST sys-
tems for other German dialects, benchmarking
our model on the performance of other, more dis-
tant dialects could be a fruitful experiment. This
would be a step towards an ST system capable of
translating all German dialects to Standard German,
ultimately facilitating communication and cultural
exchange between German-speaking countries im-
mensely.

Limitations

Our work was constrained by computational re-
sources, which prevented us from performing mul-
tiple training runs to draw statistically sound con-
clusions on whether performance differences be-
tween models were significant. Furthermore, we
were unable to conduct the dialect transfer experi-
ments for all dialect regions, which restricted the
generalizability of our findings. As Swiss dialects
vary significantly, dividing them into homogeneous
regions remains a challenge. In our evaluations, we
treat the dialect regions as homogeneous dialects
even though they contain considerable variability.
This might affect our results. Lastly, a thorough
qualitative analysis of model outputs could have
revealed region-specific error patterns and other
limitations of our training and evaluation methods.
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A Language Model for decoding

We enhance XLS-R decoding by using LM fusion.
We trained several language models of different
sizes using the kenlm toolkit11 and determined the
best-performing model by evaluating the perfor-
mance of our baseline model on the Swiss German
test sets.

The best-performing LM is a 5-gram language
model trained on 100M Standard German sen-
tences compiled by concatenating EuroParl (Koehn,
2005)12, NewsCrawl (Kocmi et al., 2022)13, Tuda-
text14, Parlspeech Bundestag + Nationalrat (Rauh
and Schwalbach, 2020)15 and the transcriptions of
the STT, SPC, SDS, SDial train splits.

We fine-tuned the hyperparameters used for LM
fusion by observing the performance of our Base-
line model on the Swiss German test sets and

11https://kheafield.com/code/kenlm/
12https://www.statmt.org/europarl/v7/
13http://data.statmt.org/news-commentary/v14/
14http://ltdata1.informatik.uni-hamburg.de/

kaldi_tuda_de/
15https://dataverse.harvard.edu/dataset.xhtml?

persistentId=doi:10.7910/DVN/L4OAKN

ended up with lm-weight=0.9, sil-weight=-1,
word-score=1, nbest=1. This configuration was
used to obtain all our results.

B Training Hyperparameters

Table 8 lists the hyperparameters used for all exper-
iments. These are mostly adapted from (Plüss et al.,
2023a), who base theirs on (Babu et al., 2021).

Early stopping (or a maximum number of update
steps) was set in every experiment to avoid over-
fitting and wasting resources. Learning rates were
scheduled with Fairseq’s tri-state scheduler, which
warms up linearly for the first 6.25% of total steps,
then keeps the learning rate constant for 25% of the
total steps, and decays it exponentially afterward.

For the fine-tuning and pre-training experiments,
XLS-R 1B was used. For the second fine-tuning
step in Experiment 4, we had to adjust the learning
rate to 1e-6 because the model had already seen
the Swiss German data and did not converge with
a higher learning rate.

For continued pre-training, we use the same con-
figurations as (Babu et al., 2021) with modifications
inspired by (Bartelds et al., 2023). As pre-training
is computationally expensive and we train on one
GPU (instead of 200 as (Babu et al., 2021)), we
lower the batch size and apply gradient accumula-
tion. All hyperparameters are listed in Table 8. If
any parameters are not given, they were kept the
same as in the pre-training config of XLS-R (Babu
et al., 2021).

Unlike the fine-tuning experiments, the 300M
version of XLS-R (Babu et al., 2021) was used
for the dialect transfer experiments. The main rea-
son for this is that we train 14 models for our di-
alect transfer experiments, and this would consume
too many computational resources16. Addition-
ally, Paonessa et al. (2023) showed that the results
of XLS-R 300M are transferable to XLS-R 1B
because both models have the same performance
curve with a gap of around 5 BLEU per dialect
region. All model trainings are conducted using
the hyperparameters from Table 8 (column All oth-
ers). However, for the first set of dialect transfer
experiments, we use the STT validation set only
containing the base dialect to track the model per-
formance during training.

16For instance, training the 300M version for 80k steps on
the STT balanced train set took 28 hours in Paonessa et al.
(2023). However, using XLS-R 1B with the same setup took
48 hours
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Ex 1 Ex 4.2 Ex 5.1 All others

learning rate 3e-5 1e-6 5e-5 3e-5
gradient accumulation 10 10 10 10
batch size (samples) 640k 640k 320k 640k
effective batch size 400 sec 400 sec 200 sec 400 sec
validation set STT SwG-all GRZH SwG-all*
validation interval 1000 1000 400 1000
early stopping patience - 5 3 5
max. updates 80k 80k 80k 250k

Table 8: Hyperparameters for the fine-tuning, pre-
training and dialect transfer experiments. The exper-
iment numbers refer to Table 3. SwG-all refers to the
combined STT, SDS, and SPC validation sets.
*For Experiment 3.1, the CV validation set was used.

C Performance comparison to SoTA
models

Figure 4 shows the results of our models from the
fine-tuning experiments compared to SoTA models
for Swiss German ST. We hypothesize that the per-
formance difference between our baseline and the
baseline published in Plüss et al. (2023a) has two
main reasons: (1) we trained on one GPU only, re-
sulting in a different batch size and overall training
time, (2) we used less data for training the language
model and a potentially different ngram order.

Figure 4: Results of fine-tuning Experiments 1-5,
grouped by test set. STT4SG, Spaiche, and ST22 Base-
line are the models published in (Plüss et al., 2023a),
(Sicard et al., 2023), and (Plüss et al., 2023b) respec-
tively. For these models, we only used the available
performance metrics to compute the average (∅noCV ).
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Abstract

In this paper, we design a Speech-to-Text Trans-
lation (ST) system to translate English into
Hindi, Bengali, and Tamil, and vice versa.
We explore both cascaded and End-to-End
(E2E) approaches as part of the IWSLT 2025
Indic shared task. In the cascaded systems,
we leverage the pre-trained Wav2Vec2 model
from AI4Bharat’s Vakyansh project, and then
fine-tune it for Automatic Speech Recognition
(ASR). The resultant ASR outputs are then
translated using the adapted IndicTrans2 Neu-
ral Machine Translation (NMT) model with
IWSLT task-specific data. In the E2E approach,
we train models from scratch using only the
IWSLT dataset, leveraging the Fairseq Speech
Translation framework which uses transformer-
based encoder-decoder architecture optimized
for multilingual speech inputs. In the paper, the
performance of these two distinct approaches
in handling low-resource Indic speech transla-
tion tasks is compared. Although in the E2E
approach, the pre-trained Acoustic model is not
leveraged, its results in the En-Indic setting are
impressive. However, this approach does not
perform well in the Indic-En setting due to lack
of sufficient training data. On the other hand,
the cascaded approach leverages pre-trained
models and outperforms for all language pairs.

1 Introduction

In a global and borderless economy, seamless com-
munication is essential, with speech being the most
natural medium. Overcoming language barriers
through intelligent systems is crucial for real-time
interaction and bridging the digital divide (Arora
et al., 2013). Speech-to-text translation has a vital
role to play in facilitating communication across
language barriers. Recent advancements in the
area of speech technology have resulted in state-
of-the-art performance in the speech recognition
task (Baevski et al., 2020a; Radford et al., 2022)

and machine translation (Kalchbrenner and Blun-
som, 2013; Sutskever et al., 2014; Bahdanau et al.,
2016; Vaswani et al., 2017) for almost all major
languages. This encourages the advent of direct
speech translation of speech, leading to the rise
of two different paradigms of achieving the same.
They are: Cascaded and End-to-End speech trans-
lation. In the cascaded speech-to-text (ST) transla-
tion paradigm, the task of translating speech from
a source language to text in a target language is
broken down into two distinct modules. The recent
rise of cascaded ST systems (Mujadia and Sharma,
2023; Prakash et al., 2023; Mhaskar et al., 2023)
for translating the educational content in Indian
languages show the effectiveness of this approach.

Automatic Speech Recognition (ASR): The
input speech in the source language is first tran-
scribed into text using an ASR system.

Machine Translation (MT): The transcribed
source language text is then translated into the tar-
get language using a Neural Machine Translation
(NMT) system.

This pipeline-based approach is advantageous
for modular development, allowing the ASR and
MT components to be trained independently and
optimized using speech datasets, even when paral-
lel ST corpora are limited. However, a limitation of
cascaded ST is the potential propagation of errors
from ASR to MT, where transcription errors can
negatively impact the translation quality. End-to-
End Speech Translation is another paradigm that
directly translates spoken utterances in one lan-
guage into text in a target language, bypassing
intermediate steps such as ASR and MT (Weiss
et al., 2017). This approach enables the model
to learn joint representations that capture both
acoustic and linguistic features, resulting in effi-
cient inference and reduced error propagation com-
pared to traditional cascaded pipelines (Sperber
and Paulik, 2020). Leveraging architectures such
as encoder-decoder transformers, end-to-end ST
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Lang-pair Train Dev Test
# of Audios Total duration # of Audios Total duration # of Audios Total duration

En–Hi 205,201 680h 54m 11,669 40h 47m 36,245 93h 13m
En–Bn 205,203 680h 54m 11,671 40h 48m 36,245 93h 13m
En–Ta 205,203 680h 54m 11,671 40h 48m 36,245 93h 13m
Hi–En 248,872 653h 52m 397 0h 59m 579 1h 20m
Bn–En 64,868 157h 57m 395 1h 0m 866 1h 15m
Ta–En 211,303 478h 9m 457 0h 59m 956 2h 11m

Table 1: Statistics of the speech translation dataset provided for the IWSLT 2025 Shared Task. Durations are shown
in hours and minutes.

systems are trained on pairs of ST translation data,
allowing them to implicitly align and map source
audio to target textual content (Dong et al., 2018).
This methodology has shown promising results in
multilingual and low-resource settings, especially
when supported by self-supervised pretraining and
transfer learning from large ASR and MT models
(Bérard et al., 2018; Wang et al., 2020). However it
faces key limitations such as the scarcity of parallel
speech-to-translation data. These models simulta-
neously learn acoustic processing, language under-
standing, and translation, leading to slower con-
vergence and reduced performance, especially in
low-resource settings. Additionally, it also struggle
with varied pronunciations and code-switching due
to the lack of intermediate transcripts which could
be normalized or transliterated. So continuing
the work towards low-resource language pairs, In-
aguma et al. (2020) propose a multilingual end-to-
end speech translation framework utilizing shared
encoder and decoder components. This architec-
ture leverages parameter sharing and cross-lingual
transfer learning, leading to significant improve-
ments in translation quality. Salesky et al. (2021)
focus on speech translation in low-resource settings
and explored strategies such as multilingual fine-
tuning and data augmentation. Their findings indi-
cate that these methods can effectively compensate
for limited training data and improve translation
accuracy across modalities.

2 Data

In the IWSLT 2025 Indic Speech Translation
Shared Task (Abdulmumin et al., 2025), multilin-
gual speech translation dataset spanning six distinct
language pairs involving English and three indic
languages are released. Table 1 shows the statistics
of the audio corpus that is aimed to support both
training and evaluation of speech translation sys-
tems in low-resource settings. For the training set,

each language pair offers a substantial volume of
audio data. The En-Bn (English–Bengali), En-Hi
(English–Hindi), and En-Ta (English–Tamil) pairs
have 205,000 audio samples, amounting to approx-
imately 681 hours. The Hi-En (Hindi–English)
direction includes the largest dataset, comprising
248,872 audio segments with a total duration of ap-
proximately 654 hours. The Ta-En (Tamil–English)
pair includes 211,303 training audios, summing up
to 478 hours, while the Bn-En (Bengali–English)
dataset is slightly smaller in size with 64,868 sam-
ples and 158 hours of speech data. For validating
the models, the devset is also provided for each
language pair which is approximately 6% in case
of En-Indic pairs, while it is below 1% in case of
Indic-En pairs. For this shared task, no other syn-
thetic data has been used by performing Machine
Translation on source language ASR output or syn-
thesizing speech from the target language text.

3 Methodology

3.1 Cascaded S2T

For this experiment, we finetune CLSRIL-231 2

(Gupta et al., 2022), a self-supervised model that is
designed to leverage cross-lingual speech represen-
tations from raw audio dataset. The pre-training
dataset consists of approximately 10,000 hours of
audio data across 23 Indic languages. The archi-
tecture of CLSRIL-23 is based on Wav2Vec 2.0
(Baevski et al., 2020b), where the base version has
12 transformer blocks with 768 dimensional feaure
vector size and 12 attention heads. It comprises
of multi-layer convolutional feature encoder that
processes raw audio inputs into latent speech rep-
resentations. These representations are then fed
into a Transformer network, which captures con-

1https://github.com/Open-Speech-EkStep/
vakyansh-models

2https://github.com/Open-Speech-EkStep/
vakyansh-wav2vec2-experimentation

181

https://github.com/Open-Speech-EkStep/vakyansh-models
https://github.com/Open-Speech-EkStep/vakyansh-models
https://github.com/Open-Speech-EkStep/vakyansh-wav2vec2-experimentation
https://github.com/Open-Speech-EkStep/vakyansh-wav2vec2-experimentation


textual information over the entire sequence. The
model is trained on a contrastive loss function to
distinguish true quantized latent representations
from distractors, facilitating the learning of robust
speech representations.

ASR Fine-Tuning: For the IWSLT Indic track
task, we fine-tune CLSRIL-23 using the dataset
provided by the organizers, which included par-
allel speech and text data for the target Indic lan-
guages. The fine-tuning process involves the fol-
lowing steps:

• Data Preparation: In this step, we align and
preprocess the provided speech and text pairs
to ensure the compatibility with the input re-
quirements of our model.

• Model Finetuning: We initialize the pre-
trained CLSRIL-23 model and add a fully con-
nected layer on top of the transformer block to
perform character-level classification. During
fine-tuning, we keep the weights of the feature
encoder frozen, allowing only the transformer
and classification head to be updated. For fine-
tuning the model, the learning rate is kept at
3e-5 with a batch size of 32, and we train it
for 50 epochs to optimize performance on the
task.

• Evaluation: Using the provided validation
set, the effectiveness of model are evaluated
in terms of Word Error Rate (WER) and Char-
acter Error Rate (CER).

By fine-tuning on the provided dataset, the model
refine its previously learned features to better cap-
ture the unique patterns and properties present in
the data.

Machine Translation
For the text translation component of the speech

translation pipeline, we fine-tune the IndicTrans23

(Gala et al., 2023), a multilingual NMT model. It
is capable of translating from English to 20 Indic
languages and vice-versa. The model has 1.1 bil-
lion parameters pre-trained on a mixture of paral-
lel corpora, combining general-domain, news, and
publicly available data sources, making it suitable
for fine-tuning it for this shared task on Indic low
resource languages. The process of fine-tuning is
as the following:

• Data Preparation: We perform script normal-
ization, Unicode standardization, whitespace

3https://github.com/AI4Bharat/IndicTrans2/

cleanup, and special character filtering to re-
duce the noise present in the dataset. To en-
able multilingual translation to the target lan-
guage, we prepend language-specific prefix
tokens to the source sentences, following the
original IndicTrans2 multilingual setup. Fi-
nally, we tokenize the processed data using the
SentencePiece tokenizer (Kudo and Richard-
son, 2018) released with IndicTrans2, ensur-
ing compatibility with its subword vocabulary
and avoiding out-of-vocabulary (OOV) issues
during training and inference.

• Model Fine-tuning: We use a deep trans-
former model designed to handle the complex-
ity of multilingual neural machine translation.
This architecture comprises of 18 encoder and
18 decoder layers, each with a hidden dimen-
sionality of 1024 and Feed-Forward Network
(FFN) layers of size 8192. The model is
fine-tuned using a learning rate of 3e-5 and
AdamW (Loshchilov and Hutter, 2017) op-
timizer, with a weight decay of 0.01 to pre-
vent overfitting. We enable mixed precision
training to make efficient use of GPU mem-
ory and accelerate computation. For evalu-
ation, we monitor performance on the vali-
dation set using the SacreBLEU (Post, 2018)
metric, which provide a reliable estimate of
translation quality across different language
pairs.

3.2 End-to-End S2T
For our end-to-end speech translation experiments,
we use a small-scale transformer-based encoder-
decoder model available in the Fairseq Speech-
to-Text framework4 (Ott et al., 2019; Wang et al.,
2020). This model utilizes an encoder embedding
dimension of 256 and a feed-forward network with
a dimension of 2048. Both the encoder and decoder
use 4 attention heads and a dropout rate of 0.1 for
regularization. The model inherits from the base
architecture, which by default configures 6 layers
each for the encoder and decoder. This configura-
tion is effective from the starting point for training
and evaluating end-to-end speech translation sys-
tems, especially in low-resource or computationally
constrained settings.

• Data Preparation: We use the provided script
4https://github.com/facebookresearch/fairseq/tree/

main/examples/speech_to_text
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Cascaded-Unconstrained-monolingual E2E-Constrained-monolingual
Lang-pair ChrF++ BLEU Lang-pair ChrF++ BLEU

En-Hi 64.1749 44.093 En-hi 54.4822 34.6119
En-Bn 65.2117 36.9565 En-bn 58.2243 31.5668
En-Ta 66.1503 29.341 En-ta 56.0757 21.3467
Hi-En 67.0583 41.0425 Hi-En 42.9691 15.4153
Bn-En 44.8855 14.7731 Bn-En 14.3009 0.459
Ta-En 41.1644 15.7004 Ta-En 26.2496 5.0473

Table 2: Comparison of translation performance between Cascaded-Unconstrained and End-to-End Constrained
systems using ChrF++ and BLEU scores.

in the framework to prepare the speech dataset
for training. It processes the audio and tran-
scription files organized in each language
pair’s respective directory and splits into train
and validation sets. For each audio segment,
it extracts the log Mel filterbank features and
generates corresponding manifest files (stored
in a tab separated format) with the metadata.
The script also builds a vocabulary file using
SentencePiece and a config file needed for the
Fairseq training.

• Model Training: For training the speech
translation model on the dataset, we use the
speech to text transformer architecture avail-
able in the Fairseq library. We set the max-
imum number of tokens per batch to 40000
to efficiently utilize GPU memory and the
training is capped at 200 epochs. To improve
generalization, we apply label smoothing with
a value of 0.1 and use a dropout rate of 0.3 to
regularize the model. The optimizer is Adam
(Kingma and Ba, 2014), with a learning rate
of 2e-3, and gradient clipping is set at 10.0 to
prevent exploding gradients. For inferencing,
we take the average of the last 10 checkpoints
as Vaswani et al. (2017) proved that the av-
eraged checkpoint performs better than the
single best checkpoint. SacreBLEU is used
for scoring the performance of the models.

4 Experimental Results

For the IWSLT 2025 Indic Speech Translation
Shared Task (Abdulmumin et al., 2025), we par-
ticipate in two different settings: a) Unconstrained
Cascaded and b) Constrained End-to-End speech-
translation track. The experiments are not multi-
lingual, but individual language-pairs are trained
separately. We conduct experiments on all six lan-
guage pairs: English to Hindi (en-hi), Bengali (en-

bn), Tamil (en-ta), and the reverse directions hi-en,
bn-en, ta-en respectively. The results of our exper-
iments are presented in Table 2, showing ChrF++
(Popović, 2017) and BLEU (Papineni et al., 2002)
scores for each language pair across both the cas-
caded and E2E settings.

English-to-Indic (en-hi, en-bn, en-ta): The cas-
caded system consistently outperform the E2E sys-
tem across all the language pairs. For example,
en-hi achieves a BLEU of 44.09 and ChrF++ of
64.17 in the cascaded setup, compared to 34.61
BLEU and 54.48 ChrF++ in the E2E setup. Simi-
larly, the en-bn model scores 36.95 BLEU (ChrF++:
65.21) in the cascaded mode versus 31.56 BLEU
(ChrF++: 58.22) in E2E. The trend continues with
en-ta, where the BLEU drops from 29.34 (ChrF++:
66.15) in cascaded to 21.34 (ChrF++: 56.07) in the
E2E.

These results indicate that the cascaded approach
remains advantageous for English-to-Indic transla-
tion, likely due to the mature ASR performance on
English audio and the robustness of the IndicTrans2
NMT system trained on diverse high-quality par-
allel corpora. The modular nature of the pipeline
allows each component to be fine-tuned indepen-
dently, maximizing their respective capabilities.

Indic-to-English (hi-en, bn-en, ta-en): The
performance gap between cascaded and E2E sys-
tems is more pronounced in the Indic-to-English
direction. For hi-en, the cascaded system achieves
41.04 BLEU and 67.05 ChrF++, compared to
15.41 BLEU and 42.96 ChrF++ in the E2E track.
For bn-en, the E2E model performs poorly, with
only 0.459 BLEU and 14.30 ChrF++, while the
cascaded model reaches 14.77 BLEU and 44.88
ChrF++. Preliminary analysis suggests that smaller
amount of training data and excessive use of code-
mixed language in the test set are the reason for
low score for the Bengali-English pair. Similarly,
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the BLEU score of ta-en model drops from 15.70
in the cascaded setup to 5.04 in the E2E setup.

The sharp decline in the E2E performance for
Indic-to-English suggests that ASR on Indic au-
dio remains a major challenge, especially in the
constrained setup where access to external data or
pre-trained language models is restricted. The E2E
system must learn both transcription and transla-
tion jointly, which becomes challenging in low-
resource settings or in speech settings consisting of
code-mixed, noisy, or accented content. This high-
lights the difficulty of training E2E models for the
Indic-origin speech, where the diversity in speech
patterns and lack of rich supervised training data
severely affect generalization.

5 Conclusion

Our experiments show that cascaded models still
hold a strong edge in terms of accuracy and ro-
bustness, particularly in Indic to En settings while
end-to-end speech translation models can be an
alternative due to their simplicity and integration.
With further work of using transfer learning from
larger models, multilingual pre-training and data
augmentation techniques such as use of synthetic
data, E2E models can be at par with the cascaded
models by overcoming low-resource bottlenecks in
Indic languages.
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Abstract

In this paper we describe NAVER LABS Eu-
rope submission to the instruction-following
speech processing short track at IWSLT 2025.
We participate in the constrained settings, de-
veloping systems that can simultaneously per-
form ASR, ST, and SQA tasks from En-
glish speech input into the following target
languages: Chinese, Italian, and German.
Our solution leverages two pretrained mod-
ules: (1) a speech-to-LLM embedding pro-
jector trained using representations from the
SeamlessM4T-v2-large speech encoder; and
(2) LoRA adapters trained on text data on top
of Llama-3.1-8B-Instruct. These modules
are jointly loaded and further instruction-tuned
for 1K steps on multilingual and multimodal
data to form our final system submitted for eval-
uation.

1 Introduction

Large language models (LLMs) have demonstrated
remarkable success across various text-based natu-
ral language processing tasks (Achiam et al., 2023;
Touvron et al., 2023; Jiang et al., 2024; Yang et al.,
2024; Alves et al., 2024; Martins et al., 2024a),
motivating research into extending them to other
modalities. This has led to the development of mul-
timodal LLMs capable of processing speech, audio,
images and video (Team et al., 2023; Driess et al.,
2023; Rubenstein et al., 2023; Liu et al., 2023; Tang
et al., 2023; Défossez et al., 2024; Hu et al., 2024;
Laurençon et al., 2024; Huang et al., 2024; Nguyen
et al., 2025; Ambilduke et al., 2025).

This year IWSLT Instruction-following Speech
Processing Track focuses on the leveraging of
LLMs and speech foundation models (SFM)
to build solutions capable to perform multi-
lingual tasks from English speech input and
textual multilingual instructions (Abdulmumin
et al., 2025). NAVER LABS Europe (NLE)

* Equal contribution.

participates in the constrained setting of the
short track, where the tasks proposed are
automatic speech recognition (ASR), speech
translation (ST) and multilingual spoken question
answering (SQA). The target languages for ST
and multilingual SQA are Chinese, Italian and
German. The participants are allowed to use the
speech backbone SeamlessM4T-v2-large (Bar-
rault et al., 2023) and the text LLM
Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) for both training and data generation.

Our submitted systems leverage all the avail-
able data from the constrained settings, together
with data automatically obtained using both back-
bones. We train two types of systems in parallel:
(1) speech-to-text ASR/ST/SQA projectors that
project the averaged speech representation from
the SeamlessM4T-v2-large encoder to the embed-
ding space of a frozen Llama-3.1-8B-Instruct;
(2) text-only LoRA adapters (Hu et al., 2022),
plugged on top of the same frozen LLM. Once
both systems are separately trained, we show that
we can merge them, increasing overall speech per-
formance, by fine-tuning for only 1K steps on mul-
timodal multilingual data.

This system paper is organized as follows. Sec-
tion 2 describes the preprocessing applied to the
data used in this challenge. Sections 3 and 4 de-
scribe our training pipeline and experimental set-
tings, respectively. Section 5 presents our experi-
ments and discussion. Section 6 presents the sub-
mitted system. Section 7 concludes the paper.

2 Data

For training our models, we leverage the data
from the constrained setting: CoVoST2 (Wang
et al., 2020), EuroParlST (Iranzo-Sánchez et al.,
2020) and SpokenSQuAD (Lee et al., 2018).
With the agreement of the organizers, we also
take advantage of the SeamlessM4T-v2-large to
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produce extra synthetic speech data (Seamless
TTS) and multilingual text data (Seamless MT).
Llama-3.1-8B-Instruct is used to rephrase SQA
answers. ACL 60-60 (Salesky et al., 2023) is used
for validation and evaluation only. We now present
our data preprocessing (Section 2.1) and prompt
format (Section 2.2).

2.1 Data Preprocessing
We produce both speech-to-text and text-to-text
instructions to train our systems. For the afore-
mentioned datasets, we produce the following
splits, where * denotes synthetic splits obtained
via SeamlessM4T-v2-large MT; † indicates
splits generated with SeamlessM4T-v2-large
TTS; and ‡ marks those derived through
Llama-3.1-8B-Instruct-based rephrasing.

• CoVoST2:

– ASR and ST/MT (en-de; en-zh)

• EuroParlST:

– ASR and ST/MT (en-de; en-it)

• SpokenSQuAD:

– ASR† and MT (en†-de*; en†-it*; en†-zh*)

– SQA/QA (en†-en; en†-de*; en†-it*; en†-zh*)

– fluent SQA/QA (en†-en‡; en†-de∗,‡; en†-it∗,‡;

en†-zh∗,‡)

• ACL 60-60:

– ASR and ST/MT (en-de; en-it*; en-zh)

Below we detail dataset-specific preprocessing.
Statistics are presented in Table 1.

CoVoST2 and EuroParlST CoVoST2 covers
English to German and Simplified Chinese lan-
guage directions. EuroParlST covers English
to German and Italian. ASR splits for these
datasets were built by merging the existing lan-
guage splits and deduplicating the audio files. For
both, language-specific ST and MT splits are cre-
ated by aligning translations to English speech and
reference transcriptions, respectively.

SpokenSQuAD The SpokenSQuAD dataset is
organized into two jsons, train and test. Each split
is organized in themes, each with several para-
graphs. For each paragraph, TTS audio files are
available, aligned at the sentence level.1 For each

1The format is themeID_paragraphID_sentenceID.

sentence, questions (each with several answers) are
available. We performed the following modifica-
tions to this dataset:

• Duplicated answers: we removed duplicated
answers to the same question using exact
string matching, as well as any questions that
required more than one audio file to answer,
since we are participating in the SHORT track.

• Validation set: we created a validation set by
selecting the first 20 themes of the training
set and removing them from training (3,102
entries).

• New TTS audio: we generate new TTS
audio files for the training set using
SeamlessM4T-v2-large. Resynthesizing the
source audio for this dataset was necessary
due to existing dataset misalignment, which
we detail in Appendix Section A.1.

• Multilingual SQA/QA: we created multilin-
gual SQA/QA sets by first translating ques-
tions and answers to target languages us-
ing SeamlessM4T-v2-large. We then use
reference-free COMET2 (Rei et al., 2022) to
filter out all pairs of questions and answers
that do not both score at least 0.85.

• Invalid splits: we created the invalid SQA
sets by deliberately mismatching context and
question themes, thereby creating unanswer-
able examples. The corresponding answers
were labeled as “Not answerable” in four lan-
guages (English, Italian, German and Chi-
nese), following the guideline answer pro-
vided by the task organizers. While we ac-
knowledge that a small, unknown subset of
these reassigned questions may still be answer-
able, we hypothesize that ensuring a thematic
mismatch between the reference context and
the question is the most effective strategy for
minimizing this issue.

• Fluent SQA/QA version: we created
an alternative SQA/QA training set using
Llama-3.1-8B-Instruct to regenerate the
dataset original answers as fluent sentences.
The motivation behind this was the observa-
tion that, since the original answers are made
of an exact extract of the reference audio/text,

2Unbabel/wmt22-cometkiwi-da
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Dataset Task Language # Samples

CoVoST2
ASR en 289,413

ST/MT en-de 289,413
en-zh 289,413

EuroParlST
ASR en 35,372

ST/MT en-de 32,628
en-it 29,552

SpokenSQuAD

ASR en 34,003

MT
en-de 39,362
en-it 55,030
en-zh 25,078

SQA/QA

en-en 34, 003†

en-de 6, 574†

en-it 16, 767†

en-zh 7, 093†

fluent SQA/QA

en-en 32,320
en-de 4,169
en-it 13,712
en-zh 3,424

Table 1: Training sets statistics by task. For ST/MT
sets, target side is duplicated. For SpokenSQuAD, †
highlights that the source speech is used twice (valid
and invalid questions, as described in Section 2.1).

the model had a difficult time answering some
out-of-domain questions fluently.3 More de-
tails are presented in Appendix Section A.2.

ACL 60-60 We use SeamlessM4T-v2-large to
generate Italian translations, since the data shared
only contained en-de and en-zh splits. We leverage
the dev set for checkpoint selection during training.
The eval set is used for testing.

2.2 Prompt Format
The goal of the short track of this challenge is to
produce a model that is capable to 1) transcribe En-
glish speech; 2) translate English speech into Ital-
ian, German and Chinese; 3) Answer multilingual
questions using English speech as input. In this
setting, the language of the question must match
the language of the answer.

To develop a model capable of smoothly switch-
ing between different tasks, we designed task
prompts with a consistent structure: regardless of
the task (ASR, ST, or SQA), the user turn begins
by encapsulating the speech embeddings within
textual tags. This is followed on a new line by
a task-specific instruction formulated as a ques-
tion, and finally, another line containing a common

3In the official IWSLT 2025 test set we observed examples
as the following. Question: “What are the names of the speak-
ers?” Our model’s answer: “yin and my colleague jiang”.
While the model answer is an exact and correct extraction
from the audio, we were unsure about how this would be
considered during evaluation.

suffix. The list of templates used is available in
Appendix Table 5.

3 Training Pipeline

Our training pipeline is illustrated in Figure 1. We
first train a speech projector on speech tasks (A),
and text LoRA weights on textual tasks (B). These
modules are then reloaded and adapted together on
both speech and textual tasks (C). In this section
we describe the key components used and the data
sampling strategy.

Foundation Models For speech, we leverage
SeamlessM4T-v2-large model, extracting speech
representations for all our audio data from its 24th
speech encoder layer (i.e. the last layer). Prior
to training, we average every 3 consecutive frame
vectors, reducing significantly the sequence length.
This simple trick allows us to train our models
with larger batches, while maintaining good perfor-
mance in speech tasks. All our models are built on
top of a frozen Llama-3.1-8B-Instruct.

Speech Projector Architecture The speech pro-
jector consists of 4 Transformer encoder layers,
each with 8 attention heads. The input dimen-
sion is set to 1,024, the feed-forward network
dimension to 2,048, and the output dimension
to 4,096 to align with the embedding size of
Llama-3.1-8B-Instruct. A dropout rate of 0.1
is applied throughout, and the model employs pre-
layer normalization.

LoRA Adapters LoRA adaptation (Hu et al.,
2022) is applied to both the self-attention (Q/K
values, output projection) and feed-forward mod-
ules, and across all LLM layers. We use rank =
8, α = 16. We do not use dropout.

Data Sampling Strategy For training all our
models, we define an epoch as X steps across the
dataset, with X = |speech_examples|

batch_size . To construct the
training data for each epoch, we sample batches
by first applying the predefined task-level sampling
ratios, followed by sampling based on the internal
domain-level splits within each task. In the case of
multimodal training (speech and text tasks mixed),
we consider speech as our main modality, using it
for defining epoch size and task ratio. Each time we
sample a task and language split that has a textual
equivalent (e.g., ST corresponds to MT; SQA to
QA), we also sample a batch from the correspond-
ing textual task. In practice, this means that every
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Figure 1: Our training pipeline. A speech projector (A) and text LoRA adapters (B) are trained in parallel using
speech-to-text and text-to-text data, respectively. These modules are then integrated during a brief multimodal
adaptation step (C).

time a batch from ST en-de split is sampled, a batch
from MT en-de follows it. We hypothesize that in-
terleaving similar speech and textual batches during
training provides regularization benefits, with the
text data serving as a stabilizing signal for learn-
ing (Pikabea et al., 2025).

4 Experimental Settings

Codebase We train our models using an internal
fork of torchtune (torchtune maintainers and con-
tributors, 2024), which allows us to process inter-
leaved representations of text and high-dimensional
vectors within the user turn during instruction tun-
ing. The high-dimensional vectors pass through our
speech projector, while the text prefix and suffix
user prompts are processed by the LLM embedding
layer. The obtained speech and text embeddings
are both concatenated and fed into the first layer of
the LLM which is trained on the masked input with
standard cross-entropy loss. Different learning rate
schedulers and optimizers are employed for the
speech projector and the LoRA weights, allowing
for more controlled and effective training of these
distinct model components.

Inference Settings We perform inference using
torchtune, with a batch size of 1 and greedy de-
coding. The maximum number of new tokens was
limited to 300. Unless explicitly stated otherwise,
this decoding strategy was consistently applied
across all experimental settings. Additional dis-
cussion regarding multimodal inference is present
in Appendix Section B.1.

Evaluation Metrics We evaluate our models on
speech (ASR, ST, SQA) and text (MT, QA) tasks
when relevant. For ASR, we score word error rate

(WER) using HuggingFace evaluate library with
default settings and MMS normalization (Pratap
et al., 2024). For ST/MT we present two evalua-
tion metrics: BLEU4 computed with sacrebleu
library (Post, 2018)4, and COMET (Rei et al.,
2022).5 For SQA/QA, we use LLM-as-a-judge
evaluation scripts from the bergen library6 (Rau
et al., 2024). We use their “yes/no” quality
assessment evaluation format including the English
reference text, the multilingual questions and the
generated answers. We report average accuracy
across four LLMs: EuroLLM-9B-Instruct (Mar-
tins et al., 2024b), Gemma3-12B-Instruct,
Gemma3-27B-Instruct (Team et al., 2025), and
Llama3.1-70B-Instruct.

Baselines We compare our results with both
backbones we use for training. We evaluate
MT and QA using the reference transcripts and
Llama-3.1-8B-Instruct in zero-shot settings,
and we evaluate SeamlessM4T-v2-large in both
ASR and ST.

5 Experiments

We now present our results for ASR, ST, and SQA.
Section 5.1 introduces the models used in our ex-
periments, followed by results and discussion in
Section 5.2.

5.1 Our Models
In this section, we describe the models used in our
experiments. Additional hyperparameter details
are provided in Appendix C.

4The signature is “nrefs:1|case:mixed|eff:no|tok:TOK|
smooth:exp|version:2.3.1”, with TOK = zh for Chinese,
and 13a for the other languages.

5Unbabel/wmt22-comet-da
6https://github.com/naver/bergen
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A.1 Speech Projector (ASR/ST) This version of
our speech projector focuses on ASR and ST tasks,
which do not require any complex reasoning capa-
bility of the LLM. For ASR, we sample CoVoST2
and EuroParlST with probabilities 0.8 and 0.2 re-
spectively. For ST, we sample proportionally to the
datasets size, and set language sampling probabili-
ties for the pairs en-de, en-zh, and en-it to 0.3, 0.4,
and 0.3 respectively. We trained for 4 epochs using
AdamW with learning rate of 1e − 4, a constant
learning rate scheduler, and gradient accumulation
of 16. This model trains for 4.6 days in a single
A100-80GB, and the best checkpoint is obtained
after 18.2 hours.

A.2 Speech Projector (ASR/ST/SQA) This ver-
sion of our projector extends A.1, including the
SQA task. We use task sampling probabilities of
0.4, 0.35, and 0.25 for ASR, ST and SQA respec-
tively. For the ASR and ST tasks, we use the same
data ratios as defined above. For the SQA task,
we leveraged both valid and invalid splits, with
language-specific sampling probabilities for En-
glish, German, and Italian set to 0.4, 0.3 and 0.3,
respectively. We do not train with Chinese SQA.
This model trains for 4.75 days in a single A100-
80GB, and the best checkpoint is obtained after
27.36 hours. The best checkpoints for both ver-
sions of the speech projector are selected using its
average ST performance on the ACL 60-60 dev
split across all language directions. Additional
hyper-parameters for A.1 and A.2 are presented in
Appendix Section C.1.

B. Text-only LoRA (MT/QA) We train LoRA
weights on top of Llama-3.1-8B-Instruct using
all text-to-text data from Table 1, and by using
probability sampling of 0.6 and 0.4 for MT and
QA respectively. We train for one epoch using
AdamW with learning rate of 3e− 4, weight decay
of 0.1, and 100 warm-up steps. Batch size of 10,
and gradient accumulation of 8 is used. This model
trains for approximately 4 days in a single A100-
80GB. We select the last checkpoint.

C. Multimodal (A.x + B) We restart training by
using both one of the speech projectors detailed
above, and the text-only LoRA weights. We adapt
our models using all speech (ASR/ST/SQA) and
textual (MT/QA) tasks. We experiment with two
versions of the SQA/QA training sets: the original
short lowercase answers, and the fluent SQA/QA
version we created. In preliminary experiments, we

observed that as little as 100 steps were enough to
successfully integrate the projector representation
to the LoRA weights, but the best performance
gains were obtained with 1K steps, which is the
value we adopt for the experiments presented in
the next section. We use learning rate of 1e − 5
for the speech projector, and of 3e − 4 for the
LoRA weights. We use a batch size of 16, and
gradient accumulation of 16. This model trains for
approximately 6 hours in a single A100-80GB. We
select the last checkpoint.

5.2 Results and Discussion

Table 2 presents our results for ASR, ST/MT
and SQA/QA. ACL 60-60 eval set is used for
ASR and ST/MT. SpokenSQuAD official test set
is used for English SQA/QA. A smaller auto-
matically obtained version is used for multilin-
gual SQA/QA.7 In the top portion, we present
results for Llama-3.1-8B-Instruct before and
after LoRA fine-tuning on text-only data. The mid-
dle portion of the table presents the speech back-
bone (SeamlessM4T-v2-large) and our projector-
only models: for these rows, the only adaptation is
the training of a speech projector that is plugged
to a frozen Llama-3.1-8B-Instruct. Finally, the
bottom portion of the table presents results from
the merging of our text backbone (text-only LoRA)
and the projectors of the middle portion via multi-
modal training. Additionally, ACL 60-60 ASR/ST
dev results are presented in Appendix Table 7.

Performance of Text-only Models (topline) We
observe that zero-shot Llama-3.1-8B-Instruct
presents strong performance in both MT and QA
tasks. By adding LoRA adapters on top of it, we in-
crease translation performance in detriment of QA
performance. We partially attribute this drop in QA
performance to the SpokenSQuAD answer format,
that is very short and might be judged as incom-
plete by the LLM evaluation. However, we also
scored ROUGE1 (Lin, 2004) recall, which mea-
sures the intersection between the reference answer
tokens and the produced one, finding that those
scores were similar to the LLM-as-a-judge metric.8

This result confirms that the QA performance is
worse after text adaptation.

7Statistics for the multilingual test set are presented in
Appendix Table 3.

8For en, de, it and zh splits ROUGE1 recall scores were
respectively: 81.4%, 63.1%, 69.5%, 79.0%.
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ASR (WER) ST/MT (BLEU) ST/MT (COMET) SQA/QA (LLM-AS-A-JUDGE)
Model (fine-tuning tasks) en en-de en-it en-zh en-de en-it en-zh en-en en-de en-it en-zh

Text-only Models (MT/QA)

Llama-3.1-8B-Instruct (zero-shot) - 23.88 35.51 45.89 0.779 0.806 0.809 91.8% 92.0% 88.6% 84.6%
B. Text-only LoRA (MT/QA) - 41.69 48.31 53.65 0.838 0.863 0.867 83.4% 75.7% 71.4% 69.5%

Speech-only Models (ASR/ST/SQA)

SeamlessM4T-v2-large 17.6 27.95 43.54 33.58 0.737 0.788 0.753 - - - -
A.1 Speech Projector (ASR/ST) 19.8 27.58 36.30 40.62 0.760 0.796 0.793 - - - -
A.2 Speech Projector (ASR/ST/SQA) 19.9 27.20 36.60 40.72 0.760 0.797 0.792 0.7% 0.5% 0.3% 0.6%

Multimodal Models (ASR/ST/SQA)

A.1 + B (ASR/ST/MT/SQA/QA) 17.7 30.37 41.22 42.76 0.758 0.791 0.795 79.8% 71.9% 69.4% 65.5%
A.1 + B (ASR/ST/MT/fluentSQA/fluentQA) 18.6 30.75 40.48 42.51 0.755 0.788 0.789 90.3% 85.2% 82.9% 76.4%
A.2 + B (ASR/ST/MT/SQA/QA) 18.2 29.91 38.13 43.12 0.759 0.786 0.799 80.5% 74.9% 68.0% 66.7%
A.2 + B (ASR/ST/MT/fluentSQA/fluentQA) 18.7 29.68 32.28 43.38 0.763 0.782 0.798 91.1% 87.3% 84.8% 78.0%

Table 2: Results for the different models and backbones used in this work. ASR and ST scores are obtained using
ACL 60-60 eval set, while SQA/QA scores are obtained using SpokenSQuAD test set.

Speech Projectors We observe that both A.1 and
A.2 are equally capable of performing ASR and
ST, which is consistent with the fact that both are
trained on the same data. However, we observe that
A.2, the model that trains with SQA data, is unable
to produce SQA output. We believe this is a limi-
tation of the projector approach: we train a model
capable of biasing the output of the LLM, which
works well for content tasks such as ASR and ST.
For a reasoning task, further adaptation might be
required in order to force the model to comply to
the instruction. Additional results for CoVoST2
and EuroParlST are presented in Appendix Table 6,
and they confirm that both models are very similar
in ST performance.

Multimodal Training We observe that our ef-
ficient multimodal training is beneficial, consis-
tently increasing scores for ASR and ST. Our mul-
timodal models outperform the speech projector
models by 1-2 WER points in the ASR task. For
ST task, in BLEU scores, the multimodal mod-
els always outperform speech projector models
while in COMET there are some mixed results,
with some models presenting slight deterioration
for some language pairs. Finally, in the SQA task,
while the speech projector model A.2 failed to
learn the task effectively, our multimodal mod-
els achieved strong results, outperforming the text
topline (B) performance across all language set-
tings, and reaching scores that are close to the
Llama-3.1-8B-Instruct topline, despite work-
ing from the speech signal.

ASR Performance We observe that our mod-
els are competitive with SeamlessM4T-v2-large,
scoring slightly worse than the baseline for some

configurations. Overall, for ACL 60-60 we ob-
serve quite elevated WER scores, compared to the
ones we obtained for the training ASR datasets (see
Appendix Table 6). We believe this is partially
due to the nature of the dataset. We manually in-
spected some of the data, observing that some of
the audio files contain leftover fragments from pre-
vious sentences. Moreover, looking at the tran-
scriptions, we observed that these faithfully repro-
duced the audio, without applying any normaliza-
tion or removing disfluencies (e.g. repeated and
filler words were kept). We find that disfluent tran-
scriptions are hardly produced by LLM-based mod-
els or SeamlessM4T-v2-large, that both tend to
translate the content into a clean format. Therefore,
we believe the WER scores presented in our results
table are not representative of the models real ASR
capabilities.

German MT/ST Performance Across all ex-
periments, we observed that our models consis-
tently performed poorly on German, the language
for which we had the largest amount of training
data. This could be attributed to the LLM’s inher-
ent limitations in handling German, as reflected
by its relatively lower performance in zero-shot
settings (Llama-3.1-8B-Instruct) for the en-de
pair for both BLEU and COMET, compared to en-
it and en-zh. Nonetheless, training the model on
multilingual speech-only data for the ST task led to
an improvement of 3–4 BLEU points. Incorporat-
ing multimodal data (i.e., both ST and MT) yielded
an additional gain of 2–3 BLEU points, further en-
hancing performance. For COMET, speech-only
and multimodal training does not improve COMET
scores over the text topline.
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Overall ST Performance We observe that the
speech projectors (A.1 and A.2) outperform the
backbone SeamlessM4T-v2-large for en-zh using
BLEU, and in all languages using COMET. Then,
multimodal training further increases the BLEU
scores, but in some cases, this training slightly
hurts the COMET scores. Since this difference
in COMET is very small (en-de 0.005; en-it 0.008;
en-zh 0.004), and since the BLEU scores increase,
we attribute this to some formatting bias that could
be happening during adaptation. The Appendix
Section C.2 discusses the matter further.

SQA performance Overall, we observe that by
replacing SQA by fluent SQA, we drastically in-
creased our SQA/QA scores. However, results for
ASR slightly deteriorate. We hypothesize that this
is due to the old SQA task being closer to the ASR
task. For the original SQA, the answer is always
a direct transcript of a portion of the input text,
which as a task has a better synergy with ASR. In
intermediate experiments, we observed that adding
the original SQA data to the multimodal training
was always beneficial for the ASR performance of
the model.

Final Discussion Overall our results show that
it is possible to train text (B) and speech adap-
tation (A) in parallel, and then to align both via
joint instruction tuning (C). By separating the pre-
training of both components, we are able to focus
hyper-parameter search at the merging stage, using
two components that are already competent in their
respective modalities. Despite improvements in
scores over speech-only models, our best models
do not beat the topline working from text for ST,
but they do outperform SeamlessM4T-v2-large
across all language pairs and metrics. Moreover,
for SQA, we highlight that the obtained scores are
in some cases very close (en-en, en-it) to the text
topline, despite using speech as input context.

6 Submitted Model

Table 2 presented the results for our multimodal
models. Due to the reasons highlighted in Sec-
tion 2.1, we only consider two models for submis-
sion: the ones which were trained with fluent SQA.
This is because we believe that these models will
suffer the least from domain shift, since they are
capable of producing full fluent sentences for SQA.

We observe that both models (A.1 and A.2-
based) seem to be equally capable of ASR (18.6

and 18.7). We evaluated language confusion for
these two splits, finding that the output produced
was English in 98% and 98.5% of the cases respec-
tively. These models differ more in terms of ST
performance: they obtained averages of 37.9 and
35.1 BLEU score points respectively. Finally, these
models present the following average accuracy for
SQA: 83.7% and 85.3%. In summary, while the
A.1-based model seem much more capable in ST,
the A.2-based model has a very slight edge in ASR
and SQA.

Therefore, we decided to select the A.1-based
model as our primary submission model. For pro-
ducing the decoding of the test set, we transform
the instructions into our own prompt format, and
submit the output of the same model, with the
same decoding settings for all splits: greedy de-
coding using 150 as maximum number of tokens.
A brief post-submission discussion is provided in
Appendix Section C.2.1.

7 Conclusion

In this paper, we presented NLE’s submission to the
instruction-following speech processing short track
at IWSLT 2025, constrained setting. We developed
multimodal models that simultaneously performed
ASR, ST, and SQA tasks from English speech input
into Chinese, German and Italian. Our approach is
simple yet effective: we decoupled training, train-
ing a speech projector on speech-to-text tasks, and
LoRA adapters on text-to-text tasks. Then, both
modules are loaded and the resulting multimodal
model was instruction-tuned for a few steps on mul-
tilingual and multimodal data to produce the final
system submitted for evaluation.
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en de it zh

# lines 8,026 3,272 783 627

Table 3: Statistics for the SpokenSQuAD SQA/QA
test sets. The multilingual version is obtained via
SeamlessM4T-v2-large translation of questions and
answers, with posterior quality filtering based on
COMET scores.

A Data Preprocessing and Prompts

A.1 SpokenSQuAD TTS data

In this section we explain the misalignment we
found in the SpokenSQuAD train split, as well as
our procedure for creating the new TTS split.

Train Split Misalignment During the prepro-
cessing of the train split of SpokenSQuAD, we
witnessed cases of misalignment: for some given
paragraphs, the corresponding audios were shifted
by a factor varying between 1 and 3. For instance,
the first audio in a given paragraph was incorrectly
named as “1”, instead of “0”, shifting all the para-
graph’s alignment. We listened to all cases we were
able to flag, manually correcting them. However,
we believe this hinted to a deeper alignment issue,
as the obtained training set seemed to be difficult
to learn. We observed that models trained with this
training set included were unable to generalize to
SpokenSQuAD’s validation and test sets, always
producing random Wikipedia sentences when re-
ceiving the SpokenSQuAD’s TTS voice as input.

New TTS Source Audio Generation We use
SeamlessM4T-v2-large to produce new source
audio for the SpokenSQuAD training set (34,003
sentences). For each entry in this set, we re-
synthesize its SQuAD reference text by randomly
sampling one of the 200 speakers present in
SeamlessM4T. This results in a more diverse train-
ing set, since the original TTS used a single female
voice for all sentences. We also generated extra
speech data using all different questions present
in this training set, producing a second ASR set
containing speech for 28,000 questions.

A.2 SpokenSQuAD Answers Regeneration

SpokenSQuAD answers are direct extracts from the
reference text, formatted as lowercase text without
punctuation. We discovered this presented a limita-
tion when training our models on SQA. The trained
models over-fitted to that format, solving SQA as

a transcription task of the relevant portion of the
source audio. While conceptually correct, this ap-
proach can result in generalization issues if more
than one extract is required to answer the ques-
tion, as the model never observed such a setting
during training, and it will thus have the tendency
to transcribe everything between the two points of
interest.

We use Llama-3.1-8B-Instruct to regenerate
all answers in our multilingual training set. The
prompt used for regeneration is presented in Ta-
ble 4. After regeneration, we remove answers
generated in the wrong language using an auto-
matic language identification tool. Statistics are
presented in Table 1.

A.3 Data Statistics

Table 3 presents the statistics for the multilingual
test set of SpokenSQuAD.

A.4 Our Prompts

Table 5 presents our prompt format. We designed
our prompts to be very similar, independently of the
target task. The language of the question defines
the answer’s target language.

B Additional Results

CoVoST2 and EuroParlST Results Table 6
presents results for relevant models on the in-
domain test sets from CoVoST2 and EuroParlST.
We observe that the multimodal adaptation im-
proves the speech projectors’ ASR and BLEU
scores, while slightly decreasing COMET scores.

ACL 60-60 Dev Results Table 7 presents
ACL 60-60 dev split scores for some of the models
presented in the main results table (Table 2).

SQA/QA BERT Scores Table 8 presents BERT
scores for the multimodal models presented in the
main results table (Table 2), computed after the
evaluation period and using the same settings from
Abdulmumin et al. (2025). We observe that scores
for languages other than English over the valid test
set are considerably lower than the LLM-as-judge
scores in Table 2. Prior to the evaluation period we
had evaluated our models using BERT score and
xlm-roberta-large, which yielded much higher
scores, similar to those obtained in the LLM-as-
judge evaluation. Those scores are presented in
Table 9.
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Context: [REFERENCE TEXT]
Question: [QUESTION]
Answer: [ANSWER]
Instruction: Reformulate the answer to be a natural sounding sentence that answers the question in the correct language.
Produce text in the same language of the question and answer. Do not make it too long, or add too much information.
Don’t add anything else to your answer.

Table 4: Regeneration prompt we gave to Llama-3.1-8B-Instruct to regenerate the answers in the training set of
SpokenSQuAD.

User Prompt

Speech Prefix Content: <speech>[SPEECH EMBEDDINGS]</speech>\n

Text Prefix Content: <text>[SPEECH TRANSCRIPTION]</text>\n

ASR Question: Can you transcribe the Speech content into English text?\n

ST/MT (de) Question: Können Sie den Inhalt der Rede in den deutschen Text übersetzen?\n
ST/MT (it) Question: Puoi tradurre il contenuto del discorso in testo italiano?\n
ST/MT (zh) Question: 你能把演讲内容翻译成中文吗?\n

SQA/QA Question: [QUESTION]\n

Suffix Your answer:

Table 5: The user turn prompt template used for training our models. For speech tasks, the user prompt is given by
Speech Prefix+Task+Suffix, for text tasks, the user prompt is given by Text Prefix+Task+Suffix.
ST/MT instructions were obtained by translating the instruction “Can you translate the Speech content into
[German/Italian/Chinese] text?” to corresponding target languages using SeamlessM4T-v2-large.

ASR ST

CoVoST2 EuroParlST CoVoST2 EuroParlST
en-de en-zh en-de en-it

WER CER WER CER BLEU COMET BLEU COMET BLEU COMET BLEU COMET

A.1 (ASR/ST) 7.84 3.70 11.21 7.30 30.24 0.789 40.14 0.806 25.06 0.840 27.55 0.860
A.2 (ASR/ST/SQA) 7.21 3.44 10.98 7.18 30.68 0.789 40.63 0.807 25.21 0.841 28.36 0.859

A.1 + B (ASR/ST/MT/fluentSQA/fluentQA) 7.59 3.55 11.20 7.20 31.42 0.770 42.19 0.802 27.16 0.809 27.86 0.842
A.2 + B (ASR/ST/MT/fluentSQA/fluentQA) 7.01 3.25 10.82 7.11 31.83 0.772 42.36 0.804 26.70 0.812 27.77 0.848

Table 6: ASR and ST results for the test sets of CoVoST2 and EuroParlST.

ASR (WER) ST/MT (BLEU) ST/MT (COMET)
Model (fine-tuning data) en en-de en-it en-zh en-de en-it en-zh

Text-only models (MT/QA)

Llama-3.1-8B-Instruct (zero-shot) - 21.27 33.81 44.01 0.732 0.757 0.755
B Text-only LoRA (MT/QA) - 36.94 49.81 52.33 0.782 0.815 0.822

Speech-only models (ASR/ST/SQA)

SeamlessM4T-v2-large 25.3 23.77 37.84 28.17 0.669 0.713 0.663
A.1 Speech Projector (ASR/ST) 15.9 26.77 36.34 38.65 0.718 0.750 0.753
A.2 Speech Projector (ASR/ST/SQA) 15.9 26.85 36.09 38.85 0.720 0.749 0.753

Multimodal models (ASR/ST/SQA)

A.1 + B (ASR/ST/MT/SQA/QA) 13.9 28.74 41.73 40.72 0.716 0.759 0.756
A.1 + B (ASR/ST/MT/fluentSQA/fluentQA) 14.4 27.20 42.01 41.23 0.712 0.752 0.753
A.2 + B (ASR/ST/MT/SQA/QA) 17.2 29.18 39.14 40.99 0.719 0.755 0.762
A.2 + B (ASR/ST/MT/fluentSQA/fluentQA) 15.5 27.62 33.22 41.74 0.726 0.749 0.764

Table 7: ACL 60-60 dev set results for the different models and backbones used in this work.
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Valid Questions Invalid Questions
en-en en-de en-it en-zh en-en en-de en-it en-zh

A.1 + B (ASR/ST/MT/fluentSQA/fluentQA) 0.975 0.532 0.541 0.665 0.999 0.984 0.990 0.988
A.2 + B (ASR/ST/MT/fluentSQA/fluentQA) 0.975 0.536 0.546 0.666 0.999 0.990 0.989 0.991

Table 8: BERT scores for SpokenSQuAD test sets computed using the same settings from the organizers (default
model, bert_score version 0.3.13). Invalid questions corresponds to a version of the test set in which the questions
are impossible to answer given the speech context.

Valid Questions Invalid Questions
en-en en-de en-it en-zh en-en en-de en-it en-zh

A.1 + B (ASR/ST/MT/fluentSQA/fluentQA) 0.857 0.869 0.863 0.899 0.996 0.997 0.996 0.997
A.2 + B (ASR/ST/MT/fluentSQA/fluentQA) 0.857 0.869 0.863 0.896 0.995 0.998 0.998 0.998

Table 9: BERT scores for SpokenSQuAD test sets computed using xlm-roberta-large. All other settings are
equal to Table 8. Invalid questions corresponds to a version of the test set in which the questions are impossible to
answer given the speech context.

Invalid Questions In Table 8 we also present
BERT scores for an invalid multilingual test set,
made of the same reference audio files from the En-
glish test split (8,026 examples), but with incorrect
questions. We observe that the BERT scores for
this invalid split is very high, showcasing that our
models are fully capable of respecting the instruc-
tion format for incorrect answers.

B.1 Inference Issues

Through manual inspection of our model outputs,
we observed that in a small number of cases, in-
ference degenerates, resulting in repeated words or
sentences until the maximum token limit is reached.
We experimented with various inference strategies,
greedy decoding, top-p, and top-k sampling, as
well as different temperature settings, but were un-
able to identify a configuration that fully eliminated
the issue. We hypothesize that a lightweight post-
processing model could offer a simple and effective
solution to mitigate this problem. Below we give
some examples of inference degeneration for Chi-
nese and German.

An example of inference degeneration in Chi-
nese:

“国家语言理解模型从各种知识来源中提取
出来，例如，通常通过预训练获得的参数中包
含的知识，通常通过预训练获得的知识，通常
通过预训练获得的知识，通常通过预训练获得
的知识，(..)通常通过预训练”

An example of inference degeneration in Ger-
man:

“In Zusammenhang mit der semantischen Par-
sierung, wenn wir nach der kompositionalen Gen-

eralisierung testen, könnte es mir so vorkommen,
als ob wir in diesem Fall die Mädchen schlafen,
und ich sehe, dass sie schlafen, und ich sehe, dass
sie schlafen, (..) und ich sehe, dass sie schlafen,
und ich sehe, dass”
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C Models Hyperparameters

Table 12 lists the data splits used for each model
presented in results Table 2. Table 13 presents the
probability sampling employed during training.

C.1 Speech Projector (A) Hyperparameters

Architecture We explored multiple
architectures to map speech embed-
dings from SeamlessM4T-v2-large to
Llama-3.1-8B-Instruct. To train the speech
projector, speech features extracted from
SeamlessM4T-v2-large are input to the projector,
and the resulting outputs are passed through a
frozen Llama-3.1-8B-Instruct model. The
speech projector, initialized with random weights,
is trained using cross-entropy loss on an ASR
task. Preliminary experiments demonstrated that
the Transformer encoder architecture consistently
outperformed both the Conformer and Multi-Layer
Perceptron architectures of similar parameter sizes.
Consequently, we adopt the Transformer encoder
architecture for all experiments presented in this
work.

Averaged Features As mentioned, in prelimi-
nary experiments, we experimented using the origi-
nal output of SeamlessM4T-v2-large, as well as
performing average every 2 or 3 frames. We ob-
serve that averaging every 3 frames results in mod-
els that are considerably faster to train, while main-
taining similar performance to the original output.

Data Ratio For the ASR task, preliminary exper-
iments revealed that training solely on EuroparlST
ASR data resulted in poor generalization, whereas
incorporating CoVoST ASR data significantly im-
proved model robustness. For the ST task, we
defined the data sampling ratios according to the
target language distribution across the CoVoST and
EuroparlST datasets.

Batch Size ASR and ST tasks use a batch size of
16, while SQA is batched with size 8, due to the
longer user prompts.

Checkpoint Selection Checkpoints were se-
lected based on development set performance
across three or four configurations: ASR-best, ST-
best, SQA-best (A.2-only), and an All-best check-
point combining all tasks. We only present results
for ST-best checkpoints, which we found to pro-
duce the best scores in ST compared to the other
versions, while only marginally decreasing scores

in ASR compared to the ASR-best checkpoint. We
do not consider SQA-best checkpoints, as the over-
all SQA performance of projector-only models is
very low regardless of the checkpoint selection
method.

Exclusion of Chinese SQA Data During the
training of the speech projector (A.2), we excluded
Chinese SQA data. This was due to parallel ob-
servation in B models (text-only), in which we
observed that the LLM failed to generate coherent
Chinese answers. While later we were able to con-
firm that the issue did not come from the Chinese
split itself, this model was obtained simultaneously
to that finding, explaining why the data was not
included in this setting.

C.2 Multimodal Models (C) Hyperparameters

In this section we present some ablation experi-
ments for our multimodal adaptation setup. The
experiments are performed by producing variants
of the A.1+B model, which is the model we submit-
ted to the challenge. Table 10 present ACL 60-60
dev split ASR and ST results that are discussed in
the next paragraphs.

Impact of Parameters Count During our multi-
modal merging step, we combine text-only LoRA
weights with our speech projector, yielding bet-
ter scores. Since this increase in scores could be
simply due the additional parameters, we trained
a variant of our model in which the merging step
is performed using a randomly initialized LoRA.
We observe that our training setup indeed benefits
from any additional weights during adaptation: the
models trained with a randomly initialized LoRA
outperform the speech projector backbone (A.1).
Adding textual tasks in this setting does not help the
system, which we hypothesize is due to the LoRA
weights not being pretrained on the textual task.
Finally, adapting using a pretrained LoRA model
further improves ASR and ST scores for two out of
three language directions (en-it and en-zh).

Impact of Textual Tasks For the multimodal
models presented in the main paper, we adapt
pretrained modules leveraging speech and textual
tasks. We thus investigated the impact of having
aligned speech and textual tasks during this adap-
tation. We observe that incorporating textual tasks
has little impact on ASR performance, while sub-
stantially improving ST performance for Italian.
The results are less favorable for German and Chi-
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ASR ST (BLEU) ST (COMET)
WER CER en-de en-it en-zh en-de en-it en-zh

A.1 (ASR/ST) 15.9 7.7 26.77 36.34 38.65 0.718 0.750 0.753

A.1 + random LoRA (ASR/ST/SQA) 17.4 8.2 29.07 37.04 41.47 0.732 0.760 0.761
A.1 + random LoRA (ASR/ST/SQA) + (MT/QA) 16.4 7.7 28.07 38.88 41.24 0.725 0.755 0.760

A.1 + B (ASR/ST) 13.8 6.4 27.91 28.88 41.70 0.728 0.743 0.760
A.1 + B (ASR/ST) + (MT) 14.9 7.2 26.09 32.97 41.10 0.715 0.741 0.755

A.1 + B (ASR/ST/SQA) 14.1 6.5 29.02 30.08 41.85 0.722 0.743 0.763
A.1 + B (ASR/ST/SQA) + (MT/QA) 14.4 6.5 27.20 42.01 41.23 0.712 0.752 0.753

A.1 + B (ASR/ST/SQA) + (MT/QA) No synthetic data 18.8 9.2 28.47 32.97 40.03 0.717 0.741 0.753
A.1 + B (ASR/ST/SQA) + (MT/QA) Only synthetic data 13.9 6.6 29.71 39.80 42.04 0.721 0.751 0.754

A.1 + B (ASR/ST/SQA) + (MT/QA) 2K steps 14.3 6.4 27.09 40.53 41.53 0.713 0.753 0.755

Table 10: ACL 60-60 dev set ASR and ST scores for variants of our best model (A.1+B).

ASR/ST/SQA average WER average BLEU

0.2 / 0.4 / 0.4 16.03 37.58
0.2 / 0.5 / 0.3 17.72 36.36
0.2 / 0.6 / 0.2 16.24 36.62

0.25 / 0.5 / 0.25 16.58 37.08
0.3 / 0.5 / 0.2 16.23 37.30

Table 11: ACL 60-60 dev and test set average WER and
BLEU scores for our best model (A.1+B) by varying
the ASR/ST/SQA ratios.

nese: in German, the addition of textual tasks leads
to a performance drop, whereas in Chinese, the
decline is minimal. Overall, these findings suggest
that the textual modality may be particularly benefi-
cial in low-resource settings. Italian, which has the
fewest training examples in our dataset, appears to
benefit the most from this adaptation.

Impact of SQA Examining the results in Ta-
ble 10, we observe that incorporating the SQA and
QA tasks leads to improvements in both ASR and
ST performance. We hypothesize that the SQA
task enhances the model’s adherence to the prompt
by encouraging it to attend to the information pro-
vided, thereby reducing both task and language
confusion.

Inclusion of Synthetic textual Data Table 11
presents the results of our investigation into the
inclusion of potentially noisy synthetic textual data
during training. We observe that excluding this
synthetic data (No synthetic data) negatively af-
fects both BLEU and WER scores. Conversely,
training exclusively with synthetic data (Only syn-
thetic data) yields improved performance across
all metrics. We attribute this to the fact that the

target text in the non-synthetic data is duplicated
from the speech task (i.e. the MT set is built from
the ST set), leading to reduced data diversity. Re-
moving this duplicated data introduces greater vari-
ability during the adaptation phase, which appears
beneficial. Finally, using both types of data leads
to improved performance for all languages except
German. As discussed in the main paper, we hy-
pothesize that this discrepancy is due to issues in
the German training data sourced from EuroParlST
and CoVoST2.

Number of Adaptation Steps Table 10 presents
results for a version of our model trained for twice
as long (2K steps). At this point, we observe
signs of training saturation: differences in ASR
and COMET scores across all metrics are minimal,
and BLEU scores drop for both German and Italian.
These results suggest that our adaptation step does
not require a considerable number of training steps.

Task Ratios On our preliminary experiments, we
tested different task ratios, selecting the one with
best average WER and BLEU scores over both
ACL 60-60 dev and test set. Table 11 presents
those results.

C.2.1 Post-submission Discussion
Due to time constraints, many of our ablation stud-
ies were conducted after the initial submission.
Upon analyzing these results (Table 10), we hy-
pothesize that there may be an issue with the Ger-
man training data: the more the model is exposed
to it during training, the worse the COMET scores
become. This hypothesis is supported by our Only
synthetic data results, which show improved BLEU
scores for German when we exclude textual data
from EuroParlST and CoVoST2. Additionally, our

199



CoVoST EuroParlST SpokenSQuAD
ASR ST MT ASR ST MT ASR MT SQA/QA fluent SQA/QA

B Text-only LoRA ✗ ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✗

A.1 Speech Projector (ASR/ST) ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✗

A.2 Speech Projector (ASR/ST/SQA) ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ (no zh) ✗

A.1 + B Multimodal model (ASR/ST/MT/SQA/QA) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

A.1 + B Multimodal model (ASR/ST/MT/fluentSQA/fluentQA) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

A.2 + B Multimodal model (ASR/ST/MT/SQA/QA) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗

A.2 + B Multimodal model (ASR/ST/MT/fluentSQA/fluentQA) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓

Table 12: List of datasets and splits used for each model presented in Table 2. Statistics for number of examples can
be seen in Table 1.

ASR ST/MT SQA/QA (valid/invalid)
task
ratio

task
ratio en-de en-it en-zh task

ratio en-en en-de en-it en-zh

Text-only LoRA x 0.6 0.4 0.3 0.3 0.4 0.2 / 0.05 0.2 / 0.05 0.2 / 0.05 0.2 / 0.05
A.1 0.4 0.6 0.3 0.4 0.3 x x x x x
A.2 0.4 0.35 0.3 0.4 0.3 0.25 0.2 / 0.2 0.15 / 0.15 x 0.15 / 0.15
A.1 + B 0.2 0.4 0.4 0.3 0.3 0.4 0.2 / 0.05 0.2 / 0.05 0.2 / 0.05 0.2 / 0.05
A.2 + B 0.2 0.4 0.4 0.3 0.3 0.4 0.2 / 0.05 0.2 / 0.05 0.2 / 0.05 0.2 / 0.05

Table 13: Two-level sampling ratio for each model.

ablations suggest that using textual data selectively,
rather than uniformly, may be more effective. In
particular, textual supervision appears to be most
beneficial for Italian, with more limited gains ob-
served for the other two language directions.

Regarding SQA, we were surprised to find that
the evaluation setup provided by the organizers
yields scores that differ significantly from those
obtained with our own evaluation protocol (see
Tables 8 and 9). These discrepancies also extend to
the scores we obtain using LLM-as-judge (Table 2).
We plan to further investigate the limitations of our
current evaluation setup to better understand these
inconsistencies.
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Abstract

This paper presents the submission of the Ja-
davpur University Computer Science and Engi-
neering Natural Language Processing (JU-CSE-
NLP) Laboratory to the International Confer-
ence on Spoken Language Translation (IWSLT)
2025 Indic track, addressing the speech-to-text
translation task in both English-to-Indic (Ben-
gali, Hindi, Tamil) and Indic-to-English direc-
tions. To tackle the challenges posed by low-
resource Indian languages, we adopt a cascaded
approach leveraging state-of-the-art pre-trained
models. For English-to-Indic translation, we
utilize OpenAI’s Whisper model for Automatic
Speech Recognition (ASR), followed by the
Meta’s No Language Left Behind (NLLB)-200-
distilled-600M model finetuned for Machine
Translation (MT). For the reverse direction, we
employ the AI4Bharat’s IndicConformer model
for ASR and IndicTrans2 finetuned for MT. Our
models are fine-tuned on the provided bench-
mark dataset to better handle the linguistic di-
versity and domain-specific variations inher-
ent in the data. Evaluation results demonstrate
that our cascaded systems achieve competitive
performance, with notable BLEU and chrF++
scores across all language pairs. Our findings
highlight the effectiveness of combining ro-
bust ASR and MT components in a cascaded
pipeline, particularly for low-resource and mor-
phologically rich Indian languages.

1 Introduction and Related Work

Speech to text translation (STT) has long been the
interest of Natural Language Processing (NLP) re-
searchers particularly due to the huge number of
languages spoken worldwide. However, a major
part of research has been invested on translation
between European languages and some Asian lan-
guages such as Chinese. Thus, translation from
English to Indic languages and vice-versa is of con-
siderable importance. This is further highlighted by
the fact that Indic languages like Hindi, Bengali and

Tamil have several speakers worldwide (615, 228
and 90.8 million respectively) (Ahmad et al., 2024).
The top performers (NICT (Dabre and Song, 2024)
and HWTSC (Wei et al., 2024)) of IWSLT 2024
Indic Track Competition showed the importance
of finetuning ASR and MT models in a cascaded
system. We present in this paper, cascaded mod-
els for translation from English to Indic languages
(Bengali, Hindi, Tamil) and vice-versa. We also
fine-tune our Neural Machine Translation (NMT)
models using IWSLT 2025 Indic Track Training
Dataset so as to obtain better results as compared to
the pretrained checkpoints. The visual description
of our system is shown in Figure 1 . We prefer the
cascaded system over the End to End (E2E) system
for two reasons. Firstly, most speech translators
are not trained on indic speech and hence would re-
quire lot of resources to achieve the baseline perfor-
mance that we have in cascaded systems. Secondly
even in the English to Indic track, it has been shown
in (Ahmad et al., 2024) that cascaded models com-
pletely outperform their end to end counterparts.
Transcription and translation is carried out entirely
on the basis of the given segmentation timestamps
in the train, dev and test sets of the IWSLT 2025
Indic Track.

2 Dataset Description

The dataset for each language pair was given in
three parts for both train and development sets.
These included the wav files containing the audio
of the speaker, yaml files containing the audio meta-
data and the segmentation information and the text
files containing the corresponding transcriptions
and translations of the segments. The punctuations
were present only in the translated text. It was
observed that the source files in English to Indic
direction were same for the three languages. The
test datasets contained only wav files and yaml files.
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Direction Train Dev Test
English -> Bengali 205209 11671 36245
English -> Hindi 205209 11671 36245
English -> Tamil 205209 11671 36245
Bengali -> English 64868 395 866
Hindi -> English 248872 397 579
Tamil -> English 211303 457 956

Table 1: Number of segments given in the yaml files

3 Methodology

We have employed cascaded systems for both En-
glish to Indic (Hindi, Bengali, Tamil) as well as
Indic (Hindi, Bengali, Tamil) to English Transla-
tions. We describe the preprocessing, finetuning
and inference procedure of our models in the sub-
sequent subsections.

3.1 Pre-processing

Before using our Automatic Speech Recogni-
tion (ASR) model we perform the following pre-
processing steps on the audio files. Firstly, we
normalize the audio volume in [-1,1] range. This
is followed by applying a biquad low pass filter
for noise reduction (with cutoff at 3kHz). Thirdly,
we amplify the entire audio by 10dB. This is re-
quired for those cases where the speaker’s voice is
inaudible or unclear. We observed a notable reduc-
tion in WER and an improvement in SacreBLEU
scores as a result of acoustic pre-processing shown
in Table 2. The pre-processing, inference pipeline
is shown in Figure 1.

System Score Bengali Hindi Tamil
English to Indic WER 27.75 27.75 27.75
(without Preprocessing) SacreBLEU 16.81 17.72 11.91
English to Indic WER 21.09 21.09 21.09
(with Preprocessing) SacreBLEU 21.79 24.46 12.81
Indic to English WER 56.57 37.42 65.81
(without Preprocessing) SacreBLEU 26.05 31.19 27.78
Indic to English WER 48.32 36.93 56.17
(with Preprocessing) SacreBLEU 39.17 46.28 37.69

Table 2: WER and SacreBLEU scores with and without
preprocessing using pretrained checkpoints

3.2 English to Indic System

For ASR we use Whisper Small model by Ope-
nAI (Radford et al., 2023) and for NMT we use the
NLLB-200-distilled-600M variant) by Meta (Costa-
Jussà et al., 2022). We intentionally choose the
Small version of Whisper as this model gives the
best SacreBLEU score (Post, 2018) when paired
with our NMT and also has comparable Word Error

Rate (WER) on the given dev set as shown in Ta-
ble 3. After comparison with other SOTA models
such as Helsinki Opus (Tiedemann and Thottin-
gal, 2020) , we find that NLLB-200-distilled-600M
gives us the best SacreBLEU score on the dev set
Table 4. However, it is observed that the NMT
model does not give a reasonable accuracy while
using the existing checkpoints. Hence, we resort
to finetuning the NLLB-200-distilled-600M model
(Xinyuan et al., 2023) on the train set as given in
IWSLT 2025 competition. Firstly, finetuning is
carried out only on the NMT model. Here we use
the source and target texts given in the competi-
tion train dataset. As for the pipeline, we run the
Whisper Small model in inference mode and use
its output as input for the finetuned NLLB model
thus obtaining the translated text.

3.3 Indic to English System

For the Indic-to-English system, we utilize
AI4Bharat’s IndicConformer (https://github.
com/AI4Bharat/IndicConformerASR) as the
ASR model. For Indic-to-English translation,
we employ IndicTrans2 (Gala et al., 2023) as
the NMT model. During training, we fine-tune
the NMT model using Indic transcriptions and
their corresponding English translations. This
fine-tuning results in a noticeable improvement in
SacreBLEU scores.

We arrived at this choice of ASR and NMT mod-
els after conducting extensive experiments with
different combinations of ASR and NMT mod-
els. For the MT system we tried using mBART
(Tang et al., 2020) and NLLB200 but observed
a much lower performance as compared to Indic-
Trans2. For ASR selection, we chose the system
with the lowest WER, while for NMT, we evalu-
ated the SacreBLEU score of the entire cascaded
system on the development set to determine the
best-performing model.

4 Experiments

The fine-tuning was conducted on a multi-GPU
setup using Kaggle GPU T4x2 for efficient parallel-
processing. To optimize training, audio-related
metadata were removed.

4.1 Settings for English-Indic System

Due to resource constraints, we are it was not pos-
sible to finetune Whisper Small ASR on English
to Indic system. NLLB200 is transformer based
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Figure 1: Overview of the proposed Multilingual Speech Translation Pipeline: (a) English-to-Indic flow using
Whisper and finetuned NLLB-200; (b) Indic-to-English flow using IndicConformer and finetuned IndicTrans2.

MT model developed by Meta AI as a part of the
No Language Left Behind initiative. This model
had been evaluated on the Flores200 dataset and
had demonstrated promising results particularly for
under-represented languages. Hence, we choose
this model for the machine translation part of our
cascaded system. We finetune the NLLB model
separately for Bengali, Hindi and Tamil target texts.
Moreover in each case finetuning is done incremen-
tally taking 20000 samples from train set each time.
The finetuning was done with learning rate as 2e-
5, batch size as 2, beam size 5, weight decay as
0.01 and for 5 epochs. The HuggingFace interface
of NLLB was used for the finetuning procedure.
Table 6 shows our final results on the dev set for
English to Indic system.

4.2 Settings for Indic-English System

From Table 5, we identify the best-performing pre-
trained NMT model for each specific Indic-English
pair and proceed to fine-tune them accordingly.
Due to resource constraints, it was not possible
to fine-tune the IndicConformer ASR model for the
Indic-to-English system. Instead, we focused on
fine-tuning the IndicTrans2 model, a state-of-the-
art multilingual neural machine translation system
tailored for Indic languages, using a LoRA-based
parameter-efficient strategy (Hu et al., 2022; Patil
et al., 2024).

IndicTrans2 is a transformer-based sequence-to-
sequence model pretrained on large-scale transla-
tion corpora and supports multiple Indic languages.
For fine-tuning, we use the development set of
IWSLT 2025 Indic Track. Sentence-aligned par-
allel data was loaded and preprocessed using the

IndicProcessor (Gala et al., 2023), which performs
normalization and script standardization appropri-
ate to each language. Tokenization was performed
using the AutoTokenizer compatible with the base
IndicTrans2 model. Preprocessing also involved
truncating long sequences to adhere to the model’s
maximum input length.

To reduce training costs and memory usage, we
employed Low-Rank Adaptation (LoRA) (Hu et al.,
2022; Patil et al., 2024) via the peft library. Only
a small subset of model parameters—specifically
the attention projection matrices—were updated,
while the rest of the model remained frozen. This
allowed efficient adaptation to new data without
full-scale retraining.

Fine-tuning was carried out using the
Seq2SeqTrainer from the Hugging Face Trans-
formers library. We used mixed-precision training
(fp16) for computational efficiency. The model
was evaluated on a held-out validation set after
each epoch using automatic evaluation metrics
such as BLEU (Papineni et al., 2002)and chrF++.
(Popović, 2015) Early stopping was applied based
on validation loss to prevent overfitting.

The learning rate was set to 2×10−5, with a batch
size of 4 per device, adjusted for multi-GPU train-
ing and LoRA rank and alpha of 4 and 16 respec-
tively. The model was trained for 5 epochs, with a
weight decay of 0.01 and a beam size of 5. Table 6
presents the final results on the development set for
Indic-to-English translation.

5 Results

The final finetuned results on the dev set are given
in Table 6. The WER observed on the dev sets for
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ASR Model Word Error Rate %
Whisper Tiny 25.63
Whisper Small 21.09
Whisper Medium 20.83
Whisper Base 23.16
Whisper Large-V2 20.74
Whisper Large-V3 20.62

Table 3: WER on the Source English text of combined
English to Indic dev datasets

NMT Models En-Bn En-Hi En-Ta
NLLB 200 21.79 24.46 12.81
Helsinki Opus 13.49 12.30 -

Table 4: SacreBLEU Scores on Dev Set using pretrained
checkpoints (Helsinki does not have En-Ta checkpoints)

Bengali, Hindi, and Tamil using IndicConformer
were 48.32%, 36.93%, and 56.17%, respectively.
(Abdulmumin et al., 2025) The results on the test
set as calculated by IWSLT are given in Table 7.

6 Limitation

Due to resource constraints, it was not feasible to
fine-tune the ASR models to reduce the word er-
ror rate, which directly affects the quality of input
provided to the NMT system. Additionally, the
fine-tuning of the NMT models was limited to a
maximum of five epochs, further constraining po-
tential improvements in translation performance.

7 Conclusion and Future Work

This paper presented JU-CSE-NLP’s submission
to the Indic Track of IWSLT 2025. We have high-
lighted the detailed methodology of our prepro-
cessing, finetuning and inference procedures in our
paper which will help further research and system
development in the field of speech translation of
Indic languages. Our results are also quite reason-
able comparing with previous year’s performance
in the same track (Ahmad et al., 2024) as shown in
Table 8.

NMT Model Bn-En Hi-En Ta-En
mBART 8.92 22.02 13.77
NLLB 200 21.09 0.50 9.29
IndicTrans2 42.80 31.19 27.78

Table 5: SacreBLEU scores on IndicConformer output
of Dev Set using pretrained checkpoints

System Bengali Hindi Tamil
English to Indic 44.54 39.04 38.82
Indic to English 39.17 46.28 37.69

Table 6: SacreBLEU scores of finetuned cascaded sys-
tems on Dev Set

System Score Bengali Hindi Tamil

English to Indic
BLEU 51.70 57.61 36.17
chrF++ 74.58 72.98 73.81

Indic to English
BLEU 23.69 44.13 17.66
chrF++ 53.99 67.91 49.34

Table 7: BLEU and chrF++ scores of cascaded systems
on Test Set

In future work, we aim to conduct a comprehen-
sive error analysis of our results to identify key
areas for improvement and further enhance sys-
tem performance. We also plan to apply knowl-
edge distillation techniques from our cascaded sys-
tems to state-of-the-art end-to-end models, with
the goal of achieving competitive performance in
those frameworks. Additionally, we intend to ex-
tend our current Speech-to-Text (S2T) system into
a full Speech-to-Speech Translation (S2ST) system.
While our present approach is monolingual for each
language pair, we aim to develop a multilingual
system capable of handling multiple languages in
all translation directions. Furthermore, we plan to
incorporate language-specific features to improve
translation quality and robustness.
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vorský, Mateusz Krubiński, Tsz Kin Lam, Xutai
Ma, Prashant Mathur, Evgeny Matusov, Chandresh
Maurya, John McCrae, and 25 others. 2024. FIND-
INGS OF THE IWSLT 2024 EVALUATION CAM-
PAIGN. In Proceedings of the 21st International
Conference on Spoken Language Translation (IWSLT
2024), pages 1–11, Bangkok, Thailand (in-person
and online). Association for Computational Linguis-
tics.

Marta R Costa-Jussà, James Cross, Onur Çelebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
and 1 others. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Raj Dabre and Haiyue Song. 2024. NICT‘s cascaded
and end-to-end speech translation systems using
whisper and IndicTrans2 for the Indic task. In Pro-
ceedings of the 21st International Conference on
Spoken Language Translation (IWSLT 2024), pages
17–22, Bangkok, Thailand (in-person and online).
Association for Computational Linguistics.

Jay Gala, Pranjal A Chitale, Raghavan AK, Varun
Gumma, Sumanth Doddapaneni, Aswanth Kumar,
Janki Nawale, Anupama Sujatha, Ratish Puduppully,
Vivek Raghavan, and 1 others. 2023. Indictrans2:
Towards high-quality and accessible machine trans-
lation models for all 22 scheduled indian languages.
arXiv preprint arXiv:2305.16307.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, and 1 others. 2022. Lora: Low-rank
adaptation of large language models. ICLR, 1(2):3.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Pranamya Patil, Raghavendra Hr, Aditya Raghuwan-
shi, and Kushal Verma. 2024. SRIB-NMT‘s sub-
mission to the Indic MT shared task in WMT 2024.
In Proceedings of the Ninth Conference on Machine
Translation, pages 747–750, Miami, Florida, USA.
Association for Computational Linguistics.
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Abstract

This paper reports NYA’s submissions to the
IWSLT 2025 Offline Speech Translation (ST)
task. The task includes three translation direc-
tions: English to Chinese, German, and Ara-
bic. In detail, we adopt a cascaded speech
translation architecture comprising automatic
speech recognition (ASR) and machine transla-
tion (MT) components to participate in the un-
constrained training track. For the ASR model,
we use the Whisper medium model. For the
neural machine translation (NMT) model, the
wider and deeper Transformer is adopted as
the backbone model. Building upon last year’s
work, we implement multiple techniques and
strategies such as data augmentation, domain
adaptation, and model ensemble to improve the
translation quality of the NMT model. In ad-
dition, we adopt X-ALMA as the foundational
LLM-based MT model, with domain-specific
supervised fine-tuning applied to train and op-
timize our LLM-based MT model. Finally,
by employing COMET-based Minimum Bayes
Risk decoding to integrate and select translation
candidates from both NMT and LLM-based
MT systems, the translation quality of our ST
system is significantly improved, and competi-
tive results are obtained on the evaluation set.

1 Introduction

The Offline Speech Translation (ST) Task converts
source audio into target text. Currently, two pri-
mary approaches dominate the ST field: the cas-
caded system and the end-to-end (E2E) system.
The traditional cascade system (Matusov et al.,
2005a) decouples the ST task into an automatic
speech recognition (ASR) and a machine transla-
tion (MT) task. The source speech is first tran-
scribed into text in the source language, which
is then translated into text in the target language
using a neural machine translation (NMT) model.
However, it often leads to higher architectural com-
plexity and error propagation (Duong et al., 2016),

affecting subsequent MT tasks. To alleviate this
problem, the end-to-end ST architecture (Bérard
et al., 2016) is proposed. The E2E ST system
employs a single neural network to directly map
source-language audio to target-language text, by-
passing intermediate symbolic representations. For
end-to-end ST architectures, a key limitation is
the scarcity of parallel speech-text data. In con-
trast, the widespread availability of large-scale
ASR and MT datasets facilitates the development
of high-precision ASR and MT systems through
comprehensive training. Therefore, the cascaded
ST system typically outperforms the E2E ST sys-
tem (Anastasopoulos et al., 2022; Agarwal et al.,
2023; Ahmad et al., 2024; Abdulmumin et al.,
2025). Thus, we choose the cascaded ST scheme
consisting of ASR and MT systems for the task.

The main architecture of the traditional NMT
model is the encoder-decoder. Recently, large
language models (LLMs) based on decoder-only
architectures have demonstrated remarkable per-
formance across various natural language pro-
cessing (NLP) tasks. In the MT task, only
the most advanced LLMs like GPT-4 (Achiam
et al., 2023) can match the performance of su-
pervised learning-based encoder-decoder state-of-
the-art (SoTA) models such as NLLB (Costa-Jussà
et al., 2022), yet their effectiveness still falls short
of expectations in low-resource languages and spe-
cialized domains. Therefore, many studies (Xu
et al., 2023, 2024b,a; Aryabumi et al., 2024) are fo-
cused on applying LLMs to smaller-scale models,
broader language coverage, and more diverse ap-
plication scenarios in machine translation, demon-
strating significant advancements in the field. For
example, X-ALMA (Xu et al., 2024a) is one of the
top-performing translation models built on LLMs,
capable of matching or even surpassing WMT win-
ners and GPT-4 in some language pairs and scenar-
ios. Therefore, unlike in previous work, we imple-
ment both NMT and LLM-based MT approaches
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and investigate their combination to achieve im-
proved translation performance.

We participate in the unconstrained training track
of the offline speech translation task. And the Whis-
per (Radford et al., 2023) medium model is directly
employed for the ASR system in the source lan-
guage. We also explore audio segmentation meth-
ods, such as Supervised Hybrid Audio Segmenta-
tion (SHAS) (Tsiamas et al., 2022), to segment the
source audio for better ST results. In the MT task,
we widely collect a large amount of parallel data
and monolingual data from various data sources.
For the NMT system, we use the Transformer ar-
chitecture (Vaswani et al., 2017) as the backbone
model and implement multiple optimization tech-
niques and strategies such as Back Translation (BT)
(Sennrich et al., 2016), Forward Translation (FT),
Domain Adaptation (DA), and Ensemble (Ganaie
et al., 2022) to improve the translation quality of
the NMT model. For the LLM-based MT system,
we use X-ALMA as the foundational model and
adopt supervised fine-tuning (SFT) to train and op-
timize the LLM-based MT model. Subsequently,
we adopt Minimum Bayes Risk (MBR) (Kumar
and Byrne, 2004) decoding to select the transla-
tion candidates from both NMT and LLM-based
MT systems and obtain significant improvements
in translation quality.

2 Dataset

2.1 Text Data

The training set is divided into two parts: general
data and domain data. For general data, we retain
the same data configuration of En2Zh and En2De
as last year (Zhang et al., 2024). For En2Zh and
En2De, we make full use of a large amount of
monolingual data through BT and FT. For En2Ar,
in addition to utilizing the data provided by IWSLT
2025, we incorporate several large-scale open-
source text datasets such as NLLB (Costa-Jussà
et al., 2022), CCAligned (El-Kishky et al., 2019),
HPLT (Aulamo et al., 2023) and etc. For domain-
specific data, we crawl a substantial amount of
domain-specific videos from websites and use the
bilingual subtitles provided by these sites to create
domain-specific training sets.

We employ sBERT (Reimers and Gurevych,
2019, 2020) to calculate semantic similarity for
all parallel text data and filter out text pairs with
similarity scores lower than 0.7. Table 1 presents
the size of our MT corpus after filtering.

Corpus En2Zh En2De En2Ar
General data 27M 20M 126M
Domain data 4M 4M 236K

Table 1: Data statistics of MT corpus.

2.2 Data Pre-processing

For semantically filtered data, we perform text pre-
processing according to last year’s rules and proce-
dure (Zhang et al., 2024) to enhance data quality.

After text pre-processing, these sentences are
tokenized by a SentencePiece (SPM) model (Kudo
and Richardson, 2018). The SPM model is trained
separately on sampled data, with vocabulary sizes
set as follows: 40k in English, 37k in Chinese, 37k
in German, and 40k in Arabic. Both the source and
target sides share the same dictionary.

3 Speech Translation System

3.1 ASR System

We utilize the Whisper 1 (Radford et al., 2023)
model in conjunction with the SHAS 2 (Tsiamas
et al., 2022) method to implement our ASR system
within a cascaded framework.

SHAS functions as a Voice Activity Detection
(VAD) mechanism within the ASR system, en-
abling the segmentation of lengthy audio files into
shorter segments. We experiment with various pa-
rameters and ultimately settle on the parameter set
of (5, 30, 0.5), which we apply across all scenarios
except for the accent challenge data.

Whisper is an advanced multilingual ASR sys-
tem, providing robust performance across vari-
ous audio conditions, including accented speech
and noisy environments. The open-source mod-
els range from tiny to large, addressing different
computational needs. We choose the medium-sized
Whisper model for its suitability as the ASR model
in our speech translation system.

3.2 MT System

Due to differences in training paradigms and learn-
ing objectives, traditional NMT tends to produce
more literal translations while LLM-based MT gen-
erates more paraphrased outputs. The LLM ap-
proach shows better fluency and greater robustness
to ASR errors, though it may occasionally overlook
details or produce redundant hallucinations. These

1https://github.com/openai/whisper
2https://github.com/mt-upc/SHAS
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two approaches exhibit complementary strengths
in machine translation. Therefore, both NMT and
LLM-based MT approaches are developed and in-
tegrated for our machine translation system.

3.2.1 NMT Model
Our NMT model in the speech translation system
is built using the Transformer architecture imple-
mented with the Fairseq toolkit (Ott et al., 2019).
This model is designed with a wider and deeper
structure, including an 18-layer encoder, 6-layer
decoder, and 16 self-attention heads. This architec-
ture enables the model to capture complex patterns
and dependencies in the data effectively. Our NMT
model is trained on parallel data from three lan-
guage directions (English to Chinese, German, and
Arabic) to form a one-to-many translation model.

Data augmentation techniques like back transla-
tion (Sennrich et al., 2016) and forward translation
are employed to enhance the quality and diversity
of the training data. Back translation involves trans-
lating the target language back into the source lan-
guage, while forward translation transforms the
source language into the target language. These
methods leverage additional monolingual resources
to generate synthetic bilingual data. In total, we
utilize approximately 23M sentences of BT and FT
data, including 18M sentences of En2Zh data and
5M sentences of En2De data. When employing
the data generated by BT or FT models, we adopt
the tagged BT method (Caswell et al., 2019) by
appending a distinctive <BT> token at the begin-
ning of the source sentence. This approach enables
the model to distinguish between supervised and
semi-supervised data during the training process.

Domain adaptation is also performed to fine-tune
the model for specific domains. In-domain data is
selected and used to train monolingual language
models, which then score all language pairs. Spe-
cific thresholds are set to filter parallel data that is
closer to the target domain. This process ensures
that the model performs well in domain-specific
scenarios, enhancing its overall translation quality
and adaptability to different contexts.

3.2.2 LLM-based MT
LLMs have demonstrated impressive performance
across various NLP tasks. Since most LLMs are
primarily pre-trained on English, they still face
limitations in multilingual translation tasks. Con-
sequently, the paradigm of applying LLMs to mul-
tilingual translation tasks has been extensively

studied. Among these, X-ALMA currently rep-
resents the state-of-the-art in open-source multi-
lingual machine translation models. It supports
bidirectional translation between English and 49
languages, achieving SoTA performance on the
COMET-22 metric across all 50 language direc-
tions.

In this task, we find that the release of the
X-ALMA3 open-source model already achieves
competent translation quality. Building upon the
baseline, we perform supervised fine-tuning to en-
hance its domain-specific capabilities. In order
to ensure data quality, we filter in-domain paral-
lel data based on the reference-free CometKiwi
(Rei et al., 2022b) metric. Subsequently, we con-
duct parameter-efficient adaptation of the model
through Low-Rank Adaptation (LoRA) (Hu et al.,
2022) fine-tuning, which is applied to all modules
of the feed-forward network.

3.2.3 Minimum Bayes Risk Decoding

Unlike Maximum-A-Posteriori (MAP) estimation,
which selects the single most probable hypothesis,
Minimum Bayes Risk (MBR) (Kumar and Byrne,
2004) considers the entire distribution of possible
outcomes and chooses the decision that minimizes
the average loss across them. For MT, MBR de-
coding employs evaluation metrics like COMET
(Rei et al., 2022a) to choose the hypothesis with the
highest average score against other candidates. A
substantial body of research (Fernandes et al., 2022;
Finkelstein et al., 2023) has demonstrated that
MBR decoding can effectively enhance translation
quality across both NMT and LLM-based MT mod-
els. The N-best candidates from the NMT model
are produced via beam search, while those from
the LLM-based MT model are generated through
temperature scaling and nucleus sampling. We em-
ploy COMET-based MBR decoding to rerank all
the translation candidates from both subsystems,
ultimately selecting the final translation output.

4 Experiments and Results

All NMT models are implemented using the open-
source Fairseq toolkit (Ott et al., 2019). For LLM
fine-tuning, we utilize the open-source ALMA
toolkit 4 (Xu et al., 2024a). We evaluate the perfor-
mance of MT models using case-sensitive Sacre-

3https://huggingface.co/haoranxu/X-ALMA
4https://github.com/fe1ixxu/ALMA
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Model
En2Zh En2De

COMET BLEU COMET BLEU
NMT baseline 0.7988 34.70 0.7081 25.23
+ BT & FT 0.7995 35.03 0.7248 26.36
+ DA 0.8181 35.21 0.7315 26.34
+ MBR 0.8342 35.53 0.7572 25.41
LLM baseline (X-ALMA) 0.8200 32.74 0.7437 25.44
+ SFT 0.8221 33.44 - -
+ MBR 0.8337 33.58 0.7560 24.77
MBR Ensemble NMT&LLM 0.8417 36.01 0.7708 25.71

Table 2: COMET and BLEU scores of NMT and LLM-based MT systems on the IWSLT tst-2022 test set

BLEU5 (Post, 2018) and COMET6 (Rei et al.,
2022a) metrics, based on the tst2022 and tst2010
test sets. Specifically, tst2022 is used to assess
En2De and En2Zh, while tst2010 is applied for
En2Ar. For audio segmentation, we adopt SHAS
with parameters set to (5,30,0.5). Finally, we utilize
mwerSegmenter 7 (Matusov et al., 2005b) toolkit
for the resegmentation and alignment of translation
results.

Table 2 presents the COMET and BLEU scores
for various NMT and LLM systems on the tst2022
test set. For NMT models, the integration of
BT&FT data and domain adaptation demonstrates a
notable enhancement of nearly 2% COMET scores
across both En2Zh and En2De. This highlights
the importance of domain-specific data for model
performance. For LLM-based MT models, we
perform LoRA fine-tuning on the X-ALMA pre-
trained model with in-domain parallel data filtered
by COMET-Kiwi (threshold is 0.82) for En2Zh,
which brings slight translation improvements. The
COMET-based MBR decoding achieves significant
improvements in COMET scores, whether applied
to candidate selection for a single translation model
or two different types of translation systems (NMT
and LLM). It is noteworthy that the En2De results
of the single system indicate an inverse relationship
between the COMET and BLEU scores.

Table 3 presents the performance of our final
submitted ST system in the unconstrained training
track of the offline speech translation task. Based
on the results of "MBR Ensemble NMT&LLM"
in Table 2, we train multiple models using a sim-
ilar approach and achieve further improvements
in COMET scores by integrating them through

5https://github.com/mjpost/sacrebleu
6https://github.com/Unbabel/COMET
7https://www-i6.informatik.rwth-aachen.de/web/

Software/mwerSegmenter.tar.gz

Test set COMET BLEU
En2Zh tst-2022 0.8454 35.89
En2De tst-2022 0.7736 25.81
En2Ar tst-2010 0.8689 23.85

Table 3: COMET and BLEU scores of the ST system
on the IWSLT test sets

MBR decoding. The COMET scores for En2Zh
and En2De reach 84.54% and 77.36% on tst2022,
respectively. Since the En2Ar track does not pro-
vide an in-domain development set, we present the
performance of En2Ar on the out-of-domain set
tst2010 for reference.

5 Conclusion

This paper presents our submission to the IWSLT
2025 offline speech translation task. For the uncon-
strained track, we adopt a cascaded speech transla-
tion architecture consisting of the ASR and MT sys-
tems. For the ASR system, we directly employ the
open-source Whisper medium model, which has
shown outstanding performance and strong robust-
ness across various scenarios for English speech
recognition tasks. For the MT system, we investi-
gate both NMT-based and LLM-based approaches
and explore optimization strategies including data
augmentation, domain adaptation, MBR decoding,
and model ensemble. Experimental results demon-
strate that integrating NMT with LLM-based MT
models while applying these techniques yields sig-
nificant performance improvements. Our final sys-
tem achieves COMET scores of 0.8454, 0.7736,
and 0.8689 for EN→ZH, EN→DE on the IWSLT
tst-2022 test set, and EN→AR on the tst-2010 test
set, respectively.
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Cattoni, Anna Currey, Georgiana Dinu, Kevin Duh,
Maha Elbayad, et al. 2022. Findings of the iwslt
2022 evaluation campaign. In Proceedings of the
19th International Conference on Spoken Language
Translation (IWSLT 2022), pages 98–157.

Viraat Aryabumi, John Dang, Dwarak Talupuru,
Saurabh Dash, David Cairuz, Hangyu Lin, Bharat
Venkitesh, Madeline Smith, Jon Ander Campos,
Yi Chern Tan, et al. 2024. Aya 23: Open weight re-
leases to further multilingual progress. arXiv preprint
arXiv:2405.15032.

Mikko Aulamo, Nikolay Bogoychev, Shaoxiong Ji,
Graeme Nail, Gema Ramírez-Sánchez, Jörg Tiede-
mann, Jelmer Van Der Linde, and Jaume Zaragoza.

2023. Hplt: High performance language technolo-
gies. In Proceedings of the 24th Annual Conference
of the European Association for Machine Translation,
pages 517–518.

Alexandre Bérard, Olivier Pietquin, Laurent Besacier,
and Christophe Servan. 2016. Listen and translate: A
proof of concept for end-to-end speech-to-text trans-
lation. In NIPS Workshop on end-to-end learning for
speech and audio processing.

Isaac Caswell, Ciprian Chelba, and David Grangier.
2019. Tagged back-translation. arXiv preprint
arXiv:1906.06442.

Marta R Costa-Jussà, James Cross, Onur Çelebi, Maha
Elbayad, Kenneth Heafield, Kevin Heffernan, Elahe
Kalbassi, Janice Lam, Daniel Licht, Jean Maillard,
et al. 2022. No language left behind: Scaling
human-centered machine translation. arXiv preprint
arXiv:2207.04672.

Long Duong, Antonios Anastasopoulos, David Chiang,
Steven Bird, and Trevor Cohn. 2016. An attentional
model for speech translation without transcription.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 949–959, San Diego, California. Association
for Computational Linguistics.

Ahmed El-Kishky, Vishrav Chaudhary, Francisco
Guzmán, and Philipp Koehn. 2019. Ccaligned: A
massive collection of cross-lingual web-document
pairs. arXiv preprint arXiv:1911.06154.

Patrick Fernandes, António Farinhas, Ricardo Rei,
José GC de Souza, Perez Ogayo, Graham Neubig,
and André FT Martins. 2022. Quality-aware decod-
ing for neural machine translation. arXiv preprint
arXiv:2205.00978.

Mara Finkelstein, Subhajit Naskar, Mehdi Mirzazadeh,
Apurva Shah, and Markus Freitag. 2023. Mbr and qe
finetuning: Training-time distillation of the best and
most expensive decoding methods. arXiv preprint
arXiv:2309.10966.

Mudasir A Ganaie, Minghui Hu, Ashwani Kumar Ma-
lik, Muhammad Tanveer, and Ponnuthurai N Sug-
anthan. 2022. Ensemble deep learning: A review.
Engineering Applications of Artificial Intelligence,
115:105151.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. 2022. Lora: Low-rank adap-
tation of large language models. ICLR, 1(2):3.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

210

https://doi.org/10.18653/v1/N16-1109
https://doi.org/10.18653/v1/N16-1109
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012


Shankar Kumar and Bill Byrne. 2004. Minimum bayes-
risk decoding for statistical machine translation. In
Proceedings of the Human Language Technology
Conference of the North American Chapter of the
Association for Computational Linguistics: HLT-
NAACL 2004, pages 169–176.

E. Matusov, S. Kanthak, and Hermann Ney. 2005a.
On the integration of speech recognition and statisti-
cal machine translation. In Proc. Interspeech 2005,
pages 3177–3180.

Evgeny Matusov, Gregor Leusch, Oliver Bender, and
Hermann Ney. 2005b. Evaluating machine transla-
tion output with automatic sentence segmentation. In
Proceedings of the Second International Workshop
on Spoken Language Translation, Pittsburgh, Penn-
sylvania, USA.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International Conference on Machine
Learning, pages 28492–28518. PMLR.

Ricardo Rei, José GC De Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André FT Martins.
2022a. Comet-22: Unbabel-ist 2022 submission
for the metrics shared task. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 578–585.

Ricardo Rei, Marcos Treviso, Nuno M Guerreiro,
Chrysoula Zerva, Ana C Farinha, Christine Maroti,
José GC De Souza, Taisiya Glushkova, Duarte M
Alves, Alon Lavie, et al. 2022b. Cometkiwi: Ist-
unbabel 2022 submission for the quality estimation
shared task. arXiv preprint arXiv:2209.06243.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96.

Ioannis Tsiamas, Gerard I. Gállego, José A. R. Fonol-
losa, and Marta R. Costa-jussà. 2022. SHAS: Ap-
proaching optimal Segmentation for End-to-End
Speech Translation. In Proc. Interspeech 2022, pages
106–110.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Haoran Xu, Young Jin Kim, Amr Sharaf, and
Hany Hassan Awadalla. 2023. A paradigm shift
in machine translation: Boosting translation perfor-
mance of large language models. arXiv preprint
arXiv:2309.11674.

Haoran Xu, Kenton Murray, Philipp Koehn, Hieu
Hoang, Akiko Eriguchi, and Huda Khayrallah. 2024a.
X-alma: Plug & play modules and adaptive rejec-
tion for quality translation at scale. arXiv preprint
arXiv:2410.03115.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-
ray, and Young Jin Kim. 2024b. Contrastive pref-
erence optimization: Pushing the boundaries of llm
performance in machine translation. arXiv preprint
arXiv:2401.08417.

Yingxin Zhang, Guodong Ma, and Binbin Du. 2024.
The nya’s offline speech translation system for iwslt
2024. In Proceedings of the 21st International Con-
ference on Spoken Language Translation (IWSLT
2024), pages 39–45.

211

https://doi.org/10.21437/Interspeech.2005-726
https://doi.org/10.21437/Interspeech.2005-726
https://aclanthology.org/2005.iwslt-1.19
https://aclanthology.org/2005.iwslt-1.19
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://doi.org/10.21437/Interspeech.2022-59
https://doi.org/10.21437/Interspeech.2022-59
https://doi.org/10.21437/Interspeech.2022-59


Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025), pages 212–221
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

KIT’s Low-resource Speech Translation Systems for IWSLT2025: System
Enhancement with Synthetic Data and Model Regularization

Zhaolin Li, Yining Liu, Danni Liu, Tuan Nam Nguyen, Enes Yavuz Ugan,
Tu Anh Dinh, Carlos Mullov, Alexander Waibel, Jan Niehues

Karlsruhe Institute of Technology
firstname.lastname@kit.edu

Abstract

This paper presents KIT’s submissions to the
IWSLT 2025 low-resource track. We develop
both cascaded systems, consisting of Auto-
matic Speech Recognition (ASR) and Machine
Translation (MT) models, and end-to-end (E2E)
Speech Translation (ST) systems for three lan-
guage pairs: Bemba, North Levantine Ara-
bic, and Tunisian Arabic into English. Build-
ing upon pre-trained models, we fine-tune our
systems with different strategies to utilize re-
sources efficiently. This study further explores
system enhancement with synthetic data and
model regularization. Specifically, we investi-
gate MT-augmented ST by generating transla-
tions from ASR data using MT models. For
North Levantine, which lacks parallel ST train-
ing data, a system trained solely on synthetic
data slightly surpasses the cascaded system
trained on real data. We also explore augmenta-
tion using text-to-speech models by generating
synthetic speech from MT data, demonstrat-
ing the benefits of synthetic data in improv-
ing both ASR and ST performance for Bemba.
Additionally, we apply intra-distillation to en-
hance model performance. Our experiments
show that this approach consistently improves
results across ASR, MT, and ST tasks, as well
as across different pre-trained models. Finally,
we apply Minimum Bayes Risk decoding to
combine the cascaded and end-to-end systems,
achieving an improvement of approximately
1.5 BLEU points.

1 Introduction

In this paper, we present our submissions to the
IWSLT 2025 low-resource track. We participate
in three language pairs, translating from Bemba
(ISO: bem), North Levantine Arabic (ISO: apc),
and Tunisian Arabic (ISO: aeb) into English. Our
approach follows the unconstrained track, reflect-
ing practical scenarios by leveraging all available
resources, including multilingual pre-trained mod-
els and external datasets.

Building upon the submissions of last year (Li
et al., 2024), which investigates efficient utiliza-
tion of available resources using multilingual pre-
trained models, this work explores two approaches
to further enhance model performance without in-
volving extra resources: synthetic data augmenta-
tion and model regularization.

One of the main challenges in building speech
translation (ST) systems is the scarcity of end-to-
end (E2E) ST data. Given that Automatic Speech
Recognition (ASR) and Machine Translation (MT)
resources are more accessible, we leverage them
to create synthetic ST data. First, we investigate
the MT-augmented approach, using a trained MT
model to generate target-language translations from
ASR datasets. Additionally, inspired by prior work
(Robinson et al., 2022; Yang et al., 2025; Eskimez
et al., 2024; Tong et al., 2024; Moslem, 2024), we
explore synthetic speech generation. Specifically,
we train Text-To-Speech (TTS) models using ASR
data and use them to generate synthesized speech
from the MT datasets.

We also explore model regularization to enhance
model performance. Previous research shows ST
systems for low-resource languages benefit from
model regularization during training because of the
imbalanced parameter usage (Romney Robinson
et al., 2024; Jiawei et al., 2024). However, these
works are limited to MT models in the cascaded
system. Since model regularization is a generic
approach, this work investigates its effectiveness
with both ASR, MT, and ST tasks.

With experimental results across different lan-
guage pairs, we conclude the findings as follows:

• Synthetic data is promising for improving
model performance, provided that the gener-
ated data is of reasonable quality.

• Model regularization is a general approach for
enhancing performance, and we demonstrate
its effectiveness across different tasks and pre-
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trained models.
• The various differences between languages

and corpora lead to divergent findings in
terms of pre-trained model effectiveness and
training strategies, highlighting the need for
language-specific approaches.

2 Task Description

The IWSLT 2025 low-resource track defines two
system categories: constrained, where models are
trained exclusively on datasets provided by the or-
ganizers, and unconstrained, where participants are
free to use any external resources. In this work,
we focus on the unconstrained condition, aiming
to reflect better practical and real-world scenarios,
where leveraging diverse data sources is often es-
sential for building effective translation systems.

2.1 Development Dataset

This work focuses on three language pairs with the
source languages of Bemba, North Levantine, or
Tunisian, and the same target language of English.
The development data used for these tasks is sum-
marized in Table 1. Notably, North Levantine lacks
end-to-end parallel training data, highlighting the
need for additional resources and data augmenta-
tion techniques to build effective translation models
for this language.

Train Valid Test
apc - 1126 975
aeb 202k 3833 4204
bem 82k 2782 2779

Table 1: Statistics on development data. The value
indicates the number of samples, where one sample is
composed of the audio, transcript in the language, and
translation in English.

2.2 Additional Dataset

Under the unconstrained condition, we utilize addi-
tional resources to improve model performance, as
detailed in Table 2. These supplementary datasets
include ASR and MT datasets, but notably no
end-to-end ST dataset due to unavailability. This
highlights the advantages of building cascaded ST
systems, which can effectively leverage separate
ASR and MT components. All additional datasets
are publicly accessible, except SyKIT and MINI,
which are internally developed and originate from
conversational speech data.

Lang. Corpus Type Amount.
apc LDC2005S08 ASR 60h

LDC2006S29 ASR 250h
SyKIT ASR 50h
Tatoeba MT 20
UFAL MT 120k

LDC2012T09 MT 138k
aeb SRL46 ASR 12h

GNOME MT 646
ara SLR148 ASR 111h

MGB ASR 1200h
MINI ASR 10h

CCMatrix MT 5M
NLLB MT 5M

OpenSubtitles MT 3M
bem BembaSpech ASR 24h

NLLB MT 427k

Table 2: Overview of the additional data resources. The
unit in amount is the number of hours or sentences.

3 Approaches

3.1 Synthetic Data Augmentation
Data scarcity remains a key challenge in low-
resource natural language processing tasks, par-
ticularly for end-to-end speech translation (ST). To
address this limitation, this work investigates data
augmentation approaches using synthetic data. We
focus on two augmentation approaches that address
different modalities: the MT-augmented method,
which generates synthetic translations from ASR
data, and the TTS-augmented method, which pro-
duces synthetic speech from MT data. Together,
these methods aim to enhance the quality and ro-
bustness of ST models in low-resource settings.

3.2 Model Regularization
Regularization remains a simple yet powerful way
to boost the generalisation capacity of neural se-
quence models, and has already proved valuable
in machine translation through techniques such as
RDrop and its variants (Wu et al., 2021; Xu et al.,
2022). Motivated by the recent success of intradis-
tillation (ID) in low-resource MT (Romney Robin-
son et al., 2024), we extend ID to all three tasks:
ASR, MT, and ST, based on the public implemen-
tation with the following modification1.

Unlike previous work that directly fine-tunes a
pretrained model with a loss that combines the task

1https://github.com/fe1ixxu/
Intra-Distillation/
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objective and ID, we notice that direct fine-tuning
leads to suboptimal performance in preliminary ex-
periments. We therefore adopt a twostage approach:
(1) vanilla finetuning to adapt the pretrained model
to the downstream task, followed by (2) ID finetun-
ing to regularize the adapted model with its own
intermediate predictions. This simple approach
retains the advantages of taskspecific adaptation
while unlocking the additional robustness that ID
provides.

3.3 System combination

Following the prior work (Li et al., 2024), we com-
bine the cascaded system and the end-to-end sys-
tem with Minimum Bayes Risk (MBR) decoding
to boost model performance (Kumar and Byrne,
2004). Specifically, with 50 hypothesis from the
cascaded system and 50 from the end-to-end sys-
tem as the pseudo-references, we use the official
evaluation metric BLEU as the utility function in
our MBR decoding.

3.4 Arabic Dialects Normalization

This work focuses on ST tasks, where normalizing
intermediate transcripts can streamline the over-
all process. Following the approach proposed by
(Ben Kheder et al., 2024), we implement a dialect-
specific normalization pipeline to ensure consis-
tent pre-processing across diverse transcriptions in
North Levantine and Tunisian dialects. Our normal-
ization process includes compound word splitting,
orthographic normalization of dialectal variations,
and numeral normalization.

4 Experimental Setups and Results

4.1 Preprocessing

Following prior work (Li et al., 2024), we exclude
speech segments exceeding 15 seconds in duration
due to computational limitations. Subsequently,
we apply speech augmentation techniques includ-
ing Gaussian noise injection, time stretching, time
masking, and frequency masking.

4.2 Pre-trained Models

In this work, we explore fine-tuning with the fol-
lowing pre-trained models for different tasks.

SeamlessM4T: SeamlessM4T (Barrault et al.,
2023) is a highly multilingual and multimodal
model that has demonstrated strong performance
in low-resource scenarios across ASR, MT, and

ST tasks. We use the large configuration of ver-
sion 2 for our experiments2. It is important to note
that none of the three source languages used in
our experiments were included in SeamlessM4T’s
pre-training data.

NLLB: NLLB (Costa-Jussà et al., 2022) is a
multilingual machine translation model capable of
directly translating between 200 languages. Its
pre-training data includes a wide range of lan-
guages, particularly many low-resource ones, mak-
ing it well-suited for low-resource translation tasks.
North Levantine and Tunisian are included in its
pre-training, and Bemba is not.

We use the 1.3B parameter version3, freezing
the word embeddings to reduce memory usage.
We also freeze the decoder except for the cross-
attention layers, as suggested in (Cooper Stick-
land et al., 2021). Due to the lack of MT data
for North Levantine, we fine-tune the model jointly
on Tunisian and Modern Standard Arabic, resulting
in many-to-English MT systems.

MMS: MMS is a multilingual speech recogni-
tion model pre-trained on data from over 1,100
languages. Its broad language coverage and use
of self-supervised learning enable effective fine-
tuning for low-resource languages. For our exper-
iments, we add a linear layer on top of the pre-
trained encoder and fine-tune the model using the
CTC loss4. Additionally, we explore enhancements
through shallow fusion with language models using
different tokenization strategies (Li and Niehues,
2025).

XEUS: Similar like MMS, XEUS is a
multilingual encoder-based speech recognition
model(Chen et al., 2024). It is pre-trained on ap-
proximately 1 million hours of unlabeled audio
spanning 4,057 languages. Moreover, it incorpo-
rates dereverberation training, enhancing its robust-
ness to various acoustic conditions. We apply the
same fine-tuning strategy used for MMS to XEUS5.

4.3 Synthetic Data

We explore two TTS systems, each is optimized for
different strengths.

2https://huggingface.co/facebook/
seamless-m4t-v2-large

3https://github.com/facebookresearch/fairseq/
tree/nllb

4https://huggingface.co/facebook/mms-300m
5https://huggingface.co/espnet/xeus
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4.3.1 E2TTS
E2TTS (Eskimez et al., 2024) is a recent non-
autoregressive text-to-speech (TTS) model that
demonstrates strong performance. Unlike previ-
ous non-autoregressive approaches, it upsamples
the text sequence to the spectrogram length by
padding, which eliminates the need for explicit
monotonic alignment search and duration modeling
during training. This simplifies the training process
and makes the model more end-to-end. Besides,
E2TTS utilizes conditional flow matching (Tong
et al., 2024) as its backbone, inheriting its strong
generative capabilities that ensure the naturalness
and high-fidelities of the synthesized audio.

Additionally, its combination of in-context learn-
ing and classifier-free guidance (Ho and Salimans,
2022) enables highly flexible zero-shot synthesis.
This means we can generate audio using a ran-
domly given audio prompt that indicates the target
speakers identity, emotion tone, background noise
profile, etc, and we could also control how much
of these acoustic characteristics from the prompt
would be bypassed to model output. These features
allow us to create more diverse audio samples ideal
for data augmentation.

As for training configurations, we use a check-
point pretrained on English as a startup. We follow
training hyperparameters from the original paper
with modified vocabulary size tailored to our target
languages and datasets. Additionally, we use Vocos
(Siuzdak, 2024) vocoder to synthesize waveforms
from log mel-filterbank features.

Following model training, we synthesize audio
samples for data augmentation by running infer-
ence on source transcripts. For each generation, we
condition the model using a randomly selected text-
audio pair from the training dataset as a prompt,
employing classifier-free guidance α = 2.0 to
strengthen prompt adherence. This ensures that the
speaker distribution in the generated data matches
that of the original dataset. Additionally, we con-
figure the numerical approximation steps to 32 to
ensure high-quality waveform generation.

4.3.2 VITS
VITS (Kim et al., 2021) is a conditional variational
autoencoder architecture enhanced with normal-
izing flows. It comprises three primary compo-
nents: a posterior encoder, a prior encoder, and
a waveform generator. These modules respec-
tively model the distributions qφ(z|x), pθ(z|c), and
pψ(y|z). Specifically, qφ(z|x) represents the pos-

terior distribution, and pψ(y|z) corresponds to the
data distribution, with parameters learned by the
posterior encoder φ and the HiFi-GAN waveform
generator ψ (Kong et al., 2020). Here, x denotes
the speech input, z is the latent variable, and y
is the resulting waveform. The prior distribution
pθ(z|c), parameterized by the prior encoder θ, is
further refined using a normalizing flow f , where
the latent variables are conditioned on the text input
c.

During training, the model is optimized to maxi-
mize the conditional likelihood p(x|c) by maximiz-
ing its evidence lower bound (ELBO):

log p(x|c) ≥ Eqφ(z|x)[log pψ(x|z)]
−DKL(qφ(z|x)‖pθ(z|c))

(1)

We train the model from scratch and fine-tune
it for 1,000,000 steps using a setup similar to that
in the original VITS paper. After training, we syn-
thesize audio samples for data augmentation by
performing inference on the source transcripts. For
each synthesized audio, a random speaker is se-
lected from the training set, which includes approx-
imately 75 speakers, to produce diverse speaker-
conditioned outputs.

4.4 Evaluation Metrics

Following the evaluation instruction of IWSLT
2025 low-resource track, both prediction and ref-
erence are lowercased and punctuation removed6.
We use Character Error Rate (CER) and Word Error
Rate (WER) as ASR evaluation metrics. For trans-
lation tasks, we use evaluation metrics of Bilingual
Evaluation Understudy (BLEU) and Character n-
gram F-score (chrF).

4.5 ASR Systems

Due to limitations in time and computational re-
sources, we primarily experiment with ASR sys-
tems for Bemba. The corresponding results, iden-
tified by IDs starting with ’A’ in Table 3, are dis-
cussed below. In experiments A1 and A2 using
MMS, we observe that applying language model
fusion with encoder-based models consistently im-
proves ASR performance, resulting in a reduction
of approximately 4 WER pointsaligning with find-
ings from prior work. Comparing A1 and A3, we
observe that XEUS achieves performance similar

6https://github.com/kevinduh/iwslt22-dialect
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ID Model bem_valid bem_test
A1 MMS 10.8/40.4 10.0/37.3
A2 A1 + LM 9.8/36.6 8.8/34.8
A3 XEUS 10.7/41.0 10.0/39.4
A4 Seamless 10.8/37.1 10.0/36.6
A5 Seamless all 10.0/34.1 9.3/33.1
A6 A5 + ID 9.8/33.1 9.1/31.9
B1 NLLB all 26.0/51.0 28.6/52.4
B2 NLLB 25.6/51.5 28.5/52.6
B3 B1 + ID 27.1/52.0 29.1/52.6
B4 Seamless all 26.6/52.8 26.8/52.3
B5 Seamless 27.9/52.3 27.9/52.6
B6 B5 + ID 28.6/54.7 29.3/54.5
C Best A+B 28.4/53.0 28.9/52.8

D1 Seamless 27.6/51.1 27.7/51.3
D2 D1 + ID 29.5/53.6 29.8/53.1
D3 D1 + TTS 28.0/52.6 28.7/53.0
D4 D3 + ID 29.4/53.6 29.3/53.3
E1 C 29.4/52.0 29.0/51.5
E2 D4 30.0/52.7 29.8/52.3
E3 E1 + E2 31.1/53.4 30.8/52.9
Best ST system 2024 26.3/- 30.4/-

Table 3: Experimental results for Bemba to English. A
indicates ASR systems, B indicates MT systems with
gold transcript, C indicates cascaded systems, D indi-
cates E2E ST systems, and E indicate MBR systems. all
indicates training with all available resources; otherwise,
training is done with only the development resource.
ASR results are reported as CER/WER, while MT and
ST results are presented as BLEU/chrF.

to MMS, despite being pre-trained on more lan-
guages and incorporating dereverberation augmen-
tation. The possible explanations are that the audios
are recorded in controlled conditions with minimal
background noise, and the additional language cov-
erage of XUES pre-training benefits little to Bemba
in terms of speech representation.

Compared to the encoder-only models above,
the encoder-decoder model SeamlessM4T achieves
comparable performance when fine-tuned using
only development resources. We apply several
training strategies to SeamlessM4T: specifically,
we compare using only the development resources
versus all available resources with the pre-trained
model. As seen from A4 to A5, utilizing all re-
sources results in about a 3-point WER improve-
ment. Furthermore, we achieve an additional im-
provement of approximately 1 WER point by ap-
plying ID on top of A5.

For Arabic dialects, we first fine-tune with all re-

sources, including MSA, with SeamlessM4T, then
fine-tune with the datasets of the target language
pairs in the second stage. This benefits in tackling
the limited training resources under the normal-
ization processing, which brings the dialects and
standard similar in terms of learning speech repre-
sentation. As Table 4 shows, the transfer learning
slightly improves model performance. Notably, the
ASR systems for North Levantine have unbalanced
results for validation and test splits, despite the test
split remaining untouched during training. One
hypothesis is a domain mismatch between these
splits. Further investigation is needed to confirm
this hypothesis.

4.6 MT Systems
We experimented with SeamlessM4T and NLLB
models, chosen for their differing language cov-
erage and capabilities. Two fine-tuning strategies
were explored: one using all available resources
followed by transfer to the development set, and
another using only the development set for fine-
tuning.

For Bemba, fine-tuning exclusively on the de-
velopment dataset yielded better performance than
using all resources, as shown in Table 3. The choice
of fine-tuning resources had little effect on NLLB’s
performance. When comparing pre-trained mod-
els, NLLB outperformed SeamlessM4T, under the
condition that Bemba is included in the pretraining
data of either model. Notably, incorporating ID
data improved MT performance for both models
by approximately 1 BLEU point.

For North Levantine and Tunisian, we experi-
ment with NLLB fine-tuning using all Arabic re-
sources, followed by a second-step fine-tuning with
only the available resources for each language pair,
for the same reasons as in Section 4.5. Specifically,
we fine-tune with the UFAL and LDC2012T09
datasets for North Levantine and the development
dataset for Tunisian in the second-step fine-tuning,
based on availability. We observe a significant im-
provement for North Levantine, consistent with
(Ben Kheder et al., 2024), potentially due to the
benefits of domain similarity. In contrast, the per-
formance with second-step fine-tuning slightly de-
clines for Tunisian. This underscores the impor-
tance of language-specific approaches.

We also fine-tune the pre-trained SeamlessM4T
using only the development set and find that its
performance falls noticeably behind that of NLLB,
though the comparison is not entirely fair. Given
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ID Model apc_valid apc_test aeb_valid aeb_test
A1 Seamless all ara 45.1/68.4 12.4/37.5 18.2/36.8 23.2/44.5
A2 A1 + transfer 45.0/66.7 12.0/37.0 18.4/36.9 21.7/41.3
A3 A2 + ID 47.9/70.1 16.1/42.8 19.6/39.4 22.7/43.5
B1 NLLB all 24.9/53.6 20.9/48.8 30.4/52.6 26.8/50.2
B2 B1 + transfer 31.3/57.6 28.0/54.4 30.3/52.2 26.3/49.9
B3 Seamless 21.7/48.2 18.9/45.1 28.4/50.8 25.6/48.9
C Best A+B 19.1/42.1 26.6/53.2 23.4/46.2 20.1/43.8

D1 Seamless 19.9/41.7 27.3/52.4 20.5/43.3 18.0/41.1
D2 Seamless + ID - - 22.9/45.4 19.6/43.8
E1 C 19.0/41.4 26.5/52.6 23.4/46.2 20.2/43.4
E2 Best D 19.7/41.1 27.4/51.9 23.1/45.2 19.9/42.5
E3 E1+E2 21.0/42.5 29.4/53.8 24.6/46.9 21.3/44.4
Best ST system 2024/2023 26.9/51.9 28.7/52.3 24.9/- 22.2/-

Table 4: Experimental results for North Levantine and Tunisian to English. A indicates ASR systems, B indicates
MT systems with gold transcript, C indicates cascaded systems, D indicates E2E ST systems, and E indicate MBR
systems. all indicates training with all available resources; otherwise, training is done with only the development
resource. transfer indicates a second-step fine-tuning. ASR results are reported as CER/WER, while MT and ST
results are presented as BLEU/chrF.

NLLBs pre-training advantage on these languages
and the preliminary results, we did not apply the
same fine-tuning strategy for SeamlessM4T due to
time limitations.

4.7 Synthetic Data Augmentation

As described in Section 2, there is no E2E ST train-
ing data available for North Levantine. To address
this, we explore synthetic data augmentation us-
ing both MT-augmented and TTS-augmented ap-
proaches to create ST training data. In addition, we
also apply the TTS-augmented approach to Bemba
to examine the impact of additional synthetic ST
data.

4.7.1 MT-augmented ST systems
Using the MT system B2 in Table 4, we generated
translations from the ASR dataset LDC2005S08
(listed in Table 2) to create synthetic ST data. After
applying filtering criteria such as the audio-to-text
length ratio, the generation ends with 45K sam-
ples. We then train E2E ST systems with the Seam-
lessM4T model using only the synthetic data for
training and the validation split of the development
set for validation. As shown in Table 5, the perfor-
mance of the ST systems relates to the volume of
data used, highlighting the importance of selecting
an appropriate amount of synthetic data.

Notably, the best-performing ST system trained
on synthetic data surpasses the cascaded system,
which is trained with real ASR and MT data, by

#Synthetic data Valid Test
45K 19.1/41.3 26.2/51.9
23K 19.9/41.7 27.3/52.4
12K 19.7/41.4 27.3/52.4
6K 19.2/41.4 26.6/52.4

Cascaded 19.1/42.1 26.6/53.2

Table 5: MT-augmented ST systems for North Levan-
tine. The results are presented as BLEU/chrF.

approximately 1 BLEU point. This improvement
may be attributed to the robustness of the MT sys-
tem, which generates reasonably accurate synthetic
translations.

4.7.2 TTS-augmented ST systems
For Bemba, we explore the use of ViTTS and
E2TTS to generate synthetic training data. The
TTS models are trained using the training split of
the development dataset. The source text used for
synthesis is derived from NLLB, selected based on
criteria such as appropriate text length, as outlined
in Table 2. Evaluation results for the TTS systems
are provided in Appendix A.

We generate 120K synthetic training samples
for each TTS model. This synthetic data is com-
bined with the original development set for training,
while the validation split remains unchanged. Fol-
lowing the procedure used for other end-to-end
speech translation systems, we fine-tune the pre-
trained SeamlessM4T models. As shown in Table

217



6, the inclusion of synthetic samples yields an im-
provement of up to one BLEU point compared to
training without them. The quantity of synthetic
data appears to affect performance; however, no
consistent trend is observed regarding the optimal
amount.

30K 60K 120K
VITS 28.0/52.6 28.6/52.7 28.3/52.6

E2TTS 28.7/53.0 28.5/52.8 28.3/52.7
No TTS 27.7/51.3

Table 6: TTS-augmented ST systems for Bemba with
scores on the test split. The column name indicates the
number of synthetic data. The results are presented as
BLEU/chrF.

We also explored generating synthetic ST data
for North Levantine, for which no end-to-end ST
data is available. We select the E2TTS model for
this setting, based on its marginally better perfor-
mance observed in the Bemba experiments. The
training data for the TTS model comes from the
ASR dataset LDC2005S08, while the MT dataset
UFAL is used for speech generation. This process
yields 60K ST samples, selected using the same cri-
teria as in the Bemba experiments. Given the lack
of end-to-end ST training data for North Levantine,
we examine training solely with synthetic data, us-
ing real data only for validation. As shown in Table
7, relying exclusively on synthetic data results in
lower performance compared to the cascaded sys-
tem. We attribute this to the under-developed TTS
model, as reflected in its evaluation in Appendix A.

#Synthetic data Valid Test
60K 9.6/29.2 12.9/35.5
30K 9.2/28.6 11.9/34.5
15K 10.8/30.6 13.5/36.8

Cascaded 19.1/42.1 26.6/53.2

Table 7: TTS-augmented ST systems for North Levan-
tine. The results are presented as BLEU/chrF.

4.8 Regularization Enhancement
We conduct experiments with ID across various sys-
tems, spanning different tasks and pre-trained mod-
els, and consistently observe performance gains.
Specifically, ID leads to approximately a 1-point
WER reduction in ASR and around a 1 BLEU point
gain in both MT and ST tasks. However, we note
an exception: ID negatively impacts ASR perfor-
mance for Arabic dialects. Further investigation is

needed to understand the underlying causes of this
issue.

Additionally, we find that regularization en-
hancement and synthetic data augmentation can
be additive. Adapting a model trained on synthetic
data with ID yields further improvements, as illus-
trated by the D4 row in Table 3.

4.9 Cascaded VS E2E Systems
We compare the performance of these two widely
used and distinct ST systems in low-resource sce-
narios, but the results are mixed and show no con-
sistent trend. For Bemba and North Levantine,
end-to-end systems outperform cascaded systems
by approximately 1 BLEU point. In contrast, for
Tunisian, end-to-end systems slightly underper-
form, with a gap of around 0.5 BLEU points. These
varying results underscore the importance of adopt-
ing language- and dataset-specific strategies in low-
resource speech translation.

4.10 MBR Decoding
We apply MBR decoding to the cascaded systems,
the E2E systems, and their combination. As pre-
sented in Tables 3 and 4, MBR decoding consis-
tently yields minimal to no improvement when ap-
plied to individual systems. In contrast, combining
the cascaded and E2E systems with MBR decoding
consistently results in an improvement of approxi-
mately 1.5 BLEU points.

4.11 Submission
The same submission strategy is applied across
all three language pairs. The primary system is
the MBR combination of the cascaded and E2E
systems. The E2E and cascaded systems are the
contrastive 1 and 2 systems, respectively.

Table 8 presents the evaluation results reported
by Abdulmumin et al. (2025). The test data in-
cludes two datasets (test2022 and test2023) for
Tunisian and one dataset each for North Levan-
tine and Bemba. Referring to the previous results,
the performance comparison between cascaded and
E2E systems remains consistent for Bemba, with
the cascaded system outperforming the E2E sys-
tem. In contrast, opposite trends are observed for
the Arabic dialects. This difference underscores
the necessity for language- or corpus-specific anal-
yses. The MBR combination of cascaded and E2E
systems consistently yields performance improve-
ments, highlighting the advantage of integrating
both systems.
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aeb test22 aeb test23 apc bem
ASR 21.0/40.5 23.0/41.8 - 9.2/31.9

ST Primary 22.7/44.4 21.4/42.3 23.3/45.1 30.3/-
ST contrastive1 21.2/43 19.3/40.9 19.1/41.0 29.7/-
ST contrastive2 21.4/43.7 19.2/41.1 21.9/44.7 28.8/-

Table 8: Evaluation results of the submission. The ASR systems are evaluated with CER/WER. The ST systems are
evaluated with BLEU/chrF.

5 Conclusion

We participate in the IWSLT 2025 low-resource
track, focusing on three language pairs with Bemba,
North Levantine, and Tunisian as source languages,
and English as the target language. Our focus is on
improving model performance through synthetic
data augmentation and model regularization. The
results demonstrate that high-quality synthetic data
can significantly enhance performance. In addi-
tion, model regularization proves to be a robust and
broadly effective approach across all ASR, MT, and
ST tasks in low-resource settings. Finally, our find-
ings highlight the importance of language-specific
strategies for building effective speech translation
systems, as reflected in the varying outcomes ob-
served across the three language pairs.
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A TTS evaluation

To evaluate the articulation quality of the trained
TTS models, we used two metrics: MCD7

(Mel-Cepstral Distortion (Kubichek, 1993)) and
WER. We compute MCD by first extracting 26-
dimensional mel-cepstral coefficients from both
synthesized and ground-truth speech samples in
the validation dataset. To address temporal mis-
matches between sequences, we employ dynamic
time warping (DTW) (Salvador and Chan, 2007) to
align the synthesized and reference feature trajec-
tories. The final MCD metric is calculated using
the 1-25th coefficients (excluding the energy term)
across DTW-aligned frames.

7https://github.com/ttslr/python-MCD?tab=
readme-ov-file
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MCD WER
Bemba
VITS same speaker 5.4 51.0
E2TTS same speaker 5.6 40.9
E2TTS cross speaker 7.7 41.9
North Levantine
E2TTS same speaker 4.2 113.3
E2TTS cross speaker 9.0 108.3

Table 9: TTS system evaluation.

Additionally, since MCD is not a speaker-
independent metric like WER, to reduce the in-
fluence of speaker attributes, we conducted as-
sessments in both same-speaker (reconstruction)
and cross-speaker settings. The results in Table
9 show that trained TTS models are able to accu-
rately reconstruct the ground-truth audio. In the
cross-speaker setting, the MCD scores increase as
expected but remain within a reasonable range.

For WER evaluation we use two ASR models
trained without the augmented TTS data. Specif-
ically, we use model A5 from Table 3 for Bemba
and model A2 from Table 4 for North Levantine.
As presented in Table 9, E2TTS achieves reason-
able WER performance for low-resource language
Bemba, especially considering that the ASR sys-
tem reports a WER of 31.9 on real data. In contrast,
the VITS model underperforms relative to E2TTS
in WER evaluations, consistent with the results in
Table 6.

As for low-resource language North Levantine,
the WER scores are considerably high, suggesting
that the E2TTS model remains underdeveloped.
This likely contributes to the poor performance of
ST models trained with TTS-augmented data, as
indicated in Table 7. Further analysis is needed to
better understand this underdeveloped TTS model.
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Abstract
We describe AppTek’s submission to the subti-
tling track of the IWSLT 2025 evaluation. We
enhance our cascaded speech translation ap-
proach by adapting the ASR and the MT mod-
els on in-domain data. All components, includ-
ing intermediate steps such as subtitle source
language template creation and line segmenta-
tion, are optimized to ensure that the resulting
target language subtitles respect the subtitling
constraints not only on the number of charac-
ters per line and the number of lines in each
subtitle block, but also with respect to the de-
sired reading speed. AppTek’s machine trans-
lation with length control plays the key role in
this process, effectively condensing subtitles to
these constraints. Our experiments show that
this condensation results in high-quality trans-
lations that convey the most important informa-
tion, as measured by metrics such as BLEU or
BLEURT, as well as the primary metric subtitle
edit rate (SubER).

1 Introduction

Subtitle translation is a complex task that includes
much more than recognizing what was uttered in
an audio/video recording and translating it into
the target language. Accurate timing of the sub-
titles, segmentation into syntactically and/or se-
mantically coherent units, and comfortable reading
speed are important aspects affecting the viewing
experience, in addition to mere translation quality
(Gerber-Morón et al., 2018; Liao et al., 2021).

In this paper, we describe how AppTek ap-
proaches the task with our in-house automatic
speech recognition (ASR) and neural machine
translation (NMT) systems, which we couple with
our intelligent subtitle line segmentation algo-
rithm (Matusov et al., 2019). In addition to al-
gorithmic and modeling improvements, our uncon-
strained submissions benefit from in-domain data
that was either available to us or was automatically
extracted from public (parallel) data.

The paper is structured as follows. In the fol-
lowing Section, we describe the three main compo-
nents of our subtitle translation approach: speech
recognition in Section 2.1, machine translation
in 2.2 and subtitle segmentation in 2.3. Section 3
gives details of our domain adaptation strategy for
adapting to the entertainment and financial news
domains which includes the usage of domain tags
and fine-tuning on in-domain data. The effective-
ness of domain adaptation is supported with exper-
imental results at the end of the section. Next, we
focus on the newest enhancements of our system
with regard to subtitling constraints - the restric-
tions on the maximum number of characters per
line (CPL), lines per subtitle block (LPB), and the
desired maximum reading speed measured in char-
acters per second (CPS). Section 4 explains in de-
tail our approach of space-constrained MT, which
includes elaborate MT length control combined
with targeted re-translation and line segmentation
optimizations. The trade-off between translation
quality and compliance with the constraints such
as the reading speed is explained at the end of the
section, with experimental results showing how
AppTek’s NMT produces condensed translations
that fulfill subtitling constraints just like subtitles
from a professional subtitle translator, yet without
a significant drop of the core MT quality. Finally,
we summarize our findings in Section 5.

2 Subtitle Translation

We follow a cascaded speech translation approach -
first, the speech signal is automatically transcribed
into an English subtitle file, which is then automati-
cally translated into the target language. Additional
challenges related to subtitles are handled between
these two components and after one or more trans-
lations of an utterance are obtained.
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2.1 Speech Recognition

AppTek’s automatic speech recognition component
is implemented as a hybrid conformer/HMM sys-
tem. The acoustic model is trained on approxi-
mately 30K hours of transcribed, mixed-bandwidth
English speech data including broadcast news, tele-
phony, and publicly available open-source datasets.
The training corpus includes a broad distribution of
English dialects and accents. The acoustic model
operates on 80-dimensional log Mel filterbank fea-
tures and estimates posterior probabilities over
9K tied triphone states. The model architecture
is based on a deep Conformer network using ap-
proximately 1 billion parameters. This conformer
model was trained for 20 epochs using an OCLR-
inspired learning rate schedule (Smith and Topin,
2018). Frame-level alignments and state tying were
obtained from our previous best conformer-based
acoustic model with 350M parameters. This model
serves as the general-purpose English ASR system.

For adaptation to the entertainment domain, the
general-purpose English ASR model is fine-tuned
for approximately 1.5 epochs on 100K hours of
in-domain audio, supplemented with 40 hours of
music-only data. In both general and domain-
specific systems, the language model (LM) is based
on the LSTM architecture with over 300M param-
eters, combined with a count-based n-gram LM
used for look-ahead pruning within the hybrid ASR
framework. The vocabulary used across both LMs
consists of approximately 250K words.

Punctuation marks and word casing are predicted
on the raw ASR output with a separate LSTM se-
quence labeling model. The predicted sentence-
final punctuation (period, question mark, exclama-
tion mark) is then used to define sentence-like units
for translation.

Optionally, we also apply inverse text normal-
ization (ITN) to convert spoken numbers, dates,
monetary amounts, and other entities involving
numbers to their well-formatted text form that
uses digits. This is done with an attention-based
RNN sequence-to-sequence model trained to re-
cover the original English written text from a syn-
thetic spoken form, which we create by applying
hand-crafted text normalization rules. For the sub-
mission, we make use of this ITN system for the
Asharq-Bloomberg task, as the number of numeric
entities in financial news is high and it is beneficial
to have them correctly represented already in the
source language. For ITV, we skip this step and

instead rely on the MT system’s ability to do the
conversion to written form as part of the translation
process (see Section 2.2).

2.2 Text Translation
AppTek’s NMT system is a variant of the Trans-
former Big architecture (Vaswani et al., 2017) that
uses a factored embedding representation on the
source and target side for encoding word case,
subword segmentation and glossary transfer infor-
mation (Wilken and Matusov, 2019; Dinu et al.,
2019). The system is trained to support additional
input signals, represented with special tokens on
the source or target side (Ha et al., 2016).

Part of the training data for which document
labels are available is processed to include the con-
text of the previous sentence with a separator, fol-
lowing the approach of Tiedemann and Scherrer
(2017), with the difference that also sentences with-
out context are used in training, so that the ability
to benefit from the extra context can be turned on
or off during inference.

As mentioned in the previous section, the MT
system supports “spoken” input, i.e. without punc-
tuation and casing, and with numbers and other
numeric entities represented with words. For this,
a part of the MT parallel training data is duplicated,
and then the source language side of the copy is
processed using our rule-based text normalization
to create this spoken form.

Our MT systems support genre tags for approx-
imately 20 genres, including a genre “news” for
news-like content and “dialogs” for movie-like dia-
log or subtitle content. We use tags for these two
genres in the experiments below. The training data
is partitioned into genres using a sentence-level
classifier trained on monolingual English training
data, for which genre information is known.

All AppTek’s MT systems support a length
control mechanism which we applied in previous
IWSLT submissions (Bahar et al., 2023). It is based
on prefix tokens added to the target-side training
data which represent length classes according to the
target-to-source character count ratio. The bound-
aries of the length classes are chosen so that an
equal number of training examples falls into each
class (most extreme classes are chosen to be half
the size). We use five length bins for the English to
German and seven for the English to Arabic system.
For training data that originates from subtitles in
particular, our assumption is that it naturally con-
sists of a mix of verbatim as well as differently
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condensed translation examples, and via the length
token one can select between these condensation
levels at inference time.

For certain language pairs, AppTek’s MT
systems also support style and speaker gender
tags (Matusov et al., 2020). For English-to-
German, the style tag controls the formality level
of the output. The default tag value is “undefined”
- this means that the system decides what formality
level to use (e.g. formal second-person German pro-
noun “Sie” or informal “du”) based solely on the
context of the sentence. When the formality con-
trol is set, the system chooses the desired formality
level. In the experiments below, we set the for-
mality level to “formal” for the Asharq-Bloomberg
financial news translation, where a formal transla-
tion style is expected.

It is worth mentioning that all of the above con-
trols are implemented in AppTek’s MT API as
parameters1 which a user can set based on prior
knowledge or information derived from the up-
stream components (such as speaker gender).

2.3 Subtitle Segmentation
To combine ASR, MT and additional components
into a subtitling pipeline, we follow the source tem-
plate approach described in a previous edition’s
submission (Bahar et al., 2023). It consists of two
steps: creation of captions in the original language
of the video (here, English) and translation of these
captions while keeping the subtitle blocks includ-
ing their timings fixed. In both steps, a neural
segmentation model is used to place line and block
boundaries at semantically meaningful positions
in the text, while additional hard constraints make
sure the predicted segmentation adheres to the sub-
titling constraints (42 characters per line, 2 lines
per block; while creating source language blocks
also minimum and maximum block duration of
0.83 and 7 seconds, respectively). Automatically
predicted punctuation and pauses of 3 seconds or
longer are used to separate sentences, which are
processed independently by the line segmentation
algorithm (Matusov et al., 2019). Block timings
are created from ASR word timings of the first and
last word in a block - these are extremely accurate
in a hybrid ASR system. For translation, the sen-
tences as defined above - which may span several
subtitle blocks - are sent to the MT component and
are re-inserted into the source template using an

1https://docs.apptek.com/reference/
machine-translation

additional hard constraint that enforces translations
to be segmented into the existing blocks in terms
of number and approximate relative sizes. More
details on the subtitling pipeline can be found in
Bahar et al. (2023).

In this year’s submission we improve this sub-
titling pipeline in particular by focusing on read-
ing speed compliance. This is achieved by tightly
integrating MT length control with the space con-
straints of subtitling. The method will be described
in Section 4.1.

3 Domain Adaptation

In the following we describe how we adapt our
system to the specific domains of the subtitling
tasks of this year.

3.1 Domain and Style Tags

As described in Section 2.2, AppTek’s MT system
supports domain and style control at inference time.
This allows it to adapt to a specific domain without
retraining the model.

For the ITV data we set the domain tag ‘dialogs’,
but enforce no style control as it varies throughout
each movie. For Bloomberg, we set the domain to
‘news’ and the style to ‘formal’.

3.2 Fine-tuning with Parallel Data

While domain and style parameters optimize the
controllability of a single model, stronger domain
adaptation can be achieved by creating specialized
models via fine-tuning on in-domain data.

For the ITV domain, we fine-tune both the ASR
and the MT systems on movie subtitling data pro-
vided by one of AppTek’s major media and enter-
tainment customers. The ASR system adapted for
the task is described in Section 2.1. To adapt the
MT system, we extract sentences from English and
German subtitles and obtain their sentence align-
ment using Vecalign (Thompson and Koehn, 2019).
After filtering, a total of 12.6M sentence pairs with
130M running words on the English side is ob-
tained. Using this parallel corpus, we fine-tune our
general domain English-to-German MT system for
approximately one epoch with a reduced learning
rate.

For Bloomberg, we only adapt the MT sys-
tem. In case of the Bloomberg English-to-Arabic
task, we have access to a parallel corpus provided
by Asharq Business with Bloomberg as part of
AppTek’s partnership with this company. It con-
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tains human-curated English captions and their hu-
man translations into Arabic, with a total of 240K
sentence pairs with 7.3M running words counted
on the English side. The source of the data are
Bloomberg news programs similar to the ones used
as development and test data at the IWSLT evalua-
tion. We made sure that only historical data exclud-
ing the IWSLT dev/test data was used for training.
The segmentation of this in-domain training data
is mostly based on speaker turns and pauses and in
most cases includes full sentences or speaker turns,
so that an additional sentence alignment step is
not necessary. Fine-tuning of our general-domain
English-to-Arabic MT model is then performed for
approximately one epoch.

3.3 Data Filtering Based on Development Set
For some domains and languages, it is challenging
to find parallel in-domain datasets. This is, for ex-
ample, the case for translating Bloomberg content
into German. We use a simple filtering approach
to collect parallel sentences that are similar to spe-
cific seed data, here, the German references of the
Bloomberg development set.

Our filtering approach maps the sentences of the
development set and the target-side of the general-
domain parallel data into a shared embedding space.
Sentence embeddings are obtained by averaging
GloVe embeddings (Pennington et al., 2014) of
each word in the sentence, as described in Arora
et al. (2017). We embed the entire seed data into
a single vector vseed by averaging the embeddings
of its target sentences. To filter a given corpus C
down to size n, we choose the n sentences e ∈ C
with the highest dot product v(e)T vseed against the
sentence embedding v(e).

In our submission, we create German Bloomberg
adaptation data from these corpora: a) ECB, Eu-
roparl, JRC-Acquis, NewsCommentary and DGT
corpora from OPUS (Tiedemann, 2009) which all
are closely related to the financial news domain,
b) CCMatrix (Schwenk et al., 2021) as a large
crawled corpus, as well as c) OpenSubtitles (Lison
and Tiedemann, 2016) and TED2020 from OPUS
to better match the translation style to the subtitling
domain. We use pre-trained German word embed-
dings provided by Ferreira et al. (2016) to calculate
the sentence embeddings. From each corpus, we
select n = 30K sentences using the method above,
ending up with a total of 157K deduplicated sen-
tence pairs for fine-tuning.

The data obtained from our filtering is sentence-

ASR MT SUBER BLEU
ITV German

General General 73.4 18.8
General + domain tag 72.5 19.3
General Fine-tuning 69.6 20.8
Adapted General 71.4 19.5
Adapted + domain tag 71.3 20.1
Adapted Fine-tuning 67.2 21.7

Table 1: Domain-adaptation of ASR and MT models
on the ITV task, metrics measured on the 2025 devel-
opment set. No subtitle condensation is applied (Sec-
tion 4).

MT System SUBER BLEU
Bloomberg German

General 61.8 26.6
+ domain & formality tag 61.4 26.6

Finetuned (filter via dev set) 59.6 27.1
Bloomberg Arabic

General 62.5 20.6
+ domain tag 61.8 20.9

Finetuned (in-domain data) 61.3 21.3

Table 2: Domain-adaptation for the German and Arabic
Bloomberg tasks, on the 2025 development set. No
subtitle condensation is applied (Section 4).

level. During fine-tuning, we mix it with TED 2020
samples with document-level context in a 1:1 ratio
and otherwise follow the same recipe as described
above for fine-tuning on parallel data.

3.4 Results

The results for adapting the ASR and MT models
for the ITV German task are shown in Table 1. For
Bloomberg, we only adapt the MT model and show
the results in Table 2.

We report case- and punctuation-sensitive subti-
tle edit rate SubER (Wilken et al., 2022) and BLEU
(Papineni et al., 2002; Post, 2018) scores. Both are
calculated with the SubER tool2 using the final MT
hypothesis in subtitle format. For BLEU calcula-
tion, the reference subtitles are converted into plain
text sentences based on sentence final-punctuation.
The hypothesis is aligned to the reference with an
edit distance based algorithm, similar to the one
implemented in mwerSegmenter (Matusov et al.,
2005).

Comparing the upper and lower half of Table 1,
one can see a clear positive effect of ASR domain

2 https://github.com/apptek/SubER
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1035

01:46:17,100 --> 01:46:19,767

As president, I will be laser focused

1036

01:46:19,850 --> 01:46:23,647

on creating opportunities

for the middle class

1037

01:46:23,730 --> 01:46:28,540

that advance their economic security,

stability and dignity.

Source sentence (available lines indicated): Available space for MT (character counts):

2.667s * 21 chars/s = 56 chars

3.797s * 21 chars/s = 79 chars

⬅ reading speed limit (42+14=56)

4.810s * 21 chars/s = 101 chars

Figure 1: Calculation of MT space constraint. Translation of a sentence from the source subtitle template (left)
has to fit into the same blocks it is extracted from. Blocks are limited to 2 lines of 42 characters. In addition, the
reading speed limit defines a maximum character count per block (block duration multiplied by CPS value) to
which we truncate the available lines. The list of character counts (here: 42,14,42,37,42,42) is passed to the MT
component to request a translation that fits into this space. Notes: source blocks with only one line allow for an
additional line to be added during translation; last block in the example has long enough duration so that reading
speed limit is fulfilled as a consequence of line and character limit; the calculated space does not limit the length
of individual lines in the final subtitle file, e.g. the second line can be longer than 14 characters if the first line is
shortened accordingly.

adaptation on the end-to-end ITV task performance.
Presumably, improved robustness to difficult audio
conditions such as background sounds and music,
as well as adaptation to a wide range of forms of
speech (mumbling, shouting, laughter, etc.) are
some of the key factors. We refrain from calculat-
ing word error rates (WER) using the English de-
velopment set subtitles as reference, as they are not
exact verbatim transcriptions. However, for a man-
ually annotated in-house test set of similar enter-
tainment content, we measure a WER improvement
from 13.1% to 12.0% as the result of fine-tuning.

Regarding machine translation, both adaptation
methods – setting domain tags and fine-tuning –
improve SubER and BLEU over the unadapted
system; yet fine-tuning is consistently more effec-
tive. The biggest gains are observed on the ITV
task, where the fine-tuning corpus is the largest and
already in subtitle form. In particular, the MT sys-
tem learns to produce shorter translations that bet-
ter match the space constraints of subtitling, even
without the explicit length control that will be intro-
duced in the next section. On the Bloomberg task,
fine-tuning is less effective. For English-to-Arabic,
this may be partially explained by the fact that a
portion of the fine-tuning data was already included
in the training data of the general domain MT sys-
tem. When comparing the effect of fine-tuning for
English-to-German vs. English-to-Arabic, the auto-
matically constructed English-German in-domain
data set seems to achieve a similar positive effect to

the real in-domain customer data used for Arabic
as the target language.

While combining fine-tuning with the domain
and formality tags is possible, we do not observe
any significant improvements over the fine-tuned
system, as it already learned domain and formality
from the training data.

4 Subtitle Condensation

Subtitles do not only need to provide accurate trans-
lations, they also need to follow readability con-
straints to not hinder an immersive viewing ex-
perience. In last year’s edition of the subtitling
track, only one out of eight submitted systems for
the English-to-German task achieved a compliance
with the desired maximum reading speed of 21
characters per second (CPS) for more than 80% of
the subtitles. We therefore focus on the reading
speed constraint this year while at the same time
aim to keep translation quality at a high level.

4.1 Space-constrained MT

We have made use of MT length control, as de-
scribed in Section 2.2, for automatic subtitling in
past IWSLT editions (Bahar et al., 2023; Ahmad
et al., 2024; Wilken and Matusov, 2022). Here,
we improve our approach by making the length
constraints more exact and by basing them on the
reading speed limit, not only the line limit. To do
this, we make the following changes to the subtitle
translation pipeline described in Section 2.3:
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1. When extracting sentences from the source
subtitle template, we calculate the available space
the translation has to fit into, see Figure 1. Because
line breaks cannot occur at arbitrary character posi-
tions, only at word boundaries, calculating a single
character count value as the length limit for the
translation would be imprecise. This problem is il-
lustrated in Figure 2. Instead, we express the space
constraint in terms of a list of character count val-
ues per line. Usually we have 2 lines of 42 charac-
ters available for each block, but this gets truncated
by the character limit per individual block, which
is block duration multiplied by the reading speed
limit.

2. We implement an iterative process in the MT
component. In the first iteration, translation is done
without a length constraint by letting the model
predict the length token itself. In the second itera-
tion, the optimal length token is guessed based on
the length ratio between total available space and
the source character count and is then forced in the
first decoding step. In each subsequent iteration the
next shorter length class is selected. This process
stops as soon as all words of the translation can
be put into the space calculated in step 1 without
overflow, or if the shortest length class is reached.3

3. Additional logic is added to the line segmen-
tation algorithm (Section 2.3) to guarantee that a
translation which can fulfill all space constraints
indeed does fulfill all constraints after segmenta-
tion. This involves look-ahead pruning of partial
hypotheses for which the remaining words do not
fit into the remaining available blocks/lines.

4. Before translation, we decrease the source-
side reading speed by shifting block end times be-
yond the duration of the actual speech onto the start
of the next block or until a targeted CPS value is
met. This way, space constraints for MT are re-
laxed and more content can be preserved, leading
to improved translation quality scores. Here, we
even use a CPS value of 17 instead of 21 to increase
the effect. We repeat this block duration extension
after translation (using 21 CPS). However, there it
affects less than 1% of the blocks.

4.2 Results

To put the following evaluation of subtitle conden-
sation into context, we first analyze how well the

3 This iterative approach is an efficient alternative to the
“Length ROVER” (Wilken and Matusov, 2022) with similar
output but a significantly reduced number of translation passes,
therefore suitable for commercial application.

Task Ref. Compliance [%]
LPB CPL CPS

ITV German 100.0 100.0 88.6
Bloomberg German 100.0 100.0 78.4
Bloomberg Arabic 99.9 100.0 97.4

Table 3: Fraction of subtitles in the 2025 develop-
ment set reference compliant with the 2 lines-per-block
(LPB), 42 characters-per-line (CPL) and 21 characters-
per-second (CPS) limits.

human-created reference subtitles adhere to the
subtitling constraints. Table 3 shows that while the
lines-per-block and characters-per-line limits are
strictly followed, the reading speed limit is not. In
fact, in practice it is often viewed as a soft limit
that is expected to be met only for the majority of
subtitles of a given film/show, but not necessarily
for all of them. In addition, it can be seen that
the reading speed limit is violated more often for
German. German sentences are longer on average
than their English equivalents, making it harder to
fulfill a certain character limit.

To show the effect of subtitle condensation, in
Figure 3 we plot the translation quality as measured
in BLEU against CPS compliance (always based
on 21 characters per second) while using different
CPS values to constrain the translation lengths. We
see a trade-off between the two, which is expected
as more content can be preserved in longer trans-
lations, leading to more n-gram matches with the
reference. Especially if the CPS compliance sur-
passes the one of the human reference we see a
clear drop in BLEU score.

Even when calculating length constraints using
the targeted value of 21 characters per second, the
compliancy does not reach 100%. Manual inspec-
tion reveals that the remaining violations are indeed
cases where the speaking rate is so high that even
the shortest MT length class does not lead to a
compliant translation. This in particular happens
for very short sentences containing no superflu-
ous words. Notably, already the generated English
source templates, which – apart from some ASR
errors – contain verbatim transcripts, have a CPS
compliancy of only around 80%, indicating that
there are many fast-paced dialogues in the develop-
ment set videos which would require heavy conden-
sation. For extreme cases, we see a limitation of
our approach of sentence-by-sentence translation,
because whole sentences might have to be left out
in the subtitles to keep up with the video, or mul-
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Warum zeigst du ihm nicht das Anstecksträußchen, das ich dir gekauft habe?

Warum zeigst du ihm nicht das Anstecksträußchen,

das ich dir gekauft habe?

Warum zeigst du ihm nicht das

Anstecksträußchen, das ich dir gekauft habe?

MT output (74 characters):

Available space (84 characters in total):

74 < 84, but no valid segmentation:

Figure 2: Example illustrating that a simple translation length limit in terms of total character count is too imprecise
for subtitle template translation. Assuming a given source sentence is contained within a single block, it is not
enough to limit translation length to 84 characters, which one would naively derive from a block size of 2 lines with
42 characters. In fact, as shown, even a translation of 74 characters – depending on the specific word lengths – may
not fit into one block as line breaks may only occur at word boundaries4. This is the reason we compute an exact
line-wise space constraint according to Figure 1 and use it as compliancy check while selecting MT length variants.
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Figure 3: Different subtitle condensation levels on the
English-to-German ITV development set: we start by
condensing translations to fit into 2 lines per block (lpb),
and then introduce different reading speed values (cps)
as additional constraint. The more constrained settings
lead to worse translation quality (BLEU), but better 21-
characters-per-second compliance (CPS). The reference
set has a compliance of 88.6 % (dotted vertical line).

tiple sentences would have to be condensed into a
single one.

We determine which condensation setting to
use for each task by re-translating with increas-
ingly strict length control when necessary (see Sec-
tion 4.1): we always try to condense subtitles to fit
into two lines (LPB compliance), and then compare
condensation with different target reading speeds
(CPS). The MT reading speed limit is then chosen
so that the subtitles have a reasonably high CPS
compliance, while the translation quality does not
deteriorate too much. For the ITV task, we set the
condensation parameter to 23 CPS, while for both
Bloomberg tasks we set 21 CPS. These settings are

also optimal in terms of SubER.
Table 4 shows the main results of the subtitle

condensation for all three tasks. We report SubER
and BLEU as described previously in Section 3.4.
In addition to the BLEU score, we also compute
the neural metric BLEURT (Sellam et al., 2020)
on the MT plain text hypotheses aligned to plain
text reference translations by the SubER tool. The
compliance metrics are calculated with the script
provided by Papi et al. (2023).

Subtitle condensation leads to more compliant
and thus overall shorter subtitles for all three tasks.
In fact, the subtitles generated by our systems are
more CPS compliant than the human-created refer-
ence translations of the development set (Table 3).
Our implementation further guarantees a CPL com-
pliance of 100%, as we chose to violate the LPB
limit instead by adding additional lines in cases
where the translation does not fit into the available
space.

Although condensation does have a negative im-
pact on the translation quality when measured in
BLEU or BLEURT, it does lead to an improvement
in SubER. One reason for this is that SubER does
not penalize word omissions as harshly. In case of
BLEU, short hypotheses are explicitly penalized
with the brevity penalty (all three of the condensed
systems have a hypothesis/reference length ratio of
less than 1).

The IWSLT findings report (Abdulmumin et al.,
2025) verifies that our system also produced highly
space compliant subtitles on the evaluation data:
We achieve 100.0% CPL and more than 99% LPB
compliancy on all three tasks, and have 93.8%,
92.4% and 99.8% LPB compliancy on the ITV,

4 Hyphenation to split words across lines is not common
in subtitling.
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Task Condense SUBER (↓) BLEU (↑) BLEURT (↑) Compliance [%] (↑)
LPB CPL CPS

ITV German
✗ 67.2 21.7 0.454 98.0 100.0 80.8
✓ 64.9 20.6 0.448 100.0 100.0 93.0

Bloomberg German
✗ 59.6 27.1 0.548 95.3 100.0 76.9
✓ 59.2 25.6 0.536 99.3 100.0 92.1

Bloomberg Arabic
✗ 61.3 21.3 0.568 99.6 100.0 96.4
✓ 61.2 20.8 0.563 100.0 100.0 99.8

Table 4: Subtitle condensation results on all three IWSLT tasks, reported on the 2025 development set. All models
are domain-adapted (via fine-tuning). The three models with condensation enabled correspond to our submitted
primary systems.

Bloomberg German and Arabic test sets respec-
tively, while maintaining high translation quality.

Looking back to the IWSLT 2023, we report a
significant improvement over the last two years.
While we obtained the best automated SubER
scores on the ITV test set among all submissions
(Agarwal et al., 2023), the 2023 system’s SubER
score on the development set (the same one used in
this year’s evaluation) was 71.4 (Bahar et al., 2023).
In comparison, our system from this year scores an
substantial 6.5 points better in this metric.

5 Conclusions

This paper presented AppTek’s submission for the
unconstrained subtitling track of the IWSLT 2025.
Our focus this year was to a) boost translation qual-
ity by domain- and style-specific adaptation, and b)
deliver readable subtitles that adhere to given space
and reading-speed constraints.

Our key findings are as follows:

• Domain and style adaptation matter. Fine-
tuning the system on in-domain data yields a
large quality gain as measured in BLEU and
BLEURT. The simpler, tag-based adaption ap-
proach does not require additional training but
is less effective.

• Length-aware condensation works. The pro-
posed condensation algorithm generates subti-
tles with characters-per-line (CPL), lines-per-
block (LPB) and character-per-second (CPS)
compliance scores similar to or better than
human references, while only marginally de-
creasing BLEU and BLEURT scores. The
trade-off between space and reading speed
constraints and the general translation quality
can further be controlled gradually.

Together, these methods result a substantial boost
in SubER – the track’s primary evaluation metric.
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Abstract

The scope of the International Workshop on
Spoken Language Translation (IWSLT) has re-
cently broadened beyond traditional Speech
Translation (ST) to encompass a wider array
of tasks, including Speech Question Answer-
ing and Summarization. This shift is partly
driven by the growing capabilities of modern
systems, particularly with the success of Large
Language Models (LLMs). In this paper, we
present the Karlsruhe Institute of Technology’s
submissions for the Offline ST and Instruc-
tion Following (IF) tracks, where we leverage
LLMs to enhance performance across all tasks.
For the Offline ST track, we propose a pipeline
that employs multiple automatic speech recog-
nition systems, whose outputs are fused using
an LLM with document-level context. This
is followed by a two-step translation process,
incorporating additional refinement step to im-
prove translation quality. For the IF track, we
develop an end-to-end model that integrates
a speech encoder with an LLM to perform a
wide range of instruction-following tasks. We
complement it with a final document-level re-
finement stage to further enhance output quality
by using contextual information.

1 Introduction

This paper provides an overview of the systems
submitted by the Karlsruhe Institute of Technol-
ogy (KIT) to the Offline Speech Translation (ST)
and the Constraint Long Instruction-Following (IF)
tasks of IWSLT 2025. For the Offline track, we
participate in the unconstrained setting for the En-
glish→German language pair. For the IF task, we
participate in the constrained-long track, aiming
to perform Automatic Speech Recognition (ASR),
Speech Translation (ST), Spoken Question Answer-
ing (SQA), and Speech Summarization (SSUM)
across various languages.

* Equal Contribution
␅ Offline, ␃ Instruction-Following

A growing research trend in the field is the ap-
plication of Large Language Models (LLMs) to
speech processing tasks (Tang et al., 2023; Züfle
and Niehues, 2024; Chu et al., 2024b; Abouelenin
et al., 2025, among others), leveraging their strong
general knowledge and natural language under-
standing capabilities. These strengths make LLMs
particularly relevant to both the Offline ST and IF
tracks. Accordingly, in our submissions, we ex-
plore strategies for effectively integrating LLMs
into speech processing pipelines.

There are multiple approaches to leveraging
LLMs in speech systems. One strategy involves
incorporating LLMs as an additional step within a
cascaded architecture (Koneru et al., 2024a), where
they can perform task-specific refinement. This
modular approach allows each component to be
trained independently, benefiting from specialized
data. Alternatively, LLMs can be integrated in
an end-to-end fashion (Tang et al., 2023; Züfle and
Niehues, 2024; Chu et al., 2024b; Abouelenin et al.,
2025), allowing for better information flow and po-
tentially improving generalization to unseen tasks.

Although both the Offline and IF tasks fall un-
der the umbrella of speech processing, they differ
significantly in nature. In the offline setting, speed
and adaptability to unseen tasks are not primary
concerns. In contrast, the IF task demands flexibil-
ity and generalization, as the system must handle a
variety of instructions. This has an impact on the
architectures we choose for the different tracks.

For the Offline track, we utilize LLMs special-
ized on a specific task as refinement modules within
a cascaded architecture. This is common practice;
all systems submitted to IWSLT 2024 for this track
employed a cascaded architecture (Ahmad et al.,
2024), underlining its practical advantages in train-
ing the system due to availability in data, e.g for
low-resource languages (Liu et al., 2023), and sim-
plicity by decomposing into smaller tasks.

For the IF track, training a dedicated cascaded
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Figure 1: For the Instruction-Following track, we train an end-to-end SpeechLLM, while the Offline track relies
on an ensemble of existing models. To enhance the outputs from both tracks, we apply a post-editing model that
provides two main benefits: correcting scientific terminology and recovering context that may be lost due to the
segmentation of long audio sequences.

system for each task is not an efficient solution,
moreover, the goal of this track is to build a
model that can follow different instructions. Con-
sequently, we adopt an end-to-end approach us-
ing a Speech Large Language Model (Speech-
LLM). Nevertheless, for tasks such as ASR, ST,
and SSUM, we also include an additional refine-
ment step to enhance fluency and contextual con-
sistency in the output.

An overview of both systems exploiting LLMs
internally or via post-editing for refinement, can
be found in Fig. 1. We describe the details of each
system in the following sections. First, we present
the Offline ST track system in Section 2. Then, we
discuss the IF track system in Section 3.

2 Offline Track

The goal of the Offline ST track is to generate high-
quality translations across diverse domains without
latency constraints. Recent work has highlighted
the potential of LLMs for this task (Ahmad et al.,
2024; Koneru et al., 2024a). Building on these in-
sights, we integrate LLMs at multiple stages of our
speech translation pipeline. Below, we present a
high-level overview, with each component detailed
in the following sections.

We begin with long-form audio inputs, which
may span several minutes to hours. Due to memory
limitations and the lack of training data for such
durations, our ASR and MT systems cannot handle
these directly. Thus, we first segment the audio into
manageable chunks using a Voice Activity Detec-
tion (VAD)-based method, which is effective even
in noisy conditions.

The segmented audio is then transcribed into En-

glish using ASR. Rather than relying on a single
model, we adopt a fusion strategy, combining out-
puts from multiple ASR systems—including both
pre-trained models and a fine-tuned variant. This
approach, akin to model ensembling, leverages the
complementary strengths of different systems to
reduce errors.

We fuse the ASR outputs using an LLM, which
processes the combined hypotheses at the docu-
ment level. This allows for the incorporation of
broader context, resulting in more coherent and
accurate transcriptions.

The English text is then segmented into sen-
tences using the nltk tokenizer and translated into
German. For this, we fine-tune a translation LLM
on high-quality parallel data. To ensure quality, we
use a quality estimation model to filter out noisy
sentence pairs, keeping only high-confidence ex-
amples.

Finally, both the source transcript and the
machine-translated output are passed to an Au-
tomatic Post-Editing (APE) model. This model
refines the translations, producing polished final
outputs.

2.1 Segmentation

The segmentation module breaks long-form audio
into manageable segments for the ASR pipeline.
We explored two strategies: fixed-window chunk-
ing and content-aware segmentation.

Fixed-window chunking applies a uniform slid-
ing window and relies on transcript overlap to stitch
adjacent chunks. While effective on clean audio, it
often fails in noisy settings like the ITV or EPTV
datasets, leading to fragmented or duplicated text.
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Content-aware segmentation uses audio cues to
find natural cut points. Basic methods rely on
VADs like Silero (Team, 2021) or py-webrtcvad
(Wiseman, 2019), which work well in clean con-
ditions but struggle with noise. Instead, we use
an end-to-end speaker segmentation model from
Bredin and Laurent (2021), trained for noisy sce-
narios and capable of tracking up to three speakers.
While methods like SHAS (Tsiamas et al., 2022)
use wav2vec embeddings, they underperform in
the presence of background noise.

Even with smarter cut-point detection, uncon-
trolled segment lengths can hurt ASR performance.
Inspired by WhisperX (Bain et al., 2023), we en-
force length constraints by post-processing VAD
segments: overly long segments are split at their
lowest-confidence point, while overly short ones
are merged with neighbors (even across non-speech
gaps) until they reach the desired duration Chunk
Size.

Chunk Size Peloton EPTV ITV ACL

5 13.62 15.79 21.49 14.38
10 12.61 14.63 18.8 12.03
15 12.23 14.08 17.71 11.43
20 12.27 13.98 17.29 11.71
25 11.98 13.98 16.62 11.49

Table 1: Impact of chunk size during segmentation for
ASR. We report the WER scores using Whisper-v3 with
different chunk sizes. Best scores for each test set are
highlighted in bold.

To determine the optimal chunk size, we perform
a grid search using test sets from various domains,
with results shown in Table 1. We use the Whis-
per v3 model1 (Radford et al., 2023) and evaluate
it on the Peloton, EPTV, and ITV subsets from
the IWSLT 2024 development sets (Ahmad et al.,
2024), as well as the ACL 60/60 test set (Salesky
et al., 2023). A chunk size of 25 consistently yields
the best performance. We hypothesize that this is
due to the larger chunk size offering more contex-
tual information, aligning with prior work on the
benefits of long-form decoding in noisy conditions
(Koneru et al., 2024a; Yan et al., 2024).

2.2 Automatic Speech Recognition

After segmenting the audio into smaller chunks,
we send them to the ASR system for transcription.

1openai/whisper-large-v3

Since we participated in the language direction En-
glish→German, the audio needs to be transcribed
in English, a high-resource language. Many pub-
licly available pre-trained models excel at English
transcription, and we first evaluated several of them
individually. Specifically, we considered the Whis-
per variants v22 and v33(Radford et al., 2023), as
well as the recently developed multimodal LLM
Phi-44(Abouelenin et al., 2025).

To build a robust model for noisy scenarios, such
as those found in TV series, we further fine-tuned
Whisper Large v2 on the Bazinga dataset (Lerner
et al., 2022). The Word-Error-Rate (WER) for
these models on ITV and ACL 60/60 are reported
in Table 2.

Model ITV ACL

Whisper v2 17.04 11.55
Whisper v2 + Bazinga 16.87 11.23

Whisper v3 16.62 11.49
Phi-4 20.64 9.71

LLM-Fuse 17.03 10.77

Table 2: WER scores of ASR models on the ITV and
ACL test sets. LLM-Fuse indicates the post-edited out-
put of all ASR systems at document-level. Best scores
for each test set are highlighted in bold.

As shown in Table 2, there is no clear winner
across the two test sets. Our manual analysis fur-
ther reveals that different models tend to make dif-
ferent types of errors, suggesting that combining
these systems could be a promising strategy.

2.2.1 Fusing with LLM
To fuse the ASR outputs, token-level ensembling
is a viable approach—provided the vocabularies of
the systems are compatible. However, the vocabu-
lary used by Phi-4 differs from that of the Whisper
variants, limiting the effectiveness of this method.
Alternative techniques such as re-ranking offer
some promise but are unable to leverage document-
level context.

To overcome these limitations, we employ an
LLM to generate the final transcript based on the
outputs from individual ASR systems. Thanks to
their ability to process long contexts, LLMs enable
us to concatenate hypotheses from multiple chunks
and refine them collectively.

2openai/whisper-large-v2
3openai/whisper-large-v3
4microsoft/Phi-4-multimodal-instruct
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However, an off-the-shelf LLM may not per-
form optimally for this specific task. To improve,
we propose fine-tuning the model using a dataset
generated through data augmentation. For this pur-
pose, we use monolingual English text from the
Europarl v7 and v10 datasets (Koehn, 2005), News-
Commentary v16, OpenSubtitles (Lison and Tiede-
mann, 2016), and the NUTSHELL dataset5 (Züfle
et al., 2025). With the exception of NewsCom-
mentary, the other datasets contain document-level
structure—episodes in the case of OpenSubtitles
and abstracts in the case of NUTSHELL.

We then employ the Text-to-Speech model VITS
(Kim et al., 2021) to synthesize audio from the se-
lected texts. This generated audio is subsequently
transcribed using Phi-4 and the Whisper variants.
As a result, we obtain ASR hypotheses for the
synthesized speech along with their corresponding
ground-truth references.

Next, we convert this data into a prompt format,
as described in Appendix App. A. We fine-tune the
LLM Llama 3 8B6(Grattafiori et al., 2024) using
LoRA (Hu et al., 2022), training it to predict the
reference transcription given the hypotheses pro-
duced by the different ASR systems. We illustrate
this in Fig. 1. We also report the ASR performance
of the LLM fusion approach in Table 2 and observe
that it does not outperform the individual systems.
However, as we demonstrate in the following sec-
tions, this fusion proves to be highly beneficial
when computing the final ST scores.

2.3 Speech Translation
The next step in the pipeline, after performing ASR,
is to translate the transcriptions into German. Since
the transcriptions are produced at the chunk level,
they often contain multiple sentences, some of
which may be incomplete. To address this, we
first concatenate all the text from a given talk and
then segment it into sentences using the NLTK tok-
enizer. This ensures that only complete sentences
are passed to the MT system, aligning with the way
such systems are typically trained.

2.3.1 Gold vs ASR Transcripts
Recently, several translation-focused LLMs have
been introduced, demonstrating strong perfor-
mance on high-quality input (Xu et al., 2024a;
Alves et al., 2024). However, their effective-
ness on noisy input—such as ASR-generated tran-

5Our submission is unconstrained by using this dataset.
6meta-llama/Llama-3-8B

Model Chrf2 (↑) MetricX (↓) COMET (↑)
Gold Transcript

Tower 7B 68.7 2.02 83.31
GemmaX2 9B 70.5 2.08 83.62

Whisper v3 ASR (Chunk size=25)

Tower 7B 66.1 2.46 81.01
GemmaX2 9B 66.4 2.65 80.74

Phi-4 ASR

Tower 7B 64.9 2.73 79.25
GemmaX2 9B 65.4 2.9 79.12

Table 3: Translation quality comparison between Gold
and ASR transcripts on the ACL 60/60 test set. Note
that higher is better for chrf2 and COMET scores and
lower for MetricX scores.

scripts—remains uncertain. To assess this, we first
evaluate the out-of-the-box translation quality of
two leading models: Tower7 (Xu et al., 2024a)
and GemmaX28 (Cui et al., 2025). We use the
COMET9 (Rei et al., 2022a), MetricX10 (Juraska
et al., 2024), and ChrF2 (Popović, 2015) metrics,
with results reported in Table 3 for the ACL 60/60
test set.

GemmaX2 outperforms Tower on gold tran-
scripts in terms of COMET scores, but its perfor-
mance drops significantly on ASR-generated input.
Interestingly, translation quality is lower when us-
ing transcripts from the Phi-4 ASR model, despite
it having the lowest WER in Table 2. We hypoth-
esize that this is due to inconsistencies in punctu-
ation and casing, which are not captured by WER
but can impact translation quality. This highlights
that lower WER does not always correlate with bet-
ter translations. As a result, we choose Tower 7B
as our base model for subsequent enhancements,
given its superior robustness to noisy input.

2.3.2 Quality-Filtered Finetuning for MT
Tower 7B is a multilingual model and we only
focus on English → German in our submisison.
Therefore, we adapt it to this specific language pair.
While plently of data is available for fine-tuning,
these also include low quality translation pairs.

Recent studies have demonstrated the impor-
tance of high-quality data during fine-tuning
(Finkelstein et al., 2024; Ramos et al., 2024; Xu
et al., 2024b). To this end, we leverage the Europarl

7Unbabel/TowerInstruct-7B-v0.2
8ModelSpace/GemmaX2-28-2B-v0.1
9Unbabel/wmt22-comet-da

10google/metricx-24-hybrid-xl-v2p6
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Model
ITV ACL

Chrf2 (↑) MetricX (↓) Chrf2 (↑) MetricX (↓) COMET (↑)
Whisper v3 ASR (Chunk size=25)

Tower 7B 41.4 4.25 66.1 2.46 81.01
Tower 7B Finetuned 41.5 4.19 67.7 2.27 82.05

LLM-Fuse

Tower 7B Finetuned 41.7 4.12 68 2.01 83.07
Tower 7B Finetuned + Tower 13B APE 42.1 4.03 69.6 1.84 83.31

Table 4: Analysis of translation quality of our ST system with different enhancements on the ITV and ACL test sets.
Note that higher is better for chrf2 and COMET scores and lower for MetricX scores. Best scores for each metric
per test set are highlighted in bold.

v7 and v10 datasets (Koehn, 2005), NewsCommen-
tary v16, and OpenSubtitles (Lison and Tiedemann,
2016) to extract high-quality translation pairs. We
employ the XCOMET11 quality estimation model
(Guerreiro et al., 2024) to rank the translation pairs
and select the top 500k based on quality scores.
Tower 7B is then fine-tuned on this curated dataset
using LoRA adapters (Hu et al., 2022), adapting it
for generating German translations.

2.3.3 Automatic Post-Editing Translations

As a final step, we aim to correct translation errors
through APE (Koneru et al., 2024b). To achieve
this, we fine-tune Tower 13B12 on a synthetically
generated APE dataset. Using our previously fine-
tuned model, we generate 100k (source, hypothe-
sis, reference) triplets by sampling a subset from
the top 500k high-quality sentence pairs. Then,
we transform into the prompt format as shown in
App. A. We choose the larger 13B model for this
task, as we expect it to be adaptable to correct the
output with limited fine-tuning. To train within
resource constraints, we follow the same approach
as before and fine-tune using LoRA adapters.

We present an overview of the ST scores in Ta-
ble 4 for the ITV and ACL 60/60 test sets. The
results show that fusing system hypotheses using
an LLM leads to improved ST performance on
both test sets (from 4.19 → 4.12 for ITV and
2.27 → 2.01 for ACL in MetricX). Additionally,
applying Automatic Post-Editing (APE) further en-
hances translation quality. As a result, our final
pipeline integrates multiple ASR systems fused via
an LLM, followed by initial translation generation
and post-editing to ensure high-quality output.

11Unbabel/XCOMET-XL
12Unbabel/TowerInstruct-13B-v0.1

2.4 Future Directions and Potential
Improvements

There are several potential avenues for improving
our approach in future iterations of the shared task.
First, while we did not explore it in this work, it
is unclear how well SHAS segmentation performs
when trained on noisy data. Semantic segmenta-
tion of noisy inputs could yield performance gains.
Second, incorporating LLM specific to the target
language (e.g. German LLM) for APE at the doc-
ument level could offer promising improvements.
Lastly, we experimented with Quality-Aware De-
coding (Koneru et al., 2025), which showed bene-
fits primarily when the quality of the ASR output
was high. Future research could focus on adapt-
ing the quality estimation component to perform
robustly under noisy or imperfect segmentation
conditions.

3 Instruction Following Long Track

The Instruction-Following (IF) Speech Processing
track in the scientific domain aims to benchmark
foundation models that can follow natural language
instructions—an ability well-established in text-
based LLMs but still emerging in speech-based
counterparts. The track covers four tasks: Auto-
matic Speech Recognition (ASR), Speech Transla-
tion (ST), Spoken Question Answering (SQA), and
Spoken Summarization (SSUM). ASR is evaluated
on English, ST on English → German, Chinese,
and Italian (en→{de, it, zh}), and SQA/SSUM
across all four directions (en→{en, de, it, zh}).

We participate in the Constrained Long track,
which focuses on long-form speech inputs (5–10
minutes). This track enforces limitations on both
model selection and training data. Specifically,
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only SeamlessM4T-Large13 (Communication et al.,
2023) and LLaMA-3.1-8B-Instruct 14 (Grattafiori
et al., 2024) are permitted as base models.

Our approach employs an end-to-end speech
model trained under these constraints, enhanced
with a post-editing stage for improved output qual-
ity similar to the Offline track.

3.1 Data

Data in the Constrained Setting For ASR and
ST, the provided datasets include EuroParl-ST
(Iranzo-Sánchez et al., 2020) and CoVoST 2 (Wang
et al., 2020). For the SQA task, the only resource
available is the extractive Spoken-SQuAD (Lee
et al., 2018). For SSUM, NUTSHELL (Züfle et al.,
2025), an abstract generation dataset for scientific
talks, is provided. As development data, the ACL
60/60 benchmark (Salesky et al., 2023) is made
available. Notably, the only in-domain datasets,
i.e., those based on scientific talks, are NUTSHELL
and ACL 60/60. Moreover, no multilingual data is
provided for SQA and SSUM.

Data Augmentation To address the limitations
of the constrained setting, we apply task-specific
data augmentation strategies15:

ASR: To introduce domain-specific data, we
augment the ASR training data using scientific ab-
stracts from NUTSHELL (Züfle et al., 2025). The
abstracts are split into sentences with nltk and then
converted to synthetic speech using SeamlessM4T-
Large.

ST: We do not augment the ST training data,
but construct an artificial en-it test set for the ACL
60/60 dataset, which lacks Italian. We translate
the English ACL 60/60 transcripts into Italian us-
ing both SeamlessM4T-Large and LLaMA-3.1-
8B-Instruct, and evaluate translation quality using
COMETKiwi (Rei et al., 2022b). SeamlessM4T-
Large achieves a slightly higher score (82.55 vs.
81.07), and is therefore used to generate the final
test set translations. The translation prompts for
LLaMA-3.1-8B-Instruct are detailed in App. B.3.

SQA: For SQA, we aim to: (1) support all lan-
guage pairs, (2) adapt to the scientific domain, and
(3) include abstractive QA, as required by the track.
Therefore, we transcribe NUTSHELL dev talks
using SeamlessM4T (audio split into 15-second

13facebook/seamless-m4t-v2-large
14meta-llama/Llama-3.1-8B-Instruct
15Augmented Dataset available at HuggingFace:

maikezu/data-kit-sub-iwslt2025-if-long-constraint

chunks at silence regions). We then use LLaMA-
3.1-8B-Instruct to generate two answerable and
one unanswerable QA pair per segment for all lan-
guage pairs. We balance the dataset by ensuring
that unanswerable questions comprise 5% of the
final set. Additionally, we generate a 250-sample
test set from a subset of the NUTSHELL test data.
Prompt templates are included in App. B.1

SSUM: To enable multilingual evaluation of
speech summarization, we translate the full NUT-
SHELL dataset (en→{de, it, zh}) using LLaMA-
3.1-8B-Instruct. Prompt details are provided in
App. B.2. As with SQA, we also generate a 250-
sample multilingual test set.

3.2 Model

In the constrained setting of the track, only the
speech foundation model SeamlessM4T-Large13

(Communication et al., 2023) and LLaMA-3.1-8B-
Instruct14 (Grattafiori et al., 2024) are permitted.

Architecture To integrate the speech encoder
and LLM in an end-to-end architecture, we use
Q-Former (Li et al., 2023; Tang et al., 2024) as a
projector. Specifically, we use a four transformer
layers and four learnable query tokens to bridge
the modality gap between the features from Seam-
lessM4T and LLaMA. During training, only the
projector is trained and the speech encoder and
LLM remain frozen.

Training We explore three training strategies: (1)
Direct fine-tuning on all available training data, (2)
ASR pretraining followed by fine-tuning, and (3)
contrastive pretraining, as proposed by Züfle and
Niehues (2024), followed by fine-tuning.

For contrastive pretraining, we use ASR data and
experiment with cosine similarity and Wasserstein
loss functions (Peyré and Cuturi, 2019; Le et al.,
2023). As shown in Table 5, contrastive pretraining
yields notable improvements over the other training
strategies. Consequently, this approach is adopted
for the final model submissions. Hyperparameter
details are given in Table 10 in App. B.4.

During initial experiments, our model struggled
to distinguish answerable from unanswerable SQA
questions. To improve this, we apply chain-of-
thought prompting: the model first tags the ques-
tion as answerable or not, then generates an an-
swer only if applicable. This stepwise approach
improves both classification and answer quality.
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Model

ASR ST SQA SSUM
ACL 60/60 ACL 60/60 Sp.-SQuAD NUTSHELL

WER COMET BERTScore BERTScore
en-en en-de en-it* en-zh en-en en-en

∼no pretrain 25.1 72.49 73.61 76.93 80.88 83.89
∼ASR pretrain 21.42 76.72 79.73 80.62 82.48 85.97
∼contr. cos. 18.82 77.31 80.27 80.76 82.53 86.07
∼contr. wasser. 19.07 77.33 80.06 81.34 82.66 86.6

∼ Model not trained on multilingual SSUM and SQA
Gold segmentation No segmentation (full audio used)

Table 5: Ablation studies on different pretraining methods for the instruction following task: No pretraining, ASR
pretraining and contrastive pretraining with either cosine similarity (contr. cos.) or Wasserstein distance (contr.
wasser.). Test sets marked with * are automatically generated due to lack of availability for this language pair (see
Section 3.1).

Segm. max secs. ASR (WER) ST (COMET)
en-en en-de en-it* en-zh

N/A 18.77 77.15 80.65 81.83

5 45.52 57.55 51.47 72.73
10 20.73 65.55 56.88 76.97
15 20.74 68.92 58.24 77.44
20 20.63 69.94 59.01 77.45
25 25.48 71.61 75.74 78.04
30 - 70.79 58.99 76.16
35 - 67.54 56.88 76.5

Gold segmentation VAD segmentation

Table 6: Ablation study on Voice Activity Detection
(VAD) segmentation using the IF contr. cos. model. on
the ACL 60/60 dataset. Test sets marked with * are au-
tomatically generated due to lack of availability for this
language pair (see Section 3.1). For ASR, segmenting
audio into chunks of up to 20 seconds yields the best
results, while for ST, 25-second chunks perform best.

3.3 Handling long audio

The IF Constrained Long track involves processing
audio inputs from five to ten minutes in duration.

ASR and ST Initial experiments revealed that
our model struggled with full-length audio inputs
for ASR and ST, even when trained with artificially
concatenated long-form sequences. To address this,
we segment the input audio prior to inference.

We use a Voice Activity Detection (VAD) ap-
proach (Sohn et al., 1999) to segment audio, as due
to track constraints, SHAS (Tsiamas et al., 2022)
is not permitted. For ASR, segmenting into chunks
of up to 20 seconds yields best performance and
for ST, segments of up to 25 seconds are more
effective. Ablation results are provided in Table 6.

Post-editing context ASR (WER) ST (COMET)
en-en en-de en-it* en-zh

No Post-Editing 20.63 71.61 75.74 78.04

1 21.09 70.54 75.0 77.22
3 20.96 71.91 75.88 77.17
5 20.43 71.64 75.69 77.20
10 21.88 71.90 75.53 77.14
15 50.07 71.95 75.88 77.19
20 50.12 71.82 75.55 77.20

VAD segmentation

Table 7: Ablation study on the context size of the poste-
diting model using the IF contr. cos. model. on the ACL
60/60 dataset. For ASR, a context size of 5 yields the
best results, for ST, a context size of 15. For en→zh,
post-editing does not lead to an improvement.

SQA and SSUM For SQA and SSUM, we use
the full audio. To handle long-form audio, we seg-
ment audio into 60-second chunks. Each chunk
is encoded, and the embeddings are concatenated
before being passed to the Q-Former and LLM, fol-
lowing Züfle et al. (2025). This strategy maintains
full end-to-end trainability. For audios exceeding
26.7 minutes, we truncate the input to fit within
memory constraints.

3.4 Post-Editing
To improve output quality, we use a post-editing
model that works on document level. This helps to
correct scientific terminology and it restores contex-
tual coherence that may be lost due to segmentation
of long audio inputs.

For ASR, we train the post-editing model on
the SeamlessM4T-Large transcriptions of the TTS-
generated scientific abstracts from NUTSHELL,
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ASR ST SQA SQA SSUM
Model ACL 60/60 ACL 60/60 Sp.-SQuAD NUTSHELL NUTSHELL

WER COMET BERTScore BERTScore BERTScore
en-en en-de en-it* en-zh en-en en-en* en-de* en-it* en-zh* en-en en-de* en-it* en-zh*

Phi-416 16.8 79.19 83.43 83.23 82.56 91.78 76.85 78.41 74.41 86.27 67.71 69.76 57.03
Qwen2 Audio17 20.14 72.35 74.23 77.19 87.35 89.0 71.81 73.7 69.62 84.88 63.06 64.17 51.79
Whisper18 + Llama 3.114 14.67 78.04 81.93 77.66 82.39 91.18 71.87 72.58 54.62 86.62 57.16 58.64 49.31
Seamless V213 18.91 73.64 78.78 75.26 – – – – – – – – –

IF contr. cos. 18.77 77.15 80.65 81.83 82.83 93.04 79.73 82.08 79.8 86.83 68.46 71.01 71.22
IF contr. cos. tag 19.82 76.95 80.69 81.75 82.86 93.17 80.81 82.49 80.53 86.52 68.31 71.06 71.09
IF contr. wasser. 17.93 72.47 79.12 80.88 82.79 93.42 80.65 82.46 80.47 86.86 68.45 71.08 71.37
IF contr. wasser. tag 17.78 74.06 78.87 81.10 82.80 93.24 80.87 82.76 80.32 86.89 68.76 71.16 71.54

IF contr. cos. 20.63 71.61 75.74 78.04 82.83 93.04 79.73 82.08 79.8 86.83 68.46 71.01 71.22
+ post-edit 20.43 71.95 75.88 77.19 × × 86.85 68.61 71.22 71.17

IF contr. cos. tag 33.24 69.37 73.36 75.83 82.86 93.17 80.81 82.49 80.53 86.52 68.31 71.06 71.09
+ post-edit 33.53 70.39 73.14 73.20 × × 86.54 68.42 71.16 71.01

IF contr. wasser. 21.88 71.61 76.78 78.21 82.79 93.42 80.65 82.46 80.47 86.86 68.45 71.08 71.37
+ post-edit 33.51 71.12 77.23 68.02 × × 86.88 68.68 71.12 71.24

IF contr. wasser. tag 22.07 71.84 76.29 78.24 82.80 93.24 80.87 82.76 80.32 86.89 68.76 71.16 71.54
+ post-edit 19.76 72.29 76.75 77.21 × × 86.90 68.95 71.30 71.41

Gold segmentation Voice Activity Detection (VAD) segmentation No segmentation (full audio used)
– Not supported by model × post-editing not applied, because context is not available

Table 8: Results for baseline models and our end-to-end trained instruction-following models (IF), developed for
the Constraint Instruction Following Long track. The IF models are pretrained using contrastive learning, with
either cosine similarity (contr. cos.) or Wasserstein distance (contr. wasser.). To improve performance on question
answering, we also experiment with tagging answers to indicate whether the question is answerable (+ tag). Test
sets marked with * are automatically generated due to lack of availability for this language pair and task (see
Section 3.1). The IF contr. wasser. tag + post-edit model was submitted to the shared task.

paired with the original text. For ST, we use the
ACL 60/60 development set, transcribed by our IF
model. The post-editing model setup is adapted
from Section 2.2.1, with two key differences: in
compliance with the constrained setting, we use
LLaMA-3.1-8B-Instruct14 (Grattafiori et al., 2024)
as the base model, and we predict the reference
using only a single system output, since in the IF
track we do not employ an ensemble.

We conduct experiments to examine the effect of
context size on post-editing performance. For ASR,
a context window of five sentences provides the
best results, while ST benefits from a 15-sentence
context. For en→zh, no performance gains are
achieved. These results are summarized in Table 7.
We also apply the post-editing model to SSUM
outputs, using the full summary as context.

3.5 Baselines

We compare our system to four baseline models.
We include two end-to-end Speech-LLMs: Phi-
416 (Abdin et al., 2024) and Qwen2 Audio17 (Chu
et al., 2024a), using default parameter settings pro-
vided on Hugging Face model cards and follow-
ing the prompts specified by the shared task. We
also evaluate a cascaded baseline using Whisper-

16microsoft/Phi-4-multimodal-instruct
17Qwen/Qwen2-Audio-7B-Instruct

large-v318 (Radford et al., 2023), and LLaMA-
3.1-8B-Instruct14 (Grattafiori et al., 2024) to fol-
low the instructions. Lastly, for ASR and ST, we
include SeamlessM4T-Large13 (Communication
et al., 2023), given that it also serves as the speech
encoder in our own end-to-end architecture.

3.6 Evaluation

We evaluate ASR with WER using JiWER, ST
using COMET19 (Rei et al., 2022a), and SQA and
SSUM using BERTScore (Zhang et al., 2020).

3.7 Development Results

All results can be found in Table 8. We evaluate our
approach against the baselines from Section 3.5,
as well as four end-to-end trained instruction-
following models (IF). Among these, we compare
two contrastive pretraining strategies (contr. cos.
and contr. wasser.), as outlined in Section 3.2. For
the SQA task, we also explore a chain-of-thought
variant (tag), as detailed in Section 3.2.

ASR and ST Using gold segmentation, we com-
pare our IF models against the baselines. Phi-
416 (Abdin et al., 2024) achieves the strongest
performance on ST, while Whisper18 (Radford
et al., 2023) performs best for ASR. However, our

18openai/whisper-large-v3
19Unbabel/wmt22-comet-da
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ASR ST SQA SSUM
Model WER COMET BERTScore (normalized) BERTScore (normalized)

en-en en-de en-it en-zh en-en en-de en-it en-zh en-en en-de en-it en-zh

Phi-416 (baseline) 0.17 0.55 0.56 0.51 0.42 0.35 0.36 0.39 0.17 0.16 0.19 0.04
IF contr. wasser. tag (ours) 0.15 0.74 0.77 0.77 0.41 0.35 0.39 0.41 0.23 0.21 0.25 0.37

Voice Activity Detection (VAD) segmentation No segmentation (full audio used)

Table 9: Official evaluation results for the IWSLT 2025 IF Speech Processing track in the long and constrained
setting.

IF models consistently outperform both Qwen2
Audio17 (Chu et al., 2024a) and SeamlessM4T-
Large13 (Communication et al., 2023). The latter
result confirms that our end-to-end architecture is
able to improve over the speech foundation model.

Under VAD segmentation, which is also used for
the shared task testset, we observe a performance
drop across all IF models, as expected. Apply-
ing post-editing partially mitigates this drop. For
ASR, post-editing only improves IF contr. cos
and IF contr. wasser. tag, bringing them close
to their gold-segmented counterparts. In ST, post-
editing yields consistent improvements for en→de
and en→it, but not for en→zh, likely due to the lim-
ited Chinese capabilities of the post-editing model
and sparse training data in that language.

SQA and SSUM On the SQA-NUTSHELL
dataset, all IF models outperform the baselines,
whereas on Spoken-SQuAD (which is extractive
and out-of-domain), this is not the case. For SSUM,
IF models consistently surpass the baselines, par-
ticularly in en→it and en→zh. Post-editing yields
slight gains for SSUM as well, though similar to
ST, no improvement is observed for en→zh.

Final Model We select IF contr. wasser. tag +
post-edit for our final submission. It offers the best
performance for ASR, SQA, and SSUM, and is
competitive with the other IF models in ST.

3.8 Results on IWSLT Official Test Set

Table 9 shows the performance of our final system
on the official IWSLT 2025 test sets provided by
the organizers (Abdulmumin et al., 2025). Our
system outperforms the baseline in ASR, ST, and
SSUM, and achieves stronger results in SQA across
all language pairs except for en→en.

4 Conclusion

This system paper presents KIT’s submissions
to the Offline and the IF Long tracks. By inte-

grating LLMs into both cascaded and end-to-end
architectures for speech processing, we demon-
strate their potential in handling a range of spo-
ken language tasks. For future work, we aim to
explore a unified architecture capable of produc-
ing high-quality translations while also supporting
instruction-following capabilities.
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A Offline Track - Prompts

LLM Fuse Prompt

Post -Edit the Automatic Speech
Recognition Transcripts from
different systems understanding
the context.

ASR Transcripts:

System1: {Whisper v2 Hyps}
System2: {Whisper v2 FT Hyps}
System3: {Phi -4 Hyps}
System4: {Whisper v3 Hyps}

Post -Edited Transcript:
{Reference}

MT APE Prompt

<|im_start|>user
Post -Edit the German Translation
of the English sentence.
English:
{src}
German:
{mt}
<|im_end|>
<|im_start|>assistant
Post -Edited German:
{ref}

B Instruction-Following Track - Prompts

B.1 Data Augmentation Prompts SQA
System Prompt:

You are a professional question
generator. Given a transcript ,
you will create three questions:
two that can be answered based on
the transcript and one that

cannot be answered (but is
relevant to the topic).
The answers should be full
sentences in the target language
specified.
Your response must be in valid
JSON format , with keys for '
questions ' and 'answers '.
Do not include any explanations
or additional text.\n

Prompt:

<Transcript >\n
Based on the transcript , generate
a JSON dictionary with the

following structure.
The questions and answers must be
in <trg lang >:\n

{{\n
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' "questions ": [\n'
' {"q1": "First question in <
trg lang >", "a1": "Full -sentence
answer in <trg lang >"},\n'
' {"q2": "Second question in <
trg lang >", "a2": "Full -sentence
answer in <trg lang >"},\n'
f' {{"q3": "Third question in
<trg lang >", "a3": "N/A"}}\n'

]\n
}}\n
Ensure the response is a valid
JSON object with properly
formatted keys and values.

B.2 Data Augmentation Prompts SSUM
System Prompt:

A chat between a curious user and
a professional system for

translating ACL abstracts .\n

Prompt:

<abstract >\ nTranslate this
abstract to <trg lang >. Do not
provide any explanation or
additional text.

B.3 Data Augmentation Prompts ST
System Prompt:

You are a professional translator
. Your task is to provide
accurate , fluent , and natural
translations without adding
explanations , comments , or extra
content.

Prompt:

Translate the following English
text into <trg lang >. Do not
provide any explanation or
additional text.\n<text >

B.4 Hyperparameters Model Training

training Q-Former Num Query Token 4
parameters Q-Former Num Hidden Layers 4

Q-Former Num Attention Heads 12
Q-Former Seconds per Window 1/3
num GPUs 4
learning rate 1e-4
warmup ratio 0.03
optimizer adamw_torch
learning rate scheduler type cosine
model max length 2048
gradient clipping 1

pretraining num epochs 5
specific per device batch size 10

gradient accumulation steps 2
contrastive τ cos + wasser 0.1
contrastive τ nwp 0.5
sinkhorn loss p 2
sinkhorn loss blur 0.5

finetuning num epochs 2
specific per device batch size 2

gradient accumulation steps 10

Table 10: Hyperparameters for the trainings, which
are conducted on four NVIDIA GH200 96GB GPUs,
mostly following Züfle and Niehues (2024).
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Abstract

Multi-language Speech-to-Text Translation
(ST) plays a crucial role in breaking linguis-
tic barriers, particularly in multilingual regions
like India. This paper focuses on building
a robust ST system for low-resource Indian
languages, with a special emphasis on Ben-
gali and Tamil. These languages represent
the Indo-Aryan and Dravidian families, respec-
tively. The dataset used in this work comprises
spoken content from TED Talks and confer-
ences, paired with transcriptions in English and
their translations in Bengali and Tamil. Our
work specifically addresses the translation of
Bengali and Tamil speech to English text, a crit-
ical area given the scarcity of annotated speech
data. To enhance translation quality and model
robustness, we leverage cross-lingual resources
and word-level translation strategies. The ulti-
mate goal is to develop an end-to-end ST model
capable of real-world deployment for underrep-
resented languages.

1 Introduction

Speech-to-Text Translation (ST) has seen signifi-
cant progress in recent years, driven by advance-
ments in deep learning and large-scale multilin-
gual datasets. However, the benefits of these ad-
vancements have not equally reached low-resource
languages. Many Indian languages, despite being
spoken by millions, lack sufficient parallel speech-
text corpora to train high-performing supervised
models. This paper addresses this gap by focusing
on ST systems for Bengali and Tamil speech to
English text, two major Indian languages that are
often underrepresented in current ST research.

India’s linguistic diversity presents both a chal-
lenge and an opportunity for Speech Translation
research. In multilingual communities, there is a
growing demand for ST systems that can facilitate
communication across different linguistic groups,
especially in education, healthcare, and public ser-
vices. However, the shortage of human translators

and limited digital resources for many Indian lan-
guages hamper efforts to build such systems. This
work is motivated by the need to create language-
inclusive ST models that cater to low resource In-
dian languages such as Bengali and Tamil. These
languages are widely spoken but lack the large-
scale annotated datasets available for high-resource
languages like English, German, or Mandarin. By
focusing on Bengali and Tamil audio-to-English
text translation, this paper aims to fill a critical
gap in current ST research. Additionally, the paper
explores methods to overcome data scarcity, such
as leveraging related language resources, incorpo-
rating multilingual pretraining, and utilizing word-
level translation dictionaries. The broader goal is
to build a scalable and adaptable ST pipeline that
not only improves translation accuracy but also
supports the integration of more languages in the
future.

The work leverages a curated dataset of pub-
lic speeches, including TED Talks and conference
recordings, to build a system that can handle the
unique linguistic and acoustic features of these lan-
guages. Our approach explores both end-to-end
and cascaded architectures, aiming to strike a bal-
ance between performance and scalability. By ad-
dressing the linguistic diversity and resource lim-
itations of these languages, we aim to contribute
towards more inclusive language technology in In-
dia and beyond.

Speech-to-Text Translation (ST) research has
traditionally been concentrated on high-resource
languages, with significant advancements in lan-
guages such as English, German, and Mandarin.
However, languages such as Bengali and Tamil,
spoken by millions in multilingual regions like In-
dia, remain underrepresented in research due to
the scarcity of parallel speech text corpora. The
absence of large-scale annotated datasets for these
languages presents a significant barrier to training
high-performance models.
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In recent years, there has been growing inter-
est in leveraging existing resources from related
languages and innovative techniques to overcome
these challenges. For instance, the IWSLT shared
tasks have provided valuable insights into the ef-
fectiveness of both cascaded and end-to-end (E2E)
models for Speech-to-Text (ST) tasks. A cascaded
architecture typically involves a two-step process:
first, automatic speech recognition (ASR) converts
speech to text, and then machine translation (MT)
translates the recognized text from the source lan-
guage into the target language. This approach has
been shown to perform effectively in the handling
of complex speech data.

In the context of low-resource languages, the
cascaded model approach has demonstrated ro-
bustness, especially when training data is limited.
Recent work has explored combining ASR mod-
els like OpenAI’s Whisper (Radford et al., 2022),
trained on multilingual data, with neural MT sys-
tems such as Helsinki-NLP/opus-mt-bn-en. This
combination has proven effective in addressing the
challenges posed by limited resources, especially
for languages such as Bengali and Tamil. These
models leverage the strengths of both components
to improve translation accuracy and ensure scala-
bility in real-world applications.

The 2023 IWSLT Evaluation Campaign, for ex-
ample, evaluated offline SLT systems for translat-
ing speech from English to German, Japanese, and
Chinese, using both cascaded and E2E models. The
campaign highlighted the importance of combining
ASR and MT components, as well as the perfor-
mance improvements that could be achieved by
integrating large-scale language models, data aug-
mentation, and ensemble methods (Agarwal et al.,
2023). Although E2E models are more direct, cas-
caded systems are particularly well-suited for low-
resource languages, as they allow for leveraging
pre-existing, powerful models for both ASR and
MT tasks.

For Bengali and Tamil, this cascaded approach
has shown promise by using pre-trained ASR mod-
els (such as Whisper) followed by fine-tuned MT
models (like Helsinki-NLP/opus-mt-bn-en) to han-
dle the translation from these languages to English.
By employing this two-step architecture, the sys-
tem benefits from the specific strengths of both
ASR and MT, improving overall translation accu-
racy and ensuring adaptability to the challenges
presented by these languages.

The work conducted in the IWSLT2024 Indic
Track system description paper (Showrav, 2022)
focuses on speech-to-text translation for multiple
Indian languages, including Bengali and Tamil, and
follows a similar cascaded approach to tackle the
challenges of low-resource languages. This aligns
closely with the goal of our paper, which aims
to build a robust and scalable ST system that can
effectively handle the translation of Bengali and
Tamil speech to English text.

By incorporating these strategies, our work con-
tributes to advancing Speech-to-Text Translation
for low-resource languages, filling a critical gap in
the research landscape, and offering a path forward
for scalable models that can support the diverse
linguistic landscape of India.

2 Dataset Description

The IWSLT 2025 Indic Track (Abdulmumin et al.,
2025) focuses on Speech-to-Text (ST) translation
between English and three low-resource Indian lan-
guages: Hindi (hi), Bengali (bn), and Tamil (ta)
and vice-versa. These languages belong to two
major language families—Indo-Aryan (Hindi and
Bengali) and Dravidian (Tamil)—and are widely
spoken across South Asia.

The dataset for this task specifically supports
Speech-to-Text translation from Indic languages
to English, where the source is audio in a low-
resource Indian language, and the target is English
text. It includes:

• Bengali and Tamil speech recordings as the
source audio.

• English text transcriptions serving as the tar-
get translations.

• YAML metadata files that define audio seg-
mentation with information like file name, off-
set, duration, and speaker ID.

Each language dataset is carefully aligned. Ev-
ery English transcript line has a corresponding line
in the target language (Hindi, Bengali, or Tamil),
along with metadata in YAML format. This meta-
data provides information such as file name, offset,
duration, and speaker ID.

The corpus is divided into training, validation,
and test subsets. Each audio file corresponds to
a talk by a single speaker, contributing to diverse
speaking styles and accents. While the number
of segments is consistent across the aligned files,
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token counts may differ across languages due to
linguistic variations.

In our work, we focused specifically on the
Bengali-to-English and Tamil-to-English transla-
tion directions. We used Bengali and Tamil audio
files aligned with their English translations. The ac-
tual dataset contains significantly more than 50,000
samples for each language pair, providing a rich
and diverse resource for training, evaluation, and
fine-tuning.

This well-structured, multilingual dataset serves
as a strong foundation for building effec-
tive Speech-to-Text translation systems for low-
resource Indian languages like Bengali and Tamil.

3 System Overview

The system integrates advanced speech-to-text
(ASR) and machine translation (MT) models to
transcribe Bengali audio files and translate the tran-
scriptions into English. The architecture consists
of several interconnected modules, each playing a
crucial role in ensuring accuracy, efficiency, and
robustness. The key components of the system in-
clude an input module that accepts audio files in
WAV format, which is a standard format for audio
processing due to its lossless nature. Along with
the audio file, a YAML metadata file is provided
,which contains the following information:

• Offset: The time point in the audio from
which the transcription should begin.

• Duration: The duration of the audio clip to
be processed.

• Speaker ID: Used to identify the speaker in
case of multiple speakers in the audio file.

The data validation and preprocessing module
validates the provided metadata, ensuring that the
offset, duration, and speaker ID align correctly with
the audio file. Audio segmentation is then per-
formed based on the provided offset and duration
to ensure precise transcription.

The audio processor and transcription module
consists of two sub-modules, namely, the Audio
Chunk Extraction and the model integration. In the
Audio Chunk Extraction module, Librosa (McFee
et al., 2015) and SoundFile libraries were used to
extract precise segments from the original audio
file based on the metadata. These libraries are ef-
ficient in processing and manipulating audio data.

The Whisper-small model is loaded via the Hug-
ging Face Transformers library (Wolf et al., 2020).
Whisper is a robust, multilingual ASR model that
can handle diverse languages and dialects with
zero-shot capabilities (Radford et al., 2023).

The model is fine-tuned using a Quantized Low-
Rank Adaptation (QLoRA) (Dettmers et al., 2023)
technique on a custom dataset of 10, 000 Bengali-
English audio pairs. QLoRA is a parameter-
efficient fine-tuning technique that allows the
model to adapt to new tasks with minimal com-
putational overhead while retaining its generaliza-
tion ability and quantization greatly reduces mem-
ory usage by reducing precision of floating points.
The extracted audio chunks are then passed to the
model, which transcribes the Bengali audio to Ben-
gali text or Tamil audio to Tamil text . We have used
the Kaggle free resources for all our task which pro-
vides us with 2 Tesla P100 GPUs due to which we
faced computational constraints and used QLoRA
as an alternative.

In the Translation Module, the system uses the
Helsinki-NLP/opus-mt-bn-en model, a state-of-
the-art model pre-trained for Bengali-to-English
translation tasks. The model is fine-tuned using
CSV-aligned Bengali-English pairs. This align-
ment ensures the model learns the appropriate con-
text, improving translation accuracy. The model is
also trained with the Seq2SeqTrainer framework,
which is highly effective for sequence-to-sequence
tasks such as translation. This method optimizes
the model for better handling Bengali syntax and
semantics complexities during translation.

After the completion of the transcription and
translation phase, the system merges the filename,
transcription, and translated output into a uni-
fied output. The results are stored in both CSV
(for structured data) and TXT (for easy reading and
further processing) formats. This allows for easy
extraction and post-processing of results. To evalu-
ate the translation quality, our system uses Sacre-
BLEU and chrF++ metrics, which are standard
in machine translation tasks. We have achieved
a BLEU score of 8.6945 and a chrF++ score of
35.5653 for the Bengali-English pair. These scores
suggest that the system provides a reasonably high-
quality translation, with strong character-level ac-
curacy.

In addition to the Bengali-English translation
system, the architecture supports Tamil-to-English
(ta-en) translation using the facebook / nllb-200-

247



distilled-600M model (Team et al., 2022). This is
a multilingual, distilled version of the NLLB-200
model by Meta AI, designed to handle translations
across 200 languages with enhanced efficiency. For
Tamil (language code ta_Taml) to English (lan-
guage code eng_Latn), the system takes Tamil tran-
scriptions (e.g., from speech recognition output or
manually curated corpora), tokenizes them using
the NLLB tokenizer, and then applies the sequence-
to-sequence model for translation. The translation
is done using forced BOS (beginning-of-sentence)
tokens to ensure the output is directed towards En-
glish.

This translation pipeline is implemented us-
ing Hugging Face Transformers and evaluated us-
ing standard machine translation metrics. The
system achieves a BLEU and chrF++ score of
13.3904 and 39.0237 on the Tamil-English test
set. These results reflect a strong translation per-
formance, especially given the morphological rich-
ness of Tamil. Like the Bengali-English pipeline,
the Tamil-English system operates in an uncon-
strained setting, where no limitations are placed
on the type of data or preprocessing methods used.
This allows maximum flexibility in improving per-
formance through data augmentation, custom pre-
processing, or enhanced model assembling tech-
niques.

The logic of fine-tuning the Transformers are
mentioned below:

3.1 Whisper Fine-Tuning

For the bengali to english task we used bangla-
speech-processing/BanglaASR1 (Islam, 2023)
model which is a Whisper-small fine-tuned on
Bangla Mozilla Common Voice dataset and
used QLoRA to fine-tune it efficiently on shared
task development dataset. Before creating the
Dataloader for training and validation set of the
shared task, the audio files were preprocessed with
Librosa and Pyloudnorm to generalize all audio
files and normalize loudness. Then Dataloader was
created to efficiently load data for training in a
memory efficient way.

We trained our model using the
Seq2SeqTrainingArguments class with a
batch size of 4 per device and a gradient accu-
mulation of 8 steps. The learning rate was set to
1× 10−4, and training was conducted for 3 epochs.

1https://huggingface.co/bangla-speech-
processing/BanglaASR

We enabled mixed-precision training using FP16.
For parameter-efficient fine-tuning, we used LoRA
with a rank of 8, scaling factor (lora_alpha) of
32, and a dropout rate of 0.1. LoRA was applied
specifically to the attention layers, targeting the
q_proj and v_proj modules.

Similarly, for the Tamil to English task we used
the vasista22/whisper-tamil-small2 model, which
is also a Whisper-small fine-tuned on multiple pub-
licly available Tamil dataset. The parameters were
kept the same as while fine-tuning the whisper-
bangla model.

3.2 MarianMT Fine-Tuning

The Helsinki-NLP/opus-mt-bn-en model3 from the
MarianMT family (Junczys-Dowmunt et al., 2018)
was fine-tuned to perform Bengali-to-English trans-
lation using shared task’s development dataset
of aligned sentence pairs in CSV format. The
dataset was prepared by merging Bengali transcrip-
tions and their corresponding English translations
based on identical audio file names. This ensured
accurate one-to-one alignment without the need
for external alignment tools such as fast_align or
awesome-align. The fine-tuning procedure (Li
et al., 2021) employed a batch size of 8 and a
learning rate of 3×10−5. Training was conducted
over 5 epochs. Preprocessing included tokeniz-
ing the source and target sentences with truncation
and padding up to a maximum length of 128 to-
kens. The model was trained using the Hugging
Face Seq2SeqTrainer framework. Evaluation was
performed after every epoch, and the best check-
point was selected based on validation loss. This
approach helped the model learn both syntactic
and semantic structures effectively, resulting in im-
proved translation quality from Bengali to English.

3.3 NLLB Unconstrained Translation

The facebook/nllb-200-distilled-600M4 (Team
et al., 2022) model has been employed for Tamil-to-
English translation without additional fine-tuning.
This distilled multilingual model was pretrained
on a large corpus covering over 200 languages, in-
cluding Tamil, so while no further task-specific
adaptation was performed, the translation is not
strictly zero-shot. The translation pipeline starts by
tokenizing the Tamil (tam_Taml) input sequences

2https://huggingface.co/vasista22/whisper-tamil-small
3https://huggingface.co/Helsinki-NLP/opus-mt-bn-en
4https://huggingface.co/facebook/

nllb-200-distilled-600M
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and specifying English (eng_Latn) as the target
language using the forced_bos_token_id parame-
ter. The encoder-decoder architecture of the model
generates English output directly. This approach
reduces training overhead while leveraging the
model’s strong pretrained multilingual capabilities
to produce effective Tamil-to-English translations
without additional supervised training.

Model Used BLEU chrF++
Whisper + Helsinki-
NLP/opus-mt-bn-en

8.69 35.56

Whisper + NLLB-200-
distilled-600M for ta-en

13.39 39.02

Table 1: BLEU and chrF++ scores for Bengali-English
and Tamil-English translation systems on test set

4 Workflow

Figure 1 illustrates the basic workflow of our sys-
tem which we have named SpeechSync, consists
of four key stages:

• Input Processing: Audio files are provided
to the system through a predefined directory
or batch input process. The Input Module
then validates and preprocessed these files. It
extracts metadata from associated YAML files,
ensuring that the audio is correctly segmented
and ready for transcription.

• Transcription: The Transcription Module
leverages a fine-tuned Whisper model to con-
vert the segmented audio into text. This model,
known for its multilingual and zero-shot ca-
pabilities, ensures accurate and reliable tran-
scription across both Bengali and Tamil lan-
guages.

• Translation: The translated output is gen-
erated using language-specific models such
as Helsinki-NLP/opus-mt-bn-en or NLLB.
These models are either fine-tuned on aligned
data or used in an unconstrained setup to pro-
duce high-quality, contextually relevant En-
glish translations from the source text.

• Output Delivery: The system compiles the
original filename, transcription, and trans-
lated output into structured TXT and CSV
formats. These outputs are made available for
download, enabling users to easily integrate

the translated results into their workflows or
downstream applications.

This streamlined and modular workflow enables
efficient conversion from audio to translated text,
supporting diverse use cases in multilingual envi-
ronments and helping bridge communication gaps
across languages.

Figure 1: Basic Workflow of the SpeechSync System

5 Limitations

While we acknowledge the significant challenges
ahead, such as the shortage of multilingual individ-
uals and insufficient data for certain languages, we
are determined to find innovative solutions. Some
of the limitations of our current approach include:

• Language Support: The input module cur-
rently supports only one language at a time. If
an audio file contains multiple languages (e.g.,
a conversation with code-switching between
Tamil and English or Bengali and Hindi), the
application processes only the primary lan-
guage while ignoring others. This limitation
restricts the system’s effectiveness in multilin-
gual environments and conversational scenar-
ios common in many Indian contexts.

• Processing Time: The transcription and trans-
lation modules are computationally intensive.
This is especially true when using models
like Whisper and Helsinki-NLP/opus-mt-bn-
en or NLLB, which require substantial pro-
cessing resources. To address this, we are
exploring model optimization strategies, such
as quantization, reduced precision inference
(e.g., FP16 or INT8), and parallel processing
to enhance efficiency and throughput.

• Translation Performance for Low-Resource
Pairs: While the system performs reasonably
well for both Bengali-to-English and Tamil-
to-English translation tasks, the Bengali-to-
English translation still hovers around base-
line performance. This is due to limited high-
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quality parallel data for Bengali, which im-
pacts the model’s ability to capture complex
sentence structures and semantics. In contrast,
Tamil-to-English translation demonstrates rel-
atively improved performance, but further re-
finement is still necessary to handle domain-
specific vocabulary and informal language
constructs accurately.

Despite these limitations, we remain committed to
enhancing system performance. Ongoing research
focuses on expanding language support, improv-
ing inference speed, and increasing the quality of
both transcription and translation outputs. These
efforts are part of a broader goal to make Speech-
Sync System a reliable and efficient multilingual
speech-to-text translation system, particularly for
underrepresented Indian languages.

6 Future Work

While the current version of the SpeechSync Sys-
tem demonstrates strong performance in Bengali-
to-English and Tamil-to-English speech translation,
there remain several promising directions for future
improvement and expansion.

One important enhancement is the incorpora-
tion of speaker diarization and multi-speaker
handling. This would allow the system to differ-
entiate between individual speakers in a single au-
dio stream. This feature is essential for accurately
processing meetings, interviews, or conversational
datasets. By integrating diarization models, the
system could associate transcription segments with
specific speaker labels, improving readability and
structure.

Another potential development is real-time
streaming transcription and translation. This
would significantly expand the system’s usability
in live scenarios such as conferences, classrooms,
and emergency response settings. Achieving this
would involve optimizing the current pipeline to
minimize latency and memory usage, allowing for
faster and more efficient processing.

Currently, the ASR outputs include only basic
punctuation, which can hinder readability. To ad-
dress this, future iterations will aim to integrate
advanced punctuation and formatting. This in-
cludes accurate sentence boundaries, speaker turn
indicators, and proper capitalization. These en-
hancements would make both transcriptions and
translations more natural and easier to follow.

Further improvement could come from multi-
modal integration, where additional visual cues
such as lip movements or gestures are used to aid
transcription accuracy, especially in noisy or acous-
tically challenging environments. This would po-
sition the system for use in richer, context-aware
applications like video subtitling or assistive com-
munication.

7 Conclusion

In summary, our key contributions lie in the rigor-
ous experimentation conducted to identify effective
models for speech translation, especially for low-
resource languages like Bengali and Tamil. We
perform extensive preprocessing of data to ensure
quality and suitability for training. The proposed
solution establishes a robust pipeline, including
code development and workflow setup, allowing
for efficient transcription and translation tasks. The
training and experimentation were focused on Ben-
gali to English translation for an in-depth analysis,
which included fine-tuning Whisper for transcrip-
tion tasks using LoRA and Helsinki-NLP/opus-mt-
bn-en for translation. In addition, we extended
our work to Tamil to English translation using the
facebook/nllb-200-distilled-600M model, which
was fine-tuned on Tamil-English parallel data to im-
prove translation quality and generalization. This
enabled the system to support multilingual speech-
to-text translation more broadly. Close monitor-
ing of performance metrics, including BLEU and
chrF++ scores, was carried out to assess model
performance and guide future improvements.

This paper is committed to advancing speech
translation (ST) technology for low-resource lan-
guages. Through the creation of dedicated datasets
and the development of robust models for both
Bengali and Tamil, our aim is to facilitate seamless
communication and accessibility across diverse lin-
guistic communities, ultimately promoting inclu-
sivity and empowerment.
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Borg, Marine Carpuat, Roldano Cattoni, Mauro Cet-
tolo, Mingda Chen, William Chen, Khalid Choukri,
Alexandra Chronopoulou, Anna Currey, Thierry De-
clerck, Qianqian Dong, Kevin Duh, Yannick Es-
tève, Marcello Federico, Souhir Gahbiche, Barry
Haddow, Benjamin Hsu, Phu Mon Htut, Hirofumi
Inaguma, Dávid Javorský, John Judge, Yasumasa
Kano, Tom Ko, Rishu Kumar, Pengwei Li, Xutai Ma,
Prashant Mathur, Evgeny Matusov, Paul McNamee,
John P. McCrae, Kenton Murray, Maria Nadejde,
Satoshi Nakamura, Matteo Negri, Ha Nguyen, Jan
Niehues, Xing Niu, Atul Kr. Ojha, John E. Ortega,
Proyag Pal, Juan Pino, Lonneke van der Plas, Peter
Polák, Elijah Rippeth, Elizabeth Salesky, Jiatong Shi,
Matthias Sperber, Sebastian Stüker, Katsuhito Su-
doh, Yun Tang, Brian Thompson, Kevin Tran, Marco
Turchi, Alex Waibel, Mingxuan Wang, Shinji Watan-
abe, and Rodolfo Zevallos. 2023. FINDINGS OF
THE IWSLT 2023 EVALUATION CAMPAIGN. In
Proceedings of the 20th International Conference on
Spoken Language Translation (IWSLT 2023), pages
1–61, Toronto, Canada (in-person and online). Asso-
ciation for Computational Linguistics.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms.

Md Saiful Islam. 2023. Transformer based whisper
bangla asr model.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings of
ACL 2018, System Demonstrations, pages 116–121,
Melbourne, Australia. Association for Computational
Linguistics.

Raymond Li, Wen Xiao, Lanjun Wang, Hyeju Jang, and
Giuseppe Carenini. 2021. T3-vis: visual analytic
for training and fine-tuning transformers in NLP. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 220–230, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Brian McFee, Colin Raffel, Dawen Liang, Daniel P. W.
Ellis, Matt McVicar, Eric Battenberg, and Oriol Nieto.
2015. librosa: Audio and music signal analysis in
python. In SciPy.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2022.
Robust speech recognition via large-scale weak su-
pervision.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International conference on machine
learning, pages 28492–28518. PMLR.

Tushar Talukder Showrav. 2022. An automatic speech
recognition system for bengali language based on
wav2vec2 and transfer learning. arXiv preprint
arXiv:2209.08119.

NLLB Team, Marta R. Costa-jussà, James Cross, Onur
Çelebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzmán, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No language left behind: Scaling human-
centered machine translation.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020. Hug-
gingface’s transformers: State-of-the-art natural lan-
guage processing.

251

https://doi.org/10.18653/v1/2023.iwslt-1.1
https://doi.org/10.18653/v1/2023.iwslt-1.1
http://arxiv.org/abs/2305.14314
http://arxiv.org/abs/2305.14314
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/P18-4020
https://doi.org/10.18653/v1/2021.emnlp-demo.26
https://doi.org/10.18653/v1/2021.emnlp-demo.26
https://api.semanticscholar.org/CorpusID:33504
https://api.semanticscholar.org/CorpusID:33504
http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/2212.04356
http://arxiv.org/abs/2207.04672
http://arxiv.org/abs/2207.04672
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771


Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025), pages 252–259
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics

ALADAN at IWSLT25 Low­resource Arabic Dialectal Speech Translation

Task

Josef Jon2,4, Waad Ben Kheder1, André Beyer3, Claude Barras1, and Jean­Luc Gauvain1

1
Vocapia Research, France

2
Lingea, Czechia

3
Crowdee, Germany

4
Charles University, Faculty of Mathematics and Physics, Institute of Formal and Applied Linguistics, Czechia

Abstract

We present our IWSLT 2025 submission for

the low­resource track on North Levantine

Arabic to English speech translation, build­

ing on our IWSLT 2024 efforts. We retain

last year's cascade ASR architecture that com­

bines a TDNN­F model and a Zipformer for

the ASR step. We upgrade the Zipformer to

the Zipformer­Large variant (253 M parame­

ters vs. 66 M) to capture richer acoustic rep­

resentations. For the MT part, to further allevi­

ate data sparsity, we created a crowd­sourced

parallel corpus covering five major Arabic di­

alects (Tunisian, Levantine, Moroccan, Alge­

rian, Egyptian) curated via rigorous qualifica­

tion and filtering. We show that using crowd­

sourced data is feasible in low­resource scenar­

ios as we observe improved automatic evalua­

tion metrics across all dialects. We also experi­

mented with the dataset under a high­resource

scenario, where we had access to a large, high­

quality Levantine Arabic corpus from LDC.

In this setting, adding the crowd­sourced data

does not improve the scores on the official

validation set anymore. Our final submission

scores 20.0 BLEU on the official test set.

1 Introduction

Dialectal Arabic speech translation (ST) remains

one of the most challenging tasks in spoken lan­

guage processing due to (i) the scarcity of high­

quality, parallel speech–text resources for non­

standardized varieties, (ii) high phonetic and or­

thographic variability among dialects, and (iii) do­

main mismatches between available corpora (e.g.,

broadcasts in Modern Standard Arabic) and con­

versational speech. Although end­to­end mod­

els and pre­trained encoders have advanced gen­

eral ASR and NMT, most publicly available data

still target Modern Standard Arabic (Al­Fetyani

et al., 2023; Ali et al., 2016), leaving dialectal

variants under­resourced. Previous IWSLT eval­

uations (Yan et al., 2022; Anastasopoulos et al.,

2022; Agarwal et al., 2023; Hussein et al., 2023;

Boito et al., 2022; Ahmad et al., 2024) have tackled

these issues using transfer learning and fine­tuning

strategies, yet a comprehensive solution for multi­

ple dialects is still lacking.

In our IWSLT 2024 submission, ALADAN

achieved first place in the Levantine Arabic task

by combining a cascade ASR pipeline (TDNN­F

+ Zipformer) with fine­tuned NLLB and prompt­

driven LLMs (Command­R), leveraging a crowd­

sourced parallel corpus for Tunisian and Levantine

Arabic. We also demonstrated that prudent data

normalization and a hybrid system combination

(ROVER) yield substantial WER and BLEU im­

provements. Building on this success, our IWSLT

2025 system introduces two key innovations:

• Multi­Dialect ASR with Zipformer­Large:

We replace last year's Zipformer (66M parame­

ters) with the 253M­parameter Zipformer­Large

to better model long­range dependencies and

acoustic nuances in dialectal speech. We also

train a single multi­dialect model instead of

deriving dialect­specific ASR models via fine­

tuning.

• Expanded multi­dialect crowd­sourcing: We

extend our crowd­sourced collection beyond

Tunisian and Levantine to includeMoroccan,Al­

gerian, and Egyptian dialects, yieldingmore than

160k new parallel sentences after rigorous qual­

ity control. These data are used to fine­tune the

NLLB­200 and Cohere Command­R models un­

der QLoRA, enhancing cross­dialect robustness.

Our paper is organized as follows. Section 2 de­

tails the data collection and normalization proce­

dures. Section 3 presents our ASR and ST models,

detailing their architecture, training, fine­tuning,

and performance on Levantine datasets and inter­

nal tests. In Section 4, we conclude with a discus­

sion of future directions for low­resource dialect
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translation.

2 Methods

2.1 Text normalization

The absence of standardized conventions across

different Arabic dialects requires the development

of robust text normalization procedures to reduce

ambiguity. In this work, we adopt the same text

normalization methodology used in Ben Kheder

et al. (2024). Our normalization process operates

on the character­ and word­level. Character­level

normalization promotes uniformity in the ortho­

graphic representation of various dialects, improv­

ing consistency across datasets. Table 1 summa­

rizes the rules used in our experiments.

Dialect Normalizations

All dialects ژ => ر پ/ ب<=

apc/arz/ary ڤ orڥ ف<=

aeb/arq ڤ => ق ڥ/ ف<=

ary ڭ => ق گ/ => ق

Table 1: Characters normalization rules for different

Arabic dialects.

Word­level normalization, on the other hand, ad­

dresses orthographic variability in dialectal Arabic

and foreign words. This step employs rules de­

rived from a combination of a Word2vec model

and a weighted Levenshtein distance to identify or­

thographically similar words appearing in compa­

rable contexts. This process helps normalize clus­

ters of words such as:

• The Tunisian word for "anyway": ،وليساح

وليصاح،ولىصاح،هليصاح،ولوصاح،لويساح،ولصاح .

• The Syrian word for "the computer":

رتويبمكلا،ريتويبوك�لا .

For further details on the methodology, we refer

readers to (Ben Kheder et al., 2024).

2.2 Crowd­sourcing for parallel data

collection

We collaborate with Crowdee1 crowd­sourcing

platform to create a parallel dataset. The goal

was to generate high­quality translations while ad­

dressing the challenges posed by dialectal varia­

tions in Arabic. In these tasks, transcripts from

CTS/YouTube datasets (described in Ben Kheder

et al. (2024)) are used as input.

1Crowdee—https://www.crowdee.de/

2.2.1 Crowd worker filtering

We designed linguistic assessment comprising 40

questions for each of the five dialects. The test

evaluates linguistic competencies, including gram­

mar proficiency and the ability to translate between

the respective dialects and English using multi­

ple choice exercises. Only workers who demon­

strated sufficient linguistic skills were allowed to

contribute to the dataset.

2.2.2 Translation guidelines

To ensure the quality and completeness of transla­

tions, crowd workers receive detailed instructions:

• Providing a translation: Translate a single

sentence from a short conversational excerpt

(6 consecutive sentences corresponding to 3

speaking turns between 2 speakers, extracted

from our internal conversational telephone

data).

• Ranking confidence: Workers were asked

to rate their confidence in their translation as

"correct", "unsure", or "incorrect".

• Suggesting alternatives: Workers were en­

couraged to offer alternative translations if

possible.

• Adding comments: Additional comments

were invited to clarify translation choices or

highlight ambiguities.

2.2.3 Data filtering

Following the translation phase, a data cleaning

procedure was implemented to improve the qual­

ity of the dataset. This included:

• Removing machine­like translations: Sen­

tences with patterns indicative of machine­

generated translations were excluded.

• Language filtering: Sentences that were in

languages other than English (e.g., French or

Arabic) were removed.

• Word count discrepancy: Examples with

significant discrepancies in word count be­

tween the source and target were filtered out.

• Perplexity­based filtering: the GPT­2

model was used to compute the perplexity

of each translated sentence. We removed

all sentences that exceed 10 words with

perplexity greater than 100, as these likely

indicated low­quality translations.
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IWSLT24 IWSLT22 Internal devs (CTS)

valid apc dev aeb test1 aeb apc arz arq ary aeb

TDNN­F 26.5 39.9 40.8 19.8 26.4 28.7 30.7 27.6

Zipformer­Large 21.8 31.7 32.7 14.5 20.8 23.7 23.9 22.3

Both 19.9 30.6 31.8 14.0 19.3 22.1 22.8 21.6

Table 2: WER (%) of ASR models on IWSLT24 Levantine Arabic (apc) validation, IWSLT22 Tunisian Arabic

(aeb) dev/test sets and 5 internal devs (apc, arz, arq, ary, aeb). The Levantine "apc", Egyptian "arz", Algerian "arq"

internal devs correspond to telephone speech (CTS) while the ones for Moroccan "ary" and Tunisian Arabic "aeb"

correspond to YouTube data (radio).

3 Experiments

This section describes our experimental settings,

used data and results.

3.1 Data

In this subsection, we list the datasets we used for

training and evaluating our systems.

3.1.1 ASR data

• Training: We used 4200h of multi­dialect

multi­domain data to train our ASR mod­

els. For more details, readers may refer to

(Ben Kheder et al., 2024).

• Evaluation: The models are evaluated on the

dev sets from IWSLT22 (aeb) and IWSLT24

(apc). We conduct additional tests on inter­

nal devs corresponding to conversational tele­

phone speech ("arq", "arz" and "apc" devs)

and YouTube data ("aeb" and "arz").

3.1.2 NMT data

For the crowd­sourcing experiments, used the

crowd­sourced datasets to finetune the NMT mod­

els and LLMs. The sizes of the datasets are listed in

Table 3. For evaluation, we used a held­out part of

the crowd­sourcing datasets, parts of theAraBench

dataset (Sajjad et al., 2020) and the IWSLT 2024

test set from the dialectal Arabic shared task. For

the final submission, we used the same datasets

as our last year's submission (Ben Kheder et al.,

2024), i.e. LDC2012T09, PADIC,MADAR,Glob­

alVoices, smaller crowd­sourced data, IWSLT22

TunisianArabic and the official training dataset for

this task, provided by the organizers.

Dialect Sentences (k)

arq (Algerian) 51.9

arz (Egyptian) 52.8

ary (Moroccan) 19.1

apc (Levantine) 14.8

aeb (Tunisian) 22.7

Table 3: NMT crowd­sourced dataset sizes.

3.2 Metrics

We score ASR using word error rate (WER). To

measure the quality of the MT, we use 3 met­

rics: BLEU (Papineni et al., 2002), ChrF (Popović,

2015) and XCOMET­XL (Guerreiro et al., 2024).

3.3 ASR

3.3.1 ASR models

Our ASR front­end follows the cascade design

of (Ben Kheder et al., 2024), combining a con­

ventional TDNN­F model with an end­to­end Zip­

former. The key innovation in this year’s sub­

mission is the replacement of last year's 66 M­

parameter Zipformer­M with a much larger, 253

M­parameter "Zipformer­Large" and the design of

a single multi­dialect model (instead of deriving

dialect­specific models via fine­tuning).

1. TDNN­Fmodel: 15 layers of factorizedTDNN

with ReLU activations (layer dimension 1920)

and linear bottlenecks (dimensions 320, 240)

trained using the LF­MMI objective.

2. Zipformer­Large: The base design follows

the "Zipformer­L" configuration of (Yao et al.,

2023), modified as follows:

Configuration

CNN kernel sizes {63, 31, 15, 15, 31, 6}

Encoder hidden dim. {192, 512, 1024, 1536, 512, 256}

Feed­forward dim. {512, 768, 1024, 2048, 1024, 768}

Table 4: Configuration of Zipformer­Large.
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The output of the two models are combined us­

ing the ROVER algorithm.

3.3.2 Training procedure

We train multi­dialect models using all available

data to take advantage of the acoustic and linguis­

tic similarities between different Arabic dialects.

The TDNN­F model is trained for 20 epochs (on

all data) using lr=1e­3 and the Zipformer model is

trained for 80 epochs using lr=4e­3.

3.3.3 Results

Table 2 shows theWERs of ourASR systems after

applying the normalization procedure. This nor­

malization significantly improved the WERs for

"apc" and "aeb" by 10% and 18%, respectively.

The combined model achieved even greater im­

provements, demonstrating the complementarity

of the two models and outperforming all WERs re­

ported in (Agarwal et al., 2023) for "aeb".

3.4 Speech translation

For speech translation (ST), we apply the cascaded

approach: we use the ASR to obtain transcriptions

and then we translate them using an NMT.

3.4.1 MT models

We finetune one pretrained NMT model (NLLB­

1.3B) and 3 LLMs: Command-R V0.1 (4­bit

quantized, CohereForAI/c4ai-command-r-v01-
4bit), Aya Expanse 8B and EuroLLM 9B In-
struct. We useQLoRAfinetuning, using the trans-
formers, peft and trl libraries. We set the LoRA

rank size to r = 32 and α = 16. We finetuned the

models by AdamW optimizer, with warmup ratio

of 0.03. We ran multiple training runs with learn­

ing rates lr = {2e− 4, 1e− 4, 5e− 5, 1e− 5}.

3.4.2 MT results

First, we compare the base and the finetuned mod­

els on the crowd­sourced test set (with reference

transcriptions on the source side) and on the apc

test set from IWSLT 2024 low­resourceArabic Di­

alectal Speech translation task. The results are

presented in Table 5. We see that for all dialects,

the evaluation scores improve significantly for all

models. The best scoring finetuned model across

all the dialects is the Command­R model, while

all the other models are competitive. Of the base

models, without finetuning, Command­R andAya­

expanse­8B provide the best scores. In particular,

for the IWSLT test set (apc/iwslt), we obtain a large

improvement in automated scores even though it is

a different domain (interviews with refugees) from

our crowd­sourced training data (telephone conver­

sations).

We also compare the base and the finetuned

Command­R and NLLB models on the part of the

test sets in the AraBench dataset. The comparison

is shown in Table 10 in Appendix B. Here, base

NLLB performs the best on these test sets and fine­

tuning decreases the performance for NLLB, but

improves it for Command­R.

3.4.3 ST results

We evaluated both base and finetuned NLLB and

Command­R models on ASR outputs from the

crowd­sourced and IWSLT test sets (Tables 6 and

7). As with reference transcriptions, finetuning

with crowd­sourced data significantly improves

performance across dialects. Although the BLEU

and ChrF scores are similar, Command­R consis­

tently outperforms NLLB in XCOMET­XL. Our

finetuned model scores 23.7 BLEU on IWSLT,

compared to 28.7 for the top shared task sys­

tem and 20.9 for the runner­up, despite those sys­

tems using much more fine­tuning data, including

in­domain training set. This shows that crowd­

sourcing is a viable option to improve automated

metric scores for dialectal Arabic ST even on out­

of­domain test sets.

3.5 Final submission

We also finetuned the Command­R model on the

same datasets as our submission from last year

(Ben Kheder et al., 2024). We note that, as op­

posed to the previously described experiments, we

trained the models for document­level translation,

with a maximum context size of 100 lines, same

as last year. We experimented with adding the

crowd­sourced data described earlier on top of

these datasets and the results are shown in Table 8.

Adding crowd­sourced data on top of an already

large and high­quality dataset does not have any

positive effect on BLEU and ChrF scores. For the

final submission, we selected 29 checkpoints with

best BLEU scores on the validation set, translated

the test set with them and ran Minimum Bayes

risk decoding using wmt22­comet­da score as the

objective function. The final official results from

IWSLT2025 (Abdulmumin et al., 2025) are shown

in Table 9.
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Base model Finetuned model

Model Language BLEU ChrF COMET BLEU ChrF COMET

NLLB

arq 5.8 25.9 0.558 24.8 47.8 0.765
arz 14.8 36.9 0.586 31.8 52.9 0.807
apc 15.4 38.0 0.657 29.5 51.0 0.836
ary 16.2 39.7 0.528 33.5 55.4 0.726

aeb 17.3 40.2 0.549 30.9 53.2 0.741
iwslt24/apc 19.2 44.6 0.689

Command­R­V0.1­4bit

arq 12.6 34.3 0.573 28.8 49.2 0.778

arz 18.0 42.1 0.624 33.2 53.6 0.820

apc 20.1 42.4 0.661 35.4 55.7 0.856

ary 20.2 44.5 0.596 33.3 54.7 0.718
aeb 20.3 44.8 0.613 31.0 53.4 0.759

iwslt24/apc 19.7 45.9 0.818 28.2 53.4 0.848

EuroLLM­9B

arq 9.8 31.3 0.519 27.0 48.2 0.773
arz 21.1 44.5 0.611 32.3 52.7 0.805
apc 16.0 40.2 0.599 31.8 52.6 0.839
ary 19.5 45.1 0.514 31.7 53.7 0.712
aeb 21.1 45.6 0.578 29.7 52.2 0.750

Aya­expanse­8b

arq 13.4 34.7 0.557 26.8 47.8 0.775
arz 24.8 47.3 0.632 32.8 53.1 0.815
apc 21.8 43.7 0.644 33.0 53.1 0.845
ary 24.8 48.4 0.568 31.8 53.1 0.707
aeb 23.4 47.9 0.607 29.3 51.7 0.747

Table 5: Results of base and finetuned models on our test sets and IWSLT 2024 test set in text­to­text translation

(using reference transcriptions of the source speech as the source for the MT).

Language BLEU ChrF COMET

NLLB

arq 6.0 23.7 0.567
arz 13.3 34.9 0.609
apc 13.6 34.3 0.663
ary 14.2 36.1 0.522
aeb 13.6 35.2 0.504

Command­R

arq 7.0 27.0 0.569
arz 15.5 36.9 0.607
apc 17.1 38.6 0.671
ary 17.3 40.4 0.563
aeb 18.0 40.8 0.559

iwslt24/apc 16.5 42.1 0.766

Table 6: Cascaded speech translation scores of base,

non­finetuned models on our test sets (using our ASR

transcriptions of the source speech).

4 Conclusions

In this work, we demonstrated that carefully engi­

neered data collection and model adaptation can

substantially advance low­resource dialectal Ara­

bic speech translation. By expanding our crowd­

sourced parallel corpus to five dialects (Tunisian,

Levantine, Moroccan, Algerian, Egyptian), includ­

ing rigorous qualification tests and multi­stage fil­

tering, we provided rich, targeted material for

NMT fine­tuning. Upgrading our acoustic front­

end to a 253 M­parameter Zipformer­Large and

combining it with TDNN­F via ROVER further

drove down WER. On the translation side, fine­

tuning NLLB­200 and Command­R models, with

NLLB

Language BLEU ChrF COMET

arq 21.2 40.7 0.731
arz 26.2 46.3 0.757
apc 24.2 44.2 0.790
ary 25.7 47.8 0.643
aeb 23.2 45.4 0.646

Command­R

arq 21.7 41.6 0.741
arz 26.0 46.7 0.767
apc 27.2 47.6 0.805
ary 25.4 47.1 0.652
aeb 23.2 45.4 0.673

iwslt24/apc 23.7 48.6 0.803

Table 7: Cascaded speech translation scores of fine­

tuned models on our test sets.

Valid 2024 Test 2024

2024 dataset 2024 ASR 30.3/53.5 27.5/50.6
2025 ASR 31.4/54.7 27.4/50.3

Human 33.5/58.5 ­

+new crowd 2024 ASR 29.9/53.3 27.4/50.3
2025 ASR 31.1/54.6 27.2/50.2

Human 33.6/58.7 ­

Final MBR 32.5/55.6 28.0/51.7

Table 8: BLEU/ChrF scores of document­level models

trained on our last year's dataset and after adding the

new crowd­sourced dataset described above. We also

compared using our last year's ASR model with this

year's improved model and to the human reference tran­

scription.
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Submission Name BLEU COMET CHRF

AIB_Marco contrastive1 15.82 0.6456 36.23
AIB_Marco contrastive2 10.53 0.5727 27.69
AIB_Marco contrastive3 16.22 0.6669 37.48
AIB_Marco contrastive4 16.47 0.683 37.96
AIB_Marco primary 12.01 0.6547 34.19
ALADAN primary 20.02 0.6613 39.91

jhu contrastive1 15.39 0.6569 35.91
jhu primary 14.64 0.6493 36.23
lia contrastive1 21.02 0.6983 42.92
lia contrastive2 21.45 0.694 43.13
lia primary 22.56 0.7193 44.72
kit contrastive1 19.11 0.6832 40.95
kit contrastive2 21.93 0.6968 44.67
kit primary 23.34 0.7043 45.09

Table 9: The official results of the Levantine Arabic

task from IWSLT 2025. Our submission in bold.

QLoRA for the latter, on this multi­dialect dataset

yielded significant BLEU and COMET gains on

our in­domain test sets. These findings confirm

that combining expanded crowd­sourcing with un­

supervised data augmentation and model scaling

is a viable and resource­efficient strategy to boost

dialectal Arabic translation, even when faced with

new domains. However, our experiments with the

final submission show that adding this dataset on

top of already extensive, high­quality corpora we

used to train our last year's submission does not im­

prove BLEU and ChrF scores on the official vali­

dation set. This suggests that the crowdsourcing

approach is more viable in low­resource scenarios,

as the knowledge provided by the crowdsourced

dataset might already be covered in the larger cor­

pora.
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A Document­level translation

We also compared line­by­line translation to trans­

lating the whole conversation for the crowd­

sourced dataset. We used the same document­level

prompt as (Ben Kheder et al., 2024). Surprisingly,

in this case translating line by line worked bet­

ter. We hypothesize that the repetitiveness of the

dataset causes this. Many simple utterances (e.g.

"Yeah.") are repeated next to each other in the train­

ing data, which leads the model to overestimate

the probability of repeating the same line in the

document­level translation. We leave a better un­

derstanding of this issue for future work.

B AraBench test set

We also evaluated our model on test sets from the

AraBench (Sajjad et al., 2020) benchmark, specif­

ically the MADAR (Bouamor et al., 2018) test

sets for dialects we used during finetuning. Con­

trary to the results on other test sets, the base

NLLB model scores the best, and fine­tuning on

our crowd­sourced data hurts the evaluation scores.

For Command­R, finetuning improves the scores

compared to the Command­R base model, but still

does not outperform base NLLB. We hypothesize

that this might be caused by presence of the test

set in the NLLB's training dataset, or by domain

mismatch.
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Base Finetuned

BLEU ChrF COMET BLEU ChrF COMET

NLLB

madar.test.lev.0.jo.ar 47.3 65.2 0.924 42.3 61.5 0.938
madar.test.lev.0.lb.ar 42.1 59.5 0.863 36.3 54.9 0.884
madar.test.lev.0.pa.ar 45.6 62.4 0.911 41.9 59.5 0.928
madar.test.lev.0.sy.ar 45.9 62.9 0.911 41.5 59.4 0.926
madar.test.lev.1.jo.ar 47.4 64.4 0.876 43.7 61.4 0.930
madar.test.lev.1.sy.ar 47.1 63.9 0.899 41.3 59.7 0.909
madar.test.mgr.0.ma.ar 41.3 59.6 0.859 37.8 56.8 0.891
madar.test.mgr.0.tn.ar 36.4 54.4 0.818 31.7 50.5 0.845
madar.test.mgr.1.ma.ar 47.4 65.2 0.889 44.7 62.9 0.915
madar.test.mgr.1.tn.ar 30.6 49.4 0.815 27.0 46.4 0.844
madar.test.nil.0.eg.ar 45.7 63.1 0.904 41.3 59.8 0.931
madar.test.nil.1.eg.ar 52.8 68.8 0.926 50.2 66.5 0.944

Command­R

madar.test.lev.0.jo.ar 39.3 59.3 0.943 42.8 61.1 0.946
madar.test.lev.0.lb.ar 29.9 50.6 0.876 33.4 53.0 0.892
madar.test.lev.0.pa.ar 39.4 58.2 0.934 43.9 60.4 0.942
madar.test.lev.0.sy.ar 39.0 58.3 0.931 42.1 59.5 0.941
madar.test.lev.1.jo.ar 40.5 59.5 0.929 43.8 61.6 0.938
madar.test.lev.1.sy.ar 39.6 58.6 0.918 42.9 60.5 0.928
madar.test.mgr.0.ma.ar 33.7 54.4 0.885 37.1 56.0 0.895
madar.test.mgr.0.tn.ar 22.2 42.9 0.792 29.5 48.2 0.847
madar.test.mgr.1.ma.ar 38.4 59.3 0.909 42.7 60.7 0.916
madar.test.mgr.1.tn.ar 20.0 40.8 0.805 25.3 44.5 0.850
madar.test.nil.0.eg.ar 40.1 59.4 0.935 43.0 60.9 0.942
madar.test.nil.1.eg.ar 45.5 63.5 0.943 50.2 66.5 0.952

Table 10: Automatic evaluation scores of base and finetuned models on MADAR test sets from the AraBench

benchmark.
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Abstract

This article describes the QUESPA team
speech translation (ST) submissions for the
Quechua to Spanish (QUE–SPA) track fea-
tured in the Evaluation Campaign of IWSLT
2025: dialectal and low-resource speech trans-
lation. This year, there is one main submission
type supported in the campaign: unconstrained.
This is our third year submitting our ST sys-
tems to the IWSLT shared task and we feel
that we have achieved novel performance, sur-
passing last year’s submission. This year we
submit three total unconstrained-only systems
of which our best (contrastive 2) system uses
last year’s best performing pre-trained language
(PLM) model for ST (without cascading) and
the inclusion of additional Quechua–Collao
speech transcriptions found online. Fine-tuning
of Microsoft’s SpeechT5 model in a ST set-
ting along with the addition of new data and
a data augmentation technique allowed us to
achieve 26.7 BLEU. In this article, we present
the three submissions along with a detailed de-
scription of the updated machine translation
system where a comparison is done between
synthetic, unconstrained, and other data for
fine-tuning.

1 Introduction

In this article, we describe three systems that were
submitted to the IWSLT 2025 Low-Resource Track
for Speech Translation (ST). The IWSLT task is
particularly challenging for low-resource languages
(LRLs) due to the lack of data needed to create,
or even fine-tune, a pre-trained language model
(PLM). While many problems are solvable with
APIs provided by large corporations such as Chat-
GPT or Gemini, it is still the case that for LRLs,
zero-to-few shot approaches are needed where
corporate-level APIs do not contain enough data
either. Here, we describe three main approaches
that extend previous approaches submitted in the
past three iterations of IWSLT (Ahmad et al., 2024;

Agarwal et al., 2023; Anastasopoulos et al., 2022)
where the best score gotten for ST until this pub-
lishing based on BLEU (Papineni et al., 2002) for
the Quechua to Spanish task was: 19.7, submittted
by this same team QUESPA.

Quechua is an indigenous language spoken by
more than 8 million people in South America. It is
mainly spoken in Peru, Ecuador, and Bolivia where
the official high-resource language (HRLs) is Span-
ish. It is a highly inflective language based on its
suffixes which agglutinate and found to be similar
to other languages like Finnish. It is worthwhile to
note that previous work (Ortega and Pillaipakkam-
natt, 2018; Ortega et al., 2020) has been somewhat
successful in identifying the inflectional proper-
ties of Quechua such as agglutination where an-
other HRLs, namely Finnish, can aid for translation
purposes achieving nearly 20 BLEU on religious-
based (text-only) tasks. The average number of
morphemes per word (synthesis) is about two times
larger than English. English typically has around
1.5 morphemes per word and Quechua has about
3 morphemes per word. There are two main re-
gion divisions of Quechua known as Quechua I and
Quechua II. This data set consists of two main types
of Quechua spoken in Ayacucho, Peru (Quechua
Chanka ISO:quy) and Cusco, Peru (Quechua Col-
lao ISO:quz) which are both part of Quechua II and,
thus, considered a “southern” languages. We label
the data set with que - the ISO norm for Quechua
II mixtures.

The QUESPA team this year consists of four or-
ganizers from four different institutions: Northeast-
ern University, Pompeu Fabra University, Carnegie
Melon University and University of Pretoria. A
new organizer has been introduced this year who
has expertise in machine translation (MT) of
African languages. All of the IWSLT 2024 or-
ganizers have continued to work on the project
with exception of one. Three of the four organizers
have had experience with the QUE–SPA language

260



pair in the past and submitted have already submit-
ted three times to IWSLT, making this article the
fourth submission with an increase of BLEU score
for each year’s submission. We report the QUESPA
consortium submission for the IWSLT 2025 and
once again focus on the low-resource task at hand
by combining all the two dialects Quechua I and II
into one. However, we specifically make use of the
Quechua II variant in Collao (ISO:quz), given the
discovery of a new corpus.

The rest of this article is organized as follows.
Section 2 presents the related work. Since we
would like to highlight the addition of our MT com-
parisons and systems by a new author, we present
a section dedicated to the MT delivery in Section
3.1. Afterwards, we present experiments for the
for QUE–SPA low-resource track are presented in
Section 3 and present their results in Section 4 pro-
vides.

2 Related Work

In this section, we first cover the different ap-
proaches used in previous speech processing shared
tasks for Quechua (Section 2.1). We then discuss
prior work that used a similar strategy to our pri-
mary submission to the unconstrained track (Sec-
tion 2.2).

2.1 Quechua Speech Processing

The previous iteration of IWSLT (Agarwal et al.,
2023) was the first time that Quechua–Spanish
was featured in the low-resource ST track. Due
to the small amount of available paired data, the
participants focused on exploiting PLMs for speech
and/or text in the unconstrained track. The teams
all converged on using XLS-R 128 (Babu et al.,
2021) as the pre-trained speech encoder, while
NLLB 200 (NLLB Team et al., 2022) was the most
popular text PLM. However, the teams used the
PLMs in very different manners. QUESPA (E. Or-
tega et al., 2023) separated the PLMs into distinct
systems for an ASR+MT cascade, GMU (Mbuya
and Anastasopoulos, 2023) performed full fine-
tuning on XLS-R for direct ST, and NLE (Gow-
Smith et al., 2023) combined the two PLMs via
adapter fine-tuning. By using PLMs for both the
input and output modalities, NLE and QUESPA
obtained the best performances at 15.7 and 15.4
BLEU respectively. For the constrained track, de-
veloping a usable system was far more difficult to
achieve. In this setup, the best performing model

was a direct ST system by GMU that achieved 1.46
BLEU. The QUESPA team adopted a near-identical
strategy to achieve 1.25 BLEU.

Quechua–Spanish ST was also featured as part
of a similar competition in the 2022 edition of
AmericasNLP (Ebrahimi et al., 2022). Similar
to IWSLT 2023, participants experimented with
different ways of leveraging PLMs. XLS-R and
NLLB were popular choices, but some teams also
experimented with DeltaLM (Ma et al., 2021) and
Whisper (Radford et al., 2023).

Quechua was most recently part of the 2023
ML-SUPERB Challenge (Shi et al., 2023), which
tasked participants on evaluating different self-
supervised (SSL) speech encoders on long-tail lan-
guages. Chen et al. (2023a) found that XLS-R 128
outperformed all other SSL encoders on Quechua,
further validating its popularity in the other compe-
titions.

2.2 Multilingual Speech Processing

Multilingual training is a common strategy to facil-
itate cross-lingual transfer learning, with the goal
of boosting performance on LRLs. While this is
generally done by pairing HRLs with low-resource
ones, it can also be beneficial in settings where only
LRLs are available. Chen et al. (2023b) trained
multilingual ASR systems on 102 languages, each
in a low-resource setting, and obtained state-of-
the-art (SOTA) results on the FLEURS benchmark
(Conneau et al., 2023). Radford et al. (2023) and
Peng et al. (2023) then combined multilingual ASR
and ST at scale, developing SOTA models through
supervised training on hundreds of thousands of au-
dio samples. Our strategy for the unconstrained
track can be viewed as a combination of these
two methods, enhancing performance on Quechua–
Spanish using multilingual ST training with other
LRLs.

3 Quechua-Spanish

In this section we present our experiments for the
QUE–SPA dataset provided in the low-resource ST
track at IWSLT 20251, identical to the dataset from
IWSLT 2024. As a reminder, the audio consists of
contains 1 hour and 40 minutes of unconstrained
speech along with its corresponding translations
and nearly 48 hours of ASR data (with transcrip-
tions) from the Siminichik (Cardenas et al., 2018)

1https://github.com/Llamacha/IWSLT2025_
Quechua_data
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corpus. Additionally, an MT dataset is offered from
previous neural MT work (Ortega et al., 2020). The
audio and corresponding transcriptions along with
their translations are mostly made of radio broad-
casting from the mountainous region in the Andes,
Peru. This dataset has been used in other tasks
but not in its entirety (Ebrahimi et al., 2023, 2022;
Zevallos et al., 2022a). This year there has been
a new addition to the dataset provided by the task
which is a machine-translated and post-edited text
of the Huqariq corpus (Zevallos et al., 2022b) that
was used last year by this team (Ortega et al., 2024)
for augmentation of the best performing T5 model
(Raffel et al., 2020).

We present the three submissions for uncon-
strained task ony as this year the constrained task
has been abandoned:

1. a primary unconstrained system consisting
of a Mamba ASR model (Zhang et al., 2024)
fine-tuned with unconstrained data and cas-
caded the best performing NLLB MT system
from our case study;

2. a contrastive 1 unconstrained system con-
sisting of a Whisper (Radford et al., 2023)
ASR model fine-tuned with the unconstrained
data and cascaded with the best performing
NLLB MT system from our case study;

3. a contrastive 2 unconstrained system con-
sisting of a SpeechT5 model (Ao et al., 2021)
fine-tuned for speech translation with two data
augmentation techniques and an additional
newly introduced corpus based on Quechua
Collao (iso: quz) (Paccotacya-Yanque et al.,
2022).

We present the experimental settings and results
for unconstrained systems starting off with the MT
case studies in Section 3.1. Then, we describe the
task further in Section 3.2. Primary, Contrastive 1
and Constrastive 2 descriptions are found in Sec-
tions Sections 3.3, 3.4 and 3.5, respectively. After-
wards, we offer results and discussion in Section 4.

3.1 Machine Translation
Our MT systems were all trained by fine-tuning the
1.3B parameter version2 of the NLLB_200 (NLLB
Team et al., 2022). For fine-tuning, we set max-
imum token lengths of 128 for both inputs and

2https://huggingface.co/facebook/nllb-200-1.
3B

outputs. Each model was trained for 10 epochs
with a batch size of 8 for both training and evalua-
tion, using 5 beams during generation. We saved
model checkpoints every 10,000 steps and set a
random seed of 65 to ensure reproducibility.

We trained four models, with each model using
a different training dataset. The first three mod-
els were trained strictly on datasets provided in
the shared task. The first model was fine-tuned on
the unconstrained data (U; Cardenas et al. 2018).
We then increased the training data using the pro-
vided additional_mt_text dataset (A; Ortega
et al. 2020) to train the second model. This data
consists of texts from JW300 (Agić and Vulić,
2019) and Hinantin websites. For the third model,
we further expanded the training data by incorpo-
rating the provided synthetic data (S; Zevallos
et al. 2022b) dataset. The sizes of the training data
for the three models are 573, 15,857, and 17,265
sentences, respectively.

The fourth model was trained on the largest avail-
able dataset. In this setting, we used additional
resources (AR) including SMOL (Caswell et al.,
2025), GATITOS (Jones et al., 2023), spanish-to-
quechua,3 and cuzco-quechua-translation-spanish4.
The SMOL and GATITOS datasets consist of
863 and 3,717 sentences, respectively. The two
latter datasets each contain over 100k sentences
(103k and 106k), though we observed overlap be-
tween them. To address this, we deduplicated the
Quechua sentences after merging the datasets. Af-
ter merging all available datasets, including those
provided in the shared task, and performing dedu-
plication, the total number of training sentences
amounted to 167,052.

For each of the four models, we experimented
with two different validation datasets. The first was
the 125 parallel sentences provided for validation
in the shared task. In the second, we expanded this
set by adding the 2,500-sentence JW300 validation
dataset, also provided in the shared task. In the lat-
ter setup, our goal was to ensure more generalizable
models. However, we identified several issues in
the JW300 validation data that required preprocess-
ing, including instances where the source and target
sentences were identical. After preprocessing and
cleaning, the expanded validation set consisted of

3https://huggingface.co/datasets/
somosnlp-hackathon-2022/spanish-to-quechua

4https://huggingface.co/
datasets/pollitoconpapass/
cuzco-quechua-translation-spanish
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Model-[Data]
BLEU CHRF

Vs Vl Ts Tl Trw Trm Vs Vl Ts Tl Trw Trm
MT-[U] 18.5 18.5 17.3 17.3 11.8 11.4 53.9 53.8 54.1 54.1 46.5 46.0
MT-[U + A] 19.5 19.3 18.0 17.5 15.0 14.8 54.7 54.3 54.9 54.3 52.4 51.8
MT-[U + A + S] 14.6 14.3 13.3 13.6 12.3 11.6 48.0 47.7 48.4 48.8 46.9 47.4
MT-[U + A + S + AR] 15.1 14.2 13.2 13.3 12.4 12.5 48.4 48.5 48.1 48.2 46.9 47.3

Table 1: Performance of the four models on the validation and test sets. We also report results on transcripts
generated from the test set, evaluated on models trained with the large validation set. KEY: T = test set, V =
validation set, Tr = transcripts. s and l denote the small and large validation sets, respectively. w and m denote the
Whisper and Mamba models, respectively. U = unconstrained, A = additional_mt_text, S = synthetic, AR =
additional resources.

2,309 parallel sentences.
Table 1 presents the performance of the four

machine translation models across different evalua-
tion setups, measured using both BLEU and CHRF
scores. Overall, the results indicate that while more
data leads to better performances, the quality of the
additional data matters. The first model, MT-[U],
shows decent performance with a BLEU score of
18.5 on the large validation set and 17.3 on the test
set, with strong CHRF scores ranging between 46
and 54. The second model, MT-[U + A], achieves
better BLEU and CHRF scores, particularly on the
transcript evaluations.

The third model, MT-[U + A + S], which incor-
porates synthetic data, shows a noticeable decline
in both BLEU and chrF scores across all evaluation
sets—most prominently on the test and validation
sets. This drop suggests that the inclusion of syn-
thetic data, if not carefully curated, can adversely
affect model performance. The final model, MT-[U
+ A + S + AR], demonstrates a slight improvement
over MT-[U + A + S] across the evaluation sets.
However, it does not fully recover the performance
lost when synthetic data was added to MT-[U + A].
This outcome highlights a crucial insight: although
expanding training data with additional and diverse
resources can enhance model generalization, intro-
ducing even a small amount of lower-quality data
can undermine those gains. Careful data quality
control is therefore essential when scaling datasets
for low-resource machine translation.

3.2 Unconstrained Setting

Just like in IWSLT 2024, the organizers provided
a total of 48 hours of audio along with their cor-
responding transcriptions. In addition, we trans-
lated the 48 hours of audio provided by the or-
ganizers into Spanish. Furthermore, we utilized a

portion of the AmericasNLP5 (ANLP) 2022 speech
translation competition corpus, which consists of
19 minutes of Guarani and 29 minutes of Bribri,
fully translated into Spanish. Although it is not a
Quechua corpus, these languages have morpholog-
ical similarities with Quechua, so we decided to
experiment to see if that improves our models. As
a new addition, we used the data set from previ-
ous work on Quechua Collao (Paccotacya-Yanque
et al., 2022) which, much like the IWSLT 2025
corpus, is part of the Quechua II division. Finally,
all the datasets described in this section allowed for
further fine-tuning of the previously trained end-to-
end speech translation model.

3.3 Primary System

The Primary System for the unconstrained set-
ting consists of a cascaded architecture, where the
output of an automatic speech recognition (ASR)
model is passed as input to a machine translation
(MT) model. For the ASR component, we employ
ConMamba (Jiang et al., 2024), a recent extension
of the Mamba architecture that integrates convo-
lutional modules into its encoder blocks, inspired
by Conformer (Gulati et al., 2020). This hybrid
design enhances the model’s ability to capture both
global and local dependencies. The encoder archi-
tecture comprises a sequence of modules: an ini-
tial feedforward layer with residual connection, a
bidirectional Mamba module (BiMamba) for long-
range dependency modeling, a convolutional layer
for local context enhancement, and final layer nor-
malization and refinement through another feedfor-
ward module (Tang et al., 2024). This combination
results in a balanced and efficient encoding mecha-
nism for speech signals.

5https://turing.iimas.unam.mx/americasnlp/
2022_st.html
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Figure 1: Overiew of the cascaded Contrastive 1 system. The input audio is passed into Whisper, which auto-
regressively generates a Quechua transcription. The transcription hypothesis is then passed to NLLB to be translated
into Spanish.

On the decoder side, we incorporate Cross-
Mamba, a unidirectional variant tailored for se-
quential processing without native cross-attention.
CrossMamba simulates cross-attention by concate-
nating key and query sequences, retaining only the
relevant portion of the output. This mechanism
allows for effective integration of encoder context
through a structured decoding pipeline: normal-
ization, unidirectional Mamba (UniMamba), a sec-
ond normalization step, CrossMamba integration,
and a final feedforward refinement. We train both
ConMamba and Conformer models using publicly
available recipes6, experimenting with small (S)
and large (L) configurations (144/512 dimensions,
12+4/12+6 layers). Training is performed over 110
epochs using AdamW with a Noam scheduler (30k
warm-up steps), and audio is tokenized with a BPE
tokenizer trained for each language using Speech-
Brain7. Once the speech is transcribed, we feed the
resulting text into the machine translation model
previously described, leveraging its capabilities to
produce the final translated output in a cascaded
speech translation setup.

3.4 Contrastive 1 System

The Contrastive 1 system is a simple ASR+MT cas-
cade. We develop the ASR module by fine-tuning
Whisper Large V3 (Radford et al., 2023) on the

6https://github.com/xi-j/Mamba-ASR
7https://github.com/speechbrain/speechbrain/

tree/develop/recipes/LibriSpeech/Tokenizer

entire 48 hours of unconstrained Quechua ASR
data in ESPnet (Watanabe et al., 2018). Whisper
consists of a Transformer encoder and Transformer
decoder (Vaswani et al., 2017). The bidrectional en-
coder receives mel audio features as input, whereas
the decoder is conditioned on a language identity
tag and the encoder output (Figure 1). The model
is trained for 22K steps with the Adam optimizer
(Kingma and Ba, 2015). We use a scheduler that
linearly warms up the learning rate to a peak value
of 1e-5 for 1500 steps, followed by exponential
decay for the remainder of training (Vaswani et al.,
2017). ASR inference is performed with greedy
decoding, the results of which are then passed to
the NLLB-based MT model described in Section
3.1.

3.5 Contrastive 2 System
The Contrastive 2 System for the unconstrained
setting consists of a pre-trained model called
SpeechT5 (Ao et al., 2022) , which was trained on
960 hours of audio from LibriSpeech. SpeechT5
consists of 12 Transformer encoder blocks and 6
Transformer decoder blocks, with a model dimen-
sion of 768, an internal dimension (FFN) of 3,072,
and 12 attention heads. Additionally, the voice
encoder’s pre-net includes 7 blocks of temporal
convolutions. Both the pre-net and post-net of
the voice decoder used the same configuration as
in Shen et al. (2018), except that the number of
channels in the post-net is 256. For the text en-
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Team QUESPA BLEU and CHRF Scores

Unconstrained 2025

System Description BLEU CHRF
primary mamba asr + nllb mt 14.8 51.8
contrastive 1 whisper-v3 asr + nllb mt 15.0 52.4
contrastive 2 speechT5 + anlp + da-tts + nlpaug* + quz 26.7 48.6

Unconstrained 2024

primary speechT5 + aug 16.0 52.2
contrastive 1 speechT5 + anlp + da-tts + nlpaug* 19.7 43.1
contrastive 2 whisper asr + nllb mt 11.1 44.6

Table 2: Team QUESPA results for the Quechua to Spanish low-resource task at IWSLT 2025.

coder/decoder’s pre/post-net, a shared embedding
layer with a dimension of 768 is utilized. For vec-
tor quantization, two codebooks with 100 entries
each are used for the shared codebook module. The
model was trained using the normalized training
text from the LibriSpeech language model as unla-
beled data, which contains 400 million sentences.
Training was optimized using Adam (Kingma and
Ba, 2015), with a learning rate that linearly in-
creases during the first 8% of updates up to a maxi-
mum of 0.0002.

We fine-tuned SpeechT58 for Speech Translation
using the SpeechT5 fine-tuning recipe9 for Speech-
Translation with the same hyperparameter settings.
We used the 48 hours of audio provided by the or-
ganizers (anlp). We applied a data augmentation
technique called nlpaug (noise, distortion, dupli-
cation)10 (Ma, 2019), resulting in a total of 96h:
48h original + 48h synthetic data + 15 hours of
Quechua Collao (Paccotacya-Yanque et al., 2022)
(quz) .

4 Results and Discussion

Results are presented in Table 2. When compared
to IWSLT 2024 (Ahmad et al., 2024; Ortega et al.,
2024), it is clear that Speech Translation as a task
is best performed using a multi-lingual transformer
such as the Speech T5 model. Addtionally, by
fine-tuning the Speech T5 model, we were able to
increase the score by a dramatic 7 BLEU points by
the addition of data found online. Additionally, the
introduction of the latest Whisper model (version 3)
seems to show promising increases when compared
to last year’s result by this team.

8https://github.com/microsoft/SpeechT5
9https://github.com/microsoft/SpeechT5/tree/

main/SpeechT5
10https://github.com/makcedward/nlpaug

5 Conclusion and Future Work

Our submission to the IWSLT 2025 (Abdulmumin
et al., 2025) evaluation campaign for low-resource
and dialect speech translation has included novel-
ties based on the most state-of-the-art techniques
for ASR and ST. The addition of three new charac-
teristics: 1) a new Quechua Collao corpus (referred
to as quz) and 2) the introduction of a stateless ASR
model (Mamba) along with 3) a machine transla-
tion case study. These three new inclusions have
brought to light what MT systems, corpus, and
ASR models work best with the language pair when
compared to last year’s work.

Next year, we plan to include more human an-
notation and experimentation with the model pre-
sented here since the BLEU score achieved (26.7)
warrant further investigation and annotation. We
also believe that we have localized a Speech Trans-
lation recipe that we allow further iterations of data
in the future to achieve even better performance.
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ter Polák, Piotr Połeć, Beatrice Savoldi, Nivedita
Sethiya, Claytone Sikasote, Matthias Sperber, Se-
bastian Stüker, Katsuhito Sudoh, Brian Thompson,
Marco Turchi, Alex Waibel, Patrick Wilken, Rodolfo
Zevallos, Vilém Zouhar, and Maike Züfle. 2025.
Findings of the iwslt 2025 evaluation campaign. In
Proceedings of the 22nd International Conference

265

https://github.com/microsoft/SpeechT5
https://github.com/microsoft/SpeechT5/tree/main/SpeechT5
https://github.com/microsoft/SpeechT5/tree/main/SpeechT5
https://github.com/makcedward/nlpaug


on Spoken Language Translation (IWSLT 2025), Vi-
enna, Austia (in-person and online). Association for
Computational Linguistics. To appear.

Milind Agarwal, Sweta Agrawal, Antonios Anasta-
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Abstract

This paper investigates approaches for the
IWSLT low-resource track, Track 1 (speech-
to-text translation) for the Maltese language,
focusing on data augmentation and large pre-
trained models. Our system combines Whisper
for transcription and NLLB for translation, with
experiments concentrated mainly on the transla-
tion stage. We observe that data augmentation
leads to only marginal improvements, primar-
ily for the smaller 600M model, with gains up
to 0.0026 COMET points. These gains do not
extend to larger models like the 3.3B NLLB,
and the overall impact appears somewhat incon-
sistent. In contrast, fine-tuning larger models
using QLoRA outperforms full fine-tuning of
smaller models. Moreover, multi-stage fine-
tuning consistently improves task-specific per-
formance across all model sizes.

1 Introduction

Despite increasing advances in multilingual tech-
nologies, the development of speech translation
(ST) systems for low-resource languages contin-
ues to pose significant challenges. Maltese, though
an official language of the European Union, ex-
emplifies these difficulties. Currently, there are
approximately 200 language resources available
for Maltese, a relatively small amount, especially
compared to the availability of resources for lan-
guages spoken in more populous countries (Rosner
and Borg, 2022). With fewer than one million
speakers and a scarcity of both transcribed speech
and parallel text corpora, Maltese remains under-
resourced in the context of speech and language
processing. This paper describes our approach to
the IWSLT 2025 Low-Resource Shared Task for
the Maltese-English language pair.

Speech translation involves two main compo-
nents: transcription and translation. For transcrip-
tion, we primarily fine-tune Whisper (Radford
et al., 2022), while for translation, we fine-tune

NLLB (Team et al., 2022). For the larger NLLB
model, we also incorporate QLoRA (Dettmers
et al., 2023), one of the best parameter-efficient
fine-tuning methods, to accommodate resource con-
straints (Han et al., 2024). However, we treat tran-
scription mainly as a supporting infrastructure and
focus the majority of our experimentation on the
translation component.

Data augmentation techniques have become in-
dispensable in machine translation, particularly
for addressing the challenges posed by limited
parallel data in low-resource languages (Hamed
et al., 2023). The term "low-resource" refers to
the limited availability of data for one of the lan-
guages—in this case, Maltese. A common strategy
to mitigate this issue is data augmentation (Tang
and Lepage, 2023; Takahagi and Shinnou, 2023),
which aims to reduce the likelihood of the model
encountering completely out-of-distribution data
during translation (Wei et al., 2020; Wang et al.,
2018).

Unlike most approaches that augment data by
generating similar text, the method proposed in
(Sánchez-Cartagena et al., 2021) introduces auxil-
iary tasks such as token swapping, sentence re-
versal, and the insertion of UNK tokens to en-
hance model performance. We found this approach
promising and adapted it slightly. Specifically, we
fine-tuned the NLLB model in two stages: first
on both auxiliary tasks and the main translation
task, and then on the main task alone to finalize the
model.

2 System Overview

Our speech translation pipeline comprises three
main components: transcription, machine trans-
lation, and data augmentation. Each component
is optimized to address the specific challenges of
low-resource translation settings.
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Figure 1: illustrates our end-to-end training pipeline for the translation task. The process begins with the official
training data (MASRI + CV Train), which is split into 80% for training and 20% for evaluation. The data is further
passed through a data augmentation module.

2.1 Dataset
For this study, we restrict our training data to the
official dataset released for the IWSLT 2025 shared
task, which consists of approximately 14 hours
of speech data. In addition to this, we leverage
the pretrained capabilities of Whisper (Radford
et al., 2022) and NLLB (Team et al., 2022), both
of which were trained on large-scale multilingual
corpora. However, we do not incorporate any ex-
ternal datasets beyond what was used during the
pretraining of these models.

2.2 Data Splitting and Evaluation Strategy
The dataset is divided into training and validation
sets using an 80:20 split. Each speech instance is
aligned with its corresponding transcription, and
each transcription is paired with a translation from
Maltese to English. The Whisper model is fine-
tuned using the speech-transcription pairs to per-
form automatic speech recognition. Separately,
the NLLB models are fine-tuned on the Maltese-
English text pairs for machine translation. It is
important to note that the NLLB models operate
exclusively on text and do not utilize any speech
data during training.

For evaluation, we use the development set. Eval-
uation is conducted on both individual components
and the complete end-to-end pipeline. Specifically,

we assess transcription and machine translation
quality independently, as well as the overall per-
formance by feeding Whisper-generated transcrip-
tions into the translation model. This evaluation
reflects real-world usage and system robustness.

Performance is measured using the COMET met-
ric (Rei et al., 2020), which provides a semantically-
informed evaluation of translation quality. Notably,
COMET is also the official evaluation metric used
in the shared task competition, ensuring alignment
between our development-time evaluation and the
final scoring criteria.

2.3 Transcription
We use the Whisper large-v3 model (Radford et al.,
2022) for speech transcription. Whisper provides
state-of-the-art performance in multilingual speech
recognition and serves as a reliable backbone for
converting audio input into text.

2.4 Machine Translation
For translation, we employ three variants of the
NLLB model (Team et al., 2022): the 600M dis-
tilled, 1.3B distilled, and 3.3B versions. The
600M model is fine-tuned directly, while the 1.3B
and 3.3B models are fine-tuned using QLoRA
(Dettmers et al., 2023) to facilitate efficient adapta-
tion under limited computational resources.
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Task Type Augmented Training sample

original training sample
source roberto ma kienx jidher inkwitat daqs kuġinuh dwar dan
target Roberto didn’t seem as worried as his cousin about this

swap target Roberto about seem his worried as as cousin didn’t this

token target UNK UNK UNK as worried UNK his UNK about this .

source target roberto ma kienx jidher inkwitat daqs kuġinuh dwar dan

reverse target this about cousin his as worried as seem didn’t Roberto

rephrase target but Joe Calleja did not let him continue
rephrased But Joe Calleja wouldn’t let him go on

Table 1: A Maltese–English, word-aligned training sample (first row) and the result of applying the transformations
described in Sec. 2.5 using hyperparameter = 0.4 for the swap task and = 0.5 for the token task. Words modified
by each transformation are coloured; for swap, a different colour identifies each pair of words that are swapped
together; for rephrased, a different colour identifies each pair of words rephrased.

2.5 Data Augmentation
We follow the multi-task data augmentation (MTL
DA) framework proposed by Sánchez-Cartagena et
al. (2021) (Sánchez-Cartagena et al., 2021), where
several auxiliary tasks are defined to modify target
sequences in ways that challenge the decoder and
reinforce encoder reliance. Among the auxiliary
tasks the swap and token are controlled by a hyper-
parameter α, which determines the proportion of
tokens in the target sentence that are affected. For
instance, in the swap task, α defines the fraction of
target words whose positions are altered; similarly,
in the token task, it defines the proportion of target
words replaced by the [UNK] symbol.

Swap Random swapping of target tokens
to disrupt sequence order.

Token Replacement of target tokens with
the [UNK] symbol.

Source Copying the source sentence to the
target side.

Reverse Reversal of the target token order.

Paraphrase As an additional augmentation
method, we employ a paraphras-
ing approach using NLLB for back-
translation, which translates the tar-
get sentence to Italian and then back
to English.

Although we did not conduct hyperparameter
tuning in our setup, we adopted α = 0.4 for the

swap task and α = 0.5 for the token task, which fall
within the optimal range (typically α ∈ [0.1, 0.9])
explored in the original study. These values were
chosen based on their reported performance and
balancing between task disruption and learnability
as described in (Sánchez-Cartagena et al., 2021).
The choice allows us to benefit from the task’s
intended regularization effect without introducing
excessive noise.

Fine-tuning is conducted in two stages: an initial
phase on a mixture of the main and auxiliary tasks,
followed by a final phase focused solely on the
primary translation task.

3 Results

Model Size and Fine-Tuning Strategy. Our re-
sults indicate that the larger 3.3B NLLB model,
fine-tuned using QLoRA, outperforms the smaller
600M model that is fully fine-tuned. While the
larger models achieve higher overall performance
after fine-tuning, this may partly reflect its stronger
baseline performance. The performance gain from
fine-tuning is actually greater for the smaller 600M
model, suggesting that smaller models benefit more
directly from the fine-tuning process, while larger
models rely more on their pretrained capacity.

Effect of Data Augmentation. For the 3.3B
model, none of the tested data augmentation tech-
niques such as paraphrasing, token swapping, UNK
token insertion, or sentence reversal led to notice-
able gains, with the highest improvement being
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Model Baseline 1st-Stage (DA) 2nd-Stage (DA)

(No DA) Swap Token Source Reverse Paraphrase Swap Token Source Reverse Paraphrase

NLLB 3.3B
pretrained 0.8056 – – – – – – – – – –
NLLB 1.3B
distilled 0.8018 – – – – – – – – – –
NLLB 600M
distilled 0.7858 – – – – – – – – – –

NLLB 3.3B
fine-tuned 0.8323 0.8320 0.8310 0.8275 0.8316 0.8196 0.8322 0.8323 0.8320 0.8321 0.8324
NLLB 1.3B
fine-tuned 0.8275 – – – – – – – – – –
NLLB 600M
fine-tuned 0.8223 0.8235 0.8221 0.8198 0.8229 0.8186 0.8240 0.8250 0.8229 0.8249 0.8241

Whisper to NLLB 3.3B
fine-tuned 0.7602 0.7608 0.7595 0.7512 0.7601 0.7499 0.7604 0.7602 0.7607 0.7601 0.7601
Whisper to NLLB 600M
fine-tuned 0.7472 0.7507 0.7477 0.7452 0.7495 0.7481 0.7501 0.7495 0.7493 0.7529 0.7503

Table 2: COMET scores for two-stage fine-tuning. The first three rows show pretrained NLLB models without
fine-tuning. The next three rows show the NLLB models after fine-tuning. Baseline: no data augmentation;
1st-Stage: scores with data augmentation (DA); 2nd-Stage: another fine-tuning without DA.

just 0.001 COMET points from paraphrasing. The
600M model, on the other hand, showed slightly
better results, with consistent but small improve-
ments across all methods, reaching up to 0.0026
COMET points. While the gains for the smaller
model are more apparent, they remain modest.
These results suggest that data augmentation may
be more useful for smaller models, which benefit
more from the added variability due to their limited
capacity. This aligns with prior findings (Sánchez-
Cartagena et al., 2021), where augmentation strate-
gies had a greater effect on less-pretrained models.

Impact of Multi-Stage Fine-Tuning. The two-
stage fine-tuning approach, where models are first
trained on a mix of auxiliary and primary transla-
tion tasks and then fine-tuned solely on the main
task, resulted in performance improvements across
all model sizes. This shows that a final alignment
phase focused on the primary objective enhances
model performance and task-specific adaptation.

End-to-End Performance. Table 2 shows that
feeding Whisper transcriptions into the NLLB mod-
els lowers COMET by around 0.07–0.076 points
across all settings. This degradation is most likely
caused by transcription errors from the ASR stage,
which the MT component cannot fully recover
from. Notably, the highest end-to-end COMET
score achieved was 0.7608, obtained using Whisper
to NLLB 3.3B fine-tuned model with swap-based
augmentation in the first stage. For the official test
set submission in the unconstrained setting, this
same system achieved 45.4 BLEU and 65.11 chrF.

4 Limitations

The limitation of our study is the lack of exten-
sive qualitative analysis due to limited language
proficiency. Since we do not fully understand the
language in the dataset, our analysis primarily re-
lies on quantitative methods.

5 Conclusion

In this paper, we explore the use of pre-
trained models—Whisper for ASR and NLLB for
MT—alongside data augmentation and parameter-
efficient fine-tuning methods. Our experiments
show that fine-tuning larger NLLB models using
QLoRA outperforms full fine-tuning on smaller
models. Two-stage fine-tuning also provides con-
sistent performance improvements across model
sizes. In contrast, data augmentation offers only
marginal benefits, limited to the smaller 600M
model, and the improvements appear inconsistent.

These findings highlight the promise of scal-
able fine-tuning techniques for translation in low-
resource settings. However, our focus on MT fine-
tuning overlooks the more significant impact of
ASR errors, which remain a primary source of per-
formance degradation in the end-to-end pipeline.
This suggests that future research should priori-
tize improvements in the ASR component. Fur-
ther work could also explore more targeted data
augmentation strategies, end-to-end fine-tuning ap-
proaches, and incorporate qualitative evaluations
with native speakers to better capture translation
quality nuances.
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Abstract

In this paper, we present the approach and sys-
tem setup of our participation in the IWSLT
2025 low-resource speech translation shared
task. We submitted systems for three lan-
guage pairs, namely Tunisian Arabic to English,
North Levantine Arabic to English, and Fongbé
to French. Both pipeline and end-to-end speech
translation systems were explored for Tunisian
Arabic to English and Fongbé to French pairs.
However, only pipeline approaches were inves-
tigated for the North Levantine Arabic–English
translation direction. All our submissions are
based on the usage of pre-trained models that
we further fine-tune with the shared task train-
ing data.

1 Introduction

The International Workshop on Spoken Language
Translation (IWSLT) is an annual scientific confer-
ence dedicated to the study and advancement of
spoken language translation technologies. It serves
as a platform for researchers and practitioners to
present their work on speech translation, encom-
passing areas such as automatic speech recogni-
tion (ASR) and machine translation (MT). IWSLT
has played a pivotal role in the advancement of
spoken language translation (ST) by providing a
structured environment to evaluate and compare
different approaches. Its emphasis on real-world
challenges, such as low-resource languages and
real-time translation, has contributed to the devel-
opment of more robust and versatile translation
systems. IWSLT 2025 (Abdulmumin et al., 2025)
proposes two shared tasks: High-resource ST and
Low-resource ST. Several language pairs were pro-
posed this year for the low-resource task. In this
paper, we focus on Tunisian Arabic-English, North
Levantine-English and Fongbé-French language
pairs. This paper describes the approach and sys-

*These authors contributed equally to this work

tem setup of the joint participation of LIA and
Elyadata in the tasks as mentioned earlier.

For the Tunisian Arabic-English and
Fongbé–French tracks, both end-to-end (E2E) and
pipeline approaches were explored. In contrast,
only pipeline approaches were investigated for
the North Levantine Arabic–English track. For
E2E approaches, we focus on fine-tuning self-
supervised learning (SSL) models and Whisper
models (Radford et al., 2023a). All systems are
trained with an unconstrained setup, which means
that any resource, including pre-trained language
models, can be used, except for evaluation
sets. We particularly investigate the SAMU-like
approach (Khurana et al., 2022) to enrich the SSL
speech encoder with semantic information. For
pipeline approaches, we focus on fine-tuning large
language models (LLMs).

The remaining of the paper is structured as fol-
lows: Section 2 presents the related work. Section
3 is dedicated to describe our systems for Tunisian
Arabic to English. The experiments for Fongbé
to French and for North Levantine to English are
presented, respectively, in sections 4 and 5. Section
6 concludes the paper and discusses future work.

2 Related Work

The Speech Translation task has received consid-
erable attention from the research community, and
numerous approaches have been proposed. Tradi-
tional speech translation (ST) approaches follow a
cascade architecture (Matusov et al., 2005; Kumar
et al., 2015; Laurent et al., 2023), where an auto-
matic speech recognition (ASR) system is followed
by a machine translation (MT) module applied to
the ASR output. Recent advances in deep neural
networks for both ASR and MT have led to sub-
stantial improvements in the overall performance
of ST systems.

More recently, end-to-end speech translation
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models (Bérard et al., 2018; Duong et al., 2016;
Bérard et al., 2016) have gained attention as an
alternative to the traditional cascade architecture.
These models aim to directly translate speech in
a source language into text or speech in the tar-
get language without requiring intermediate text
transcriptions. End-to-end models reduce latency,
avoid error propagation between ASR and MT com-
ponents, and can be optimized globally for the final
translation objective.

With the emergence of robust transformer-based
architectures and multilingual pretraining meth-
ods, such as those used in SeamlessM4T (Seam-
less Communication et al., 2023), speech transla-
tion systems have gained momentum, leading to
diversity in model architectures and training meth-
ods. Meta’s SeamlessM4T stands out as a unified
multimodal system capable of handling speech-to-
text translation across 101 input and 96 output lan-
guages. OpenAI’s Whisper (Radford et al., 2023a)
is an automatic speech recognition (ASR) system
that also offers speech-to-text translation capabili-
ties. Trained on 680,000 hours of multilingual and
multitask supervised data, Whisper demonstrates
robustness to accents, background noise, and tech-
nical language. It supports transcription in multiple
languages and translation from those languages
into English. Of the 680,000 hours of labelled au-
dio used by Whisper, 117,000 hours cover 96 other
languages. The dataset also includes 125,000 hours
of X→EN translation data. Beyond Whisper and
SeamlessM4T, several other models have emerged
that employ self-supervised learning (SSL) to en-
hance performance in speech translation. Wav2vec
2.0 (Baevski et al., 2020), introduced by Facebook
AI, is one of the earliest SSL-based models that sig-
nificantly improved ASR performance. Wav2vec
2.0 is typically coupled with a Transformer decoder
for speech translation. Building on this founda-
tion, w2v-BERT (Chung et al., 2021) and HuBERT
(Hsu et al., 2021) models have been developed. In
this paper, we investigate these recent advances in
speech-to-text translation systems to participate in
the IWSLT low-resource speech translation shared
task.

3 Tunisian Arabic-English Experiments

3.1 Data

The Tunisian Arabic dataset (LDC2022E01) used
in our experiments was developed and provided
by LDC2 to the IWSLT 2025 participants. It com-

prises 383h of Tunisian conversational speech with
manual transcripts, from which 160h are also trans-
lated into English. Thus, it is a three-way parallel
corpus, comprising audio, transcript, and transla-
tion. This LDC data constitutes the basic condition
of the dialect task. Arabic dialects are the infor-
mal form of communication in everyday life in
the Arab world. Tunisian Arabic is one of sev-
eral Arabic dialects. There is no standard written
Arabic form that all Tunisian speakers share. How-
ever, the transcripts of Tunisian conversations of
the LDC2022E01 Tunisian Arabic dataset follow
the rules of the Tunisian Arabic CODA – Conven-
tional Orthography for Dialectal Arabic (Habash
et al., 2012).

3.2 Pipeline ST

3.2.1 ASR systems

Two ASR systems have been trained for the
Tunisian dialect. The first ASR system (Primary)
is based on the w2v_Bert 2.0 (Barrault et al., 2023)
speech encoder. In addition to the speech encoder
model, we incorporate an extra layer with 1024
neurons and LeakyReLU as the activation function,
followed by a fully-connected layer and a final
37-dimensional softmax layer, each dimension cor-
responding to a character. The weights of these
two additional layers were randomly initialized. In
contrast, the weights of the speech encoder part for
SSL models in the neural architecture were initial-
ized using pre-trained weights. The fine-tuning is
done with the LDC2022E01 training set using a
character-level CTC loss function. We optimize
the loss with an Adam optimizer of learning rate
equal to 1× 10−5 for both the speech encoder and
Adadelta with learning rate equal to 1.0 for the
linear layer.

The second ASR system (contrastive 1) is
trained with the same dataset and is based on the
Whisper-large-v3 model (Radford et al., 2023b).

We fine-tune this Whisper model for the ASR
task with the LDC2022E01 dataset. we used
AdamW optimizer (Loshchilov and Hutter, 2017)
with a learning rate of 1e− 5 and weight decay of
0.01. The encoder was left unfrozen throughout
the training, which consisted of 10 epochs with a
warmup of 500 steps, a patience of two epochs for
early stopping, and a maximum gradient norm of
2.0. Training was performed using FP16 precision
with a sampling rate of 16 kHz, and the data was
randomly sorted. We set the batch size per GPU
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to 8 and used 4 H100 80GB GPUs with a gradient
accumulation factor of 4, resulting in an effective
batch size of 128 (8 × 4 GPUs × 4 accumulation
steps). We used a beam size of 8 for decoding, with
decode ratios ranging from 0.0 to 1.0. The model
was optimized using a negative log-likelihood loss.

We use the SpeechBrain toolkit to train ASR
systems (Ravanelli et al., 2024).

3.2.2 MT model
We fine-tuned a machine translation model
(contrastive3) based on the NLLB-200 1.3B ar-
chitecture (Costa-Jussà et al., 2022), a multilingual
transformer model designed to support high-quality
translation across over 200 languages, including
many low-resource ones. This model was specif-
ically adapted for the task of translating Tunisian
Arabic into English.

Fine-tuning was performed using the
LDC2022E01 translation training set, with
optimization carried out using the Cross-Entropy
loss function. We used the AdamW optimizer with
a learning rate of 1× 10−5 and a batch size of 16,
with a beam size of 8 for decoding. We use the
HuggingFace framework to train the MT model.

3.3 End-to-end ST

The entire dataset used to train the E2E system
includes 160 hours of data with gold translations
provided for the task, and 223 hours without trans-
lations, which we automatically translated using
the MT system described in Section 3.2.2. We filter
a portion of the 223 hours of translated data using
the BLASER score to improve translation quality.

SAMU-XLSR (Khurana et al., 2022) is a multi-
lingual multimodal semantic speech representation
learning framework where the speech transformer
encoder XLS-R is fine-tuned using semantic su-
pervision from the pre-trained multilingual seman-
tic text encoder LaBSE (Feng et al., 2022a). The
training and modeling details follow the original
paper (Khurana et al., 2022). In this work, we
use the same training framework except that we
trained our model starting from another speech en-
coder: w2v_Bert 2.0 (Barrault et al., 2023) and an-
other semantic text encoder BGE M3-Embedding
(Chen et al., 2024). We use the CommonVoice-v19
(Ardila et al., 2020) to train this model. In this
paper, we refer to this model as SAMU-BGE.

We use the standard encoder-decoder architec-
ture for our translation model. The training of
our E2E ST model is divided into three stages.

First, we specialize the SAMU-BGE model with
the Tunisian ST dataset. Second, we fine-tune
the mBart model for text-to-text translation from
Tunisian to English. Once our speech encoder
(SAMU-BGE) and our decoder (mBart) are fine-
tuned, we initialize the encoder and decoder using
these models. A feed-forward network projection
layer is used to connect the encoder and decoder,
bridging the two modules. The described system
presents our Primary ST system.
For the contrastive 1 system, we use Whisper-
large-v3 to train the ST model. The training of
our model is separated into two stages. First, we
train an end-to-end ASR model (the ASR model is
described in Section 3.2.1). Then, once our ASR
model is trained, we fine-tune this Whisper model
for the translation task. We used AdamW optimizer
(Loshchilov and Hutter, 2017) with a learning rate
of 1e-5 and weight decay of 0.01. The encoder was
left unfrozen throughout the training, which ran for
10 epochs with a warmup of 500 steps, a patience
of two epochs for early stopping, and a max gra-
dient norm of 2.0. Training used FP16 precision
with a sampling rate of 16 kHz, and the data was
randomly sorted. We set the batch size per GPU
to 8 and used 4 H100 80GB GPUs with a gradient
accumulation factor of 4, resulting in an effective
batch size of 128 (8 × 4 GPUs × 4 accumulation
steps). We used a beam size of 8 for decoding, with
decode ratios ranging from 0.0 to 1.0. The model
was optimized using a negative log-likelihood loss.
We combined different augmentations to perform
data augmentation: speed perturbation (resample
the audio signal at a rate that is similar to the orig-
inal rate, to achieve a slightly slower or slightly
faster signal), frequency drop (randomly drops sev-
eral frequency bands to zero) and chunk drop (an
augmentation strategy that helps a model learn to
rely on all parts of the signal, since it can’t expect
a given part to be present).
For the contrastive 2 system, we use Whisper-
large-v3 to train the ST model without the step of
ASR fine-tuning and without data augmentation.
We apply the same parameters described for the
contrastive 1 system.

3.4 Results

3.4.1 Results for ASR

The ASR results in terms of word error rate (WER)
are reported in Table 1 on the development datasets
and the internal test provided by the organisers.
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Table 1: WER (%) results for Tunisian dialect ASR.

Dev Test Int Test1 Test2

Primary 36.3 39.63 38.6 40
Contrastive 1 36.78 40.43 39.2 40.3

3.4.2 Results for ST
The ST results in terms of BLEU scores are re-
ported in Table 2 on the development datasets and
the internal test provided by the organisers.

Table 2: BLEU results for Tunisian dialect to English
translation.

Dev Test Int Test1 Test2

Primary 25.04 21.41 22.3 21
Contrastive 1 24.72 21.12 22 20.3
Contrastive 2 24.63 20.40 21.6 19.2
Contrastive 3 23.77 20.23 21.4 19.6

4 Fongbé-French Experiments

4.1 Data
The dataset used in our experiments comprises a
total of 61 hours of speech. For the end-to-end
speech translation (ST) task, we used the entire
dataset. We also used internal data for the au-
tomatic speech recognition (ASR) task, by using
Fongbé transcripts we collected for a 36 hour sub-
set. To ensure a fair comparison between the end-
to-end and cascade systems, we excluded the vali-
dation and test portions of the ST dataset from the
ASR training set.

Table 3: ST and ASR dataset description

Experiments Split Hours Sentences

ASR Train 29 19.9k
ASR Valid 3.54 2.4k
ASR Test 3.93 2.5k

ST Train 48 29.5k
ST Valid 6.1 4.1k
ST Test 5.9 3.9k

4.2 Pipeline ST
4.2.1 ASR system
We conducted three automatic speech recognition
(ASR) experiments for ASR. In the first experi-
ment, Fongbé transcripts containing diacritics were

used to establish a baseline, referred to as ASR
With Diacritics. The second experiment was per-
formed using transcripts without diacritics (ASR
Without Diacritics). In the third, we introduced
a novel diacritic substitution strategy: monosyl-
labic words containing diacritics were systemat-
ically replaced by their base syllables appended
with a unique numerical identifier (ASR with Sub).
This method was designed to retain key linguistic
distinctions while modifying the representation of
diacritics, potentially improving the model’s abil-
ity to generalize across phonetically similar pat-
terns. For each setting, we trained a separate Sen-
tencePiece tokenizer (Kudo and Richardson, 2018)
at the character level using the combined training
and validation sets. The resulting vocabulary sizes
were 62, 44, and 36 for the diacritics, no-diacritics,
and substitution settings, respectively. All ASR
models shared the same architecture, consisting
of an AfriHuBERT speech encoder followed by
three fully connected layers with 1024 dimensions.
Training was performed using Connectionist Tem-
poral Classification (CTC) loss over 50 epochs.
The ASR model trained without diacritics achieved
the lowest WER of 17.02%, outperforming both
the model trained with diacritics (21.98%) and the
substitution-based model (22.18%), as detailed in
Table 4.

Table 4: WER (%) results for Fongbé ASR

Dev Test

ASR with Diacritics 17.25 21.89
ASR without Diacritics 12.71 17.02
ASR with Sub 24.63 22.18

4.2.2 MT model

We fine-tuned three versions of the NLLB-200 1.3B
model on Fongbé manual transcriptions: one with
diacritics, the second without diacritics, and a third
using diacritic-substituted sentences, as described
in the previous section. The model trained on dia-
critic transcriptions achieved the best performance,
followed by the substitution-based model. The re-
sults show in Table 5 highlight the importance of
diacritics in Fongbé for translation quality, while
also demonstrating that the substitution approach
offers a competitive alternative positioned between
the performance of models trained with and with-
out diacritics.
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Table 5: BLEU (%) results for Fongbé MT

Dev Test

MT With Diacritics 58.9 55.41
MT Without Diacritics 47.39 44.95
MT with Sub 57.56 53.88

4.3 Fongbe Speech Translation system

We explored the use of various speech en-
coders—specifically HuBERT-147, AfriHuBERT,
and XLS-R-1B in combination with different text
decoders, including mBART and NLLB. All exper-
imental results are presented in Table 6.

For the cascade experiments, we paired each
ASR system with its corresponding machine trans-
lation (MT) system. The best-performing cascade
system combines ASR with diacritics and MT with
diacritics, and is designated as the Primary sys-
tem. The second-best system, referred to as Con-
trastive 1, used both ASR and MT models trained
on diacritic-substituted data. The third system,
Contrastive 2, employed ASR and MT models
trained on data without diacritics.

In the end-to-end setting, for experiments in-
volving XLS-R-1B, we applied a semantic align-
ment strategy inspired by the method proposed
in Khurana et al. (2022), using translated labels.
SAMU, which builds on XLS-R-1B, integrates
a frozen Language-Agnostic BERT Sentence En-
coder (LaBSE) (Feng et al., 2022b) as the mas-
ter model to align Fongbé speech embeddings and
French text embeddings in a shared XLS-R repre-
sentation space.

We also investigated the impact of several data
augmentation techniques, including speed pertur-
bation, frequency drop, and chunk drop. Our best
end-to-end systems combined the AfriHuBERT en-
coder with the NLLB decoder, and the SAMU
model with NLLB, both enhanced by these aug-
mentations. Among them, the SAMU-NLLB sys-
tem achieved the highest performance in the end-to-
end speech translation task, ranking fourth overall
among all submitted systems. Consequently, we
selected the SAMU-NLLB end-to-end system as
the Contrastive 3 submission.

4.4 Results

Overall, for the Fongbé Speech Translation task,
we proposed both cascade and end-to-end systems.
All cascade systems outperformed the end-to-end

Table 6: BLEU results for Fongbé to French translation.

Dev Test

Primary 59.24 39.6
Contrastive 1 54.87 37.23
Contrastive 2 48.39 32.76
Contrastive 3 41.60 28.32

approach, with a gap of approximately ~11 BLEU
points between the best-performing cascade sys-
tem and the submitted end-to-end system (SAMU-
NLLB + Data Augmentation). This performance
difference highlights the potential for improving
end-to-end models through more effective encoder
adaptation techniques for the decoder, aiming to
narrow the gap between end-to-end and cascade
performance. The superiority of cascade systems
can be attributed, in part, to the use of in-domain
ASR data for fine-tuning the decoder, which pro-
vides a more aligned and semantically rich input
for the translation model.

5 North Levantine-English Experiments

5.1 Data

5.1.1 ASR dataset
The training data consisted of the Babylon Lev-
antine corpus (LDC2005S08) and the Levantine
Arabic QT (LDC2006T07), both provided by LDC,
along with an additional 23 hours of Levantine
speech automatically extracted from the QASR
dataset using the best performing dialect identifica-
tion model from Elleuch et al. (2025) 1. QASR
is the largest publicly available Arabic speech
recognition dataset, consisting of 2,000 hours of
transcribed speech collected from the broadcast
domain. It includes both dialectal and Modern
Standard Arabic (MSA) speech, as well as code-
switching (Mubarak et al., 2021).

5.1.2 MT dataset
The training data for the North Levantine to En-
glish machine translation task consisted of two dis-
tinct corpora. The first is the UFAL Parallel Cor-
pus of North Levantine 1.0, provided to partici-
pants in the IWSLT 2025 shared task. This corpus

1Whisper-large-v3 encoder trained on the ADI-20-53
dataset for Arabic dialect identification. This dataset com-
prises 53 hours of speech for 20 country-level dialects. The
Levantine subset included speech segments identified as Jor-
danian, Palestinian, Syrian, and Lebanese.
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comprises approximately 120,000 lines of parallel
North Levantine, MSA, and English textual data.

The second corpus is Levanti2, which includes
500,000 sentence pairs in Levantine colloquial Ara-
bic (covering Palestinian, Syrian, Lebanese, Jorda-
nian, and Egyptian dialects) and their English trans-
lations. Levanti comprises 42,000 real sentences
that have been manually translated and validated.
Additionally, it includes 466,000 high-quality syn-
thetic sentence pairs, carefully generated using
Claude Sonnet 3.5 (Anthropic, 2024). These syn-
thetic examples were created based on diverse dic-
tionary entries and carefully curated examples to
enhance the semantic and lexical diversity of the
corpus.

5.2 Pipeline ST
5.2.1 ASR systems
We submitted two ASR systems for the North
Levantine Arabic to English track, employing the
Whisper-large-v3 in an encoder-decoder configu-
ration, trained on a dataset that combines dialectal
and Modern Standard Arabic (MSA) transcribed
speech. The first system, contrastive 1, augmented
the Levantine dataset with an equal number of MSA
utterances, while the second system, primary, fur-
ther fine-tuned contrastive 1 solely on the Levan-
tine datasets (LDC2005S08 and LDC2006T07) to
specialize the model for Levantine dialects.

5.2.2 MT model
We trained two machine translation (MT) models
using the HuggingFace framework, both based on
the NLLB-200 1.3B model. The first MT model
was fine-tuned on the entire Levanti dataset using
a learning rate of 1 × 10−5 and a batch size of 8.
The second MT model was fine-tuned on the UFAL
Parallel Corpus and the non-synthetic portion of
the Levanti dataset, using the same learning rate
1× 10−5 and a batch size of 6, with a beam size of
5 for decoding.

Following extensive experimentation on the de-
velopment and test sets, we selected the second
MT model (trained on the UFAL Corpus and non-
synthetic Levantine data) for the final Levantine-to-
English translation task, as it outperformed the first
model in terms of translation quality.

We then constructed two cascaded systems
(contrastive 1 and contrastive 2) using the trained
ASR systems.

2https://huggingface.co/datasets/guymorlan/
levanti

5.3 ST candidates selection
To evaluate and rank outputs from different ASR-
MT combinations, we used the BLASER-REF
quality estimation model (Dale and Costa-jussà,
2024; Seamless Communication et al., 2023).
BLASER-REF is a reference-based model that es-
timates translation quality using SONAR embed-
dings (Duquenne et al., 2023), which map both
speech and text from different languages into a
shared latent space, making the model inherently
language and modality-agnostic.

The model takes three inputs: the original speech
signal, a system-generated translation, and a refer-
ence translation. As human reference translations
were unavailable, we used the transcription as the
reference. The speech input was encoded using
the SONAR Arabic speech encoder, which was
trained on Modern Standard Arabic (MSA); we
applied it to Levantine speech due to the lack of a
Levantine-specific encoder. The transcription and
translation were encoded using the SONAR text en-
coder, which supports the source (North Levantine
Arabic) and target (English) languages.

For each utterance, we generated 10 candidate
outputs from five ASR and two MT models—the
same systems described in Sections 5.2.1 and 5.2.2
with additional variants—and selected the output
with the highest BLASER-REF score on a scale
from 1 to 5, where higher scores indicate better
quality; this combination is considered our pri-
mary system for ST.

5.4 Results
5.4.1 Results for ASR
The ASR results in terms of word error rate (WER)
are reported in Table 7 on the development set 2024
(Dev), test set 2024 (Test), and test set 2025 (Test
2025) provided by the organisers. The Primary
system outperformed the Contrastive 1 system on
both Dev and Test sets.

Table 7: WER (%) results for North Levantine dialect
ASR.

Dev Test

Primary 38.43 41.06
Contrastive 1 38.92 42.86

5.4.2 Results for ST
The ST results in terms of BLEU score (BLEU) are
reported in Table 8 on the development set 2024
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(Dev), test set 2024 (Test), and test set 2025 (Test
2025) provided by the organisers.

Table 8: BLEU results for North Levantine dialect to
English translation.

Dev Test Test 2025

Primary 29.64 28.02 22.56
Contrastive 1 28.74 26.87 21.02
Contrastive 2 28.88 26.61 21.45

6 Conclusion

This paper describes the translation systems devel-
oped by LIA and ELYADATA for three tracks of
the IWSLT 2025 Evaluation Campaign, focusing
on low-resource speech translation. The targeted
language pairs are Tunisian Arabic–English, North
Levantine Arabic–English, and Fongbé–French.
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Abstract

This paper describes the CUNI-NL team’s sub-
mission to the IWSLT 2025 Offline Speech
Translation and Instruction Following tasks, fo-
cusing on transcribing the English audio and
translating the English audio to German text.
Our systems follow the end-to-end approach,
where each system consists of a pretrained,
frozen speech encoder, along with a medium-
sized large language model fine-tuned with
LoRA on three tasks: 1) transcribing the En-
glish audio; 2) directly translating the English
audio to German text; and 3) a combination of
the above two tasks, i.e., simultaneously tran-
scribing the English audio and translating the
English audio to German text.

1 Introduction

End-to-end speech translation (ST) is a growing re-
search direction that aims to ignore the intermediate
speech recognition (ASR) step to directly translate
the audio input into the corresponding text in an-
other language. This approach simplifies the over-
all architecture and has been shown to match the
performance of the cascaded counterpart (Bérard
et al., 2018; Liu et al., 2019; Gaido et al., 2020).

Large language models (LLMs) have demon-
strated their good performance in a large number
of complex natural language tasks, including ma-
chine translation (Minaee et al., 2024; Zhang et al.,
2024; Zhao et al., 2023; Naveed et al., 2024). With
the ever-improving potential of LLMs, researchers
have been trying to integrate different components
used for other modalities, in order to extend their
abilities to go beyond text-only tasks (Li et al.,
2023a; Gao et al., 2023; Liu et al., 2023; Li et al.,
2023c; Zhang et al., 2023).

Motivated by recent contributions in speech rep-
resentation learning and LLMs, to participate in
the IWSLT 2025 Offline Speech Translation and In-
struction Following tasks, we aim to investigate an
end-to-end architecture that can perform both ASR

and ST. This architecture combines the high-quality
audio representation from the pre-trained acoustic
models with the excellent performance of LLMs to
serve as an end-to-end speech translation system,
while still having the ability to transcribe from the
audio signal. Our systems, after being fine-tuned
with the Low-Rank Adaptation (LoRA; Hu et al.,
2021) technique, achieve a solid performance in
both speech recognition and translation.

The paper is structured as follows:
• Section 2 describes the details of our chosen

network architecture, along with the dataset
used for its training and evaluation.

• Section 3 provides the ASR and ST evaluation
results of the model in different public test
sets.

• Section 4 proposes possible directions to im-
prove the architecture.

2 Methods and Dataset

2.1 Architecture

The overall architecture is illustrated in Figure 1.
For each training sample, given the speech signal,
its corresponding transcript, and the translated text,
the speech hidden features are obtained using a
speech encoder. In this step, we experimented with
SeamlessM4T (Barrault et al., 2025) and Whisper
encoder (Radford et al., 2022).

Next, the speech features represented as a time
sequence of vectors, at the “frame rate” of 20ms,
are fed to a projection layer, in order to convert the
feature dimension to match the LLM’s embedding
dimension. For a better match between the speech
encoder and the LLM, we use a length adapter
which effectively reduces the “frame rate” of the
sequence. The resulting speech embeddings are
subsequently given to the LLM as the prompt for
it to generate the corresponding transcription and
the translated text simultaneously. The LLM is
fine-tuned in the next-token-prediction fashion to
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Figure 1: The overall architecture includes a frozen
speech encoder component, a modal projection layer,
and a fine-tuned LLM. Red arrows denote the usage of
tokens during training, and blue arrows indicate tokens
generated during inference; while black arrows repre-
sent the prompt fed to the LLM. The original modal-
ity of the model is indicated by the token color, from
left to right: violet for text instruction, blue for source-
language speech tokens, green for target-language text
tokens. Length adapter is a part of the Projection step.

complete the sequence with the translation into the
target language.

2.2 Speech Encoder

We adopted SeamlessM4T (Barrault et al., 2025)
and Whisper (Radford et al., 2022) as the speech
encoders, utilizing their capability of extracting
high-quality representation from audio data. From
both architectures, we only employed the encoder
part of the pre-trained seamless-m4t-v2-large1

and whisper-large-v3,2 respectively, in order to
extract the audio hidden features.

2.3 Length Adapter

The length of the speech feature sequence can be
longer than the supported length of the LLM, as a
result, it is more favorable to shorten it beforehand.

Because the speech encoder part of the Seam-
lessM4T architecture already contains a length
adapter layer (Figure 2), we decided not to add any
adapter layer, but used it as-is for SeamlessM4T-
based models.

For Whisper-based models, a convolution-based
downsampling layer with a kernel size of 25x5 and
a stride of 25 is used to reduce the length of the

1https://huggingface.co/facebook/
seamless-m4t-v2-large

2https://huggingface.co/openai/
whisper-large-v3

3https://github.com/facebookresearch/seamless_
communication/blob/main/docs/m4t/README.md

Figure 2: Details of the SeamlessM4T-v2 architecture,3

where the red region is the speech encoder part

speech feature sequence from 1500 tokens (each
corresponds to 20ms) to 60 tokens (each encodes
500ms). The detail of the convolution adapter layer
is illustrated in Figure 3.

Figure 3: Details of the convolution adapter. Note that
the convolution windows do not overlap.

2.4 Projection Layer

For the projection layer, we used only one simple
three-layer ReLU-activated feed-forward network,
with the hidden size of 4096, to map from the en-
coder’s hidden size to the corresponding LLM’s
hidden size. This layer ensures the resulting speech
representation is well integrated into the LLM’s
embedding space, giving it enough information for
the downstream task.

2.5 LLMs

We experimented with three different
pre-trained LLMs available on Hugging-
Face, namely Llama-3.1-8B-Instruct,4

4https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct
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EuroLLM-9B-Instruct,5 and gemma-3-12b-it.6

We summarize the examined combinations of
components in Table 1.

Speech Enc. LLM Adapter
seamless-m4t Llama-3.1-8B-Instruct L

N/A-v2-large EuroLLM-9B-Instruct E

S gemma-3-12b-it G

whisper Llama-3.1-8B-Instruct L
25x5
Convolution-large-v3 EuroLLM-9B-Instruct E

W gemma-3-12b-it G

Table 1: Details of our six examined combinations of
components, testing each of the speech encoders ( S ,
W ) with each of the LLMs ( L , E , G ).

2.6 Dataset
All models were trained using the CoVoST2 dataset
(Wang et al., 2020), a large multilingual corpus
built from the Common Voice corpora (Ardila et al.,
2020), which contains the audio data, the English
transcription of such audio and the translation of
the transcription into multiple languages. Specif-
ically, we used the English-to-German subset of
the dataset, with approximately 184 hours of audio
data.

For evaluation, we used the test sets from the
Offline Speech Translation track of IWSLT 20217

and 2022,8 because they are the two latest develop-
ment sets whose golden labels are available. These
datasets are from the TED domain, in which the au-
dios contain clean speech from the speaker mixed
with some occasional noise from the audience; thus,
we believe these are suitable for development. As
all models can perform both ASR and ST, evalu-
ation results for both tasks are described in Sec-
tions 3.2 and 3.3, respectively.

2.7 Multi-task Training
To obtain a system that can perform both ASR and
ST tasks, we decided to train the model on the
following three tasks:

1 Transcribing the English audio to English text;
2 Directly translating the English audio to Ger-

man text; and
3 Simultaneously transcribing the English audio

to English text, and translating such audio to
German text.

5https://huggingface.co/utter-project/
EuroLLM-9B-Instruct

6https://huggingface.co/google/gemma-3-12b-it
7https://iwslt.org/2021/offline
8https://iwslt.org/2022/offline

With tasks 1 and 3 , the LLM is given cor-
responding instructions depending on each task.
For task 2 , we used two different prompts in ei-
ther English or German, to prepare the model for
processing both English and German instructions.
With this setup, we randomly divided the training
dataset into four subsets using a uniform distri-
bution, where each part was associated with an
instruction according to the task and the relevant
language. We decided to split the dataset and train
the model on only one epoch, instead of duplicating
the dataset four times and training for four epochs,
due to limited time and resources. Details about
each task and the corresponding instructions are
described in Table 2.

Task Instruction # examples
transcribe
1

Transcribe the English audio 72,067

translate_en
2

Translate the English audio to
German

72,600

translate_de
2

Übersetzen Sie den englis-
chen Ton ins Deutsche

72,455

both 3 Transcribe then translate the
following English audio to
German

72,291

Table 2: Details of our four tasks, each demonstrated by
roughly a quarter of the fine-tuning items

2.8 Training and Inference Details
All systems were fine-tuned using 16-bit LoRA (Hu
et al., 2021) adapters in bfloat16 precision, with
the following LoRA parameters: rank of r = 256,
alpha of α = 256. The effective batch size was
set to 8. Other training hyperparameters included
the learning rate of 1e− 5 with 100 warmup steps,
and an AdamW optimizer (Loshchilov and Hutter,
2019) with a cosine scheduler (Loshchilov and Hut-
ter, 2017). All systems were trained for 1 epoch.

For each example, the training data is for-
matted as follows: “<bos> {user_header}
{instruction} {audio_features} {assis-
tant_header} {output} <eos>”. The cross-
entropy loss was computed only for the tokens
following “{assistant_header}”. Each system’s
training loss details are illustrated in Figure 4.

During inference, for each audio data, the
LLMs were prompted using the following for-
mat: “<bos> {user_header} {instruction}
{audio_features} {assistant_header}”, then
generated the output, subject to the task, in an auto-
regressive manner. We performed inference using
the beam search algorithm, with a beam size of 2
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Figure 4: Training loss of systems

for all systems. All evaluation results are described
in Sections 3.2 and 3.3.

3 Evaluation

3.1 Metrics and Tools
For the Offline Speech Translation task, we eval-
uated all models using standard metrics, namely
BLEU (Papineni et al., 2002), COMETDA

22 (Rei
et al., 2022a),9 and COMETKIWI-DA

22 (Rei et al.,
2022b).10 For the Automatic Speech Recognition
task, we used WER, the standard metric for speech
recognition.

For the evaluation purpose, we used the SLTev
(Ansari et al., 2021) library,11 because it supports
both MT and ASR evaluation in one package, us-
ing sacreBLEU (Post, 2018) to calculate BLEU
score. However, since SLTev does not report any
COMET-family metrics, we had to change the
structure of the sentence with mwerSegmenter,12

to automatically resegment the models’ output ac-
cording to the reference, before evaluating with the
unbabel-comet13 package. The evaluation was
done using python-3.11.5, SLTev-1.2.3, and
unbabel-comet-2.2.2.

3.2 ASR Results
Table 3 details the ASR evaluation results against
the IWSLT 2022 test set (tst2022). We reported
the WER score after applying the “LPW” pre-
processing strategy available in SLTev, which first
lowercased every character, removed all punctua-
tion, then used the built-in mwerSegmenter tool to
resegment the output transcripts. Due to some bugs

9https://huggingface.co/Unbabel/
wmt22-comet-da

10https://huggingface.co/Unbabel/
wmt22-cometkiwi-da

11https://github.com/ELITR/SLTev
12https://www-i6.informatik.rwth-aachen.de/web/

Software/mwerSegmenter.tar.gz
13https://github.com/Unbabel/COMET

when processing the IWSLT 2021 test set (tst2021),
mwerSegmenter failed to run during evaluation,
hence we could not obtain the results. It can be seen
that the model with seamless-m4t-v2-large as
the speech encoder and EuroLLM-9B-Instruct as
the decoder has the best result among all systems.

3.3 Offline ST Results

Tables 4 and 5 report the BLEU and COMET-
family scores, respectively, on the two test sets,
with two corresponding instructions. For evalu-
ating with BLEU, we included both docAsWhole
score, which concatenated all reference segments
and candidate complete segments as two docu-
ments, and mwerSegmenter score, which reseg-
ments complete candidate segments according to
reference segments to minimize WER. Similar to
Section 3.2, mwerSegmenter scores for IWSLT
2021 test set could not be obtained, hence we did
not include them.

We observe that the system with
seamless-m4t-v2-large as the encoder and
EuroLLM-9B-Instruct as the language model
achieves the best scores in all evaluation metrics,
compared to the other systems. With the instruc-
tion associated with the task “both” (Table 2), the
system excels in translation results, suggesting that
the inclusion of English transcript provided useful
assistance in translation.

Comparing between the two prompt variations
“translate_en” and “translate_de” for this
task, the latter one leads to more solid overall re-
sults. For example, consider the S + E system: for
tst2022, while “translate_en” instruction might
outperform that of “translate_de”, but the dif-
ference is small; while results for tst2021 shows a
contrastive situation, where “translate_de” sur-
passes “translate_en’ by a considerable amount.
This behavior also appears in other systems, lead-
ing us to believe that the system can perform bet-
ter when the instruction provided is in the rel-
evant target language. As a result, we chose
“translate_de” prompt with S and E as our
submission to the Offline Speech Translation
and Instruction Following task, under the “con-
strained+LLM” evaluation condition.

4 Future Work

For the IWSLT 2025 Offline Speech Translation
and Instruction Following tasks, we have only con-
ducted experiments for the English-to-German di-
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Model transcribe both
Enc. LLM tst2022 tst2022

S
L 14.1% 17.3%

E 13.4% 16.7%

G 20.0% 24.2%

W
L 24.3% 26.6%

E 47.9% 47.5%

G 38.6% 38.5%

Table 3: ASR evaluation results (WER↓)

Model translate_en translate_de both
Enc. LLM tst2021 tst2022 tst2021 tst2022 tst2021 tst2022

S
L 39.53 / - 37.55 / 26.58 39.50 / - 37.58 / 26.66 42.01 / - 38.15 / 29.78
E 41.50 / - 38.47 / 30.65 41.94 / - 37.73 / 29.83 44.28 / - 40.82 / 32.33
G 37.37 / - 33.72 / 24.93 36.70 / - 33.66 / 25.25 42.17 / - 37.70 / 29.73

W
L 33.02 / - 31.54 / 19.47 33.64 / - 30.02 / 19.62 39.48 / - 37.76 / 26.64
E 22.43 / - 22.02 / 9.24 22.21 / - 23.32 / 9.83 32.91 / - 31.50 / 19.56
G 27.23 / - 27.34 / 14.67 27.34 / - 27.81 / 14.67 35.37 / - 34.72 / 22.95

Table 4: Offline ST en2de BLEU results, with both docAsWhole↑ and mwerSegmenter↑ scores, respectively

Model translate_en translate_de both
Enc. LLM tst2021 tst2022 tst2021 tst2022 tst2021 tst2022

S
L 61.11 / 53.85 68.05 / 62.38 68.69 / 62.63 67.88 / 62.02 69.49 / 64.66 69.48 / 64.80
E 62.57 / 56.13 71.06 / 66.04 70.38 / 65.11 70.62 / 65.46 71.59 / 66.93 71.05 / 66.53
G 59.09 / 51.87 66.01 / 60.33 66.33 / 60.48 66.08 / 60.10 67.90 / 62.75 68.20 / 63.28

W
L 52.80 / 43.13 61.99 / 53.47 62.73 / 54.55 62.02 / 53.73 66.66 / 60.71 66.38 / 60.00
E 42.73 / 30.45 48.33 / 35.93 48.22 / 35.80 49.48 / 36.95 58.35 / 47.78 56.85 / 46.70
G 48.10 / 36.40 55.36 / 44.11 55.75 / 44.10 54.10 / 42.70 61.49 / 52.65 61.54 / 52.86

Table 5: Offline ST en2de COMETDA
22 ↑ and COMETKIWI-DA

22 ↑ results, respectively

rection; hence, in the future, we will expand our
experiments to more language pairs and directions.
In addition, we have some ideas to improve the
pipeline:

• Try other modal adapter methods, like Q-
Former (Li et al., 2023b).

• Experiment with smaller variants of the LLMs
for faster training and inference, while retain-
ing the quality in translation, by distilling
knowledge from fine-tuned systems.

• Build a Direct Preference Optimization (DPO;
Rafailov et al., 2024) or Contrastive Prefer-
ence Optimization (CPO; Xu et al., 2024)
dataset to apply into the training pipeline. Xu
et al. (2024) showed that their CPO approach
improved the performance of medium-sized
LLMs, so we will try following the same idea.

5 Conclusion

In this paper, we leveraged pre-trained speech en-
coders and LLMs and connected them into an end-
to-end architecture to participate in the IWSLT

2025 Offline Speech Translation and Instruction
Following tasks. Our primary goal was to develop
a system that could perform both ASR for En-
glish audio, and ST from English audio to Ger-
man text. In our experiments, the model with
seamless-m4t-v2-large as the speech encoder
and EuroLLM-9B-Instruct as the LLM yielded
the best results in evaluation of both ASR and ST
tasks, suggesting that this pair could be a promising
combination for end-to-end models.
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Abstract
This paper describes the GMU systems for the
IWSLT 2025 low-resource speech translation
shared task. We trained systems for all lan-
guage pairs, except for Levantine Arabic. We
fine-tuned SeamlessM4T-v2 (Seamless Com-
munication et al., 2023b) for automatic speech
recognition (ASR), machine translation (MT),
and end-to-end speech translation (E2E ST).
The ASR and MT models are also used to form
cascaded ST systems. Additionally, we ex-
plored various training paradigms for E2E ST
fine-tuning, including direct E2E fine-tuning,
multi-task training, and parameter initialization
using components from fine-tuned ASR and/or
MT models. Our results show that (1) direct
E2E fine-tuning yields strong results; (2) initial-
izing with a fine-tuned ASR encoder improves
ST performance on languages SeamlessM4T-
v2 has not been trained on; (3) multi-task train-
ing can be slightly helpful.1

1 Introduction

Speech translation (ST) is a task that aims to trans-
late speech in one language into text in another
language. It can be addressed by either an end-
to-end (E2E) ST model or a cascaded system that
combines an automatic speech recognition (ASR)
model and a machine translation (MT) model. Re-
cent advances in E2E ST have been driven by the
development of large multilingual models trained
on large amounts of multilingual datasets (Seam-
less Communication et al., 2023a,b; Radford et al.,
2023). Similar trends can be observed in ASR (Rad-
ford et al., 2023) and MT (NLLB Team et al., 2022)
as well. Despite these models have covered a wide
range of languages, many low-resource languages
remain underrepresented and are not yet well sup-
ported by existing models.

The IWSLT low-resource speech translation
shared tasks (Abdulmumin et al., 2025; Ahmad

1We release our code for reproducibility: https://
github.com/mct10/IWSLT2025_LowRes_ST.
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Figure 1: Illustration of our SeamlessM4T-v2 fine-
tuning strategies. Speech Encoder, Text Encoder, and
Text Decoder refer to the corresponding components of
SeamlessM4T-v2.

et al., 2024; Agarwal et al., 2023; Anastasopoulos
et al., 2022) are designed to advance ST technology
for low-resource languages. To address the chal-
lenge of data scarcity, previous submissions have
explored various pre-trained models, including mul-
tilingual self-supervised speech models such as
XLSR (Conneau et al., 2021), multilingual ASR
models such as Whisper (Radford et al., 2023),
multilingual MT models such as NLLB (NLLB
Team et al., 2022), and multilingual ST models
such as SeamlessM4T (Seamless Communication
et al., 2023a,b). These pre-trained models were
then fine-tuned on ST datasets for low-resource
languages. Among them, SeamlessM4T-v2 has
demonstrated superior performance, according to
last year’s evaluations (Ahmad et al., 2024).
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This paper describes GMU submissions to
the IWSLT 2025 low-resource speech translation
task (Abdulmumin et al., 2025). Our work focuses
on fine-tuning the SeamlessM4T-v2 model (Seam-
less Communication et al., 2023b) for all language
pairs except Levantine Arabic-to-English. We fine-
tuned the model for both E2E and cascaded sys-
tems. For E2E ST fine-tuning, we explored mul-
tiple strategies, including multi-task training with
MT and knowledge distillation objectives, as well
as initializing model components with those from
fine-tuned ASR and/or MT models, trying to utilize
all available datasets. Figure 1 illustrates our strate-
gies. Our results show that direct E2E fine-tuning
SeamlessM4T-v2 yields strong performance across
all languages pairs, except Quechua, which has too
little training data. For languages not seen during
SeamlessM4T-v2 pre-training, we show that fine-
tuning the model on ASR data and initializing the
ST encoder with the ASR encoder improves perfor-
mance significantly. We also show that multi-task
training offers some performance gains when the
MT model significantly outperforms the E2E ST
model.

2 Task Descriptions

The IWSLT 2025 low-resource ST task (Abdulmu-
min et al., 2025) covers 10 language pairs: (North)
Levantine Dialectal Arabic to English (apc-eng),
Tunisian Arabic Dialect to English (aeb-eng), Be-
mba to English (bem-eng), Fongbe to French (fon-
fra), Irish to English (gle-eng), Bhojpuri to Hindi
(bho-hin), Estonian to English (est-eng), Maltese
to English (mlt-eng), Marathi to Hindi (mar-hin),
and Quechua to Spanish (que-spa). In each of
these language pairs, the source language is low-
resource while the target language is high-resource.
We trained systems for all language pairs except
for apc-eng.2

Formally, E2E ST is defined as translating a
speech utterance xsp in the source language into
text y in the target language. For cascaded ST,
a source speech utterance xsp is first transcribed
into text xtext in the source language using an ASR
model, which is then translated into the target-
language text y using an MT model.

The datasets we used are summarized in Table 1.
Each of the official datasets provided by the orga-
nizers is either a 2-way ST or a 3-way ST dataset.

2The LDC resources for apc cannot be obtained for free
this year.

A 2-way ST data sample is represented as a tuple
(xsp, y), while a 3-way ST data sample refers to a
triple (xsp, xtext, y). 3-way ST datasets are avail-
able for aeb-eng, bem-eng, est-eng, mlt-eng,
and que-spa. The other languages are provided
with 2-way ST datasets. Among these, est-eng
has the largest dataset with more than 1,000 hours
of speech. Both aeb-eng and bem-eng have more
than 100 hours of data, while datasets for other lan-
guages are limited and having only about 10 hours
of speech. In addition, the organizers provide point-
ers to additional ASR and MT datasets. An ASR
data sample is represented as (xsp, xtext), while an
MT data sample is represented as (xtext, y). It is
evident that both ASR and MT datasets can be
derived from 3-way ST datasets.

The task allows submissions under two condi-
tions: constrained and unconstrained. Under the
constrained condition, only the provided dataset
can be used and no pre-trained models are allowed.
The unconstrained condition allows the use of any
models and any datasets. All of our submissions
fall under the unconstrained condition.

3 Methods

Our methods focus on fine-tuning the
SeamlessM4T-v2 model (Seamless Commu-
nication et al., 2023b). We explore 4 different
fine-tuning strategies: (1) E2E ST fine-tuning;
(2) ASR and MT fine-tuning for the cascaded
system; (3) multi-task training similar to Seamless
Communication et al. (2023b); (4) initializing
ST model components with those from ASR
and/or MT models. We fine-tune the model on a
single language pair at a time. Due to the dataset
availability and model performance for each
language pair, not all strategies have been tried for
every pair.

Although the MT components of SeamlessM4T-
v2 are initialized by the NLLB model (NLLB Team
et al., 2022), SeamlessM4T-v2 has been trained on
less languages and supports MT for only 4 out of
the 10 language pairs in this shared task. In con-
trast, the NLLB model supports MT for all 10 pairs.
To evaluate whether the smaller language coverage
of SeamlessM4T-v2 impacts performance, we ad-
ditionally fine-tuned an NLLB model on the MT
datasets, using it as the MT baseline. Section 3.1
introduces the NLLB and SeamlessM4T-v2 mod-
els. Section 3.2 through Section 3.5 elaborate our
fine-tuning strategies.
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Language Task Amount Sources

aeb-eng ASR 156 hours LDC2022E013-way ST 161 hours/202k lines

bem-eng 3-way ST 167 hours/82k lines Sikasote et al. (2023)

fon-fra 2-way ST 47 hours IWSLT2025 (Abdulmumin et al., 2025)

gle-eng
ASR 5 hours CommonVoice 21.0

2-way ST 7 hours IWSLT2025
3-way ST 202 hours Moslem (2024)

bho-hin 2-way ST 20 hours IWSLT2025
ASR 60 hours ULCA

est-eng 3-way ST 1213 hours/581k lines IWSLT2025

mlt-eng 3-way ST 12 hours/9k lines IWST2025

mar-hin ASR 15 hours CommonVoice 21.0; He et al. (2020)
2-way ST 16 hours IWSLT2025

que-spa
MT 46k lines Ortega et al. (2020); NLLB Team et al. (2022)
ASR 48 hours Cardenas et al. (2018)

3-way ST 9 hours/2k lines IWSLT2025; Zevallos et al. (2022)

Table 1: Summary of datasets used for training. 2-way ST refers to datasets with paired source speech and target
text, while 3-way ST includes paired source speech, source text, and target text. The 3-way ST datasets can be used
for ASR and MT training as well.

3.1 Base Models

NLLB (NLLB Team et al., 2022). NLLB is a mul-
tilingual MT model supporting over 200 languages,
including all language pairs in this shared task. The
model is available in two architecture variants: a
sparsely gated mixture-of-experts (MoE) one and a
set of dense transformer models. The dense trans-
former architecture comprises a text encoder and a
text decoder. While the MoE variant (NLLB-200)
achieves the strongest performance, it has 54.5B pa-
rameters and is not practical for fine-tuning. There-
fore, in our experiments, we choose the 1.3B dense
transformer model distilled from NLLB-200, re-
ferred to as NLLB-200-Distilled-1.3B.

SeamlessM4T-v2 (Seamless Communication
et al., 2023b). SeamlessM4T-v2 is the state-of-
the-art foundation model for ST. While it supports
into-speech translation, we only focus on its into-
text translation capabilities for the purpose of this
shared task. SeamlessM4T-v2 is composed of a
speech encoder, a text encoder, and a shared text
decoder. Its Large variant has 2B parameters in
total and we refer to it as SeamlessM4T-v2-Large.
The speech encoder is pre-trained on 4.5M hours
of unlabeled audio with the w2v-BERT 2.0 objec-
tive. The text encoder and decoder are initialized
by the NLLB model. During fine-tuning, a multi-
task training strategy is employed, incorporating
ASR, MT, ST, and knowledge distillation (KD)
objectives. We also explore this strategy in our ex-

periments. The model supports 101 languages for
speech input and 96 languages for text input and
output. Among the low-resource languages in this
shared task, SeamlessM4T-v2 supports est, gle,
mar, and mlt, but does not support aeb, bem, bho,
fon, and que.

3.2 E2E ST Fine-tuning

For E2E fine-tuning, we utilize 2-way ST data sam-
ples (xsp, y). We use Equation 1 as the loss func-
tion to optimize the speech encoder and the text
decoder.

LE2E =− 1

|y| log p(y|x
sp; θse, θtd)

= − 1

|y|

|y|∑

i=1

log p(yi|y<i, xsp; θse, θtd)

(1)

θse and θtd denote the parameters of the speech
encoder and the text decoder, respectively.

3.3 ASR and MT Fine-tuning for the
Cascaded ST System

Since SeamlessM4T-v2 also supports multilingual
ASR and MT, it is suitable for being fine-tuned on
the low-resource languages for ASR and MT as
well. Specifically, ASR data samples (xsp, xtext)
and MT data samples (xtext, y) are used. A cas-
caded system can then be built by a fine-tuned ASR

291



and a fine-tuned MT model. The corresponding
loss functions for ASR and MT fine-tuning are de-
fined in Equation 2 and Equation 3, respectively.
Equation 3 is also used for NLLB MT fine-tuning.

LASR =− 1

|xtext| log p(x
text|xsp; θse, θtd)

= − 1

|xtext|

|xtext|∑

i=1

log p(xtext
i |xtext

<i , x
sp; θse, θtd)

(2)

LMT =− 1

|y| log p(y|x
text; θte, θtd)

= −1

y

|y|∑

i=1

log p(yi|y<i, xtext; θte, θtd)

(3)

θte refers to the parameters of the text encoder. We
use θASR

se and θASR
td to denote the fine-tuned ASR

components, θMT
te and θMT

td to denote the fine-tuned
MT components.

3.4 Multi-task Fine-tuning

Inspired by the multi-task fine-tuning strategy in
Seamless Communication et al. (2023b), we adopt
a similar approach and explore its effect in the low-
resource ST setting.

Our approach includes ST, MT, and KD ob-
jectives, using paired 3-way ST data samples
(xsp, xtext, y). The ST objective follows Equation 1
and the MT objective follows Equation 3. The
goal of applying the KD objective is to use the MT
components to enhance the ST components. The
motivation is that MT is generally an easier task
than ST and often yields better performance, and
we hope to mitigate this performance gap. In order
to have a strong MT teacher, we initialize the text
encoder and the text decoder in SeamlessM4T-v2
with θMT

te and θMT
td from Section 3.3, respectively.

Optionally, to help with convergence, we can ini-
tialize the speech encoder with θASR

se . Equation 4
explains how we obtain the teacher probability dis-
tribution from the MT components.

pteacher(·|y<i, xtext)

= stop-gradient
(
p(·|y<i, xtext; θte, θtd)

) (4)

stop-gradient(·) means that we detach the resul-
tant tensor from the computation graph, thereby
preventing the gradients from the teacher prob-
ability distribution being propagated to the MT
teacher parameters θte and θtd. We tried without
stop-gradient(·) but observed a performance drop.

Then, we compute KL-Divergence between the stu-
dent and the teacher probability distributions with
Equation 5.

LKD

=
1

|y|

|y|∑

i=1

DKL
[
pteacher(·|y<i, x

text)||p(·|y<i, x
sp; θse, θtd)

]

=
1

|y|

|y|∑

i=1

[
pteacher(·|y<i, x

text) · log pteacher(·|y<i, x
text)

p(·|y<i, xsp; θse, θtd)

]

(5)

The student probability distribution comes from the
ST components θse and θtd.

During fine-tuning, θse and θtd are updated while
θte is kept frozen. The final loss function is a linear
combination of the three losses:

L = α · LE2E + β · LMT + γ · LKD (6)

where α, β, and γ are constants which can be tuned
on the development set. Empirically, we found that
α = 1, β = 1, and γ = 2 worked best.

3.5 E2E ST Fine-tuning with In-domain
Pre-trained Components

As mentioned in Section 3.1, the SeamlessM4T-
v2 model has not been trained on 5 low-resource
languages of interest. To better adapt the model to
new languages for ST, we fine-tune it on in-domain
ASR data with Equation 2, such that the fine-tuned
speech encoder θASR

sp can better capture semantics
from the speech in the new language. Then, we can
initialize the speech encoder of the ST model with
θASR

sp for E2E ST fine-tuning. Optionally, we can
also initialize the text decoder by θMT

td . However,
we do not expect the fine-tuned decoder to be as
helpful as the fine-tuned speech encoder, as the
target language is always high-resource and the
SeamlessM4T-v2 model has been trained on a lot
of that. After the initializations, we perform E2E
ST fine-tuning with Equation 1.

4 Experiments

We describe the additional datasets we used in Sec-
tion 4.1. In Section 4.2, we describe the fine-tuning
hyperparameters. The evaluation metrics are de-
scribed in Section 4.3.

4.1 Dataset
All datasets are summarized in Table 1. Besides
the official ST datasets provided by the organizers,
we use the following additional datasets.
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gle-eng. We use the synthetic 3-way ST dataset
from Moslem (2024). The text is extracted from
OPUS (Tiedemann, 2012), covering portions of the
Wikimedia, Tatoeba, and EUbbookshop corpora.
The speech is synthesized using the Azure Speech
service. This synthetic dataset has about 202 hours
of speech. We also use the gle ASR dataset from
CommonVoice 21.03 (Ardila et al., 2020) to include
real speech data.

bho-hin. We use the bho dataset from the ULCA
corpus.4 It has 60 hours of speech.

mar-hin. We collect Marathi ASR data
from CommonVoice (Ardila et al., 2020) and
OpenSLR64 (He et al., 2020), totaling 15 hours
of speech.

que-spa. The official 3-way ST dataset has
merely 1.6 hours of speech, so we try to find and
use as much data as possible. We use the addi-
tional synthetic 3-way ST dataset (Zevallos et al.,
2022), whose Spanish translations are generated
by Google Translate. We also include the addi-
tional 48-hour ASR dataset (Cardenas et al., 2018).
For MT, we use the additional MT dataset (Or-
tega et al., 2020) extracted from JW300 and Hi-
nantin. The data is very noisy, so we apply ex-
tensive text cleaning strategies inspired by Koehn
et al. (2018). Furthermore, we obtain the NLLB
Quechua-English dataset from OPUS5 (Tiedemann,
2012). This dataset is obtained by text min-
ing (Fan et al., 2020; Schwenk et al., 2021). We
translate the English text into Spanish by apply-
ing NLLB-200-Distilled-1.3B, creating a syn-
thetic Quechua-Spanish MT dataset having approx-
imately 34k lines.

In general, for ASR, MT, and E2E ST experi-
ments, we use their designated datasets as well as
subsets extracted from the 3-way ST datasets if
available.

In our experiments, we keep the text in their
original form. No text normalization is performed,
except for apostrophe normalization in fon. All
speech files are resampled to 16khz if they origi-
nally have a different sampling rate.

4.2 Experiment Setup

We fine-tune SeamlessM4T-v2-Large for all lan-
guage pairs. Two codebases are used in our ex-

3https://commonvoice.mozilla.org/en/datasets
4https://github.com/Open-Speech-EkStep/

ULCA-asr-dataset-corpus
5https://opus.nlpl.eu/NLLB/qu&en/v1/NLLB

periments. One is the official repository,6 which
is for E2E ST fine-tuning (Section 3.2) only. To
support all fine-tuning strategies, we have imple-
mented a second codebase based on the Hugging-
Face Transformers toolkit7 (Wolf et al., 2020). The
HuggingFace codebase is designed to be identical
to the official fine-tuning script. However, in prac-
tice, we observed some performance gaps between
the two codebases, which we discuss in detail in
Appendix A.

Additionally, we fine-tune NLLB-200-
Distilled-1.3B as the MT baseline (the
reason is discussed in Section 3).

For all experiments, we use the AdamW op-
timizer (Loshchilov and Hutter, 2019) with be-
tas (0.9, 0.98), and no weight decay. Models are
trained for a maximum of 10 epochs. We use a
learning rate of 1e-4, with the first epoch being
the warmup phase. For E2E ST fine-tuning with
model components initialized by ASR and/or MT
components, we use a smaller learning rate of 6e-5.
We use the inverse square root learning rate sched-
uler. The batch size is 120 utterances for speech
input tasks (ASR and ST) and 256 sentences for
text input tasks (MT). The label smoothing weight
is 0.2. These hyperparameters can be slightly ad-
justed for different language pairs depending on
dataset characteristics. For instance, for que-spa,
we use a learning rate of 1e-5 for ST fine-tuning
and the maximum epoch number is 200. For ASR
fine-tuning on est-eng and que-spa, the batch
size is 72 utterances due to longer input durations.
Lastly, for MT fine-tuning, the hyperparameters for
NLLB are exactly the same as SeamlessM4T-v2.
During inference, we use a beam size of 5 and
length penalty of 1.0.

4.3 Evaluation Metrics

We evaluate ASR performance using word error
rate (WER) and character error rate (CER) with
the jiwer8 package. For MT performance, we
use SacreBLEU9 (Post, 2018) to compute BLEU10

scores. For both evaluations, text is lowercased and
punctuations are removed before scoring.

6https://github.com/facebookresearch/seamless_
communication

7https://huggingface.co/docs/transformers/
main/model_doc/seamless_m4t_v2

8https://github.com/jitsi/jiwer
9https://github.com/mjpost/sacrebleu

10Signature: nrefs:1 + case:lc + eff:no + tok:13a +
smooth:exp + version:2.5.1
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Lang System Dev Public Test

CER WER CER WER

aeb Seamless-FT 20.7 41.2 24.6 49.0

bem Seamless-FT 9.27 31.08 8.86 30.40

gle Seamless-0s 14.27 23.90 14.79 24.61
Seamless-FT 5.51 9.47 4.71 8.39

bho† Seamless-FT 32.68 41.86 - -

est Seamless-0s 12.94 22.22 - -
Seamless-FT 3.06 8.59 - -

mlt Seamless-0s 8.57 20.68 - -
Seamless-FT 3.69 12.12 - -

mar†
Seamless-0s 4.28 17.40 4.73 18.44
Seamless-FT 1.90 8.42 8.15 2.08

que Seamless-FT 15.54 37.80 - -

Table 2: ASR results for languages with available
ASR datasets. †: Models are not evaluated on official
IWSLT2025 datasets but on additional ASR datasets.
The bho model is evaluated on ULCA, and the mar
model is evaluated on CommonVoice. 0s denotes a zero-
shot model, while FT denotes a fine-tuned model.

Lang System Eval 1 Eval 2

CER WER CER WER

aeb Seamless-FT 19.7 38 22.3 39.9

bem Seamless-FT 8.96 30.62 - -

Table 3: Official ASR Evaluation results for aeb and
bem. We did not submit hypothesis for other language
pairs unfortunately.

5 Results and Analysis

We first present the ASR and MT performance in
Section 5.1 and 5.2, respectively. Then, we sum-
marize the ST performance in Section 5.3. The
ablation study of using additional datasets is pre-
sented in Appendix B.

5.1 Automatic Speech Recognition

Internal evaluation results are presented in Ta-
ble 2, and the official evaluation results (Abdul-
mumin et al., 2025) are in Table 3. Seamless-
FT refers to SeamlessM4T-v2-Large fine-tuned
on all available ASR datasets, while Seamless-0s
refers to SeamlessM4T-v2-Large evaluated in a
zero-shot manner without fine-tuning. Languages
without zero-shot results are not supported by
SeamlessM4T-v2’s ASR capability. For bho and
mar, no official ASR datasets are provided by the
organizers, so we evaluate them on held-out subsets
from ULCA and CommonVoice, respectively.

The zero-shot performances on gle, est, mlt,

Lang System Dev Public Test
BLEU BLEU

aeb
NLLB-0s 11.05 8.98
NLLB-FT 30.48 27.11

Seamless-FT 30.39 27.54

bem
NLLB-0s 8.57 8.58
NLLB-FT 29.20 30.42

Seamless-FT 28.86 29.27

est

NLLB-0s 31.60 -
Seamless-0s 30.33 -
NLLB-FT 32.85 -

Seamless-FT 40.23 -

mlt

NLLB-0s 50.39 -
Seamless-0s 53.96 -
NLLB-FT 64.29 -

Seamless-FT 62.13

que
NLLB-0s 5.05 -
NLLB-FT 15.98 -

Seamless-FT 15.29 -

Table 4: MT results for languages with available MT
datasets. 0s denotes a zero-shot model, while FT de-
notes a fine-tuned model. There are only small gaps
between NLLB-FT and Seamless-FT.

and mar are relatively strong, all with WER around
20% and CER around 10%. Further fine-tuning on
in-domain ASR datasets yields substantial improve-
ments, reducing both CER and WER by about 50%
in relative value. For languages that SeamlessM4T-
v2 has not been trained on, ASR performance is
poorer. aeb and bho are particularly challenging,
with WERs greater than 40%. que also has a high
WER of 37.8%. The model performs relatively
well on bem, achieving a low CER of approximately
9%, although its WER remains high at around 30%.
We can conclude from these results that the fine-
tuned SeamlessM4T-v2-Large performs better on
languages it has been trained on.

5.2 Text Machine Translation

Table 4 presents MT performance for languages
with available MT datasets. We report both 0-shot
and fine-tuned results for SeamlessM4T-v2-Large
and NLLB-200-Distilled-1.3B. NLLB-0s and
Seamless-0s refer to the zero-shot performance,
while NLLB-FT and Seamless-FT refer to the
fine-tuned results. Note that NLLB results
are used only for reference. The fine-tuned
NLLB-200-Distilled-1.3B are neither used for
submissions nor for model initialization.

Fine-tuning on the in-domain MT
datasets leads to substantial improvements.
NLLB-200-Distilled-1.3B achieves +10 BLEU
for all languages, except for est, where the
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Lang Dev Public Test

aeb 4.29 3.22
bem 0.93 0.93
fon 1.09 -
gle 28.98 47.66
bho 25.28 -
est 26.21 -
mlt 50.02 -
mar 24.07 31.77
que 1.47 -

Table 5: Zero-shot SeamlessM4T-v2-Large ST results
for all languages. Results are obtained using the official
codebase.

gain is +1.25 BLEU. For aeb and bem, the
improvements even reach approximately +20
BLEU. Despite being trained on fewer languages,
the fine-tuned SeamlessM4T-v2-Large achieves
performance comparable to that of the fine-tuned
NLLB-200-Distilled-1.3B. This justifies our
choice of adopting SeamlessM4T-v2-Large as the
MT model.

5.3 Speech Translation

Internal evaluation and official evaluation (Abdul-
mumin et al., 2025) results are presented in Table 6.
The HF prefix indicates models fine-tuned using
the HuggingFace toolkit, while the OFF prefix
refers to models fine-tuned with the official code-
base. For a fair comparison, we compare results ob-
tained from the same codebase. E2E refers to E2E
ST fine-tuning (Section 3.2), Cascaded refers to
the cascaded ST system (Section 3.3), and MLT de-
notes multi-task fine-tuning (Section 3.4). ASRinit
and MTinit indicate that the speech encoder and
the text decoder are initialized with the fine-tuned
ASR encoder and MT decoder, respectively (Sec-
tion 3.5). For gle, results are reported without
using the synthetic ST dataset (Moslem, 2024), as
we observed a performance drop when including it.
Additionally, we report the zero-shot performance
of SeamlessM4T-v2-Large in Table 5.

The official codebase yields stronger perfor-
mance. In Table 6, E2E ST fine-tuning using the of-
ficial codebase performs strongest in 5 out of 9 lan-
guages. It is unexpected that the official codebase
(OFF-E2E) outperforms the HuggingFace code-
base (HF-E2E) in all languages except for bem and
mar. We discuss the discrepancies in Appendix A.

E2E ST fine-tuning produces strong mod-
els in general. Compared to the zero-shot
SeamlessM4T-v2-Large performance in Table 5,
E2E ST fine-tuning leads to substantial improve-

ments. For aeb, bem, fon, and que whose zero-
shot BLEU scores are close to 0, E2E fine-
tuning improves by about +20, +30, +40, and
+10 BLEU, respectively. For languages where
SeamlessM4T-v2-Large has good performance al-
ready, E2E fine-tuning yields improvements of at
least +10 BLEU, except for gle, which has a mod-
est gain of +1 BLEU. Overall, E2E ST fine-tuning
(including both OFF-E2E and HF-E2E) achieves
the best performance in 6 out of the 9 languages.
Notably, for bem, the E2E ST result even surpasses
the MT result by about 2 BLEU.

E2E ST fine-tuning performs best for lan-
guages with ASR support. Next, we compare dif-
ferent fine-tuning strategies. For a fair comparison,
we compare results obtained by the HF codebase.
HF-E2E performs best in gle, mlt and mar, exactly
the languages that SeamlessM4T-v2-Large pro-
vides ASR support. Having been trained on large
amounts of ASR data, SeamlessM4T-v2-Large al-
ready has a strong capability to extract semantics
from speech in those languages. Further fine-tuning
on our own small ASR datasets may just hurt the
model’s generalization capability. However, ASR
encoder initialization has only a minor negative
effect, with a performance drop less than 1 BLEU.

In-domain pre-training improves perfor-
mance for languages without ASR support. For
languages that SeamlessM4T-v2-Large does not
support ASR for, fine-tuning on in-domain ASR
datasets improve the ST performance. Specifically,
for bho and aeb, ASR training improves perfor-
mance by about +5 and +3 BLEU, respectively.
Smaller gains of about +1 BLEU are observed for
bem and que, while the remaining languages see
improvements of less than 1 BLEU. In contrast,
text decoder initialization is less effective. It pro-
vides a slight improvement for que but hurts aeb
performance.

Multi-task training is beneficial when MT per-
formance is strong. We explored multi-task train-
ing for aeb, mlt, and que, languages for which
fine-tuned MT models outperform E2E ST models.
The gaps are approximately 8, 5, and 2 BLEU, re-
spectively. Multi-task improves aeb performance
by 2 BLEU and improves que by about 0.7 BLEU.
However, there is no improvement for mlt.

Cascaded systems are competitive but gen-
erally underperform E2E ST fine-tuning. We
evaluate cascaded systems for aeb, bem, est, mlt,
and que. Among these, the cascaded system only
outperforms E2E ST fine-tuning in est, with a
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Lang System Submission Dev Public Test Eval 1 Eval 2

aeb

HF-E2E-ASRinit Primary 25.48 21.41 20.30 17.8†

HF-MLT-ASRinit Contrastive 1 24.64 21.18 19.2 17.3
HF-Cascaded Contrastive 2 24.42 21.01 18.90 17.3
HF-MLT - 24.23 20.33 - -
HF-E2E-ASRinit-MTinit - 24.08 20.41 - -
OFF-E2E - 23.76 19.67 - -
HF-E2E - 22.73 18.35 - -

bem

HF-E2E-ASRinit Primary 31.96 32.12 31.7 -
HF-E2E Contrastive 1 31.14 30.93 30.6 -
HF-Cascaded Contrastive 2 28.02 28.02 27.9 -
OFF-E2E - 30.69 31.23 - -

fon OFF-E2E Primary 40.86 - 31.96 -

gle*
OFF-E2E Primary 29.63 51.91 13.4 -
HF-E2E Contrastive 1 24.07 51.21 8.4 -
HF-E2E-ASRinit Contrastive 2 23.34 51.43 6.7 -

bho
OFF-E2E Primary 41.96 - 3.9 -
HF-E2E-ASRinit Contrastive 1 39.04 - 3.4 -
HF-E2E Contrastive 2 33.92 - 2 -

est

OFF-E2E Primary 38.07 - 29.8 -
HF-Cascaded Contrastive 1 38.00 - 30.2 -
HF-E2E-ASRinit Contrastive 2 36.97 - 29.6 -
HF-E2E - 36.89 - - -

mlt

OFF-E2E Primary 57.92 - 67.1 47.87‡

HF-E2E Contrastive 1 57.65 - 64.21 48.53
HF-E2E-ASRinit Contrastive 2 57.57 - 63.23 48.65
HF-MLT - 57.46 - - -
HF-Cascaded - 57.04 - - -

mar
HF-E2E Primary 44.84 53.80 43.4 -
HF-E2E-ASRinit Contrastive 1 44.72 53.77 44.3 -
OFF-E2E Contrastive 2 42.52 51.34 41.5 -

que

HF-E2E-ASRinit-MTinit Primary 13.37 - 12.7 -
HF-MLT-ASRinit Contrastive 1 13.03 - 12.9 -
HF-E2E-ASRinit Contrastive 2 13.00 - 13.0 -
HF-Cascaded - 13.15 - - -
HF-E2E - 12.32 - - -

Table 6: ST results for all languages. HF-* means the model is trained with HuggingFace toolkit, while OFF-*
refers to the official codebase. Eval refers to the official evaluation result. *For gle, the results are obtained
without using the synthetic data (Moslem, 2024). †For aeb, Eval 1 refers to LDC20022E02 and Eval 2 refers to
LDC2023E09. ‡For mlt, Eval 1 refers to CV and Eval 2 refers to Masri.

modest gain of +1 BLEU. For bem and mlt, cas-
caded systems even underperform direct E2E ST
fine-tuning. For aeb and que, although cascaded
systems are better than direct E2E ST fine-tuning,
they fall short compared to ST models initialized
with in-domain pre-trained components.

6 Conclusion and Future Work

In this paper, we describe GMU systems for the
IWSLT 2025 Low-resource ST shared task. We
focus on fine-tuning the SeamlessM4T-v2-Large
model and explore four fine-tuning strategies. We
find that E2E ST fine-tuning performs best on lan-
guages with ASR support. For languages without
ASR support, we can fine-tune the model on in-

domain ASR datasets first and then initialize the
ST encoder with the ASR encoder, which signifi-
cantly improves performance. Multi-task training
and cascaded systems are not as good as E2E fine-
tuning in general. We hypothesize that it is because
SeamlessM4T-v2-Large is strong enough on ST,
and the fine-tuned MT performance is not strong
enough to provide useful additional performance
gains.

For future work, we could explore better pre-
training methods to mitigate the gap between the
speech encoder and the text decoder (Le et al.,
2023). We could also explore the use of speech
large language models, as large language models
have recently achieved success in MT tasks (Kocmi
et al., 2024).
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A Discrepancies between codebases

There are three discrepancies between our Hug-
gingFace codebase and the official codebase.

Loss on the target language code. During
training, the target sequence is formatted as
[< /s >,< lang >, token1, . . . , tokenn, < /s >],
where < /s > is both the start-of-sentence and
end-of-sentence token, and < lang > denotes
the language code. The text decoder takes as
input [< /s >,< lang >, token1, . . . , tokenn].
The losses described in Section 3 are computed
using [< lang >, token1, . . . , tokenn, < /s >]
as the label. The official codebase ignores the
loss on the first label, i.e., < lang >. However,
we still include this loss, because we use the
same codebase for ASR and we want to train
the language code embedding for newly added
languages like <aeb>.

Parameter sharing of word embeddings.
There are three word embeddings in a Seam-
lessM4T model: a text encoder embedding, a text
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decoder input embedding, and a text decoder out-
put embedding (also termed lm_head). These three
embeddings are intended to share the same weight
matrix. However, in the official codebase, the
lm_head is accidentally untied from the other two
embeddings during model initialization, resulting
in additional 262M trainable parameters. In con-
trast, the HuggingFace codebase still ties all three
embeddings.

Dropout modules. There are a few dropout
modules in the HuggingFace model that differ from
the official model.

1. ffn_dropout in the decoder layers: The Hug-
gingFace model uses p = 0.0, whereas the
official model uses p = 0.1.

2. dropout in the self_attn module of the
adapter layer: The HuggingFace model uses
p = 0.0, while the official model uses p =
0.1.

3. intermediate_dropout in the ffn module
of the adapter layer: The HuggingFace model
uses p = 0.1, while the official model uses
p = 0.0.

4. There is a dropout module with p = 0.1 ap-
plied to the text decoder input word embed-
ding in the official model, but it is missing in
the HuggingFace model.

We are able to fix the first 3 dropout modules easily.
However, adding a missing dropout module for the
last one would require some more efforts, so we
leave it unresolved for now.

We also present experiment results on aeb af-
ter addressing these discrepancies. As Table 7
shows, the HuggingFace model achieves per-
formance comparable as the official model for
E2E ST after resolving all three discrepancies
(+lm_head+dropout+lang). Addressing only a sin-
gle or two of the discrepancies does not have a
significant effect.

B Ablation study of using additional
datasets

In this section, we present results when using dif-
ferent amounts of ST training data for gle and que.

gle-eng. There are approximately 7 hours of offi-
cial 2-way ST data and about 200 hours of synthetic
3-way ST data (Moslem, 2024) available for gle.
We attempted to incorporate the synthetic 3-way

System
Dev Public Test

BLEU BLEU

OFF-E2E 23.76 19.67

HF-E2E 22.73 18.35
+lm_head 22.88 19.14

+dropout 22.88 19.22
+lang 22.36 18.86

+dropout 23.50 20.12
+dropout 22.58 19.52

Table 7: ST results for aeb. +lm_head means the
lm_head is untied from word embeddings. +dropout
means we use the same drop modules as in the official
model. +lang means we do not compute loss on the tar-
get language code. Combining all three changes yields
comparable performance as the official codebase.

ST data into E2E ST fine-tuning. However, it did
not help as shown in Table 8. When training on the
official ST dataset only, the dev set performance
is 29.63 BLEU. In contrast, training on both the
official and synthetic data results in a performance
drop of 1 BLEU.

Datasets
Dev Public Test

BLEU BLEU

IWSLT2025 29.63 51.91
+Moslem (2024) 28.69 51.46

Table 8: gle-eng results on the IWSLT2025 dev set. All
models are trained using the official codebase.

que-spa. There are only 1.67 hours of official 3-
way ST data for que. Additional resources include
approximately 8 hours of synthetic 3-way data (Ze-
vallos et al., 2022), about 12k lines of MT data (Or-
tega et al., 2020), and about 48 hours of ASR
data (Cardenas et al., 2018). We also created a syn-
thetic que-spa MT dataset using the NLLB (NLLB
Team et al., 2022) que-eng alignments, resulting
in approximately 34k lines of bitext. Details have
been described in Section 4.1.

The ASR, MT, and E2E ST results are presented
in Table 9, Table 10, Table 11, respectively, which
show that incorporating all available datasets im-
prove the performance across all three tasks. For
ASR, using additional data reduces CER by 3.65
and WER by 12.98 in absolute value. For MT, in-
corporating Zevallos et al. (2022) and Ortega et al.
(2020) substantially improves the performance by
8.5 BLEU. Although the synthetic NLLB dataset
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is the largest, adding it only yields a marginal fur-
ther improvement of 0.91 BLEU. For ST, adding
the synthetic dataset significantly improves E2E
ST by 8.59 BLEU. While the gains are smaller
for E2E-ASRinit and E2E-ASRinit-MTinit, the addi-
tional data still improves the performance by 3.16
and 2.95 BLEU, respectively. The ASR and MT
models used for initialization are the best ones from
Table 9 and Table 10, respectively.

Datasets
Dev

CER WER

IWSLT2025 19.19 50.78
+Zevallos et al. (2022) 16.97 41.14

+Cardenas et al. (2018) 15.54 37.80

Table 9: ASR results on the ASR split of the official
3-way ST dev set.

Datasets
Dev

BLEU

IWSLT2025 5.88
+Zevallos et al. (2022)

14.38
+Ortega et al. (2020)

+NLLB Team et al. (2022) 15.29

Table 10: MT results on the MT split of the official
3-way ST dev set.

Datasets System Dev
BLEU

IWSLT2025
E2E 3.73

E2E-ASRinit 9.84
E2E-ASRinit-MTinit 10.42

+Zevallos et al. (2022)
E2E 12.32

E2E-ASRinit 13.00
E2E-ASRinit-MTinit 13.37

Table 11: ST results on the ST split of the official 3-way
ST dev set. Models are trained using the HuggingFace
codebase. The ASR and MT models are the best ones
trained on all available ASR and MT datasets, respec-
tively.
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Abstract

This paper discusses the construction, fine-
tuning, and deployment of BeaverTalk1, a cas-
caded system for speech-to-text translation as
part of the IWSLT 2025 simultaneous transla-
tion task. The system architecture employs a
VAD segmenter for breaking a speech stream
into segments, Whisper Large V2 for automatic
speech recognition (ASR), and Gemma 3 12B
for simultaneous translation. Regarding the si-
multaneous translation LLM, it is fine-tuned
via low-rank adaptors (LoRAs) for a conver-
sational prompting strategy that leverages a
single prior-sentence memory bank from the
source language as context. The cascaded sys-
tem participated in the English→German and
English→Chinese language directions for both
the low and high latency regimes. In partic-
ular, on the English→German task, the sys-
tem achieves a BLEU of 24.64 and 27.83 at a
StreamLAAL of 1837.86 and 3343.73, respec-
tively. Then, on the English→Chinese task, the
system achieves a BLEU of 34.07 and 37.23
at a StreamLAAL of 2216.99 and 3521.35, re-
spectively.

1 Introduction

This paper covers Oregon State University’s simul-
taneous translation system, BeaverTalk, for IWSLT
2025. The system constructed takes in a speech
stream input and outputs text translation in a cas-
caded manner for two language pairs, those being
English→German (en→de) and English→Chinese
(en→zh). Unique to IWSLT 2025’s simultaneous
translation task (Abdulmumin et al., 2025), this
system generates translation for unsegmented au-
dio. Architecture-wise, the system includes a VAD
speech segmenter (Team, 2024), breaking a speech
stream into segments, Whisper Large V2 (Radford
et al., 2022) performing automatic speech recogni-
tion (ASR), and a fine-tuned Gemma 3 12B model

1Our fine-tuning and evaluation code is available at https:
//github.com/OSU-STARLAB/BeaverTalk

(Team et al., 2025) that performs context-aware
conversational prompting to generate a simultane-
ous translation.

The simultaneous translation portion of this cas-
caded system is fine-tuned on OpenSubtitles v2018
(Lison et al., 2018) across both language pairs.
Given the unsegmented source for this task, lever-
aging additional context is possible and likely to
improve results, based on prior work (Papi et al.,
2024). As such, our system utilizes a single-
sentence memory bank for the source language
as context. This memory bank required modifying
the typical conversational prompting structure for
simultaneous translation(Wang et al., 2024).

Although a fine-tuned Gemma 3 12B leveraging
conversational prompting is a powerful model for
simultaneous translation, its application in a cas-
caded architecture suffers from typical issues of
error propagation (Tran et al., 2022; Zhou et al.,
2024). As such, maximizing the capabilities of a
powerful simultaneous translation LLM requires
minimizing these errors in the preceding steps, con-
sisting of the VAD segmenter and Whisper ASR
model. As such, we conduct an extensive inference
time hyperparameter search aimed at minimizing
error propagation. From the joint contributions of
our cascaded simultaneous translation system and
minimization of error propagation, we achieve im-
pressive results on the ACL 60/60 development set.
For example, on the English→German language
pair, our cascaded system achieves a BLEU of
24.64 and 27.83 at a streamLAAL of 1837.86 and
3343.73. Furthermore, on the English→Chinese
task, our system achieves a BLEU of 34.07 and
37.23 at a streamLAAL of 2216.99 and 3521.35.

2 Task Description

Simultaneous translation, generally speaking, is
the process of taking in some source context and
making translation decisions to another language

301

https://github.com/OSU-STARLAB/BeaverTalk
https://github.com/OSU-STARLAB/BeaverTalk


Figure 1: Depiction of the cascaded system described in this technical paper. Unsegmented source audio is taken in
and fed into an ASR pipeline that segments the audio and then transcribes it into a hard text data modality. This
segmented, running transcription is then fed into a simultaneous translation pipeline powered by Gemma 3. The
transcription and current translation are fed into a conversational prompt constructor, adapted from prior work.

in a manner that does not rely on that source con-
text being complete. For example, typical neural
machine translation (NMT) might act on a sentence-
to-sentence basis, taking in a source sentence and
outputting a target sentence. In comparison, a si-
multaneous translation must balance the lagging
factor of output translations (i.e., the time it takes
from a piece of source context to a correspond-
ing piece of the output translation) with translation
quality, making translation decisions with only par-
tial context.

As previously mentioned, the IWSLT 2025 si-
multaneous translation task (Abdulmumin et al.,
2025) is fundamentally a speech-to-text task with
two tracks governing what systems participants
are expected to build: text-to-text where partici-
pants only construct a simultaneous agent for text
data and prepend this system with an ASR model
and speech-to-text where the simultaneous system
takes in raw speech and outputs target translations
in text without the need for a conversion to a text
data modality. Our constructed system targets the
text-to-text track, and since it is applied to the
English→German (en→de) and English→Chinese
(en→zh) language directions, it is restricted to pre-
defined high and low latency regimes specified by
the task. These two latency regimes, as specified
below, are governed by non-computationally aware
StreamLAAL in seconds (s):

• en→de: 0-2s (low), 2-4s (high);

• en→zh: 0-2.5s (low), 2.5-4s (high).

The required development set for en→de and
en→zh is ACL 60/60. A blind test set is employed
for final evaluations.

3 BeaverTalk: A System Description

Our simultaneous translation system consists of a
cascaded architecture, which is divided into a VAD
segmenter utilizing a Silero VAD model (Team,
2024), Whisper Large V2 (Radford et al., 2022),
and a fine-tuned Gemma 3 (Team et al., 2025) for
simultaneous translation. In the system, Gemma
3 was fine-tuned for a conversational prompting
strategy (Wang et al., 2024), which is designed to
mimic a streaming setting. Our complete system is
provided in Figure 1.

Our choice of a cascaded architecture rather than
an end-to-end system hinges on our desire to (1)
leverage the language modeling capabilities of an
LLM to overcome contextual obstacles faced dur-
ing simultaneous translation, (2) take advantage
of an LLMs context understanding capabilities to
harness prior sentence context in a stream of data,
and (3) benchmark the fine-tuning and multilin-
gual capabilities of the recent Gemma 3 (Team
et al., 2025). To provide a deeper understanding of
our designed system, we will first explain the fine-
tuning approach for our translation LLM to enable
conversational prompting, followed by a deeper
explanation of our cascaded translation system.

3.1 SFT Conversational Prompting

We conduct supervised fine-tuning (SFT) for our
Gemma 3 LLM for translation using a conversa-
tional prompting strategy that leverages a prior sen-
tence memory bank as context. The prompting
strategy is designed whereby provided a source se-
quence S = [s1, s2, ..., s|S|] and a target sequence
T = [t1, t2, ..., t|T |] the prompt will interleave sub-
sequences from S and T leveraging delimiting to-
kens to separate the subsequences. Now suppose
we had prior sentence context C = [c1, c2, ..., c|C|],
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Use the following sentence as context: c1, . . . , c|C|
Now translate the following sentence from X to Y Assistant: <s><t>s1, . . . , si</t>t1, . . . , tj</s> . . . <s><t>sk, . . . , s|S|</t>tl, . . . , t|T |</s>

Figure 2: An example conversational prompt for translating for source language X to target language Y using source
and target sequences S = [s1, s2, ..., s|S|] and T = [t1, t2, ..., t|T |] with context C = [c1, c2, ..., c|C|].

then an example of a conversational prompt con-
structed from these components is provided in Fig-
ure 2.

Aside from the prior sentence memory bank,
which we inject into our prompt, our conversa-
tional prompting follows a similar implementation
to Wang et al. (2024). The approach for generating
this conversational prompting (the green region in
Figure 2) can be broken into the following three
steps:

1. Generate the alignments between words in the
source and the target sequences. Unlike Wang
et al. (2024), which uses fast-align (Dyer et al.,
2013), we use the Itermax method from the
SimAlign toolkit leveraging XLM-RoBERTa
base to align words due to their work reporting
better alignments (Jalili Sabet et al., 2020;
Conneau et al., 2019).

2. Segment the graph into subsequences such
that all the word dependencies for each tar-
get subsequence are available in or before the
respective source subsequence. For example,
assuming we did not perform step 3, in Fig-
ure 2 every word in the subsequence t1, ...tj
aligns with each word in s1, ..., si.

3. Merge and shift subsequences to break the
ideal alignments. Such a step is necessary to
aid in making the LLM flexible for different
variations of subsequences received during
inference.

Once the prompt is constructed, we fine-tune our
LLM using a causal language modeling objective
using cross-entropy loss. We ensure that loss is
only computed for tokens between the delimiting
tokens </t>, not inclusive, and </s>, inclusive.
Suppose our conversational prompt possesses K
conversation intervals (ie. the number of times<s>
appears in the prompt of Figure 2), where the be-
ginning and end of each conversation interval are
at index sk and ek. Then we can represent such a
loss objective with Equation 1.

L =
K∑

k=1

ek∑

i=sk

log pθ(ti | s<i) (1)

The purpose of such a loss is to ensure that the
model learns to predict </s> whenever it has insuf-
ficient context at inference. In doing so our LLM
learns a portion of the decision policy in conjunc-
tion with the translation objective.

3.2 Streaming Cascaded SimulST System

As we leverage a cascaded architecture we will
break our explanation into (1) the Segmented ASR
Pipeline, the part responsible for segmenting and
transcribing a speech stream (shown in the left half
of Figure 1), and (2) the Simultaneous Translation
LLM Pipeline, the part responsible for translating
the transcribed speech (shown in the right half of
Figure 1).

3.2.1 Segmented ASR Pipeline
The first part of our Segmented ASR Pipeline is
the VAD segmenter. As previously mentioned, it
segments a speech signal. This segmentation is
based on (1) the maximum segment duration, (2)
the maximum unvoiced duration, and (3) the voice
probability threshold. As the name implies, the
maximum segment duration determines the max-
imum length of a valid segment. If the segment
duration exceeds the maximum segment duration,
it is cut. The maximum unvoiced duration and
the voice probability threshold alternatively rely
on one another to determine when to segment the
speech input prior to reaching the maximum seg-
ment duration. The first part of this second facet
of segmentation begins with the Silero VAD model
(Team, 2024). This VAD model outputs a proba-
bility score of a specific sample containing audio
of a speaker’s voice. If the score falls below the
voice probability threshold, it is determined that
there is currently no voice from the speaker. When
the score has been below the probability threshold
for longer than the maximum unvoiced duration,
the speech is segmented. Such a condition would
be ideally met between pauses in speech or at the
end of a sentence.

The Whisper ASR model (Radford et al., 2022)
interacts with the VAD segmenter by receiving the
segmented audio inputs. The Whisper portion of
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the Segmented ASR Pipeline is designed to have
Whisper transcribe the audio input using a stable
transcription policy, leveraging a context mech-
anism. The stable transcription policy followed
aims to create consistent, accurate transcriptions.
It works by committing a transcription to a sta-
ble transcription buffer once it repeats a transcrip-
tion for a given audio interval. For example, if on
the first interval Whisper transcribes the sequence
s1, s2, s3, s4 and then on the second interval it tran-
scribes s1, s2, s3, s′4, s5, s6, only the s1, s2, s3 will
be committed to the stable transcription. Once com-
mitted as a stable transcription, it becomes avail-
able to the Simultaneous Translation LLM Pipeline
for translation. To further improve transcription
quality, Whisper is also provided with additional
context from a context buffer. The context buffer
is designed to provide Whisper with the transcript
from the previous segment. However, if the pre-
vious segment exceeds the cutoff threshold, the
number of context words is limited to be equal to
the cutoff threshold.

3.2.2 Simultaneous Translation LLM Pipeline
As previously explained in Section 3.1, our Gemma
3 (Team et al., 2025) based simultaneous trans-
lation model follows a conversational prompting
strategy utilizing a prior sentence memory bank as
context. It is designed to firstly place the running
stream of transcription chunks from the Segmented
ASR Pipeline into a buffer upon receipt. Such a
buffer will retain already translated portions of the
transcript so long as the sentence these translated
portions are associated with has yet to be com-
pleted.

Once the buffer has been extended, it is passed to
a Spacy sentence tokenizer, which splits the buffer
of words into sentences. Upon splitting the buffer
into sentences, the pipeline will enter a translation
generation loop, where a translation action will
occur if one of two conditions is met. These condi-
tions consist of (1) the length of untranslated words
in the buffer has exceeded a prespecified minimum
chunk size or (2) the sentence tokenizer has split
the buffer into more than 1 sentence.

Once a translation action is triggered, the first
step is to construct a conversational prompt. The
conversational prompt is constructed identically to
the one in Figure 2 by appending the new source
subsequence from the oldest sentence in the buffer
after a <t> delimiter following the previous trans-
lation action conversational prompt. In order to

ensure the model understands it is a conversation
phase after the source sequence, the </t> delimiter
is appended. The new source subsequence length
is equal to the untranslated word count present in
the current sentence. We require such a condition
as allowing for multiple sentences in the source
subsequence would deviate from the fine-tuning
setting, where only a single sentence was allowed
at any time in the conversational prompt (a restric-
tion by the dataset). Once constructed, the prompt
is provided to the LLM to produce a translation
until it outputs the delimiting token </s>. The out-
put translation is added to a running translation to
be reused in prompt construction for subsequent
translation phases.

Upon completing the translation, if the sentence
tokenizer determined there was more than a single
sentence in the buffer, it would signify that the
current sentence had completed translation. As
such, the translated sentence transcript is cached
to be used as context for the subsequent sentence.
Additionally, its contents would be removed from
the transcription buffer. Further translation phases
would occur if conditions (1) and (2) were once
again met.

4 Experimental Setup

The dataset of choice for fine-tuning is OpenSubti-
tles v2018. This corpus is particularly noisy (e.g.
some Chinese translations are almost entirely En-
glish, mismatched translations to transcriptions,
etc.), rendering it difficult to achieve reasonable
initial results. Given that, some cleaning of the
dataset is required. This occurs in four steps, the
third of which only occurs for the en→zh dataset
split:

1. Filtering all samples on length such that the
source and memory bank sequence are greater
than or equal to 25 characters.

2. Filtering all samples with ’...’, ’[’, ’]’, ’(’, ’)’,
or consisting of only capital letters and replac-
ing ’- ’ with empty space.

3. Filtering all samples in the en→zh language
split that contain English words in the target
column.

4. Filtering all remaining samples via
CometKiwi (Rei et al., 2022) with a
thresholding score of 0.6 to ensure semantic
similarity between the transcription and
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Table 1: Comparison table for simultaneous translation experiments, organized by language pair and model size.

Language Pair Model Size Latency Regime BLEU ↑ StreamLAAL ↓

en–de
4B

low 23.64 1958.22
high 25.22 3503.46

12B
low 24.64 1837.86
high 27.83 3343.73

en–zh
4B

low 32.81 2249.32
high 34.62 3190.68

12B
low 34.07 2216.99
high 37.23 3521.35

the reference translation. This is meant to
minimize the likelihood of a mismatched
transcription and translation.

The fine-tuning pipeline that employs the afore-
mentioned dataset is based on frameworks for si-
multaneous translation with LLMs provided in
prior work (Agostinelli et al., 2024; Raffel et al.,
2024), which were then adapted for unsegmented
fine-tuning and evaluation.

Fine-tuning occurred on Gemma 3 4B/12B via
LoRAs with quantization (Hu et al., 2021; Dettmers
et al., 2023). The LoRA adapters were applied to
all attention projections and all the feed-forward
network linear projections. We chose a LoRA r
of 64, a LoRA α of 16, and a LoRA dropout of
0.1. Our quantization quantized to 4-bit floating
point via NormalFloat with a compute data type of
bfloat16. We used the Paged 32-bit Adamw opti-
mizer and an inverse sqrt learning rate scheduler
with an effective batch size of 64, a learning rate of
2e−4, a weight decay of 0.1, a max gradient norm
of 1, and a warm-up ratio of 0.03.

We evaluate the translation quality of our models
using BLEU score with sacreBLEU (Post, 2018).
The latency is reported using StreamLAAL (Papi
et al., 2024). For the en→de language direction,
the latency and BLEU scores are reported at the
word level using the 13a tokenizer. Alternatively,
for the en→zh language direction, the latency and
BLEU scores are reported at the character level.

Our fine-tuning and evaluation for the Gemma
12B models was conducted on an NVIDIA H200.
Alternatively, the Gemma 4B models were trained
on a NVIDIA A40 and evaluated on a NVIDIA
V100.

5 Results

5.1 Inference Hyperparameter Tuning
For our system, we tuned the maximum unvoiced
duration (MUD), the voice probability threshold
(VPT), the maximum segment duration (MSD), and
the minimum chunk size (MCS). We immediately
found that a maximum unvoiced duration greater
than 0.1 s would deteriorate performance, so we
kept that constant for our experimentation. Due
to our 12B Gemma 3 model requiring an H200 to
evaluate (a byproduct of memory requirements),
we selected inference hyperparameters using a 4B
Gemma 3 model, which could run on a V100. Such
a choice is feasible due to the cascaded structure of
our architecture. This is a byproduct of the maxi-
mum unvoiced duration, voice probability thresh-
old, and maximum segment duration only influenc-
ing the quality of the transcriptions from the Seg-
mented ASR Pipeline. If the transcription related
hyperparameters are tuned properly, the Gemma 3
translation model will perform better irrespective
of the model size.

We began our inference hyperparameter search
by fixing our translation minimum chunk size to 3
words on the en→de language pair and 5 words on
the en→zh language pair. These minimum chunk
sizes were chosen to accommodate the en→de lan-
guage pair, having a low latency cutoff of 2s, and
the en→zh language pair, having a low latency
cutoff of 2.5s. We then iteratively searched for
the optimal maximum segment duration and voice
probability threshold for both the low and high la-
tency regimes. We report these results in Tables
2 and 3 for en→de and en→zh language pairs, re-
spectively.

From observing, Table 2 we can see for the low
latency regime of the en→de language pair the only
selection of hyperparameters that fall below the 2s
threshold is with a voice probability threshold of

305



Table 2: Simultaneous translation results for en→de
organized by voice probability threshold (VPT) and
maximum segment duration (MSD) with a minimum
chunk size of 3.

VPT MSD BLEU ↑ StreamLAAL ↓
0.1 0.5 23.43 2079.14
0.1 1 24.86 2677.30
0.1 1.5 25.02 3114.15
0.3 0.5 23.36 2047.62
0.3 1 25.01 2477.67
0.3 1.5 25.05 2877.81
0.5 0.5 23.59 1940.58
0.5 1 24.96 2356.68
0.5 1.5 24.82 2804.01

Table 3: Simultaneous translation results for en→zh
organized by voice probability threshold (VPT) and
maximum segment duration (MSD) with a minimum
chunk size of 5.

VPT MSD BLEU ↑ StreamLAAL ↓
0.1 0.5 33.16 2294.95
0.1 1 33.57 2979.20
0.1 1.5 34.11 3382.83
0.3 0.5 32.47 2307.56
0.3 1 33.36 2851.60
0.3 1.5 33.70 3206.28
0.5 0.5 32.81 2249.32
0.5 1 33.31 2728.01
0.5 1.5 34.62 3190.68

0.5 and a maximum segment duration of 0.5s. Al-
ternatively, for the high latency regime, we select a
voice probability threshold of 0.3 and a maximum
segment duration of 1. We chose the maximum
segment duration of 1s rather than 1.5s due to the
increase in StreamLAAL. We report our final se-
lected maximum unvoiced duration, voice proba-
bility threshold, and maximum segment duration
in Table 4 for the en→de language pair.

Table 4: Inference hyperparameters for en→de.

Latency MUD VPT MSD MCS
low 0.1 0.5 0.5 3
high 0.1 0.3 1 7

On the high latency regime of the en→zh from
observing Table 3 we chose a voice probability
threshold of 0.5 with a maximum segment duration
of 1.5s due to the high BLEU achieved. Then, for
the low-latency regime, we chose a voice probabil-

Table 5: Inference hyperparameters for en→zh.

Latency MUD VPT MSD MCS
low 0.1 0.5 0.5 5
high 0.1 0.5 1.5 7

ity threshold of 0.5 and a maximum segment dura-
tion of 0.5 to align with our high-latency regime.
We report our final selected maximum unvoiced
duration, voice probability threshold, and maxi-
mum segment duration in Table 5 for the en→zh
language pair.

Using the optimal maximum unvoiced duration,
voice probability threshold, and maximum segment
duration from Tables 4 and 5 of our previous search,
we iteratively step through a minimum chunk size
of 1, 3, 5, and 7. We report the results for the
BLEU and StreamLAAL for each given chunk size
for both language pairs at the low and high latency
regimes in Figure 3. Our final selected minimum
chunk size for each latency regime is reported in
Tables 2 and 3.

1,000 1,500 2,000 2,500 3,000 3,500 4,000

20

24

28

32

36

StreamLAAL

B
L

E
U

en-de-high
en-de-low
en-zh-high
en-zh-low

Figure 3: BLEU score plotted against StreamLAAL on
the en→de and en→zh language pairs for minimum
chunk sizes of 1, 3, 5, 7.

5.2 Quality and Latency Results on Dev set

We provide the quality and latency of our system
in Table 1 on the ACL 60/60 dev set for the en→de
and en→zh language pairs. For each language pair,
we show the influence of model size on our sys-
tem’s BLEU score. From the results in Table 1, we
can see that increasing the model size from 4B to
12B can offer approximately a 2 BLEU increase.
We choose to submit the 12B Gemma 3 transla-
tion model version of our cascaded architecture to
the IWSLT 2025 simultaneous track (Abdulmumin
et al., 2025). On the en→de language pair, we
achieve a BLEU of 24.64 and 27.83 on the low and
high latency regimes. Then on the en→zh language
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pair, we achieve a BLEU of 34.07 and 37.23 on the
low and high latency regimes.

6 Conclusion

In this paper, we provide Oregon State University’s
system, BeaverTalk, designed for the low and high
latency regimes of the en→de and en→zh language
pairs as a part of the IWSLT 2025 simultaneous
track. Our system consists of a cascaded archi-
tecture composed of a VAD speech segmenter, a
Whisper ASR model, and a Gemma 3 translation
LLM using conversational prompting. We provide
an extensive inference hyperparameter search for
our system and demonstrate its performance uti-
lizing a 4B and 12B translation LLM. Our final
submitted model, composed of the 12B translation
LLM, demonstrates strong results on the en→de
and en→zh language pairs for both the low and
high latency categories.
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Abstract

This paper presents CMU’s submission to the
IWSLT 2025 Simultaneous Speech Transla-
tion (SST) task for translating unsegmented
English speech into Chinese and German text
in a streaming manner. Our end-to-end speech-
to-text system integrates a chunkwise causal
Wav2Vec 2.0 speech encoder, an adapter, and
the Qwen2.5-7B-Instruct as the decoder. We
use a two-stage simultaneous training proce-
dure on robust speech segments curated from
LibriSpeech, CommonVoice, and VoxPopuli
datasets, utilizing standard cross-entropy loss.
Our model supports adjustable latency through
a configurable latency multiplier. Experi-
mental results demonstrate that our system
achieves 44.3 BLEU for English-to-Chinese
and 25.1 BLEU for English-to-German transla-
tions on the ACL60/60 development set, with
computation-aware latencies of 2.7 seconds and
2.3 seconds, and theoretical latencies of 2.2 and
1.7 seconds, respectively.

1 Introduction

CMU’s submission to the IWSLT 2025 Simulta-
neous Speech-to-Text Translation track (Abdulmu-
min et al., 2025)1 is an end-to-end model that effec-
tively translates unbounded English speech input
into German and Chinese text without speech seg-
mentation.

Translating unbounded speech presents unique
challenges. Unlike segmented speech translation,
it requires the model to maintain and process the
speech and translation history so that translation
quality, theoretical latency, and computation cost
can be balanced (Papi et al., 2024a,b). Large
language models (LLMs) have recently shown
strong performance in improving speech trans-
lation quality (Zhang et al., 2023; Chen et al.,
2024; Huang et al., 2023; Xu et al., 2024; Ah-
mad et al., 2024), and modern LLMs now support

1https://iwslt.org/2025/simultaneous

long-context inference due to architectural and al-
gorithmic advances (Han et al., 2024; Su et al.,
2024). These two advantages were recently unified
in InfiniSST (Ouyang et al., 2025), which frames
simultaneous translation as a multiturn dialogue
and enables inference on unbounded speech with
minimal computational overhead.

Our system is built upon the InfiniSST frame-
work and consists of:

1. A chunkwise causal Wav2Vec 2.0 Large en-
coder (Baevski et al., 2020b), which incremen-
tally processes the unbounded speech input.

2. The Qwen2.5-7B-Instruct LLM (Qwen et al.,
2025), which receives the encoded speech fea-
tures and performs simultaneous translation
using a specially designed key-value (KV)
cache management strategy.

However, a major limitation in speech translation
research is the scarcity of high-quality parallel
speech-text data. Only several hundred hours are
available on resources such as EuroParl-ST (Iranzo-
Sánchez et al., 2020) and CoVoST2 (Wang et al.,
2021b). To scale InfiniSST training beyond this
constraint, we synthesize training data by translat-
ing transcripts from automatic speech recognition
(ASR) datasets into target-language text using an
LLM.

Our experiments on the ACL60/60 development
set (Salesky et al., 2023) demonstrate that increas-
ing the amount of synthesized speech translation
data consistently improves translation quality, with
gains observed even beyond 3,000 hours of train-
ing data. Additionally, we find that Qwen2.5-7B-
Instruct significantly outperforms Llama3.1-8B-
Instruct (Grattafiori et al., 2024) on English-to-
Chinese translation and achieves comparable per-
formance on English-to-German translation.
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Figure 1: Model Architecture

2 Task Description

The IWSLT 2025 Simultaneous Speech-to-Text
Translation track2 focuses on translating unseg-
mented speech into target-language text using pre-
trained large language models (LLMs) and speech
encoders. The evaluation data consists of unseg-
mented ACL talks. For English-to-German, sys-
tems are additionally tested on accented speech,
while a dedicated development set is provided for
Czech-to-English.

Systems are evaluated on both translation qual-
ity and latency. Latency is measured using Stream-
LAAL (Papi et al., 2024a), while translation quality
is assessed using BLEU (Papineni et al., 2002) and
neural metrics such as COMET (Guerreiro et al.,
2024), BLEURT (Sellam et al., 2020), etc.

We participate in two language directions:
English-to-Chinese and English-to-German. For
both directions, we submit models operating in the
low-latency regime—achieving StreamLAAL ≤ 2
seconds for German and≤ 2.5 seconds for Chinese
on the development set.

3 System Description

3.1 Model Architecture

Our model architecture builds upon In-
finiSST (Ouyang et al., 2025), a simultaneous
speech translation system designed to efficiently
handle unbounded streaming speech input and

2https://iwslt.org/2025/simultaneous

generate target text incrementally. The architecture
comprises three primary components: 1) a
streaming speech encoder that incrementally
computes representations from partial speech
without redundant computations; 2) a speech-
to-token embedding adapter that aligns speech
representations with the LLM’s token embedding
space; and 3) a multi-turn LLM decoder that
dynamically processes speech inputs and produces
translations interactively, as shown in Figure 1.

Streaming Speech Encoder We adapt the pre-
trained Wav2Vec 2.0 speech encoder (Baevski et al.,
2020a)3 with several modifications. First, we re-
place the convolutional positional embedding with
rotary positional embeddings (RoPE), due to its bet-
ter performance on long sequence tasks. Second,
we replace the original bidirectional attention with
chunk-wise causal attention, where each chunk con-
sists of 48 frames from wav2vec (equivalent to 960
ms). In chunk-wise causal attention, each frame
can attend to frames within the same chunk and
all preceding chunks, but not future ones. Third,
to limit the context length and computational load,
we use a sliding window approach, allowing chunk
i to attend only to the hidden states from chunks
within the window [i− ws + 1, i], where ws = 10
represents the window size.

Speech-to-Token Embedding Adapter Outputs
from the speech encoder typically have longer se-

3https://dl.fbaipublicfiles.com/fairseq/
wav2vec/wav2vec_vox_960h_pl.pt
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quence lengths compared to the corresponding
transcripts, and their embedding dimensions dif-
fer from those expected by the LLM. To address
this, we incorporate two 1D convolutional layers
with kernel size 2 and stride 2, effectively reducing
the length of the encoder output sequence. Subse-
quently, a linear projection layer maps these con-
volutional outputs to match the LLM embedding
space. This adapter downsamples input sequences
by a factor of 4, converting each speech chunk of
48 frames into 12 embedding vectors.

Multi-turn LLM Decoder The decoder gener-
ates the target text and emits a special EOS token
when additional speech input is needed. We uti-
lize the Qwen2.5-7B-Instruct (Qwen et al., 2025)4

and structure the inputs using a multi-turn dialogue
format. We also report results obtained with Llama-
3.1-8B-Instruct (Grattafiori et al., 2024)5 used as
the decoder.

3.2 Data Synthesis
We utilize three ASR datasets for data synthe-
sis: LibriSpeech-v12 (Panayotov et al., 2015),
CommonVoice-v11.0 (Ardila et al., 2020), and Vox-
Populi (Wang et al., 2021a). The English tran-
scripts are translated into Chinese and German us-
ing the 4-bit quantized Qwen2.5-32B-Instruct
model6. For LibriSpeech and VoxPopuli, whose ut-
terances are segmented from longer speech record-
ings, we condition the translation on up to three
preceding utterances to provide additional context.
The prompt is shown below.

<|im_start|>system
You are a professional translator.
<|im_end|>
<|im_start|>user
Given an English sentence along with its
preceding sentences, translate the given
sentence into Chinese. Do not include any
other text.

|Preceding Sentences|
{}
|End of Preceding Sentences|

|Sentence to Translate|

4https://huggingface.co/Qwen/Qwen2.
5-7B-Instruct

5https://huggingface.co/meta-llama/Llama-3.
1-8B-Instruct

6https://huggingface.co/Qwen/Qwen2.
5-32B-Instruct-AWQ

Dataset # Robust Segments Hours

LibriSpeech 174112 1393
VoxPopuli 85874 687

CommonVoice 221717 1774

Total 481703 3854

Table 1: Statistics of synthesized data for model train-
ing.

{}
|End of Sentence to Translate|
<|im_end|>
<|im_start|>assistant

Given (speech, transcript, translation) triplets,
we first use Montreal Forced Aligner (McAuliffe
et al., 2017) to align speech and transcript words,
and then align transcript words with translation
words using SimAlign (Jalili Sabet et al., 2020)
with LaBSE model (Feng et al., 2022). In this way,
we obtain a mapping between speech and each
translation word.

Let mi denote the right boundary timestamp of
the speech segment aligned with the i-th translation
word. To ensure monotonic alignment, we enforce
mi = max(mi,mi−1). We then divide each utter-
ance into fixed-duration chunks of 960 ms and con-
struct a translation trajectory (s1, y1), (s2, y2), · · ·,
where each sj is a 960 ms speech chunk and
yj = (ylj , · · · , yrj ) is the translation span such
that mi ≤ 960 · j for all i ∈ [lj , rj ].

While segmented utterances mostly consist of
clean human speech, real-world scenarios often
include non-speech segments. To improve model
robustness, we create robust segments by slicing
unsegmented speech from LibriSpeech and Vox-
Populi into 30-chunk segments7. If a segment starts
in the middle of an utterance, we shift the start to
align with the utterance boundary. The trajectory
for a robust segment is constructed by concatenat-
ing the trajectories of all included utterances.

Since CommonVoice consists of short, single-
sentence utterances not derived from long speech,
we simulate robust segments by concatenating ran-
domly sampled utterances interleaved with ran-
domly inserted silence intervals.

The data statistics are shown in Table 1.

730 · 960 ms = 28.8 seconds.
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LLM Data English-Chinese English-German

Llama-3.1-8B-Instruct
LS+CV 39.3 / 2092 / 2691 21.1 / 1430 / 2183

LS+CV+VP 40.8 / 2159 / 2673 23.7 / 1503 / 2109

Qwen2.5-7B-Instruct LS+CV+VP 44.3 / 2189 / 2739 25.1 / 1689 / 2306

Table 2: Translation quality and latency across different combinations of LLMs and training data evaluated on
ACL60/60 development set. LS, CV, and VP refer to the LibriSpeech, CommonVoice, and VoxPopuli datasets,
respectively. Metrics are reported as A / B / C, where A is BLEU, B is StreamLAAL, and C is StreamLAAL_CA.
Incorporating synthetic speech translation data from VP leads to an improvement of at least 1 BLEU point.
Additionally, Qwen2.5-7B-Instruct significantly outperforms Llama-3.1-8B-Instruct in Chinese translation, with a
gain of approximately 4 BLEU points.

3.3 Training

We train our model using standard cross-entropy
loss on the target translation tokens, including the
special EOS token, derived from robust speech seg-
ments we constructed. Additionally, for each robust
segment, we randomly sample a latency multiplier
m ≤ 12 and merge every m consecutive chunks as
the data augmentation.

The training is conducted in two stages. Initially,
we freeze the LLM and only train the speech en-
coder and adapter components. In the subsequent
stage, we freeze the speech encoder, adapter and
LLM, and conduct LORA finetuning (Hu et al.,
2022).

3.4 Inference on Unbounded Speech

During inference, we segment the continuous in-
put speech into fixed-length chunks of 960 ms. To
manage latency, we vary the latency multiplier, en-
suring translations are generated only after accu-
mulating a predefined number of chunks. At each
inference step, the newly received speech chunks
are processed by both the speech encoder and the
LLM, where KV caching is used to avoid redundant
computations.

The speech encoder first processes new chunks
along with relevant cached context. The result-
ing speech features are then downsampled by the
adapter into a reduced set of embeddings, matching
the LLM’s input requirements. The LLM subse-
quently generates translations based on these em-
beddings.

The decoder uses a sliding window strategy to
maintain context, combining the cached represen-
tations of initial system instructions with the most
recent generated tokens similar to Han et al. (2024).
We concatenate the KV cache of instruction with
those of the most recent 1K tokens and apply RoPE

on top of them. Then the LLM generates transla-
tions conditioned on this combined KV cache.

4 Experiments

4.1 Setup

We use the Adam optimizer (Kingma and Ba, 2015)
with cosine learning rate decay and 1,000 warmup
steps. Training is conducted in two stages. In Stage
1, we update only the speech encoder and adapter,
using a maximum learning rate of 2e-4. In Stage
2, we freeze the speech encoder and train the LLM
with LoRA (Hu et al., 2022)8, using a maximum
learning rate of 1e-4. Each stage is trained for
one epoch with a maximum effective batch size
of 57.6K tokens. We leverage PyTorch Lightning9

and DeepSpeed ZeRO10 to train the model on a
node of 8 NVIDIA L40S GPUs.

During inference, we use beam search with beam
size 4, repetition penalty 1.2, and ngram_no_repeat
5. We set test-time latency multiplier to 3 for
English-to-Chinese and 2 for English-to-German.
The results are evaluated with BLEU, StreamLAAL
and StreamLAAL_CA.

4.2 Results

Results are presented in Table 2. While the syn-
thetic speech translation data from LibriSpeech
and CommonVoice already includes over 3K hours
of speech, adding additional synthetic data from
VoxPopuli consistently improves BLEU scores by
at least 1 point. Moreover, replacing Llama-3.1-
8B-Instruct with Qwen2.5-7B-Instruct leads to a
notable gain in translation quality, particularly for

8rank = 32, alpha = 16, dropout = 0.1, applied to all linear
layers.

9https://github.com/Lightning-AI/
pytorch-lightning

10https://github.com/deepspeedai/DeepSpeed
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English–Chinese, with an improvement of over 3
BLEU points.

5 Conclusion

In this paper, we presented CMU’s simultaneous
speech translation system built upon the InfiniSST
framework for the IWSLT 2025 SST task. Our
end-to-end model employs a chunkwise causal
Wav2Vec 2.0 encoder, a adapter, and the Qwen2.5-
7B-Instruct decoder. We demonstrated that syn-
thesizing training data by translating large-scale
ASR datasets significantly alleviates the limitations
posed by limited parallel data, achieving substantial
improvements in translation quality. Our experi-
ments indicated that the addition of synthesized
data from VoxPopuli provided consistent gains,
and the Qwen2.5-7B-Instruct decoder notably out-
performed alternatives, particularly in English-to-
Chinese translation. The proposed model effec-
tively balances translation quality and computa-
tional latency, showcasing strong performance in a
realistic, unbounded speech scenario.
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Abstract
We present the Johns Hopkins University’s
submission to the 2025 IWSLT Low-Resource
Task. We competed on all 10 language pairs.
Our approach centers around ensembling meth-
ods – specifically Minimum Bayes Risk De-
coding. We find that such ensembling often
improves performance only slightly over the
best performing stand-alone model, and that
in some cases it can even hurt performance
slightly.

1 Introduction and Background

Despite many recent advances in deep learning and
artificial intelligence, challenges in low-resource
and dialectal speech translation still preclude high-
quality automated translation systems for many
language communities. Cross-lingual transfer
and multilingual models have allowed for recent
progress in scarce data settings, but performance
still lags significantly behind that of higher resource
languages (Ziems et al., 2023; Joshi et al., 2024).

Due to a lack of training resources, low-resource
languages systems tend to generate hypotheses
with higher variance than is seen in higher-
resourced conditions. In other words, different
models might generate diverse outputs; hence a
single system might not be optimal in all scenarios.
This motivates attempting to select the best option
from multiple potential systems—i.e., ensembling.

For this year’s IWSLT low-resource speech trans-
lation campaign (Abdulmumin et al., 2025), we, the
Johns Hopkins University (JHU) team decided to
focus on Minimum Bayes Risk Decoding (MBR)
with the interest in exploring in-depth how com-
bining methods across a range of language pairs
can improve performance in a low-resource set-
ting (Bickel and Doksum, 1977; Kumar and Byrne,
2004).

Following our approach from last year (Robin-
son et al., 2024), we submitted systems for all lan-
guage pairs, with a focus on seeing how robust our

Figure 1: We apply Minimum Bayes Risk (MBR)
ensembling to a variety of systems.

methods are across a wide range of data settings
and typologically diverse languages. Rather than
focusing on a specific language, our line of inquiry
was geared towards broader exploration, with the
interest of discovering language-agnostic trends in
mind.

Our approach in 2024 focused on fine-tuning pre-
trained models Whisper (Radford et al., 2023a),
NLLB (NLLB Team et al., 2022), and SEAM-
LESSM4T v2 (Barrault et al., 2023) for both
ASR+MT cascading and end-to-end speech trans-
lation. We also incorporated joint training for lan-
guage pairs with common targets, as well as fine-
tuning with a regularization technique known as
intra-distillation (Xu et al., 2022, 2023; Robinson
et al., 2024). In this year’s submission, we similarly
gather a variety of different systems for each trans-
lation language pair. We use these to obtain a di-
verse set of outputs for the language pairs sampled
from various checkpoints of the different cascaded
and end-to-end fine-tuned systems. To maximize
variety of systems, and following our submission

315



from last year, we experimented with combining
fine-tuning data for language pairs with a common
target language, and with use of additional or sup-
plementary training data. Rather than comparing
these diverse systems directly, however, we ensem-
bled them into a single inference method. We used
MBR to select the best performing candidate trans-
lation from the resulting pool for each source audio.

Our decision to attempt an ensemble approach
was inspired by other team submissions from last
year. Our submissions performed best in last
year’s evaluation campaign (Ahmad et al., 2024)
for Irish-to-English (gle-eng), Bemba-to-English
(bem-eng), and Bhojpuri-to-Hindi (bho-hin) trans-
lation. However the teams that performed
best for Levantine Arabic-to-English (apc-eng),
Maltese-to-English (mlt-eng), and Quechua-to-
Spanish (que-spa) all employed ensemble mod-
els. Ben Kheder et al. (2024) ensembled 26 model
checkpoints for their apc-eng system, and E. Or-
tega et al. (2024) ensembled 10 checkpoints for
their que-spa system. For their mlt-eng system,
Li et al. (2024) ensembled cascade systems with
end-to-end models (just as we attempt to do in this
work).

2 Methodology and Experiments

Our methodology is illustrated in Figure 1. Given
any language pair, we have a number of cascade
and end-to-end systems (three in the figure). These
systems employ either Whisper ST, Whisper ASR
with NLLB MT, or SEAMLESSM4T v2 ST, and
may have other more minor variations differentiat-
ing them. The number of systems varies between
one and four, depending on the language pair. The
systems we use for each language pair are listed in
Table 2.

We keep three fine-tuning checkpoints from the
final model of each of the systems (NLLB in the
case of the bi-model cascade) and for each input
audio, we sample five hypothesis translations from
each system checkpoint, resulting in a total of 15
hypotheses per system for each input. In the case
of language pairs like apc-eng, for which we en-
sembled four different systems, this amounted to
15∗4 = 60 hypotheses for each input audio, which
are reduced to a single hypothesis via the MBR
process.

2.1 Task description and data

This year’s task focuses on speech translation for
ten language pairs: Levantine Arabic to English
(apc-eng), Tunisian Arabic to English (aeb-eng),
Bemba to English (bem-eng), Fongbe to French
(fon-fra), Irish to English (gle-eng), Bhojpuri to
Hindi (bho-hin), Estonian to English (est-eng),
Maltese to English (mlt-eng), Marathi to Hindi
(mar-eng), and Quechua to Spanish (que-spa).
Fongbe and Estonian are new as source languages
in this year’s task. Fongbe is a Gbe language of
the Niger-Congo family spoken in Benin; while
Estonian is a Uralic language spoken in Estonia.

In developing our systems, we utilize a combi-
nation of organizer-provided data as well as some
external data. We summarize our data sources in
Table 1.

Lang. Type Amount Sources

apc-eng
ASR 28h Makhoul et al. (2005)
MT 120k lines Sellat et al. (2023)

aeb-eng
E2E 167h Anastasopoulos et al. (2022)
ASR 324h Anastasopoulos et al. (2022)

bem-eng
ST 180h Sikasote et al. (2023)

ASR 24h Sikasote and Anastasopoulos (2022)

fon-fra E2E 57h Kponou et al. (2024)

gle-eng E2E 11h Agarwal et al. (2023)

bho-hin E2E 25h Agarwal et al. (2023)

est-eng E2E 1262h Sildam et al. (2024)

mlt-eng
ST 14h CV; Hernandez Mena et al. (2020)
MT 2.1M lines Bañón et al. (2023, 2020)

mar-hin
E2E 30h Agarwal et al. (2023)
ASR 1300h CV; He et al. (2020); Bhogale et al. (2022)

que-spa
ST 1.7h Ortega et al. (2020)

ASR 48h Cardenas et al. (2018)
MT 26k lines Tiedemann (2012); Ortega et al. (2020)

Table 1: Data information for each language pair. "CV"
refers to Common Voice (https://commonvoice.
mozilla.org/).

2.2 Seamless E2E systems

We detail the different systems listed in Table 2.
The SEAMLESSM4T v2 model (Barrault et al.,

2023) is a state-of-the-art multilingual model de-
veloped specifically for speech translation (ST). It
supports both speech-to-text and speech-to-speech
translation, enabling direct translation of spoken
language in 143 languages. The model is trained on
a large and diverse corpus that combines supervised
and semi-supervised data, allowing it to perform
well even on low-resource language pairs. Its ar-
chitecture is optimized for end-to-end processing
of speech inputs, without relying on intermediate
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Lang. Systems Lang. Systems

aeb-eng
Seamless

gle-eng
Seamless

Whisper+NLLB (2023) Seamless comb.

apc-eng

Seamless

mar-hin

Seamless
Seamless comb. Seamless comb.
Whisper+NLLB Seamless Shrutilipi
Whisper+NLLB+ID Whisper MTL

bem-eng

Seamless
mlt-eng

Seamless
Whisper+NLLB Seamless comb.
Whisper+NLLB+ID Whisper MTL
Whisper MTL

bho-hin
Seamless

que-spa
Seamless

Seamless comb. Whisper+NLLB
Whisper E2E Whisper+NLLB+ID

est-eng Seamless fon-fra Seamless

Table 2: Systems used for ensembling. For each system
we sample five outputs from three model checkpoints
and perform MBR on the total sets of sampled outputs
(which vary in number from 15 to 60, since the number
of systems varies from one to four).

text transcriptions. This design makes it suitable
for real-time applications and improves translation
accuracy by minimizing error propagation across
stages (Barrault et al., 2023).

Similar to Robinson et al. (2024), we employ
SEAMLESSM4T v2 for our multilingual translation
experiments. We re-fine-tuned SEAMLESSM4T v2
models, training most language pairs for 10 epochs
(contrasting the 4 epochs of Robinson et al. (2024)).
We found that dev BLEU scores continued to in-
crease with longer train times and hence selected
10 epochs instead of 4. We generally used the same
learning rates detailed by Robinson et al. (2024):
1× 10−6 for almost all language pairs.The follow-
ing language pairs used the standard learning rate
and number of epochs: gle-eng, mlt-eng, bho-hin,
mar-hin, apc-eng, fon-fra, and aeb-eng.

As Robinson et al. (2024), for the bem-eng pair,
we used a reduced learning rate of 1× 10−7 while
keeping the number of epochs fixed at 10. We also
trained the (que-spa) system for 100 epochs due
to the small dataset size. Our Estonian ASR system
was trained for only 0.5 epochs with a learning rate
of 1 × 10−6, due to the massive dataset size and
computational constraints.

A more comprehensive list of all hyperparame-
ters used for these experiments is provided in Ap-
pendix A.

Mixed data Training We also experimented
with combining data for different language pairs
for mixed data training. In this configuration, we
explored the effect of combining similar languages
for joint training. Specifically, we trained the fol-

lowing groups together:

• bem, mlt, gle, est, aeb, apc→ eng

• bho, mar→ hin

The rationale behind this setup is that grouping
related languages can lead to more robust repre-
sentations, particularly in low-resource settings, by
effectively increasing the size of the training data
and enhancing cross-lingual generalization.

For the into-Hindi combined system, we fine-
tuned SEAMLESSM4T v2 for 10 epochs in the stan-
dard way. For the into-English combined system,
trained on a mixture of data that included the full
standard fine-tuning sets for mlt-eng, gle-eng,
and apc-eng; and we added 5.2% of the Estonian
ASR files1, 36.1% of the bem-eng files, and 38.8%
of the Tunisian Arabic-to-English (aeb-eng) files.
This was done for the language pairs with the
largest datasets to prevent data imbalance, and the
percentages were selected to keep the dataset size
withing roughly 250 hours total (about 25 times the
size of the gle-eng dataset). We fine-tuned SEAM-
LESSM4T v2 for ∼ 1.3 epochs on this combined
dataset. Both of these combined-data systems are
denoted "Seamless comb." in Table 2.

We also experimented with fine-tuning SEAM-
LESSM4T v2 on additional data. We attempted to
augment the gle-eng dataset (11 hours of audio,
as in the 2024 shared task (Ahmad et al., 2024))
with the synthetic data provided by the task orga-
nizers for 2025. However, we met this attempt
with little success. After more than a full epoch
of training, the dev BLEU score had not increased
above 1.0 BLEU, so we decided to terminate fine-
tuning to preserve our computational resources
for other experiments. We did, however, include
among our Marathi-to-Hindi (mar-hin) systems a
SEAMLESSM4T v2 model that was fine-tuned us-
ing the massive Shrutilipi dataset (Bhogale et al.,
2022), which contains 1280 hours of Marathi ASR
data. In this approach we were inspired by ?, who
employed this dataset among others to develop a
successful mod-hin submission in 2023. We used
NLLB (NLLB Team et al., 2022) off-the-shelf for
Marathi-to-Hindi translation to translate the tran-
scription labels of the dataset to Hindi, and then
we employed it as ST data for SEAMLESSM4T v2
fine-tuning (combined with the original mar-hin

1This was a mistake, as we mistakenly thought the Es-
tonian ASR data was Estonian-to-English ST data, due to a
miscommunication in our team.
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data). We trained this model for approximately 2
epochs, and we denote it "Seamless Shrutilipi".

Our apc-eng SEAMLESSM4T v2 model was
also trained on synthetic labels. Robinson et al.
(2024) did not fine-tune a SEAMLESSM4T v2
model for apc-eng because of the nature of the
apc-eng data (only ASR and MT datasets sepa-
rately, with no ST labels). This year we bypassed
this challenge by using Robinson et al.’s (2024)
NLLB model fine-tuned for apc-eng MT to trans-
late all the transcriptions in the provided apc ASR
dataset into English. Then we fine-tuned SEAM-
LESSM4T v2 on the resulting dataset.

2.3 Whisper and NLLB
Whisper (Radford et al., 2023b) is a speech recog-
nition model created by OpenAI. It is trained on
a large amount of audio data—around 680,000
hours—from the internet. This includes many
languages and different types of speech, such as
conversations, lectures, and translations. Whisper
works well in many languages without needing ex-
tra training for each new language. In our work,
we use Whisper for both ASR and ST. Whisper’s
strength is its robustness—it can understand dif-
ferent accents, background noise, and even low-
quality recordings. During pretraining, the model
was already trained on data from over 90 languages
such as English, Marathi, Hindi, Maltese, and Mod-
ern Standard Arabic. However, it lacks exposure to
several low-resource languages like Bemba, Bho-
jpuri, and Quechua.

In this work we employed the same Whisper
models used by Robinson et al. (2024). Whis-
per used in tandem with NLLB is used only as an
ASR module to convert from the speech domain for
text translation. "Whisper E2E" in Table 2 refers
to using Whisper as an end-to-end translator via
"psuedo-translation" (Robinson et al., 2024). This
is the practice of fine-tuning Whisper on bho-hin
data with a Hindi ASR objective. "Whisper MTL"
also refers to using Whisper as an end-to-end ST
system but with a mixed ASR and ST fine-tuning
objective. This approach is typically most suitable
for into-English ST, since English is the only ST
target language officially supported by Whisper.

We also employ NLLB (NLLB Team et al.,
2022), an extensive multilingual machine transla-
tion system, just as Robinson et al. (2024). NLLB
covers more than 200 languages, including Ara-
bic, Quechua, and Bemba. (We use the 600M-
parameter release of the model, fine-tuned by

Robinson et al. (2024).)
While "NLLB" refers to use of these fine-tuned

NLLB model checkpoints in Table 2, "NLLB+ID"
refers to the use of NLLB fine-tuned on the same
data, but with intra-distillation (Xu et al., 2022; ?),
a regularlization technique designed to ensure that
all network parameters contribute equally to suc-
cessful inference. Intra-distillation was effective
in enhancing MT performance in the 2024 shared
task campaign.

2.4 System ensembling via MBR

Minimum Bayes Risk Decoding (MBR) (Bickel
and Doksum, 1977) is a method of ensembling that
aims to choose candidates that have the lowest risk
– i.e., high probability but also consistent with other
candidates. In other words, if multiple candidates
are similar, they are more likely to be correct and it
is not too risky to select one of them (Bertsch et al.,
2023). It was originally used in machine transla-
tion in the early days of phrase-based, statistical
methods (Kumar and Byrne, 2004), but has been
shown to be very robust to common errors in neu-
ral methods (Müller and Sennrich, 2021), explored
in-depth theoretically (Ohashi et al., 2024), as well
as correlated well with human judgments (Freitag
et al., 2022).

See a depiction of traditional MBR in Algo-
rithm 1. p(ci) is usually set as the posterior proba-
bility of the translation candidate when ensembling
candidates from a single system; in our case, since
we are ensembling different systems, we simply
set p(ci) = 1; i.e. we apply a uniform weighting
scheme to our candidates. We experiment with us-
ing both BLEU (Papineni et al., 2002) and chrF
(Popović, 2015) as our similarity metric.

Algorithm 1 Minimum Bayes Risk (MBR) Decod-
ing for Ensembling

Require: Candidate translations C =
{c1, c2, . . . , cn}

Require: A similarity metric sim(·, ·) (e.g.,
BLEU, chrF)

Ensure: MBR-selected translation c∗

1: for all ci ∈ C do
2: Compute risk for ci:
3: R(ci) =

∑
cj∈C (1− sim(ci, cj)) · p(cj)

4: end for
5: c∗ ← argminci∈C R(ci)
6: return c∗
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3 Results and Conclusions

The results of our different language systems are in
Table 3. We used MBR ensembling with a BLEU
objective as our primary system for each language
pair, and MBR with chrF as our "contrastive 1"
submission. In cases where the best performing
of the newly fine-tuned SEAMLESSM4T v2 mod-
els outperformed all of the systems using Whisper
and NLLB from Robinson et al. (2024) (using dev
BLEU of the final checkpoint to compare), we se-
lected that system’s final checkpoint as our "con-
trastive 2" submission.

In Table 3, "Test 1" denotes our internal test
set, while "Eval" denotes the official evaluation set
for the shared task, given by Abdulmumin et al.
(2025). We had no internal test set for apc-eng
since our only ST data for this language pair was
synthetically labeled. We also exclude the standard
SEAMLESSM4T v2 system for mar-hin from our
internal test set evaluation since this model was
trained on the internal test set.2

We see that MBR generally improves perfor-
mance by a small amount over the best stand-alone
system (as can be seen for bem-eng, bho-hin,
fon-fra, and mar-hin). However, we also see that
MBR can also hurt performance (usually slightly),
as seen in the remaining language pairs. Disap-
pointingly, we do not see any dramatically higher
results on our internal test sets due to MBR, indicat-
ing that its benefit in these settings may be smaller
than we had originally hypothesized. We point out
that ensembling still provides a clear advantage
to practitioners, in that they do not need to know
which individual system performs best, and can
still reach performance on par with whichever the
best-performing model is, via this method. How-
ever, it does not itself appear to increase scores
dramatically.

We also note that while there are significant
score differences between different systems (such
as SEAMLESSM4T v2 vs. Whisper or cascaded vs.
end-to-end), training with combined language data
or supplementary data (i.e. Shrutilipi) also did not
cause any drastic score increases. Given the scant-
ness of these results, we conclude that methods
such as ensembling and multilingual training either
have limited use in some low-resource speech trans-
lation settings, or that they require more creative
and effective applications than those we explored

2This was another mistake due to a file path misunderstand-
ing.

here in order to be optimally useful. We encourage
researchers to explore such creative applications
of these techniques, as well as other techniques to
improve low-resource systems, in the future.

Acknowledgments

We thank Neha Verma, Henry Li, Philipp Koehn,
Yaohan Guan, Sanjeev Khudanpur, and Amir Hus-
sein for their contributions to this work.

References
Idris Abdulmumin, Victor Agostinelli, Tanel Alumäe,

Antonios Anastasopoulos, Ashwin, Luisa Bentivogli,
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Language Pair System Submission Test1 BLEU Eval BLEU

aeb-eng

JHU-cascade-2023 - -
Seamless contr. 2 11.47 6.70
MBR-BLEU primary 10.73 8.20
MBR-CHRF contr. 1 10.76 8.90

apc-eng

Seamless - -
Seamless comb. - -
Whisper ASR + NLLB - -
Whisper ASR + NLLB + ID - -
MBR-BLEU primary - 14.64
MBR-CHRF contr. 1 - 15.39

bem-eng

Seamless 14.67 -
Whisper MTL 17.76 -
Whisper ASR + NLLB 27.58 -
Whisper ASR + NLLB + ID 29.39 -
MBR-BLEU primary 28.80 26.8
MBR-CHRF contr. 1 27.84 28.1

bho-hin

Seamless contr. 2 37.39 7.8
Seamless comb. 39.08 -
Whisper MTL 24.19 -
MBR-BLEU primary 39.38 10.5
MBR-CHRF contr. 1 39.39 10.7

fon-fra
Seamless contr. 2 5.34 5.60
MBR-BLEU primary 4.76 5.96
MBR-CHRF contr. 1 5.57 6.26

gle-eng

Seamless contr. 2 51.80 12.3
Seamless comb. 47.65 -
MBR-BLEU primary 50.37 11.6
MBR-CHRF contr. 1 51.13 12.0

mar-hin

Seamless - -
Seamless comb. 44.98 -
Seamless Shrutilipi contr. 2 43.17 40.0
Whisper MTL 28.06 -
MBR-BLEU primary 45.64 41.4
MBR-CHRF contr. 1 45.27 40.7

mlt-eng

Seamless contr. 2 40.62 56.10
Seamless comb. 38.57 -
Whisper MTL 21.37 -
MBR-BLEU primary 40.02 56.80
MBR-CHRF contr. 1 38.98 55.98

que-spa

Seamless 1.05 -
Whisper ASR + NLLB 6.08 -
Whisper ASR + NLLB + ID 10.69 -
MBR-BLEU primary 7.87 9.0
MBR-CHRF contr. 1 10.29 11.0

Table 3: BLEU score results. "Test BLEU" refers to our internal tests, while "Eval BLEU" refers to the evaluation
run by Abdulmumin et al. (2025)
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A SEAMLESSM4T v2 hyperparameters

In our experiments, we use the SEAMLESSM4T
v2 model. To keep things consistent, we cut off
audio that is longer than 30 seconds. We also use a
fixed random seed of 42 so that the results can be
repeated.

We try different learning rates from the set
{10−6, 10−7} to see which works best. For most
language pairs, we fine-tune the SEAMLESSM4T
v2-large model for 10 epochs using a learning
rate of 1× 10−6 and a batch size of 32.

During training, we use a constant learning rate
schedule and set 50 warm-up steps. When generat-
ing translations, we use greedy decoding and limit
the output to 256 tokens.
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Abstract

SYSTRAN submitted systems for one lan-
guage pair in the 2025 Low-Resource Lan-
guage Track. Our main contribution lies in
the tight coupling and light fine-tuning of an
ASR encoder (Whisper) with a neural machine
translation decoder (NLLB), forming an effi-
cient speech translation pipeline. We present
the modeling strategies and optimizations im-
plemented to build a system that, unlike large-
scale end-to-end models, performs effectively
under constraints of limited training data and
computational resources. This approach en-
ables the development of high-quality speech
translation in low-resource settings, while en-
suring both efficiency and scalability. We also
conduct a comparative analysis of our proposed
system against various paradigms, including a
cascaded Whisper+NLLB setup and direct end-
to-end fine-tuning of Whisper.

1 Introduction

The goal of the IWSLT’2025 low-resource shared
task is to benchmark and promote speech transla-
tion technology for a diverse range of dialects and
low-resource languages. While significant research
progress has been demonstrated recently on popu-
lar datasets, many of the world’s dialects and low-
resource languages lack the parallel data at scale
needed for standard supervised learning. Thus, this
share task requires creative approaches in leverag-
ing disparate resources. The low-resource shared
task will involve two tracks:

• Track 1: A "traditional" speech-to-text trans-
lation track focusing on XX typologically di-
verse language-pairs.

• Track 2: A data track, inviting participants
to provide open-sourced speech translation
datasets for under-resourced languages.

SYSTRAN participates exclusively in the "tradi-
tional" Tunisian Arabic-to-English speech transla-

tion track. Our system employs a tightly coupled
architecture wherein the automatic speech recog-
nition (ASR) encoder directly interfaces with the
neural machine translation (NMT) encoder-decoder
module. This end-to-end pipeline has demonstrated
robust performance in prior evaluations under low-
resource conditions. The primary objective is to
build a high-performance speech-to-text translation
(S2TT) system optimized for constrained compu-
tational environments and limited annotated data,
while effectively leveraging the representational
power of large-scale pretrained models.

In Section 2, we describe the corpora used in this
study, as well as the pre-processing steps applied
to improve their relevance and quality for the target
tasks (see Section 3). Section 4 introduces the pro-
posed system, which combines a speech encoder
with neural machine translation components. Sec-
tion 5 presents the experimental setup and reports
the results obtained. Finally, Section 6 summarizes
the main findings and concludes the paper.

2 Dataset Description

This work is conducted as part of a shared task
aimed at advancing the state of the art in ASR and
speech S2TT for low-resource dialects, with a par-
ticular focus on Tunisian Arabic. To ensure compa-
rability and fairness, all experiments are conducted
under the constrained condition, using exclusively
the Tunisian-English resources provided by the Lin-
guistic Data Consortium (LDC) for this challenge.

2.1 Corpus Overview

The dataset comprises manually transcribed and
translated audio resources in two language vari-
eties: Tunisian Arabic (TA) and Modern Stan-
dard Arabic (MSA). Although MSA content origi-
nates from broadcast news (BN), TA is represented
through conversational telephone speech (CTS),
offering rich linguistic variability. English transla-
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tions are available for all MSA transcripts and for a
large portion of TA segments, enabling the training
of end-to-end speech translation models.

2.2 Audio Data

MSA Broadcast News (BN): This portion includes
two single-channel recordings totaling approxi-
mately 1 hour of audio. The recordings consist
of multi-speaker news broadcasts and interviews,
sampled at 16 kHz and stored as FLAC-compressed
MS-WAV files with 16-bit PCM encoding.

TA Conversational Telephone Speech (CTS):
The core of the dataset consists of 387 hours of two-
channel telephone conversations, distributed across
2,198 dialogues (4,396 single-channel files). These
were collected in Tunisia via an automated robot
operator that interfaced directly with the regional
public telephone network. Each call involves:

• Side A: A “claque” speaker, a recruited partic-
ipant tasked with initiating conversations.

• Side B: A callee, selected naturally by the
claque from their personal contacts.

Claques completed 8 to 15 distinct calls, each
lasting 8–10 minutes, and were encouraged to dom-
inate the discourse to ensure informative linguistic
content. The TA audio files are encoded in A-law
format at 8 kHz with NIST SPHERE headers.

2.3 Segmentation and Speaker Annotation

Broadcast News (BN). Manual segmentation and
speaker turn identification were performed using
the LDC-developed XTrans tool (Glenn et al.,
2009). Speakers were identified by name when
available; otherwise, anonymous labels indicat-
ing speaker and gender (e.g., speaker1/male) were
used.

Conversational Telephone Speech (CTS). Seg-
mentation followed a three-stage process: (i) auto-
matic speech activity detection (SAD) with a mini-
mum silence threshold of 0.5 seconds was applied
to each single-channel audio file; (ii) segments
longer than 15 seconds were re-segmented with
a relaxed silence threshold of 0.3 seconds; (iii) fi-
nal segment boundaries were manually verified and
corrected in XTrans by expert annotators.

2.4 Transcription Protocol

BN transcripts were generated in Arabic script us-
ing XTrans. CTS segments, alternating between

speakers A and B, were transcribed using a con-
textual navigation web interface. Transcripts were
in Buckwalter transliteration, with some segments
also featuring broad IPA transcriptions. A verifica-
tion pass ensured alignment between orthographic
and phonemic transcripts and enabled token-level
annotation for MSA, foreign language, and uncer-
tain items.

2.5 Transcription Statistics
Manual transcriptions were provided for both MSA
and TA recordings. Table 4 summarizes the number
of segments, duration of speech-only segments, and
number of files per genre.

Table 1: Transcription statistics per genre.

Type Segments Hours Files

MSA / BN 420 0.96 2
TA / CTS 398,064 323.73 4,396
Total 398,484 324.69 4,398

2.6 Translation Statistics
English translations are provided for the full set of
MSA segments and a substantial subset of TA tran-
scripts, supporting supervised ST model training.
Table 2 reports the number of translated segments,
duration of time-stamped speech, and correspond-
ing files.

Table 2: Translation statistics per genre.

Type Segments Hours Files

MSA / BN 420 0.96 2
TA / CTS 210,901 167.48 2,284
Total 211,321 168.44 2,286

In total, this release provides:

• 323.73 hours of Tunisian Arabic CTS audio
with manual transcriptions, suitable for ASR
development.

• 167.48 hours of translated Tunisian Arabic
audio, enabling end-to-end ST modeling.

• 1 hour of Modern Standard Arabic broadcast
news audio, fully transcribed and translated.

This resource offers a rare and valuable founda-
tion for research in dialectal ASR and ST, bridging
the gap between underrepresented spoken varieties
and high-resource translation targets.
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3 Data Cleaning and Annotation

3.1 Token-Level Annotations and Markup

Arabic transcripts include token-level annotations
to reflect linguistic variability:

• M/ — Modern Standard Arabic

• O/ — Foreign word

• U/ — Uncertain token

• UM/, UO/ — Combined uncertainty

BN transcripts use XML-style tags (<non-MSA>
... </non-MSA>) to flag non-MSA spans. These
annotations were removed in our pre-processing
pipeline to ensure clean input for downstream mod-
eling.

3.2 Translation Annotations

English translations are aligned at the segment
level. Annotation conventions include:

• (()): Uncertain words

• %pw: Partial word

• #: Untranslated foreign word

• +: Mispronunciation

• =: Typographic errors from the transcript

• uh, um, eh, ah: Filled pauses

All special symbols were removed in a pre-
processing step.

3.3 Text Pre-processing and Token Filtering

To ensure consistency and reduce noise introduced
by transcription and translation annotation artifacts,
we applied language-specific filtering rules to clean
both Arabic and English segments. These regular
expressions were crafted based on the known anno-
tation conventions of the dataset.

We defined the following regular expression
used for Arabic transcripts:

re.compile(r′[OUM ] + / ∗ |\u061F |\?|\!|\.′)

This expression targets and removes annotation
prefixes such asO/, U/, andM/, which denote for-
eign language tokens, uncertain words, and Mod-
ern Standard Arabic (MSA), respectively. It also
eliminates punctuation marks including the Ara-
bic question mark (Unicode \u061F ) as well as

Western punctuation symbols (?, !, .), which are in-
consistently used and not linguistically informative
for model training.

For English translations, we defined the follow-
ing filter:

re.compile(r′\(|\)|\|\+ |\ = |\?|\!|\; |\.|\, |\”|\ :′)

This regular expression removes special char-
acters and annotation markers such as # (foreign
words), + (mispronunciations), = (typographical
errors), and common punctuation symbols. These
annotations were introduced during the manual
translation process to capture spoken language phe-
nomena but are not useful for token-level alignment
or model training.

This pre-processing step allowed us to normalize
the text, reduce vocabulary sparsity, and ensure
cleaner input for downstream Automatic Speech
Recognition (ASR) and Speech Translation (ST)
tasks.

After filtering, preprocessing, and splitting the
data according to the partitions provided by the or-
ganizers, we obtained the following subsets: train-
ing, development, and test.

Table 3: Transcription statistics per genre after filtering
for train/dev/test.

Type Segments Hours

MSA / BN 410 0.94
TA / CTS 390,021/3833/4220 317.19/3.12/3.43
Total 390,431/3833/4220 318.13/3.12/3.43

Table 4: Translation statistics per genre after filtering
for train/dev/test.

Type Segments Hours

MSA / BN 409 0.937
TA / CTS 202,504/3833/4204 160.81/3.12/3.42
Total 202,913/3833/4204 161.747/3.12/3.42

After filtering, the dataset comprises 318.13
hours of transcribed Tunisian Arabic audio for ASR
training, with 3.12 and 3.42 hours for development
and test, respectively. Additionally, it includes
161.75 hours of parallel audio-translation pairs for
ST training, with the same dev/test splits.

3.4 Known Issues

• Partial Call Coverage: Some CTS calls are
only partially annotated due to transcription
kit omissions.
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• Stranded Diacritic Marks: 158 instances of
diacritic-prefixed tokens (e.g., a, i, o) persist
in 134 files.

• Empty Segments: 714 CTS segments con-
tain only a hyphen (“-”), signaling rejected or
unusable segments.

• Missing Translations: 10 BN segments lack
translations due to English speech in the
source audio.

4 Coupling Whisper and NLLB

This work introduces a hybrid solution designed
for parameter-efficient training in low-resource lan-
guage scenarios inspired by the integration strategy
presented in (Avila and Crego, 2025) , integrating
speech representation features from a pre-trained
speech model into a multilingual NMT system. Our
approach integrates speech representation features
from a pre-trained speech model encoder such as
Whisper into a multilingual Neural Machine Trans-
lation system such as NLLB, enabling both ASR
and S2TT capabilities.

4.1 Motivation and Context
The primary goal of this shared task is to bench-
mark and foster advancements in speech translation
technologies for a wide spectrum of dialects and
low-resource languages. In particular, this initia-
tive focuses on improving automatic speech tran-
scription and translation for the Tunisian dialect, a
variety of Arabic that remains significantly under-
represented in existing resources.

Low-resource conditions such as those en-
countered with Tunisian Arabic pose substan-
tial challenges for conventional speech translation
pipelines, which typically rely on large-scale anno-
tated corpora. In this context, pre-trained models
like Whisper, despite their multilingual design, lack
direct support for Tunisian. Conversely, the NLLB
model provides explicit support for Tunisian text
and English, enabling translation in both directions.

This complementary nature of Whisper and
NLLB forms the foundation of our hybrid approach.
By leveraging Whisper for robust audio feature ex-
traction and NLLB for multilingual text transla-
tion, we bridge the gap between speech and text
modalities. The integration of high-quality speech
representations into a powerful text-based multi-
lingual translation model allows us to address the
limitations of current systems in low-resource envi-
ronments.

4.2 Speech Representation via Whisper

In our hybrid approach, Whisper encoder is kept
frozen and used to generate speech representations,
which substitute the input word embedding of the
NLLB network.

The speech representations X consist of the out-
puts after the K lower encoder layers:

WhisperKENC(a) = X, with X ∈ RN×M

with a the audio signal, N the sequence length and
M the embedding dimension.
Whisper1 (Radford et al., 2023) is a speech

recognition model tailored for multilingual recog-
nition, translation, and language identification. Its
Transformer-based architecture integrates multi-
ple speech processing tasks into a single, unified
model.

We use two variants of Whisper (Medium and
Large-v3) to evaluate the impact of model scale
on representation quality. Both models take 30-
second segments of audio resampled at 16kHz and
convert them into 80-channel log-magnitude Mel
spectrograms. The Whisper encoder outputs are
extracted from the final Transformer layer: the
K=24th layer for Medium (M = 1024) and the
K=32nd for Large-v3 (M = 1280). The output is
a fixed-length sequence of N = 1500 vectors.

To align Whisper outputs with the NLLB en-
coder input we employ a Reshape module consist-
ing of:

• A convolutional layer with kernel size = 3
and stride = 1 is used to reduce the sequence
length from 1500 to 100.

• A linear projection layer (M × 2048) is ap-
plied to match the expected embedding dimen-
sion of the NLLB 3.3B encoder.

4.3 Neural Machine Translation with NLLB

We employ NLLB2 (team et al., 2022), a multilin-
gual NMT model developed by Meta AI, designed
to support direct translation between more than 200
languages, including many low-resource and un-
derrepresented languages. Based on a Transformer
architecture, NLLB employs language-specific to-
kens and dense representations to handle diverse

1https://huggingface.co/openai/
whisper-medium,https://huggingface.co/openai/
whisper-large-v3

2https://huggingface.co/facebook/nllb-200-3.
3B
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linguistic structures. Its 3.3B parameter version,
used in this work, provides strong performance
across a wide range of language pairs, making it
well-suited for multilingual and low-resource trans-
lation tasks.

In NLLB, we prepend a special token ⟨langsrc⟩
at the beginning of the source sentence to spec-
ify the source language and another special token
⟨langtgt⟩ to specify the target language. During
inference, this last token guides the decoder to pro-
duce output in the desired language.

The NLLB encoder is partially fine-tuned during
training, specifically the lower L layers, while the
higher layers remain frozen to retain multilingual
generalization. The Whisper encoder remains com-
pletely frozen and is used purely for speech feature
extraction.

4.4 Language Conditioning and Token
Embeddings

To handle multilingual input and output, we append
the source language token ⟨langsrc⟩ to the reshaped
speech representation and use ⟨langtgt⟩ in the de-
coder. Both tokens are embedded using NLLB’s
embedding layer. This token-based control mech-
anism enables seamless switching between lan-
guages during both training and inference.

Source and target training pairs are formatted as
follows:

source = ⟨langsrc⟩ src_sentence ⟨eos⟩
target = ⟨bos⟩ ⟨langtgt⟩ tgt_sentence ⟨eos⟩

4.5 Hybrid Architecture

This hybrid configuration transforms the multilin-
gual NLLB 3.3B model into a multi-functional sys-
tem capable of both ASR and S2TT. The architec-
ture leverages pre-trained speech representations
from Whisper (specifically the Medium and Large-
v3 variants) and integrates them into the NLLB
framework. This design enables the system to oper-
ate in low-resource settings with minimal parame-
ter updates. In this setup, high-level audio features
are extracted from a frozen Whisper encoder, which
serves solely as a feature extractor. These repre-
sentations are then reshaped to align with the input
format expected by the NLLB encoder. Crucially,
this reshaped output replaces the traditional word
embedding layer in the NLLB encoder, allowing
the model to process audio input instead of text,
and the efficiency of parameter training is achieved

by only modifying the parameters of reshape mod-
ule and the lower layers of the NLLB encoder. The
architecture consists of three main components:

• A frozen Whisper encoder (either Medium or
Large-v3),

• A reshape module that projects the audio em-
beddings into the required format,

• A multilingual NLLB 3.3B encoder-decoder
model.

Figure 1 (right block) illustrates the complete
hybrid S2TT architecture. Speech representations
X , visualized as black squares, are generated by
the Whisper encoder. These are subsequently re-
shaped X ′ and passed to the NLLB encoder, which
processes them and generates translations from the
outputs Z by applying a linear projection followed
by a softmax function. By limiting fine-tuning to
only the lower layers of the NLLB encoder and
the reshape module, the model achieves parameter-
efficient training while retaining multilingual capa-
bilities.

The Whisper encoder outputs high-dimensional
speech representations that are reshaped to match
the input format expected by the NLLB encoder.
This replaces the word embedding layer in NLLB
with audio-derived embeddings. Mor formally:

X = WhisperKENC(a) (1)

X ′ = EMB(⟨langsrc⟩) · Reshape(X) (2)

Y = NLLBENC(X
′) (3)

Z = NLLBDEC(Y ) (4)

Here, a is the input audio signal, X is the speech
representation, and X ′ is the concatenated input
embedding. Y and Z represent the encoded and
decoded outputs, respectively.

4.6 Parameter-Efficient Training Scenarios
We consider two training scenarios for low-
resource adaptation:

• Zero-shot: Whisper and NLLB are used as is,
without fine-tuning. Figure 1 illustrates this
scenario.

• Domain adaptation: Parameter-efficient fine-
tuning is performed:

– Whisper is fine-tuned over Tunisian
audio/transcription examples obtained
from LDC in-domain data (LDC ASR).
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Figure 1: Overview of the Hybrid Whisper+NLLB Approach in a parameter-efficient domain adaptation scenario.
The Whisper encoder/decoder is fine-tuned using LDC ASR data, while NLLB is fine-tuned on both transcription
and translation text from LDC ASR and S2TT datasets (step1). Both models are then coupled to enable hybrid
processing (step2). Red color indicates model weights being updated (the rest are kept freezed).

– NLLB is fine-tuned using in-domain tran-
scription/translation examples.

Figure 1 illustrates the adaptation in domain for
Whisper ASR tunisian and NLLB adaption to trans-
late english or tunisian in LDC domain. In both
cases, a last adaptation for coupling these two mod-
els is achieved by updating only a small subset of
model parameters (e.g., the reshape module and
lower layers of the NLLB encoder), enabling effec-
tive learning from limited resources.

5 Experimental work

5.1 Networks

Our Coupling Hybrid models are trained using a
single NVIDIA H100 GPU (80GB) during up to
20 epochs, with a maximum batch size of 64 utter-
ances and updates of the model after accumulating
64 batches. We validate every 1, 000 updates and
perform early stopping on a separate validation set
excluded from the training set. We use the lazy
Adam algorithm (Kingma and Ba, 2014) for op-
timization. In inference, we use a beam size of
5.

5.2 Results

Table 5 summarizes the results obtained across var-
ious model configurations and architectures. We
report BLEU scores (Post, 2018) and word error
rates (WER)3 as evaluation metrics for S2TT and
ASR, respectively. WER is computed on normal-
ized transcriptions4.

3https://huggingface.co/spaces/
evaluate-metric/wer

4Normalization is performed by BasicTextNormalizer
from the transformers.models.whisper module.

BLEU and WER results are indicated over inter-
nal development and test sets, as provided by the
task organizers. These splits are considered in our
analysis. Best scores for each development/test set
are highlighted in bold.

Columns Whisper Inf Enc and Dec indicate the
number of encoder/decoder layers used during in-
ference by Whisper. Similarly, NMT Opt Enc and
Dec specify the number of encoder and decoder
layers fine-tuned in the NLLB model. Note that we
always use the 3.3B parameter version of NLLB.

During inference, NLLB consistently employs
all its encoder/decoder layers. The Size column
reports the total number of parameters used by each
system during inference.

System Whisper M indicates the original Whis-
per Medium model, used for both ASR and S2TT
tasks. Without fine-tuning the model obtains very
poor transcription and translation scores. This is
mainly because Whisper was pre-trained in modern
standard Arabic (MSA) and lacks exposure to the
Tunisian dialect, which severely limits its ability to
handle dialectal input.

Systems Whisper MFT and Whisper LFT in-
volve full fine-tuning of Whisper Medium and
Whisper Large v3 for ASR using the complete
cleaned speech-transcription training data intro-
duced in Section 2. These are the only two con-
figurations in which Whisper is fine-tuned, result-
ing in considerably longer training times (nearly 2
days). Although their BLEU scores remain very
low, similar to those of the baseline Whisper model,
their ASR performance improves significantly af-
ter fine-tuning. Compared to the baseline Whisper
M, which was not fine-tuned, both fine-tuned sys-
tems show significant improvements in ASR per-
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Model Data Whisper Inf NLLB Opt Size BLEU↑ WER↓
Enc Dec Enc Dec dev tst dev tst

Whisper M - 24 24 - - 769M 1.18 1.14 157.28 168.23
Whisper fine-tunned

Whisper MFT ASR 24 24 - - 769M 1.17 1.15 44.31 53.41
Whisper LFT ASR 32 32 - - 1550M 2.13 1.86 43.70 50.23

Cascade
Whisper MFT + NLLB ASR 24 24 0 0 4.07B 5.45 4.64 44.31 53.41
Whisper LFT + NLLB ASR 32 32 0 0 4.85B 5.68 5.07 43.70 50.23
Whisper MFT + NLLBFT ASR+MT 24 24 24 24 4.07B 19.25 16.44 44.31 53.41
Whisper LFT + NLLBFT ASR+MT 32 32 24 24 4.85B 19.77 17.39 43.70 50.23

Hybrid
Whisper M + NLLB ST 24 - 2 0 4.07B 12.39 9.92 - -
Whisper M + NLLB ASR+ST 24 - 2 0 4.07B 9.10 7.44 77.71 85.07
Whisper MFT + NLLBFT ST 24 - 2 0 4.07B 19.22 16.62 126.57 121.41
Whisper LFT + NLLBFT ST 32 - 2 0 4.35B 19.37 17.52 149.31 139.48

Table 5: Translation (BLEU) and recognition (WER) results across various model configurations. The column Data
shows data used for each configuration, the column Whisper Inf specifies the number of Whisper encoder/decoder
layers used during inference, while NMT Opt shows the number of NLLB encoder/decoder layers optimized during
training. The Size column denotes the total number of parameters used during inference.

formance. Specifically, Whisper MFT achieves
WERs of 44.31 and 53.41 on the dev and test sets,
while Whisper LFT further improves to 43.70 and
50.23. These results demonstrate the effectiveness
of fine-tuning even without changes to the model ar-
chitecture. However, BLEU scores remain low for
in both cases as these models are not explicitly opti-
mized for translation. The slight increase in BLEU
for the larger model is likely due to more accurate
transcriptions feeding into the implicit translation
process, but overall, these scores confirm that fine-
tuning Whisper solely for ASR is insufficient for
reliable S2TT performance.

In the Cascade setup, systems Whisper
MFT +NLLB and Whisper LFT +NLLB combine fine-
tuned Whisper models (for ASR) with the base
NLLB model (for MT). In this approach, Whisper
is first fine-tuned on the LDC ASR dataset to gen-
erate transcriptions, which are then passed to the
unadapted NLLB model for translation. These con-
figurations do not yield strong translation perfor-
mance, primarily due to the mismatch between the
transcription domain and the NLLB training data.
However, performance could be improved through
domain adaptation of the NLLB component. When
adapting the NLLB model with the available in-
domain datasets, systems Whisper MFT +NLLBFT

and Whisper LFT +NLLBFT clearly improve their
translation performance. The NLLB model is fine-
tuned on transcription-translation pairs from the
LDC ASR and ST datasets. Thus, transcriptions

produced by Whisper are then translated using
the adapted NLLB network. These latter systems
demonstrate the effectiveness of adapting NLLB to
the ASR/ST domain using LDC transcriptions and
translations. However, despite the improved accu-
racy, the inherent latency introduced by cascading
models makes them less suitable for real-time or
industrial applications, where efficiency is critical.
WER scores remain constant across all cascade sys-
tems because the Whisper component, responsible
for transcription, is identical within each Whis-
per variant. This consistency further confirms that
BLEU gains are due solely to the adaptation of the
translation model.

The next set of results pertains to our hybrid
systems. We utilize fine-tuned versions of Whisper
(Medium and Large v3) tightly coupled with NLLB
as detailed in section 4. Similarly to the cascade
setup, the first two systems use the original, pre-
trained Whisper and NLLB models, while the latter
two are hybrid systems that combine Whisper and
NLLB models which have been previously fine-
tuned.

One key advantage of the hybrid models lies in
their compactness: they require significantly fewer
parameters than the cascade counterparts. Further-
more, coupling optimization is computationally ef-
ficient. The Whisper speech encoder is kept frozen,
while only 2 out of 24 layers in the NLLB encoder
are fine-tuned. This strategy drastically reduces
training time and computational cost. Fine-tuning
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with the LDC ST dataset required only 1 to 3 days,
depending on the configuration and number of train-
able parameters.

The first two hybrid systems, where Whisper and
NLLB models are used without any fine-tuning,
output moderate improvements over the raw Whis-
per model but significantly lower performance
than domain-adapted cascade approaches. The
system trained on both ASR and ST objectives
(ASR+ST) exhibits a significant drop in both trans-
lation and transcription quality compared to the
version trained solely on the ST objective (ST).
This suggests that, in the absence of domain adap-
tation, multitask training may lead to interference
between the tasks.

When hybridizing the adapted networks (last
two rows), where both Whisper and NLLB are
fine-tuned using in-domain LDC data, systems at-
tain BLEU scores nearly equivalent to the best-
performing cascade systems. These results validate
the effectiveness of our lightweight hybrid fine-
tuning strategy, which freezes most Whisper and
NLLB layers, optimizing only a minimal subset.
Notably, these hybrid models operate with lower
parameter counts and exhibit superior latency char-
acteristics compared to their cascade counterparts.
WER scores, however, are higher in the hybrid
domain-adapted models (ranging from 121 to 149),
reflecting a trade-off in ASR accuracy potentially
introduced by tighter integration and shared opti-
mization. This is also partly due to the fact that the
hybrid models were exclusively fine-tuned using
speech translation (ST) data, without direct super-
vision on ASR objectives. As a result, while the
models are optimized for generating accurate trans-
lations, their raw transcription outputs may be less
precise, contributing to higher WER.

As expected, the hybrid models achieve S2TT
performance comparable to the cascade systems.
For example, the best hybrid domain adaptation
configuration attains BLEU scores of 19.37 and
17.52 on the development and test sets, respectively.
Importantly, these hybrid models offer superior la-
tency characteristics, making them more suitable
for deployment in real-time or resource-constrained
environments compared to their cascade counter-
parts.

Finally, it is important to note that the results
submitted for the evaluation of this task were ob-
tained several epochs prior to the final version of
the model. At that stage, the model achieved a
BLEU score of 18.96 on the development set and

16.94 on the test set. The current version of our
model outperforms the submitted one by approxi-
mately 0.5 BLEU points.

6 Conclusions and further work

We presented SYSTRAN’s submitted systems for
the 2025 Low-Resource Language Track, targeting
the task of Tunisian Arabic to English speech trans-
lation. Our approach combines an ASR encoder
(Whisper) with a neural machine translation de-
coder (NLLB), using light fine-tuning to create an
efficient and compact speech translation pipeline.
The resulting Speech-to-Text Translation system is
designed to operate with minimal computational re-
sources and limited training data. We evaluated our
system against several alternative configurations,
including a cascaded Whisper+NLLB setup and
direct end-to-end fine-tuning of Whisper. Our re-
sults demonstrate that it is possible to achieve high
translation quality under low-resource constraints,
enabling broader accessibility without the need for
large-scale infrastructure.
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Abstract

This paper presents the submission of IIITH-
BUT to the IWSLT 2025 shared task on speech
translation for the low-resource Bhojpuri-Hindi
language pair. We explored the impact of hyper-
parameter optimisation and data augmentation
techniques on the performance of the Seam-
lessM4T model fine-tuned for this specific task.
We systematically investigated a range of hy-
perparameters including learning rate sched-
ules, number of update steps, warm-up steps,
label smoothing, and batch sizes; and report
their effect on translation quality. To address
data scarcity, we applied speed perturbation
and SpecAugment and studied their effect on
translation quality. We also examined the use
of cross-lingual signal through joint training
with Marathi and Bhojpuri speech data. Our
experiments reveal that careful selection of hy-
perparameters and the application of simple
yet effective augmentation techniques signif-
icantly improve performance in low-resource
settings. We also analysed the translation hy-
potheses to understand various kinds of errors
that impacted the translation quality in terms of
BLEU.

1 Introduction

Speech translation (ST) transforms spoken lan-
guage into written text in a different language, serv-
ing as a critical component in breaking down com-
munication barriers. While significant advance-
ments have been made for high-resource language
pairs (Jia et al., 2019; Bentivogli et al., 2021), devel-
oping effective ST systems for low-resource and di-
alectal languages remains challenging due to scarce
parallel data, inconsistent orthography, and substan-
tial linguistic variation.

We address the low-resource scenario of Bho-
jpuri speech to Hindi text translation within the
Indian linguistic context. Despite being spoken by
over 50 million people, Bhojpuri suffers from lim-
ited quality and diversity in available speech-text

corpora (Wikipedia contributors, 2025). In con-
trast, Hindi possesses relatively abundant resources,
making it an ideal target language for translation.
Our system, developed for the IWSLT 2025 shared
task, addresses these resource disparities through a
combination of transfer learning from linguistically
similar languages, data augmentation techniques,
and hyperparameter optimization.

Recent end-to-end ST models, such as the
Speech-to-Text Transformer (Wang et al., 2020b)
and SeamlessM4T (Communication et al., 2023)
effectively replace traditional cascade pipelines
by jointly modelling ASR and MT, reducing er-
ror propagation and latency. However, these ap-
proaches typically require substantial labelled data
unavailable for most low-resource languages, often
leading to overfitting and poor generalisation.

Our contributions include:

• A systematic investigation of hyperparame-
ter optimization for low-resource ST, identi-
fying that configuration choices such as batch
sizes, moderate label smoothing values, and
extended warmup periods significantly impact
performance on the Bhojpuri-Hindi language
pair.

• An analysis of data augmentation techniques
- SpecAugment (Park et al., 2019) and speed
perturbation (Ko et al., 2015) for low-resource
speech translation, demonstrating their effec-
tiveness in expanding our training data by 3x
and improving BLEU scores by an average of
2.1 points.

• An evaluation of cross-lingual transfer learn-
ing through joint fine-tuning with Marathi-
Hindi data, empirically showing how linguis-
tic similarities between related Indo-Aryan
languages can be leveraged to improve low-
resource speech translation performance.
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The remaining of this paper is organized as fol-
lows: Section 2 provides a comprehensive review
of related work, Section 3 describes our system in-
cluding hyperparameter optimization, data augmen-
tation techniques, and joint fine-tuning approach,
Section 4 details our experimental setup, Section 5
presents results and analysis, and Section 6 con-
cludes with future directions.

2 Related work

Low-resource speech translation (ST) has garnered
significant attention through IWSLT shared tasks
(Agarwal et al., 2023; Ahmad et al., 2024; Gow-
Smith et al., 2023). The field has evolved from
traditional pipeline approaches (Post et al., 2013)
to end-to-end architectures such as Listen Attend
and Spell (LAS) (Bérard et al., 2016), fairseq S2T
(Wang et al., 2020a; E. Ortega et al., 2023),(Rad-
hakrishnan et al., 2023), and transfer learning based
methods (Kesiraju et al., 2023b,a). In (Mbuya and
Anastasopoulos, 2023), explored fine-tuning self-
supervised models by incorporating a linear layer
for the ST task, which streamlined workflows while
maintaining specialized strategies for low-resource
scenarios. (Shanbhogue et al., 2023), implemented
various data augmentation techniques including au-
dio stretching, back-translation, and paraphrasing.

Contemporary approaches to low-resource ST
can be categorized into several methodological
frameworks. The SETU-DCU submission (Za-
far et al., 2024) enhanced ST robustness through
CTC loss integration and rigorous data cleaning
protocols. (Post et al., 2013) incorporated pseudo-
labelling techniques to expand their training cor-
pus. The JHU IWSLT 2024 system (Robinson
et al., 2024) demonstrated the efficacy of Whisper-
style large models with domain-adaptive pretrain-
ing methodologies. Meanwhile, the QUESPA team
(Ortega et al., 2024) implemented ensemble decod-
ing with cross-lingual knowledge transfer mech-
anisms. SeamlessM4T (Communication et al.,
2023) presents a comprehensive approach handling
ASR, MT, and ST across more than 100 languages,
though its performance on genuinely low-resource
languages necessitates substantial adaptation strate-
gies.

Our approach focuses on systematically explor-
ing hyperparameter optimization and data augmen-
tation techniques for low-resource speech transla-
tion. Unlike previous work that often applies gen-
eral strategies such as default hyperparameter val-

ues, generic data augmentation, standard transfer
learning without language-specific considerations
and using default model architectures and train-
ing strategies without adaptation to low-resource
constraints, we conduct a comprehensive investi-
gation specifically tailored to the challenges of the
Bhojpuri-Hindi language pair. Our experimenta-
tion includes a detailed analysis of learning rates,
batch sizes, label smoothing values, and warmup
periods, and used two data augmentation tech-
niques (Speed Perturb, SpecAug). Additionally, we
examine how cross-lingual transfer from Marathi
can supplement these optimizations, leveraging the
linguistic proximity between these Indo-Aryan lan-
guages.

3 Methodology

3.1 Model architecture

Our experiments used SeamlessM4T as the back-
bone. We experimented with medium (1.2B param-
eters) and large (2.3 B parameters) variants. The
medium consists of a 24-layer conformer speech
encoder, 12-layer Transformer text decoder, with
1024-dimensional hidden states, and 16 attention
heads.

3.2 Fine-tuning

For most of the experiments, we fine-tuned all
the parameters on the target language pair, i.e.
Bhojpuri–Hindi. We also conducted experiments
where fine-tuned on both language pairs Marathi–
Hindi and Bhojpuri–Hindi. This model was fur-
ther fine-tuned for few epochs for the target pair
Bhojpuri–Hindi.

3.3 Evaluation

We used the standard objective metrics BLEU (Pa-
pineni et al., 2002) and chrF++ (Popović, 2017)
implemented in sacrebleu (Post, 2018) to objec-
tively evaluate the translation quality against the
reference.

4 Experiments

4.1 Datasets

We used only the official IWSLT 2025 shared task
dataset for Bhojpuri → Hindi speech translation:
For our multilingual experiments, we incorporated
an additional Marathi → Hindi1 parallel corpus

1IWSLT Marathi-Hindi Dataset
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Dataset Duration (hrs) No. of utterances

Training 20.00 10,171
Dev 2.07 1,056
Test 0.87 750

Table 1: Data split statistics for Bhojpuri-Hindi ST task.

from IWSLT, consisting of 16 hours (7,990 utter-
ances) of training data, 3.6 hours (2,103 utterances)
of development data, and 0.45 hours (286 utter-
ances) of test data.

4.2 Implementation
Our code was based on the original seamless li-
brary written in PyTorch. Our experiments used
two NVIDIA A100 GPUs (40GB each), employ-
ing data parallel training, synchronised batch nor-
malisation, and FP16 mixed precision for optimal
computational efficiency.

4.3 Pre-trained model selection
Here we report the fine-tuning results for Seamless
medium and large v2 variants. We observed that
the medium model consistently yielded better trans-
lation results than the large one. Hence, we used
the medium variant for all subsequent experiments
and analysis.

Model lr BLEU chrF++

Medium 1e-5 30.5 54.6
Large 1e-5 25.5 50.5

Table 2: Translation scores on dev set after fine-tuning
seamless medium and large variants on Bhojpuri–Hindi.

4.4 Hyperparameter optimisation
Our hyperparameter optimisation investigation fo-
cused on several critical training parameters. The
learning rate (LR) was evaluated across three set-
tings (1e-6, 1e-5, and 2e-5), with the moderate rate
of 1e-5 consistently yielding the best performance
as shown in Table 3, achieving a balance between
training stability and domain adaptation. For label
smoothing (LS), we tested values of 0, 0.1, and
0.2, with 0.1 offering the best generalisation and
robustness (Table 4). We explored warmup steps
(100, 250, 350, and 400) to stabilise the learning
rate schedule, finding 250 steps produced optimal
convergence without extending training time. To
mitigate overfitting, we experimented with early

stopping patience values (5, 10, and 20 epochs),
where 10 epochs struck the best trade-off between
overtraining and early termination. Finally, we ex-
amined training batch size (5, 10, 32, and 64),
with a batch size of 32 demonstrating the most
favourable performance (Table 3), balancing gradi-
ent update stability with computational efficiency.

LR batch size BLEU chrF++

1e-5 5 30.5 54.5
1e-5 10 33.8 56.9
1e-5 32 35.1 58.2
1e-6 5 18.2 48.4
1e-6 10 20.1 49.1
1e-6 32 26.7 51.2

Table 3: Effect of learning rate (LR) and training batch
size (batch size) on Bhojpuri-Hindi fine-tuning perfor-
mance

LS BLEU chrF++

0.0 30.9 55.3
0.1 33.8 56.9
0.2 31.8 56.6

Table 4: Effect of label smoothing (LS) on Bhojpuri–
Hindi fine-tuning performance with LR = 1e-5 and batch
size = 10.

4.5 Data augmentation
To address the limited training data for the
Bhojpuri-Hindi language pair, we implemented two
established speech augmentation techniques.

4.5.1 SpecAugment
We applied spectrogram masking with time masks
(max 30 frames) and frequency masks (max 30
mel-frequency bins), creating diverse variations
that forced the model to rely on broader contextual
information rather than specific acoustic features.

4.5.2 Speed perturbation
We implemented speed factors of 0.9x, 1.0x, and
1.1x to simulate different speaking rates without
changing pitch, effectively tripling our training data
with realistic variations and improving the robust-
ness of the model to natural speaking rate differ-
ences among Bhojpuri speakers.

By combining these complementary methods,
we expanded the diversity of training data without
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requiring additional recordings. The impact on
translation quality is shown in Table 5.

SP SA BLEU

False False 31.8
False True 33.7
True False 32.7
True True 32.4

Table 5: Effect of Speed perturb (SP) and SpecAugment
(SA) on Bhojpuri–Hindi fine-tuning performance with
LR = 1e-5, batch size = 10, and LS = 0.1

4.6 Joint-finetuning approach

We implemented cross-lingual transfer learning by
integrating Marathi-Hindi and Bhojpuri-Hindi lan-
guage pairs into a unified training framework. This
approach leverages the linguistic similarities be-
tween these Indo-Aryan languages, which share
phonological characteristics, lexical resources, and
syntactic structures.

Our methodology combined the Marathi-Hindi
parallel corpus with the limited Bhojpuri-Hindi
dataset during SeamlessM4T model adaptation,
thereby expanding the training data while introduc-
ing linguistically relevant patterns from Marathi.
To mitigate catastrophic forgetting, we imple-
mented sequential fine-tuning with an initial joint
training phase followed by Bhojpuri-only fine-
tuning. We tested this approach under three con-
ditions: one epoch, two epochs, and training until
convergence, as shown in Table 7.

5 Results and analysis

This section presents an analysis of the experi-
mental results obtained from our primary and con-
trastive models. The primary model encompasses
an optimized combination of hyperparameter con-
figuration and data augmentation techniques that
yielded the highest BLEU score in our evaluations.

As demonstrated in Table 5, the application of
SpecAugment during fine-tuning produced supe-
rior performance compared to other augmentation
strategies. During inference, we systematically
evaluated translation quality across multiple beam
search configurations (sizes 1, 5, and 10) to deter-
mine the optimal decoding approach.

Table 6 represents a comprehensive comparison
of various experimental configurations and their
corresponding performance metrics. Increasing the

beam size from 5 to 10 while maintaining all other
parameters constant yielded a modest improvement
in translation quality. Subsequently, with beam size
fixed at 10, enlarging the training batch size from
10 to 32 further enhanced performance by 0.21
BLEU points. The combination of beam size 10,
batch size 32, increased warmup steps from 100
to 250, and the introduction of SpecAugment col-
lectively improved the BLEU score from 34.01 to
35.38. Our optimal configuration, which addition-
ally increased early stopping patience from 5 to
10, achieved the highest performance with 36.41
BLEU. Notably, further extending patience to 20
epochs resulted in performance degradation, sug-
gesting potential overfitting.

For our contrastive model, we implemented a
multilingual fine-tuning strategy that jointly trained
on Marathi and Bhojpuri data using the hyperpa-
rameter configuration that previously achieved the
highest performance (36.4 BLEU). This multilin-
gual model initially underperformed compared to
our monolingual system, potentially due to catas-
trophic forgetting. To mitigate this issue, we con-
ducted additional fine-tuning on Bhojpuri data ex-
clusively for various epoch counts.

As shown in Table 7, performance peaked af-
ter a single epoch of Bhojpuri-specific fine-tuning
and subsequently declined with additional epochs,
suggesting that extended training on previously
observed data may lead to overfitting. Conse-
quently, our contrastive submission consisted of
the joint Marathi-Bhojpuri model with one ad-
ditional epoch of Bhojpuri–Hindi exclusive fine-
tuning, which produced results comparable to our
optimised monolingual configuration.

Table 8 presents the BLEU scores obtained on
both test and development datasets. In the IWSLT
2025 shared task (Abdulmumin et al., 2025), the
highest reported BLEU score was 10.7, represent-
ing a significant decrease compared to IWSLT 2024
(Ahmad et al., 2024), where scores reached approx-
imately 24.4. Our primary and contrastive models
achieved BLEU scores of 9.9 and 10.2 respectively
on the test set, while demonstrating substantially
higher performance on the development set with
scores of 36.4 and 36.0. The considerable per-
formance gap between development and test sets
suggests potential domain mismatch between the
datasets or possible data quality issues in the test
set, warranting further investigation.
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LR LS Batch size SP SA Warm up steps Patience Beam size BLEU

1e_5 0.1 10 False False 100 5 5 33.1

1e_5 0.1 10 False False 100 5 10 33.8
1e_5 0.1 32 False False 100 5 10 34.0

1e_5 0.1 32 False True 250 5 10 35.3
1e_5 0.1 32 False True 250 10 10 36.4
1e_5 0.1 32 False True 250 20 10 35.6

Table 6: BLEU scores for various hyperparameter configurations during fine-tuning of SeamlessM4T. We varied the
learning rate (LR), label smoothing (LS), batch size, speed perturbation (SP), SpecAugment (SA), warm-up steps,
early stopping patience, and beam size. The highest BLEU score (36.41) was obtained with SA enabled, patience
set to 10, and a beam size of 10.

Strategy Epochs BLEU

Joint finetuning (JF) Convergence 34.6

JF + monolingual bhoj 1 36.0
JF + monolingual bhoj 2 35.6
JF + monolingual bhoj Convergence 35.4

Table 7: BLEU scores for contrastive model with the
same configuration as highest BLEU in Table 6

Model Dev BLEU Test BLEU

Primary 36.4 9.9

Contrastive 36.0 10.2

Table 8: BLEU scores for primary and contrastive mod-
els using the same configuration as highest BLEU scores
in Table 6 and Table 7 for both dev and test dataset

5.1 Error analysis

Our systematic examination of translation outputs
revealed several factors in the development dataset
that affected ST performance. Analysis of audio-
transcript relationships identified multiple incon-
sistencies impacting model performance. We ob-
served three key patterns when comparing refer-
ence and target word counts: (1) When reference
counts exceeded target counts, low BLEU scores
often resulted from incomplete audio recordings
paired with complete reference transcripts, audio-
transcript misalignment, or redundant reference
content; (2) Equal word counts with low BLEU
scores frequently corresponded with noisy record-
ings; (3) Cases where target counts exceeded ref-
erence counts typically involved recordings with
significant acoustic interference.

Numerical content presented particular chal-

lenges. We identified inconsistent representation
formats (e.g., "8 crores 74 lakhs" in audio ver-
sus "87.4 lakhs" in text), incomplete numerical
transcription (e.g., in audio, numbers are spoken
in English as "Fifteen" whereas in reference text
they appear in Hindi as "Pandrah(hindi)"), and in-
stances where equal numerical representation cor-
responded with degraded audio quality. These find-
ings highlight the importance of audio-transcript
alignment and standardized numerical representa-
tion in speech translation datasets, particularly for
low-resource language evaluation.

6 Conclusion

Our submission to the IWSLT 2025 evaluation cam-
paign for low-resource and dialectal speech trans-
lation advances Bhojpuri–Hindi ST through a com-
bination of hyperparameter optimisation, data aug-
mentation, and cross-lingual joint fine-tuning. By
leveraging the SeamlessM4T medium model (1.2B
parameters) and systematically exploring optimal
training configurations, we demonstrate significant
performance gains despite the challenges posed by
limited parallel data. Our results show that even es-
tablished techniques like SpecAugment and speed
perturbation, when carefully implemented, can lead
to substantial improvements in low-resource speech
translation tasks, expanding our effective training
data threefold. Additionally, we found that joint
training with Marathi—a linguistically related Indo-
Aryan language—followed by sequential Bhojpuri-
specific adaptation provides an effective strategy to
mitigate data sparsity and improve generalisation
across diverse speech patterns.

For future work, we plan to explore more so-
phisticated augmentation techniques such as noise
injection, pitch shifting, and cross-speaker synthe-
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sis. We also intend to investigate self-supervised
pretraining on monolingual Bhojpuri speech data
and further extend our cross-lingual approach to
additional Indo-Aryan languages. As low-resource
ST continues to evolve, we believe that modular,
linguistically informed adaptation pipelines will
play a key role in advancing the real-world ap-
plicability of such systems for under represented
language communities.

7 Acknowledgements

Santosh Kesiraju was supported by Ministry of
Education, Youth and Sports of the Czech Re-
public (MoE) through the OP JAK project “Lin-
guistics, Artificial Intelligence and Language and
Speech Technologies: from Research to Applica-
tions” (ID:CZ.02.01.01/00/23_020/0008518).

References
Idris Abdulmumin, Victor Agostinelli, Tanel Alumäe,

Antonios Anastasopoulos, Ashwin, Luisa Bentivogli,
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Abstract

This work describes the participation of the
MLLP-VRAIN research group in the shared
task of the IWSLT 2025 Simultaneous Speech
Translation track. Our submission addresses
the unique challenges of real-time translation of
long-form speech by developing a modular cas-
cade system that adapts strong pre-trained mod-
els to streaming scenarios. We combine Whis-
per Large-V3-Turbo for ASR with the multilin-
gual NLLB-3.3B model for MT, implementing
lightweight adaptation techniques rather than
training new end-to-end models from scratch.
Our approach employs document-level adap-
tation with prefix training to enhance the MT
model’s ability to handle incomplete inputs,
while incorporating adaptive emission policies
including a wait-k strategy and RALCP for
managing the translation stream. Specialized
buffer management techniques and segmen-
tation strategies ensure coherent translations
across long audio sequences. Experimental re-
sults on the ACL60/60 dataset demonstrate that
our system achieves a favorable balance be-
tween translation quality and latency, with a
BLEU score of 31.96 and non-computational-
aware StreamLAAL latency of 2.94 seconds.
Our final model achieves a preliminary score
on the official test set (IWSLT25Instruct) of
29.8 BLEU. Our work demonstrates that care-
fully adapted pre-trained components can cre-
ate effective simultaneous translation systems
for long-form content without requiring exten-
sive in-domain parallel data or specialized end-
to-end training.

1 Introduction

In this paper we describe the participation of
the MLLP-VRAIN research group in the shared
tasks of the 22th International Conference on Spo-
ken Language Translation (IWSLT) (Abdulmumin
et al., 2025). We participated on the Simultaneous
Speech Translation (SimulST) task in the English
to German direction. Compared to other years,

two aspects were changed in the shared task which
guided the construction of our system: The usage
of pretrained open weight models and the evalu-
ation of long-form audio. Our participation this
year was an attempt of creating a production ready
model based on the minimal adaptation of offline
ASR and MT (Papi et al., 2022). Recent years have
seen a rise in the usage of end-to-end approaches1

which, in theory, can offer a better integration and
can avoid error compounding between ASR and
MT components. However, they typically require
large quantities of parallel speech-to-text transla-
tion data, which is often scarce and costly to obtain.
Cascade systems, on the other hand, while they are
more data-efficient due to the abundance of sepa-
rate ASR and MT training resources, may suffer
from error propagation and lack of joint optimiza-
tion. Nevertheless, recent shared tasks and eval-
uation campaigns continue to show that cascade
systems generally achieve superior performance
over current end-to-end alternatives (Salesky et al.,
2023b, 2024). As such, we model our system based
on the cascaded approach, in which we take a spe-
cial keen interest due to its inherent modularity and
easier reuse of strong pre-trained components. Fig-
ure 1 shows the overall architecture of our system.

2 System Architecture

2.1 ASR system

For the choice of the ASR components, we se-
lect our model based on the results of public ASR
systems on common benchmarks available at the
Hugging Face Open ASR Leaderboard (Srivastav
et al., 2023). After some initial tests and taking
into account our computing limitations, we selected
Whisper-Large-V3-Turbo (Radford et al., 2023) 2

1As defined by IWSLT https://iwslt.org/2025/
offline#evaluation-conditions.

2https://huggingface.co/openai/
whisper-large-v3-turbo
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Figure 1: System diagram of our cascaded system for
the SimulST track.

as our final ASR model. We use the model as it is,
and we do not make usage of any of the English au-
dio data provided by the organizers for finetunning
of the model. There are two reasons for this deci-
sion. First, when looking at the provided datasets,
we conjecture that the Whisper model has proba-
bly have already seen this data; and second, that
we fear that we may end up lowering the perfor-
mance of the system as there is a domain mismatch
between the provided datasets and evaluation set,
with the latter being scientific talks of the ACL.

The adaptation for streaming is done in a similar
way to the one described in Macháček et al. (2023),
where a Longest Common Prefix policy along some
heuristics are combined for the usage in a streaming
fashion. Inference is done via the Faster-Whisper
library 3. We select a maximum audio buffer of 30
seconds and a minimum chunk size of one second
and deactivate the usage of VAD filtering. The
audio buffer is cleaned when a end of sentence
is detected by external sentence splitter or the 30
seconds window is full. The audio stream is then
updated accordingly to the timestamps obtained by
the typical DTW procedure used in Whisper.

During development we detected that this base
3https://github.com/SYSTRAN/faster-whisper

system had sometimes very unreliable behaviour
due to latency spikes derived from indecisions of
the LCP policy on the punctuation, casing and
styling of some words. To alleviate this, we re-
laxed the LCP policy so that it is done on lower
cased input, with no punctuation signs, and with
the additional constraint of a threshold by Leven-
shtein Distance to consider if a word in the prefix
is sufficiently different. We select a Levenshtein
Distance threshold of two so that if the distance of
the words to be checked is less or equals to it, then
they are to be considered the same by the policy.

The ASR system obtains a WER of 8.54% on
the ACL60/60 (Salesky et al., 2023a) development
set.

2.2 MT system

During recent years a series of works have appeared
exploring realistic scenarios for SimulST where
models are evaluated on long-form speech scenar-
ios. (Schneider and Waibel, 2020; Sen et al., 2022;
Papi et al., 2024; Polák and Bojar, 2023; Iranzo-
Sánchez et al., 2024; Ouyang et al., 2025). Tak-
ing this into consideration, for our MT model, we
adapt an offline MT model to streaming through
a lightweight procedure inspired to that of Iranzo-
Sánchez et al. (2024), which presents an easy to
adapt pipeline for the creation of an MT compo-
nent in SimulST system which we further adapt
and simplify it to our given conditions. Overall,
through training with prefix-training (Niehues et al.,
2018) and document level metadata, the model is
able to learn to work with an incomplete stream
and control a history stream (Iranzo-Sánchez et al.,
2022) by emitting a sentinel token [SEP] which
then serves to call a lightweight log-linear model
to take into account which part of the stream has
already been translated. When a certain threshold
of size in the buffer reached, the oldest pairs of
identified segments can easily be discarded without
any fear of possible mismatches in the stream.

Model: Instead of training from scratch, we
make use of the multilingual system NLLB-
3.3B (Team, 2024). We also explored the usage
of MADLAD-400 (Kudugunta et al., 2023), but
discarded it after founding BLEU scores of over 95
points when evaluation of the system in an offline
scenario for the ACL60/60 dataset, which indicated
a possible data contamination of the test set. We
also tested some LLMs, but found early results too
unsatisfactory for our computing budget.
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History Mechanism: Inspired by the usage of
attention maps of Papi et al. (2023), for the log-
feature model, instead of the described reverse
translation model of the original paper, we found
that a single feature which looks at the most at-
tended position of the previous token before the
sentinel [SEP] token to be more simpler and effec-
tive to determine the segmentation position of the
source stream. To be more precise, the position of
the last source word â to be moved to the stream-
ing history buffer for the current active source and
target chunks x and ŷ is

â = argmax
i
A(xi, y[SEP ]−1) (1)

with A being the attention score function and i
indicates the position of source word x in the active
chunk.

Data and Training: For the document level data,
we take the available News Comentary4 and Eu-
roparl5 datasets with their reconstructed document
level information extracted from Paradocs (Wicks
et al., 2024) for a total of 36225 documents. While
not in the target domain of ACL talks, we hope
that our adaptation is able to move the model from
offline inference domain to simultaneous with the
usage of history context. Additionally, we want to
adapt the multilingual model so that it can better
focus on the English to German direction. Prefix
augmented data with document level information is
created as in the original work, but is dynamically
generated at training time. For each document,
which represents a data sample, we select a sen-
tence and randomly prepend from 1 up to 10 of the
previous phrases of the document with the corre-
sponding sentinel token [SEP]. Then, for the corre-
sponding phrase we create the prefix by taking into
account the ratio of the length of the active source
and target phrase. During training, the usage of
prefix training is triggered at a rate of 50%. As for
the training procedure, we make use DoRA (Mao
et al., 2024) to fine-tune our MT model. Training
hyperparameters are shown in Appendix A.

Policy: For our policy in the MT component, we
make use of RALCP (Wang et al., 2024) using the
hypotheses of the system beam search in combina-
tion with a wait-k policy (Ma et al., 2019), the latter

4https://data.statmt.org/news-commentary/v18/
training/

5https://www.statmt.org/europarl/v10/training/
europarl-v10.de-en.tsv.gz

being active only during the beginning of a new
phrase (that is after emitting a [SEP] token) to pre-
vent system hallucination. We also clean “invalid”
empty beam hypotheses, which were very frequent
on the baseline model, adjusting the RALCP λ
accordingly so that the ratio of hypotheses and λ
stays roughly the same as before filtering.

The final peak memory usage during inference
of both ASR and MT models combined is of 20GB
of VRAM 6, with values fluctuating between 1-
3GiB depending on the current audio and transla-
tion history buffers. We leave further optimization
for future work.

3 Evaluation

For our baselines, we searched for any other public
simultaneous speech translation systems capable of
long form translation. However, we only found the
system described in Papi et al. (2024) available, and
in this case, we observed that the system had strong
hallucinations that ended up in an unrecoverable
state for long enough audios. Due to this, we in-
stead build a “naive” baseline for our system which
make use of the plain translation system without
any additional training. For controlling the history
buffers, we simply remove from the source and
target text history buffers after a maximum num-
ber of words is reached in each buffer. In practice,
we surpassingly found that while the system will
end up with slight mismatches between the source
and target stream at the head position, systems are
still able to work in a streaming scenario. We ad-
ditionally add the offline inference of the model
before and after fine-tuning and the best baseline
from the IWSLT organizers that achieved a similar
latency-quality tradeoff matching our own.7. Best
hyperparameters with the optimal quality/latency
are shown in Appendix A.

Table 1 shows the results of the baseline and
our adapted model, the stream LAAL, both compu-
tationally an computationally aware, BLEU (Pa-
pineni et al., 2002) as calculated with Sacre-
BLEU (Post, 2018)8 and the COMET-22 (Rei et al.,
2022)9. We follow the recomendations of Zouhar

6On a Nvidia GTX 4090 with a Intel(R) Core(TM) i9-
10920X CPU @3.50GHz

7Organizer baseline results extracted from
https://github.com/pe-trik/iwslt25-baselines/
tree/master/experiments/acl6060_dev/de/cascade

8Python3.12.9|BLEU|nrefs:1|case:mixed|eff:no|tok:13a|
smooth:exp|version:2.5.1

9Python3.12.9|Comet2.2.6|fp16|Unbabel/wmt22-comet-
da|r1
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StreamLAAL

BLEU COMET NCA CA

Offline 43.12 0.833 — —
Offline(A) 41.48 0.836 — —

Baselineiwslt 25.47 — 3.67 —
Baselineupv 26.10 0.642 3.61 4.35
Adapted 31.96 0.732 2.94 4.20

Table 1: Quality (BLEU, COMET↑) and non-
computational and computational aware (NCA/CA) la-
tency (StreamLAAL (secs)↓) results on the ACL60/60
development set. Offline models take the golden ref-
erence source text. The Offline(A) model refers to the
results of our adapted model when doing offline infer-
ence. Offline models results are obtained given the
golden source reference transcription.

et al. (2024) and set the COMET score to 0 for
samples where the target translation is empty after
re-segmentation with mWERSegmenter (Matusov
et al., 2005).

First of all, impact of the translation quality
degradation in the offline mode seems to minimal,
with deltas of 1.64 BLEU and 0.03 of COMET re-
spectively. As for our baseline and adapted models,
we can see that there is a significant quality degra-
dation. We can attribute this to multiple factors, but
we would like to highlight two aspects. First, is that
we are comparing ourselves to offline systems that
take the golden reference transcription, and thus,
transcriptions errors from the ASR and possible
resegmentation errors introduced by StreamLAAL
are not taken into account in the evaluation of our
offline baseline. The second factor which may ex-
plain this gap is the mere nature of the ACL60/60
dataset. We would like to highlight this one in
particular since the translations where originally
based on post-edits from offline translation models
and thus more suited for the evaluation of offline
speech translation compared to that of SimulST.
Thus, we think that the resulting translations from
our SimulST system, which should be more mono-
tonic in nature compared to the offline baselines
and ACL60/60 references, maybe be more penal-
ized in a similar way to the observations of Doi
et al. (2024).

In terms of baselines, we can see that our naive
baseline slight beats the organizers baseline in the
selected quality-latency range. When comparing
our baseline and adapted model, we can see a con-
siderable increase in both quality and reduction

model M mdn p90 p95 p99 max

NCA

Baseline 3.61 2.96 6.57 9.14 13.51 16.59
Adapted 2.94 2.65 4.30 5.38 7.59 9.25

CA

Baseline 4.35 3.62 7.65 10.51 14.58 18.52
Adapted 4.20 3.55 5.98 7.64 10.73 15.00

Table 2: StreamLAAL mean (M), median (mdn), per-
centiles 90%, 95% and 99%, and maximum value (in
seconds) for the Baselineupv and Adapted system.

of latency. Our adapted model ends up scoring
31.96 BLEU and 0.732 COMET and StreamLAAL
scores of 2.94 and 4.20 seconds depending on the
computational awareness of the metric calculation.
This places our model on the high latency regime
as defined by the shared task description.

To better study the latency of our system, Table 2
shows the top percentiles of StreamLAAL as well
as their medians and maximum recorded values.
We can see how for all of these metrics our adapted
system consistently beats our baseline and ensures
a better performance on the worst case scenarios,
with these delays being the more impactful for the
end user of SimulST systems.

An observation that can be made in this table
is that of the considerable increase of latency for
the worst cases between the NCA and CA met-
rics. After investigating, we discovered the tem-
perature fallback mechanism of Whisper to seem
to cause this phenomena, resulting in some rare
cases where latency spikes occur and can only be
observed when taking computational costs into ac-
count. Despite this, we found that in practice the
performance is really poor with this feature dis-
abled. In general, we observed that the ASR emis-
sion policy highly influenced the system perfor-
mance, with hyperparameter changes on the MT
system having less of an overall impact.

Regarding the official test set
(IWSLT25Instruct), preliminary results by
the organizers indicate that our model achieved a
final score of 29.8 BLEU.

4 Conclusions

In this paper we described our SimulST system for
the IWSLT 2025 Simultaneous Speech Translation
task. Preliminary results show that our cascaded
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based system using Whisper and NLLB showed a
good performance and achieved a good balance be-
tween translation quality and latency. We see how
through adaptive policies and very computation-
ally cheap adaptation a long-form speech SimulST
system can be created from offline models. Future
work could be expand to see the robustness of this
methodology, such as the usage of synthetic docu-
ment level bitext data (Post and Junczys-Dowmunt,
2024) or speech data. Investigating more robust
adaptive latency policies or techniques which bet-
ter optimize ASR and MT components (Tran et al.,
2022) while preserving the benefits of the cascaded
approach could further greatly enhance the system
performance. Also, a gap still exists compared to
offline translation, which should be further explore
d more detail.

Additionally, the usage of LLMs to serve as all
in one transcriber, translator and re-scorer in a cas-
caded pipeline along their robustness and usage
of long context shows promising results for their
usage in long-form speech translation if computa-
tional costs can be taken into account.

5 Limitations

Due to time constraints, hyperparameters search
for trade-offs between translation and latency of
models was limited, as well as the tuning of the
ASR system. In our participation, we restricted
ourself to the English to German direction, but we
think that our approach could be generalized to the
other language pairs in the competition. We hope to
participate in future editions covering all language
pairs available and expanding the breadth and scale
of the studied models.
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A Hyperparameters

Hyperparameter Baseline Adapted

ASR VAD ✗

ASR Initial Wait 1s
ASR LCP Chunk 1s
ASR Beam Size 5
MT Wait-k 3
MT RALCP λ 0.5
MT Beam Size 10
MT Attention Head Layer 6
MT Max Buffer 80 words
MT History Remove 20 words 1 sentence

Table 3: Inference hyperparameters for the baseline and
adapted models

Hyperparameter Value

Optimizer 8bit-AdamW (Dettmers et al., 2022)
Warm up Ratio 0.06
LR Schedule Linear
Effective Batch Size 64

Epochs 3 or until convergence
Initial Learning Rate 2e-4
DoRA Dropout 0
Target Modules Q,V and Vocabulary Embeddings E
DoRA rank config. rQ = rK = rE = 16
DoRA α 32
Bias ✗

Table 4: DoRA hyperparameters for the trained adapted
model.
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Abstract

This paper presents Instituto de Telecomuni-
cações’s submission to the IWSLT 2025 Shared
Task on Instruction Following Speech Process-
ing. We submit results for the Short Track,
i.e., speech recognition, translation, and spo-
ken question answering. Our model is a uni-
fied speech-to-text model that integrates a pre-
trained continuous speech encoder and text de-
coder through a first phase of modality align-
ment and a second phase of instruction fine-
tuning. Crucially, we focus on using small-
scale language model backbones (< 2B) and
restrict to high-quality, CC-BY data along with
synthetic data generation to supplement exist-
ing resources.1

1 Introduction

This paper presents our submission to the IWSLT
2025 Instruction Following track for the tasks
of Automatic Speech Recognition (ASR), Speech
Translation (ST), and Spoken Question Answer-
ing (SQA) for English, Chinese, and German. Our
work builds upon a long line of previous research
equipping LMs with additional multimodal capa-
bilities, aligning an LM’s semantic spaces with
that of a pretrained speech encoder (Tang et al.,
2023; Huang et al., 2023; Hu et al., 2024; Chu
et al., 2024; Grattafiori et al., 2024, inter alia). Our
contribution is particularly motivated by efficiency,
i.e., the goal of achieving strong performance using
small-scale (< 2B) models. Recent work has ex-
plored audio quantization techniques (Zhang et al.,
2024; Défossez et al., 2023, inter alia), quantized
input mel spectrograms (Shen et al., 2024), or ex-
treme compression of input data over the time
dimension through convolutional kernels paired
with strong small-scale LM backbones (Aboue-
lenin et al., 2025).

1Code and data at https://github.com/deep-spin/
it-iwslt-2025.

We take stock of such advancements and propose
a model for even smaller scales. We use established
methods for speech integration in LMs (Gaido et al.,
2024; Grattafiori et al., 2024) using pretrained base
models of up to 1.5B learnable parameters, finding
empirically that with highly filtered and synthetic
data, we can enable similar results at a fraction of
the cost of larger LMs. The main contributions of
our system are as follows:

• Adapting pretrained, small-scale LMs: We
experiment with Qwen 2.5 1.5B and 0.5B
(Yang et al., 2024a) as our LM of choice and
use w2v-BERT 2.0 (Barrault et al., 2023) as
our speech encoder.

• Two-stage Training Curriculum: We use a
modality alignment and instruction fine tuning
(IFT) phase for training our models, where
the first equips the model with general speech
capabilities and the second enables multi-task
capabilities.

• Training on open-licensed data: To guar-
antee reproducibility and facilitate future re-
search, we train on established CC-BY data
collections and synthetic data filtered for qual-
ity. We release training and modeling artefacts
under a permissive license.

2 Related Work

Efficient LMs. Recent works on efficient, small-
scale language models (SLMs) have shown im-
pressive knowledge compression capabilities by
maintaining similar performance to larger, more
computationally-intensive models. Models such as
Phi-4 Mini (Abouelenin et al., 2025) and Gemma
2 (Gemma Team et al., 2024) have reported strong
performance relative to size with a focus on com-
putational efficiency. Lu et al. (2024) have shown
how scaling laws operate differently for SLMs and
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have further demonstrated the efficiency of such
models in subsequent reasoning tasks.

Multimodal LM Extension. Equipping a text-
based model with multimodal capabilities is of-
ten done using an auxiliary modality encoder that
is then used to jointly learn a semantic mapping
between speech and text. Early works in joint
text-speech modeling include AudioPaLM (Ruben-
stein et al., 2023), VioLA (Wang et al., 2023), and
VoxtLM (Maiti et al., 2024). Other approaches
combine a pretrained continuous speech encoder
with an LM by concatenating speech embeddings
to the text context (Tang et al., 2023; Huang et al.,
2023; Hu et al., 2024; Chu et al., 2024; Grattafiori
et al., 2024, inter alia). Such works rely on strong
multilingual capabilities of the speech encoder and
those of large-scale LMs (i.e., 7B or more) to
learn how to use speech-related parts of the context
(Grattafiori et al., 2024). Our system echoes this
compositional approach to speech and language
modeling but leverages recent language models in
the scale 0.5-1.5B.

3 System Overview

3.1 Model Architecture

Our model follows a standard speech encoder,
text decoder architecture (e.g., Tang et al., 2023;
Grattafiori et al., 2024; Chu et al., 2024).

Speech stack. We extract 80-dimensional Mel-
filterbank audio representations with a stride of 2
using w2v-BERT 2.0’s standard processor. Then
we compress the audio over the time dimension
using three 1D convolutional layers with a ker-
nel width of 3 and a stride of 2. This input is
then processed by the pretrained w2v-BERT 2.0
model. The output representations are processed
by a modality and length adapter composed of two
Conformer-like (Gulati et al., 2020) layers that fur-
ther compress the audio representations on the time
dimension and project them into the embedding
space of the language model.

Text stack. We prepend the audio representations
computed from the audio stack to the text input
embeddings extracted from the input embedding
matrix of the language model. We use a bidirec-
tional self-attention for the audio positions and a
causal (autoregressive) one for the text part of the
context. Following prior work (Chu et al., 2023;
Radford et al., 2022), we constrain text generation

<LANG>

w2v-BERT 2.0

Qwen 2.5 1.5B

Speech Embeddings Text Embeddings

Cross-Entropy Loss

Hi, my name is Max

Speech Translation
(Inference)

<|translate|><de>

Hallo mein Name ist Max

2x 1D Conv

Modality & Length Adapter

<TASK>

Training

length

hint

Figure 1: Illustration of our model. During training,
the speech stack (red) generates speech representations
which are prepended to task and language tags and an
(optional) length hint (yellow), and text tokens (green).
At inference time, we only provide the language and
task tokens.

using a target language and task token. Figure 1
illustrates the model architecture.

3.2 Training Curriculum
We train our model in two stages: a modality align-
ment stage followed by an instruction fine-tuning
(IFT) stage.

Modality Alignment. This first stage aligns the
speech stack output representations to the language
model’s embedding space. We use the pretrained
w2v-BERT 2.0 (v2)2 as our speech encoder and
randomly initialize the pre-encoder convolutional
layers and the modality adapter. We choose Qwen
2.5 1.5B,3 a multilingual LM, as our text decoder.
Choosing a small (< 2B) model allows for the ex-
ploration of more efficient alternatives and is often
overlooked in the literature.

In this phase, we train only the pre-encoder con-
volutional layers and the modality adapter with a
learning rate of 3 × 10−3 for a single epoch. We
train the model only on ASR data. The model is
trained using standard cross-entropy loss on the
reference transcript tokens. With a 95% chance,
we prepend to the language and task tags a length
hint, as suggested by Deitke et al. (2024), to let the
model learn a length distribution. This stage leads
to a model that can perform ASR but does not yet
have other capabilities.

2https://huggingface.co/facebook/w2v-bert-2.0
3https://huggingface.co/Qwen/Qwen2.5-1.5B
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Task Data License Hours

Modality Alignment (MA)

ASR

LibriSpeech (LS) CC-BY 4.0 1K
Multilingual LS CC-BY 4.0 2K
FLEURS CC-BY 4.0 24
CommonVoice 16.1 CC-BY 4.0 4K

Instruction Fine-Tuning (IFT)

ASR

All MA data
VoxPopuli CC-BY 4.0 1.8K
Peoples Speech CC-BY 4.0 12K
CV 16.1 PL - 30K

ST CoVoST-2 CC-BY NC 4.0 3K
CoVoST-2 PL CC-BY NC 4.0 3K

SQA SpokenSQuAD - -
Generated Data - -

Table 1: Data statistics with licence, hours of speech
data across all languages, and task splits.

Instruction Fine-Tuning. Following the modal-
ity alignment phase, we perform IFT using speech-
to-text tasks included in the IWSLT campaign
(AST, SQA) in English, German, and Chinese. Dur-
ing this stage, we train every component jointly
end-to-end.4

Generation Parameters. For all tasks, we let the
model generate up to 1024 tokens with beam search
decoding (beam size of 3), a repetition penalty of
1.6, and nucleus sampling with temperature of 1.2.

3.3 Data
Where possible, we use CC-BY licensed data
across all tasks. When sufficient data is not avail-
able, we generate synthetic corpora using the pro-
cedures described below. Table 1 provides an
overview of the data sources used for each task
and training phase.

Speech Recognition. We use CommonVoice
16.1 (Ardila et al., 2020), FLEURS (Conneau et al.,
2023), MLS (Pratap et al., 2020), and LibriSpeech
(Panayotov et al., 2015) for the modality alignment
(MA) data mixture. For IFT, we reuse all MA data
plus VoxPopuli (Wang et al., 2021) and The Peo-
ple’s Speech (clean) (Galvez et al., 2021).

Speech Translation. We use CoVoST2 (Wang
et al., 2020) as gold-standard AST data across En-
glish, Chinese, and German. We supplement this
gold standard parallel data by pseudolabeling ASR
transcriptions. This technique has proven effec-
tive for previous systems (Barrault et al., 2023;

4MA and IFT runs required a total of three days using four
H100 GPUs in an in-house infrastructure.

% Kept
Model en→de en→zh

NLLB-3B 58.1 34.3
TowerInstruct-Mistral-7B 60.0 51.5
TowerInstruct-13B 59.4 49.9
EuroLLM-9B-Instruct 62.5 52.3
Oracle 71.0 64.3

Table 2: Percentage of English transcriptions in Com-
monVoice 16.1 for which various models produce a
translation with a COMETKiwi score of at least 0.85.
The oracle keeps a much larger share of hypotheses than
any individual model.

Ambilduke et al., 2025) and is simple to imple-
ment. Concretely, we translate all transcriptions
from the English portion of CommonVoice 16.1
using four strong MT models: the 13B and Mistral-
7B versions of TowerInstruct (Alves et al., 2024),
EuroLLM-9B-Instruct (Martins et al., 2024), and
NLLB-3.3B (NLLB Team et al., 2022). For each
transcription, we use a COMETKiwi (Rei et al.,
2022) oracle to select the best translation among
the four systems. We then filter out examples for
which the best translation records a score under
0.85. This process allows for fewer examples to be
filtered than in conventional single-model pseudola-
beling, as is shown in Table 2, and also increases
diversity because the translations come from a mix-
ture of several models.

Spoken Question Answering. We use the Spo-
ken SQuAD (Lee et al., 2018) dataset for English
SQA. This dataset consists of several texts which
are synthesized into speech and has a total of 37K
questions and answers. Due to the limited avail-
ability of multilingual SQA datasets, we follow
the same pseudolabeling process as for ST to cre-
ate synthetic German and Chinese questions and
answers for each example. The question and an-
swer were translated separately using the same mix-
ture of models as for ST. Question-answer pairs
were kept if the best translated question had a
COMETKiwi score of at least 0.80. The same
system was used to translate the answer regard-
less of how it compared to the translated answers
from other systems.5 As the SQA task also in-
cludes questions where the answer cannot be in-
ferred from the context, we additionally generate
synthetic unanswerable questions for each context
in English, German, and Chinese using Qwen2.5-

5As the answers were generally very short, we found that
COMETKiwi performed unreliably for them.
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Given a text passage and some questions about it, write
2 questions in [LANG_ID] as close to the style of the
original questions as possible but that are not answerable.
The questions must be of similar difficulty as the example
questions, i.e., they have to mention aspects and topics of
the passage, but the answer cannot be inferred from the
text. Be creative. Provide one question per line.

Text passage: [CONTEXT]

Example questions: [QUESTION]
Unanswerable questions:

Figure 2: Prompt used to generate unanswerable ques-
tions from Qwen2.5-70B where context is the transcript
used to synthesize speech in Spoken SQuAD, question
is an answerable question from Spoken SQuAD, and
lang id is the language in which we want to generate
questions.

70B (Yang et al., 2024a). Following insights from
(Sannigrahi et al., 2024), we provide the LM with
context along with example questions to guide the
style and quality of the generated answers. We
find that without example questions based on the
original dataset, the LM often produces i) ques-
tions not adhering to the topic of the context and
ii) verbose questions. We also experiment with
prompts that do not explicitly request the model to
mention aspects/topics of the context provided and
find this to be suboptimal. As the number of pos-
itive instances in the Spoken QA dataset is small,
in order to maintain a balanced dataset, we limit
unanswerable questions to two per context. We
further experimented with using the audio directly
as opposed to the text transcript for context, but
found this approach to be more prone to errors,
as the Spoken SQuAD dataset is not a native spo-
ken dataset but rather a synthesized QA dataset,
often leading to minor pronunciation errors. The
final prompt used to obtain additional questions is
shown in Figure 2.

Preprocessing. We restrict our model to process
audio of up to 120 seconds, discarding all training
input longer than that. We preprocess all the in-
stances appending to the speech embeddings (and
prepending to the text embeddings) the task and lan-
guage tags following the input template in Figure 1.
The task task tag can be either <|transcribe|>,
<|translate|>, or <|reply|> for ASR, AST, and
SQA, respectively, and the language tag is <|en|>,
<|de|>, or <|zh|>.

en en-de en-zh

ASR SQA ST SQA ST SQA

0.15 0.14 0.34 0.22 0.34 0.21

Table 3: Official normalized ASR (WER (↓)), ST
(COMET (↑)), and SQA (BertScore (↑)) scores.

4 Results

Our results for all three short-track tasks are in
Table 3. For further details about the evaluation
campaign as well as the metrics, we refer readers
to Abdulmumin et al. (2025).

Our model obtains reasonably good ASR
scores for English. This result is particularly rele-
vant, considering that the test data originate from
the technical domain, exhibit high speaker variabil-
ity, and consist primarily of spontaneous speech.
However, while the model successfully performs
ASR, SQA and ST prove to be more complex.
Through manual inspection, we observed poor qual-
ity outputs for ST. At times, the model repeats the
same word or ignores the task tag and transcribes
the audio segment rather than translating it. This
finding aligns with prior work that has found ASR
data dominates the multitask capabilities of mod-
els (Tang et al., 2023). Moreover, it emphasizes
the importance of a more carefully designed train-
ing curriculum, where SQA, ST, and ASR data are
more evenly distributed. Lastly, due to the audio
length cutoff—set to 120 seconds due to technical
limitations—we were unable to use all of the avail-
able SQA data. At test time, when prompted to
perform the SQA task, the model sometimes gener-
ates the question itself, rather than the answer. We
believe that by utilizing a combination of more data,
enhanced base models with stronger multilingual
capabilities, and extended context support, we will
be able to improve upon these results substantially.

5 Conclusions

We have presented our submission for the IWSLT
2025 Instruction Following Short Track. We ex-
plored the usage of a small-scale LM in modality
adaptation through a continuous speech encoder. In
particular, we equip an existing text model, Qwen
2.5 1.5B, with the speech modality for a joint mul-
tilingual and multitask model.

We used standard modality alignment ap-
proaches, including building on pretrained speech
encoders and autoregressive text decoder mod-
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els, and a two-stage curriculum learning. In fu-
ture work, we plan to support longer contexts,
better filtered data, and further push small-scale
LMs to be fully multimodal. We will incorporate
more high-quality multilingual data to enhance the
model’s language identification capabilities. Ad-
ditionally, we will extend the evaluation beyond
standard performance-oriented benchmarks, e.g.,
by accounting for safety (Yang et al., 2024b) and
fairness (Koudounas et al., 2024; Attanasio et al.,
2024).
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Limitations

Currently, our model supports audio up to 2 min-
utes in length. Ideally, we would also like to sup-
port longer audio contexts while maintaining com-
putationally inexpensive training. With the current
length filters, we do not see much of the SQA data,
which hinders the model’s multi-task capabilities.
Additionally, we have worked with a small LM
(1.5B) in our model, which did not have the best
language modeling capabilities. We plan to run
additional experiments within the 3B scale. Lastly,
there is limited research on the filtering of syntheti-
cally generated data for the QA domain. For future
work, we plan to further refine the pipeline to gen-
erate synthetic QA data from spoken contexts.
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Abstract

This paper describes our system submission to
the International Conference on Spoken Lan-
guage Translation (IWSLT 2025), low-resource
languages track, namely for Bemba-to-English
speech translation. We built cascaded speech
translation systems based on Whisper and
NLLB-200, and employed data augmentation
techniques, such as back-translation. We in-
vestigate the effect of using synthetic data and
discuss our experimental setup.

1 Introduction

Low-resource languages face critical limitations
due to the scarcity and scattered nature of the avail-
able data (Haddow et al., 2022). Speech translation
for low-resource languages involves similar chal-
lenges (Ahmad et al., 2024; Moslem, 2024; Love-
nia et al., 2024; Abdulmumin et al., 2025), Simi-
larly, speech applications for African languages are
very limited due to the lack of linguistic resources.
For example, Bemba is an under-resourced lan-
guage spoken by over 30% of the population
in Zambia (Sikasote and Anastasopoulos, 2022).
Hence, the IWSLT shared task on speech transla-
tion for low-resource languages aims to benchmark
and promote speech translation technology for a di-
verse range of dialects and low-resource languages.

We participated in the Bemba-to-English lan-
guage pair through building cascaded speech trans-
lation systems. In other words, we employed Whis-
per (Radford et al., 2022) for automatic speech
recognition (ASR), and NLLB-200 (Costa-jussà
et al., 2022) for text-to-text machine translation
(MT). For ASR, we fine-tuned Whisper models us-
ing two datasets, BembaSpeech and BIG-C. For
MT, we fine-tuned the NLLB-200 models using
the bilingual segments of the BIG-C dataset, and
the “dev” split of the FLORES-200 dataset. In ad-
dition, we augmented the Bemba-to-English train-

⋆Correspondence: yasmin[at]machinetranslation.io

ing data with back-translation of a portion of the
Tatoeba dataset from English into Bemba. The
back-translated data was filtered based on cross-
entropy scores. As Table 4 shows, the systems we
submitted to the shared tasks are as follows:

• Primary: It uses Whisper-Medium for ASR
and NLLB-200 3.3B for MT.

• Contrastive 1: It uses Whisper-Small for ASR
and NLLB-200 3.3B for MT.

• Contrastive 2: It uses Whisper-Small for ASR
and NLLB-200 600M for MT.

2 Data

The data we used to train our Bemba-to-English
speech translation models can be categorized into:
(1) authentic data, and (2) synthetic data. The fol-
lowing sections provide more details (cf. Table 1).

Dataset Language Train Dev Test Audio

Big-C Bem-Eng 82,371 2,782 2,763 ✓⃝
BembaSpeech Bem 12,421 1,700 1,359 ✓⃝
FLORES-200 Bem-Eng 997 0 1,012 p⃝
Tatoeba Eng 20,121 0 0 p⃝

Table 1: Data Statistics: The “Language” column spec-
ifies which languages are originally available in each
dataset. “Train”, “Dev”, and “Test” represent the dataset
sizes. The “Audio” column indicates whether each
dataset includes audio signals.

2.1 Authentic Data
We filtered the authentic data by removing any over-
laps between the training data and test data based
on the text transcript. For building our models, we
used the following data sources.

• Big-C is a parallel corpus of speech and tran-
scriptions of image-grounded dialogues be-
tween Bemba speakers and their correspond-
ing English translations. It contains 92,117
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FLORES-200 BIG-C

Training Dataset(s) BLEU chrF++ COMET BLEU chrF++ COMET

Big-C 18.13 42.11 53.25 27.83 51.08 53.28
Big-C + Tatoeba 21.67 45.25 55.64 27.82 50.98 53.39

Big-C + FLORES-200 25.21 47.31 57.23 27.96 51.03 53.29
Big-C + FLORES-200 + Tatoeba 25.70 47.75 58.29 28.60 51.38 53.08

Table 2: MT Evaluation: In general, the models trained with both authentic data (Big-C & FLORES-200) and
back-translated data (Tatoeba) outperform the models trained with the authentic data only. All the models in this
table uses NLLB-200 600M.

spoken utterances of both complete and in-
complete dialogues, amounting to 187 hours
of speech data grounded on 16,229 unique
images. The dataset aims to enable the de-
velopment of speech recognition, speech, and
text translation systems for Bemba, as well as
facilitate research in language grounding and
multimodal model development (Sikasote and
Anastasopoulos, 2022).1 Since this dataset
includes audio and transcription in Bemba as
well as translation into English, we could use
it to build both modules of our cascaded sys-
tems, i.e. ASR and MT. Table 7 shows exam-
ples of sentence pairs from the Big-C datasets.

• BembaSpeech is an ASR corpus for the Be-
mba language of Zambia. It contains read
speech from diverse publicly available Bemba
sources; literature books, radio/TV shows
transcripts, YouTube video transcripts as well
as various open online sources. Its purpose
is to enable the training and testing of auto-
matic speech recognition (ASR) systems in
Bemba language. The corpus has 14,438 utter-
ances, culminating into 24.5 hours of speech
data (Sikasote et al., 2023).2 We used the Be-
mbaSpeech dataset in addition to the Big-C
dataset to build our ASR models.

• FLORES-200 (Goyal et al., 2022) is a bilin-
gual text-only dataset for machine translation.
We used the Bemba-to-English “dev” split for
training, and the “devtest” split for testing.

• Tatoeba (Tiedemann, 2020) is a monolingual
dataset in English. We used a portion of it for
back-translation (cf. Section 2.2).

1https://github.com/csikasote/bigc
2https://github.com/csikasote/BembaSpeech

2.2 Synthetic Data

We augmented our authentic data (cf. Section 2.1)
with synthetic data created with back-translation.
To this end, we fine-tuned the NLLB-200 600M
model in the other direction, i.e. for the English-
to-Bemba language pair. Thereafter, we trans-
lated the English sentences from Tatoeba into Be-
mba using the fine-tuned English-to-Bemba NLLB-
200 model. For translation, we used CTranslate2
(Klein et al., 2020), generating the prediction cross-
entropy scores for each sentence, and calculating
the exponential of the scores for better readability.
We filtered data based on the cross-entropy scores,
removing low-quality segments. We removed seg-
ments with scores less than 0.77 based on man-
ual exploration of samples of the generated back-
translations. While the unfiltered back-translated
data consists of 85,000 segments, the filtered back-
translated data consists of 20,000 segments. Fi-
nally, we prepended the source side (Bemba) with
the <bt> tag to indicate that the data is synthetic.
Moreover, we experimented with removing the
<bt> tag and found that this achieves slightly bet-
ter results when testing with the FLORES-200’s
“devtest” split, as the data was already filtered (cf.
Table 3).

3 Experiments and Results

As illustrated by Figure 1, our cascaded systems
involve two components, an ASR model based
on Whisper to generate transcriptions and an MT
model based on NLLB-200 to generate text transla-
tion. We experimented with different versions of
these models, namely Whisper Small and Medium,
and NLLB-200 with 600M and 3.3B parameters.
Our code for data preparation, training, and evalua-
tion is publicly available.3

3https://github.com/cobrayyxx/Bemba-IWSLT2025
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FLORES-200 BIG-C

Datasets BT Size Filtered <bt> tag BLEU chrF++ COMET BLEU chrF++ COMET

BIG-C + Tatoeba
85,155 p⃝ ✓⃝ 20.96 45.06 55.92 28.17 51.26 53.45
20,121 ✓⃝ ✓⃝ 19.82 44.09 54.79 28.04 51.20 53.51
20,121 ✓⃝ p⃝ 21.67 45.25 55.64 27.82 50.98 53.39

Table 3: Performance of MT models that are based on NLLB-200 600M and trained using both authentic data and
augmented back-translated data. There are two pre-processing aspects applied to the augmented data, filtering the
data based on cross-entropy scores, and prepending the source sentence with the <bt> tag. Evaluating the models
with the devtest split of the FLORES-200 dataset, the highest evaluation scores, in terms BLEU and chrF++, are
achieved when the back-translated data is filtered and the <bt> tag is removed. Meanwhile, the AfriCOMET score
(COMET) of this model is comparable to the model where the back-translated data is not filtered and the source
is prepended with the <bt> tag. Evaluating the models with the hold-out test split of Big-C reveals a different
outcome where using the <bt> tag results in relatively higher scores, although the scores of the three experiments
are relatively comparable. It is worth noting that the filtered back-translated data consists of only 20k segments,
while the unfiltered back-translated data consists of 85k segments.

Training: We trained our models for 3 epochs,
saving the best checkpoint based on the chrF++
score during training on the validation dataset. Our
training arguments were chosen based on both man-
ual exploration and automatic hyperparameter opti-
mization using the Optuna framework (Akiba et al.,
2019). The most important arguments are a learn-
ing rate of 1e-4 and a warm-up ratio of 0.03.

Inference: For inference, we used Faster-
Whisper 4 with the default VAD5 arguments, and 5
for the “beam size”. The model was quantized with
the float16 precision for more efficient inference.

Evaluation: To evaluate our systems, we calcu-
lated BLEU (Papineni et al., 2002), and chrF++
(Popović, 2017), as implemented in the sacreBLEU
library6 (Post, 2018). For semantic evaluation, we
used AfriCOMET (Wang et al., 2024). We con-
ducted ASR evaluation (cf. Table 5) and MT evalu-
ations (cf. Table 2 and Table 3). Finally, we evalu-
ated the whole cascaded systems (cf. Table 4).

3.1 Data Augmentation
As explained in Section 2.2, we created synthetic
data using back-translation to augment our training
data (Sennrich et al., 2016; Edunov et al., 2018;
Poncelas et al., 2019; Haque et al., 2020). Then,
we filtered this back-translated data based on gen-
eration cross-entropy scores. In our experiments,
data augmentation improved the translation quality.

4https://github.com/SYSTRAN/faster-whisper
5Voice Audio Detection (VAD) removes low-amplitude

samples from an audio signal, which might represent silence
or noise.

6https://github.com/mjpost/sacrebleu

Figure 1: Cascaded speech translation systems use two
models, an ASR model to generate audio transcriptions
in the same language, and then an MT model to translate
the generated transcriptions into the target language.

As shown in Table 2, when fine-tuning NLLB-200
600M, the models trained with back-translated data
outperformed the models trained with only the au-
thentic data.

We tried prepending the back-translated source
with the <bt> tag, but found removing it achieves
better results (cf. Table 3). This might be because
we filtered the back-translated data, so its quality is
good enough that it does not require distinguishing
from the authentic data with the <bt> tag.

3.2 Whisper and NLLB-200 Models
We experimented with both Whisper Small and
Whisper Medium to train ASR models. Similarly,
we experimented with both NLLB-200 600M and
3.3B to train MT models. For our datasets, the
results are comparable (cf. Table 4).

3.3 End-to-End vs. Cascaded System
Unlike a cascaded system, an end-to-end speech
translation system requires only one model to per-
form audio-to-text translation (Agarwal et al., 2023;

356

https://github.com/SYSTRAN/faster-whisper
https://github.com/mjpost/sacrebleu


System ASR MT Type BLEU chrF++ COMET

Primary Whisper-Medium NLLB 200 3.3B
Baseline 0.72 14.28 16.23
Finetuned 27.45 49.64 51.74

Contrastive 1 Whisper-Small NLLB 200 3.3B
Baseline 0.51 13.41 11.9
Finetuned 27.39 49.65 52.01

Contrastive 2 Whisper-Small NLLB 200 600M
Baseline 0.41 13.21 10.69
Finetuned 27.30 50.17 51.91

Table 4: Performance of the baseline and finetuned cascaded systems based on BLEU, chrF++, and AfriCOMET
(COMET) scores. The approaches we followed, including fine-tuning and data augmentation, have considerably
improved the quality of Bemba-to-English speech translation. The models were evaluated using the test split of the
Big-C dataset.

Model Type WER

Whisper-Small
Baseline 157.5
Finetuned 35.64

Whisper-Medium
Baseline 150.92
Finetuned 36.19

Table 5: ASR Evaluation: The models were trained
with Big-C and BembaSpeech. The performance of
the finetuned models outperform the baseline models,
indicated by the lower Word Error Rate (WER) scores of
the finetuned models compared to the baseline models.
The models were evaluated using the test split of the
Big-C dataset.

Ahmad et al., 2024; Moslem et al., 2025). We fine-
tuned Whisper directly on the Bemba-to-English
Big-C dataset. Table 6 compares the results of the
two systems. Where there is a slight increase in
the scores of BLEU And chrF++ of the end-to-end
model, the cascaded system outperforms the end-
to-end system in terms of the COMET score, while
the BLEU score of the end-to-end model is slightly
higher.

Model Type BLEU chrF++ COMET

End-to-End
Baseline 0.09 11.85 6.9
Finetuned 28.08 49.68 48.36

Cascaded
Baseline 0.51 13.41 11.9
Finetuned 27.39 49.65 52.01

Table 6: Comparison of the end-to-end speech transla-
tion using Whisper-Small, and the cascaded system that
uses Whisper-Small for transcription and then NLLB-
200 3.3B for translation. The evaluation uses the test
split of the Big-C dataset.

Ð nafwala na amakalashi ku menso
Ä he is wearing glasses as well
� He is wearing glasses.

Ð Imbwa iyafonka pamoona, ilebutuka palunkoto lwamucibansa
Ä A dog with a wide nose is running on the lawns of the football

ground
� A dog with a pointed nose is running on the lawn

Ð Akamwanakashi nakemya ukuulu mumuulu ukulwisha ukutoba aka
lipulanga.

Ä She has her leg in the air attempting to break a board.
� A child has lifted one leg in an attempt to hit a wood.

Ð Kunuma yabo kuli notu ma motoka tulya ba bonfya mu ncende iya
talala nge iyi baliko.

Ä There are also small vehicles that they use in cold places behind
them.

� Behind them are vehicles that they use in cold places like this one.

Ð abaume Bali pa mutenge yanganda umo afwele ishati lya mitomito
ilyamaboko ayatali elyo me tolishi lya makumbimakumbi

Ä Of the men on the roof of the house, ine is wearing a long sleeved
grey shirt and a blue trousers.

� Men are on the roof of the house, one is wearing a grey long sleeved
shirt and a blue trousers.

Ð Ifi bafwele kunsapato fyakutelelela nga baya mukwangala umu
mwine muli ice.

Ä These on their shoes are for sliding when the to play on the ice.
� These shoes they are wearing are for sliding when they are going to

play in ice.

Ð Namayo ale enda mumusebo nabika nomwana pamabeya.
Ä A woman is walking in the road with a child on her showders.
� A woman is walking in the road with a child on her shoulder.

Ð Namayo naikata ifyakulya pa mbale mukati ke tuuka.
Ä A woman is holding food on a plate inside a shop.
� A woman is holding food on a plate inside a shop.

Ð Nangu limbi kuli bamo abamufulwishe.
Ä Or maybe someone has made him upset.
� Or maybe someone has upset her.

Ð Abantu bane bali umuli ifimabwe ifikulu nga nshi kabili nafwala ne
fimpopo ku mitwe yabo

Ä four people are inside an area with large rocks and they are wearing
helmets

� Four people are in a place full of rocks and they are wearing helmets.

Ð Akamwana kambi balekafuula amasapato kuli kafundisha wakako.
Ä Another child’s shoes being taken off by the instructor.
� One of the pupils is being removed the shoes by the teacher.

Ð Afwile alefwaya afike pampela ya lumpili. Pantu icishimbi
ekete.Eco babomfya abatemwa ukuniine mpili

Ä Maybe he wants to reach the top of the mountain. The rode metal he
is carrying, it is mostly used when one is climbing the mountains.

� Obviously he wants to reach the top of the mountain because this
metal he is holding is used by mountain climbers.

Table 7: Examples of sentences in Bemba, their English
translations from the Big-C dataset, and generated trans-
lations using Whisper-Medium and NLLB-200 3.3B.
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Abstract

This paper presents NAIST’s submission to
the offline speech translation task of the
IWSLT 2025 evaluation campaign, focusing
on English-to-German and English-to-Chinese
translation. We implemented both cascade and
end-to-end frameworks using various compo-
nents. For the cascade approach, we used
Whisper and SALMONN as automatic speech
recognition systems, each paired with Qwen2.5
large language model (LLM) for translation. In
the end-to-end setting, we used SALMONN
as speech translation and also built a custom
model combining the Whisper encoder, DeCo
projector, and Qwen2.5 LLM. To further lever-
age the large language model capabilities, we
experimented with different prompting strate-
gies. Additionally, since long speech inputs are
segmented for processing, we applied hypoth-
esis combination techniques to generate the fi-
nal translation output. Our results show that
combining Whisper and LLMs can yield strong
translation performance, even without further
fine-tuning in the cascade setup. Moreover,
our proposed end-to-end architecture achieved
competitive results, despite being trained on
significantly less data compared to SALMONN.
Finally, we decided to use both SALMONN
as an end-to-end speech translation model and
our proposed end-to-end model for our IWSLT
2025 submission for both language pairs.

1 Introduction

Spoken Language Translation (SLT) refers to the
process of automatically converting spoken audio
into written text in another language. Within the
IWSLT Shared Task, the Offline Speech Transla-
tion Task stands out as one of the longest-running
tracks. Its goal is to offer a consistent evaluation
setting for speech translation, without the timing
and structural limitations typically associated with
other tasks—such as real-time constraints in simul-
taneous interpretation, space restrictions in subti-

tling, duration matching in dubbing, or the chal-
lenges posed by limited data in low-resource lan-
guage scenarios.

In the 2025 edition of the Offline Speech Trans-
lation Task (Abdulmumin et al., 2025), three trans-
lation directions are included: English to Ger-
man, Chinese, and Arabic. This year’s challenge
places particular emphasis on tackling more practi-
cal translation scenarios, such as content from TV
shows, academic talks, business news, and speech
with diverse accents. Our team at NAIST is partici-
pating in the English-German and English-Chinese
tracks. Unfortunately, due to limited preparation
time, we were not able to take part in the English-
Arabic track.

To address these translation tasks, we explore
two widely used SLT frameworks: the cascade and
end-to-end approaches. The cascade method sepa-
rates the process into two stages—first transcribing
speech using automatic speech recognition (ASR),
followed by translating the transcription with a ma-
chine translation (MT) system. In contrast, the
end-to-end approach generates translations directly
from the speech input, integrating both steps into a
single model. While the cascade framework bene-
fits from modularity and reuse of existing ASR and
MT models, it is susceptible to error propagation.
End-to-end systems can mitigate such issues, but
they often struggle with data scarcity, as large-scale
parallel speech-to-text corpora remain limited.

In particular, we implemented both frameworks
using a range of components. For the cascade ap-
proach, we explored two ASR systems — Whis-
per1 (Radford et al., 2023) and SALMONN2 (Tang
et al., 2024) — each paired with the Qwen2.53

(Yang et al., 2024) LLM for machine translation.
In the end-to-end setting, we treated SALMONN
as a unified speech translation system. Addition-

1https://github.com/openai/whisper
2https://github.com/bytedance/SALMONN
3https://github.com/QwenLM/Qwen2.5
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Figure 1: Our proposed end-to-end ST.

ally, we developed a custom end-to-end model that
integrates the Whisper encoder, a DeCo (Yao et al.,
2024) projection module, and Qwen2.5 as the de-
coder. To further investigate the capabilities of
large language models, we conducted experiments
with different prompting strategies and analyzed
their impact on translation performance. Since long
speech inputs are segmented and processed sep-
arately, we also explore hypothesis combination
strategies to produce the final translation output.

2 System Description

As outlined earlier, this work explores both cas-
cade and end-to-end approaches to speech trans-
lation, utilizing a range of components including
Whisper, SALMONN, Qwen2.5, and others. In the
following sections, we first describe the model ar-
chitectures of these components in Section 2.1. We
then explain our methods for applying zero-shot,
few-shot learning, or fine-tuning to both the cas-
caded and end-to-end speech translation settings in
Sections 2.2 and 2.3, respectively.

2.1 Model Architecture

Whisper is an encoder-decoder Transformer model
(Vaswani et al., 2017), trained on a wide range
of speech processing tasks, including multilin-
gual speech recognition, speech translation, spo-
ken language identification, and voice activity de-
tection, using up to 680,000 hours of weakly-
supervised labeled audio data. Whisper is highly
robust across diverse environments and performs
well in zero-shot settings without the need for
fine-tuning. The model is available in various
sizes, from tiny to large. Additionally, improved
versions of the large model have been released,

Figure 2: Two strategies for combining outputs of short
segments in cascaded speech translation: (left) each
short ASR outputs is translated individually, and the
translations are merged afterward; (right) ASR outputs
are first merged into a single text before translation.

known as large-v2 and large-v3. In this work,
we experimented with both Whisper large-v2 and
large-v3 as ASR.

SALMONN is a multimodal LLM that can
perceive and understand general audio inputs in-
cluding speech, audio events, and music. The
model integrates two auditory encoders: a Whisper
large-v2 speech encoder and a fine-tuned BEATs
(Chen et al., 2022) encoder for non-speech audio.
These are connected to a Vicuna 13B LLM (Chiang
et al., 2023) via a window-level Q-Former module
(Li et al., 2023). SALMONN is pre-trained through
a three-stage cross-modal learning process on di-
verse datasets. In this work, we use SALMONN
for both ASR and end-to-end ST.

Qwen2.5 is the latest series of large language
models from the Qwen LLM family, which has
demonstrated top-tier performance across various
benchmarks. The open-sourced Qwen2.5 mod-
els are dense, Transformer-based decoder archi-
tectures. Two types of Qwen2.5 models have been
released: base models and instruction-tuned mod-
els, available in sizes ranging from 0.5B to 72B
parameters. For the cascade system, we used the
instruction-tuned version of Qwen2.5 with 7B pa-
rameters as MT.

In addition to existing models, we propose a
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Split
en-de en-zh

Dataset Size Dataset Size
Train CoVoST + Eu-

roparl
261526 CoVoST 229347

Dev
CoVoST + Eu-
roparl

16530
CoVoST 15233

tst2022 2045
Test tst2021 2025 tst2022 2130

Table 1: Data statistics.

novel end-to-end ST model that integrates the
Whisper large-v3 encoder, a DeCo projector, and
the Qwen2.5 LLM. As illustrated in Figure 1, the
Whisper encoder first extracts acoustic features
from the input speech. The DeCo projector, con-
sisting of a 2D adaptive average pooling layer for
downsampling followed by two linear projection
layers, bridges the speech-text modality gap by
mapping the acoustic features from the Whisper
encoder into the LLM embedding space as acoustic
embeddings. Qwen2.5 then performs the transla-
tion based on prompt instructions. In this system,
we use the base Qwen2.5 7B model.

2.2 Zero-shot and Few-shot Learning for
Cascaded ST

For ASR, we used Whisper large-v2, Whisper
large-v3, and SALMONN in a zero-shot setting
(without fine-tuning). After we segmented long
audio into shorter clips (see Subsection 3.2) and
generated the transcription for each segment in-
dividually, we experimented with two hypothesis
combination methods, as illustrated in Figure 2:
(1: MT→combine) translating each transcription
segment individually and then combining the trans-
lations, or (2: combine→MT) combining the tran-
scriptions and translating the merged text using
MT. The combination was performed by simply
concatenating the transcriptions or translations of
each speech segment in their original order.

For LLM-based MT, we initially experimented
with the instruction-tuned version of Qwen2.5 7B
using seven zero-shot prompts, ranging from sim-
ple to detailed instructions, as listed in Appendix A.
For English-to-German, we selected the two best-
performing prompts based on average BLEU and
COMET scores, and then applied few-shot learning
with k = 1, 3, 5, 7, and 10, using examples derived
from transcriptions generated by the best ASR on
the development set (en-de tst2022).

ASR en-de tst2021 en-zh tst2022
SALMONN 16.33 15.9
Whisper
large-v2

9.79 10.33

Whisper
large-v3

8.89 10.77

Table 2: WER scores of Whisper and SALMONN
ASRs.

2.3 Zero-shot and Fine-tuning for End-to-end
ST

For end-to-end ST, we used SALMONN and our
proposed end-to-end ST model. SALMONN was
evaluated under two settings: zero-shot and fine-
tuning, using the datasets described in Section 3.1.
Inference and fine-tuning of SALMONN followed
the default settings and hyperparameters provided
in the official SALMONN source code, except that
we used a maximum of 22 and 30 epochs for fine-
tuning with CoVoST + Europarl en-de as the vali-
dation set, and 22 epochs for fine-tuning with en-zh
data (see Table 4).

Our proposed ST model was also fine-tuned.
During the fine-tuning phase, we fully trained the
projector while fine-tuning the LLM using LoRA
(Hu et al., 2022), with the parameters of both
the Whisper encoder and the LLM kept frozen.
To improve translation performance and simplify
training, we incorporated ASR as an auxiliary
task. Specifically, we used a single prompt that
instructed the LLM to output both the transcrip-
tion and its corresponding translation, separated by
the <end> symbol. This symbol then served as the
stopping criterion during inference.

3 Experiment Setup

3.1 Dataset
The training and development datasets used in this
work consist of speech-to-text parallel data listed
under the IWSLT 2025 constrained setup, namely
CoVoST v2 (Wang et al., 2020) and Europarl v1.1
(Iranzo-Sánchez et al., 2020). For development
and test sets, we used the most recent past develop-
ment sets provided by IWSLT 2025, tst2022 and
tst2021. Specifically, for end-to-end English-to-
German speech translation, we used the en-de CoV-
oST v2 and en-de Europarl v1.1 train sets for train-
ing, either the en-de CoVoST v2 dev set or the en-
de tst2022 set for validation, and en-de tst2021 for
testing. For end-to-end English-to-Chinese speech
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en-de tst2021
Prompt MT→combine combine→MT

BLEU COMET BLEU COMET
1 24.90 78.12 27.72 85.56
2 25.59 77.15 29.18 84.22
3 26.04 79.43 28.54 83.58
4 21.53 73.71 27.84 82.90
5 28.36 81.11 26.80 83.46
6 26.91 78.92 27.86 83.62
7 26.13 77.79 28.87 82.59

en-zh tst2022
Prompt MT→combine combine→MT

BLEU COMET BLEU COMET
1 41.41 86.17 44.66 86.10
2 43.48 85.44 46.37 86.81
3 45.86 84.36 46.83 86.75
4 41.20 82.99 45.60 86.24
5 44.45 86.24 46.01 86.66
6 46.10 83.55 47.15 86.71
7 44.92 83.87 45.71 86.39

Table 3: BLEU and COMET scores of Qwen2.5 7B
Instruct as zero-shot MT with seven prompts. Inputs are
Whisper large-v3 ASR outputs.

translation, we used the en-zh CoVoST v2 train
and dev sets for training and validation, and en-
zh tst2022 as the test set. For the cascade speech
translation system, since both the ASR and MT
components were evaluated in zero-shot or few-
shot settings, no training data was used. Instead,
we evaluated directly on the test set. Few-shot
examples were selected from the development set
randomly.

For CoVoST v2 and Europarl v1.1, we pre-
processed the datasets by removing samples with
missing audio or target text, samples with audio
that was too short or too long, and samples with
noisy audio. We also performed basic text cleaning.
Table 1 presents the details of the data used in this
work.

3.2 Model Setup
Since Whisper was trained on 30-second audio
chunks and cannot process longer input directly,
we segmented long audio into shorter clips of less
than 30 seconds before feeding them into the ASR
or the end-to-end ST system. Segmentation for en-
de tst2021, en-de tst2022, and en-zh tst2022 was
performed using the Gentle forced aligner based

Figure 3: COMET Scores for English-to-German few-
shot translation.

on the provided reference transcripts4. For audio
without reference transcriptions, segmentation was
carried out using the Silero Voice Activity Detec-
tor5 (Silero Team, 2024).

For cascaded ST, we first performed zero-shot in-
ference using the ASR models Whisper large-v2,
Whisper large-v3, and SALMONN on the test
set of each language pair. We then calculated the
WER based on the transcriptions of the long au-
dio inputs, where individual segment transcriptions
were first merged using simple string concatena-
tion before computing WER. Next, we selected the
better-performing transcriptions between Whisper
large-v3 and SALMONN (Whisper large-v2
was used solely for comparison with SALMONN,
as SALMONN’s speech encoder is based on Whis-
per large-v2) and used them as input for the
Qwen2.5 7B Instruct MT.

We evaluated seven zero-shot prompts for both
hypothesis combination methods (Figure 2). Sub-
sequently, we calculated BLEU and COMET
scores (Rei et al., 2020) for the long audio trans-
lations. BLEU scores were computed using
SacreBLEU (Post, 2018), and COMET scores
were obtained using the default COMET model
Unbabel/wmt22-comet-da. For the English-to-
German pair, we further explored few-shot learn-
ing with k = 1, 3, 5, 7, and 10 using the two
prompts that achieved the highest average BLEU
and COMET scores.

For the end-to-end model, we first evaluated the
SALMONN checkpoint in a zero-shot setting. We
then fine-tuned both SALMONN and our proposed
end-to-end ST model for each language pair and
calculated BLEU and COMET scores on the long

4https://github.com/strob/gentle
5https://github.com/snakers4/silero-vad
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Languages and Data Model Detail BLEU COMET

en-de
train:
-CoVoST en-de
-Europarl en-de
test: tst-2021

SALMONN

Zeroshot 22.33 71.86
Dev: CoVoST + Europarl en-de (Max epoch:
22)

31.20 86.19

Dev: CoVoST + Europarl en-de (Max epoch:
30)

31.76 86.21

Dev: tst-2022 en-de 30.81 86.25

OUR-ST
Dev: CoVoST + Europarl en-de 28.84 84.73
Dev: tst-2022 en-de 29.03 85.05

en-zh
train: CoVoST en-zh
test: tst-2022

SALMONN
Zeroshot 46.97 76.77
Dev: CoVoST en-zh (Max epoch: 22) 48.63 80.47

OUR-ST Dev: CoVoST en-zh 44.78 83.47

Table 4: BLEU and COMET scores of SALMONN and ours in end-to-end ST.

audio translations.
We then compared the best-performing cas-

cade combination, the best SALMONN results,
and the best fine-tuned version of our end-to-end
model for each language pair with two strong
baselines—Whisper large-v3 ASR + NLLB 3.3B
(Costa-Jussà et al., 2022) and SeamlessM4T v2
Large (Barrault et al., 2023). Both baselines were
evaluated in zero-shot settings, and the cascaded
system used the MT→combine scenario due to the
NLLB models’ limited maximum input lengths.
We also compared them with the top three mod-
els from previous IWSLT submissions that used
the same test sets: IWSLT 2021 (Anastasopoulos
et al., 2021) for English-to-German and IWSLT
2022 (Anastasopoulos et al., 2022) for English-to-
Chinese.

It is important to note that, since we assumed the
use of pre-trained acoustic models (i.e., Whisper in
this case) is allowed under the "constrained with
large language models" setting, we submitted the
fine-tuned SALMONN results under the "uncon-
strained" track, and our proposed end-to-end ST
model under the "constrained with large language
models" track for IWSLT 2025.

4 Experiment Results

4.1 Cascaded ST

Table 2 presents the WER scores of Whisper and
SALMONN as ASR systems, evaluated on the en-
de tst2021 and en-zh tst2022 sets in a zero-shot
setting. As shown in the table, Whisper large-v2
and Whisper large-v3 performed comparably, and
both models outperformed SALMONN, despite
SALMONN incorporating a Whisper large-v2

encoder and an LLM.
Table 3 presents the BLEU and COMET scores

of Qwen2.5 7B Instruct as MT across seven zero-
shot prompt variations, using the output of Whis-
per large-v3 as input. Interestingly, although the
WER for en-de tst2021 is lower than that for en-zh
tst2022, Qwen’s translation performance for the
latter is significantly better. In other words, Qwen
translates English to Chinese more effectively than
English to German. It can also be observed that
combining the ASR transcriptions for a single in-
put audio before translation yields better translation
results than combining the translations afterward.
Furthermore, the the fourth prompt is shown to
give slightly lower performance compared to other
prompts. In the MT→combine scenario, prompts
that perform well for English-to-German also work
well for English-to-Chinese, and vice versa. How-
ever, this relationship does not hold in the combine-
before-translate scenario (combine→MT).

Figure 3 shows COMET scores for MT with
few-shot learning for English to German, using the
two best prompts for each hypothesis recombina-
tion strategy: prompts 5 and 6 for MT→combine,
and prompts 1 and 2 for combine→MT. As shown
in the figure, adding examples in the MT→combine
strategy improves translation quality. However, the
opposite trend is observed for combine→MT. This
is possibly due to the fact that, in combine→MT, the
MT input becomes significantly longer, which can
affect the model’s ability to effectively utilize few-
shot examples.

4.2 End-to-end ST

Table 4 shows the BLEU and COMET scores for
two end-to-end ST models—SALMONN and our
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en-de (test: tst2021) BLEU COMET

Baseline
Baseline cascade Whisper large-v3 ASR + NLLB 3.3B MT 34.04 84.62

Baseline end-to-end SeamlessM4T v2 Large 31.37 74.45

Existing IWSLT
submissions

HW-TSC Constrained - cascade 20.30 -

KIT (Nguyen et al., 2021) Constrained - cascade 19.00 -

AppTek (Bahar et al., 2021) Constrained - end-to-end 18.30 -

Our best sys-
tems

Our best cascade Whisper large-v3 ASR + Qwen2.5 7B Inst MT
(prompt: 2 - scenario: combine→MT - k: 0)

29.18 84.22

Our best SALMONN Dev: CoVoST + Europarl en-de - max epoch=30 31.76 86.21
Our best end-to-end ST Dev: tst-2022 en-de - max step: 100,000 29.03 85.05

en-zh (test: tst2022) BLEU COMET

Baseline
Baseline cascade Whisper large-v3 ASR + NLLB 3.3B MT 30.31 76.48

Baseline end-to-end SeamlessM4T v2 Large 32.81 68.12

Existing IWSLT
submissions

USTC-NELSLIP cas-
cade (Zhang et al., 2022a)

Cascade 35.70 -

YI cascade (Zhang et al.,
2022b)

Cascade 35.00 -

HW-TSC (Li et al., 2022) Cascade 33.40 -

Our best sys-
tems

Our best cascade Whisper large-v3 ASR + Qwen2.5 7B Inst MT
(prompt 6 - scenario: combine→MT - k: 0)

47.15 86.81

Our best SALMONN Dev: CoVoST en-zh - max epoch: 22 48.63 80.47

Our best our end-to-end ST Dev: tst-2022 en-zh - max step: 100,000 44.78 83.47

Our submitted end-to-end ST Dev: tst-2022 en-zh - max step: 51,000 40.69 83.03

Table 5: Performance comparison between our best ST systems, baselines, and previous IWSLT submissions. Our
submitted systems are shaded in gray.

proposed model. As shown in the table, fine-tuning
the publicly released SALMONN checkpoint with
additional ST data improves translation perfor-
mance. Similar to the results observed when using
Qwen as the MT component in the cascaded ap-
proach, the end-to-end models also achieve signifi-
cantly higher BLEU scores for English-to-Chinese
translation than for English-to-German. How-
ever, the COMET scores show the opposite trend.
Additionally, for English-to-German translation,
the choice of development set had minimal im-
pact on performance. Lastly, despite being fine-
tuned on substantially less data than SALMONN,
our proposed end-to-end models achieve compet-
itive results, especially compared to the zero-shot
SALMONN.

4.3 Comparison with Baselines and Previous
Submissions

Table 5 shows the comparison between our best
cascaded ST, our best SALMONN end-to-end ST,
our best proposed end-to-end ST, with two strong
baselines: Whisper ASR + NLLB 3.3B cascade
baseline and SeamlessM4T v2 Large end-to-end
baseline, as well as the top three previous IWSLT

submissions (from IWSLT 2021 for en-de and
IWSLT 2022 for en-zh)6. As shown in the table, for
both en-de and en-zh pairs, our cascaded and end-
to-end ST systems performed significantly better
than the IWSLT submissions.

For the en-de pair, despite using the same ASR,
the cascaded Whisper ASR + NLLB 3.3B sys-
tem achieved a higher BLEU score than our best
cascaded model. This suggests that for English-
to-German MT, NLLB 3.3B still outperforms
Qwen2.5 7B Instruct. Our end-to-end models, on
the other hand, achieved comparable BLEU scores
to SeamlessM4T v2 Large and outperformed it in
terms of COMET scores. In contrast, for the en-zh
pair, both our cascaded and end-to-end ST systems
performed significantly better than the baselines,
indicating that Qwen2.5 7B Instruct outperforms
NLLB 3.3B for English-to-Chinese translation.

We decided to use end-to-end models
(SALMONN and our proposed end-to-end ST) for
our IWSLT 2025 submission, which are shaded in

6The IWSLT submissions were selected based on their
BLEU NewRef scores as reported in the official findings; how-
ever, the scores shown in the table are BLEU TEDRef to allow
fair comparison with our systems.
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gray in the table. However, due to time constraints,
the submission for English-to-Chinese using our
proposed model did not use the best-performing
checkpoint, but rather the best checkpoint at step
51,000.

5 Conclusion

This paper describes NAIST’s submission to the
IWSLT 2025 offline speech translation task, focus-
ing on English-to-German and English-to-Chinese
translation. We found that using Whisper as the
ASR combined with Qwen2.5 LLM as the MT in a
zero-shot setting was already capable of producing
good translations. Furthermore, in the zero-shot
setting, translation quality for long audio was bet-
ter when the transcriptions of individual segments
were combined first and then translated together,
compared to translating each segment individually
and combining the translations afterward. How-
ever, few-shot learning yielded better results in the
latter case. Fine-tuning the SALMONN model
further improved its translation quality. Addition-
ally, our custom end-to-end model demonstrated
competitive performance with SALMONN, despite
being trained on significantly less data. Finally, we
observed that both Qwen2.5 and SALMONN per-
formed better on English-to-Chinese translation
than on English-to-German.
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A Prompts for LLM MT

Table 6 shows seven zero-shot prompts for LLM
MT. <tgt-lang> denotes the target language for
the translation, which may be either “German” or
“Chinese”. For few-shot prompting, we add some
examples in the format of Prompt 1 right before
the input.

For example, using Prompt 3 with few-shot
prompting, the full prompt will be:

You are given a source English sen-
tence. It is a transcription of spontaneous
speech, which may include repetitions,
fillers, or disfluencies. Translate it into
<tgt-lang> as it is. Do not change the
structure or nuance.

English: <example-src-text-1>
<tgt-lang>: <example-tgt-text-1>
. . .
English: <example-src-text-k>
<tgt-lang>: <example-tgt-text-k>
English: <input>
<tgt-lang>:
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Prompt
1

English: {}
<tgt-lang>:

Prompt
2

"Translate the sentence from English to <tgt-lang>.
English: {}
<tgt-lang>: "

Prompt
3

"You are given a source English sentence. It is a transcription of spontaneous speech, which may include
repetitions, fillers, or disfluencies. Translate it into <tgt-lang> as it is. Do not change the structure or nuance.
English: {}
<tgt-lang>: "

Prompt
4

"You are given a source English sentence. It is a transcription of spontaneous speech, which may include
repetitions, fillers, or disfluencies.
Your task is to:
1. Translate it into <tgt-lang> as it is. Do not change the structure or nuance.
2. Convert any written-out numbers (e.g., one, twenty) into numerical digits (e.g., 1, 20).
3. If you detect any indirect words, enclose them in „“.
4. Add punctuations ’.’, ’,’ if necessary.
English: {}
<tgt-lang>: "

Prompt
5

"Translate from English to <tgt-lang>, using the appropriate tone for the topic. Do not mention the topic. Output
only the <tgt-lang> translation.
English: {}
<tgt-lang>: "

Prompt
6

"You are given a source English sentence. It is a transcription of spontaneous speech, which may include
repetitions, fillers, or disfluencies. Translate it into <tgt-lang> as it is. Do not change the structure or nuance. Do
not mention the topic. Output only the <tgt-lang> translation.
English: {}
<tgt-lang>: "

Prompt
7

"You are given a source English sentence. It is a transcription of spontaneous speech, which may include
repetitions, fillers, or disfluencies.
Your task is to:
1. Translate it into <tgt-lang> as it is. Do not change the structure or nuance. Do not mention the topic. Output
only the <tgt-lang> translation.
2. Convert any written-out numbers (e.g., one, twenty) into numerical digits (e.g., 1, 20).
3. If you detect any indirect words, enclose them in „“.
4. Add punctuations ’.’, ’,’ if necessary.
English: {}
<tgt-lang>: "

Table 6: Zero-shot prompts for Qwen2.5 LLM as MT.
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Abstract

This paper describes the NAIST submission
to the English-to-{German, Japanese, Chinese}
Simultaneous Speech-to-Text track at IWSLT
2025. Last year, our system was based on
an end-to-end speech-to-text translation model
that combined HuBERT and mBART. This
year, the system consists of a Whisper encoder,
the DeCo compressive projector, and the Qwen
large language model. The simultaneous trans-
lation (SimulST) system is implemented by ap-
plying a local agreement policy to an offline-
trained translation model. For the streaming
translation (StreamST) system, we integrate an
online version of the SHAS segmenter into our
SimulST architecture. Our results demonstrate
that adopting LLMs as the backbone architec-
ture for speech translation tasks yields strong
translation performance. Additionally, leverag-
ing robust segmentation capability of SHAS for
StreamST achieves good quality-latency trade-
off when processing unbounded audio streams.

1 Introduction

Simultaneous speech-to-text translation (SimulST)
aims to mimic human interpreters by providing
real-time translation with low latency while main-
taining high translation quality. In SimulST, the
system generates translation before receiving the
full source utterance. A decision policy is required
to determine whether to generate partial output or
wait for additional source context to improve relia-
bility.

Some prior studies train dedicated models for
SimulST using specialized training strategies and
architecture designs to learn a data-driven decision
policy (Ma et al., 2020b; Ren et al., 2020; Zeng
et al., 2021; Liu et al., 2021; Zhang et al., 2024).
However, their performance heavily depends on the
design of training strategies, which is a complex
and challenging task. Furthermore, achieving dif-
ferent latency regimes typically requires training

multiple separate models, substantially increasing
computational requirements and complicating prac-
tical deployment.

Due to the aforementioned reasons, approaches
using a single model for different simultaneous sce-
narios have become popular (Papi et al., 2022a).
These methods train the speech translation (ST)
model using offline translation data and then ap-
ply a manually designed decision policy to this
offline ST model for SimulST inference. In this
way, a single ST model can adapt to different la-
tency requirements in practical use. Designing an
optimal decision policy is significant to their per-
formance. Among several existing decision poli-
cies (Ma et al., 2019; Liu et al., 2020; Nguyen
et al., 2021), Local Agreement (LA) (Liu et al.,
2020; Polák et al., 2022) is one of the most popular
method and won the SimulST track of IWSLT 2022
(Polák et al., 2022). It makes decisions by establish-
ing an agreement between two consecutive chunks
and only emitting their longest common prefixes.
Additionally, the attention-based decision policies,
EDAtt (Papi et al., 2023a) and AlignAtt (Papi et al.,
2023b), have been proposed for encoder-decoder
ST models. They leverage the cross-attention mech-
anism to make decisions based on the idea that if
the model attends to the tail end of the incomplete
input speech, the generated hypothesis is unreliable
and more context is needed. These attention-based
decision policies have shown good performance
and have been widely adopted for SimulST tasks
(Ko et al., 2024; Tan and Sakti, 2024).

Most recently, several studies have explored the
use of pre-trained large language models (LLMs)
for SimulST, capitalizing on their powerful gener-
ative and zero-shot transfer capabilities. Koshkin
et al. (2024) proposes a cascaded architecture com-
bining an ASR model with a decoder-only LLM
to perform SimulST. However, this cascaded ap-
proach is hindered by error propagation and addi-
tional latency. A few works have instead focused
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Figure 1: Architecture of our LLM-based StreamST system. The model integrates a Whisper encoder with the
LLM via the projector module. The decision policy enables simultaneous translation capabilities, while an online
segmenter processes unbounded audio streams for real-time streaming translation.

on end-to-end LLM-based SimulST systems. Xu
et al. (2024) trains an offline LLM-based ST model
and extends it to SimulST using the Hold-n (Liu
et al., 2020) decision policy. Fu et al. (2025) devel-
ops a fully end-to-end system through a specialized
multi-step training strategy. Another line of work
by Ouyang et al. (2025) reformulates SimulST as
a multi-turn dialogue task, enabling the LLM to
make translation decisions by predicting an end-of-
turn token.

Nevertheless, most of the aforementioned
SimulST systems are designed to work on pre-
segmented speech. Streaming speech-to-text trans-
lation (StreamST), the task of automatically trans-
lating speech while incrementally receiving an au-
dio stream, remains a challenging problem due to
the need for effectively processing the history audio
and text contexts. Papi et al. (2024) introduces the
first StreamST policy to deal with the unbounded
audio stream via audio and textual history selection.
Ouyang et al. (2025) utilizes a LLM cache man-
agement module to handle the unbounded audio
stream during inference.

This paper describes the NAIST submission for
the English-to-{German, Japanese, Chinese} Si-
multaneous Speech-to-Text Track at IWSLT 2025.
In our last year’s system (Ko et al., 2024), we ap-
plied the LA policy to an encoder-decoder model
to do SimulST. For the IWSLT 2025 Evaluation

Campaign, we explore employing LLM in our sys-
tem to conduct translation in real time. We con-
struct an end-to-end LLM-based ST model, trained
on offline data, and—similar to our previous sys-
tem—enable it to perform simultaneous translation
using the LA policy. To handle the unbounded
audio stream in real-world settings, we adopt an
online version of the SHAS segmentation method
(Tsiamas et al., 2022) to identify the speech seg-
ments in the audio stream and present the SHAS-
based StreamST.

2 System Description

In this section, we first describe the model archi-
tecture of our system and its training methodology.
Then we present the detailed implementation of our
simultaneous speech-to-text translation and stream-
ing speech-to-text translation approaches.

2.1 Model Architecture

As illustrated in Figure 1, the translation model of
our system comprises three principal components:
a Whisper encoder, a projector, and a large lan-
guage model. The Whisper output features of the
input speech are transformed into acoustic embed-
dings, which are subsequently integrated with the
prompt textual embeddings and fed into the LLM
to generate the target translation.
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Whisper Encoder: The Whisper model (Rad-
ford et al., 2023) is an open-source speech model
trained on a large amount of speech recognition
and translation data. The output features of the
Whisper encoder have demonstrated superior per-
formance in modeling speech information and have
been widely adopted for downstream speech pro-
cessing tasks. In our submission system, we utilize
the Whisper-large-v31 architecture to extract high-
fidelity acoustic features from the source speech
signal.

Projector: The projector serves as a critical
bridging mechanism to address the speech-text
modality gap between the source speech and the
text-driven LLM by mapping the acoustic features
into the LLM embedding space. In our system, we
implement DeCo (Yao et al., 2024) as the projector
between the Whisper encoder and the LLM. DeCo
is a compressive projector originally proposed for
visual-language models that exhibits a remarkably
efficient structure: a 2D adaptive averaging pooling
(AdaptiveAvgPool) layer functioning as a down-
sampler, followed by two linear projection layers.
These linear projection layers constitute the only
trainable parameters in this module, making it com-
putationally efficient while effectively aligning the
speech representations with the LLM embedding
space.

Large Language Model: The Qwen-2.5-7B
LLM2 (Yang et al., 2024) is employed in our sys-
tem to function as an expert translator. The model
processes the acoustic embeddings alongside tex-
tual prompts to generate high-quality translations
based on the prompt instruction. The generative ca-
pabilities of the LLM enable flexible adaptation to
various translation scenarios while maintaining se-
mantic accuracy and linguistic fluency in the target
language.

2.2 Model Training

2.2.1 Training Objective
We train our system in an offline manner us-
ing supervised learning with parallel speech-text
data. Specifically, given the training dataset D =
{(S,Ysrc,Ytgt)}, the Whisper encoder Fe(·) con-
sumes the complete source speech signal S =
{s1, s2, ..., sT } to extract acoustic features:

Xs = Fe(S) = {x1, x2, ...xL}. (1)

1https://huggingface.co/openai/whisper-large-v3
2https://github.com/QwenLM/Qwen2.5

The projectorFp(·) subsequently maps these acous-
tic features into the LLM embedding space with
length compression to generate the acoustic embed-
ding of the source speech:

E(Xs) = Fp(Xs) = {e1, e2, ..., eM},M < L.
(2)

We integrate the acoustic embedding E(Xs) with
the textual embedding of the LLM prompt and the
prefix tokens to form the composite input for the
LLM:

Illm = {E(Xs),E(Prompt),E(Prefix)}. (3)

The LLM then processes this multimodal input to
autoregressively get the model output:

P (Y|Illm) = Fllm(Illm), (4)

where Y = {y1, y2, ..., yN} denotes the target tex-
tual sequence during training. Given the composite
LLM input Illm, we optimize the system by mini-
mizing the token-level negative log-likelihood loss
over the target output sequence:

L = − 1

|Y|

|Y|∑

i=1

logP (yi|Illm, y<i). (5)

2.2.2 ASR Joint Training
To enhance the performance of the translation sys-
tem and facilitate training, we implement a multi-
task learning approach utilizing automatic speech
recognition (ASR) as an auxiliary task. Unlike ap-
proaches proposed by Chen et al. (2024) and Huang
et al. (2024), which employ a dedicated prompt for
the transcription task to augment the training data,
we utilizes a single unified prompt that instructs the
LLM to generate the transcription immediately fol-
lowing its translation output. The target sequence
for training is specifically formatted as:

Y = Translation:Ytgt <end> Transcription:Ysrc,

where the <end> token denotes the end of the trans-
lation, which is a signal to terminate the decoding
process during inference when only the translation
component is required for deployment scenarios.

2.2.3 Fine-tuning
During the training phase, the pretrained weights
of both the whisper encoder and the core LLM
architecture are frozen to maintain their represen-
tational capabilities. We fine-tune the LLM using
Low-Rank Adaptation (LoRA) (Hu et al., 2022)
and optimize the complete parameter set of the
projector module.

371



2.3 Simultaneous Speech-to-text Translation

We enable our offline-trained ST system to do si-
multaneous speech-to-text translation via Local
Agreement (LA) (Liu et al., 2020; Polák et al.,
2022), which is one of the most commonly used
decision policy in recent years. It compares the
generated hypotheses of two consecutive chunks
and only emit their longest common prefixes (i.e.,
agreement). A fixed length chunk size (speech seg-
ment size) is tuned to control the quality-latency
trade-off for SimulST.

2.4 Streaming Speech-to-text Translation

The SimulST system is assumed to work on pre-
segmented speech and it is not practical to directly
process a long audio stream in real-world scenarios
due to latency and computational resources. We de-
velop the StreamST system by integrating an auto-
matic segmenter module into our SimulST system
to detect the speech segments S = {s1, s2, ...sN}
in real-time. As illustrated in Figure 1, once the seg-
menter module detect the start point si1 of a speech
segment si, the subsequent modules process the
speech chunk-by-chunk in a SimulST manner to
emit translations. When the speech segment end-
point is detected, both of the speech and text history
buffers are reset, and the translation stops until the
start point of the next speech segment is detected.

We use Supervised Hybrid Audio Segmentation
(SHAS) (Tsiamas et al., 2022) as the segmenta-
tion method for our StreamST system. SHAS is a
neural-based method that can effectively learn the
optimal segmentation from manually segmented
speech corpus to achieve the state-of-the-art seg-
mentation performance. It uses a pre-trained
wav2vec 2.0 (Baevski et al., 2020) to extract acous-
tic features and a SHAS classifier to obtain the
probabilities for each audio frame. SHAS deter-
mines the speech offset τ and duration ∆t of an in-
put audio with a probability threshold θ. However,
the SHAS is designed to segment a long audio into
multiple speech segments that are shorter than a
predefined maximum length Lmax using the prob-
abilistic Divide-and-Conquer (pDAC) algorithm,
while in StreamST, the length of the audio stream
increases incrementally.

We enable the SHAS to perform real-time
segmentation for StreamST. Specifically, we ap-
ply SHAS on the incrementally increasing audio
stream until it detects a speech segment offset. The
first detected offset is treated as the segment start

Algorithm 1 SHAS-based StreamST
Require: Audio stream X, pause length Lpause,

minimum segment lengthLmin, maximum seg-
ment length Lmax, chunk size C

Ensure: Translation output Y
1: while processing audio stream do
2: τ,∆t← SHAS(X) ▷ Get offset and

duration
3: if no speech detected then
4: Continue reading stream
5: continue
6: end if
7: Segstart ← τ
8: Segend ← τ +∆t
9: Lstream ← length(X)

10: segmentComplete← False
11: if Segend − Segstart ≥ Lmax then
12: segmentComplete← True ▷

Maximum length reached
13: else if Segend + Lpause < Lstream and

Segend − Segstart > Lmin then
14: segmentComplete← True ▷ Valid

pause detected
15: end if
16: Segment← X[Segstart : Lstream]
17: if length(Segment) ≥ PrevLength+C then
18: Process segment chunk-by-chunk
19: Y ← SimulST(Segment)
20: PrevLength← length(Segment)
21: end if
22: if segmentComplete then
23: Reset buffers and prepare for next seg-

ment
24: end if
25: end while

point, Segstart. Then the subsequent modules of
the StreamST system process the speech chunk-by-
chunk to generate translations until the segment
endpoint Segend = (τ + ∆t) is detected. How-
ever, we observed that SHAS consistently returns
an offset-duration pair even when processing in-
complete audio streams where speech has not yet
finished. In these cases, the SHAS-detected speech
segments become too short, negatively impacting
the overall performance of the StreamST system.
To address this issue, we leverage our empirical ob-
servation that when speech is ongoing, the SHAS-
detected segment endpoint Segend typically falls
very close to the length of the currently available
audio stream Lstream. We therefore introduce a
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Figure 2: An English-Chinese translation example
demonstrating our StreamST system workflow. Upon
detecting the speech start point Segstart, the SHAS seg-
menter triggers the translation system to process incom-
ing speech incrementally, chunk-by-chunk, generating
translations continuously until a valid endpoint Segend

is detected.

pause length parameter Lpause and consider a de-
tected segment endpoint Segend to be valid only
when:

Segend + Lpause < Lstream. (6)

We demonstrate the significance of the parameter
Lpause in Section 4.3.3. For practical implemen-
tation, we set maximum and minimum segment
length constraints to prevent excessively long or
short segmentation. Algorithm 1 provides the com-
plete inference procedure for our StreamST system,
while Figure 2 illustrates a representative English-
Chinese translation example.

3 Experiments Setup

3.1 Data
We used CoVoST-2 (Wang et al., 2020) for all
language pairs: English-to-German (En→De),
English-to-Japanese (En→Ja), and English-to-
Chinese (En→Zh) and also included Europarl-ST
(Iranzo-Sánchez et al., 2020) for En→De. We fol-
lowed our previous submission (Ko et al., 2024)
to conduct data filtering based on Bilingual Prefix
Alignment (Kano et al., 2022). We used ACL 60/60
(Salesky et al., 2023) data for both validation and
evaluation. All of the text data was tokenized using
LLM’s default tokenizer.

3.2 Evaluation Setup
We assessed the system performance using met-
rics for both translation quality and latency. For
translation quality, we employed BLEU (↑) calcu-
lated with SacreBLEU (Post, 2018). For latency

Figure 3: LLM prompt used for both training and evalu-
ation.

evaluation, we used the Length Adaptive Average
Lagging (LAAL) (↓) (Papi et al., 2022b) for the
SimulST and StreamLAAL (↓) (Papi et al., 2024)
for our StreamST system. Additionally, we report
the computation-aware versions of both LAAL and
StreamLAAL to account for processing overhead.
All experiments were conducted using the SimulE-
val (Ma et al., 2020a) toolkit, providing a standard-
ized evaluation framework.

3.3 Offline Model

We trained the model of our system in an offline
manner. The speech input was provided as wave-
forms with 16kHz sampling rate. The Whisper
encoder processed this input using a causal atten-
tion mask to prevent the model from utilizing future
information. The LLM then processed the acoustic
embeddings produced by the DeCo projector to
generate translations based on a prompt instruction
as shown in Figure 3. During training, we used the
Adam optimizer with β1 = 0.9, β2 = 0.98. The
learning rate was controlled by a cosine scheduler
with a base learning rate of 2.0× 10−4 and 3,000
warming-up steps within the total 100,000 updates.
Validation was performed every 1,500 updates, and
model checkpoints were saved based on the best
BLEU scores. We averaged the parameters of the
ten best-performing checkpoints to create the best
model.

3.4 Simultaneous Speech-to-Text Translation

We adapted our offline-trained model for SimulST
by applying the local agreement policy to the LLM-
based translation system. To control the quality-
latency trade-off, we used variable chunk sizes of
{0.5s, 0.75s, 1.0s, 1.5s, 2.0s, 2.5s, 3.0s}. During
inference, we employed beam search with a beam
size of 4 to generate translation hypotheses for each
input chunk.

We compare our SimulST system with our sub-
mission from the previous year. The primary dis-

373



1500 2000 2500 3000 3500 4000 4500 5000 5500
LAAL

15.0

17.5

20.0

22.5

25.0

27.5

30.0
BL

EU

NAIST-2024
Ours

(a) BLEU and LAAL in En-De

1500 2000 2500 3000 3500 4000 4500 5000 5500
LAAL

25

30

35

40

45

BL
EU

NAIST-2024
Ours

(b) BLEU and LAAL in En-Zh

2000 2500 3000 3500 4000 4500 5000 5500
LAAL

16

18

20

22

24

26

28

30

BL
EU

NAIST-2024
Ours

(c) BLEU and LAAL in En-Ja

3000 4000 5000 6000 7000 8000
LAAL_CA

5

10

15

20

25

30

BL
EU

NAIST-2024
Ours

(d) BLEU and LAAL_CA in En-De

3000 4000 5000 6000 7000
LAAL_CA

15

20

25

30

35

40

45

BL
EU

NAIST-2024
Ours

(e) BLEU and LAAL_CA in En-Zh

3000 4000 5000 6000 7000 8000
LAAL_CA

10

15

20

25

30

BL
EU

NAIST-2024
Ours

(f) BLEU and LAAL_CA in En-Ja

Figure 4: Quality-latency trade-off of our SimulST system compared to our last year’s system on ACL 60/60 dev
set.

tinction between the two systems lies in the adop-
tion of an LLM-based model architecture.

3.5 Streaming Speech-to-Text System

We developed our submitted StreamST system by
integrating an online version SHAS segmenter with
our SimulST model. The pause length Lpause
and the segmentation threshold θ parameters of
SHAS were set differently for each language pair:
{0.025s, 0.2} for En→De and {0.025s, 0.4} for
both En→Zh and En→Ja. The impact of these hy-
perparameters (Lpause and θ) is analyzed in Section
4.3.3.

We compare our submitted system with the
IWSLT 2025 baseline systems3. The baselines im-
plement StreamST using either a naive fixed-length
segmenter or a Voice Activity Detection (VAD) seg-
menter applied to the SeamlessM4T model (Bar-
rault et al., 2023) for all language pairs. An addi-
tional cascaded model, which comprises a Whisper
ASR model and a M2M100 (Fan et al., 2021) ma-
chine translation model, is included for the En→De
language pair.

4 Experimental Results

4.1 Offline Results of Topline

The offline performance of our model establishes
an upper bound for both the SimulST and StreamST
systems by utilizing manual segmentation and pro-
cessing the complete context to generate transla-

3https://github.com/pe-trik/iwslt25-baselines

tions. Table 1 presents the results of the offline
model on the ACL 60/60 dataset.

Table 1: Offline results of our model in the submitted
system on ACL 60/60 dev set.

Language Pair BLEU Score

En–De 28.2
En–Zh 43.9
En–Ja 30.3

4.2 Simultaneous Speech-to-text Translation
4.2.1 NAIST 2024 Model vs. 2025 Model
Non-computation-aware latency: We managed
to improve our system compared to our system of
last year on non-computation-aware latency set-
ting. As can be seen in Figure 4a through Figure
4c, our system outperforms our previous year sys-
tem by a margin of 6.4 BLEU score on En-De
language pair, 12.3 BLEU score on En-Zh lan-
guage pair, and 5.2 BLEU score on En-Ja language
pair when compared at equivalent latency levels.
Computation-aware latency: We managed to im-
prove our system compared to our system of last
year on computation-aware latency setting. As can
be seen in Figure 4d through Figure 4f, our cur-
rent year system managed to improve the overall
BLEU score in all pairs of languages with a greater
difference in En-Zh translation, as shown by 4e.
In computationa-aware setting, our system man-
aged to improve the 6.6 BLEU score on latency
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Figure 5: Quality-latency trade-off of our submitted streaming speech-to-text translation (StreamST) system
compared to IWSLT2025 baseline systems on ACL 60/60 dev set.

Table 2: Results of the submitted streaming speech-to-text translation (StreamST) system on ACL 60/60 dev set.

Language Pair Latency Regime Chunk Size (s) BLEU StreamLAAL (ms)

En–De
Low (0–2s) 0.62 23.92 1921
High (2–4s) 2.0 27.74 3988

En–Zh
Low (0–2.5s) 0.85 39.17 2455
High (2.5–4s) 2.0 41.80 3699

En–Ja
Low (0–3.5s) 1.5 29.78 3348
High (3.5–4s) 2.5 29.81 3982

around 4.35 s and the 12.3 BLEU score on latency
around 5.3 s on that particular language pair. De-
spite not showing as much of a difference, on En-
De and En-Ja language pair similar pattern could
be observed where our current year system gives
better BLEU score overall on similar latency. How-
ever, our LLM-based model architecture is more
computationally expensive than last year’s encoder-
decoder model, resulting in higher latency under
computation-aware evaluation conditions.

4.3 Submitted StreamST System

In this section, we report the results of our submit-
ted system for IWSLT 2025 simultaneous track.
We followed the data condition for both train-
ing and evaluation as well as the allowed pre-
trained models and therefore our submission is
constrained.

4.3.1 Main Results

Figure 5a through Figure 5c illustrate the non-
computation-aware quality-latency tradeoff be-

tween our StreamST system and the baselines. For
the En→De language pair, our system outperforms
all three baseline systems in both translation qual-
ity and latency metrics, while achieving slightly
better peak translation quality compared to the cas-
caded baseline model. For the En→Zh and En→Ja
language pairs, our system also demonstrates sub-
stantially superior performance compared to both
of the baseline systems.

For each language pair, we select two submission
with configurations satisfying the low latency and
high latency regimes. Table 2 presents the scores
of our submitted StreamST system.

4.3.2 Computation-aware Latency
We also evaluate the computation-aware4 quality-
latency trade-off of our StreamST system, as il-
lustrated in Figures 5d through 5f. While our sys-
tem demonstrates strong performance under non-
computation-aware conditions, it exhibits higher

4The computation-aware evaluation was conducted using
an NVIDIA RTX A5000 GPU.
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latency across all three language pairs when real
computation time is considered. This increased la-
tency stems from the LA policy’s substantial com-
putational requirements in practical applications.
Unfortunately, cross-attention-based decision poli-
cies (EDAtt, AlignAtt), which typically perform
better under computation-aware conditions, cannot
be directly integrated into our LLM-based end-to-
end system. This limitation highlights the need to
develop more efficient decision policies specifically
designed for LLM-based systems in future work.

4.3.3 Ablation Study for SHAS
As mentioned in Section 2.4, we implemented a
short pause length to prevent premature segment
termination in our SHAS-based StreamST system.
To understand the influence of the critical SHAS pa-
rameters, we conducted a comprehensive ablation
study examining both pause length (Lpause) and
SHAS threshold (θ). We evaluated offline trans-
lation quality across various segmentation config-
urations with different (Lpause, θ) combinations.
As shown in Table 3 through Table 5, we iden-
tified optimal configurations for each language
pairs, {0.025s, 0.2} for En→De and {0.025s, 0.4}
for both En→Zh and En→Ja. Notably, when
the pause length parameter Lpause was disabled
(Lpause = 0.0s), translation quality decreased sig-
nificantly across all three language pairs due to
premature segment termination. This finding un-
derscores the importance of properly configuring
the pause length parameter in SHAS-based segmen-
tation for StreamST systems.

Table 3: Impact of SHAS hyperparameters on En→De.

Lpause
Threshold (θ)

0.6 0.5 0.4 0.3 0.2 0.1

0.0s 14.58 14.85 15.06 15.09 14.53 14.48
0.025s 27.14 28.40 29.82 30.04 30.85 30.16
0.05s 27.74 28.80 30.03 30.07 30.78 30.55
0.1s 28.41 28.96 29.06 30.20 30.39 29.38

Table 4: Impact of SHAS hyperParameters on En→Zh.

Lpause
Threshold (θ)

0.6 0.5 0.4 0.3 0.2 0.1

0.0s 33.20 33.85 33.65 33.73 32.84 32.67
0.025s 41.84 42.43 43.60 42.03 37.18 34.45
0.05s 41.32 43.09 42.71 41.38 37.40 33.94
0.1s 41.73 42.04 41.40 41.02 36.42 28.98

Table 5: Impact of SHAS hyperParameters on En→Ja.

Lpause
Threshold (θ)

0.6 0.5 0.4 0.3 0.2 0.1

0.0s 25.62 25.74 25.83 25.39 25.27 24.78
0.025s 37.09 37.57 38.61 38.27 37.02 36.25
0.05s 37.25 37.45 38.17 38.31 36.74 35.97
0.1s 37.15 37.77 38.19 38.44 36.24 34.95

5 Conclusion

This paper presents our StreamST system devel-
oped for the IWSLT 2025 Simultaneous Speech
Translation Track. Experimental results demon-
strated the effectiveness of employing an large
language model (LLM) as the backbone for the
speech translation tasks. Our system also showed
the effectiveness of applying SHAS segmentation
method in real time to handle unbounded audio
stream during streaming speech translation. This
time, we used the Local Agreement (LA) for our
LLM-based system, which results in a higher com-
putational latency in real condition. In the future,
we will investigate better decision policy methods
for the LLM-based StreamST system.
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Abstract
Efficient deployment of large audio-language
models for speech translation remains chal-
lenging due to their significant computational
requirements. In this paper, we address this
challenge through our system submissions to
the “Model Compression” track at the Interna-
tional Conference on Spoken Language Trans-
lation (IWSLT 2025). We experiment with a
combination of approaches including iterative
layer pruning based on layer importance eval-
uation, low-rank adaptation with 4-bit quanti-
zation (QLoRA), and knowledge distillation.
In our experiments, we use Qwen2-Audio-7B-
Instruct for speech translation into German
and Chinese. Our pruned (student) models
achieve up to a 50% reduction in both model
parameters and storage footprint, while retain-
ing 97-100% of the translation quality of the
in-domain (teacher) models.

1 Introduction

Multimodal foundation models have shown power-
ful capabilities in different tasks, including speech
translation. However, these models are often large
and computationally intensive, making them im-
practical to use in real-world settings with limited
resources. To enhance the efficiency of these mod-
els, researchers have been investigating diverse ap-
proaches to model compression that aim to reduce
the computational requirements while retaining per-
formance (Gandhi et al., 2023; Peng et al., 2023b,a;
Treviso et al., 2023; Wang et al., 2023).

Qwen2-Audio (Chu et al., 2023, 2024) is a state-
of-the-art foundation model that accepts various
audio signal inputs and performs audio analysis or
direct textual responses to speech instructions. In
the IWSLT 2025’s Model Compression track (Ab-
dulmumin et al., 2025), the organizers required that
all submissions must be derived from the Qwen2-
Audio model. The official languages of the task
are English-to-German (EN-DE) and English-to-
Chinese (EN-ZH).

We experimented with various approaches in-
cluding efficient fine-tuning using quantized low-
rank adapters with 4-bit quantization (QLoRA) (Hu
et al., 2021; Dettmers et al., 2023), iterative layer
pruning based on layer importance evaluation (Peer
et al., 2022; Gandhi et al., 2023; Sajjad et al., 2023),
and sequence-level knowledge distillation (Kim
and Rush, 2016; Crego and Senellart, 2016; Jooste
et al., 2022; Gandhi et al., 2023). Our experiments
are mainly based on Qwen2-Audio-7B-Instruct.1

While Section 3 elaborates on our experiments, we
can summarize our two submissions for German
and Chinese as follows:

• Setup 1: This model is the outcome of
fine-tuning Qwen2-Audio-7B-Instruct in two
stages: (a) full fine-tuning with the ACL 60/60
dataset, and (b) QLoRA fine-tuning with 4-bit
quantization using the ACL 60/60 dataset aug-
mented with data knowledge distillation from
the fully fine-tuned model. This process has
achieved 40% compression in terms of both
model parameters and storage size. We dis-
cuss the details of this model in Section 3.2.

• Setup 2: This model is a pruned version of
Qwen2-Audio-7B-Instruct, and was created
in multiple stages: (a) full fine-tuning of the
baseline model with the ACL 60/60 dataset,
(b) layer pruning of the decoder into 24 layers,
while all 32 encoder layers were kept intact,
(c) full fine-tuning of the pruned model, and
(d) QLoRA fine-tuning with the ACL 60/60
dataset augmented with data knowledge distil-
lation from the fully fine-tuned model and a
portion of the CoVoST2 dataset to restore the
quality of the teacher model. This process has
achieved 50% compression in terms of both
model parameters and storage size. We dis-
cuss the details of this model in Section 3.3.

1https://hf.co/Qwen/Qwen2-Audio-7B-Instruct
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EN-DE EN-ZH Params Storage

Model BLEU chrF++ COMET BLEU chrF COMET (B) (GB)

Baseline 22.96 49.88 8.61 38.73 32.53 17.38
8.40 16.79

+ Full Fine-tuning 39.28 65.27 56.32 58.54 52.54 65.97

+ QLoRA Fine-tuning 41.52 66.25 53.47 57.65 51.08 65.77 4.95 9.64
+ Knowledge Distillation 43.25 68.02 59.36 59.60 53.94 68.42

Table 1: Evaluation of the experiment that employs QLoRA with 4-bit quantization and augments the authentic
data with knowledge distillation. This approach reduces the model size by more than 40% in terms of both the
number of parameters (params) and storage footprint, while achieving the best translation performance for both
English-to-German (EN-DE) and English-to-Chinese (EN-ZH) language pairs.

2 Data

2.1 In-Domain Data

The ACL 60/60 dataset2 (Salesky et al., 2023) is
used in all of our experiments as the in-domain
data. ACL 60/60 contains multilingual translation
of ACL 2022 technical presentations into 10 tar-
get languages. The dataset consists of two splits,
“dev” and “eval”, which together comprise 884 ut-
terances. We merged the two splits, and randomly
sampled 100 utterances for testing, which left us
with 784 utterances for training. For test data sam-
pling, we used the train_test_split method from
the datasets3 library (Lhoest et al., 2021), setting
the random seed option to zero. The ACL 60/60
dataset was required for “constrained” submissions
to the IWSLT’s “Model Compression” track.

2.2 Out-of-Domain Data

After layer pruning of the Qwen2-Audio-7B-
Instruct model (cf. Section 3), we needed to use
more training data to restore the translation quality
of the unpruned model. In addition to knowledge
distillation data from the teacher model, we used a
portion of the CoVoST2 dataset (Wang et al., 2021)
(cf. Section 3.3). CoVoST2 is a large-scale multi-
lingual speech-to-text translation corpus, covering
translations from English into 15 languages, includ-
ing German and Chinese.

3 Methodologies

We experiment with diverse methods to compress
Qwen2-Audio-7B-Instruct while maintaining the
translation quality. This section covers our two
main experimental setups, while Section 4 dis-

2https://hf.co/datasets/ymoslem/acl-6060
3https://github.com/huggingface/datasets

cusses several ablation studies and elaborates on
intermediate experiments.

Our first experimental setup (cf. Section 3.2) em-
ploys QLoRA fine-tuning with 4-bit quantization,
while the other experimental setup (cf. Section 3.3)
conducts layer importance evaluation and applies
iterative layer pruning of the model, followed by
QLoRA fine-tuning. Both setups use knowledge
distillation to recover the translation quality of the
in-domain teacher model.

3.1 Full-Parameter Fine-tuning

In all of our experiments, we start by full-parameter
fine-tuning of the Qwen2-Audio-7B-Instruct model
on the ACL 60/60 dataset. This step is essential to
ensure the foundation model is familiar with the
downstream task and in-domain data. In particular,
we train the baseline model on the in-domain data
for 3 epochs, using a batch size of 4, learning rate
of 1e-5, weight decay of 0.001, and no warm-up
steps. The model is initially loaded in bfloat16 data
type. As shown in Table 1 and Table 2, the fully
fine-tuned model clearly outperforms the baseline
by an average of 48 COMET points for translation
into German and Chinese. Hence, this fully fine-
tuned model is used as a foundation for both our
experiments in Section 3.2 and Section 3.3. It is
also used as a “teacher” for knowledge distillation
into the compressed “student” models. We conduct
the training on one H200 SXM GPU, using the
Transformers framework4 (Wolf et al., 2020).

3.2 QLoRA with 4-bit Quantization

This experimental setup employs quantization, ac-
companied by efficient fine-tuning, and knowledge
distillation techniques. We start with full-parameter

4https://github.com/huggingface/transformers
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EN-DE EN-ZH Params Storage

Model Data BLEU chrF++ COMET BLEU chrF COMET (B) (GB)

Baseline - 22.96 49.88 8.61 38.73 32.53 17.38
8.40 16.79

+ Full FT ACL 39.28 65.27 56.32 58.54 52.54 65.97

+ Pruning ACL 10.78 39.58 -44.4 42.52 36.92 39.42
6.78 13.55+ FT ACL 32.16 60.39 39.08 53.05 47.23 56.72

+ KD 33.44 60.91 39.23 53.41 48.20 54.94

+ QLoRA + CV 39.59 65.14 59.21 56.52 50.74 64.34 4.12 8.65

Table 2: Evaluation of the iterative layer pruning experiment. We started by full-parameter fine-tuning (Full FT)
of the baseline model Qwen2-Audio-7B-Instruct on the in-domain dataset ACL 60/60. Pruning 8 layers of the
decoder of the model achieved approx. 20% reduction in the model size; however, it affected the quality of the
model. Hence, we fine-tuned the pruned model again on the in-domain dataset to restore as much as possible of
the quality of the fully fine-tuned model. Finally, we fine-tuned the resulting model with low-rank adaptation after
quantizing it into the 4-bit precision (QLoRA) on a mix of the in-domain data, knowledge distillation data (KD)
and out-of-domain data, namely the CoVoST2 (CV) dataset. The whole process of pruning followed by QLoRA
fine-tuning with 4-bit quantization has resulted in approx. 50% reduction in the model size, while retaining 97%
and 100% of the translation quality for Chinese and German, respectively, compared to the teacher model.

fine-tuning of Qwen2-Audio-7B-Instruct (cf. Sec-
tion 3.1). Afterwards, the fine-tuned model is quan-
tized into the 4-bit precision and then fine-tuned
with low-rank adapters (QLoRA) (Hu et al., 2021;
Dettmers et al., 2023). Moreover, we use the fully
fine-tuned model as a “teacher” in the knowledge
distillation process.

Knowledge distillation: To restore the quality
of the in-domain fully fine-tuned teacher models
(cf. Section 3.1), sequence-level knowledge dis-
tillation is applied (Kim and Rush, 2016; Gandhi
et al., 2023). In other words, we translate the ACL
60/60 training data with the “teacher” model. The
training data is then augmented with the knowl-
edge distillation data, and duplicates are filtered
out. As a result, the augmented data after knowl-
edge distillation comprises 1,568 segments for Ger-
man and 1,069 segments for Chinese. Finally, “stu-
dent” models are fine-tuned with QLoRA on the
augmented data.

QLoRA fine-tuning: First, we enable 4-bit quan-
tization through BitsAndBytes (Dettmers et al.,
2023) while loading the in-domain fully fine-tuned
model. In the configuration of BitsAndBytes, we
set the quantization type to “nf4”, and use the
“double_quant” option, where the quantization con-
stants from the first quantization are quantized
again. For LoRA configuration, we set the rank
to 64, alpha to 128, and dropout to 0. We target all
linear modules. Overall, this configuration results

in 2.41% trainable parameters of the model. More-
over, we enable Rank-Stabilized LoRA (rsLoRA)
(Kalajdzievski, 2023). We train the model for 4
epochs, using a batch size of 4, and a learning rate
of 1e-5.

As Table 1 illustrates, the combination of
QLoRA with 4-bit quantization and knowledge dis-
tillation has achieved the highest translation per-
formance into both German and Chinese across all
evaluation metrics while reducing the model size in
terms of both the number of parameters and storage
requirements by more than 40% compared to the
baseline model.5

3.3 Iterative Layer Pruning

In this experimental setup, we apply iterative layer
pruning to the fully fine-tuned “teacher” model
(cf. Section 3.1). This approach incrementally iden-
tifies and removes layers with minimal contribu-
tion to translation quality, one layer at a time. The
pruned model resulting from this process is then
fine-tuned on both the ACL 60/60 training dataset
and knowledge distillation data from the teacher
model. Finally, the model is further fine-tuned with
QLoRA, leveraging 4-bit quantization for efficient

5For consistency, our storage footprint calculations are
based only on the size of model files (*.safetensors), including
the adapter of QLoRA models. We exclude the tokenizer
and configuration files, as their contribution to the overall
size is relatively small (∼ 13 MB) and they are unaffected by
our optimization methods. All sizes are computed using the
decimal definition of gigabytes, where 1 GB = 10003 bytes.
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low-rank adaptation. Pruning 8 layers achieves a
20% reduction in model size, which increases to
50% when combined with 4-bit quantization. Fine-
tuning the pruned model restores between 97% and
100% of the teacher model’s translation quality for
Chinese and German, respectively. The following
points elaborate on the process.

Layer importance evaluation: We conduct
layer importance evaluation by measuring transla-
tion performance without each layer. In this greedy
layer pruning approach (Peer et al., 2022; Rostami
and Dousti, 2024), to prune n + 1 layers, only a
single optimal layer to prune must be added to the
already known solution for pruning n layers. After
identifying and removing the least critical layer, we
repeat the layer importance evaluation on the re-
maining layers until reaching our n pruning target.
We observe that while removing certain layers of
the model (e.g. the first or last layer) substantially
degrades translation performance, others result in
minimal performance drops. When experiment-
ing with using either the chrF/chrF++ or COMET
metric for layer importance evaluation, the mod-
els pruned based on chrF/chrF++ outperform those
pruned based on COMET.

Layer pruning: We iteratively prune one de-
coder layer at a time, selecting the layer whose
removal has the least negative impact on transla-
tion quality, measured by chrF/chrF++ scores. At
each iteration, we evaluate the translation perfor-
mance of the pruned model on the test split of
the ACL 60/60 dataset, after removing each can-
didate layer. The layer whose removal yields the
best performance is eventually pruned. This pro-
cess continues until a predefined number of layers
(8 in the main experiments) have been removed.
By iteratively removing the least important layers,
this performance-guided method produces a more
compact model that can be fine-tuned further to
recover the translation quality of the teacher model.
We observe that the performance of the English-to-
German model is more impacted by pruning than
the English-to-Chinese model, which might be at-
tributed to the pre-training process (cf. Table 2).

Knowledge distillation: Knowledge distillation
is the process of transferring knowledge from a
large model (teacher) to a smaller one (student). In
our case, the teacher is the fully fine-tuned model,
and the student is the model resulting from itera-
tive pruning. We translate the in-domain data with

the teacher model to augment the authentic data.
As the process can result in duplicate translations,
we remove duplicate segments from the training
data. This step is similar to what we did in the first
experimental setup (cf. Section 3.2).

Fine-tuning: The pruning step is followed by
fine-tuning the pruned model for 4 epochs using
the in-domain ACL 60/60 dataset augmented with
the knowledge distillation data (Kim et al., 2023;
Gandhi et al., 2023). This step recovers most of the
translation quality of the teacher model.

QLoRA fine-tuning: This step serves two pur-
poses, improving both the compression level and
translation performance of the pruned model. After
quantizing the model resulting from the previous
step, low rank adaptation is used for fine-tuning
it further. The training data consists of the ACL
60/60 dataset augmented with the knowledge dis-
tillation data from the fully fine-tuned “teacher”
model (oversampled by a factor of 10), as well
as a portion of the CoVoST2 dataset (100k utter-
ances). We fine-tune the model for 1 epoch, using
a batch size of 8 (to make use of the computing
resources, since the model is much smaller now),
and a learning rate of 1e-5.

This whole process of iterative layer pruning
followed by fine-tuning has achieved up to 50%
compression in terms of both model parameters
and storage size.6 Moreover, the quality degrada-
tion caused by pruning has been mitigated through
multi-stage fine-tuning on diverse data. As demon-
strated by Table 2, by the end of the process, the
pruned model could recover most of the translation
quality of the fully fine-tuned teacher model (97%
for Chinese and 100% for German).

Our ablation study (cf. Section 4) demonstrates
that iterative layer pruning considerably outper-
forms fixed middle-layer pruning (cf. Section 4.3).
Moreover, it clarifies that pruning exclusively de-
coder layers yields better performance than pruning
both encoder and decoder layers (cf. Section 4.2).
While our main experiments in this section prune
only 8 layers, resulting in a model with 24 decoder
layers and 32 encoder layers, the ablation study in-
vestigates pruning up to 16 layers (cf. Section 4.5).

6To achieve these compression gains from layer pruning,
the Qwen2-Audio model must initially be loaded in bfloat16
data type. For other tasks like fine-tuning and inference,
bfloat16 precision is not required, although it may be nec-
essary when computing resources are limited, potentially at
the cost of reduced quality.
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Encoder Decoder BLEU chrF++ COMET Params Storage

24 ↓ 24 ↓ 26.44 54.67 13.90 6.62 B 13.24 GB
32 = 24 ↓ 30.81 58.45 31.95 6.78 B 13.55 GB

Table 3: Comparison of layer pruning of both the encoder and decoder with layer pruning of the decoder only. Both
models are fine-tuned before and after layer pruning on the EN-DE ACL 60/60 dataset. This experiment uses middle
layer pruning. The model that prunes the layers of only the decoder outperforms the model that prunes both the
encoder and decoder, although the former has a slightly higher number of parameters and storage size.

4 Ablation Study

This section elaborates on some intermediate ex-
periments that led us to the final models in Section
3.2 and Section 3.3. These experiments include
comparing the performance of the Qwen2-Audio
base model with Qwen2-Audio-Instruct (cf. Sec-
tion 4.1), comparing encoder-decoder pruning with
decoder-only pruning (cf. Section 4.2), comparing
“iterative” layer pruning with fixed middle-layer
pruning (cf. Section 4.3), iterative pruning of up to
16 layers (cf. Section 4.5), fine-tuning before and
after pruning (cf. Section 4.6), and using different
sizes of out-of-domain data to fine-tune the pruned
models (cf. Section 4.7).

4.1 Qwen2-Audio Base vs Instruct
We experimented with both Qwen2-Audio-7B and
Qwen2-Audio-7B-Instruct for English-to-German
speech translation. As Table 4 the “Instruct” model
outperforms its base version. Hence, we use
Qwen2-Audio-7B-Instruct in all of our experiments
throughout the paper.

We follow the prompt requirements of the
Qwen2-Audio models. For the base model, Qwen2-
Audio-7B, the prompt is as follows:

"<|audio_bos|><|AUDIO|><|audio_eos|>Translate the
English speech into {language}:"

For the instruction-following model, Qwen2-
Audio-7B-Insruct, the prompt is as follows:

[

{"role": "system", "content": "You are a professional
translator."},

{"role": "user", "content": [

{"type": "audio", "audio_url": audio_path},

{"type": "text", "text": "Translate the English
speech into {language}:"},

]},

]

Language Model BLEU chrF/++ COMET

EN-DE base 6.15 32.10 -58.34
instruct 22.96 49.88 8.61

EN-ZH base 7.23 10.62 -52.06
instruct 38.73 32.53 17.38

Table 4: Evaluation of the Qwen2-Audio-7B (base)
and Qwen2-Audio-7B-Instruct (instruct) models be-
fore fine-tuning. The “instruct” model outperforms the
“base” model for both English-to-German (EN-DE) and
English-to-Chinese (EN-ZH) speech translation.

4.2 Encoder-Decoder Layer Pruning
The Qwen2-Audio is based on the encoder-decoder
Transformer architecture (Vaswani et al., 2017). It
consists of an encoder for audio (audio_tower) and
a decoder for text generation (language_model),
each of which comprises 32 layers. We first experi-
mented with layer pruning of both the encoder and
decoder. However, inspired by the Distil-Whisper
work (Gandhi et al., 2023), we experimented with
pruning decoder layers only, which achieved better
results. In other words, pruning only the decoder
from 32 layers to 24 layers outperformed pruning
both the encoder and decoder into 24 layers.

In this experiment, we pruned 8 fixed middle
layers, from the 12th to the 19th layer, inclusively.
After fine-tuning both models with the English-
to-German ACL 60/60 dataset, the model where
only the decoder layers were pruned achieved 4+
additional points in terms of BLEU and chrF++ and
18+ points of COMET. It is worth noting that both
the number of parameters and the storage footprint
of this model is only 1% larger than the model
with both the encoder and decoder were pruned.
Table 3 shows the performance evaluation results
of fine-tuning the English-to-German model after
middle-layer pruning.
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Language Pruning Metric Pruned Layers Model BLEU chrF/++ COMET

EN-DE

Middle n/a [12, 13, 14, 15, 16, 17, 18, 19]
Pruned 0.13 6.13 -162.44
+ FT 30.81 58.45 31.95

Iterative
COMET [12, 1, 9, 15, 20, 27, 29, 5]

Pruned 6.53 31.15 -41.96
+ FT 30.97 59.67 34.39

chrF++ [13, 3, 20, 9, 29, 1, 19, 27]
Pruned 10.78 39.58 -44.40
+ FT 32.16 60.39 39.08

EN-ZH

Middle n/a [12, 13, 14, 15, 16, 17, 18, 19]
Pruned 1.3 3.8 -94.05
+ FT 45.84 40.48 40.37

Iterative
COMET [7, 9, 24, 3, 28, 6, 15, 18]

Pruned 21.1 27.25 28.26
+ FT 51.85 46.36 58.64

chrF [7, 25, 3, 4, 29, 15, 26, 20]
Pruned 42.52 36.92 39.42
+ FT 53.05 47.23 56.72

Table 5: Comparison between middle-layer pruning and iterative layer pruning, with either COMET or
chrF/chrF++ as the metric for measuring layer importance. Iterative layer pruning, i.e. removing layers one
by one, and then evaluating the resulting model, outperforms middle-layer pruning. In particular, when chrF/chrF++
is used for layer importance evaluation, the resulting pruned model achieves better speech translation quality after
fine-tuning on the ACL 60/60 dataset.

4.3 Iterative vs Middle Layer Pruning

In this section, we compare two common ap-
proaches to layer-wise pruning, namely iterative
layer pruning and middle-layer pruning. Moreover,
we compare using chrF/chrF++ and COMET for
layer importance evaluation during iterative layer
pruning. In all cases, we only work on decoder
layers (cf. Section 4.2).

As discussed in Section 3.3, we experimented
with iterative pruning based on layer importance
evaluation to identify and remove the layers that
contribute least to translation quality. In contrast, in
middle-layer pruning, we simply remove the 8 mid-
dle layers of the model, namely layers 12 through
19 out of the 32 decoder layers of the model.

Since the bottom layers of a model are closer to
the input and the top layers are closer to the output,
it is possible that both the top layers and the bottom
layers are more important than the middle layers.
In practice, the impact on model performance after
pruning the middle layers varies across different
models (Sajjad et al., 2023).

In iterative layer pruning based on performance
evaluation (using chrF++ for German and chrF for
Chinese), the pruned layers are [1, 3, 9, 13, 19,
20, 27, 29] for German, and [3, 4, 7, 15, 20, 25,
26, 29] for Chinese. This shows a diverse layer
selection that is not concentrated solely in the mid-

dle. As Table 5 illustrates, iterative layer pruning
yields much better results than middle-layer prun-
ing. For example, when pruning 8 middle layers
of the English-to-Chinese model, the final eval-
uation scores of the resulting model are so low
across all metrics (BLEU: 1.3, chrF: 3.8, COMET
-94.05), compared to the scores achieved when the
same number of layers is iteratively removed based
on layer importance (BLEU: 42.52, chrF: 36.92,
COMET 39.42).

Moreover, we experimented with both using
chrF/chrF++ and COMET for evaluating pruned
models during the iterative process. Interestingly,
the final model obtained by using chrF/chrF++ for
layer importance evaluation achieves better results
(cf. Table 5). This might be due to the scientific
nature of the ACL 60/60 dataset, and it requires
future exploration with other datasets.

4.4 Immediate Recovery

In our main experiments, we fine-tuned the pruned
models only after completing the entire pruning
process (cf. Section 3.3). In order to understand
the effect of accompanying iterative pruning with
iterative recovery (Wibowo et al., 2025), we con-
ducted an extra experiment where we immediately
fine-tuned the model after each layer pruning iter-
ation. In other words, when pruning 8 layers, the

384



EN-DE EN-ZH Params Storage

Model Layers BLEU chrF++ COMET BLEU chrF COMET (B) (GB)

Pruned [8]
24/32

10.78 39.58 -44.4 42.52 36.92 39.42
6.78 13.55

+ Fine-tuned 32.16 60.39 39.08 53.05 47.23 56.72

Pruned [10]
22/32

4.54 26.33 -114.73 16.51 23.02 5.89
6.37 12.74

+ Fine-tuned 30.90 59.80 33.74 51.97 47.19 59.57

Pruned [12]
20/32

3.08 19.45 -154.69 5.97 10.14 -62.50
5.97 11.93

+ Fine-tuned 31.05 58.68 30.03 52.43 47.03 56.15

Pruned [16]
16/32

0.06 10.44 -182.25 1.99 4.26 -124.75
5.16 10.32

+ Fine-tuned 22.15 50.90 -6.92 47.33 42.13 42.51

Table 6: Comparison of iterative pruning of 8 decoder layers (which is the foundation of our pruning experiments)
against pruning 10, 12, and 16 decoder layers. We observe that the quality of German degrades much more rapidly
than that of Chinese, after pruning more than 8 layers. Moreover, pruning 16 layers from the Chinese model results
in notably worse performance compared to pruning only 8, 10, or 12 layers, even after fine-tuning. When iteratively
removing 16 layers from the German model, the removed layers are: [13, 3, 20, 9, 29, 1, 19, 27, 7, 26, 15, 18, 10,
17, 14, 30]. For the Chinese model, the removed layers are [7, 25, 3, 4, 29, 15, 26, 20, 24, 5, 10, 9, 27, 28, 18, 13].
The layers are listed from most to least important (left to right), according to the layer importance evaluation used in
our iterative pruning method. In this experiment, all 32 encoder layers are kept intact; therefore, the table reports the
remaining decoder layers as 24/32, 22/32, 20/32, and 16/32 encoder/decoder layers.

fine-tuning is performed 8 times, once after each
pruning step.

By the end of the process, the pruned layers for
German are [13, 1, 3, 17, 12, 4, 14, 21], based on
layer importance evaluation. These layers differ
from those selected when pruning without imme-
diate recovery (cf. Section 4.3), since fine-tuning
after each iteration changes the relative importance
of the remaining layers.

Model BLEU chrF++ COMET

pruned 10.78 39.58 -44.40
+ FT [after] 32.16 60.39 39.08

pruned 30.96 59.02 30.07
º FT [immediate] 31.67 59.76 36.13

Table 7: Comparison of fine-tuning after the end of the
pruning process (+ FT [after]) against immediate fine-
tuning after each pruning iteration (º FT [immediate]).
Fine-tuning only after completing the pruning process
achieves better final performance. The results are for
iterative pruning of 8 decoder layers from the English-
to-German model.

While this immediate recovery approach im-
proved evaluation scores of the pruned model, it did
not achieve performance gains over our standard
method of fine-tuning only once after complete

pruning. This might be due to overfitting caused by
fine-tuning several times on the small in-domain
dataset. Moreover, immediate recovery through
fine-tuning after each pruning iteration is much
more computationally intensive.

4.5 Pruning more layers
In our main pruning experiments (cf. Section 3.3),
we pruned only 8 layers based on layer importance
evaluation. We decided to experiment with prun-
ing more layers to explore the level to which a
model can be pruned while keeping a similar level
of translation performance. As Table 6 illustrates,
we compare pruning 8, 10, 12, and 16 layers. We
observe that the quality after pruning up to 12 lay-
ers and fine-tuning the pruned model on the ACL
60/60 dataset is close to pruning 8 layers. How-
ever, when pruning 16 layers, the quality starts to
degrade considerably. It is worth noting that the
results reported in Table 6 are only for the pruning
and initial fine-tuning steps, while Section 3.3 de-
scribes the whole process that involves knowledge
distillation, extra compression with quantization,
and further fine-tuning with QLoRA.

Pruning reduces storage footprint while acceler-
ating inference speed by approximately 20% and
40% when 8 and 16 layers are pruned, respec-
tively, compared to the unpruned baseline, after
full-parameter fine-tuning of both models on the
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English-to-German in-domain data. In contrast,
4-bit quantization as implemented in QLoRA re-
duces storage at the cost of inference speed. Given
that the shared task prioritized minimizing storage
requirements, we applied QLoRA to the pruned
model in the final fine-tuning stage. For deploy-
ment scenarios where inference speed is critical,
however, the pruned model can be fine-tuned with
standard LoRA instead of QLoRA to avoid quanti-
zation overhead.

4.6 Fine-tuning before/after pruning

It is common to fine-tune pruned models after
pruning (Kim et al., 2023). As we pruned 1/4 of
the decoder layers, obtaining valid translations for
German was not possible without further training
(cf. Table 2). Similarly, fine-tuning the teacher
model on in-domain data before pruning is espe-
cially recommended for downstream tasks (Li et al.,
2020).

4.7 Out-of-Domain Data Size

After layer pruning, we added more data for fine-
tuning the pruned model to recover the translation
quality of the teacher model. We mixed the in-
domain data (ACL 60/60), knowledge distillation
data, and out-of-domain data from the CoVoST2
dataset. We experimented with different sizes of
out-of-domain data, namely 10k, 50k, 80k and
100k randomly sampled segments.

Data Size BLEU chrF++ COMET

10k 37.83 63.84 48.90
50k 38.47 64.09 54.56
80k 40.24 65.04 54.75
100k 39.59 65.14 59.21

Table 8: Investigating the effect of the data sizes used
from the out-of-domain CoVoST2 dataset. Increasing
out-of-domain data from 10k to 50k or 80k improves the
translation quality on the English-to-German test split
of the ACL 60/60 dataset. When increasing the out-of-
domain data from 80k to 100k, this only improves the
COMET score, but not the BLEU and chrF++ scores.

As Table 8 shows, for English-to-German trans-
lation, increasing the data size from 10k to 50k and
80k segments improves the overall performance.
However, increasing the data size to 100k has di-
minishing returns, especially in terms of BLEU
and chrF++ scores, while it improves the COMET
score.

5 Inference and Evaluation

For inference, we use greedy generation by dis-
abling the sampling options. We apply the prompt
illustrated in Section 4.1. We use a batch size of 1,
and set the generation max length to 1024 tokens.

To evaluate our systems, we calculated BLEU
(Papineni et al., 2002), chrF++ (Popović, 2017),
as implemented in the sacreBLEU library7 (Post,
2018). While we use chrF++ for German, we use
raw chrF for Chinese, following the author of the
metric who noted that “the concept of Chinese
words is generally not clear” (Popović, 2017). For
semantic evaluation, we use COMET (Rei et al.,
2020).8 Table 1 and Table 2 report the results of
the main experiments. Moreover, we conduct an
ablation study (cf. Section 4) to investigate the ef-
fect of modifying some aspects of our experiments,
such as the baseline model, the pruning approach,
the number of pruned layers, and the data size.

6 Conclusions and Future Work

In this work, we showed that combining multiple
compression techniques enables substantial model
size reduction with minimal impact on speech trans-
lation performance. To conclude, QLoRA fine-
tuning with knowledge distillation achieved supe-
rior translation quality compared to layer pruning
alone, though with reduced model compression. To
achieve higher compression ratios while preserving
translation quality, we employed a combined ap-
proach using iterative layer pruning, quantization,
knowledge distillation, and multi-stage fine-tuning.
The code of our experiments is publicly available.9

In future work, we plan to explore adaptive com-
pression strategies that dynamically adjust pruning
levels and quantization precision based on real-
time deployment constraints such as memory limits
and latency requirements. Additionally, we aim to
evaluate our compression techniques across more
diverse datasets, including both authentic and syn-
thetic training data, to better understand the gen-
eralization capabilities of our approach. Given
that Qwen2-Audio-Instruct relies on text prompts
for generation, it would be interesting to investi-
gate retrieval-augmented generation with few-shot
prompting to improve the translation quality of
compressed models.

7https://github.com/mjpost/sacrebleu
8In particular, we used the “wmt20-comet-da” model.
9https://github.com/ymoslem/Model-Compression
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Abstract

This paper describes Charles University sub-
mission to the Simultaneous Speech Transla-
tion Task of the IWSLT 2025. We cover all
four language pairs with a direct or cascade ap-
proach. The backbone of our systems is the of-
fline Whisper speech model, which we use for
both translation and transcription in simultane-
ous mode with the state-of-the-art simultaneous
policy AlignAtt. We further improve the per-
formance by prompting to inject in-domain ter-
minology, and we accommodate context. Our
cascaded systems further use EuroLLM for un-
bounded simultaneous translation. Compared
to the Organizers’ baseline, our systems im-
prove by 2 BLEU points on Czech to English
and 13-22 BLEU points on English to German,
Chinese and Japanese on the development sets.
Additionally, we also propose a new enhanced
measure of speech recognition latency.

1 Introduction

In this paper, we describe the submission of the
Charles University (CUNI) system to IWSLT 2025
Simultaneous Speech Translation Task (Abdulmu-
min et al., 2025). Our system is built on top
of Whisper (Radford et al., 2022) with AlignAtt
(Papi et al., 2023) simultaneous policy. To achieve
higher translation quality, we apply beam search
and prompting for in-domain terminology. In our
end-to-end system for the Czech-to-English trans-
lation, we also exploit previous translations as a
context. For the translation into German, Chinese,
and Japanese, we adopted a cascaded approach con-
sisting of Whisper for English ASR and EuroLLM
(Martins et al., 2025) for translation. We validate
our systems’ latency in computationally unaware
simulation. Our Czech-to-English systems work
both in 2-second and 4-second latency regimes re-
quired by IWSLT 2025 (“low” and “high”). The
English-to-German, Chinese and Japanese systems
are available only in the high-latency regime of

4-5 seconds. For an overview of our systems, see
Table 1.

Our main goal in this submission is to cre-
ate a robust and straightforward implementation
that can be used in further research as well as
in many realistic use cases. We name the im-
plementation SimulStreaming and publish it at
https://github.com/ufal/SimulStreaming.

Among the strengths of our submitted sys-
tem is very high quality, because of using high-
performing foundation models, and very high mul-
tilinguality. Whisper allows direct translation from
99 speech source languages to English, and Eu-
roLLM allows English translation into 35 lan-
guages. Our systems are also adaptable; the
prompts and in-context learning allow injecting
specific in-domain terminology.

Moreover, although we primarily focus on com-
putationally unaware latency, our system is prac-
tically usable in real time only with feasible hard-
ware resources. It requires hosting Whisper large
1.6B parameters model and and the EuroLLM 9B
parameters model.

Our second goal is to evaluate the state-of-the-art
methods in combination. Our results show improve-
ments by 2 BLEU points on Czech to English over
the organizers baseline, and 13-22 BLEU points on
English to German, Chinese, and Japanese, which
highlights the effectiveness of our systems.

We conclude we have reached both goals. The
original contributions of this work is the Simul-
Streaming implementation and evaluation, and also
a new enhanced method for measuring ASR latency
using Continuous Levenshtein Alignment (see Sec-
tion 5.1).

2 Background

Whisper is among the top-performing ASR and
speech translation models for 99 languages. It
has the ability to use initial and context prompts,
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Cs-En En-{De,Zh,Ja}

Speech-to-text

model Whisper large-v3 Whisper large-v3
task translate to En transcribe En
beam yes no
prompt yes no
context yes no
simult. policy AlignAtt AlignAtt

+ Text-to-text

model - EuroLLM-9B-Instruct
prompt - yes
context - yes
simult. policy - LocalAgreement

Latency regime 2 seconds (“low”) yes no
4-5 seconds (“high”) yes yes

Table 1: Overview of CUNI systems submissions to IWSLT 2025 Simultaneous Speech Translation Task.

which makes it adaptable for in-domain terminol-
ogy. Works such as Macháček et al. (2023b) and
Wang et al. (2024) show that Whisper is adaptable
to simultaneous mode, although it is primarily de-
signed for offline mode. Whisper is available in
multiple model versions that differ in size and qual-
ity. We use the large-v3 model, which achieves the
highest quality.

AlignAtt (Papi et al., 2023) is a simultaneous
policy. Given an offline translation model, partial
source and previous target, it detects where to stop
generating the partial target, which is when the
most attended source frame by the decoder is be-
hind a threshold. Papi et al. (2023) shows that this
policy outperforms all previously proposed poli-
cies. Wang et al. (2024) later showed that AlignAtt
also works with Whisper.

LocalAgreement (Polák et al., 2022, 2023) is a
simultaneous policy that considers the target pre-
fixes of two subsequent updates, each processing
a newly incoming source chunk. It emits their
longest common prefix as confirmed and uses it in
forced decoding of the latter chunks.

Simul-Whisper (Wang et al., 2024) is an imple-
mentation of the simultaneous mode with Whisper
using AlignAtt. It is an extension of the original
OpenAI Whisper inference using the Torch deep
learning framework. Simul-Whisper supports only
ASR of speech that is segmented into individual
sentences, and computationally unaware simula-
tion, while the IWSLT 2025 Simultaneous Task
focuses on a more realistic case of unbounded
speech (Papi et al., 2025) without any explicit sen-
tence boundaries. On the other hand, Whisper-
Streaming (Macháček et al., 2023b) is our imple-

mentation of Whisper with the LocalAgreement
simultaneous policy and reprocessing the audio
buffer from the beginning with every incoming
source chunk, which is less computationally effec-
tive than AlignAtt. On the other hand, Whisper-
Streaming supports both computationally aware
and unaware simulations, as well as unbounded
speech. It integrates Silero VAD (Team, 2024) that
incrementally detects silence and non-voice sounds
vs. voice.

EuroLLM (Martins et al., 2025) is a recent large
language model for text-to-text translation between
35 EU and non-EU languages, including English,
German, Japanese, and Chinese. It is a decoder-
only model of the LLaMA family. We use its 9B pa-
rameter version with instruction tuning. It supports
a system prompt, which can be used to suggest the
domain, and a maximum context of 4096 tokens,
which spans over 10 minutes of English source and
German target of ACL 6060 (Salesky et al., 2023)
dev set reference (see estimation in Appendix A).
We use EuroLLM with the fast inference frame-
work CTranslate2. It enables fast computation and
efficient memory usage; however, it currently does
not provide access to attention weights. Therefore,
we can not apply the AlignAtt policy to EuroLLM,
so we use it with the LocalAgreement simultane-
ous policy, which is the best-performing policy that
does not require attention weights.

3 Direct Simultaneous Speech-to-Text
with Whisper and AlignAtt

Let us describe the process of simultaneous speech-
to-text processing, which we apply to direct Czech-
to-English translation and to English ASR in the
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cascaded system for English to German, Chinese,
and Japanese.

Our system uses our implementation called
SimulStreaming which merges the Simul-Whisper
AlignAtt policy with the Whisper-Streaming in-
terface to support unbounded speech processing.
Moreover, we extend the original Simul-Whisper
with the following enhancements. First, we added
support for the Whisper large-v3 model. Second,
in addition to transcription, we enabled transla-
tion. Then, to improve quality, we implement beam
search decoding. Finally, we incorporate support
for initial prompts and contextual information from
the preceding audio buffers.

Our simultaneous speech-to-text pipeline con-
sists of the prototypical processing steps that are
described in Papi et al. (2025), Section 3.1.

1. Audio acquisition.

2. Audio segmentation. Silero Voice Activity
Detection (VAD) iterator with the same de-
fault parameters as in Whisper-Streaming is
applied (minimum chunk size 0.04 seconds,
minimum non-voice duration 500 ms, voice is
padded with 100 ms). When VAD detects non-
voice in the 0.04-second chunk, the chunk is
discarded. When VAD detects voice, it holds
it until MinChunkSize1 seconds of voiced au-
dio accumulate, or until the end of voice is
detected. The accumulated voiced audio is
passed to the next step.

3. Speech buffer update. The incoming chunk,
which has MinChunkSize seconds if the end
of voice is not detected, or less otherwise, is
concatenated with the speech buffer.

4. Hypothesis generation. Whisper large-v3
model encodes the speech buffer and popu-
lates the decoder’s Key-Value cache with the
representation of the optional initial prompt,
previous context, and forced-decoded target
prefix. Then the model decodes the target as
long as the AlignAtt policy allows. If the cur-
rent chunk is not final, the decoding continues
until the most attended source frame is close
to the end of the audio, which is indicated
by the Frames parameter. In our proposed
beam search implementation, we decode until
the top beam hypothesis is attended behind
the threshold. In case the current chunk is

1We mark the system parameters that we tune with italics.

final, we decode until the last 4 frames, as the
Simul-Whisper authors propose.

5. Buffers selection. There are the following
four buffers in our implementation: (1) source
audio buffer, (2) forced decoding target buffer
that contains the stable part of the hypothesis
that was decoded from current audio buffer,
(3) context buffer, which is the transcript or
translation from the audio segments that were
pushed away from the audio buffer, and (4) ini-
tial prompt, for example a text that can contain
terminology or initiate the style of decoding.

If the audio buffer has the length of Buffer-
Length seconds or more, we remove the first
speech chunk from the source audio buffer.
At the same time, we move the text that was
decoded with the first chunk from the forced
decoding to the context buffer. If the initial
prompt and context are longer than MaxCon-
textLength, we trim the complete words from
the beginning. A parameter StaticPrompt
specifies whether the initial prompt is pushed
away with the context or not.

If finalization is triggered, that is, when the
source recording is finished, or when the end
of voice was detected, the buffers are cleared.

4 Simultaneous Translation with
EuroLLM

We implement EuroLLM simultaneous translation
using a chat template. We design a system prompt
asking the model to perform simultaneous inter-
preting at a conference and specifying the transla-
tion direction. The chat is followed by the user’s
message containing the source prefix, and by the
assistant’s reply that contains the previous target
prefix to continue. The chat is initiated with one
sentence pair as an in-context example because we
observed that without that, the model tends to pro-
duce text that is not a translation, especially for a
short source.

Our simultaneous translation consists of steps
that are analogous to the prototypical ones in Papi
et al. (2025):

1. Source acquisition: The punctuated text pro-
duced by the simultaneous Whisper English
ASR.

2. Segmentation: Because we assume compu-
tational unaware mode and English as the
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source language, we segment the source into
individual words by spaces. A parameter
MinChunkSize specifies the number of new
words in each update.

3. Buffer update: The newly incoming source
words are appended to the previous source.

4. Buffer trimming: In our initial experiments,
we observed that the model tends to halluci-
nate with larger context. Therefore, we trim
the source-target buffer if it has more tokens
than MaxContextLength. We apply one of the
two buffer trimming strategies:

(a) Sentences: Detect sentences by punc-
tuation in the source and target, trim
the first sentence in the source and tar-
get, while the context length is too large
and there is at least one sentence left in
each buffer. This strategy assumes that
there is a one-to-one correspondence be-
tween the source and target sentences.
This strategy seems to be sufficient for
English-to-German translation, but not
for English to Chinese and Japanese.

(b) Segments: The source-target buffer con-
tains the source-target pairs as they were
received and generated, including empty
targets. If the buffer is too long, one pair
is trimmed. Although the buffer is not
completely parallel and the source is typi-
cally more ahead, this strategy appears to
be more optimal for English-to-Chinese
and Japanese translations than Sentences.
Additionally, this strategy does not re-
quire processing a slow parallel word-
alignment model.

5. Hypothesis generation: The source and target
buffers are transformed into the chat tokens
as described above. EuroLLM’s reply is gen-
erated. The new target prefix is compared to
the one from the previous update, and their
longest common prefix (LocalAgreement pol-
icy) is considered as a newly confirmed hy-
pothesis. The unconfirmed hypothesis suffix
is held for confirmation with the following
update.

5 Development

Dev sets For English-to-German, Chinese, and
Japanese translations, we use the ACL6060 de-

velopment set as provided by the IWSLT organiz-
ers. For Czech-to-English translation, we use the
IWSLT 2025 dev set. However, we found that the
ParCzech subset is segmented in this dev set, while
the 2025 test set will be unsegmented. Therefore,
we merged the subsequent segments from the same
speech. Since there were two very diverse subsets,
ParCzech and Robothon, we selected the final can-
didate based on the average of quality scores on
the merged ParCzech and Robothon. Finally, to
meet the shared task conditions, we filtered out the
candidates that did not meet the latency criteria on
the unsegmented dev set.

MT metric We selected the primary candidates
using ChrF because ChrF tends to be more reliable
than BLEU in simultaneous translation (Macháček
et al., 2023a).

Translation Latency For translation latency, we
use the StreamLAAL metric (SLAAL, Papi et al.,
2024) as proposed by IWSLT organizers. For En-
glish ASR latency, we use the following algorithm.

5.1 ASR Latency with Continuous
Levenshtein Alignment

We propose an improvement of the algorithm for
the average word latency of the ASR. We call it
“ASR Latency with Continuous Levenshtein Align-
ment.” The improvement over existing methods
stems from (1) the more accurate character-level
alignment and (2) minimum edit distance align-
ment that prefers continuous sequences of edit op-
erations to prevent coincident alignment to deleted
or inserted segments that would contribute to unre-
alistic latency. The algorithm is as follows.

Assume a gold transcript with word-level times-
tamps and an ASR transcript where each word is
assigned its emission time.

First, create a dynamic programming matrix for
the Levenshtein minimum edit distance alignment
of the gold and ASR transcript at the character
level. Character-level alignment is more accurate
than word-level because it is more robust to mi-
nor deviations from the gold transcripts, such as
suffixes, when the other part of the word is cor-
rect. The disadvantage is computation and memory
complexity, which is quadratic, and therefore much
higher on characters than on words. However, we
were able to compute roughly 12 minutes of tran-
scripts in a feasible time. Longer transcripts can be
segmented.

392



gold t h e t a b l e
interrupted alignment t a b l e
edit operations C D D D D C C C C
continuous alignment t a b l e
edit operations D D D D C C C C C

Figure 1: Illustration of interrupted vs. continuous align-
ment of the ASR candidate “table” to the gold “the
table”. Both alignments have identical edit distance
(4 Deletions, 5 Copies), but the bottom one includes a
longer continuous sequence of Copies. The interrupted
alignment is incorrect.

Second, when generating the minimum distance
alignment, prioritize continuous sequences of Copy
or Substitute operations over interruptions with
Deletes or Inserts. The illustration is in Figure 1.
The reason is to prevent alignment to deleted seg-
ments too far ahead or behind, which would lead
to incorrect latency.

Third, convert aligned characters to the sequence
of aligned words. Fourth, for each word in the
transcript that is aligned to any gold word, estimate
its latency as the word’s emission time minus the
timestamp of its gold-aligned word. Fifth, report
the average word latency.

We publish an implementation of the ASR La-
tency with Continuous Levenshtein Alignment at

https://github.com/ufal/asr_latency.

6 Results

6.1 Czech-to-English Translation

For the Czech-to-English translation, we use the di-
rect speech translation with Whisper and AlignAtt
policy. First, we investigate the impact of Beams
and BufferLength. For that, we use a 30-minute
subset of the merged ParCzech dev set.

Beam search We set the MaxContextLength to
0, BufferLength to 25 seconds, Frames threshold
to 4, and MinChunkSize to 3 seconds. Table 2
contains MT quality scores with different Beams.
We observe a ChrF score improvement by 1.04
with 5 beams compared to 1. With Beams 4 and 8,
we observe analogous gains, with maximum at 5
beams. The latency (SLAAL) decreases negligibly
with higher beams.

Buffer Length Then, we investigated the Buffer-
Length parameter. The setup is the same as with
beam search, except that we set MinChunkSize to
1.75 seconds and Frames to 4. Table 3 shows the

Beams 1 2 6 5
ChrF 48.03 48.77 48.89 49.07
SLAAL 2373 2393 2308 2285

Table 2: Impact of beam search on MT quality (ChrF)
and latency (SLAAL) in milliseconds.

BufferLength 15 20 25 28 30
ChrF 47.65 48.09 48.24 48.67 48.78
SLAAL 2698 2627 2830 2920 2928

Table 3: Impact of BufferLength on MT quality (ChrF)
and latency (SLAAL) in milliseconds.

results. Maximum quality is with BufferLength
30 seconds. We observe analogous results with
Frames set to 80.

Therefore, we further set BufferLength to 30 sec-
onds.

Grid search Then, we perform grid search to find
the optimal MinChunkSize, Frames, and Beams pa-
rameters to meet the low-latency threshold of the
IWSLT 2025 Simultaneous task, which is below
SLAAL 2000ms, and the high-latency threshold be-
low 4000ms SLAAL. For that, we used the merged
ParCzech and Robothon portions of the dev set,
and we averaged their ChrF score. We found 4 can-
didates for the low-latency regime that were near
2000 SLAAL. Their scores are in Table 4. For high
latency, we selected one candidate.

Prompt and Context We experimented with
MaxContextLength, which can be between 0 and
255 tokens, as Whisper’s documentation suggests,
and Prompt, which can be any text that initiates de-
coding. Moreover, the prompt can be StaticPrompt,
which stays at the beginning of decoding for all
buffers, or NonStaticPrompt, which means it is
pushed away by context that reaches maximum

MinChunkSize Frames ChrF SLAAL
1.2 25 49.72 1715
1.4 35 49.75 2091
1.6 25 49.83 2166
1.4 30 49.83 2067
1.8 25 49.93 2636

Table 4: Pre-selected top candidates for low latency
(upper part of table, with SLAAL near 2000) and high
latency (lower part) by average ChrF on the merged
ParCzech and Robothon portions of the dev set. All of
them are with 2 Beams.
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length.
We optimize for two subsets of the Czech-to-

English test set in IWSLT 2025: the native Par-
Czech subset, and the non-native subset for which
we have no other information. We assume that
the ParCzech are speeches from the plenary ses-
sions of the Chamber of Deputies, Parliament of
the Czech Republic, similarly to the dev set. We
noticed a specific terminology that the Whisper
model is not aware of. For example, the terms
“Chamber of Deputies,” “deputy,” and “chairman”
are often missing. They are alternated with terms
such as “Senate”, “MP”, “Ambassador”, and “Pres-
ident”, which are wrong in the ParCzech domain.
Therefore, we attempted to inject these terms via
prompting.

We proposed 13 prompts, 9 of which were spe-
cific to the ParCzech, and 4 of them were gen-
eral, applicable to any domain. We evaluated these
prompts on the ParCzech portion of the dev set with
all static or non-static prompts and varying context
lengths. We discovered that half of the prompts
increased the performance over the baseline, while
the other half decreased it.

In the end, the prompt “This is Chamber of
Deputies.” reached the highest quality score. We
use this as the static prompt for the ParCzech do-
main with MaxContextLength 20 for high latency,
where it increased ChrF by 0.45, and with MaxCon-
textLength 250 for low latency, where it increased
ChrF by 0.61. For the general domain, we use no
context and no prompt for the high latency, and
the non-static prompt “He starts.” with MaxCon-
textLength 250 for the low latency, as it gained
0.24 ChrF improvement. Table 5 summarizes our
observations.

Comparison to the IWSLT 2025 Baseline Al-
though we do not consider validation on the seg-
mented dev set as the most relevant for evaluation
on unbounded speech, which is the primary ob-
jective in the IWSLT 2025 Simultaneous task, we
validate our primary candidate on the segmented
dev set and compare it to the IWSLT 2025 organiz-
ers’ baseline. Their system that reached the highest
BLEU score while having SLAAL below 4000
(high latency) was a cascade system with Whisper
ASR and M2M100 MT (Fan et al., 2021). Similarly,
their top-scoring system for the low-latency regime
was the SeamlessM4T (Seamless Communication
et al., 2023) direct speech translation model with
VAD Segmenter. The scores are compared in Ta-

low high
baseline ChrF 49.67 49.78
context 0 0
prompt - -
ChrF 50.28 50.23
context 250 20
prompt ParCzech, static ParCzech, st.
ChrF 49.91 49.78
context 250 0
prompt general, non-st. -

Table 5: ChrF on the merged ParCzech portion of the
dev set with the top performing prompt and context
setup with the prompt adapted to the ParCzech domain
(middle section of the table), or a general prompt (lower
section).

BLEU ChrF SLAAL
baseline low 15.16 - 1777
our low 18.49 48.51 1763
baseline high 16.63 - 3996
our high 18.83 48.86 2630

Table 6: Comparison of IWLST 2025 organizers’ base-
line on the segmented Czech-to-English dev set.

ble 6.
We conclude that in the Czech-to-English simul-

taneous translation, we outperformed the organiz-
ers’ baseline by 3.3 BLEU in the low latency and
by 2.2 BLEU in the high latency regime.

6.2 English ASR

We use Whisper with AlignAtt for simultaneous
English ASR. We set BufferLength to 30 sec-
onds (maximum). Since Whisper with AlignAtt
reached very high quality on the English ASR of
the ACL6060 domain with no prompt and no con-
text, we did not attempt to improve it with prompt
or context. We perform a grid search for the param-
eters MinChunkSize, Frames, and Beams. Unlike
for Czech to English, Beams set to 1 performed
the best in this case of English ASR. We validate
with ACL6060 English dev set in computational un-
aware mode, measuring latency with the algorithm
in Section 5.1.

Meanwhile, we validated the simultaneous trans-
lation of English to German with the gold tran-
scripts. Given the minimum translation latency, we
determined the span of latency for ASR in the cas-
cade to fit the high latency regime of IWSLT 2025
Simultaneous task. We selected the top-performing
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ref. Chunk Frame WER CER latency
#00 0.05 4 14.22 5.10 494
#10 0.15 4 13.33 4.75 596
#11 0.25 15 13.10 4.66 754
#12 0.25 20 13.09 4.63 845
#20 0.5 10 13.40 4.81 1037
#21 0.5 15 13.35 4.71 1149
#22 0.5 20 13.06 4.64 1262
#23 1.4 15 12.98 4.76 1389
#24 1.5 10 12.92 4.85 1461
#25 1.4 25 12.77 4.76 1522
#30 2.0 20 12.69 4.77 2143

Table 7: Selected top performing English ASR candi-
dates with various latency levels. We report % WER
(range 0%-100%, the lower, the better), % CER, and
latency in milliseconds on ACL6060 English dev set.
The first column “ref.” is a reference under which we
will refer this ASR candidate.

ASR systems from the grid search with various la-
tency levels, each roughly 100 milliseconds from
the others. The scores are in Table 7. We observe
very high ASR quality, around 5% CER (character
error rate.

When we looked at the differences in the ASR
and gold transcripts, we noticed that the differences
are often not errors but a consequence of unspeci-
fied orthographical conventions, for example, swap-
ping numerals and digits, capitalization of titles,
use of quotation marks, etc. We also noticed that
named entities and acronyms tend to be more often
incorrect with small MinChunkSize than with large.
This is an expected consequence of shorter context.

6.3 English to German, Chinese, and
Japanese

The text-to-text simultaneous translation compo-
nent of our cascade has the parameters MinChunk-
Size, MaxContextLength, and BufferTrimmingStrat-
egy. We do not tune the system prompt nor the
in-context example because we do not presume to
have any further background information about the
content to be translated.

Latency regime First, we processed English-to-
German translation with gold ASR. We realized
that the lowest possible latency, with MinChunk-
Size 1 and MaxContextLength 300, is 2471 SLAAL,
which means that we can not fit under the low-
latency threshold of 2000 SLAAL. We can target
only the high-latency regime that requires SLAAL
under 4000. Furthermore, we observed a lower

context BLEU ChrF SLAAL
300 39.84 67.88 2472
500 39.71 67.44 2461
700 16.24 48.54 < 0

1000 34.51 61.35 < 0

Table 8: English to German scores with gold ASR in-
put, MinChunkSize 1, and various MaxContextLength.
The scores are on ACL6060 dev set with 5 documents.
SLAAL scores less than zero (< 0) indicate hallucina-
tions in at least one document.

quality score with MaxContextLength 500 than
with 300, and even lower performance with longer
context due to hallucinations, mostly repetitions
of long sentences. The results are summarized in
Table 8.

Buffer Trimming Strategy We observed
many hallucinations with English-to-Chinese
and Japanese with the buffer trimming strategy
Sentences, because the assumption of matching
number of source and target sentences was wrong.
The buffer often contained only one source
sentence and many short sentences in Chinese or
Japanese. However, there were no hallucinations
when we applied the Segments strategy instead.

Primary Candidates Finally, we performed
a grid search with MinChunkSize, MaxCon-
textLength, and the ASR candidates, and found
the best ChrF scoring setup on the dev set that met
the high-latency criterion. See results in Table 9,
where we also compare to contrastive systems and
the organizers’ baseline.

We observe high improvement on each language
pair, nearly 13 BLEU points on English to Ger-
man, 22 BLEU on Chinese, and 18 BLEU point
on Japanese. We presume that the baseline was
not very strong, likely due to hallucinations of the
SeamlessM4T model.

7 Conclusion

In this paper, we presented our submission to the Si-
multaneous Speech Translation Task of the IWSLT
2025. Using the combination of the direct ap-
proach for Czech-to-English translation and the
cascaded approach for English to German, Chinese,
and Japanese, we cover all language pairs of the
task. To leverage the strong offline Whisper speech
model and the large language model EuroLLM, we
applied state-of-the-art onlinization techniques and
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BLEU ChrF SLAAL ASR latency

EnDe
baseline 25.64 - 3464 -
ASR #25, chunk 1, context 300 38.46 66.59 3934 1522
ASR gold, chunk 1, context 300 39.84 67.88 2472 0

EnZh
baseline 23.96 - 3275 -
ASR #22, chunk 1, context 100 46.44 40.05 3698 1262
ASR #11, chunk 3, context 100 49.91 43.08 5449 754

EnJa baseline 16.19 - 3662 -
ASR #22, chunk 2, context 200 34.69 42.89 4654 1262

Table 9: High-latency simultaneous translation results for English to German, Chinese, and Japanese on ACL6060
dev set compared to the IWSLT 2025 organizer’s baseline and the contrastive systems (grey background). The
English-to-German contrastive system uses gold ASR. The English-to-Chinese one does not meet the SLAAL high
latency limit of 4000 ms.

further advancements such as prompting for con-
text and domain adaptation. Our systems achieve a
substantial improvement of 2 to 22 BLEU points
over the IWSLT Organizers’ baseline. Moreover,
we propose a new robust approach to measure
speech recognition latency.
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A Maximum Context Duration of
EuroLLM

How long is the maximum context of EuroLLM
in simultaneous mode, expressed in duration of
long-form speech?

Consider the ACL6060 dev set reference in En-
glish, German, Japanese, and Chinese. It consists
of five recordings with an average duration of 11.5
minutes. The average number of tokens per record-
ing with the EuroLLM tokenizer for English, Ger-
man, Japanese, and Chinese is in Table 10.

EuroLLM has a maximum context length of
4096 tokens. If the context contains parallel text in
the source and target language, which is x-times
English tokens plus x-times target tokens, and they
sum up to 4096, x is the maximum proportion of
recording that fits into the context. Considering av-
erage recording, EuroLLM is able to fit a maximum

of 10.5 minutes of English to German translation,
10.7 minutes of English to Chinese, or 10.0 minutes
of English to Japanese.
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language En De Zh Ja
tokens per avg. recording (11.5 minutes) 1 963 2 550 2 423 2 637
proportion of avg. recording in context 1.04 0.91 0.93 0.87
max duration in context [minutes] 11.96 10.5 10.7 10.0

Table 10: Estimation of maximum context duration of EuroLLM translation from English to German (De), Chinese
(Zh), and Japanese (Ja), considering 11.5 minutes of average ACL6060 recording, and 4096 maximum context
tokens containing the same content of the source and target.
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Abstract

This paper presents the methodologies im-
plemented for Spoken Language Translation
for the language pairs Hindi-English, Bengali-
English and Tamil-English for the Low Re-
source Multilingual Indic Track of The Interna-
tional Conference on Spoken Language Trans-
lation (IWSLT) for 2025. We adopt a cas-
caded approach and use a fine-tuned Phi-4 mul-
timodal instruct model for Automatic Speech
Recognition(ASR) and a fine-tuned NLLB
model for Machine Translation(MT). Finally,
we discuss targeted solutions (e.g. data aug-
mentation, multilingual training, targeted fine-
tuning) to boost low-resource translation, not-
ing that significant retraining on additional
Tamil data is likely needed.

1 Introduction

India is home to an incredibly diverse linguistic
landscape, with over 100 officially recognized lan-
guages and thousands of dialects spoken across its
vast geographic and cultural expanse. This lin-
guistic richness reflects the countrys deep-rooted
cultural heritage and regional diversity, but it
also presents considerable challenges for Natural
Language Processing (NLP) applications, particu-
larly for tasks like Automatic Speech Recognition
(ASR) and Machine Translation (MT).

Unlike monolingual or relatively linguistically
homogeneous countries, India’s multilingualism
requires NLP systems to handle a wide variety
of linguistic variations from phonetic and gram-
matical differences to script variations and region-
specific vocabulary. ASR systems must account
for varied accents, pronunciation patterns, and
speech styles, while MT systems are required to
preserve contextual accuracy and fluency across
structurally and syntactically diverse language
pairs.

This diversity becomes even more complex due
to situations like speakers alternate between lan-

guages mid-sentence, highly inflected words and
complex verb conjugations, and lexical words
from one language are integrated into another.
Such features are common in Indian speech and
text, making the development of robust, general-
izable ASR and MT models particularly challeng-
ing.

Despite these obstacles, these technologies are
crucial for millions of Indians who do not speak
English or other dominant languages. ASR and
MT systems can help bridge the communication
barrier, enabling equal access to information, dig-
ital services, and opportunities across Indias di-
verse population.

The "Low Resource Multilingual Indic" track
proposed by IWSLT 2025 tasked participants with
developing innovative methods to work with the
sparse and varied resources available for three In-
dian languages: Hindi, Bengali, and Tamil. The
participants were required to submit under various
different conditions constrained or unconstrained,
end-to-end or cascaded, and monolingual or mul-
tilingual. Our team participated under the uncon-
strained, cascaded, and monolingual category for
the language pairs Hindi to English, Bengali to En-
glish, and Tamil to English. This paper outlines
the implementation of our ASR and MT systems
designed for these language pairs.

2 ASR

2.1 Datasets

2.1.1 SpringLab/Hindi-1482hrs

The dataset contains 1,482 hours of quality Hindi
audio, and is specifically built for performing ASR
tasks.

• Curated by: SPRING Lab

• Language: Hindi
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2.1.2 AI4Bharat/SeamlessAlign 1

BhasaAnuvaad (Jain et al., 2024), is the largest
Indic-language AST dataset spanning over 44,400
hours of speech and 17M text segments for
13 of 22 scheduled Indian languages and En-
glish. This repository consists of parallel data for
Speech Translation from SeamlessAlign, a subset
of BhasaAnuvaad. The dataset contains 5 sepa-
rate splits for different languages namely: Hindi,
Tamil, Telugu, Kannada and Urdu, out of which
only the Hindi split is used for training the model.
Although it is an AST dataset , to perform finetun-
ing for ASR task, we utilized the audio and the
transcription column.

• Curated by: AI4Bharat

• Language: Hindi

2.1.3 SKNahin/open-large-bengali-asr-data 2

This is a collection of publicly available ASR
data for Bengali. It contains 5000 hours of
audio. The dataset is divided into 9 different
splits namely: commonvoice (Ardila et al., 2020),
openslr (Panayotov et al., 2015), madasr, shru-
tilipi (Bhogale et al., 2023), kathbath (Javed et al.,
2022), fleurs (Conneau et al., 2022), indictts (Con-
neau et al., 2022), ucla and gali, out of which
only the commonvoice and ucla split were used
for training. We have a filtering column called
is-better to filter good-quality audio from the cor-
pus. It is set based on the wer between original
transcription and prediction taken from a Bengali-
Wav2Vec2 model and word-per-second (wps).

• Curated by: SKNahin

• Language: Bengali

2.1.4 Prajwal-143/ASR-Tamil-cleaned 3

This dataset is a combination of the Common
Voice 16.0 and Open SLR datasets which is of 534
hours. It has been meticulously curated, normal-
ized to a 16kHz sampling rate, and cleaned for bet-
ter usability. This dataset aims to provide a com-
prehensive collection of speech data for various
applications, including speech recognition, natu-
ral language processing, and machine learning re-
search.

1https://huggingface.co/datasets/ai4bharat/
SeamlessAlign

2https://huggingface.co/datasets/SKNahin/
open-large-bengali-asr-data

3https://huggingface.co/datasets/Prajwal-143/
ASR-Tamil-cleaned

• Curated by: Prajwal N. Pharande

• Language: Tamil

2.2 Training

In our submission, we have fine-tuned the Phi-4
Multimodal Instruct(5.57B) (Marah Abdin, 2024)
to obtain three fine-tuned models for ASR Hindi,
Bengali and Tamil.

The following hyper-parameters were used dur-
ing training of all the models:

• Train Epochs: 1

• Learning Rate: 4.0e-5

• Batch Size: 8

• Gradient Accumulation Steps: 4

• Optimizer: Paged Adamw 32-bit with be-
tas=(0.9,0.999)

• LR scheduler type: cosine

• LR scheduler warmup steps: 1000

• Weight Decay: 0.01

• Max Grad Norm: 1.0

We trained the Hindi model for a total of 28263
steps on the SpringLab/Hindi-1482 hrs dataset
and 31911 on the AI4Bharat/SeamlessAlign (Jain
et al., 2024) dataset, the Bengali model for a to-
tal of 30113 steps on the commonvoice (Ardila
et al., 2020) split and 60035 steps on the ucla split
for SKNahin/open-large-bengali-asr-data dataset,
finally the Tamil model for a total of 7018 steps on
the Prajwal-143/ASR-Tamil-cleaned dataset. We
trained the model only for 1 epoch to avoid over-
fitting

2.3 Evaluation

The Evaluation results for all the three
models were performed on the mozilla-
foundation/common-voice-17-0 (Ardila et al.,
2020) 4 dataset (test split). The scores for the ASR
are recorded in terms of WER and CER, listed in
Table 1

4https://huggingface.co/datasets/
mozilla-foundation/common-voice-17-0
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Language WER CER
Hindi 0.15156 0.06526
Bengali 0.21968 0.06288
Tamil 0.41953 0.07078

Table 1: Scores for the ASR in terms of WER and CER.

2.3.1 ASR Performance

The ASR outputs were passed to the MT stage.
Errors in ASR propagate to MT, so ASR accuracy
is critical. ASR errors included substitutions (e.g.,
similar-sounding words), deletions (inflectional
suffixes), and insertions (extra syllables). Tamil
had the highest WER, indicating more ASR errors.

The relatively high WER for Tamil ASR (over 0.4)
can be attributed to the limited training dataonly
about 200 hours were available for Tamil, in
contrast to over 1,000 hours used for Hindi and
Bengali. Furthermore, the Phi-4 base model used
does not offer native support for Indic languages,
which meant the performance for Tamil relied
solely on the quality of fine-tuning.

To assess the generalization ability of our
ASR models and avoid overfitting, we chose to
train all language models for only one epoch.
For Hindi and Bengali, which had large training
sets, this approach provided sufficient exposure
while maintaining regularization. Although this
uniform strategy may have under exploited the
Tamil dataset, it allowed us to clearly isolate data
volume as a primary variable in performance.

3 MT

3.1 Datasets

3.1.1 SPRINGLab/shiksha 5

This is a Technical Domain focused Translation
Dataset for 8 Indian Languages. It consists of
more than 2.5 million rows of translation pairs be-
tween all 8 languages and English.

This data has been derived from raw NPTEL
documents. More information on this can be
found in our paper: (Joglekar and Umesh, 2024)

5https://huggingface.co/datasets/SPRINGLab/
shiksha

3.1.2 SPRINGLab/BPCC-cleaned 6

A curated subset of Bharat Parallel Corpus Collec-
tion (BPCC) for 8 Indian languages. Translation
pairs are filtered with LABSE score(>0.9) and fur-
ther preprocessed. Useful for training high-quality
translation models.

3.2 Training
For the Machine Translation of the transcriptions
generated by the ASR model, we are using a
fine-tuned NLLB model (3.3B) (NLLB Team,
2022) trained on the Shiksha (Joglekar and
Umesh, 2024) and BPPC cleaned (English→Indic,
Indic→Indic) dataset in both directions. The fine-
tuned model is then used to translate transcriptions
obtained through Whisper (Radford et al., 2022),
Phi-4 multimodal instruct (Marah Abdin, 2024),
and Data2Vec (Alexei Baevski, 2022).

Following were the training arguments that
were used to fine-tune both the NLLB models:

• Learning Rate: 5e-5

• Batch Size: 8

• Weight Decay: 0.01

• Train Epochs: 5

4 Evaluation

The Evaluation results for the models were
performed on the facebook/flores dataset
(NLLB Team, 2022) (Goyal et al., 2021) (Guzmán
et al., 2019). The scores for the MT are recorded
in terms of Chrf++ and BLEU, listed in Table 2

4.0.1 Qualitative Error Analysis
Unlike purely numerical metrics like BLEU or
WER, qualitative error analysis explores what
kinds of errors the models make and helps iden-
tify patterns that can guide targeted improvements.
We also analyzed how metric-based evaluation can
sometimes fail to reflect semantic adequacy due to
stylistic or lexical variation.

The figure 1 below shows a few examples of
English-Hindi translation tasks where the BLEU
scores are low despite reasonably acceptable trans-
lations:

These examples show that even when transla-
tions preserve meaning, surface-level metrics may
penalize valid variations. Incorporating semantic

6https://huggingface.co/datasets/SPRINGLab/
BPCC_cleaned
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Figure 1: Sentence-level MT evaluation for Hindi, Tamil, and Bengali examples showing BLEU and chrF scores.

Language Chrf++ BLEU
Hindi-English 0.83 0.62
Bengali-English 0.55 0.41
Tamil-English 0.79 0.85

Table 2: Datasets used for Evaluating the MT Models.

similarity metrics or human judgment could pro-
vide a more robust evaluation framework.

5 Final Evaluation

After Fine-tuning and evaluating the ASR and MT
model separately, we conducted a final evalua-
tion to test how the models were performing col-
lectively with models namely: whisper-large-v2,
data2vec-aqc7 and NLLB. We cascaded the fine-
tuned Phi-4 multimodal instruct (Marah Abdin,
2024) with NLLB and our fine-tuned NLLB model
(3.3B), whisper-large-v2 (Radford et al., 2022)
with NLLB (NLLB Team, 2022) and our fine-
tuned NLLB model (3.3B) and data2vec-aqc with
NLLB and our fine-tuned NLLB model (3.3B),

The metrics used for the evaluation were BLEU
and chrf++, the results for the Bengali to English
translation are listed in Table 3

6 Results

On final evaluation on the IWSLT 2025 leader-
board, with chrf as the ranking metric, we find that
we perform the best on Indic to English transla-
tions, achieving first place for both Hindi to En-
glish and Bengali to English, and achieving sec-
ond place for Tamil to English. However, we rank
last on English to Indic evaluation. Our Evaluation

7https://huggingface.co/SPRINGLab/data2vec_aqc

ASR MT chrf++ BLEU
whisper FT NLLB 52.5917 18.3550
whisper NLLB 44.7125 16.7514
Data2vec-aqc FT NLLB 53.3732 21.0471
Data2vec-aqc NLLB 44.1628 16.3213
FT Phi-4 FT NLLB 55.2648 22.9005
FT Phi-4 NLLB 47.3048 18.3701

Table 3: Final Evaluation results for the cascaded mod-
els on Bengali to English translation task, whisper de-
notes the base model whisper-large-v2 (1.54B) , F de-
notes fine-tuned model,

results are listed in Table 4 .

6.0.1 Several factors likely contributed to the
low English-Indic performance:

• Data Imbalance: While the IndicEnglish di-
rection had sufficient high-quality training
data, the EnglishIndic direction, particularly
EnglishTamil, suffered from limited parallel
corpora. For our MT model, we had in-
creased the number of Indic-Indic corpora by
leveraging parallel translations of the same
sentence across various Indian languages.
Therefore, our MT model had a much better
understanding with regard to Indic languages.
Same is reflected in the result, where Indic-
English is performing well during evaluation.
This constrained the model’s ability to gener-
alize.

• Limited Training Epochs: The ASR model
was trained for only one epoch to avoid over-
fitting, which may have led to undertraininge-
specially problematic in already low-resource
settings (e.g Tamil).
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Task chrf++ BLEU
Bn-En 55.2648 22.9005
Hi-En 68.144 41.5874
Ta-En 42.0195 13.4667
En-Bn 60.8094 26.6685
En-Hi 62.3016 41.0865
En-Ta 62.3335 21.3543

Table 4: IWSLT 2025 leaderboard results for our cas-
caded models,

• Lack of Multilingual Transfer: Fine-tuning
was done monolingually. Multilingual fine-
tuning across related Indic languages could
have allowed knowledge transfer and im-
proved low-resource directions.

• Linguistic Complexity: Tamil’s rich morphol-
ogy and syntactic structure (e.g., SOV order)
increased the difficulty of accurate translation
from English without dedicated architectural
or preprocessing adaptations.

Together, these limitations explain the perfor-
mance gap between the two translation directions
and emphasize the need for multilingual strategies
and additional data in future work.

Conclusion

In this paper, we have presented our Speech Trans-
lation Systems for the low-resource Indic Lan-
guages track of IWSLT 2025 employing a cas-
caded ap- proach using fine-tuned models for both
ASR and MT. Moving Forward we will try to em-
ploy a SLAM-ASR (Ziyang Ma, 2024) based ap-
proach to our ASR model, to get better ASR re-
sults and try to train the models more on indic lan-
guages data to generalize better.
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Abstract

This paper presents HITSZ’s submission for
the IWSLT 2025 Indic track, focusing on
speech-to-text translation (ST) for English-to-
Indic and Indic-to-English language pairs. To
enhance translation quality in this low-resource
scenario, we propose an end-to-end system
integrating the pre-trained Whisper automated
speech recognition (ASR) model with Krutrim,
an Indic-specialized large language model
(LLM). Experimental results demonstrate that
our end-to-end system achieved average BLEU
scores of 28.88 for English-to-Indic directions
and 27.86 for Indic-to-English directions.
Furthermore, we investigated the Chain-of-
Thought (CoT) method. While this method
showed potential for significant translation
quality improvements on successfully parsed
outputs (e.g. a 13.84 BLEU increase for
Tamil-to-English), we observed challenges in
ensuring the model consistently adheres to the
required CoT output format.

1 Introduction

Speech-to-text translation plays a vital role in
overcoming language barriers in multilingual and
international contexts, such as real-time translation
during online meetings. Although translation
systems for high-resource language pairs have
achieved impressive performance, low-resource
language pairs, particularly those involving Indic
languages, continue to face significant challenges
(Radford et al., 2023; Joshi et al., 2020).

This paper presents HITSZ’s submission to the
Indic Track of IWSLT 2025, covering bidirectional
speech translation between English and three major
Indic languages: Hindi, Bengali, and Tamil. An
overview of the end-to-end system is illustrated in
Figure 1.

*Corresponding author

Data scarcity poses a significant challenge for
speech translation (ST) between English and Indic
languages, primarily due to the low-resource
nature of these language pairs and the reliance on
data-driven neural models (Ahmad et al., 2024).
Acknowledging this, we collected available parallel
corpus from the official IWSLT data releases for
effective end-to-end ST model training.

Cascade and end-to-end (E2E) systems represent
two prominent paradigms in ST, each offering
distinct advantages (Ney, 1999; Mathias and Byrne,
2006; Bérard et al., 2016). While cascaded
systems typically achieve higher translation quality
(Agarwal et al., 2023), E2E systems are favored
for their lower latency and reduced modeling
complexity (Ahmad et al., 2024; Xu et al.,
2023). This work focuses exclusively on the
end-to-end paradigm for the bidirectional speech
translation task. We adopt an unconstrained setting
and utilize state-of-the-art pre-trained models,
including Whisper (Radford et al., 2023) and
Krutrim (Kallappa et al., 2025), to develop E2E
systems for both English-to-Indic and Indic-to-
English directions. Although additional resources
such as the IndicVoices (Javed et al., 2024) dataset
are available, we deliberately exclude them due to
concerns about potential overlap with the test set.

The remainder of this paper is structured as
follows: Section 2 reviews related work on speech
translation, particularly in low-resource and Indic
language settings. Section 3 describes the datasets
and data pre-processing. Section 4 introduces
our end-to-end system. Section 5 presents the
experimental settings, results, and analysis. Lastly,
Section 6 concludes the paper.

2 Related Work

Recent advances in end-to-end speech translation
(ST) have demonstrated the effectiveness of
combining large pre-trained models with task-
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specific adaptation (Wang et al., 2017; Bérard
et al., 2018; Bansal et al., 2019; Wang et al., 2020;
Alinejad and Sarkar, 2020), especially in low-
resource and multilingual settings (Marie et al.,
2019; Sun et al., 2020; Tsiamas et al., 2024; Li
et al., 2025). Among them, several works stand
out for their innovative training paradigms and
architectural choices that have directly influenced
our approach. These include NICT’s submission
to IWSLT 2024 (Dabre and Song, 2024), which
leverages decoder-side fine-tuning of Whisper with
pseudo-labels from IndicTrans2 (Gala et al., 2023);
ZeroSwot, which introduces an encoder-centric
alignment method for zero-shot ST (Tsiamas et al.,
2024); and SALMONN, a multimodal framework
that uses a lightweight training pipeline to adapt
frozen encoders and LLMs through cross-modal
instruction tuning (Tang et al., 2024). In what
follows, we briefly review each of these works and
highlight their relevance to our system design.

2.1 NICT’s E2E ST System in IWSLT 2024

One of the most relevant works to our approach
is the IWSLT 2024 submission by NICT, which
developed end-to-end speech translation systems
for English to Hindi, Bengali, and Tamil. A
key contribution was their fine-tuning strategy
for Whisper: instead of using human-annotated
translations, they first fine-tuned IndicTrans2
to generate pseudo-translations from English
transcripts. These synthetic targets were then used
to train Whisper in a speech-to-text translation
setting, effectively distilling knowledge and
improving decoder performance beyond what
reference translations alone could achieve.

2.2 ZeroSwot

Another influential work is ZeroSwot, which
proposes a novel zero-shot end-to-end ST
framework by aligning speech representations with
the embedding space of a multilingual MT model.
In their setup, the speech encoder is initialized
from a CTC-finetuned wav2vec 2.0 model (Baevski
et al., 2020) and trained using a combination of
CTC loss and Optimal Transport loss (Graves
et al., 2006; Peyré et al., 2019). The goal is
to produce subword-level acoustic representations
that match those expected by a frozen multilingual
MT encoder (NLLB) (Team et al., 2022). In
addition, a compression adapter (Liu et al., 2020) is
introduced to map variable-length audio sequences
into subword-aligned embeddings, bridging both

length and representation mismatches between
modalities. In contrast to NICT’s decoder-focused
fine-tuning, ZeroSwot emphasizes encoder-side
alignment, enabling zero-shot translation without
requiring any parallel ST data.

2.3 SALMONN
We also take inspiration from SALMONN, a
multimodal framework that integrates Whisper
and BEATs (Chen et al., 2023) encoders with
a large language model (Vicuna) (Chiang et al.,
2023) to enable general auditory understanding
across speech, audio events, and music. Although
SALMONN targets a broader set of audio-language
tasks beyond ST, its modular design and training
strategy are particularly relevant. SALMONN
adopts a three-stage training pipeline—pre-training
(Zhu et al., 2024), instruction tuning, and activation
tuning—where only lightweight modules (Q-
Former and LoRA adaptors (Li et al., 2023; Hu
et al., 2022)) are updated while the encoders and
LLM remain frozen. This design enables efficient
adaptation with minimal parameter updates. Our
work builds on this principle by leveraging pre-
trained components and applying modular fine-
tuning in a similarly efficient manner, tailored
to low-resource, bidirectional speech translation
between English and Indic languages.

3 Data

In this section, we present the statistics of the
initial corpora and describe our methods for pre-
processing the raw data.

3.1 Dataset

Direction Train Dev Test Total
Speech Hours

en→ bn 680.9 40.8 93.2 814.9
en→ hi 680.9 40.8 93.2 814.9
en→ ta 680.9 40.8 93.2 814.9
bn→ en 158.0 1.0 1.3 160.3
hi→ en 653.9 1.0 1.3 656.2
ta→ en 478.2 1.0 2.2 481.4

Table 1: Statistics of dataset for training, development,
and test sets. The abbreviations en, bn, hi, and ta stand
for English, Bengali, Hindi, and Tamil, respectively.

We rely solely on the corpus provided by
the organizers, with its statistics detailed above.
Although we did not incorporate any supplemen-
tary data, our model remains unconstrained by
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leveraging the pre-trained Whisper ASR model, the
Krutrim large language model, and adapters trained
specifically for the spoken language translation task
based on these two models. The audio segments
corresponding to textual sentences are extracted
from the original files based on the given offset and
duration details. Post-segmentation, each dataset
entry includes an audio clip in the source language,
its transcription, and a translation in the target
languages.

3.2 Pre-processing

We find that some audio clips in the English-to-
Indic corpus are very long, indicating a very large
consumption of GPU memory. To accelerate the
fine-tuning process, we separate the data with
English transcription length less than and above
400 characters, which allows us to increase the
batch size during the training process.

4 Method

Our model builds upon the Dhwani model (Shah
et al., 2025), which is trained for speech translation
tasks in Indic languages and is itself derived
from the SALMONN architecture. To effectively
process and align multimodal audio data with
textual outputs, the architecture integrates several
specialized components. For speech signals, it
leverages the Whisper speech encoder (WhisperSE)
to extract robust linguistic representations. In
parallel, non-speech audio inputs, such as
environmental sounds and music, are processed
using the BEATs encoder, which is optimized for
general audio understanding.

These two audio streams are subsequently
bridged to the language model via a Window-
Level Query Transformer (Q-Former), which acts
as a connection module to transform modality-
specific features into a unified representation
space. The transformed tokens are then passed
to the Krutrim LLM, a 7-billion-parameter
dense transformer model built on a multilingual
foundation and optimized for Indic language tasks.
Trained on a corpus of 2 trillion tokens with
extensive coverage of native Indian languages,
Krutrim demonstrates strong performance across
multilingual benchmarks in both Indic and English,
despite being relatively lightweight in terms of
training compute.

To enable efficient domain-specific adaptation
without retraining the entire model, Low-Rank

Adaptation (LoRA) is employed during fine-tuning.
This technique aligns the LLM’s outputs with the
semantics of the input audio, facilitating robust and
adaptable performance.

5 Experiments and Results

This section details the experimental setup and
presents the results for our monolingual speech
translation models, trained individually for each
translation direction. We follow the settings of the
Dhwani model, employing the Whisper-large-v2
model as the speech encoder and the Krutrim-1-
instruct model as the text decoder branch.

5.1 English-Indic Translation
For the English-to-Indic translation task, we
adopted a fine-tuning strategy where both the
WhisperSE and the BEATs audio encoders were
kept frozen. Training focused exclusively on the
Q-Former module, which connects the speech
encoder to the language model, and a LoRA adapter
integrated into the LLM branch. We configured the
LoRA adapter with a rank (r) of 8 and an alpha (α)
of 32.

The learning rate schedule commenced with a
linear warmup phase over the initial 3,000 training
steps, increasing from a base rate of 1e−6 to the
peak learning rate of 3e−5. Subsequently, the
learning rate followed a cosine decay schedule,
oscillating between the maximum rate (3e−5) and
a minimum rate (1e−5), before finally decaying to
the minimum rate of 1e−5.

Direction Dev Test

en→ bn 30.61 27.00
en→ hi 37.83 33.84
en→ ta 25.97 22.81

Table 2: BLEU scores on the development and test set
in English-to-Indic directions.

We initiated training using only the short audio
segments from our dataset. This allowed for
a larger batch size of 4, thereby accelerating
the training process. Models were trained
independently for three language pairs: English-to-
Bengali, English-to-Hindi, and English-to-Tamil.
For each pair, the checkpoint yielding the highest
BLEU score on the development set was selected
for subsequent incremental fine-tuning on the
dataset containing long audio segments. Detailed
results are presented in Table 2.
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Figure 1: Overview of the our end-to-end spoken language translation system.

5.2 Indic-to-English Translation

The experimental setup for Indic-to-English
translation largely mirrored the English-to-Indic
configuration. However, a key difference was the
absence of exceptionally long audio clips in the
Indic-to-English corpus. Consequently, we did not
employ the two-stage (short/long) training strategy
used for the English-to-Indic directions.

Recognizing that the Whisper model exhibits
comparatively lower performance on Indic lan-
guages than high-resource languages, we set the
WhisperSE module to be trainable for the first
epoch. Using a batch size of 1 with gradient
accumulation over 4 steps helped conserve GPU
memory while enabling updates to the WhisperSE,
aiming for improved feature extraction from Indic
audio inputs. The evaluation results are presented
in Table 3.

To mitigate the challenge of limited training
data and to better exploit the inherent bilingual
capabilities of the LLM, we explored the Chain-
of-Thought (CoT) prompting and fine-tuning
technique. Specifically, this approach involved fine-
tuning the model to first produce a transcription of
the speech in the source language, followed by the
English translation. Our findings indicate that the
automatic parsing of the generated responses for
the reliable extraction of the final translation output
was not consistently successful.

Our experiments on the development set
demonstrate that, on average, 66.54% of the
responses generated by our E2E system adhere
to the Chain-of-Thought (CoT) format constraints
and can be successfully parsed. For the subset of
responses that are parsable, results indicate notable
improvements in BLEU scores. Specifically, in the
Tamil-to-English translation direction, we observe
a significant BLEU score improvement of 13.84
points.

Direction Dev Test

bn→ en 25.38 25.02
hi→ en 31.71 39.29
ta→ en 20.93 19.27

Table 3: BLEU scores on the development and test set
in Indic-to-English directions.

Direction CoT Parsing
Success Rate BLEU Score ∆

bn→ en 68.18% 28.13 2.592
hi→ en 71.00% 38.49 6.780
ta→ en 60.43% 34.77 13.84

Table 4: Parsing success rate of Chain of Thought
responses in Indic-to-English directions; BLEU
scores of successfully parsed CoT responses on the
development set; and the corresponding BLEU score
improvements of the CoT method.

6 Conclusion

This paper presented HITSZ’s submission to the
IWSLT 2025 speech-to-text translation task in the
Indic track. We leveraged recent advancements
in Indic LLM by integrating the Whisper model
and the Krutrim model into our end-to-end
system. Future work will primarily focus on two
key directions: first, enhancing the instruction-
following capability of the specialized LLM for
Indic languages to facilitate the development of
a Spoken Language Translation system utilizing
the Chain-of-Thought (CoT) method; and second,
improving its generation capabilities in Indic
languages to boost performance in English-to-Indic
translation tasks.
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Abstract

This paper presents the outcomes of the shared
tasks conducted at the 22nd International
Workshop on Spoken Language Translation
(IWSLT). The workshop addressed seven crit-
ical challenges in spoken language transla-
tion: simultaneous and offline translation, au-
tomatic subtitling and dubbing, model com-
pression, speech-to-speech translation, dialect
and low-resource speech translation, and In-
dic languages. The shared tasks garnered sig-
nificant participation, with 32 teams submit-
ting their runs. The field’s growing impor-
tance is reflected in the increasing diversity
of shared task organizers and contributors to
this overview paper, representing a balanced
mix of industrial and academic institutions.
This broad participation demonstrates the ris-
ing prominence of spoken language translation
in both research and practical applications.

1 Introduction

The International Conference on Spoken Lan-
guage Translation (IWSLT) stands as the lead-
ing annual scientific conference dedicated to ad-
vancing all aspects of spoken language translation
(SLT). Operating under the auspices of the Spe-
cial Interest Group on Spoken Language Trans-
lation (SIGSLT), the conference receives support
from three prestigious organizations: the Asso-
ciation for Computational Linguistics (ACL), the
International Speech Communication Association

(ISCA), and the European Language Resources
Association (ELRA). Maintaining its 22-year tra-
dition, the 2025 conference was preceded by a
comprehensive evaluation campaign designed to
address critical scientific challenges in SLT. This
paper presents the outcomes of the 2025 IWSLT
Evaluation Campaign, which comprised seven dis-
tinct shared tasks organized into three primary re-
search areas:

• High-resource ST
– Offline track, with focus on speech-to-text

translation of recorded scientific presenta-
tions, TV series, and business news from En-
glish to German, Arabic and Chinese.

– Simultaneous track, focusing on speech-to-
text translation of streamed audio of confer-
ences and interviews from English to Ger-
man, Japanese and Chinese, and from Czech
to English.

– Subtitling track, with focus on speech-
to-subtitle translation of audio-visual docu-
ments from English to German and Spanish
and on compression of pre-generated Ger-
man and Spanish subtitles.

– Model compression, with focus on speech-
to-text translation of recorded scientific pre-
sentations, TV series, and business news
from English to German and Chinese,
achieved by reducing the size of a large mul-
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tilingual speech-to-text foundation model.

• Low resource ST
– Low-resource SLT, focusing on the trans-

lation of recorded speech from North Lev-
antine Arabic to English, Tunisian Arabic
to English, Bemba to English, Fongbe to
French, Irish to English, Bhojpuri to Hindi,
Estonian to English, Maltese to English,
Marathi to Hindi, and Quechua to Spanish.
It also included a data track, inviting partici-
pants to submit newly collected speech trans-
lation datasets of under-resourced language
pairs.

– Indic Languages Track focuses on English
and multiple Indic languages. The speech
translations are from English speech to Indic
language text and from Indic speech to En-
glish language text. Indic languages include
Bengali, Hindi, and Tamil.

• Instruction-following Speech Processing
– Speech Recognition, Translation, Ques-

tion Answering, and Summarization, with
focus on Scientific talk audios from English
to German, Italian, and Chinese languages.

The shared tasks drew participation from 32 di-
verse teams (detailed in Table 1), encompassing
both academic institutions and industry leaders. In
the following sections, we provide comprehensive
coverage of each shared task, including detailed
descriptions of the research challenges, specifica-
tions of training and testing datasets, evaluation
methodologies, and submission analyses. Each
task discussion concludes with a thorough results
summary, with additional detailed performance
metrics available in the corresponding appendices.
This structure ensures a systematic presentation of
the tasks while maintaining accessibility to both
high-level findings and granular technical details.

2 Evaluation

The evaluation campaign features both automatic
and human evaluation. To support automatic eval-
uation, we developed a dedicated evaluation server
this year, as detailed in Section 2.1. The server was
piloted in the Offline, Model Compression, and In-
struction Following tracks. For the other tracks,
submission and evaluation processes were man-
aged by the respective organizers, following the
procedure used in previous campaigns. In addi-

tion, we performed a human evaluation across sev-
eral tracks as described in 2.2

2.1 SPEECHM-IWSLT2025 Evaluation
Server

The Evaluation Server is a suite of datasets
and metrics designed to measure and monitor
the performance of task-specific systems. It is
part of the “SPEECHM” platform, developed
under the Meetween European Project.1 For
the IWSLT-2025 Evaluation Campaign, a ded-
icated instance—SPEECHM-IWSLT20252—was
created. This instance features a web-based user
interface that allows participants to submit sys-
tem outputs and track their performance via a
leaderboard. The implemented evaluation metrics
depend on the task: COMET, BLEURT, BLEU
and CharacTER are used in the Offline and the
Model Compression tasks, while WER, COMET
and BERT scores are used Instruction Following
task.

The Evaluation Server is described in detail in
Appendix B.1.

2.2 Human Evaluation

Similar to last year’s round, a human evaluation
through direct assessment is performed on the pri-
mary submissions of each participant in order to
verify the soundness and completeness of the re-
sults. We include most tasks and test sets for hu-
man evaluation. We follow Sperber et al. (2024)’s
approach to handle the automatically segmented
long-form speech in a robust manner. Details are
provided in Section A.

3 Offline track

The Offline Speech Translation task at IWSLT, a
cornerstone of the conference’s tradition, aims to
establish a robust evaluation framework for mon-
itoring advancements in spoken language transla-
tion. Its core focus lies in unconstrained speech
translation, distinguishing it from tasks with inher-
ent temporal and structural limitations such as si-
multaneous translation or subtitling. While main-
taining a consistent task formulation, the empha-
sis over time has incrementally shifted towards in-
creasing task difficulty to better align with real-
world demands, encompassing the translation of

1www.meetween.eu
2iwslt2025.speechm.cloud.cyfronet.pl
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Team Organization Tracks Reference
AIB-MARCO E

ALADAN ALADAN E Kheder et al. (2025)
APPTEK AppTek Ä Petrick et al. (2025)
BUINUS University of Indonesia and Bina Nusantara University E Tjiaranata et al. (2025)

CDAC-SVNIT Center for Development of Advance Computing & Sardar
Vallabhbhai National Institute of Technology

� Roy et al. (2025)

CMU Carnegie Mellon University 7 Ouyang et al. (2025)
CUNI Charles University 7 Macháček and Polák (2025)

CUNI-NL Charles University �� Luu and Bojar (2025)
FFSTC-2 E Kponou et al. (2025b)

GMU George Mason University E Meng and Anastasopoulos (2025)
HITSZ Harbin Institute of Technology, Shenzhen � Wei et al. (2025)

IIITH-BUT International Institute of Information Technology Hyder-
abad (IIITH) and Brno University of Technology (BUT)

E Akkiraju et al. (2025)

IITM SPRING Lab, IIT Madras � Sarkar et al. (2025)
IST Instituto Superior Tecnico � Attanasio et al. (2025)
JHU Johns Hopkins University E Robinson et al. (2025)
JU Jadavpur University � Das et al. (2025)

JU-CSE-NLP Jadavpur University � Dhar et al. (2025)
KIT Karlsruhe Institute of Technology �E � Koneru et al. (2025); Li et al. (2025)

KREASOF-TCD Kreasof AI, Trinity College Dublin, and African Institute
for Mathematical Sciences

E Farouq et al. (2025)

KUVOST E Mohammadamini et al. (2025)
LIA University of Avignon E Chellaf et al. (2025)

MBZAI Mohamed bin Zayed University of Artificial Intelligence E
MEETWEEN MeetWeen �

NAIST Nara Institute of Science and Technology � 7 Widiaputri et al. (2025); Tan et al. (2025)
NLE NAVER LABS Europe � Lee et al. (2025)
NYA Netease YiDun AI Lab � Wang et al. (2025)
OSU Oregon State University 7 Raffel et al. (2025)

QUESPA QUESPA E Ortega et al. (2025)
SYSTRAN company for translation technology E Avila and Crego (2025)

TCD Trinity College Dublin Ù Moslem (2025)
UPV Universitat Politècnica de València 7 Sanchez et al. (2025)

URDU E Mehmood and Rauf (2025)

Table 1: List of participants to the IWSLT 2025 shared tasks (� Offline track; 7 Simulultaneous track; Ä Subtitle
track; Ù Compression track; E Low-resource track; �Indic track; � Instruction-following track

new and diverse languages, domains, and speak-
ing styles.

This section provides an overview of this year’s
task characteristics, along with a summary of the
participating systems and their respective results.

3.1 Challenge

In line with the track’s emphasis on the chal-
lenges posed by diverse and increasingly com-
plex evaluation scenarios, this year’s round fo-
cused on incorporating a new language, Arabic,
into an evaluation setting designed to capture the
complexity of real-world speech. This scenario
encompassed diverse language settings (English→ Arabic/Chinese/German) and domains (scien-
tific presentations, TV series, and business news),
alongside varied speaking styles and challenging
recording conditions (e.g., single speakers, multi-
ple overlapping speakers, background noise, and
accent data).

Within this framework, participants were tasked
with developing their system(s) for any of the
three language combinations, selecting one from
three distinct training data conditions (i.e., con-
strained, constrained with large language mod-
els, unconstrained), which differed in terms of al-
lowed training resources. Consistent with previ-
ous rounds, the task welcomed participation with
both cascade and end-to-end models, the latter be-
ing defined as solutions that eschew intermedi-
ate discrete representations (e.g., source language
transcripts), instead employing joint training of all
parameters and components used during decoding.
Multiple submissions to the “SPEECHM” cen-
tralized evaluation server3 were permitted, with
the requirement of designating one as the primary
submission and any others as contrastive.

3iwslt2025.speechm.cloud.cyfronet.pl
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3.2 Data and Metrics
Test Data Also this year, participants were pro-
vided with test data representative of diverse do-
mains and conditions, namely:
• Scientific Presentations – This dataset, derived

from the Instruction Following task (Section 9),
comprises 21 recordings, each lasting approxi-
mately 5.5 minutes, featuring transcripts of sci-
entific oral presentations and their correspond-
ing translations into several languages. The talks
encompass a variety of technical content deliv-
ered by speakers from around the world.

• TV Series from ITV Studios4 – This dataset in-
cludes 3 recordings, each approximately 40 min-
utes in length, featuring multiple individuals in-
teracting in various scenarios. The speech trans-
lation system needs to handle challenges such
as overlapping speakers, different accents, and
background noise.

• Business News from Asharq Business with
Bloomberg5 – This dataset comprises two
recordings, each approximately 2.5 hours in du-
ration, and specifically focuses on the economy
domain. The content is derived from a TV chan-
nel and distributed through various digital and
social media platforms.

• Accented English Conversations sampled
from the Edinburgh International Accents of En-
glish Corpus (EdAcc, Sanabria et al., 2023) –
This dataset provides approximately 3.5 hours
of conversations, each featuring two friends in-
teracting on daily topics such like hobbies and
vacation. The speakers were selected to cover a
wide range of English accents from around the
globe. In addition to the variety of accents (33 in
total), another major challenge presented is the
presence of spontaneous speech.

Contingent on data availability, each language di-
rection was evaluated across distinct scenarios,
specifically:
• English→ German: TV series, scientific presen-

tations, business news, and accent challenge.
• English→ Arabic: business news.
• English→ Chinese: scientific presentations.

Continuing the practice of previous years, the test
sets were either entirely or partially shared with
other tasks. This included the subtitling track (for
TV series and business news data), the simulta-
neous, instruction-following, and model compres-
4www.itvstudios.com
5asharqbusiness.com

sion tracks (for scientific presentations). This col-
laborative approach significantly fosters broader
integration and comparability across the various
components of the evaluation campaign.

Training and Development Data As in the last
two rounds of the challenge, participants were of-
fered the possibility to submit systems built under
three training data conditions:
1. Constrained: In this condition, permitted

training data is limited to a medium-sized
framework to ensure manageable training time
and resource requirements. The compre-
hensive list6 of allowed training resources
(speech, speech-to-text-parallel, text-parallel,
text-monolingual) explicitly excludes any pre-
trained language models.

2. Constrained with large language models
(constrained+LLM ): This condition allows all
training data permitted in the constrained setup,
with the addition of any other LLMs, provided
they are freely accessible and released under a
permissive license. This setup aims to enable
participants to leverage accessible LLMs in a
standardized evaluation scenario.

3. Unconstrained: Under this condition, any re-
source, including pre-trained language models,
may be utilized, with the sole exception of the
evaluation sets. This setup is designed to allow
the participation of teams equipped with high
computational power and capable of develop-
ing effective solutions leveraging additional in-
house resources.

Development data were supplied only for English-
German and English-Chinese. For English-
German, they comprise the development set from
IWSLT 2010, along with the test sets released for
the 2010, 2013-2015, and 2018-2022 IWSLT cam-
paigns. For English-Chinese, they consist of the
test set used for the 2022 round.

Evaluation Metrics Systems were evaluated
based on their ability to produce translations simi-
lar to the target-language references. This similar-
ity was quantified using multiple automatic met-
rics: COMET7 (Rei et al., 2020), BLEU8(Papineni
et al., 2002), BLEURT (Sellam et al., 2020), Char-

6See the IWSLT 2025 offline track: iwslt.org/2025/offline
7huggingface.co/Unbabel/wmt22-comet-da
8BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a
+version.1.4.14
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acTER (Wang et al., 2016), chrF9(Popović, 2015),
and TER10(Snover et al., 2006). COMET was
again chosen as the primary evaluation metric
this year. It was calculated on the test set us-
ing automatic resegmentation of the hypothesis
based on the reference translation by mwerSeg-
menter,11 employing a detailed script made acces-
sible to participants.12 To enhance the soundness
and completeness of the evaluation, human assess-
ment was also conducted on the best-performing
submission from each participant.

3.3 Submissions

This year, 7 teams participated in the offline
task, submitting a total of 30 runs through the
“SPEECHM” evaluation server. Table 2 provides
a breakdown of the participation in each sub-
task showing, for each training data condition, the
number of participants, the number of submitted
runs and, for each training data condition (con-
strained, constrained+LLM , unconstrained), the
number of submitted runs. Below, we provide a
short description of the systems, whose creators
submitted a system description paper.

CUNI-NL (Luu and Bojar, 2025) participated
with an end-to-end en-de system trained under the
“constrained with Large Language Models” con-
dition. The model consists of an audio encoder
that transforms the input audio into embeddings
that are then passed to the LLM, which generates
the output texts (transcript or translation). Both a
length adapter and a modality adapter are added to
facilitate the integration of the audio embeddings
into the LLM. Two speech encoders (Seamless-
v2-large and Whisper-v3-large) and three LLMs
(Llama3 8B Instruct, EuroLLM 9B Instruct, and
gemma3 12B Instruct) have been tested. To en-
hance the performance, multitask training was per-
formed, teaching the model to transcribe, trans-
late, and simultaneously transcribe and translate.
The training data are limited to the CoVoST2
dataset and a large multilingual corpus built from
the Common Voice corpora.

9nrefs:1+case:mixed+eff:yes+nc:6+nw:0+space:no
+version:2.4.2

10nrefs:1+case:lc+tok:tercom+norm:no+punct:yes+asian:no
+version:2.4.2

11www-i6.informatik.rwth-aachen.de/web/Software/
mwerSegmenter.tar.gz

12github.com/isl-mt/SLT.KIT/blob/master/scripts/
evaluate/Eval.sh

KIT (Koneru et al., 2025) participated with a
cascade en-de system trained under the “uncon-
strained” condition. The cascade model comprises
several components. The segmenter aims to iden-
tify the optimal point at which to segment an audio
file. Various techniques were tested, demonstrat-
ing that fixed-window chunking with a chunk size
of 25 consistently yields the best performance.
The second component is an ensemble of ASR
systems trained under different conditions, which
is used to transcribe the audio. The produced
transcripts are then recombined by a task-adapted
LLM based on Llama3 8 B. The final transcripts
are translated using a version of Tower 7B en-
hanced for the en-de translation direction. A final
component was introduced to post-edit the trans-
lations with an APE model based on Tower 13 B.
All the data used to train each component has been
previously cleaned and selected to obtain high-
quality samples.

NAIST (Widiaputri et al., 2025) participated
with end-to-end en-de, en-zh systems, where the
version based on SALMONN technology was
trained under the “unconstrained” condition, while
the in-house version was trained under the “con-
strained with Large Language Models” condition.
SALMONN is an end-to-end speech-to-text model
that integrates Whisper large-v2 as the speech en-
coder, a fine-tuned BEATs encoder for non-speech
audio and the Vicuna 13B LLM as the decoder.
The two audio encoders and the LLM are con-
nected via a window-level Q-Former module. The
customised end-to-end version is based on the
Whisper large-v3 encoder, a DeCo projector, and
the Qwen2.5 LLM. The en-de models are fine-
tuned using a combination of CoVoST and Eu-
roparl, while the en-zh models are fine-tuned only
on CoVoST. Different prompts have been tested to
maximise translation performance.

NYA (Wang et al., 2025) participated with cas-
cade en-ar, en-de, en-zh systems trained under the
“unconstrained” condition. The ASR is based on
Whisper medium, while the MT system combines
an NMT model based on the Transformer tech-
nology and an LLM model based on X-ALMA.
The NMT model is enhanced by leveraging data
augmentation with backwards and forward trans-
lations and domain adaptation via data filtering.
The LLM model is obtained by fine-tuning X-
ALMA on in-domain data and leveraging Low-
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English-German
Participants Runs Constrained Constrained+LLM Unconstrained

6 16 0 4 12
English-Chinese

Participants Runs Constrained Constrained+LLM Unconstrained
4 10 0 2 8

English-Arabic
Participants Runs Constrained Constrained+LLM Unconstrained

2 4 0 0 4

Table 2: Breakdown of the participation in each sub-task (English→German, English→Chinese, English→Arabic)
of the IWSLT offline ST track. For each language direction, we report the number of participants, the number of
submitted runs and, for each training data condition (constrained, constrained+LLM , unconstrained), the number
of submitted runs.

Rank Adaptation fine-tuning. The NMT n-best
and the LLM list of candidates are merged and
reranked using COMET-based MBR decoding.
The MT training data are filtered using a semantic
metric based on sBERT. The in-domain specific
data are generated by crawling domain-specific
videos and leveraging the existing bilingual sub-
titles. The audio is segmented using SHAS.

3.4 Results
3.4.1 English to German
Overall result Table 21 shows the aggregated
result of the systems participated in the four test
sets. In terms of ranking based on automatic eval-
uation metrics, KIT is ranked 1st, followed by
NYA and NeMo. These top-3 systems perform
better than the others by a large margin, e.g., a 0.1
COMET score, and most of them are based on the
cascaded architecture rather than end-to-end. Un-
like last year, where the winning system is metric
dependent, the ranking between the top-3 systems
remains consistent across all six metrics.

Unlike the top-3 systems, NAIST (U) and
CUNI-NL presents a scenario where the ranking
is metric dependent. In particular, NAIST (U) per-
forms better in both COMET and BLEURT (neu-
ral metrics) but worse in both BLEU and chrF
(string-based metrics).

Domains This year, a new set of domains has
been introduced for evaluation. The long-standing
TED domain has been removed, whereas the ac-
cent (data) and the ITV (only the domain) remain.
Similar to last year’s edition, we evaluated each
submitted system on different domains.

In spite of having diverse set of domains, the
top-3 systems (KIT, NYA and NeMo) perform
consistently well. The much better numbers on
the evaluation metrics indicate that both Scientific

Presentations and Business News domains are less
challenging to translate than the accent and ITV
domains. Although the top-3 systems perform
similarly in both the accent and ITV domains, the
remaining systems achieve far worse scores on the
ITV domain, making ITV possibly the most chal-
lenging domain.

Furthermore, the ranking across domains is
quite consistent meaning that a system performing
good in one domain as performs good in the other
domain. The only exception is AIB, which per-
forms good on three domains, but has challenges
in the ITV domain.

Data conditions On top of the above, we can
also observe the improvement of translation qual-
ity by increase the training data size. In all the test
domains, the top three systems are from the “un-
constrained” conditions, whereas the “constrained
LLMs” submissions are ranked the bottom, except
in the ITV domain. Among all the participants,
NAIST is the only team which submitted both ”un-
constrained” and “constrained with LLMs” condi-
tions. Their ”unconstrained” system outperforms
the constrained condition substantially in all met-
rics, showing the importance of training data size
despite using LLMs for the tasks. However, it is
worth noting that the pretrained models and the
architectures between the two conditions are quite
dissimilar. Another noteworthy comparison is be-
tween the CUNI-NL and the NAIST (U). Despite
being a “constrained with LLMs” submission, the
CUNI-NL performs better in Business News, ITV
and Scientific Presentations domains in almost all
metrics. This smaller performance gap could be
attributed to the choice of the pretrained models,
which the CUNI-NL has substantially tested on.
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3.4.2 English to Arabic
For the en-ar direction, we evaluate the submitted
systems on the Business News domain. This is
a newly added language pair this year, and there
are 3 submissions that are all based on “uncon-
strained” conditions.

Table 22 summarizes the results. The NYA is
ranked 1st, followed by the NeMo and the AIB.
The ranking is consistent across all the evaluation
metrics. Furthermore, the ranking is also consis-
tent with the ranking in English to German.

3.4.3 English to Chinese
For the en-zh direction, we evaluate the submitted
systems on the Scientific Presentations domain.
Unlike last year, there are both cascaded and end-
to-end submissions this year.

Table 23 summarizes the results. The NYA is
ranked 1st in the COMET metric among the six
submitted systems. In addition to COMET, it is
also ranked 1st in both BLEU and character-TER.
While it does not score the highest on chrF and
BLEURT, it ranks second overall. The AIB takes
the second place with performance similar to the
NYA in most evaluation metrics, and it is even
ranked 1st according to BLEURT.

Regarding the data condition, NAIST submit-
ted both “unconstrained” and “constrained with
LLMs” conditions. Similar to en-de language di-
rection, their “unconstrained” system outperforms
the “constrained with LLMs” system substantially
in all metrics. Despite the stronger performance,
possibly caused by the larger training data size,
NAIST (U) and NAIST (C+) use different pre-
trained components.

3.5 Human Evaluation
Similar to previous editions, each participant’s pri-
mary submission has been further assessed by pro-
fessional translators. The details of the human
evaluation and its results are described in A.

Examining the results, it is interesting to note
that, in most cases, human evaluation confirms the
ranking provided by automatic metrics, with only
minor discrepancies. This is true for the English
to Arabic direction, where NYA outperforms other
models, and for the English to Chinese direction,
where only the top position shifted in favour of
NYA, leading to a better average DA score than
AIB (despite automatic metrics showing minimal
difference between the two submissions). The
human evaluation also corroborates the findings

from the automatic metrics regarding the impact of
data conditions: the models trained in the uncon-
strained data condition generally outperform those
trained in the constrained condition.

For English to German, the results confirm the
trends observed in other language directions for
the TV series test set, with human evaluation val-
idating the rankings generated by the automatic
metrics. More variations are shown for the accent
and scientific presentation test sets.13 For the ac-
cent test set, KIT outperforms all other systems,
achieving the best score. The most surprising re-
sults concern the AIB submission, which, despite
a significant difference from the best model in
terms of COMET score (5.4 points), is indistin-
guishable from KIT from the human evaluation
standpoint. It is difficult to hypothesise a possi-
ble reason for this discrepancy due to the lack of
a system description paper, but this confirms the
need to test a model under different conditions and
validate its results with human evaluation. The
AIB submission also shows similar behaviour for
the scientific presentation test set, where it is pe-
nalised by the automatic evaluation (fourth with
a gap of 3.8 COMET scores from the top-ranked
system), but rewarded by human evaluation.

The fact that some of the test sets are shared
across different tasks gives us the possibility to
present a single ranking including systems devel-
oped under different conditions and tasks. Exam-
ining Tables 14, 15 and 17 shows that the systems
built for the offline task without any latency (si-
multaneous task), task-sharing (instruction task),
and length (subtitling task) constraints attain the
best performance, with a margin of more than 1
average DA score over the other submissions.

4 Simultaneous track

Simultaneous speech translation focuses on trans-
lating speech in real-time, in a manner similar to
simultaneous interpreting. The system is designed
to begin translating before the end of an utterance.
This technology is particularly useful in scenarios
such as international conferences, personal travel,
or public emergency events.

The task included two tracks: cascaded and di-
rect. Submissions to the cascaded track contain
systems that produce intermediate text, i.e. the
transcription of the source audio, that is imme-

13The Asharq News test set has not been human-evaluated
due to budget constraints.
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diately consumed by a simultaneous text-to-text
agent. In contrast, direct, or end-to-end, systems
avoid any intermediate text and directly generate
target-language (text) translations from the source
audio. Both tracks covered four language direc-
tions as in the previous year: English to Ger-
man, English to Chinese, English to Japanese, and
Czech to English.

4.1 Challenge
4.1.1 Changes from the last year
This year’s simultaneous translation task had two
major changes compared to the last year:

Long-form speech We introduced a more real-
istic condition for simultaneous speech translation
on unsegmented speech (Papi et al., 2025a). Par-
ticipants had to develop streaming translation sys-
tems processing long-form speech.

Large language models Participants were al-
lowed to use LLMs under the same conditions as
Constrained with large language models in the Of-
fline task described in Section 3.2.

4.1.2 Latency regimes
Two latency regimes, low and high, were intro-
duced for each of the tracks to evaluate translation
quality in different latency conditions.

English-to-German and Czech-to-English 0 to
2 seconds (low), 2 to 4 seconds (high)

English-to-Chinese 0 to 2.5 seconds (low), 2.5 to
4 seconds (high)

English-to-Japanese 0 to 3.5 seconds (low), 3.5
to 5 seconds (high)

4.1.3 Submission
Participants were allowed to submit no more than
one system per track, language direction, and la-
tency regime. The latency regime of a submission
was determined by its results on the development
set. This year, we allowed two submission op-
tions: Docker image and System log submissions.
The latter option was easier for the participants be-
cause they did not need to wrap their systems into
a deployable form. Systems of the Docker image
submissions were executed by the organizers on
the blind-test set in a controlled environment using
a NVIDIA H200 GPU. An example implementa-
tion was provided using the SimulEval toolkit (Ma
et al., 2020).

4.2 Data

To simplify the setting and allow participants to
focus on the new modeling aspects of simultane-
ous translation, we adhere to the constraints with
large language models as defined for the offline
SLT task, see Section 3.2 above. This is the only
data condition for the task. The test and dev sets
differ across language pairs:

English to German, Chinese, and Japanese
The test data are the speech translation section of
the IWSLT25Instruct benchmark created for the
Instruction Following task (Section 9) and derived
from scientific talks (ACL Anthology presenta-
tions). The dev data are the ACL 60/60 bench-
mark (Salesky et al., 2023). In addition, we use
Accented English Conversations test set for En-
glish to German.

split domain #utter. #words/ duration
utter. (min)

dev ParCzech 276 24 56
ELITR 314 13 28.6

test ParCzech 636 20.53 108.58
Non-Native 1298 6.33 86.85

Table 3: Statistics of the dev and test sets for the Czech-
English simultaneous task.

Czech to English The dev set was created from
two sources:
• From ParCzech 3.0 (Kopp et al., 2021), we took

a subset of the test recordings in the variant
called “context”, which consists of parliamen-
tary speeches in their original partitioning, pre-
serving the natural flow of the speech.

• From the ELITR test set (Ansari et al., 2021),14

we took an entire recording of a debate about AI.
The reference translations of the devset were

done by students of translation studies from the
Faculty of Arts at Charles University.

The test set was also collected from two
sources:
• Selected recordings (complete speeches) of the

Parliament of the Czech Republic, ensuring that
there is no speaker overlap with the recordings
allowed for training.

• Recordings of Czech language proficiency ex-
ams at the A2 level (Novák et al., 2024).

14github.com/ELITR/elitr-testset/tree/master/documents/2021
-theaitre-related/robothon-debate

419

https://github.com/ELITR/elitr-testset/tree/master/documents/2021-theaitre-related/robothon-debate
https://github.com/ELITR/elitr-testset/tree/master/documents/2021-theaitre-related/robothon-debate


The reference translations of the testset were pro-
vided by a professional translation agency. The
statistics of both sets are provided in Table 3.

4.3 Evaluation
4.3.1 Automatic Evaluation
We automatically evaluate two aspects of models:
quality and latency.

Quality We conducted both automatic and hu-
man evaluation. BLEU (Papineni et al., 2002) and
COMET (Rei et al., 2022a) are used for automatic
quality evaluation. The ranking of the submission
is based on the BLEU score on the blind test set.

Latency We only conducted automatic evalua-
tion using StreamLAAL (Papi et al., 2024).

4.3.2 Human evaluation
For English-to-German and Czech-to-English, hu-
man evaluation was conducted using the Contin-
uous Rating method proposed by Javorský et al.
(2022). Further details on the method and score
calculation are provided in Appendix A.2. This
evaluation covered systems operating in the high-
latency regime (with the exception of the CMU
submission, which participated only in the low-
latency regime).

For Czech-to-English, we additionally collected
two independent human interpretations—one by a
professional and one by a student interpreter—and
evaluated them in the exact same manual evalua-
tion style as system outputs, i.e. presenting them
as gradually growing text in their authentic tim-
ing. The professional interpreter has been work-
ing full-time in the field since 2013, has been ac-
credited by EU institutions since 2018, and reg-
ularly interprets for clients such as Czech Tele-
vision, Czech Radio, CNN, and the World Bank.
The student interpreter was a second-year master’s
student at the Institute of Translation Studies, with
three completed semesters of simultaneous inter-
preting training. The interpreting was carried out
remotely, transcribed by WhisperX (Bain et al.,
2023) and post-edited by an annotator fluent in
English. For preparation of the sessions, both in-
terpreters got a brief summary of each speech in
three sentences using Llama 3.3 language model
(Grattafiori et al., 2024). According to the profes-
sional interpreter, the interpretation differed from
real-world conditions for three main reasons: (1)
the absence of visual input, as the recordings were
provided in audio-only format; (2) the absence of

a second interpreter, who would normally assist
by noting down numbers and looking up specific
terminology; and (3) limited preparation time, as
the speeches covered a wide range of topics — un-
like in real interpreting settings, where the subject
matter is typically more stable.

For English-to-Japanese, another human evalu-
ation was conducted by a professional interpreter
using MQM-based metric (JTF, 2018) as in the
last years.

Human evaluation using Direct Assessment was
also conducted for comparison with other tasks, as
described in A.1.

4.4 Submissions
Five teams in total participated this year, with
three of those participating submissions contain-
ing testable systems for computationally-aware
latency measurements. All teams entered the
English-to-German track; four teams entered
the English-to-Chinese, two teams entered the
English-to-Japanese tracks; and one team entered
the Czech-to-English track.

BASELINES were built for all directions. We
use two approaches, a cascaded and a direct one.
Both approaches used simultaneous segmenters
to accommodate the long-form regime. We used
fixed-length and VAD segmenters as described in
Polák and Bojar (2024). For the cascaded sys-
tem, we use Whisper-Large-V3-Turbo (Radford
et al., 2023) for ASR and M2M100 (Fan et al.,
2021) for MT. Both the Whisper and M2M100
models were onlinized using the Local Agree-
ment policy (Polák et al., 2022, 2023). To make
the ASR more robust to segmentation, we used
the transcript of the previous segment as a con-
text. For the direct approach, we selected Seam-
lessM4T (Seamless Communication et al., 2023)
as the backbone of our system. We also used the
Local Agreement policy for onlinizing the offline
SeamlessM4T model.

CUNI (Macháček and Polák, 2025) partici-
pated in the direct track for English to German,
Chinese, and Japanese, as well as Czech to En-
glish directions. They proposed two system ar-
chitectures based on the language direction. For
the from-English direction, their system is based
on Whisper-Large-V3 (Radford et al., 2022) in
the role of ASR and EuroLLM (Martins et al.,
2024) as MT. The Whisper model was onlin-
ized using the AlignAtt (Papi et al., 2023) policy,
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while the EuroLLM model was onlinized using
the Local Agreement policy (Polák et al., 2022,
2023). For the Czech-to-English direction, they
used a direct approach, leveraging Whisper-Large-
V3. They also explored improving translation
quality by including previous translation as con-
text and prompting for in-domain terminology.

CMU (Ouyang et al., 2025) participated in the
direct track for the English to Chinese and Ger-
man directions. Their system integrates a chunk-
wise causal Wav2Vec2.0 speech encoder (Baevski
et al., 2020), an adapter, and the Qwen2.5-7B-
Instruct (Qwen et al., 2025) as the decoder. The
training is conducted in two stages on speech seg-
ments curated from LibriSpeech (Panayotov et al.,
2015), CommonVoice (Ardila et al., 2020b), and
VoxPopuli (Wang et al., 2021) datasets, which
are translated into Chinese and German with the
4-bit quantized Qwen2.5-32B-Instruct. The la-
tency is controlled through a configurable latency
multiplier, ensuring translations are generated af-
ter accumulating a predefined number of chunks,
and the decoder uses a sliding window strategy to
maintain the context through KV cache concate-
nation.

OSU (Raffel et al., 2025) participated in the
cascaded track for the English-to-German and
Chinese directions. Their system employs
Whisper-Large-V2 (Radford et al., 2022) with a
voice-activity-detection (VAD) segmenter (Silero
Team, 2021) for ASR with a 4-bit quantized
Gemma3-12B-Instruct (Team et al., 2025) and
context-aware conversational prompting (Wang
et al., 2024a) for translation. For fine-tuning,
they re-purpose a prior framework (Agostinelli
et al., 2024; Raffel et al., 2024) and its conver-
sational prompting implementation alongside se-
mantic similarity-based filtering to curate noisy
subtitling data (Lison et al., 2018) before fine-
tuning with LoRAs (Hu et al., 2021). In addi-
tion, this system augments basic conversational
prompting for ST by leveraging a single-sentence
sliding window memory bank for prior context.

UPV (Sanchez et al., 2025) participated in the
cascaded track for the English-to-German direc-
tion. Their system employs Whisper-Large-V3-
Turbo (Radford et al., 2022) with a modified
longest-common-prefix (LCP) decoding policy for
ASR alongside NLLB-3.3B (NLLB Team et al.,
2022) with relaxed-agreement LCP (RALCP)

(Wang et al., 2024b) with a wait-k policy (Ma
et al., 2019) for simultaneous translation. Addi-
tionally, this system features a similar, but simpli-
fied and more efficient, segmentation process to
AlignAtt (Papi et al., 2023), leveraging attention
maps to judge necessary model context. For train-
ing, they randomly prepended up to 10 sentences
of prior context to a given sample so as to better
leverage the unsegmented audio of this year’s task.

NAIST (Tan et al., 2025) participated in
English-to-German, Chinese, and Japanese lan-
guage directions of the direct track. Their system
employs SHAS (Tsiamas et al., 2022) for speech
segmentation, Whisper-large-v3 (Radford et al.,
2022) for encoding input speech, DeCo (Yao et al.,
2024) for projecting Whisper features into acous-
tic embeddings for the LLM, and Qwen-2.5-7B-
Instruct (Qwen et al., 2025) LLM. It was fine-
tuned with LoRA by joint training of ST and ASR,
and the offline-trained ST system was used for
simultaneous translation using Local Agreement
(Liu et al., 2020; Polák et al., 2022).

4.5 Results
4.5.1 Automatic Evaluation
We rank the system performance based on BLEU
scores. Cascaded systems are marked with an as-
terisk (∗). The detailed results can be found in the
respective tables in Appendix B.3.

Low-Latency The ranking of systems for the
the low-latency condition is as follows:
• English to German (Table 24):

CMU, NAIST, OSU ∗, BASELINES-Direct
• English to Chinese (Table 25):

CMU, NAIST, OSU ∗, BASELINES-Direct
• English to Japanese (Table 26):

NAIST, BASELINES-Direct
• Native Czech to English (Table 27):

CUNI, BASELINES-Direct
• Non-native Czech to English (Table 28):

CUNI, BASELINES-Direct
• Accented English to German (Table 29):

OSU ∗, NAIST, CMU, BASELINES-Direct

High-Latency The ranking of systems for the
high-latency condition is as follows:
• English to German (Table 24):

CUNI ∗, UPV ∗, OSU ∗, BASELINES-Casc.∗,
NAIST, BASELINES-Direct

• English to Chinese (Table 25):
CUNI ∗, NAIST, OSU ∗, BASELINES-Direct
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• English to Japanese (Table 26):
CUNI, NAIST, BASELINES-Direct

• Native Czech to English (Table 27):
BASELINES-Direct, CUNI, BASELINES-Casc.∗

• Non-native Czech to English (Table 28):
CUNI, BASELINES-Casc.∗, BASELINES-Direct

• Accented English to German (Table 29):
OSU ∗, UPV ∗, BASELINES-Casc. ∗, NAIST,
CUNI ∗, BASELINES-Direct

4.5.2 Human Evaluation
Details of the human evaluation are provided in
Section A.2 of the Appendix and results are shown
in Table 18 for Czech-to-English, in Table 19 for
English-to-German, and in Table 20 for English-
to-Japanese. For Czech-to-English and English-
to-German, we selected only one baseline that has
a higher BLEU score.

4.6 Conclusions

This year’s simultaneous translation shared task
marks a significant shift in the focus of simultane-
ous translation system evaluations. With the intro-
duction of unsegmented source audio in the test-
set, participants are incentivized to address crit-
ical opportunities and challenges in real applica-
tions that have largely been avoided in prior years
at the IWSLT. Unlike last year, submissions for
this year’s shared task all feature large language
models (LLMs), with the exception of the CUNI
Czech-to-English submission, which were tailored
for simultaneous translation in a variety of ways.
Interestingly, a range of LLMs were represented
in this year’s submissions. CUNI’s submission
leveraged EuroLLM, a model built for translation
across numerous languages, whereas other teams
employed more general-purpose models.

On the IWSLT25Instruct test set, the CUNI
submission outperformed almost all other systems
at high-latency regimes, aside from on English-to-
Chinese, where the NAIST submission produced
a slightly higher BLEU score. At low-latency
regimes, CMU produced the highest quality trans-
lations at comparatively low latency for English-
to-German and English-to-Chinese. While the
OSU and UPV submissions performed worse on
the IWSLT25Instruct test set, they both performed
significantly better on the challenging accented
English-to-German test set, with the OSU system
performing best at the cost of comparably high la-
tency.

Human evaluation of the Czech-to-English lan-

guage pair shows that the quality of CUNI is com-
parable to that of the student interpreter but worse
than that of the professional interpreter. However,
the latency of CUNI is 1.51, approximately three
times lower, i.e. faster than human interpreting.15

BLEU scores for human interpretations are very
low, which is expected, as interpreting often in-
volves paraphrasing, summarization, and explana-
tion. While both latency and BLEU favor CUNI,
the professional interpreting still delivers the high-
est overall quality and in the shortest time, by go-
ing beyond the literal translation and conveying in-
formation in a more comprehensive way.

Human evaluation for English-to-German and
English-to-Japanese aligns well with the results of
automatic evaluation. Neural network-based eval-
uations are similarly aligned with automatic eval-
uations, yielding no major surprises.

Regarding promising directions for investiga-
tions and improvements to the shared task, the
accented and non-native test sets emerged as the
most difficult for current systems, and more stud-
ies on these scenarios could drive simultaneous
translation models to be more robust. Moreover,
enhancing the task accessibility–such as allowing
log-based submissions as this year–can encourage
broader participation. However, this comes at the
cost of losing compatibility in computationally-
aware latency metrics, which are crucial for simul-
taneous translation systems. Striking a balance
between accessibility and fair evaluation will be
key to enabling more meaningful progress in fu-
ture editions.

5 Subtitling track

In recent years, the task of automatically creating
subtitles for audiovisual content in another lan-
guage has gained a lot of attention due to the rapid
increase in the global distribution and streaming
of movies, series, and user-generated videos. Re-
flecting these trends, the automatic subtitling
track was introduced for the first time in 2023
(Agarwal et al., 2023) and proposed again in 2024
(Ahmad et al., 2024) as part of the IWSLT Evalu-
ation Campaigns.

The automatic subtitling task has been contin-
ued this year.16 Participants were asked to gen-
15The latency is even lower than 2 seconds. The reason is that

the systems were bucketed according to the latency on the
devset, which for CUNI is 2.63.

16The subtitle compression sub-track, introduced in 2024,
was proposed this year as well but we received no submis-

422



erate subtitles in German and/or Arabic from En-
glish speech in audiovisual documents.

5.1 Challenge
The task of automatic subtitling is multifaceted:
starting from speech, not only must the transla-
tion be generated, but it must also be segmented
into subtitles that comply with constraints ensur-
ing a high-quality user experience. These con-
straints include proper reading speed, synchrony
with the voices, the maximum number of subtitle
lines, and characters per line. Most audio-visual
companies define their own subtitling guidelines,
which can slightly differ from each other. In the
case of IWSLT participants, we asked to generate
subtitles according to specific guidelines provided
by TED, including:
• The maximum subtitle reading speed is 21 char-

acters per second;
• Lines cannot exceed 42 characters, including

white spaces;
• Subtitles cannot exceed 2 lines.
Participants were expected to use only the audio
track from the provided videos (dev and test sets),
as the video track could be of low quality and pri-
marily intended to check the temporal synchronic-
ity and other aspects of displaying subtitles on
screen.

The subtitling track required participants to
automatically subtitle audio-visual documents in
German and/or Arabic, where the spoken language
is always English. The documents were collected
from the following sources:
• TV series from ITV Studios;17

• Financial news content recordings from the
Asharq Business with Bloomberg media
group.18

5.2 Data and Metrics
Data. This track proposed two training data con-
ditions:
• Constrained: the official training data condi-

tion, in which the allowed training data is lim-
ited to a medium-sized framework19 to keep the
training time and resource requirements man-
ageable;

• Unconstrained: a setup without data restric-
tions (any resource, pre-trained language mod-

sion for it.
17www.itvstudios.com
18asharqbusiness.com
19iwslt.org/2025/subtitling#training-and-data-conditions

els included, can be used) to allow also the par-
ticipation of teams equipped with high compu-
tational power and effective in-house solutions
built on additional resources.

For each language and domain, a development
set and three test sets were released, those of pre-
vious evaluations (tst2023 and tst2024), used for
measuring progress over years, and a new one
(tst2025). Table 4 provides some statistics on
these sets.

domain set AV hh:mm #ref subtitles
docs de ar

ITV

dev 7 06:01 4489 -
tst23 7 05:08 4807 -
tst24 7 05:54 4564 -
tst25 3 02:07 1845 -

Asharq- dev 2 03:01 3662 2974
-Bloomberg tst25 2 03:03 3543 2759

Table 4: Statistics of the dev and evaluation sets for the
subtitling task.

Metrics. The evaluation was carried out from
three perspectives, subtitle quality, translation
quality, and subtitle compliance, through the fol-
lowing automatic measures:
• Subtitle quality vs. reference subtitles:

– SubER, primary metric, used also for rank-
ing (Wilken et al., 2022);20

• Translation quality vs. reference translations:
– BLEU21 and CHRF22 via sacreBLEU (Post,

2018);
– BLEURT (Sellam et al., 2020).
Automatic subtitles are realigned to the refer-
ence subtitles using mwerSegmenter (Matusov
et al., 2005)23 before running sacreBLEU and
BLEURT.

• Subtitle compliance:24

– rate of subtitles with more than 21 characters
per second (CPS);

– rate of lines longer than 42 characters, whites-
pace included (CPL);

– rate of subtitles with more than 2 lines (LPB).

20github.com/apptek/SubER
21sacreBLEU signature: nrefs:1|case:mixed|eff:
no|tok:13a|smooth:exp|version:2.0.0

22sacreBLEU signature: nrefs:1|case:mixed|eff:
yes|nc:6|nw:0|space:no|version:2.0.0

23www-i6.informatik.rwth-aachen.de/web/Software/
mwerSegmenter.tar.gz

24github.com/hlt-mt/FBK-fairseq/blob/master/examples/
speech to text/scripts/subtitle compliance.py
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5.3 Submissions

The subtitling track saw the participation of only
one team: APPTEK (Petrick et al., 2025). Details
about their systems follow.

AppTek: The APPTEK cascaded system includes
the AppTek25 production ASR and MT systems,
adapted to the domains of this evaluation (ITV and
Asharq-Bloomberg).
• ITV: In addition to other speech data from var-

ious domains, APPTEK’s hybrid ASR system
was trained on entertainment data (audio and
corresponding subtitles) provided by AppTek’s
major media and entertainment localization cus-
tomer. Similar data, in the form of profes-
sionally created English and German subtitle
files, was used to adapt the English-to-German
Transformer-based neural MT system.

• Asharq-Bloomberg en-de: The cascade of the
AppTek’s general domain ASR system and an
adapted English-German MT system was used.
The MT model was adapted on a subset of par-
allel data selected from available public sources
(like CCMatrix), based on semantic similarity
with the Asharq-Bloomberg en-de parallel de-
velopment data (clustering based on sentence
embedding similarity).

• Asharq-Bloomberg en-ar: In this case too,
the cascade consisted of the AppTek’s general
domain ASR system and an adapted English-
Arabic MT system. Here, the MT model was
adapted on parallel data of human-curated (post-
edited) Asharq-Bloomberg financial news pro-
grams. This data was available to AppTek as
part of their cooperation with Asharq business
with Bloomberg.
AppTek’s Intelligent Line Segmentation (ILS,

proprietary technology) neural model was used in
the source language after ASR to create subtitle
blocks, timed mostly according to word bound-
aries but extended where possible for a comfort-
able (lower) reading speed. ILS was also used to
segment the translated sentences into these blocks,
optimizing line breaks for human acceptance and
readability while, at the same time, respecting the
subtitling constraints.

AppTek’s NMT systems support length control.
For all primary submissions, whenever the de-
fault translation violated either the lines-per-block
(LPB) limit or the characters-per-second (CPS)

25www.apptek.com

limit, the source transcript was re-translated with
a stricter length control parameter (e.g., “short”,
“shorter”, “shortest”).

For the primary ITV submission, an increased
reading speed limit of 23 CPS was chosen
for a better translation quality/subtitle compli-
ance trade-off. The Contrastive 1 submis-
sion is without MT length control, while the
Contrastive 2 submission uses the default
CPS value of 21. For Asharq-Bloomberg, the
Contrastive 1 is without domain adaptation,
en-ar Contrastive 2 is without length con-
trol, en-de Contrastive 2 differs in setting
MT meta-data controls to genre “news” and style
“formal”.

5.4 Results

5.4.1 Automatic Evaluation
Scores on tst2025 of all APPTEK runs calculated
using automatic metrics are shown in Tables 30
and 31. Tables 32 and 33 refer to progressive
tst2024 and tst2023 sets, respectively, where the
primary runs of 2024 and 2023 participants are re-
ported as well to allow comparisons and quantifi-
cation of progresses.

tst2025 ITV en-de (Table 30, ITV rows): Scores
confirm the expectations based on the setups of the
various runs. The primary run actually provides
the best trade-off between translation quality and
subtitle compliance using a smoothed setup of the
length control mechanism: indeed, its BLEURT
score lies between those of Contrastive 1
(for which translation quality was the priority,
obtained by disabling the length control mecha-
nisms) and Contrastive 2 (for which subti-
tle compliance was prioritized using the default
setup of the length control mechanism). On the
other side, the CPS of the primary run is better
than that of Contrastive 1 but worse than
Contrastive 2. The SubER value, being the
best among all, confirms that the working point
of the primary run optimizes the compromise be-
tween the two contrasting features.

tst2025 Asharq-Bloomberg en-de (Table 30,
Asharq-Bloomberg rows): In the financial news
domain, the length control configuration is com-
mon to all runs and so it is not surprising to ob-
serve CPS values that are close to each other. The
MT model used to produce the Contrastive
1 submission was not domain-adapted, which
caused the lowest BLEURT value. It is evident
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that the generation of translations according to the
“news” genre and “formal” style (Contrastive
2) does not have effects that automatic metrics can
capture.

tst2025 Asharq-Bloomberg en-ar (Table 31): In
this case, the domain adaptation does not help too
much for the primary run as compared to the use of
the original generic MT model (Contrastive
1). The deactivation of the length control mech-
anism (Contrastive 2) allows to obtain the
best translation quality at the expense of the lowest
CPS.

tst2024 ITV en-de (Table 32): The results of
APPTEK’s runs on the tst2024 essentially confirm
the main outcome from the 2025 testset, i.e. that
the length control mechanism allows to adjust the
subtitle compliance at the expense of translation
quality. The main difference observed between
tst2025 and tst2024 results is that, for the latter, the
best SubER—corresponding to the optimal trade-
off between the two contrastive features—is ob-
tained with the Contrastive 2 setup, not the
primary one.

Concerning the comparison with the primary
submission of the past edition, the improvement
observed for the 2025 APPTEK system is impres-
sive from all point of views, including translation
quality, subtitle compliance, and trade-off between
them. The only 2024 system that beats the primary
AppTek 2025 submission is HW-TSC in terms of
(only) BLEURT, but at the cost of significantly
worse subtitle compliance values.

tst2023 ITV en-de (Table 33): The same con-
siderations made on APPTEK’s runs for tst2024,
in particular on the impact of the length control
mechanism, also apply to tst2023.

The results on tst2023 also assess the progress
among all participants of the current and past two
editions of the subtitling track. As noted last
year, the two best primary 2024 systems (APPTEK

and HW-TSC) achieved SubER values similar to
those of the two best 2023 systems (APPTEK and
TLT), having generally better translation quality
but worse subtitle compliance. This seemed to in-
dicate that in 2024 more attention was paid to the
quality of translation than to subtitle compliance.
On the contrary, this year both aspects were taken
into consideration, allowing to establish working
points that are better than in the past from all per-
spectives.

Overall, the results discussed here demonstrate

a clear evolution in subtitling technology over
the years. Despite limited participation, the task
appears to have successfully met its objectives
of fostering research in this area by providing a
shared evaluation framework for sound compar-
isons across diverse and challenging settings, as
well as enabling comparative analyses of progress
on blind test sets from previous years.

5.4.2 Human Evaluation
Human evaluation was also conducted for the sub-
titling task, with the aim of gaining a general and
purely indicative understanding of the quality of
the systems’ output in this challenging condition,
as compared to systems developed under differ-
ent conditions, including the much less restrictive
ones of the offline task. A crucial premise in inter-
preting the results reported in Section A.1 is that
these results stem from an evaluation setup that is
inherently penalizing for subtitling systems. The
scores shown in Tables 13 and 16 were obtained by
asking human assessors to compare the systems’
outputs against verbatim translations, without ac-
cess to the reference transcripts in the source lan-
guage - a process that inevitably disadvantages the
often shortened or condensed outputs produced by
subtitling systems. That said, the results are not
surprising. On the en-ar task (Table 13), the gap
with the three competitive, unconstrained offline
systems is substantial. On the en-de task (Ta-
ble 16), the APPTEK system obtains rank 4 out
of the 8 evaluated systems.

6 Model compression track

The Model Compression Track, introduced for the
first time at IWSLT 2025, addresses a growing
concern in the NLP community: how to reconcile
the impressive capabilities of foundation models
with the practical constraints of real-world deploy-
ment. As a matter of fact, while large-scale text
and speech models have revolutionized tasks such
as end-to-end speech-to-text translation, their sub-
stantial size and computational demands introduce
significant challenges in resource-constrained set-
tings—including mobile devices, embedded sys-
tems, and edge computing environments. This
is particularly problematic when low-latency, on-
device inference is required. Model compression
offers a promising path forward, enabling reduc-
tions in model size and complexity while striv-
ing to minimize performance degradation as much
as possible. By foregrounding this challenge, the
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track aims to establish a shared evaluation frame-
work for monitoring future advancements in the
development of more efficient, accessible, and de-
ployable SLT systems.

6.1 Challenge
This year’s objective was to assess participants’
ability to reduce the size of a large multilingual
speech-to-text foundation model while minimiz-
ing performance degradation in English→German
and English→Chinese speech translation settings.
The chosen model, Qwen2-Audio (Chu et al.,
2024), was selected due to its substantial yet man-
ageable size (8.2 billion parameters, requiring ap-
proximately 16 GB of memory storage), its sup-
port for various speech processing task across
multiple language directions, and its permissive
Apache 2.0 license. Altogether, its computa-
tional cost, memory-intensive nature, and versa-
tility make it an ideal candidate for task-oriented
model compression.

Regarding compression techniques, admissible
approaches were required to exclusively focus
on modifying or optimizing the model’s inter-
nal parameters, ensuring that the final compressed
model remained strictly derived from the original
Qwen2-Audio. Therefore, eligible techniques in-
cluded pruning (i.e. the removal of less important
neurons and/or entire layers within the model, by
identifying and eliminating parameters that con-
tribute minimally to its output), quantization (i.e.
the reduction of the numerical precision of the
model’s weights–e.g., from 32-bit to 16-bit, 8-bit,
or less–to lower its memory footprint), distillation
(i.e. the creation of a smaller “student” model
derived from Qwen2-Audio, for instance through
pruning, trained to replicate the behavior of the
original “teacher” model), as well as any other
method that produces a compressed counterpart of
the original model. Compression techniques could
be applied either individually or in combination.

6.2 Data and Metrics
Test Data Participants were provided with test
data representative of a specific domain, sci-
entific presentations, which is shared across
other tracks–specifically, the offline, simultane-
ous, and instruction-following tracks. This dataset
(IWSLT25Instruct, fully described in Section 9)
comprises 21 recordings, each approximately 5.5
minutes in length, featuring transcripts of sci-
entific oral presentations along with their corre-

sponding translations from English into several
languages (including German and Chinese).

Training and Development Data Participants
were offered the possibility to submit systems de-
veloped under two distinct training data condi-
tions, which differed in the datasets allowed to
support the model compression process. Specifi-
cally, while the unconstrained condition imposed
no restrictions on data usage, the constrained con-
dition limited the permitted training data to the
ACL60/60 dataset.26 This dataset is identical in
both size and source audio content for the two
language directions involved in the task and, al-
though small, is domain-consistent with the evalu-
ation sets.

Evaluation As an initial step toward a com-
prehensive evaluation framework for benchmark-
ing compression techniques that strike a balance
between compactness and performance, this first
round of the task focused on a subset of the rele-
vant dimensions of the problem,27 specifically ad-
dressing two interconnected challenges, each with
its own evaluation criteria:
• Model Reduction: Reduce the size of the foun-

dation model, defined by its number of param-
eters and memory usage, to improve suitability
for deployment in resource-limited settings.

• Translation Performance: Preserve translation
quality despite model size reduction, ensuring
that the compressed models remain both prac-
tically valuable and reliable.
Focusing on these two dimensions, the evalu-

ation protocol was designed to follow a two-step
approach.

STEP 1: Categorization of the submitted mod-
els into five size bins based on their storage re-
quirements (S),28 representing increasingly ag-
gressive levels of compression. The bins were de-
fined as follows:
• Bin1: 2 GB ≤ S < 4 GB
• Bin2: 1 GB ≤ S < 2 GB
• Bin3: 500 MB ≤ S < 1 GB
26https://aclanthology.org/attachments/2023.iwslt-

1.2.dataset.zip
27While computational efficiency (i.e., speed) is recognized

as a critical factor for deploying models in resource-
constrained environments, it was excluded from the eval-
uation framework in this initial round. However, we plan to
adopt a phased evaluation strategy in future editions, with
subsequent rounds incorporating computational efficiency
and thereby broadening the overall evaluation scope.

28Self-reported by participants at the submission stage.
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Model Num. Params (↓) Storage (↓) en-de (↑) en-zh (↑)
Qwen2-Audio-7B-Instruct 8.4B 16.8GB 0.672 0.743
TCD constrained primary 5.0B 9.7GB 0.764 0.806
TCD unconstrained contrastive 4.1B 8.8GB 0.693 -

Table 5: Results on the IWSLT25-Instruct ST test set in terms of translation quality (COMET-22 scores) and model
size (expressed in terms of number of parameters and storage size).

• Bin4: 200 MB ≤ S < 500 MB
• Bin5: S < 200 MB

STEP 2: Translation quality assessment using
COMET, following the same procedure adopted in
the offline track (i.e., computing COMET scores
on the test sets after automatically resegmenting
the system hypotheses and aligning them with the
reference translations using mwerSegmenter29).

The rationale behind this evaluation protocol
was to enable an independent assessment of mod-
els within the same size bin, thereby ensuring fair-
ness and meaningfulness in the comparisons.

6.3 Submissions and Results

The task had only one participant, TCD (Moslem,
2025), that submitted a constrained primary sys-
tem and an unconstrained contrastive one. The
constrained system reduced the number of pa-
rameters by 40% by means of 4-bit quantiza-
tion and QLoRa finetuning, after a full-finetuning
of the base model (Qwen2-Audio-7B-Instruct) on
the in-domain data. During the QLoRa finetun-
ing, sequence-level knowledge distillation from
the full-finetuned model is employed. For the un-
constrained system, the method is similar, but af-
ter the first finetuning of the whole model a layer
pruning strategy on the decoder (from 32 to 24 lay-
ers) is applied to further streamline the model, fol-
lowed by another full-finetuning of the resulting
model.

As seen from Table 5, the submitted runs ex-
hibit mixed results with respect to our two eval-
uation dimensions. On the one hand, looking at
model reduction, the number of parameters (5.0B
for the constrained submission, 4.1B for the un-
constrained one) and storage usage (9.7 GB and
8.8 GB, respectively) of the compressed models
are notable but insufficient to meet the most re-
laxed size requirements defined by Bin1 (i.e., a
maximum of 4 GB of storage). This highlights
the difficulty of the task and the need to further

29www-i6.informatik.rwth-aachen.de/web/Software/
mwerSegmenter.tar.gz

explore more aggressive techniques, as there re-
mains significant room for improvement.

On the other hand, considering translation per-
formance, it is encouraging to observe that, al-
though the reductions were insufficient to fall
into any of the target compression bins, the
output quality across both target languages is
even higher than the original model, thanks
to dedicated finetuning on in-domain data, de-
spite the applied compression techniques. The
COMET scores show relative increases up to
13.43% on English→German and 9.46% on
English→Chinese compared to the original, un-
compressed Qwen2-Audio model. This is a non-
trivial outcome, especially given the typical trade-
offs involved when attempting to reduce the com-
putational requirements of a large model.

In light of these findings, we believe that the
challenges introduced in this first round of the
model compression track remain open. The sub-
stantial margin for improvement observed should
encourage broader participation in future rounds,
driven by the growing need for efficient, accessi-
ble, and deployable SLT systems.

7 Low-resource SLT

The 5th edition of the Low-resource Spoken Lan-
guage Translation track focused on the translation
of speech from a variety of data-scarce languages.
The target language is typically a higher-resource
one, generally of similar geographical or historical
linkages. The goal of this shared task is to bench-
mark and promote speech translation technology
for a diverse range of dialects and low-resource
languages. While significant research progress has
been demonstrated recently, many of the world’s
languages and dialects lack the parallel data at
scale needed for standard supervised learning.

Recognizing that the biggest bottleneck towards
truly language-inclusive speech translation sys-
tems is data availability, this year’s edition in-
cluded a data track, inviting participants to con-
tribute newly collected speech translation datasets
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for under-resourced language pairs.

7.1 Challenge

Systems Track This year’s task significantly ex-
panded the typological and geogrpahical diversity
of the languages, language families, and scripts
represented. The ten subtasks were:
• North Levantine Arabic→ English (apc-eng)
• Tunisian Arabic→ English (aeb-eng)
• Bemba→ English (bem-eng)
• Fongbe→ French (fon-fra)
• Irish→ English (gle-eng)
• Bhojpuri→ Hindi (bho-hin)
• Estonian→ English (est-eng)
• Maltese→ English (mlt-eng)
• Marathi→ Hindi (mar-hin)
• Quechua→ Spanish (que-spa)
Teams were allowed to submit to as few as one lan-
guage pair, up to all ten. Both constrained and un-
constrained submissions were allowed, to be sepa-
rately ranked. For the constrained scenario, teams
were only allowed to submit systems using the
data provided by the shared task. For the uncon-
strained systems, teams were allowed to use any
data as well as any pre-trained models.

Data Track This track aimed to empower lan-
guage communities to contribute datasets. Such
datasets are essential for expanding the reach of
spoken language technology to more languages
and varieties.

Participants of this track were encouraged to get
creative with data creation strategies, while also
ensuring data quality. As such, data track instruc-
tions included the following:
• Translations should be performed, wherever

possible, by qualified, native speakers of the tar-
get language. We strongly encouraged verifica-
tion of the data by at least one additional native
speaker.

• Submitted datasets should be accompanied by
dataset cards.30 These should detail precise lan-
guage information and the translation workflow
that was employed. In particular, we asked par-
ticipants to identify the language with both an
ISO 639-3 individual language tag and a Glot-
tocode. The script should be identified with an
ISO 15924 script code.

• We highly encouraged new contributions to be
released under CC BY-SA 4.0 or other similarly

30github.com/openlanguagedata/oldi.org/blob/main/
resources/dataset-card-template.md

permissive licenses. By contributing data to this
shared task, participants agreed to have this data
released under these terms. At a minimum, data
should be made available for research use.

• While post-editing of automatic output was al-
lowed, we required that any data submitted for
the shared task are 100% verified by humans, if
not directly created by humans. Raw, unverified
machine translated outputs were not allowed. If
using MT, we tasked participants with ensuring
that the terms of service of the model they used
allow re-using its outputs to train other machine
translation models (for example, popular com-
mercial systems such as DeepL, Google Trans-
late and ChatGPT explicitly disallow this).

7.2 Data and Metrics
Table 6 provides a summary of the training data
that were part of the shared task. We describe in
more detail the data for each language pair below.

North Levantine Arabic–English (apc-eng)
Levantine Arabic (ISO code: apc) is a well-
established unit within the Arabic dialectal con-
tinuum, spoken mainly in Syria, Jordan, Lebanon,
and Palestine. Although historically often split
into North and South sub-dialects, recent ISO cat-
egorizations unite them under a common variant.
Nonetheless, we maintain this finer split to empha-
size the distinct phonological features and linguis-
tic variations that characterize regional accents.

As in the first run of the apc–eng language
pair, participants were provided with the UFAL
Parallel Corpus of North Levantine 1.0 (Sellat
et al., 2023), which includes about 120k lines of
multi-parallel North Levantine-Modern Standard
Arabic-English textual data, that can be down-
loaded from the LINDAT/CLARIAH-CZ Repos-
itory.31 For additional speech data in Levantine
Arabic, participants were pointed to two LDC re-
sources: the BBN/AUB DARPA Babylon Lev-
antine corpus (Makhoul et al., 2005) and the
Levantine Arabic QT Training Data Set 5 cor-
pus (Maamouri et al., 2006). Participants were
also encouraged to make use of the Tunisian Ara-
bic and Modern Standard Arabic resources made
available in previous IWSLT editions.

Given the limited amount of publicly avail-
able corpora, we adopted the design of the ini-
tial apc–eng language pair run and focused exclu-
sively on the unconstrained scenario.
31hdl.handle.net/11234/1-5033
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The development32 and test33 data consist of
recordings of native speakers of the dialect and
are a mix of spontaneous monologues and dia-
logues on topics of everyday life (health, family
life, sports) as well as characteristics of the coun-
try of origin (Syrian traditions, education system,
culture, etc.). The transcription and translation
team consisted of students of Arabic at Charles
University, with an additional quality check pro-
vided by the native speakers of the dialect.

Tunisian Arabic–English (aeb-eng) Tunisian
Arabic (ISO code: aeb) is the main spoken lan-
guage in Tunisia. It is heavily influenced by the
Arabic language. Due to its geographic position,
the spoken language of Tunisia was also influ-
enced by other languages including Tamazight,
French and Turkish. As was the case of IWSLT22
and 23, the provided Tunisian Arabic–English cor-
pus consists of around 323 hours of Tunisian Con-
versational Telephone Speech (CTS) along with
manual transcripts made available by LDC. A sub-
set of the above transcript (200k lines that repre-
sent 167 hours of speech) was manually translated
into English and provided as training data for the
speech translation task. In this 2025 evaluation
campaign, participants also had access to an ad-
ditional Tunisian dialect corpus of manually tran-
scribed 08 hours of conversational speech (Mdhaf-
far et al., 2024).

All train and test sets are time-segmented at the
utterance level. The development and test sets are
the same official sets used during IWLST 2022
and 2023.

Bemba–English (bem-eng) Bemba (also
known as IciBemba) is a Bantu language (ISO
code: bem), spoken predominantly in Zambia and
other parts of Africa by over 10 million people. It
is the most populous indigenous language spoken
by over 30% of the population in Zambia where
English is the lingua franca and official high-
resourced language of communication. Bemba
is native to the people of Northen, Luapula and
Muchinga provinces of Zambia but also spoken in
other parts of the country including urban areas
such as Copperbelt, Central and Lusaka provinces
by over 50% of the population (ZamStats, 2012).

The provided Bemba-English corpus (Sikasote
et al., 2023a) consists of over 180 hours of Bemba
32IWSLT 2024 devset and testset (with references):

hdl.handle.net/11234/1-5518, hdl.handle.net/11234/1-5519
33hdl.handle.net/11234/1-5924

audio data, along with transcriptions and trans-
lations in English. The dataset is comprised of
recorded multi-turn dialogues between native Be-
mba speakers grounded on images.

In addition, we provided transcribed (28 hours)
and untranscribed (60 hours) monolingual Be-
mba speech from Zambezi Voice (Sikasote et al.,
2023b) and BembaSpeech (Sikasote and Anasta-
sopoulos, 2022) datasets.

Fongbe–French (fon-fra) Fongbé (also spelled
Fongbè or Fon) is a Gbe language (ISO 639-3:
fon). Fongbe, a tonal African language, is the most
spoken dialect of Benin, by more than 50% of
Benin’s population, including 8 million speakers.
Fongbe is also spoken in Nigeria and Togo. The
provided dataset contains over 48 hours of Fongbe
audio recordings aligned with French translations.
Additionally, a validation set of over 6 hours is in-
cluded. The data used for this shared task is the
extended version of the FFSTC corpus recently re-
leased (Kponou et al., 2025a). All recordings are
derived from reading sessions by native Fongbe
speakers, making this dataset a valuable resource
for speech translation and low-resource language
processing research.

Irish–English (gle-eng) Irish (also known as
Gaeilge; ISO code: gle) has around 170,000 L1
speakers and 1.85 million people (37% of the pop-
ulation) across the island (of Ireland) claim to be
at least somewhat proficient with the language. In
the Republic of Ireland, it is the national and first
official language. It is also one of the official lan-
guages of the European Union (EU) and a recog-
nized minority language in Northern Ireland with
the ISO ga code.

The provided Irish audio data were compiled
from the news domain, Common Voice (Ardila
et al., 2020a),34 and Living-Audio-Dataset.35 The
Irish-to-English corpus comprises approximately
12 hours of Irish speech data (see Table 6), trans-
lated into English texts.36 This year, we also
provided the participants of three synthetic au-
dio Irish-to-English datasets comprising 196 hours
(Moslem, 2024). The synthetic data was cre-
ated by synthesizing audio from parallel textual
datasets obtained from OPUS (Tiedemann, 2012),
namely EUbookshop, Tatoeba, and Wikimedia.37

34commonvoice.mozilla.org/en/datasets
35github.com/Idlak/Living-Audio-Dataset
36github.com/shashwatup9k/iwslt2025 ga-eng
37hf.co/collections/ymoslem/irish-english-speech-
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Bhojpuri–Hindi (bho-hin) Bhojpuri (ISO
code: bho) belongs to the Indo-Aryan language
group. It is dominantly spoken in India’s western
part of Bihar, the north-western part of Jharkhand,
and the Purvanchal region of Uttar Pradesh. As
per the 2011 Census of India, it has around 50.58
million speakers (Ojha and Zeman, 2020). Bho-
jpuri is spoken not just in India but also in other
countries such as Nepal, Trinidad, Mauritius,
Guyana, Suriname, and Fiji. Since Bhojpuri was
considered a dialect of Hindi for a long time, it
did not attract much attention from linguists and
hence remains among the many lesser-known and
less-resourced languages of India.

The provided Bhojpuri–Hindi corpus consists
of 23.31 hours of Bhojpuri speech data (see Ta-
ble 6) from the news domain, extracted from News
On Air38 and translated into Hindi texts.39 Ad-
ditionally, the participants were directed that they
may use monolingual Bhojpuri audio data (with
transcription) from ULCA-asr-dataset-corpus40 as
well as Bhojpuri Language Technological Re-
sources (BHLTR) (Ojha et al., 2020; Ojha, 2019)41

and Bhojpuri-wav2vec2 based model.42

Estonian–English (est-eng) Estonian (ISO
code: est) belongs to Finnic branch of the Uralic
language family. It is the official language of
Estonia and is spoken natively by about one
million people.

The provided training set consists of 581,647
utterances (1,258 hours), while the development
set includes 1,601 utterances (3.6 hours). The
training data is sourced from the TalTech Esto-
nian Speech Dataset 1.0 (Alumäe et al., 2023),
a manually transcribed corpus primarily compris-
ing broadcast material, created for training speech
recognition models. All recordings are long-form
speech, transcribed and time-aligned at the utter-
ance level. In this dataset, long recordings have
been segmented into individual utterances. The
transcripts have been automatically translated into
English using Google Translate in 2024 (Sildam
et al., 2024).

The development and test sets include speech
from government and municipal press confer-

translation-datasets-665dd9e8fbaa279db3474ca0
38newsonair.gov.in
39github.com/panlingua/iwslt2025 bho-hi
40github.com/Open-Speech-EkStep/ULCA-asr-dataset-

corpus
41github.com/shashwatup9k/bho-resources
42www.openslr.org/64/

ences, TV news, radio shows and talk shows, cov-
ering a variety of topics (sports, AI, international
relations). The English translations have been
manually created by professional translation agen-
cies, instructed to translate without using any MT
systems for post-editing. Both the original Esto-
nian transcriptions and their English translations
are provided for all utterances.

Maltese–English (mlt-eng) Maltese (ISO code:
mlt) is a Semitic language with a heavy influence
from Italian and English. It is spoken primarily in
Malta, as well as in migrant communities abroad,
notably in Australia, parts of the United States,
and Canada.

The data release for this shared task comprises
over 14 hours (split into development and train-
ing sets) of audio data, along with their tran-
scription in Maltese and translation into English.
Participants were allowed to use additional Mal-
tese data, including the text corpus used to train
BERTu (Micallef et al., 2022), a Maltese monolin-
gual BERT model, the MASRI Data speech recog-
nition data (Hernandez Mena et al., 2020), and any
data available at the Maltese Language Resource
Server.43

Marathi–Hindi (mar-hin) Marathi (ISO code:
mar) is an Indo-Aryan language and is domi-
nantly spoken in the state of Maharashtra in India.
It is one of the 22 scheduled languages of India
and the official language of Maharashtra and Goa.
As per the 2011 Census of India, it has around 83
million speakers which covers 6.86% of the coun-
try’s total population.44 Marathi is the third most
spoken language in India.

The provided Marathi–Hindi corpus consists of
25.12 hours of Marathi speech data (see Table 6)
from the news domain, extracted from News On
Air45 and translated into Hindi texts.46 The dataset
was manually segmented and translated by Panlin-
gua.47 Additionally, the participants were directed
that they may use monolingual Marathi audio data
(with transcription) from Common Voice (Ardila
et al., 2020a),48 as well as the corpus provided
by He et al. (2020)49 and the Indian Language Cor-

43mlrs.research.um.edu.mt/
44censusindia.gov.in/nada/index.php/catalog/42561
45newsonair.gov.in
46github.com/panlingua/iwslt2025 mr-hi
47panlingua.co.in/
48commonvoice.mozilla.org/en/datasets
49www.openslr.org/64/
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Language Pairs Train Set Dev Set Test Set Additional Data

North Levantine–English apc–eng - 2.5 1.39 IWSLT 2024 test set (with references)

Tunisian Arabic–English aeb–eng 323.0 - - A 160 hours out of this 323 hours are manually
translated into English. 8h of transcribed speech
from TARIC data set are also provided. Evalua-
tion sets are same as IWSLT23.

Bemba–English bem–eng 167.17 5.89 5.83 28.12 hours of monolingual audio with transcrip-
tions (ASR) and 60 hours of untranscribed audio
data.

Fongbe–French fon–fra 48 6.1 5.9 A 57 hours of spoken Fongbe with corresponding
French translations

Irish–English ga–eng 9.46 1.03 0.66 A 196 hours of Synthetic Data, IWSLT 2023
and 2024 test set (with references) and MT data
(monolingual and parallel corpora)

Bhojpuri–Hindi bho–hi 19.88 2.07 0.54 IWSLT 2024 test set (with references ) and
Monolingual audio with transcription (ASR) and
monolingual text

Estonian–English est-eng 1258.0 3.6 4.22 Remark: training data is synthetic (ASR data,
machine-translated to English)

Maltese–English mlt–eng 11.83 2.52 2.0 Monolingual audio with transcriptions (ASR),
monolingual text

Marathi–Hindi mr–hi 15.88 3.66 0.46 Monolingual audio with transcriptions (ASR),
IWSLT 2023 and 2024 test set (with references)
and monolingual text

Quechua–Spanish que–spa 1.60 1.03 1.03 48.0 hours of monolingual audio with transcrip-
tions (ASR) and post-edited translations (new)
along with extra MT data

Table 6: Training, development and test data details (hours) for the language pairs of the low-resource shared task.

pora (Abraham et al., 2020).50

Quechua–Spanish (que-spa) Quechua (macro-
laguage ISO code: que) is an indigenous lan-
guage spoken by more than 8 million people in
South America. It is mainly spoken in Peru,
Ecuador, and Bolivia where the official high-
resource language is Spanish. It is a highly inflec-
tive language based on its suffixes which aggluti-
nate and are found to be similar to other languages
like Finnish. The average number of morphemes
per word (synthesis) is about two times larger than
in English. English typically has around 1.5 mor-
phemes per word and Quechua has about 3 mor-
phemes per word.

There are two main regional divisions of
Quechua known as Quechua I and Quechua II.
This data set consists of two main types of
Quechua spoken in Ayacucho, Peru (Quechua
Chanka ISO: quy) and Cusco, Peru (Quechua
Collao ISO: quz) which are both part of Quechua
II and, thus, considered a “southern” language. We
label the data set with que - the ISO norm for
Quechua II mixtures.

Due to the lack of data and low performance
in previous work ((Salesky et al., 2024; E. Ortega

50www.cse.iitb.ac.in/∼pjyothi/indiccorpora/

et al., 2024)), the organizers decided to allow only
unconstrained submissions this year. The uncon-
strained setting consists of 1 hour and 40 minutes
of training data and divided into 573 training files,
125 validation files, and 125 test files which are
excerpts from the Siminchik corpus translated by
native Quechua speakers. (Cardenas et al., 2018)
Additionally, participants were directed to another
larger data set from the Siminchik corpus which
consisted of 48 hours of fully transcribed Quechua
audio (monolingual). In this year’s task (2025),
the organizers also included post-edited transla-
tion from Google of the 48 Siminchik hours which
did not have translations last year (2024). Another
MT dataset is offered in a parallel format, similar
to last year. (Ortega et al., 2020) It consists of 100
daily magazine article sentences and 51140 sen-
tences which are of religious context in nature.

7.2.1 Metrics

We use standard lowercase BLEU with no punctu-
ation to automatically score all submissions. Ad-
ditional analyses for some language pairs are pro-
vided below. Were applicable, we also report
chrF++ (Popović, 2015).
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7.3 Submissions

The Shared Task received a record 109 submis-
sions (for speech translation) from 12 teams for all
10 language pairs. The submissions that provided
an accompanying system paper are described in
detail below and outlined in Table 7.

AIB-MARCO This team employed a cascade
speech translation system consisting of Whis-
per/SeamlessM4T and Qwen2.5-7B-instruct.
They performed sliding window ASR on the input
audio then segment-level translation based on the
transcription from the ASR model.

For primary systems of apc-eng and est-eng
they used Whisper-large as the ASR model,
whereas for gle-eng they used SeamlessM4T as
the ASR model. For the contrastive systems,
they employed different ASR models. The LLM
used in translation is an optimized Qwen2.5-7B-
instruct model.51

ALADAN (Kheder et al., 2025) provided a sub-
mission for the North Levantine Arabic to En-
glish direction, building on the same team’s ef-
forts from last year (Kheder et al., 2024). It is
a cascade of ASR and MT systems. For the MT
part data sparsity is alleviated via a crowd-sourced
parallel corpus that covers five major Arabic di-
alects (Tunisian, Levantine, Moroccan, Algerian,
Egyptian), curated via rigorous qualification and
filtering. They also include an additional experi-
ment with a large, high-quality Levantine Arabic
corpus from LDC, which does not benefit from
adding the crowdsourced data. ASR is done with
a TDNN-F model and a Zipformer, whereas com-
pared to the previous year’s submission, a 4-times
bigger model is taken for Zipformer (253M pa-
rameters). The methodology also includes dialect-
specific normalization of Arabic text.

BUINUS (Tjiaranata et al., 2025) focused on the
mlt-eng direction. Their system employs a cas-
cade architecture, combining ASR and translation
to handle the low-resource setting better. For ASR,
they use Whisper (Radford et al., 2022), which
was further fine-tuned with the data provided in
the shared task. For the translation step, they
use NLLB model (NLLB Team et al., 2022), em-
ploying both direct fine-tuning and data augmen-
tation techniques designed to modify the target

51This description was provided by the participants. No asso-
ciated paper was submitted.

sequences and thereby reinforce encoder reliance
and decoder robustness. Fine-tuning of NLLB was
carried out in two stages: an initial stage used a
combination of real and augmented data, followed
by a second stage fine-tuning exclusively on the
main task to refine the model further. To efficiently
fine-tune larger models under computational con-
straints, they used QLoRA (Dettmers et al., 2023),
achieving better performance with the 3.3B pa-
rameter model compared to smaller versions. No-
tably, their analysis revealed that data augmen-
tation yielded comparatively greater performance
gains for smaller models, underscoring the value
of data-driven strategies in resource-constrained
scenarios. They note, however, that the perfor-
mance difference between the larger and smaller
NLLB models was modest, and the errors at the
ASR stage hurt the translation component.

GMU (Meng and Anastasopoulos, 2025) submit-
ted systems for all language pairs except apc-
eng. Their approach focuses on fine-tuning
SeamlessM4T-v2 for ASR, MT, and ST tasks. The
fine-tuned ASR and MT models are used to con-
struct cascaded ST systems. They also explored
various training paradigms for ST fine-tuning, in-
cluding direct end-to-end (E2E) fine-tuning, pa-
rameter initialization using fine-tuned ASR and/or
MT model components, and multi-task training.
The multi-task training setup includes ST, MT and
knowledge distillation (KD) objectives, where KD
leverages the MT components to enhance the ST
components. They found that direct E2E fine-
tuning yielded strong overall results, and initializ-
ing the ST encoder with an in-domain fine-tuned
ASR encoder further improved performance on
languages SeamlessM4T-v2 had not been previ-
ously trained on. Multi-task training, on the other
hand, provided marginal improvements.

JHU Johns Hopkins University’s team, (Robin-
son et al., 2025), participated in all language pairs
continuing their tradition from last year (Rom-
ney Robinson et al., 2024). As with the previous
year, the motivation was to assess the robustness of
the methods they were employing across a variety
of domains and typologically diverse languages.
However, the main focus this year was on ensem-
bling methods, and in particular, Minimum Bayes
Risk (MBR) decoding (Bickel and Doksum, 1977;
Kumar and Byrne, 2004). In order to do so, they
aimed to gather a variety of different submissions
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Language Pairs
Team Name apc-eng aeb-eng bem-eng fon-fra bho-hin gle-eng est-eng mlt-eng mar-hin que-spa

Systems Track
AIB-MARCO ✓ ✓ ✓

ALADAN (Kheder et al., 2025) ✓ ✓
BUINUS (Tjiaranata et al., 2025) ✓

GMU (Meng and Anastasopoulos, 2025) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
IIITH-BUT (Akkiraju et al., 2025) ✓

JHU (Robinson et al., 2025) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
KIT (Li et al., 2025) ✓ ✓ ✓

KREASOF-TCD (Farouq et al., 2025) ✓
LIA (Chellaf et al., 2025) ✓ ✓ ✓

QUESPA (Ortega et al., 2025) ✓
SYSTRAN (Avila and Crego, 2025) ✓

Teams per Pair: 5 6 4 3 3 3 3 3 2 3

Data Track
KUVOST (Mohammadamini et al., 2025) English - Central Kurdish

URDU (Mehmood and Rauf, 2025) Urdu - English
FFSTC-2 (Kponou et al., 2025b) Fongbe - French

Table 7: Breakdown of the teams and the language pairs subtasks that they participated in for the Low-Resource
Shared Task.

for each language pair. They relied on both end-to-
end translation systems, as well as cascaded sys-
tems. In addition, they looked at combining sim-
ilar languages for mixed data training. Overall,
the results were mixed with ensembling helping in
some language pairs and hurting in others. How-
ever, a key takeaway is that for practioners, MBR
is still helpful because you do not need to know
which system is the best in advance.

LIA (Chellaf et al., 2025) participated in three
language pairs - both of the arabic dialects, as well
as Fongbe to French. All of their submissions
were in the unconstrained setting relying on pre-
trained models. They explored both pipelined sys-
tems and end-to-end systems. They investigated
various ways of augmenting systems with varying
data, such as combining Modern Standard Arabic
(MSA) data with dialectal arabic, or looking at in-
cluding Fongbe transcriptions both with and with-
out diacritics. For the Tunisian-to-English transla-
tion task, their primary system was an end-to-end
system based on a language-agnostic semantically
aligned speech encoder. They trained it follow-
ing the SAMU-XSLR framework (Khurana et al.,
2022) from the w2v-bert 2.0 (Seamless Commu-
nication et al., 2023) model as a student and BGE-
M3 text model (Chen et al., 2024) as a teacher. For
the North Levantine-to-English task, their primary
system was based on a combination of cascaded
systems. The two ASR modules were based on
Whisper-large-v3: these models have been fine-

tuned on the Levantine data released by the orga-
nizers but also on Modern Standard Arabic data.
The two MT models applied to the ASR outputs
were based on NLLB-200 1.3B fine-tuned on the
official data augmented with the Levanti corpus,
available on Hugging Face 52. Each MT model
fed by different ASR output generated 10 transla-
tion hypotheses. The final selection was made by
using BLASER (Chen et al., 2023). Last, for the
Fongbe to French translation task, their primary
system was also a cascaded system using an ASR
module built on the AfriHuBERT SSL speech en-
coder (Alabi et al., 2024) and an MT module based
on the NLLB model.

KIT (Li et al., 2025) participated in the Bemba-
to-English, North Levantine Arabic-to-English,
and Tunisian Arabic-to-English tasks under the
unconstrained condition. They explored both cas-
caded and end-to-end ST systems. All approaches
were based on pretrained models: SeamlessM4T
(Seamless Communication et al., 2023) for end-to-
end ST, NLLB (NLLB Team et al., 2022) for MT,
and MMS (Pratap et al., 2024) and XEUS53 for
ASR. The main focus was on using synthetic data
for data augmentation and applying model regu-
larization techniques. Two types of synthetic data
generation were studied: (1) translating source
language ASR data using MT systems to create
ST training data, and (2) generating source lan-

52huggingface.co/datasets/guymorlan/levanti
53huggingface.co/espnet/xeus
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guage speech via text-to-speech from MT training
data. Results showed that ST models trained only
on synthetic data can outperform cascaded sys-
tems, provided that a strong MT system is used.
The impact of TTS-based augmentation varied: it
was effective only when the TTS quality was high.
Regularization experiments used intradistillation
(Romney Robinson et al., 2024), which proved to
be a reliable and broadly applicable method across
all tasks in low-resource settings.

IIITH-BUT (Akkiraju et al., 2025) fine-tuned
SeamlessM4T models for Bhojpuri-Hindi speech
translation. To address data scarcity, they applied
speed perturbation and SpecAugment data aug-
mentation techniques. Moreover, they examined
cross-lingual transfer learning through joint train-
ing with Marathi and Bhojpuri speech data.

The team experimented with two variants of
SeamlessM4T, medium (1.2B parameters) and
large v2 (2.3B parameters). For hyperparame-
ter optimisation, they explored a range of val-
ues for batch size, learning rate, label smoothing,
and warmup steps. For data augmentation, they
used SpecAugment to apply spectrogram masking
with time masks and frequency masks, and im-
plemented speed perturbation with speed factors
of 0.9x, 1.0x, and 1.1x. This data augmentation
process resulted in expanding the training data by
three times. Finally, they combined the Marathi-
Hindi parallel data with the limited Bhojpuri-
Hindi dataset to fine-tune the SeamlessM4T mod-
els.

KREASOF-TCD (Farouq et al., 2025) This team
participated in the Bemba-to-English shared task
under unconstrained conditions. The team sub-
mitted three speech translation systems based on
the cascading method. The Primary submission
system is based on medium-sized Whisper for
the ASR and NLLB-200 3.3B for the MT. The
Contrastive 1 and Contrastive 2 systems use the
small-sized Whisper model for the ASR, while
the MT systems are based on the NLLB-200
3.3B and NLLB-200 600M models, respectively.
The team explored fine-tuning pre-trained mod-
els and data augmentation for their strategy to de-
velop the systems. The ASR systems were ob-
tained by fine-tuning the Whisper models on the
data from the BembaSpeech (Sikasote and Anas-
tasopoulos, 2022) and BIG-C (Sikasote et al.,
2023a) datasets. The MT systems are based on

the NLLB-200 (NLLB Team et al., 2022) model,
which is fine-tuned on bilingual segments of the
BIGC and ”dev” split of the FLORES-200 (Goyal
et al., 2022) datasets. To improve the quality of
speech translations, the team explored augment-
ing the Bemba-to-English training data with the
portion of the Tatoeba (Tiedemann, 2020) dataset
that was back-translated from English into Be-
mba using the NLLB-200 600M model. The
back-translations were filtered using cross-entropy
scores.

SYSTRAN (Avila and Crego, 2025) participated
in one language pair, Tunisian Arabic to En-
glish, under the constrained condition using the
resources provided by LDC for this task that
included MSA data from broadcast news and
Tunisian Arabic conversational telephone speech.
The focus of their contribution was on tightly cou-
pling an ASR encoder (Whisper, the Medium and
Large-v3 versions tested) with an NMT decoder
(NLLB, the 3.3B parameter version ). Embed-
dings from the Whisper encoder are fed into the
NLLB decoder via a Reshape module consisting
of a convolutional layer and liner projection layer
instead of using the standard word embeddings.
The motivation is for parameter-efficient training
in low-resource settings, ensuring quality transla-
tions while being scalable. They fine-tuned their
model using the available LDC parallel corpora,
with additional filtering and cleaning strategies to
optimize domain robustness and translation con-
sistency.

QUESPA (Ortega et al., 2025) submitted three
unconstrained systems this year as the Quechua–
Spanish shared task organizers only allowed un-
constrained setting submissions. Team QUESPA

were able to improve the previous year’s results
despite the baseline task data remaining mostly the
same with exception of newly machine-translated
text from the original Siminchik corpus. The three
unconstrained systems ranged from 14.8 BLEU
to 26.7 BLEU where QUESPA’s best performing
systems from last year (2024) ranged from 11.1
to 19.7 BLEU. The 7 BLEU points of improve-
ment of their best system is attributed to a new
ASR dataset released from the “quy” ISO code
called Collao, a dialect of Quechua spoken mostly
in southern Peru. (Paccotacya-Yanque et al., 2022)

QUESPA’s unconstrained systems were once
again a novel introduction for the QUE–SPA
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Language Pair Winning Team System Constrained BLEU

apc-eng KIT primary no 23.3
aeb-eng KIT primary no 21.4
bem-eng GMU primary no 31.7
fon-fra LIA primary no 39.6
bho-hin JHU primary no 10.7
gle-eng GMU primary no 13.4
est-eng AIB-MARCO primary no 30.9
mlt-eng GMU primary no 57.5
mar-hin GMU contrastive1 no 44.3
que-spa QUESPA contrastive2 no 26.7

Table 8: Winning submissions for each language pair of the Low-Resource Shared Task.

task and outperformed last year’s best systems.
The Primary System was not previously used by
QUESPA in IWSLT. It is comprised of a cascaded
ASR + MT system where ConMamba (Jiang et al.,
2024), based on a Conformer architecture (Gu-
lati et al., 2020) is used for ASR using publicly
available recipes54, experimenting with small (S)
and large (L) configurations (144/512 dimensions,
12+4/12+6 layers). The resulting transcribed text
is then passed into a newly created (fine-tuned)
NLLB (NLLB Team et al., 2022) machine trans-
lation system that was tested in development with
several combinations that finally resulted in 18
BLEU on the test set. The Contrastive 1 system is
similar to QUESPA’s submission from 2024, how-
ever, Whisper Version 3 is used this year along
with ESPnet (Watanabe et al., 2018). Results
from the Whisper V3 model were then passed into
the NLLB-based MT model used in the Primary
system. The Contrastive 2 system is QUESPA’s
biggest achievement yet and can be considered
the most novel system to data for speech trans-
lation on the Quechua–Spanish language pair. It
is a pre-trained SpeechT5 (Ao et al., 2022) model
fine-tuned for Speech Translation using the uncon-
strained training data along with the 48 hours of
newly created post-edited MT data. Furthermore,
they applied a data augmentation technique called
nlpaug (noise, distortion, duplication)(Ma, 2019)
which resulted in a total of 96h: 48h original + 48h
of new synthetic data. Lastly, their best addition
to the Contrastive 2 system was the inclusion of a
Collao speech translation corpus that contains 15
hours of Quechua Collao translated speech (quz).
The resultant training data set for the Contrastive
2 system thus was: 96 + 15 (111) total hours of
Quechua speech translations. (Paccotacya-Yanque
et al., 2022)

54github.com/xi-j/Mamba-ASR

7.4 Results

General Notes Table 8 summarizes the winning
submissions for each language pair. Detailed re-
sults for all teams’ systems and settings are avail-
able in Appendix B.5.

Of the 10 language pairs, 6 different teams had
the top performing system on at least one language
pair. This shows how competitive the shared task
was, and that a multitude of approaches are helpful
for low-resource speech translation.

Compared to previous iterations of the shared
task, some of the language pairs had marked im-
provements with large gains in the official auto-
matic metrics. For example, BLEU scores for
Quechua-Spanish, the least resourced language
pair, improved from 19.7 to 26.7 BLEU points
(this was largely the result of the use of additional
data by the winning team). However, for other
continuing language pairs, performance is rather
stagnated, remaining in exactly the same levels
(if not worse) for Bemba-English, Bhojpuri-Hindi,
Irish-English, and the two Arabic dialects lan-
guage pairs. This might suggest that we have per-
haps reached a performance ceiling of sorts in the
current datasets under the current data-scarce con-
ditions, especially for the language pairs that lie in
the low-end of data availability. It should be noted,
though, that this ”ceiling” performance neverthe-
less still lags substantially behind the translation
quality we observe for high-resource pairs, still re-
inforcing the need for further data collection and
research in the area.

For the language pairs included for the first time
in the shared task, we find that Estonian-English,
our highest resourced language pair with more
than 1,200 hours of translated audio, ends up with
speech translation systems of decent quality with
BLUE scores in the 29–31 range by multiple par-
ticipants. On the other hand lies Fongbe-Frnech,
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which even though does end up with decent sys-
tems yielding BLEU scores over 30 by two par-
ticipants. Similar to last year’s findings, we see
our current technologies can produce good ST sys-
tems for language pairs with more than 50 hours of
high-quality translated speech.

We note that almost all submissions followed
the unconstrained setting – a clear indication that
pre-trained multilingual systems seem to be the
best option for building ST for low-resource lan-
guages, at least under the current data, architec-
tural, and compute constraints.

Notes on apc-eng Compared to the initial run
of the apc-eng language pair in the previous year,
the performance gap between the top-ranked sys-
tem (KIT) and the remaining participants has nar-
rowed. The second-place team (LIA) achieved re-
sults within 1 BLEU point of the winner, while
the third-place team (ALADAN, last year’s cham-
pion) trailed by only 3.5 BLEU points. Although
the absolute BLEU score achieved by the top-
performing system is notably lower than that of
the previous year (23.34 vs. 28.71), we attribute
this discrepancy not to a decline in overall sys-
tem quality (quite the contrary!) but rather to dif-
ferences in the test set composition (2024: 974
lines, 12,263 words; 2025: 1,026 lines, 8,833
words). Although the ranking based on chrF cor-
responds with the BLEU evaluation, COMET in-
dicates that the LIA system surpasses KIT, em-
phasizing the minimal performance differences
among the leading submissions. The integration
of end-to-end and cascaded systems, particularly
through MBR decoding to combine translation hy-
potheses, proved to be a successful strategy for
enhancing overall system performance. Due to
their strong multilingual capabilities, the Whisper
and NLLB models continue to be among the most
widely adopted solutions for ASR and MT, respec-
tively. Top-performing systems demonstrated sub-
stantial quality improvements through the use of
additional speech and text resources, often curated
internally. Notably, LIA showcased the benefits
of carefully filtering a general Arabic corpus us-
ing a dialect identification system. The genera-
tion of synthetic textual data via back-translation,
forward-translation, and paraphrasing remains an
effective method. The winning team, KIT, also
experimented with synthetic speech data genera-
tion using a TTS model; however, this approach
was found to be ineffective, primarily due to the

lack of high-quality speech data, leading to an
under-trained TTS system. Several teams also re-
ported findings regarding the impact of domain
alignment in training and evaluation datasets, em-
phasizing the critical importance of developing re-
sources for low-resource languages that are tai-
lored to the practical needs of end users.

7.5 Data Track Results and Discussion

The data track received 3 submissions, each pro-
ducing usable datasets for 3 low-resource lan-
guage pairs: English-Central Kurdish, Urdu-
English, and Fongbe-French. This successful first
iteration reinforces the desire by researchers and
communities to contribute open-source datasets.
The organizers will plan to use these datasets in
future iterations of the low-resource shared task as
appropriate. We discuss the submissions below.

KUVOST (Mohammadamini et al., 2025) pro-
duced a large-scale English speech to Central Kur-
dish dataset by relying on the publicly available
Common Voice dataset. This effort produced more
than 1,000 hours of parallel speech translation
data, by leveraging community volunteer work:
more than 230 volunteers manually translated and
revised more than 240k English sentences, which
were then paired with their utterances in Common
Voice. The effort included an extensive data val-
idation process. The participants also ensure the
quality of the data by producing pre-determined
train-dev-test splits, and building baseline systems
on top of fine-tuned Whisper v3 and Seamless
M4T, leading to BLEU scores over 32 on the test
set.

Note that this effort, in contrast to the norm for
the systems track, produced data where the low-
resource language (Central Kurdish) is on the tar-
get side and the high-resource one (English) is on
the source speech side.

URDU (Mehmood and Rauf, 2025) produced an
Urdu-English speech translation dataset. They re-
lied on Common Voice 13.0 and its Urdu speech
portion. The Urdu transcripts were first automati-
cally translated into English, but then checked and
corrected by 19 bilingual volunteers, as well as
validated by a professional translator. This multi-
stage quality assurance approach disentangles the
correction of potential syntactic or grammatical
errors from a secondary stage that ensures high-
quality, fluent translations for idiomatic or po-
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etic texts, highlighting the potential need for more
careful handling of some data subdomains.

FFSTC-2 (Kponou et al., 2025b) presented an ex-
tension of the previous FFSTC dataset, adding an-
other 36 hours to bring the available total to 61
hours of Fongbe-French data. Unlike the other
two submissions, this team started with target-side
text (French), which was first automatically trans-
lated to Fongbe. Then the text translations were
reviewed by bilingual experts, and only at the end
was read speech of these Fongbe translations col-
lected. The effort included a validation process,
e.g. to remove utterances with excessive back-
ground noise, where the validators re-recorded the
utterances, yielding an additional 42k recordings.

The participants also confirmed the utility of
these additional data, developing ST systems (both
cascade and end-to-end) as well as ASR systems
that improve over systems trained on the previous
iteration of the corpus.

8 Indic Languages Track

The growing demand for inclusive digital ac-
cess has highlighted the need for seamless cross-
lingual communication, especially in linguisti-
cally rich regions like India. While English dom-
inates global technology and information spheres,
millions of speakers of Indic languages such as
Bengali, Hindi, and Tamil still lack adequate
speech and language technologies. Despite their
large combined speaker base of over 700 million
and significant cultural and economic importance,
these languages remain underrepresented in NLP
and speech research due to limited high-quality
parallel text and audio data.

Compounding this challenge are the inherent
complexities of Indic languages including rich
morphology, high inflection, and frequent code-
mixing in real-world discourse, which make Spo-
ken Language Translation (SLT) development es-
pecially difficult (Sethiya and Maurya, 2024). Ad-
dressing this gap, the Indic Shared Task track
at IWSLT 2025 focuses on SLT for Bengali,
Hindi, and Tamil in both English→Indic and In-
dic→English directions. The latter is emphasized
due to its higher complexity and the inclusion of
STEM and broadcast media domains, demanding
systems capable of handling technical vocabulary
and varied speech styles.

By releasing the first benchmark dataset tailored
to these low-resource languages across critical do-

mains, this task aims to drive research that tack-
les real-world multilingual challenges. It seeks to
advance digital inclusion, foster equitable access
to global knowledge, and support the preservation
and technological integration of Indic languages.

8.1 Challenge
The IWSLT 2025 Indic Shared Task track fo-
cuses on speech-to-text translation (ST) across
six language directions: English-to-Bengali
(en→bn), English-to-Hindi (en→hi), English-
to-Tamil (en→ta), Bengali-to-English (bn→en),
Hindi-to-English (hi→en), and Tamil-to-English
(ta→en). This year’s challenge expands beyond
previous iterations by including both Indic-to-
English and English-to-Indic directions, though
the data sources for each direction are distinct.

The track allows participants to submit in both
the constrained and unconstrained conditions. The
constrained condition permits only the use of the
provided dataset, while the unconstrained condi-
tion allows the incorporation of additional external
resources and pre-trained models. Systems can be
either end-to-end (E2E) or cascaded, and partici-
pants may submit both monolingual and multilin-
gual systems across any or all of the six language
directions.

8.2 Data and Metrics
The Indic track at IWSLT 2025 provides a com-
prehensive speech-to-text translation (ST) corpus
spanning three Indic languages: Bengali, Hindi,
and Tamil. The dataset is constructed from two
distinct sources, reflecting the two translation di-
rections.

For the English-to-Indic (en→xx) direction, the
data is derived from the Indic-ST corpus (Sethiya
et al., 2024), which consists English speech paired
with English transcripts and Indic translations.
These data is from domains like Mann ki Baat, and
NPTEL, unlike IWSLT 2024, which had data from
TED talks (Sethiya et al., 2024). The dataset is
segmented using provided YAML files, ensuring
consistent alignment across audio, English tran-
scripts, and Indic translations. Table 9 reports the
number of lines and audio hours, partitioned into
training, validation, and test splits. Note that due
to linguistic differences, the token counts between
English and the target Indic languages naturally
vary.

For the Indic-to-English (xx→en) direction,
the data is sourced from a curated subset of
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the BhasaAnuvaad dataset (Sankar et al., 2025),
which draws from rich educational and broadcast
domains. Specifically, it includes material from
the National Programme on Technology Enhanced
Learning (NPTEL), the Spoken-Tutorial project,
and Mann-ki-Baat addresses, covering specialized
STEM content as well as public broadcast speech.
This direction provides a new challenge for par-
ticipants, requiring systems to handle domain-
specific terminology, varied accents, and sponta-
neous speech phenomena.

English-Bengali (en↔bn): Bengali, the sev-
enth most spoken language globally, has around
228 million speakers and belongs to the Indo-
Aryan family. It is the official language of
Bangladesh and is widely spoken in the Bengal
region of India, written in the Bengali-Assamese
script. The en→bn dataset comprises 815 hours
of English speech aligned to Bengali translations,
while the bn→en set contains 157.95 hours of Ben-
gali speech aligned to English text.

English-Hindi (en↔hi): Hindi is the third
most spoken language in the world, with approx-
imately 615 million speakers. It belongs to the
Indo-Aryan family and is primarily spoken in In-
dia, where it serves as one of the official lan-
guages, written in Devanagari script. The en→hi
dataset contains 815 hours of English speech and
Hindi translations, while the hi→en dataset pro-
vides 653.88 hours of Hindi speech with aligned
English translations.

English-Tamil (en↔ta): Tamil, a classical
Dravidian language with approximately 91 million
speakers, is spoken predominantly in the Tamil
Nadu state of India and parts of Sri Lanka. It is
written in the Tamil script derived from Brahmi.
The en→ta dataset offers 815 hours of English
speech with aligned Tamil translations, whereas
the ta→en data includes 378.16 hours of Tamil
speech with English translations.

Evaluation Metrics: For system evaluation,
we primarily employ the chrF++ metric (Popović,
2017), chosen for its high correlation with hu-
man judgments—especially in the context of In-
dian languages (Sai B et al., 2023)—making it par-
ticularly well-suited to our task. All chrF++ scores
are computed using the standardized sacreBLEU
toolkit (Post, 2018) to ensure consistency and re-
producibility. In addition, we report BLEU scores
for completeness, although they are not used in
ranking the systems.

Lang. Train Valid Test

Hours Samples Hours Samples Hours Samples

en→hi 680.54 205.2k 40.48 11.67k 93.13 36.25k
en→bn 680.54 205.2k 40.48 11.67k 93.13 36.25k
en→ta 680.54 205.2k 40.48 11.67k 93.13 36.25k
bn→en 157.95 64.8k 1.00 395 1.25 858
hi→en 653.88 248.8k 1.00 397 1.34 579
ta→en 478.16 211.3k 1.00 457 2.18 956

Table 9: Summary of provided data for each language
direction, including hours and number of samples.

8.3 Submissions

The 2nd edition of the Indic shared task track of
IWSLT received 32 submissions for all six lan-
guage pairs from five teams: the CDAC-SVNIT
team from SNLP Lab, the CDAC Noida and
SVNIT, Surat; the JU-CS-NLP team from Ja-
davpur University; another team, JU from Ja-
davpur University; team IITM from Speech Lab,
IIT Madras; and team HITSZ from Harbin In-
stitute of Technology, Shenzhen. The partici-
pants submitted their results under various con-
straints, including end-to-end constrained and un-
constrained, cascaded constrained, and uncon-
strained approaches. Below, we provide an
overview of each team’s approach and their re-
sults.

CDAC-SVNIT (Roy et al., 2025): This team
submitted 12 systems, two for each of the six
language pairs. Their submissions featured both
cascaded and end-to-end approaches. The cas-
caded systems operated under an unconstrained
setting, while the end-to-end systems adhered
to a constrained setup. For the cascaded ap-
proach, they fine-tuned a pre-trained CLSRIL-
23 model for ASR and a pre-trained IndicTrans2
model for MT. The end-to-end systems utilized
a transformer-based encoder-decoder architecture
from the Fairseq toolkit, pretrained on the pro-
vided data.

JU-CS-NLP (Dhar et al., 2025): This team
submitted six systems, one for each language pair,
under the unconstrained cascaded setting. For En→ xx translation, the system employed OpenAI’s
pre-trained Whisper Base model for ASR and a
fine-tuned version of Meta’s NLLB-200-distilled-
600M model for MT. For xx → En, it used the
pre-trained IndicConformer model for ASR and
the fine-tuned IndicTrans2 model for MT, both de-
veloped by AI4Bharat. The MT models are fine-
tuned on the provided dataset.

JU (Das et al., 2025): The submission includes
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Direction Team ID chrF++ / BLEU

en→bn CDAC-SVNIT 62.21 / 36.96
JU-CSE-NLP 74.58 / 51.70

IITM 60.81 / 26.67

en→hi CDAC-SVNIT 64.17 / 44.09
JU-CSE-NLP 72.98 / 57.61

IITM 62.30 / 41.09

en→ta CDAC-SVNIT 66.15 / 29.34
JU-CSE-NLP 73.81 / 36.17

IITM 62.33 / 21.35

bn→en CDAC-SVNIT 44.89 / 14.77
JU-CSE-NLP 53.99 / 23.69

JU 35.56 / 8.69
IITM 55.27 / 22.90

hi→en CDAC-SVNIT 67.06 / 41.04
JU-CSE-NLP 67.91 / 44.13

IITM 68.14 / 41.59

ta→en CDAC-SVNIT 41.16 / 15.70
JU-CSE-NLP 49.34 / 17.66

JU∗ 39.02 / 13.39
IITM 47.44 / 18.41

Table 10: Performance of unconstrained cascaded sys-
tems on different language pairs in terms of chrF++ and
BLEU scores. The * symbol denotes a system that used
a multilingual base model without any finetuning.

an unconstrained cascade setting for 2 language
pairs from Bengali and Tamil to English. A pre-
trained Whisper Small model is used for ASR,
which is pretrained for Bengali on the Bangla
Mozilla Common Voice dataset and for Tamil on
multiple publicly available datasets. For MT, the
system utilized the fine-tuned MarianMT model
for Bengali to English translation and the fine-
tuned facebooknllb-200-distilled-600M model for
Tamil to English translation.

IITM (Sarkar et al., 2025): The team
submitted six systems under the unconstrained
cascaded setting. For ASR, they used the
Phi-4 model, fine-tuned separately for each
language: Bengali using SKNahin/open-large-
bengali-asr-data, Hindi using SpringLab/Hindi-
1482hrs and AI4Bharat/SeamlessAlign, and Tamil
using Prajwal-143/ASR-Tamil-cleaned. For MT,
they employed the NLLB model, fine-tuned on
the SPRINGLab/shiksha and SPRINGLab/BPCC-
cleaned datasets for xx→ English translation.

HITSZ (Wei et al., 2025): The team made 6
submissions for the unconstrained end-to-end set-
ting for each of the 6 language pairs. The end-
to-end system utilizes the encoder-decoder based
Dhwani model, where the speech signals are en-
coded using the whisper speech encoder and the

Direction chrF++ / BLEU

en→bn 52.69 / 27.00
en→hi 52.50 / 33.84
en→ta 54.67 / 22.81
bn→en 53.07 / 25.02
hi→en 62.94 / 39.29
ta→en 43.91 / 19.27

Table 11: Performance of unconstrained end-to-end
systems by HITSZ on different language pairs in terms
of chrF++ and BLEU scores.

non-speech audio signals are encoded using the
BEAT’s encoder, which are bridged to the lan-
guage model with the help of Q-former. The trans-
formed tokens are decoded using the Krutrim large
language instruct model.

8.4 Results

Tables 10, 11 & 12 present the performance
of the submitted systems across six transla-
tion directions, evaluated primarily using the
chrF++ (Popović, 2017) metric. Each direction
was evaluated under both unconstrained and con-
strained settings, and systems were categorized
as either cascaded or end-to-end (E2E) in design.
The unconstrained setting permitted the use of
any external data, while the constrained setting re-
quired systems to be trained using only the pro-
vided shared data. Below, we summarize the key
findings per translation direction.

en→bn In the English-to-Bengali direction, the
highest chrF++ score was achieved by the JU-
CSE-NLP team using a cascaded system in the un-
constrained setting, with a score of 74.58. CDAC-
SVNIT and IITM also submitted strong cascaded
systems, achieving 62.21 and 60.81 chrF++, re-
spectively. Among end-to-end (E2E) systems,
HITSZ obtained a chrF++ of 52.69, while in the
constrained setting, CDAC-SVNIT’s E2E model
led with 58.22 chrF++, indicating the effectiveness
of their model despite the data restrictions.

en→hi For English-to-Hindi, the best chrF++
score again came from JU-CSE-NLP’s cascaded
system under the unconstrained condition, reach-
ing 72.98. CDAC-SVNIT and IITM followed
closely with scores of 64.17 and 62.30, respec-
tively. The E2E system from HITSZ achieved
52.50 chrF++, and CDAC-SVNIT’s constrained
E2E model attained a respectable 54.48, outper-
forming several unconstrained E2E systems.

439



Direction chrF++ / BLEU

en→bn 58.22 / 31.57
en→hi 54.48 / 34.61
en→ta 56.08 / 21.35
bn→en 14.30 / 00.46
hi→en 42.97 / 15.42
ta→en 26.25 / 05.05

Table 12: Performance of constrained systems submit-
ted by CDAC-SVNIT using an end-to-end (E2E) ap-
proach. Only the provided shared data was used for
training.

en→ta In the English-to-Tamil direction, JU-
CSE-NLP led with a chrF++ of 73.81 using a cas-
caded approach under the unconstrained setting.
This was followed by IITM (62.33) and HITSZ’s
E2E model (54.67). Under the constrained condi-
tion, CDAC-SVNIT’s E2E model achieved 56.08
chrF++, showing competitive performance despite
being limited to shared training data.

bn→en For Bengali-to-English, the highest
chrF++ score was reported by HITSZ’s E2E
system with 53.07, outperforming all cascaded
systems including CDAC-SVNIT (44.89), IITM
(55.27), and JU (35.56). Under the constrained
condition, the best result was 14.3 chrF++ from
CDAC-SVNIT’s E2E model, underscoring the dif-
ficulty of this direction when relying solely on
shared data.

hi→en In the Hindi-to-English direction, the
top-performing system was submitted by IITM
with a chrF++ of 68.14 using a cascaded ar-
chitecture under the unconstrained setting. This
was closely followed by JU-CSE-NLP (67.91)
and CDAC-SVNIT (67.06). HITSZ’s E2E model
achieved 62.94 chrF++, while CDAC-SVNIT’s
constrained E2E system reached 42.97, indicat-
ing a substantial drop in performance under con-
strained data.

ta→en For Tamil-to-English, JU-CSE-NLP’s
cascaded system achieved the highest chrF++
score under the unconstrained setting with 49.34.
Other strong systems included IITM (41.16) and
JU∗ (47.44), the latter of which utilized a multilin-
gual model without fine-tuning. Among E2E ap-
proaches, HITSZ led with 43.91. CDAC-SVNIT’s
constrained E2E system attained 26.25 chrF++,
again reflecting the challenges imposed by data
limitations in this direction.

8.5 Conclusion

This edition of the Low-Resource Indic Multilin-
gual Speech Translation track marked the first time
that translation from Indic languages to English
was included alongside the English-to-Indic direc-
tions. This expansion provided a more compre-
hensive evaluation of multilingual translation ca-
pabilities and highlighted the unique challenges of
translating into English from morphologically rich
and syntactically diverse Indic languages.

Across the six language directions, systems
demonstrated strong performance in both uncon-
strained and constrained settings, with cascaded
architectures generally outperforming end-to-end
approaches in the unconstrained track. However,
several constrained end-to-end systems showed
promising results, indicating progress toward ro-
bust low-resource translation without reliance on
external data.

The wide range of approaches submitted—
spanning cascaded pipelines, multilingual pre-
training, and direct speech-to-text modeling—
reflects growing diversity in system design for
low-resource speech translation. These results of-
fer valuable insights into the current state of the
field and set a strong baseline for future editions of
the task, especially in further improving Indic-to-
English performance and in exploring more uni-
fied multilingual modeling techniques.

9 Instruction-Following Track

In recent years, large language models (LLMs)
have redefined the landscape of natural language
processing by demonstrating the ability to per-
form a wide range of tasks without requiring task-
specific architectures or fine-tuning. These mod-
els offer a single, unified interface for diverse ap-
plications such as translation, summarization, and
question answering, simply by conditioning on
textual instructions (Hendy et al., 2023). Initially
restricted to textual input, LLMs are now evolving
into multimodal systems, incorporating modalities
such as vision and speech to expand their applica-
bility beyond the text domain (Li et al., 2024). In
parallel, speech foundation models (SFMs) have
emerged as powerful architectures capable of pro-
cessing spoken language at scale (Latif et al.,
2023). When combined with the instruction-
following capabilities of LLMs (Ouyang et al.,
2022), they open new opportunities for building
general-purpose speech models that are not lim-
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ited to handling a pre-defined set of tasks (Ruben-
stein et al., 2023). This integration, often referred
to as SpeechLLM or SFM+LLM (Gaido et al.,
2024), promises to deliver very versatile systems,
making it possible to interact with spoken lan-
guage in flexible and controllable ways.

To explore this promising direction, this year
we introduce, for the first time at IWSLT, a
new shared task focused on evaluating instruction-
following models for the speech modality. The
goal is to assess models that can perform multi-
ple speech-to-text tasks–such as automatic speech
recognition, speech translation, spoken question
answering, and summarization–by following natu-
ral language prompts, using either short audio seg-
ments or long-form spoken content as input.

9.1 Task Description

In the Instruction-Following (IF) task, partici-
pants had to develop a single instruction-following
model that can perform multiple speech-to-text
tasks based on a natural language prompt. The
model receives both an audio input and a task in-
struction in textual form and is expected to follow
the instruction to produce the appropriate output.

Sub-Tracks. The task is divided into two sub-
tracks based on the nature of the input audio:
SHORT, where the input is represented by auto-
matically segmented audio (usually of a few sec-
onds), and LONG, where the input is a long-form
audio. Depending on the sub-track, the following
tasks have to be supported by the model:
• SHORT Sub-Track

– Automatic Speech Recognition (ASR): the
speech is transcribed into the same language;

– Speech-to-text Translation (S2TT): the
speech is translated into the target language;

– Spoken Question Answering (SQA): textual
questions have to be answered based on the
spoken content in the same language and in
a language different from the speech (ques-
tions and answers are always in the same lan-
guage);

• LONG Sub-Track
– Automatic Speech Recognition (ASR): the

speech is transcribed into the same language;
– Speech-to-text Translation (S2TT): the

speech is translated into the target language;
– Spoken Question Answering (SQA): textual

questions have to be answered based on the
spoken content in the same language and in

a language different from the speech (ques-
tions and answers are always in the same lan-
guage);

– Speech-to-text Summarization (S2TSUM):
a summary has to be provided from the spo-
ken content in the same language and in a lan-
guage different from the speech.

All tasks listed for each sub-track were mandatory;
that is the model must be capable of handling each
task type when prompted appropriately.

Languages. The tasks involve both monolingual
and cross-lingual processing. The supported lan-
guages are English (en) for ASR, monolingual
SQA, and S2TSUM, and English to German (de),
Italian (it), and Chinese (zh) for S2TT, multi-
lingual SQA, and multilingual S2TSUM. Partici-
pants were allowed to submit results for a subset
of language directions.

Prompts. For each sample in the test set, there
is no information about the specific task to be per-
formed (e.g., ASR) or the language pair to support
(e.g., en); rather, the model has to correctly inter-
pret and fulfill diverse instructions across the sup-
ported language pairs (e.g., “Traduci questo au-
dio in inglese”[it], “Translate this audio into En-
glish”[en]).

9.2 Data and Metrics

Training and Development Data. We adopt
two evaluation conditions: constrained and uncon-
strained. In the constrained condition, participants
are allowed to use the specified Speech Founda-
tion Model55 and Large Language Model56, train-
ing their systems on designated datasets:
• EuroParl-ST (Iranzo-Sánchez et al., 2020) and

CoVoST2 (Wang et al., 2020) for ASR/S2TT57

tasks,
• Spoken-SQuAD (Li et al., 2018) for SQA,
• NUTSHELL (Züfle et al., 2025) for S2TSUM.
Development data is provided through the ACL
60/60 dataset (Salesky et al., 2023), which con-
tains transcripts, translations, and summaries that
can be retrieved using video IDs. Importantly,
the use of the pre-trained SFM and LLM is not
mandatory, and submissions with models trained
from scratch on the allowed data are accepted, as
are systems using only one of the two pre-trained

55hf.co/facebook/seamless-m4t-v2-large
56hf.co/meta-llama/Llama-3.1-8B-Instruct
57EuroParl-ST: en→{it, de}, CoVoST2: en→{zh, de}

441

https://huggingface.co/facebook/seamless-m4t-v2-large
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct


models. No training data is provided for cross-
lingual SQA or S2TSUM tasks where the output
languages differ from the source speech language,
which is designed to test the models’ zero-shot
cross-lingual abilities. The unconstrained condi-
tion places no limitations on model architectures,
pre-trained models, or training data.

The constrained evaluation condition is meant
for providing a controlled environment for com-
paring different approaches without the confound-
ing effects of varying data sources or model scales.
On the other hand, the unconstrained condition
reflects real-world deployment scenarios where
practitioners may leverage cutting-edge models,
proprietary datasets, and computational scaling to
achieve optimal performance.

Evaluation Data. We evaluate the submitted
models with IWSLT25Instruct, a novel resource,
representing the first cross-lingual multimodal
benchmark for instruction-following tasks across
speech, text, and vision modalities in four lan-
guages: English, German, Italian, and Chinese.
IWSLT25Instruct is extracted from the ASR,
S2TT, SQA, and S2TSUM sections of the MMIF
benchmark (Papi et al., 2025b), built upon sci-
entific domain data retrieved from the ACL An-
thology.58 The dataset contains 21 videos, cor-
responding to 2 hours. Source audio and video
content in English (talks of about 5-6 minutes
each) are enriched with multilingual annotations
and translations to support: i) ASR (en→en); ii)
S2TT (en→de, it, zh), iii) S2TSUM (en→es, de,
it, zh); iv) SQA (en→es, de, it, zh). In SQA,
questions (about 10 for each video) are provided
both in the speech language (English) and in other
target languages (German, Italian, Chinese), and
answers must be given in the same language as
the one of the question (e.g., Italian questions
require answers in Italian). The SQA task in-
cludes unanswerable questions, to which the only
correct response is “Not answerable or its cor-
responding translations in the other languages.59

For S2TSUM, the dataset contains 100 abstracts
(including those of the 21 videos), for a total of
17k words. The audio data are provided as com-
plete audio files (5-6 minutes, WAV format) for the
LONG sub-track, and as automatically segmented
audio (of 15-20 seconds) using SHAS (Tsiamas

58aclanthology.org
59Namely, in Italian “Non è possibile rispondere”, German

“Nicht zu beantworten.”, and Chinese 无法回答。 .

et al., 2023) for the SHORT sub-track.
We release the videos, source audio, and task

instructions to participate in the shared task. Also,
we provide an example submission for the LONG
sub-track, which could be used as a 1-shot task
demonstration. Participants submit their system
outputs and may adjust instructions to suit their
models’ prompts. The evaluation is conducted via
the SPEECHM platform, presented in Section 2.

Metrics. The evaluation was carried out by com-
puting separate scores for each of the tasks in-
volved. Namely, for ASR, we computed WER
using the jiWER library60 after normalizing the
test using the Whisper normalizer61 (Radford
et al., 2022). For S2TT, we used COMET62

(Rei et al., 2020) after concatenating all segments
belonging to the same talk in the case of the
SHORT sub-track and resegmenting the text with
mwerSegmenter to pair them with the refer-
ence sentences. Lastly, for SQA and S2TSUM,
we computed BERTScore (Zhang* et al., 2020)
rescaling the scores with baselines to obtain more
interpretable scores in a wider range (typically,
in the [0, 1] range).63 The code used for the
evaluation is available at: github.com/hlt-mt/if-
iwslt2025.

9.3 Submissions

In total, we received 16 submissions from 5 dif-
ferent teams. Two teams submitted under the con-
strained setting. Only one submission was con-
trastive. Two teams (NLE and KIT) participated
in all language directions, while others (CUNI-
NL and IST) submitted for a subset. One team
(MEETWEEN) submitted for English only. The
participants’ systems in the SHORT (CUNI-NL,
IST, MEETWEEN, NLE) and LONG (KIT) sub-
tracks are detailed below.

CUNI-NL (Luu and Bojar, 2025) participated
in the unconstrained LONG sub-track, submitting
to ASR (en→en) and S2TT (en→de). Their sub-
mission explores the combination of speech en-
coders and instruction-tuned LLMs. Specifically,
they compare Whisper and Seamless as encoders,
alongside LLaMA, EuroLLM-9B-Instruct (Mar-
tins et al., 2024), and Gemma-3-12B-IT (Team
60github.com/jitsi/jiwer
61Specifically, we used version 0.0.10.
62With model Unbabel/wmt22-comet-da.
63See github.com/Tiiiger/bert score/blob/master/journal/

rescale baseline.md
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et al., 2025) as LLMs. For Seamless, the orig-
inal length adapter is used, while for Whisper,
a convolution-based length adapter is applied.
A trainable feed-forward projection connects the
frozen encoder with the frozen LLM, and LoRA
adapters (Hu et al., 2021) are applied on top of
the LLM. Training is conducted exclusively on the
CoVoST dataset. Their results show that combin-
ing Seamless as the encoder with EuroLLM as the
LLM yields the strongest performance.

IST (Attanasio et al., 2025) participated in the
SHORT unconstrained sub-track, submitting to the
en→en, de, and zh language pairs. Their sys-
tem adapts small language models: audio is en-
coded with wav2vec 2.0 (Baevski et al., 2020),
and a two-layer MLP projects features into the
input space of a frozen Qwen2.5–1.5B (Qwen
et al., 2025). Seven ASR datasets are used, along
with CoVoST2 for S2TT, and Spoken-SQuAD for
SQA. To increase coverage, ASR transcripts and
Spoken-SQuAD are translated into German and
Chinese using multiple LLMs and unanswerable
questions are synthesized to improve SQA robust-
ness. Task and language tags are prepended to
prompts to enable multilingual, multitask instruc-
tion following. Training then proceeds in two
stages: first, the speech encoder and MLP are
jointly trained on ASR data for modality align-
ment; then, the encoder is frozen and only the
MLP is fine-tuned on ASR, AST, and SQA.

MEETWEEN participated in the SHORT un-
constrained sub-track, submitting to the ASR and
SQA tasks. The system64 combines the Seam-
less speech encoder with a Q-Former (Li et al.,
2023; Tang et al., 2024) modality adapter and a
LLaMA decoder. Training is performed in three
stages. In the first stage, an ASR warmup is
conducted with the encoder and LLM frozen and
only the modality adapter is trained. The second
stage, all-task warmup, retains the frozen encoder
and LLM while training the adapter across ASR,
S2TT, SQA, S2TSUM, MT, SLU, and lip reading
tasks. Finally, in end-to-end training, the encoder
remains frozen while both the adapter and LLM
are fine-tuned on the same set of tasks.

NLE (Lee et al., 2025) participated in the
SHORT constrained sub-track, submitting to all
language pairs: en→en, de, it, zh. They augmented
training data by translating SpokenSQuAD and
64huggingface.co/meetween/Llama-speechlmm-1.0-l

generating more fluent, abstractive answers. Their
model employs a Seamless encoder with addi-
tional downsampling, a Transformer-based pro-
jection module, and LLaMA with LoRA (Hu
et al., 2021) applied. Training occurs in three
stages using two-level sampling process (Zanon
Boito et al., 2024): first, the projector is trained
with frozen encoder and LLM on ASR+ST or
ASR+ST+SQA data; second, LoRA adapters are
trained on the LLM using text-only MT and QA
data; finally, both are jointly fine-tuned on all tasks
for 1000 steps, with strong performance evident
after 100 steps. Models trained with SQA in stage
two initially underperform on SQA. However, af-
ter final tuning, all models perform similarly, with
those trained only on ASR and S2TT slightly bet-
ter on S2TT.

KIT Koneru et al. (2025) participated in the
LONG constrained sub-track, submitting to all lan-
guage pairs: en→en, de, it, zh. They aug-
mented data by synthesizing NUTSHELL speech
with TTS for ASR adaptation, and using LLaMA
to generate multilingual QA pairs and trans-
lated summaries from NUTSHELL for SQA and
S2TSUM. Their architecture connects Seamless
and LLaMA via a trainable Q-Former (Li et al.,
2023; Tang et al., 2024). Training involved con-
trastive pretraining (Züfle and Niehues, 2025) on
ASR data followed by task-specific fine-tuning.
Chain-of-thought reasoning was applied to im-
prove SQA robustness by detecting unanswerable
questions. For long audio, VAD-based segmen-
tation (Sohn et al., 1999) was used in ASR and
S2TT. For SQA and S2TSUM, audio segments
were encoded separately, with embeddings con-
catenated before projection and LLM input to
maintain end-to-end trainability. A context-aware
post-editing model trained on NUTSHELL TTS
data improved domain-specific terminology and
restored context lost to segmentation.

9.4 Results

9.4.1 Automatic Evaluation

The complete results for both SHORT and LONG
sub-tracks are presented in Table 47. For compari-
son, we include the results of the Phi4-Multimodal
model (Abouelenin et al., 2025), a state-of-the-art
baseline model trained on a broader range of tasks
(including the IF task) and datasets (both in-house
and public).
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Monolingual English. In the monolingual
scenario–comprising ASR and SQA in the
SHORT sub-track, and ASR, SQA, and S2TSUM
in the LONG sub-track–all participating teams
submitted systems, including a contrastive sub-
mission (CUNI-NL). In the SHORT sub-track, the
best ASR performance is achieved by the baseline
(7 WER). Among participants, NLE obtains the
best result (13 WER), followed by CUNI-NL
and IST, both with 15 WER. For SQA, NLE
outperforms all other systems with a BERTScore
of 0.50–exceeding the baseline by 0.04 points.
Notably, the NLE’s system, even if trained in
the constrained settings, still emerged as the top-
performing participant, though it lagged behind
the baseline in ASR by nearly double the WER. In
the LONG sub-track, KIT, which is the only team
that submitted a system, is able to outperform
the baseline in two out of three tasks (ASR
and S2TSUM), and its SQA performance (0.41
BERTScore) is nearly on par with the baseline
(0.42). Nonetheless, there remains a performance
gap compared to short-form processing: for
example, the constrained systems NLE (SHORT)
and KIT (LONG) differ by 0.02 WER in ASR and
0.08 BERTScore in SQA.

Crosslingual German. In the English-to-
German (en-de) direction, the best S2TT result in
the SHORT sub-track is achieved by the baseline
(0.77 COMET). Among participants, CUNI-NL’s
primary submission (0.72 COMET), NLE (0.71),
and CUNI-NL’s contrastive (0.69) perform sim-
ilarly. For SQA, NLE achieves the best score,
surpassing the baseline by 0.02 BERTScore. In
the LONG sub-track, KIT outperforms the baseline
in all three tasks (ST, SQA, and S2TSUM), with
substantial margins in some cases (e.g., 0.74
vs. 0.55 COMET in S2TT). While short-form
processing remains easier for current systems, the
gap is smaller in this case, with the constrained
NLE system achieving only 0.03 COMET im-
provement on S2TT and 0.03 BERTScore in SQA
compared to the constrained KIT.

Crosslingual Italian. In the English-to-Italian
(en-it) direction, the baseline again achieves the
best S2TT result in the SHORT sub-track, out-
performing the only participant (NLE) by 0.06
COMET. However, NLE surpasses the baseline in
SQA with a 0.02 BERTScore improvement. In
the LONG sub-track, KIT outperforms the base-

line across all three tasks, including a large gain of
0.21 COMET in S2TT. As with other language di-
rections, performance on long-form input remains
consistently lower than short-form.

Crosslingual Chinese. In the English-to-
Chinese (en-zh) direction, the baseline also leads
in S2TT for the SHORT sub-track, outperforming
NLE–the best-performing participant–by 0.05
COMET. For SQA, however, NLE achieves a 0.02
BERTScore improvement over the baseline. In
the LONG sub-track, KIT once again outperforms
the baseline and, interestingly, achieves better
performance in long-form SQA (0.41) than those
obtained by NLE in the short-form SQA (0.35),
suggesting that the system was able to effectively
exploit the long context.

9.4.2 Human Evaluation

Similar to the other tracks of this year’s IWSLT
Evaluation Campaign, each participant’s primary
submission65 has been manually evaluated. The
human evaluation involves the speech translation
outputs in German and Chinese, and the manual
process that has been conducted is explained in
Appendix A. The results are also compared with
those of the other tracks in Table 15 and Table 17.

The human evaluation results largely confirm
the trends observed in automatic evaluation. For
en-de, the top-ranked KIT system (with a COMET
score of 0.74) achieved the best human-evaluated
performance, followed by CUNI primary and NLE
(with a COMET of 0.72 and 0.71, respectively).
However, human evaluators found the second and
third-ranked systems indistinguishable, suggest-
ing that COMET score differences of 0.01 fall be-
low the threshold of human perceptual sensitivity.
Similarly, for en-zh, the KIT and NLE systems
were perceived as equivalent by humans, confirm-
ing their close automatic scores (of 0.77 and 0.76,
respectively). Compared to the other tracks, the IF
track results align with expectations, performing
worse than the systems of the offline track but bet-
ter than those of the simultaneous track, especially
under low-latency constraints. This performance
reflects two key factors: offline and simultane-
ous tracks’ systems benefit from larger training
datasets and task-specific optimization for speech

65We have excluded from the human evaluations the submis-
sions with COMET scores below 0.4, as they were signif-
icantly worse than other participants, making the compari-
son meaningless.
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translation, while IF models are more general-
purpose architectures, supporting multiple tasks.
These findings highlight that while automatic met-
rics provide valuable performance insights, human
perception may be less sensitive to small metric
differences, particularly when systems achieve rel-
atively high performance levels.

9.5 Discussion and Conclusions

As this was the first edition of the Instruction-
Following (IF) shared task at IWSLT, our primary
goal was to understand the interest of our commu-
nity in evaluating general-purpose speech models
across a variety of tasks and languages, and ex-
plore the feasibility of leveraging these models for
long-form speech processing. The task was met
with strong interest, with 16 submissions from 5
teams, and provided valuable insights into the cur-
rent capabilities and limitations of IF systems for
speech-based tasks.

Among the four tasks, ASR emerged as the
most accessible, with most participants achieving
a WER below 18. Monolingual SQA was also
relatively approachable, with BERTScores up to
0.50. In contrast, crosslingual SQA proved more
challenging, with best-case BERTScores between
0.38 and 0.41. The S2TT task showed consis-
tent translation quality across language pairs, with
best COMET scores ranging from 0.74 to 0.77.
S2TSUM, however, stood out as the most difficult
task, with no system exceeding a score of 0.37–
even in the best case (en-zh).

Comparing performance across tracks, short-
form processing (SHORT) consistently outper-
formed long-form (LONG) processing in all lan-
guages. Surprisingly, the difference appears to
be more pronounced in the monolingual tasks
instead of the crosslingual tasks, which are in-
herently more difficult, suggesting that ASR and
monolingual SQA are better mastered by current
short-form models. It is also noteworthy that the
best results in both tracks were achieved by sys-
tems trained under constrained settings, demon-
strating that these settings represent a promising
starter pack for IF model development, allowing
for building competitive systems even with limited
resources.

In terms of top-performing systems, NLE’s sub-
missions led the SHORT track across all language
directions. In the LONG track, the KIT system–
despite being the only submission–outperformed

the state-of-the-art Phi4-Multimodal baseline in
nearly every task.

Given the success of this first edition and the
encouraging level of participation, we plan to
continue the IF shared task in future editions of
IWSLT, expanding its scope and challenges to fur-
ther advance research in speech processing.

Acknowledgements

We gratefully acknowledge the Polish high-
performance computing infrastructure PLGrid
(HPC Center: ACK Cyfronet AGH) for pro-
viding computer facilities and support within
computational grant no. PLG/2025/018002.
The work by FBK has received funding from
the PNRR project FAIR - Future AI Research
(PE00000013), under the NRRP MUR program
funded by the NextGenerationEU, and from the
European Union’s Horizon research and inno-
vation programme under grant agreement No
101135798, project Meetween (My Personal AI
Mediator for Virtual MEETings BetWEEN Peo-
ple). The work by Charles University received
funding from the Project OP JAK Mezisektorová
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bastian Stüker, Katsuhito Sudoh, Yun Tang, Brian
Thompson, Kevin Tran, Marco Turchi, Alex Waibel,
Mingxuan Wang, Shinji Watanabe, and Rodolfo
Zevallos. 2023. FINDINGS OF THE IWSLT
2023 EVALUATION CAMPAIGN. In Proceed-
ings of the 20th International Conference on Spoken
Language Translation (IWSLT 2023), pages 1–61,
Toronto, Canada (in-person and online). Association
for Computational Linguistics.

Victor Agostinelli, Max Wild, Matthew Raffel, Kazi
Fuad, and Lizhong Chen. 2024. Simul-LLM: A
framework for exploring high-quality simultaneous
translation with large language models. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 10530–10541, Bangkok, Thailand. As-
sociation for Computational Linguistics.

Ibrahim Said Ahmad, Antonios Anastasopoulos,
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Javier Jorge, Nahuel Roselló, Adrià Giménez, Al-
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F. T. Martins. 2022a. COMET-22: Unbabel-IST
2022 submission for the metrics shared task. In
Proceedings of the Seventh Conference on Machine
Translation (WMT), pages 578–585, Abu Dhabi,
United Arab Emirates (Hybrid). Association for
Computational Linguistics.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP), pages 2685–2702, Online. Asso-
ciation for Computational Linguistics.

Ricardo Rei, Marcos Treviso, Nuno M. Guerreiro,
Chrysoula Zerva, Ana C Farinha, Christine Maroti,
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Adrià Giménez Pastor. 2025. MLLP-VRAIN UPV
System for the IWSLT 2025 Simultaneous Speech
Translation Task. In Proceedings of the 22nd Inter-
national Conference on Spoken Language Transla-
tion (IWSLT).

Ashwin Sankar, Sparsh Jain, Nikhil Narasimhan, Dev-
ilal Choudhary, Dhairya Suman, Mohammed Safi
Ur Rahman Khan, Anoop Kunchukuttan, Mitesh M
Khapra, and Raj Dabre. 2025. Towards building
large scale datasets and state-of-the-art automatic
speech translation systems for 13 Indian languages.
In The 63rd Annual Meeting of the Association for
Computational Linguistics.

Sankalpa Sarkar, Samriddhi Kashyap, Advait Joglekar,
and Srinivasan Umesh. 2025. Effectively combin-
ing Phi-4 and NLLB for Spoken Language Transla-
tion: SPRING Lab IITM’s submission to Low Re-
source Multilingual Indic Track. In Proceedings of
the 22th International Conference on Spoken Lan-
guage Translation (IWSLT).

Seamless Communication, Loı̈c Barrault, Yu-An
Chung, Mariano Cora Meglioli, David Dale, Ning
Dong, Paul-Ambroise Duquenne, Hady Elsahar,
Hongyu Gong, Kevin Heffernan, John Hoffman,
Christopher Klaiber, Pengwei Li, Daniel Licht,
Jean Maillard, Alice Rakotoarison, Kaushik Ram
Sadagopan, Guillaume Wenzek, Ethan Ye, Bapi
Akula, Peng-Jen Chen, Naji El Hachem, Brian
Ellis, Gabriel Mejia Gonzalez, Justin Haaheim,
Prangthip Hansanti, Russ Howes, Bernie Huang,
Min-Jae Hwang, Hirofumi Inaguma, Somya Jain,
Elahe Kalbassi, Amanda Kallet, Ilia Kulikov, Jan-
ice Lam, Daniel Li, Xutai Ma, Ruslan Mavlyutov,
Benjamin Peloquin, Mohamed Ramadan, Abinesh
Ramakrishnan, Anna Sun, Kevin Tran, Tuan Tran,
Igor Tufanov, Vish Vogeti, Carleigh Wood, Yilin
Yang, Bokai Yu, Pierre Andrews, Can Balioglu,
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jussà. 2023. SegAugment: Maximizing the utility
of speech translation data with segmentation-based
augmentations. In Findings of the Association for
Computational Linguistics: EMNLP 2023, pages
8569–8588, Singapore. Association for Computa-
tional Linguistics.

Ioannis Tsiamas, Gerard I. Gállego, José A. R. Fonol-
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Appendix A. Human Evaluation

A Human Evaluation

Human evaluation includes direct assessment for offline, simultaneous, subtitling, and instruction fol-
lowing tasks (A.1), in addition to continuous rating and MQM for the simultaneous task (A.2, A.3).

A.1 Direct Assessment
For the offline translation track (Section 3), simultaneous translation track (Section 4), subtitling track
(Section 5), and instruction following track (Section 9), we conduct a human evaluation of primary
submissions. Human graders are asked for direct assessment (DA) (Graham et al., 2013; Cettolo et al.,
2017; Akhbardeh et al., 2021), expressed as scores ranging from 0 to 100. The business news test set does
not include reference transcripts, so the human assessment is performed monolingually, comparing the
system outputs against reference translations. We exclude the English to German direction from this test
set for budget reasons. All other sets are graded in full, with no subsampling performed. No annotator
normalization was performed this year.

Since many tasks have standardized their test sets, we evaluate all outputs for a given testset, across
any task that used said testset. This gives us the opportunity to compare across tasks and get a general
sense of the relative progress across tasks. Caution should be exercised when comparing systems across
tasks, as the tasks have different objectives – for example, length in the case of subtitling and latency in
the case of online systems. Additionally, in the case of the business news testset, we use the verbatim
version of the reference; the subtitle systems would likely have been judged more favorably if we had
instead used the more terse subtitle reference.

A.1.1 Automatic Segmentation
We collect segment-level annotations based on the re-segmentated test data, generating automatic reseg-
mentations of the hypothesis based on the reference translation by mwerSegmenter.66 Because we do
not want issues from the segmentation to influence scores negatively, we follow Sperber et al. (2024)
and provide translators not only with the source sentence and system translation but also with the system
translation of the previous and following segments. Annotators are then instructed as follows: “Sentence
boundary errors are expected and should not be taken into account when judging translation quality.
This is when the target appears to be adding or missing words (including being completely empty) while
the source was segmented in a different place. To this end, we have included the previous and next sen-
tence targets for context. If the content of the source and target are only different because of sentence
boundary issues, do not let this affect your scoring judgement.
Example of a good translation (shown English-only for illustration purposes) suffering only from sen-
tence boundary issues that should not be penalized:
Source: you’ll see that there’s actually a sign near the road.
Target: is a sign near the
Previous target: [...] and you will see that there actually Next target: road. [...]
No video or audio context is provided. Segments are shuffled and randomly assigned to annotators to
avoid bias related to the presentation order. Annotation is conducted by professional translators fluent in
the source language and native in the target language.

For monolingual grading (business news test set, English to Arabic), we add the following instruction:
“You’ll be shown a candidate translation from English into Arabic, while the ”source” is the Arabic
reference translation. Please rate the correctness of the candidate, given the reference..”

A.1.2 Computing Pairwise Statistical Significance and System Rankings
Last year, we used the Wilcoxon rank-sum test (also called the Mann-Whitney U) to determine statistical
significance of the human evaluation scores. The Wilcoxon rank-sum test is non-parametric, which is
advantageous because DA scores do not follow a normal or other known distribution (see Figure 1).
66www-i6.informatik.rwth-aachen.de/web/Software/mwerSegmenter.tar.gz
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However, the Wilcoxon rank-sum test also assumes independent samples, whereas our data samples are
not in fact independent. This is because a given source sentence is translated by two or more MT systems
and then those outputs are scored by a human annotator. We generally expect correlation between scores
for the same source sentence (e.g. a source sentence which is very difficult to translate will likely result
in lower than average scores for all MT systems).
An alternative to the Wilcoxon rank-sum test is the Wilcoxon signed-rank test, which assumes dependent
(i.e. paired) data, but it adds an assumption that the distribution of scores is symmetric around a mean,
which Figure 1 illustrates is not true in our case.

0.00

0.02

0.04
En-De (n=45,448)

0.00

0.02

0.04
En-Zh (n=12,320)

0 10 20 30 40 50 60 70 80 90 100
0.00

0.02

0.04
En-Ar (n=5,996)

Figure 1: Direct assessment score histograms, normalized, per language pair.

This year, we chose to use a permutation test (Fisher, 1935) to estimate the statistical significance of
the difference in the means of the segment-level DA scores for each pair of MT systems. Permutation
tests are appealing because they don’t require any assumptions about the underlying distribution of the
data. Instead, they have the assumption of exchangeability (Pitman, 1937; Draper et al., 1993; Good,
2002)—that is, under the null hypothesis (in our case, that the two MT systems are of equal quality) the
joint distribution of the observations is invariant under permutations of the data labels. We first randomly
split the segment-level scores (ignoring the labels, i.e. which MT system produced each segment) into
two parts and compute the difference in DA score mean. Repeating this process many times provides
a set of mean differences we can reasonably expect under the null hypothesis that the two systems are
of the same quality. We compute a one-tailed p-value by calculating the fraction of the time that the
random splits produce differences greater than or equal to the mean difference we observe for the two
systems. To help ensure exchangeability, we perform permutations such that each split has exactly
one translation of each test set sentence, commonly referred to as a paired permutation test (Good,
2013). In the context of machine translation, paired permutation tests are widely used in automatic
metric evaluation (Deutsch et al., 2021; Freitag et al., 2023, 2024; Thompson et al., 2024). We use the
paired permutation implementation from Thompson et al. (2024).67

Given the p-values from all pairwise system comparisons, system rankings are trivially computed by
ordering the systems by mean DA score and then finding the rank of the highest and lowest ranked
system(s) that are not statistically significantly different from each system. We use a 95% confidence
(i.e. p-value < 0.05).

English → Arabic, business news testset rankings are given in Table 13, with p-values in Figure 2.
English→ German, accented English conversations testset rankings are given in Table 14, with p-values
in Figure 3. English → German, scientific presentations testset rankings are given in Table 15, with p-

67github.com/thompsonb/mt-metrics-eval/blob/main/mt metrics eval/pairwise paired permutation test.py
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values in Figure 4. English→ German, TV series testset rankings are given in Table 16, with p-values in
Figure 5. English→ Chinese, scientific presentations testset rankings are given in Table 17, with p-values
in Figure 6.

As one would expect, we find that across all language pairs / test sets, offline systems tend to be the
highest ranked, and high-latency online systems tend to rank higher than low-latency online systems.

Table 13: English → Arabic, business news testset. Human direct assessment scores and corresponding rankings.
Rank range based on 95% confidence interval, from pairwise p-values in Figure 2.

Task System Data/Condition Human Score Human Rank

Offline NYA unconstrained 84.451 1
Offline NEMO unconstrained 82.017 2
Offline AIB-MARCO unconstrained 80.228 3
Subtitling APPTEK 60.524 4

Table 14: English → German, accent English conversations testset. Human direct assessment scores and corre-
sponding rankings. Rank range based on 95% confidence interval, from pairwise p-values in Figure 3.

Task System Data/Condition Human Score Human Rank

Offline KIT unconstrained 74.865 1-2
Offline AIB-MARCO unconstrained 74.705 1-2
Offline NYA unconstrained 72.576 3-4
Offline NEMO unconstrained 72.298 3-4
Simultaneous UPV high 70.679 5-6
Simultaneous OSU high 70.372 5-6
Simultaneous OSU low 67.550 7
Offline NAIST unconstrained 63.622 8
Offline NAIST constrained 58.610 9
Offline CUNI constrained 51.407 10
Simultaneous CMU low 44.099 11
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Table 15: English → German, scientific presentations testset. Human direct assessment scores and corresponding
rankings. Rank range based on 95% confidence interval, from pairwise p-values in Figure 4.

Task System Data/Condition Human Score Human Rank

Offline KIT unconstrained 90.626 1
Offline NEMO unconstrained 86.583 2-4
Offline NYA unconstrained 86.536 2-4
Offline AIB-MARCO unconstrained 85.372 2-5
Simultaneous CUNI high 84.309 4-5
Simultaneous UPV high 78.662 6
Simultaneous OSU high 76.923 7-10
Instruction.long KIT primary 76.382 7-10
Offline NAIST unconstrained 75.432 7-11
Offline CUNI constrained 75.367 7-11
Simultaneous OSU low 74.397 9-11
Simultaneous NAIST high 71.166 12-15
Instruction.short CUNI-NL primary 70.702 12-15
Simultaneous CMU low 70.372 12-15
Instruction.short NLE primary 69.607 12-16
Offline NAIST constrained 67.801 15-18
Simultaneous NAIST low 67.197 16-18
Instruction.short CUNI-NL contrastive 66.280 16-18

Table 16: English → German, TV series testset. Human direct assessment scores and corresponding rankings.
Rank range based on 95% confidence interval, from pairwise p-values in Figure 5.

Task System Data/Condition Human Score Human Rank

Offline KIT unconstrained 61.379 1
Offline NYA unconstrained 56.801 2-3
Offline NEMO unconstrained 56.395 2-3
Subtitling APPTEK 53.992 4
Offline CUNI constrained 32.278 5
Offline NAIST unconstrained 27.174 6
Offline NAIST constrained 21.674 7
Offline AIB-MARCO unconstrained 12.122 8
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Table 17: English → Chinese, scientific presentations testset. Human direct assessment scores and corresponding
rankings. Rank range based on 95% confidence interval, from pairwise p-values in Figure 6.

Task System Data/Condition Human Score Human Rank

Offline AIB-MARCO unconstrained 85.918 1
Offline NYA unconstrained 84.044 2-4
Offline BIGWATERMELON unconstrained 83.338 2-4
Offline NEMO unconstrained 83.009 2-4
Simultaneous CUNI high 77.805 5
Offline NAIST unconstrained 71.593 6-9
Instruction.short NLE primary 70.465 6-10
Instruction.long KIT primary 69.995 6-10
Simultaneous CMU low 69.812 6-10
Simultaneous OSU high 69.415 7-11
Simultaneous NAIST high 67.761 10-12
Simultaneous OSU low 67.519 11-12
Simultaneous NAIST low 65.487 13
Offline NAIST constrained 58.831 14
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Figure 3: English → German, accented English conversations testest, pairwise p-values from paired permutation
tests (n=10,000). p-values < 0.05 are shown in green, while p-values >= 0.05 are shown in red. For system rankings
computed from these p-values, see Table 14.
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Figure 4: English → German, scientific presentations testset, pairwise p-values from paired permutation tests
(n=10,000). p-values < 0.05 are shown in green, while p-values >= 0.05 are shown in red. For system rankings
computed from these p-values, see Table 15.
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Figure 5: English → German, TV series testset, pairwise p-values from paired permutation tests (n=10,000). p-
values < 0.05 are shown in green, while p-values >= 0.05 are shown in red. For system rankings computed from
these p-values, see Table 16.
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Figure 6: English → Chinese, scientific presentations testset, pairwise p-values from paired permutation tests
(n=10,000). p-values < 0.05 are shown in green, while p-values >= 0.05 are shown in red. For system rankings
computed from these p-values, see Table 17.
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A.1.3 Deciding Which Segments to Human-Evaluate
Each year, the shared task size is limited by the amount that can be human-evaluated. Oftentimes, a
random subset of segments is chosen for human evaluation to fit a specific budget. However, this unin-
formed selection might be suboptimal and previous works showed promise for efficient subset selection
for machine translation and summarization. While the IWSLT 2025 evaluation has not used informed
subset selection, this section investigates its potential for future IWSLT human evaluation campaigns.

Setup. Given a large set of evaluatable items X , the task is to select Y ⊆ X such that ∣Y∣ fits a specific
budget. Then, all systems participating in the shared task are evaluated on Y . We consider the following
methods for subset selection (Zouhar et al., 2025a):
• Metric average: Selecting examples with lowest average quality estimation scores across systems

(highest difficulty). Based on wmt22-cometkiwi-da (Rei et al., 2022b).
• Metric variance: Selecting examples with largest variance among the quality estimation scores across

systems. Same metric.
• Metric consistency: Selecting examples where the item-level metric ranking is predictive of the final

aggregated system ranking. Same metric.
• Diversity: Selecting examples with which lead to most different system outputs (measured with pair-

wise ChrF).
• K-means: Selecting examples that are most dissimilar to each other (using k-means clustering).

We simulate the selection at a particular budget (subset size). We measure the success of subset selection
in three ways. In all cases, the higher the better.
• Cluster count: Number of statistically significant clusters, as computed by Kocmi et al. (2023).
• Kendall’s τb rank correlation: Similarity of final system ranking based on the subset and based on

the full set.
• Soft Pairwise Accuracy (Thompson et al., 2024): Similarity of final system ranking based on the

subset and based on the full set but with statistical significance taken into account.
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Figure 7: Results of informed subset selection for English→Arabic human-evaluated testset.

Results. The results in Figure 7 show that, by far, random selection remains the most robust selection,
with metric consistency being on par to random when measured by soft pairwise accuracy or Kendall’s
τb and slightly better when measured by cluster count.

This can be partly explained by the evaluation segments not being aligned. For other tasks, such as
text-to-text machine translation, given a single input, the systems produce outputs that can be compared
to each other. In the current speech translation setup, the segmentation makes it so that segments with
the same force-aligned source have very different outputs across systems. For example, the following
are the 8 system translations aligned to the same source segment “There were tough fights, even blood
flowed.”, which sometimes include non-relevant content, likely from previous or subsequent segments:

viel Geld verschwendet. Scham! hart umkämpfte Schlachten, Blut wurde vergossen. Ich schäme
zu Besuch Sie kommen heute Nacht zu uns Hart gekämpfte Schlachten. Das Blut wurde vergossen,
Harte Kämpfe. Es wurde Blut vergossen. Hart gekämpfte Schlachten. Das Blut wurde vergossen,
Schwer erkämpfte Kämpfe. Es wurde Blut vergossen. war glücklich. Vier Schlachten. Es wurde geschrieben. Schande!
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Comparing the segment-level quality estimation using automatic metrics (necessary for metric aver-
age, metric variance, and metric consistency) then becomes difficult. The primary noise for the metrics
comes from noisy prefixes and suffixes. Some metrics, such as COMET-partial (Zouhar et al., 2025b,
Appendix G) show promise to this kind of noise, though do not improve meaningfully the subset selec-
tion. The biggest hurdle to informed subset selection is thus a better alignment of system output, or the
selection at higher-level units where the alignment is implicitly correct, such as the level of documents
or whole audio files.

A.2 Continuous Rating for Czech-to-English and English-to-German
Manual evaluation of English-to-German Simultaneous Task uses Continuous Rating as described by
Javorský et al. (2022).

For both translation directions (Czech-to-English and English-to-German), we solicited students of
translation studies from the Faculty of Arts, Charles University, as evaluators. All were native speakers
of Czech, studying for English and (those evaluating German) also German translation.

During the evaluation, annotators were presented with the source audio and subtitles. The subtitles
were displayed in two lines below the audio following the guidelines for video subtitling (Bbc, 2019).
The annotators were asked to score the quality of the live-presented text output while listening to the
input sound. Specifically, the instructions explicitly asked to focus on content preservation, or roughly
the adequacy:
• We ask you to provide your assessment using so-called “continuous rating”, which continuously indi-

cates the quality of the text output given the input utterance you hear in the range from 1 (the worst) to
4 (the best) by clicking the corresponding buttons or pressing the corresponding keys.

• The rate of clicking/pressing depends on you. However, we suggest clicking each 5-10 seconds or
when your assessment has changed. We encourage you to provide feedback as often as possible even
if your assessment has not changed.

• The quality scale should reflect primarily the meaning preservation (i.e. evaluating primarily the “con-
tent” or very approximately the “adequacy”) and the grammaticality and other qualitative aspects like
punctuation (i.e. the “form” or extremely roughly the “fluency”) should be the secondary criterion.

Processing of Collected Rankings Once the results are collected, they are processed as follows. We
first inspect the timestamps on the ratings, and remove any that appeared more than 20 seconds than the
end of the audio. Because of the natural delay and because the collection process is subject to network
and computational constraints, there can be ratings that are timestamped greater than the audio length. If
the difference is however too high, we judge it to be an annotation error. We also remove any annotated
audio where there is fewer than one rating per 20 seconds because the annotators were instructed to
annotate every 5-10 seconds.

Obtaining Final Scores To calculate the final score for each system, we average the ratings across
each annotated audio, then average across all the annotated audios pertaining to each system-latency
combination. This type of averaging renders all input speeches equally important and it is not affected
by the speech length or the eagerness of the annotator.

The final scores for Czech-to-English and English-to-German are provided further below in Tables 18
and 19, respectively.

A.3 MQM-based Human Evaluation for English-to-Japanese
For the English-to-Japanese Simultaneous Translation Task, we conducted a human evaluation using a
variant of Multidimensional Quality Metrics (MQM; Lommel et al., 2014). MQM has been used in recent
MT evaluation studies (Freitag et al., 2021a) and WMT Metrics shared task (Freitag et al., 2021b). For
the evaluation of Japanese translations, we used JTF Translation Quality Evaluation Guidelines (JTF,
2018), distributed by Japan Translation Federation (JTF). The guidelines are based on MQM but include
some modifications in consideration of the property of the Japanese language.

We hired a Japanese-native professional interpreter as the evaluator. The evaluator checked translation
hypotheses along with their source speech transcripts and chose the corresponding error category and
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severity for each translation hypothesis on a spreadsheet. Here, we asked the evaluator to focus only on
Accuracy and Fluency errors, because other types of errors in Terminology, Style, and Locale convention
would not be so serious in the evaluation of simultaneous translation. Finally, we calculated the cumula-
tive error score for each system based on the error weighting presented by Freitag et al. (2021a), where
Critical and Major errors have the same level of error scores. The results are shown in Table 20.

Test Set Part Team CR (↑) BLEU (↑) StreamLAAL (↓)
Non-Native

Baseline-VAD 2.34 16.46 1.85
CUNI 3.02 24.53 1.79

ParCzech

Baseline-VAD 3.04 23.55 3.68
Interpreting-Student 3.35 11.31 4.34
CUNI 3.36 21.94 1.51
Interpreting-Professional 3.51 10.09 4.16

Table 18: Human evaluation using Continuous Rating (CR) for systems from the high-latency regime of simulta-
neous speech-to-text translation contrasted with two variants of human interpreting, Czech-to-English. The Con-
tinuous Rating values range from 1 (worst) to 4 (best).

Team CR (↑) BLEU (↑) COMET (↑) StreamLAAL (↓)
Baseline-Fixed 3.02 19.15 0.593 3.54

NAIST 3.25 24.58 0.717 3.71
CMU 3.39 22.63 0.697 1.47
OSU 3.56 25.80 0.729 3.21
UPV 3.63 29.81 0.739 2.90
CUNI 3.72 35.25 0.790 3.32

Table 19: Human evaluation using Continuous Rating (CR) for systems from the high-latency regime (except
CMU which was only in low-latency regime) of simultaneous speech-to-text translation, English-to-German. The
Continuous Rating values range from 1 (worst) to 4 (best).

System
BLEU

Error score
# Errors

(on two ACL talks) Critical Major Minor

CUNI 39.4 32 0 3 17
NAIST (high) 32.8 123 8 12 23
NAIST (low) 33.1 129 12 9 24

Table 20: Human evaluation results on two ACL talks (91 lines) in the English-to-Japanese Simultaneous speech-
to-text translation task. Error weights are 5 for Critical and Major errors and 1 for Minor errors.
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Figure 8: SPEECHM architecture. The platform is composed of the WebUI for managing user submissions and
showing evaluation results, produced by the evaluation scripts executed in the scope of Slurm jobs on the HPC
Ares (for CPU-based calculations) and Athena (for GPU-based calculations) HPC clusters.

Appendix B. Automatic Evaluation Results and Details

B.1 Evaluation Server
B.1.1 Introduction
The Evaluation Server is a collection of benchmarking resources and tools to evaluate the capability of
user systems with respect to a set of tasks. It is part of the SPEECHM platform, released by the Meetween
European Project68, which consists of (a) ten downstream tasks, (b) a set of task-dependent evaluation
metrics and (c) a WebUI for submissions and performance tracking by means of a leaderboard.

For the IWSLT-2025 Evaluation Campaign a dedicate instance of the SPEECHM has been developed,
named SPEECHM-IWSLT202569. It supports three of the IWSLT-2025 shared tasks, namely the Offline,
the Model Compression and the Instruction Following tasks.

B.1.2 User operations
Given a task testset (e.g. the TvSeries English-German testset for the Offline SLT task), users typically
perform the following operations:
1. download the source data (i.e. the English audios archive);
2. run their system and produce the hypothesis output (i.e. the German translations)
3. submitt their system output (i.e. the German translations);
4. wait for the evaluation process and read the evaluation scores (e.g. the COMET, and BLEU scores).

The SPEECH-IWSLT2025 allows the users to perform the above operations except the 2. one (users
are expected to run their systems outside the Evaluation Server). In addition users can also delete and
replace a submission with another one.

Submissions are managed trough the concept of user models, a user-defined entity that describes the
main features of a given user system. By means of models, users can submitt multiples hypothesis
68www.meetween.eu
69iwslt2025.speechm.cloud.cyfronet.pl
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Figure 9: SPEECHM leaderboard.

outputs for the same task testset, one for each different developed system.

B.1.3 The Web UI
The Web UI facilitates the submission process, manages evaluation submissions, and monitors inter-
actions with the external HPC cluster. This workflow is illustrated in Figure 8. Initially, users must
create an account in the SPEECHM system, a straightforward process due to its integration with PLGrid,
GitHub, and Google identity providers. Once registered, users can download the challenge input files
(Step 1). These files serve as input for the participant’s model inference (Step 2), which must currently
be performed outside the SPEECHM system. In future iterations, SPEECHM aims to integrate this step
as well.

After generating the outputs, users can conveniently upload them to the SPEECHM portal (Step 3).
At this stage, challenge owners initiate the hypothesis evaluation process (Step 4). This step is restricted
to challenge owners since they alone have access to the HPC computational resources required for eval-
uation. SPEECHM employs slurmrestd70 to submit SLURM jobs to HPC clusters and to monitor job
execution status.

Upon completion of the evaluations, the scores are stored in the SPEECHM database (Step 5). These
scores contribute to generating various leaderboards, such as those specific to a task, testset, or model.
An example leaderboard is shown in Figure 9.

B.1.4 The evaluation scripts
The evaluation metrics are computed through a set of scripts that run on the PLGRID clusters71. Scripts
to compute the metrics that benefit from usage of GPU cards (such as COMET, BLEURT and BERT
scores) run on the Athena72 cluster while the other scripts (computing ASR, BLEU and CharacTER
scores) are executed on the Ares cluster73.

It is worth noticing here that while the references of the Offline and Model Compression task testsets
are typically unstructured plain files, those of the Instruction Following task are structured as XML files.
Therefore, the evaluation script for the Instruction Following task testsets has been developed specifically
in order to manage the XML input structure.

B.2 Offline SLT

• Systems are ordered according to the COMET score (denoted by COMET, the first column).
• The “Joint” table is computed by averaging the scores of the 4 test sets, aka macro-averaging.
70slurm.schedmd.com/slurmrestd.html
71portal.plgrid.pl
72www.cyfronet.pl/en/19073,artykul,athena.html
73www.cyfronet.pl/en/computers/18827,artykul,ares supercomputer.html
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• The “D” column indicates the data condition in which each submitted run was trained, namely: Con-
strained (C), Constrained+LLM (C+), Unconstrained (U).

• This year, we have submissions of both cascade and end-to-end architectures.

System D Joint
COMET (↑) BLEU (↑) BLEURT (↑) chrF (↑) CharacTER (↓) TER (↓)

KIT U 0.783 30.2 0.660 57.4 0.451 63.1
NYA U 0.780 28.9 0.646 56.5 0.463 64.6
NeMo U 0.765 28.7 0.638 56.1 0.465 67.1
AIB U 0.676 22.0 0.520 47.8 0.548 77.4
NAIST U 0.644 17.9 0.469 43.0 0.628 77.1
CUNI-NL C+ 0.632 19.4 0.465 44.3 0.634 73.2
NAIST C+ 0.594 13.4 0.400 37.9 0.693 83.3

System D Accent
COMET BLEU BLEURT chrF CharacTER TER

NYA U 0.742 20.7 0.595 52.0 0.543 78.3
KIT U 0.733 21.8 0.603 52.3 0.54 76.2
NeMo U 0.712 18.4 0.579 51.0 0.549 92.5
NAIST U 0.695 16.7 0.551 46.8 0.598 81.2
AIB U 0.688 19.4 0.533 50.2 0.569 79.7
NAIST C+ 0.672 13.7 0.518 43.8 0.628 86.8
CUNI-NL C+ 0.628 15.3 0.473 40.6 0.676 80.5

System D Asharq News
COMET BLEU BLEURT chrF CharacTER TER

KIT U 0.833 36.2 0.722 65.0 0.382 54.5
NYA U 0.832 37.5 0.708 64.7 0.396 52.8
NeMo U 0.826 38.1 0.708 64.7 0.384 51.1
AIB U 0.811 35.8 0.686 62.1 0.416 53.3
NAIST U 0.601 18.3 0.408 40.9 0.677 74.6
CUNI-NL C+ 0.583 21.8 0.432 47.5 0.629 71.8
NAIST C+ 0.503 10.3 0.282 30.3 0.804 81.8

System D ITV
COMET BLEU BLEURT chrF CharacTER TER

KIT U 0.722 21.8 0.579 44.3 0.546 74.7
NYA U 0.704 19.1 0.551 42.9 0.564 78.4
NeMo U 0.695 19.8 0.546 42.2 0.571 75.8
CUNI-NL C+ 0.544 10.6 0.318 29.7 0.778 83.3
NAIST U 0.513 8.20 0.287 25.7 0.787 93.8
NAIST C+ 0.491 6.90 0.249 25.4 0.786 97.5
AIB U 0.401 2.60 0.172 17.9 0.788 121

System D Scientific Presentations
COMET BLEU BLEURT chrF CharacTER TER

KIT U 0.842 40.9 0.735 68.0 0.337 47.0
NYA U 0.840 38.4 0.730 66.4 0.348 48.9
NeMo U 0.828 38.4 0.718 66.3 0.355 49.0
AIB U 0.804 30.0 0.688 61.0 0.418 56.1
CUNI-NL C+ 0.772 29.9 0.638 59.4 0.453 57.1
NAIST U 0.766 28.6 0.630 58.5 0.448 59.0
NAIST C+ 0.710 22.8 0.550 52.2 0.554 67.1

Table 21: Official results of the automatic evaluation for the Offline Speech Translation Task on official test sets,
English to German.

System D Asharq News
COMET (↑) BLEU (↑) BLEURT (↑) chrF (↑) CharacTER (↓) TER (↓)

NYA U 0.839 22.1 0.665 55.4 0.440 64.4
NeMo U 0.820 19.7 0.644 52.7 0.461 66.2
AIB U 0.812 17.2 0.627 50.3 0.496 67.0

Table 22: Official results of the automatic evaluation for the Offline Speech Translation Task on official test set,
English to Arabic.
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System D Scientific Presentations
COMET (↑) BLEU (↑) BLEURT (↑) chrF (↑) CharacTER (↓) TER (↓)

NYA U 0.860 56.7 0.713 49.1 0.418 32.9
AIB U 0.856 55.7 0.719 49.1 0.427 33.0
BigWaterMelon U 0.845 56.2 0.703 49.5 0.436 34.1
NeMo U 0.844 46.3 0.699 40.6 0.481 39.0
NAIST U 0.771 40.2 0.590 33.4 0.600 48.4
NAIST C+ 0.711 31.0 0.487 26.6 0.724 56.7

Table 23: Official results of the automatic evaluation for the Offline Speech Translation Task on official test set,
English to Chinese. When computing the TER scores via sacreBLEU, we provide these two additional arguments:
“–ter-normalized” and “–ter-asian-support”
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B.3 Simultaneous SLT

Quality Metrics StreamLAAL
Latency Regime Team BLEU (↑) COMET (↑) dev (↓) test (↓)

Low-Latency

Baseline-Fixed 15.74 0.551 1.87 1.70 (2.61)
Baseline-VAD 17.81 0.595 1.82 1.99 (3.10)
NAIST 20.85 0.680 1.92 1.82 (N/A)
OSU ∗ 22.04 0.708 1.84 1.73 (2.47)
CMU 22.63 0.697 1.69 1.47 (1.81)

High-Latency

Baseline-Casc.∗ 24.89 0.699 3.23 3.20 (4.59)
Baseline-Fixed 19.15 0.593 2.35 3.54 (4.57)
Baseline-VAD 22.07 0.644 3.43 2.95 (3.82)
NAIST 24.58 0.717 3.99 3.71 (N/A)
OSU ∗ 25.80 0.729 3.34 3.21 (4.41)
UPV ∗ 29.81 0.739 2.94 2.90 (3.37)
CUNI ∗ 35.25 0.790 3.77 3.32 (N/A)

Table 24: English-to-German simultaneous speech-to-text translation divided by latency regimes. Latency is mea-
sured in seconds. Values in parentheses are computationally aware latency and are provided for system submissions
only on the test set. Cascaded systems are marked with an asterisk (∗).

Quality Metrics StreamLAAL
Latency Regime Team BLEU (↑) COMET (↑) dev (↓) test (↓)

Low-Latency

Baseline-Fixed 20.42 0.568 2.35 3.76 (4.64)
Baseline-VAD 22.63 0.588 1.88 1.96 (2.74)
OSU ∗ 34.06 0.705 2.22 2.20 (3.34)
NAIST 37.82 0.747 2.46 2.28 (N/A)
CMU 43.26 0.773 2.19 2.15 (2.66)

High-Latency

Baseline-Fixed 21.84 0.595 3.12 3.11 (3.98)
Baseline-VAD 26.19 0.638 3.28 3.15 (3.91)
OSU ∗ 37.07 0.733 3.52 3.49 (4.82)
CUNI ∗ 39.07 0.808 3.54 2.94 (N/A)
NAIST 39.41 0.761 3.70 3.20 (N/A)

Table 25: English-to-Chinese simultaneous speech-to-text translation divided by latency regimes. Latency is mea-
sured in seconds. Values in parentheses are computationally aware latency and are provided for system submissions
only on the test set. Cascaded systems are marked with an asterisk (∗).
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Quality Metrics StreamLAAL
Latency Regime Team BLEU (↑) COMET (↑) dev (↓) test (↓)
Low-Latency

Baseline-VAD 11.32 0.591 2.35 2.21 (3.25)
NAIST 23.84 0.786 3.34 2.83 (N/A)

High-Latency

Baseline-Fixed 10.05 0.610 3.74 4.62 (5.89)
Baseline-VAD 13.76 0.667 3.66 3.54 (4.62)
NAIST 23.99 0.787 3.98 3.25 (N/A)
CUNI ∗ 33.44 0.841 4.48 4.23 (N/A)

Table 26: English-to-Japanese simultaneous speech-to-text translation divided by latency regimes. Values in paren-
theses are computationally aware latency and are provided for system submissions only on the test set. Cascaded
systems are marked with an asterisk (∗).

Quality Metrics StreamLAAL
Latency Regime Team BLEU (↑) COMET (↑) dev (↓) test (↓)
Low-Latency

Baseline-Fixed 19.96 0.647 1.87 2.31 (3.26)
Baseline-VAD 19.94 0.642 1.78 2.46 (3.70)
CUNI 20.78 0.715 1.76 1.41 (N/A)

High-Latency
Baselines-Casc.∗ 19.92 0.675 3.64 4.29 (8.11)
Baseline-Fixed 21.44 0.662 3.41 3.34 (4.22)
Baseline-VAD 23.55 0.677 3.34 3.68 (4.67)
CUNI 21.94 0.729 2.63 1.51 (N/A)

Table 27: Czech-to-English simultaneous speech-to-text translation for the native speakers test set divided by
latency regimes. Latency is measured in seconds. Values in parentheses are computationally aware latency and are
provided for system submissions only on the test set.

Quality Metrics StreamLAAL
Latency Regime Team BLEU (↑) COMET (↑) dev (↓) test (↓)
Low-Latency

Baseline-Fixed 8.84 0.568 1.87 3.33 (4.53)
Baseline-VAD 12.84 0.589 1.78 1.00 (1.88)
CUNI 21.59 0.704 1.76 3.30 (N/A)

High-Latency

Baselines-Casc.∗ 24.00 0.698 3.64 5.30 (9.43)
Baseline-Fixed 18.02 0.612 3.41 5.19 (6.22)
Baseline-VAD 16.46 0.626 3.34 1.85 (2.62)
CUNI 24.53 0.749 2.63 1.79 (N/A)

Table 28: Czech-to-English simultaneous speech-to-text translation for the non-native speakers test set divided by
latency regimes. Latency is measured in seconds. Values in parentheses are computationally aware latency and are
provided for system submissions only on the test set.
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Quality Metrics StreamLAAL
Latency Regime Team BLEU (↑) COMET (↑) dev (↓) test (↓)

Low-Latency

Baseline-Fixed 10.89 0.490 1.87 2.48 (3.57)
Baseline-VAD 10.22 0.487 1.82 3.43 (4.41)
CMU 11.18 0.525 1.87 1.74 (2.26)
NAIST 12.15 0.570 1.92 1.89 (N/A)
OSU ∗ 16.11 0.618 1.84 2.06 (2.90)

High-Latency

Baselines-Casc.∗ 13.99 0.583 3.23 3.09 (4.37)
Baseline-Fixed 13.03 0.520 2.35 4.06 (4.92)
Baseline-VAD 11.07 0.500 3.43 3.33 (4.33)
CUNI ∗ 12.51 0.626 3.77 2.99 (N/A)
NAIST 12.92 0.585 3.99 3.70 (N/A)
UPV ∗ 16.26 0.599 2.94 3.58 (N/A)
OSU ∗ 18.73 0.643 3.34 3.81 (4.83)

Table 29: English-to-German simultaneous speech-to-text translation for the challenging accented test set divided
by latency regimes. Latency is measured in seconds. Values in parentheses are computationally aware latency and
are provided for system submissions only on the test set. Cascaded systems are marked with an asterisk (∗).
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B.4 Automatic Subtitling

Team Cndt System Domain Sub. qual. Translation quality Subtitle compliance
SubER Bleu ChrF Bleurt CPS CPL LPB

APPTEK U prmry ITV 62.86 19.11 40.62 .4899 93.78 100.00 100.00
Asharq-Bloomberg 50.87 35.21 59.03 .6057 92.44 100.00 99.19

APPTEK U cntrstv1 ITV 63.57 20.65 42.94 .5043 82.36 100.00 97.55
Asharq-Bloomberg 51.93 34.28 57.83 .5869 95.69 100.00 99.85

APPTEK U cntrstv2 ITV 63.31 18.06 39.16 .4767 97.40 100.00 100.00
Asharq-Bloomberg 50.94 35.02 58.99 .6052 92.13 100.00 99.07

Table 30: Subtitling Task: automatic evaluation scores on tst2025 en→de. U stands for unconstrained training
condition; prmry and cntrstv for primary and contrastive systems.

Team Cndt System Domain Sub. qual. Translation quality Subtitle compliance
SubER Bleu ChrF Bleurt CPS CPL LPB

APPTEK U prmry Asharq-Bloomberg 62.13 21.56 52.74 .5995 99.81 100.00 99.97
APPTEK U cntrstv1 Asharq-Bloomberg 62.62 21.22 52.25 .5982 99.81 100.00 99.97
APPTEK U cntrstv2 Asharq-Bloomberg 62.57 21.87 53.27 .6044 96.28 100.00 99.38

Table 31: Subtitling Task: automatic evaluation scores on tst2025 en→ar. U stands for unconstrained training
condition; prmry and cntrstv for primary and contrastive systems.

Team Cndt System Domain Sub. qual. Translation quality Subtitle compliance
SubER Bleu ChrF Bleurt CPS CPL LPB

APPTEK U prmry ITV 66.55 18.86 41.71 .5053 93.50 100.00 100.00
APPTEK U cntrstv1 ITV 69.32 19.07 43.08 .5164 83.53 100.00 97.87
APPTEK U cntrstv2 ITV 65.97 18.33 40.96 .5008 97.07 100.00 100.00

Submissions 2024
APPTEK U prmry ITV 72.38 16.98 40.42 .4683 69.23 100.00 99.92

FBK-AI4CDIR C prmry ITV 78.90 9.67 28.43 .2911 70.45 90.04 99.97
FBK-AI4CCSC U prmry ITV 79.92 14.86 35.16 .4048 54.20 91.12 100.00

HW-TSC U prmry ITV 76.04 16.09 41.34 .5098 61.72 61.80 100.00

Table 32: Subtitling Task: automatic evaluation scores on tst2024 en→de. C and U stand for constrained and
unconstrained training condition, respectively; prmry and cntrstv for primary and contrastive systems.

Team Cndt System Domain Sub. qual. Translation quality Subtitle compliance
SubER Bleu ChrF Bleurt CPS CPL LPB

APPTEK U prmry ITV 65.26 18.79 41.62 .5064 93.32 100.00 100.00
APPTEK U cntrstv1 ITV 66.97 20.27 43.73 .5219 82.02 100.00 97.69
APPTEK U cntrstv2 ITV 65.01 18.26 40.77 .5003 97.12 100.00 100.00

Submissions 2024
APPTEK U prmry ITV 69.21 17.97 41.27 .4790 67.64 100.00 99.96
HW-TSC U prmry ITV 72.16 18.35 42.95 .5244 60.15 62.37 100.00

FBK-AI4CCSC U prmry ITV 74.91 16.19 35.91 .3996 54.70 92.97 100.00
FBK-AI4CDIR C prmry ITV 77.15 10.40 29.13 .2939 68.73 91.00 99.97
Submissions 2023

APPTEK U prmry ITV 69.83 14.43 35.27 0.4028 86.01 100.00 100.00
TLT U prmry ITV 73.11 14.92 37.13 0.4501 80.21 99.47 100.00

APPTEK C prmry ITV 80.87 9.08 27.74 0.2612 91.14 100.00 100.00
FBK DIR C prmry ITV 82.67 8.05 26.10 0.2255 67.75 85.12 100.00

Table 33: Subtitling Task: automatic evaluation scores on tst2023 en→de. C and U stand for constrained and
unconstrained training condition, respectively; prmry and cntrstv for primary and contrastive systems.

476



B.5 Low-Resource SLT

North Levantine Arabic→English (Unconstrained Condition)
Team System BLEU↓ COMET chrF2
KIT primary 23.34 0.704 45.09
LIA primary 22.56 0.719 44.72
KIT contrastive2 21.93 0.697 44.67
LIA contrastive2 21.45 0.694 43.13
LIA contrastive1 21.02 0.698 42.92

ALADAN primary 20.02 0.661 39.91
KIT contrastive1 19.11 0.683 40.95

AIB Marco contrastive4 16.47 0.683 37.96
AIB Marco contrastive3 16.22 0.667 37.48
AIB Marco contrastive1 15.82 0.646 36.23

JHU contrastive1 15.39 0.657 35.91
JHU primary 14.64 0.649 36.23

AIB Marco primary 12.01 0.655 34.19
AIB Marco contrastive2 10.53 0.573 27.69

Table 34: Automatic evaluation results for the North Levantine Arabic to English task, unconstrained Condition.
A lowercase, no-punctuation variant of chrF2 is reported. The Unbabel/wmt22-comet-da model was used
for COMET computation, with the source side (Arabic transcript) unmodified and the target side lowercased and
with removed punctuation. The AIB Marco team did not submit a system description paper.

Bemba→English (Unconstrained Condition)
Team System BLEU
JHU primary 32.6
KIT primary 28.8
KIT contrastive2 28.1
JHU contrastive1 27.0
KIT contrastive1 27.0
JHU contrastive2 26.7

Team System WER
KIT ASR primary 33.2
JHU ASR primary 35.7

Table 35: Automatic evaluation results for the Bemba to English task, unconstrained Condition.

Bhojpuri→Hindi (Unconstrained Condition)
Team System BLEU chrF2
GMU contrastive1 3.4 23.0
GMU contrastive2 2.0 16
GMU primary 3.9 24.0
JHU contrastive1 10.7 34.0
JHU contrastive2 7.8 32.0
JHU primary 10.5 34.0

IIITH BUT contrastive1 10.2 32.0
IIITH BUT primary 9.9 33.0

Table 36: Automatic evaluation results for the Bhojpuri to Hindi task, unconstrained Condition.
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Estonian→English (Unconstrained Condition)
Team System BLEU chrF2 COMET

AIB Marco contrastive1 29.3 55.8 0.7944
AIB Marco contrastive2 23.3 48.3 0.7601
AIB Marco primary 30.9 57.4 0.7958

GMU contrastive1 30.2 53.4 0.7746
GMU contrastive2 29.6 52.9 0.7760
GMU primary 29.8 53.1 0.7767

Table 37: Automatic evaluation results for the Estonian to English task, unconstrained condition.

Irish→English (Unconstrained Condition)
Team System BLEU chrF2

AIB Marco contrastive1 7.8 32.0
AIB Marco contrastive2 12.5 34.0
AIB Marco primary 12.5 34.0

GMU contrastive1 8.4 32.0
GMU contrastive2 6.7 30.0
GMU primary 13.4 34.0
JHU contrastive1 12.0 33.0
JHU contrastive2 12.3 33.0
JHU primary 11.6 33.0

Table 38: Automatic evaluation results for the Irish to English task, unconstrained Condition.

Maltese→English (Unconstrained Condition)
Team System BLEU chrF2

KIT primary 58.9 76.5
SETU-DCU primary 56.7 81.9

KIT contrastive2 56.2 75.0
KIT contrastive1 55.2 74.4

SETU-DCU contrastive1 52.6 72.1
UOM primary 52.4 72.3
UOM contrastive1 52.4 72.3
UOM contrastive2 52.3 72.1

SETU-DCU contrastive2 44.7 65.5
JHU primary 41.4 68.6
JHU contrastive1 36.5 64.2

UOM-DFKI primary (e2e) 35.1 59.0
JHU contrastive2 24.8 55.8

UOM-DFKI contrastive1 (e2e) 18.5 42.0

Table 39: Automatic evaluation results for the Maltese to English task, Unconstrained Condition. e2e denotes
end-to-end system.

Maltese→English (Constrained Condition)
Team System BLEU chrF2
UOM primary 0.5 15.6

Table 40: Automatic evaluation results for the Maltese to English task, Constrained Condition.
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Marathi→Hindi (Constrained Condition)
Team System BLEU chrF2
SRI-B contrastive1 22.6 50.0
SRI-B contrastive2 24.0 52.0
SRI-B primary 23.7 52.0

Table 41: Automatic evaluation results for the Marathi to Hindi task, Constrained Condition.

Marathi→Hindi (Unconstrained Condition)
Team System BLEU chrF2
GMU contrastive1 44.3 68.0
GMU contrastive2 41.5 66.0
GMU primary 43.4 67.0
JHU contrastive1 40.7 65.0
JHU contrastive2 40.0 65.0
JHU primary 41.4 65.0

Table 42: Automatic evaluation results for the Marathi to Hindi task, Unconstrained Condition.

Quechua→Spanish (Unconstrained Condition)
Team System BLEU chrF2
GMU contrastive1 12.9 46.4
GMU contrastive2 13.0 46.4
GMU primary 12.7 46.2
JHU contrastive1 11.0 46.7
JHU primary 9.0 43.5

QUESPA contrastive1 15.0 52.4
QUESPA contrastive2 26.7 48.6
QUESPA primary 14.8 51.8

Table 43: Automatic evaluation results for the Quechua to Spanish task, Unconstrained Condition.

Fongbe→French (Unconstrained Condition)
Team System BLEU chrF2
LIA primary 39.6 56.7
LIA contrastive1 37.23 54.96
LIA contrastive2 32.76 50.09
LIA contrastive3 28.32 46.08

GMU primary 31.96 48.01
JHU primary 5.96 23.21
JHU contrastive1 6.26 23.27
JHU contrastive2 5.6 23.27

Table 44: Automatic evaluation results for the Fongbe to French task, Unconstrained Condition.
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B.6 Dialectal SLT

Tunisian Arabic→English (Unconstrained Condition)
test22 test23

Team System BLEU chrF BLEU chrF
KIT primary 22.7 44.4 21.4 42.3
KIT contrastive1 21.2 43 19.3 40.9
KIT contrastive2 21.4 43.7 19.2 41.1
LIA primary 22.3 44.3 21.0 42.5
LIA contrastive1 22.0 43.9 20.3 41.6
LIA contrastive2 21.6 43.4 19.2 40.3
LIA contrastive3 21.4 43.2 19.6 41.2
GMU primary 20.3 43.2 17.8 40.6
GMU contrastive1 19.2 42.8 17.3 40.0
GMU contrastive2 18.9 42.4 17.3 40.1
SYSTRAN primary 19.2 36.0 17.5 33.9
MBZAI primary 11.7 34.0 10.4 32.2
JHU primary 8.2 30.4 6.8 27.6
JHU contrastive1 30.7 42.8 7.3 27.9
JHU contrastive2 28.6 42.4 5.5 26.1

Table 45: Automatic evaluation results for the Tunisian to English Speech Translation task, Unconstrained Con-
dition. Primary systems are ordered in terms of the official metric BLEU on test23. We also report chrF score.

Tunisian Arabic ASR (Unconstrained Condition)
test22 test23

Team System WER CER WER CER
GMU primary 38.0 19.7 39.9 22.3
LIA primary 38.6 19.2 40.0 21.4
LIA contrastive1 39.2 44.4 40.3 22.5
AMIRBEK primary 39.9 20.0 41.0 22.3
SYSTRAN primary 40.6 21.0 41.8 23.3

Table 46: Word Error Rate (WER) and Character Error Rate (CER) of the ASR component of submitted cascaded
systems on test22 and test23 after Arabic-specific normalization for e.g. Alif, Ya, Ta-Marbuta on the hypotheses
and transcripts before computing WER/CER. Systems are ordered in terms of the official metric WER on test23.
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B.7 Instruction Following

en-en
Model Metric

Organization Condition Role ASR-WER ↓ SQA-BERTScore ↑ S2TSUM-BERTScore ↑
SHORT

MICROSOFT-PHI UNCONSTRAINED BASELINE 0.07 0.46 -
MEETWEEN UNCONSTRAINED PRIMARY 0.18 0.17 -
NLE CONSTRAINED PRIMARY 0.13 0.50 -

CUNI-NL UNCONSTRAINED
PRIMARY 0.15 0.21 -
CONTRASTIVE 0.25 0.15 -

IST UNCONSTRAINED PRIMARY 0.15 0.14 -
LONG

MICROSOFT-PHI UNCONSTRAINED BASELINE 0.17 0.42 0.17
KIT CONSTRAINED PRIMARY 0.15 0.41 0.23

en-de
Model Metric

Organization Condition Role S2TT-COMET ↑ SQA-BERTScore ↑ S2TSUM-BERTScore ↑
SHORT

MICROSOFT-PHI UNCONSTRAINED BASELINE 0.77 0.36 -
NLE CONSTRAINED PRIMARY 0.71 0.38 -

CUNI-NL UNCONSTRAINED
PRIMARY 0.72 0.21 -
CONTRASTIVE 0.69 0.21 -

IST UNCONSTRAINED PRIMARY 0.34 0.22 -
LONG

MICROSOFT-PHI UNCONSTRAINED BASELINE 0.55 0.35 0.16
KIT CONSTRAINED PRIMARY 0.74 0.35 0.21

en-it
Model Metric

Organization Condition Role S2TT-COMET ↑ SQA-BERTScore ↑ S2TSUM-BERTScore ↑
SHORT

MICROSOFT-PHI UNCONSTRAINED BASELINE 0.81 0.40 -
NLE CONSTRAINED PRIMARY 0.75 0.42 -

LONG
MICROSOFT-PHI UNCONSTRAINED BASELINE 0.56 0.36 0.19
KIT CONSTRAINED PRIMARY 0.77 0.39 0.25

en-zh
Model Metric

Organization Condition Role S2TT-COMET ↑ SQA-BERTScore ↑ S2TSUM-BERTScore ↑
SHORT

MICROSOFT-PHI UNCONSTRAINED BASELINE 0.81 0.33 -
NLE CONSTRAINED PRIMARY 0.76 0.35 -
IST UNCONSTRAINED PRIMARY 0.34 0.21 -

LONG
MICROSOFT-PHI UNCONSTRAINED BASELINE 0.51 0.39 0.04
KIT CONSTRAINED PRIMARY 0.77 0.41 0.37

Table 47: Complete results for the IF Task, including the BASELINE (Phi4-Multimodal). For each team, it is
indicated whether the submission was under CONSTRAINED or unconstrained settings, and if it was PRIMARY or
CONTRASTIVE. Bold indicates the best track-wise (SHORT and LONG) result per language direction, and underline
indicates the overall best result among tracks.

481



Author Index

A. A. Laleye, Fréjus, 145
Abdul Rauf, Sadaf, 138
Abdulmumin, Idris, 260
Agostinelli III, Victor, 301
Agostinelli, Victor, 412
Ahmadi, Sina, 110
Ahmed, Ibrahim, 106
Akkiraju, Bhavana, 333
Akmal Hanif, Ikhlasul, 269
Akti, Seymanur, 232
Aldarmaki, Hanan, 76
Alexandra Putra, Vallerie, 269
Alumäe, Tanel, 412
Anastasopoulos, Antonios, 289, 412
Anh Dinh, Tu, 212
Arora, Karunesh, 180
Attanasio, Giuseppe, 347
Aurelian Tjiaranata, Filbert, 269
Avila, Marko, 324

Bafna, Niyati, 315
Bai, Xuefeng, 405
Bandyopadhyay, Sivaji, 201, 245
Barras, Claude, 252
ben kheder, waad, 252
Bentivogli, Luisa, 19, 47, 412
Beranek, Sarah, 222
Besacier, Laurent, 186
Beyer, Andre, 252
Binh Nguyen, Thai, 232
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Macháček, Dominik, 389
Matassoni, Marco, 47
Matusov, Evgeny, 222, 412
Mdhaffar, Salima, 412
mdhaffar, salima, 145, 274
Mehmood, Humaira, 138
Meng, Chutong, 289
Meyer Saragih, Jan, 360, 369
Mishra, Pruthwik, 180
Mohammadamini, Mohammad, 106
Mondal, Tapabrata, 201
Moslem, Yasmin, 354, 379, 412
Mullov, Carlos, 212
Murray, Kenton, 315, 412

Nabih, Mohamed, 47
Nakamura, Satoshi, 360, 369, 412
Nam Nguyen, Tuan, 212

Negri, Matteo, 47, 412
Niehues, Jan, 19, 33, 212, 232, 412

Omar, Hawkar, 106
Ouyang, Siqi, 309

P. McCrae, John, 412
Paola Garcia Perera, Leibny, 153
Papi, Sara, 19, 47, 412
Pecina, Pavel, 412
Peters, Ben, 347
Petrick, Frithjof, 222
Polák, Peter, 389, 412
Post, Matt, 84
Pothula, Aishwarya, 333
Povey, Dan, 153
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