IWSLT 2025

The 22nd International Conference on Spoken Language
Translation

Proceedings of the Conference

July 31 - August 1, 2025



The IWSLT organizers gratefully acknowledge the support from the following
SpONsors.

Diamond

€ Azt

ii



©2025 Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
317 Sidney Baker St. S

Suite 400 - 134

Kerrville, TX 78028

USA

Tel: +1-855-225-1962

acl@aclweb.org

ISBN 979-8-89176-272-5

iii



Introduction

The International Conference on Spoken Language Translation (IWSLT) is the premiere annual scien-
tific conference for the study, development, and evaluation of spoken language translation technology.
Launched in 2004 and spun out from the C-STAR speech translation consortium before it (1992-2003),
IWSLT is the main venue for scientific exchange on all topics related to speech-to-text translation, speech-
to-speech translation, simultaneous and consecutive translation, speech dubbing, cross-lingual commu-
nication including all multimodal, emotional, paralinguistic, and stylistic aspects and their applications
in the field. The conference organizes evaluations around challenge areas, and presents scientific papers
and system descriptions. IWSLT is organized by the Special Interest Group on Spoken Language Tran-
slation (SIGSLT), which is supported by ACL, ISCA and ELRA.

This year, IWSLT featured spoken language translation shared tasks organized into seven distinct tracks.
These were grouped into four high-resource tasks: (i) offline speech translation, (ii) simultaneous spee-
ch translation, (iii) subtitling, and (iv) model compression; three low-resource tasks: (v) low-resource,
and (vi) Indic (multilingual); and one instruction following task. Each track was coordinated by one or
more chairs. The resulting evaluation campaigns attracted a total of 32 teams, from academia, research
centers and industry. System submissions resulted in 31 system papers that will be presented at the con-
ference. Following our call for papers, this year we received 22 submissions of research papers, 13 of
which were accepted for oral presentation through a double-blind review process.

The program committee is excited about the quality of the accepted papers and expects lively discussion
and exchange at the conference. The conference chairs and organizers would like to express their grati-
tude to everyone who contributed and supported IWSLT. In particular, we wish to thank our Diamond
sponsors Apple and AppTek. We thank the shared tasks chairs, organizers, and participants, the program
committee members, as well as all the authors that went the extra mile to submit system and research
papers to IWSLT, and make this year’s conference a big success. We also wish to express our sincere
gratitude to ACL for hosting our conference and for arranging the logistics and infrastructure that allow
us to hold IWSLT 2025 as a hybrid conference.

Welcome to IWSLT 2025, welcome to Vienna!

Antonios Anastasopoulos, Program Chair
Marcello Federico and Alex Waibel, Conference Chairs
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Streaming Sequence Transduction through Dynamic Compression
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Abstract

We introduce STAR (Stream Transduction with
Anchor Representations), a novel Transformer-
based model designed for efficient sequence-
to-sequence transduction over streams. STAR
dynamically segments input streams to cre-
ate compressed anchor representations, achiev-
ing nearly lossless compression (12x) in
Automatic Speech Recognition (ASR) and
outperforming existing methods. Moreover,
STAR demonstrates superior segmentation
and latency-quality trade-offs in simultaneous
speech-to-text tasks, optimizing latency, mem-
ory footprint, and quality.'

1 Introduction

Sequence transduction, also referred to as sequence-
to-sequence modeling, has shown remarkable suc-
cess across various domains, including speech
translation (Liu et al., 2019; Di Gangi et al., 2019;
Li et al., 2020) and automatic speech recognition
(Prabhavalkar et al., 2023; Li, 2021; Gulati et al.,
2020). Traditionally, these models operate under
the assumption of fully observing input sequences
before generating outputs. However, this require-
ment becomes impractical in applications necessi-
tating low latency or real-time output generation
such as simultaneous translation (Ma et al., 2019;
Chang and Lee, 2022; Barrault et al., 2023, inter
alia). The concept of streaming sequence transduc-
tion (Inaguma et al., 2020; Kameoka et al., 2021;
Chen et al., 2021; Wang et al., 2022; Chen et al.,
2021; Xue et al., 2022), or stream transduction,
arises to address this challenge. Unlike traditional
sequence transduction, stream transduction oper-
ates on partially observed input sequences while
simultaneously generating outputs. This requires
deciding when to initiate output generation, a task
inherently tied to identifying critical triggers within

! Codes available at:

steventan@110/STAR

https://github.com/

“Microsoft

1

*Stanford University
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Figure 1: When YIELD is triggered, the current seg-
ment’s information is compressed into an anchor repre-
sentation to generate the next output.

the input sequence. Triggers mark moments when
sufficient input information has been received to
initiate output generation, thus minimizing latency.
Consequently, they partition the input sequence
into discrete segments, with outputs accessing only
information preceding each trigger.

Locating these triggers poses a significant chal-
lenge. Prior approaches have explored methods
that employ fixed sliding windows to determine
triggers (Ma et al., 2019, 2020b), or learning mod-
els to predict triggers (Ma et al., 2020c; Chang and
Lee, 2022), yet timing remains a complex issue.
Beyond reducing latency, another challenge for
stream transduction is how to efficiently represent
historical information while optimizing memory
usage. Prior work (Rae et al., 2020; Tay et al.,
2022; Bertsch et al., 2023, inter alia) has mostly fo-
cused on improving the efficiency of Transformer
but does not investigate streaming scenarios. Re-
ducing the memory footprint for streaming systems
introduces additional complexity as models must
determine when certain information becomes less
relevant for future predictions.

In this work, we propose Stream Transduction
with Anchor Representations (STAR), a novel ap-

Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025), pages 1-18
July 31 - August 1, 2025 ©2025 Association for Computational Linguistics


https://github.com/steventan0110/STAR
https://github.com/steventan0110/STAR

proach designed to maximize the benefits of stream
transduction, optimizing both generation latency
and memory footprint. STAR dynamically seg-
ments the input stream into buffers that contain
similar levels of information. Then, it introduces
the concept of anchors, which aggregate a buffer of
information (multiple vector representations) into
single-vector anchor representations. Once an an-
chor representation is yielded, it triggers the gener-
ation process to yield another token.

We present a learning strategy to train STAR
end-to-end so that the model learns to dynamically
select anchor positions with the following objec-
tives: (1) anchor positions are selected such that
each segment contains the right amount of infor-
mation for generating the next output; (2) anchor
representation effectively compress the informa-
tion of its preceding segment. For example, in
fig. 1, the model triggers YIELD at index 3 (which
makes it an anchor position), compressing the in-
formation of the current chunk X = (x1,x9,x3)
into anchor representation z; to generate output
y1. Such a process repeats each time YIELD is
triggered. To summarize, our contributions are as
follows: (1) we propose STAR that dynamically
segments and compresses input streams, trading-
off among latency, memory footprint, and perfor-
mance for stream transduction; (2) we validate the
effectiveness of our approach on well-established
speech-to-text tasks. Our results show that STAR
greatly outperforms existing methods, obtaining
better compression ability and excelling in quality-
latency trade-offs.

2 Methodology

2.1 Problem Formulation

In sequence-to-sequence transduction, feature
X = (@1,...,z7,) is normally first extracted
from the raw input sequence. Then the decoder can
encode and use such features to generate an output
sequence Y = (y1,...,¥yr,). The encoder and
decoder can be implemented using various mod-
els such as Recurrent Neural Networks (Hochreiter
and Schmidhuber, 1997; Chung et al., 2014; Lip-
ton, 2015) and Transformers (Vaswani et al., 2017),
depending on the input and output characteristics.
In the context of streaming sequence transduction,
where the input (and their features X)) is partially
observed, a causal encoder and decoder are nec-
essary. The causal encoder processes the partially
observed feature X, (7 < T}) to produce their

Algorithm 1 High-level overview of STAR

1: Input: Input stream X, threshold S

2: Output: Output stream Y

3: Initialize: cached repr. Z <+ @; buffer B +— @

4: while y #£ EOS :

5: a+—0;B+ o > clear buffer
6: while < READ(X) : > READ new inputs
7 APPEND(B, x) > add to buffer
8: a4 a+ Fyeg(x)

9: ifa>p3: > yield triggered
10: H = Fono(B | Z) > encode segment buffer
11: z = COMPRESS(H)

12: APPEND(Z, 2) > embedding for segment
13: Yy <+ Faec(|Y, Z)

14: yield y
15: 1 L break

encoding. Suppose the first k£ outputs are already
generated, the causal decoder sample the next out-
put yr.1 with P(yr11|X<r, Yogi1;6), where 0
represents the parameter set.

Deciding when to generate (yield) a new token is
the core of streaming sequence transduction where
a segmenter/predictor (Moritz et al., 2020; Chang
and Lee, 2022) is typically trained to control tim-
ing for yield operation. Our approach to tackling
stream transduction is outlined in algorithm 1. It
involves a learnable segmenter that scores the im-
portance of each input feature to decide if enough
information has been accumulated in the current
buffer of features. As the segmenter scores input
feature in a frame-wise fashion (algorithm 1, line
8), we accumulate the scores « until it reaches a
pre-defined threshold 5. When the threshold is
reached, it indicates that enough information has
been accumulated in the current buffer B of fea-
tures. Subsequently, we compress the features into
a single vector representation z that we call an-
chor representation (line 11). z is computed for
each buffer and cached into the history anchors
Z, which is then conditioned by the decoder to
generate new tokens (lines 12-13). The details of
our segmentation and compression mechanism are
introduced in §2.2.

2.2 Segmentation with Dynamic Compression

In this section, we provide details of different com-
ponents in algorithm 1. We first describe how to
learn the segmenter Fieq(-) with feedback from
the encoder-decoder’s cross-attention. Then we
present how anchor representations are obtained
through our selection-based compression method.

Learning Segmenter with Cross-attention We
propose a learnable segmenter trained with feed-



back from the encoder-decoder cross-attention. Fol-
lowing algorithm 1, a segmenter is used to evaluate
(score) input features as they are read into the sys-
tem. Such scores s = Fi,(X) are then used to
determine if YIELD is triggered (i.e., whether to seg-
ment streams). Effective segmentation is crucial
in streaming sequence transduction to avoid sub-
optimal transformation due to premature triggering
or increased latency from delayed output. Since
the ideal segmentation depends on several factors
(the input’s information density, the input and out-
put’s modalities, and the task at hand, etc.,), we
rely on the cross-attention between the encoder and
decoder to guide the segmenter (shown in fig. 2).

Specifically, we follow cross-attention from
Transformers (Vaswani et al., 2017) to use three
projections Wy, Wi, Wy to generate the query
vector yWqo € RTv*? the key vector AW €
R7=xd and the value vector hWy € RT=*? (where
d is the dimensionality of the representation) and
compute cross-attention as:

S(h,y) = (hWi)(yWq)" (1)

Then, as illustrated in fig. 2, we inject seg-
menter’s scores into it the cross attention:

S(h'» y) = S(h, y) + Fseg(w) ()
The updated cross-attention S(h, y) is then used to
transform the value vector Wy and will be used by
the decoder to compute the loss function. Since the
segmenter’s scores are injected in equation (2), it
can be updated with end-to-end back-propagation.
Specifically, suppose the loss objective £ is com-
puted, with the chain rule, we have the gradient for
the predicted score o = Fie () as:

va_i: VL VSi(hy)
Ve ZVSi(hy) Ve
l
VL V¥
= : o (S(hy) +a)
ZSWWW)VQ
_jz VL
i VSi(h,y)

where [ is the number of transformer layer and
Si(h,y) is the cross-attention for i layer. We ob-
serve that the gradient impacting the segmenters is
directly proportional to the gradient on the cross-
attention logits. Consequently, by injecting cross-
attention, we can train segmenters to prioritize po-
sitions that are more significant to the decoder.

1 1

scores S , Decoder .
1 1N

1

1

Si S»  S3  S4 — ——Lip| cross-attention
1

A Coemee # _____ J

gradient flow |

representation h

© 00 e

Segmenter

Causal Encoder

Input feature X

Figure 2: Visualization for the training of the segmenter
through feedback from the encoder-decoder’s cross-
attention.

After training the segmenter, we predict scores
8 = Fyeg () for input features and use the scores to
segment the input sequence. Note that the predicted
scores can be used differently based on the task. In
the special case where the whole sequence is fully
observed (i.e., regular non-streaming tasks), we do
not YIELD output anymore. Instead, we simply
select the top k scoring positions as anchors and
use their representation for the decoder to generate
outputs, as formalized below ([ is a set of indices):

I = SELECTTOP(S) 3)
H = Fo(x) € RT=xd “4)
Z = H|[I| € R** S

The compression rate is then r = T, /k € [1, 00)
assuming k£ < 7T,. In a more general case where
streaming is enabled, the score is commonly accu-
mulated (Inaguma et al., 2020; Ma et al., 2020c) un-
til a certain threshold is reached. We use a threshold
B = 1 throughout experiments. Specifically, we
first scale s to [0, 1] range values av = sigmoid(s)
and accumulate « following algorithm 1 (line 8) to
YIELD new output. The accumulation of scores is a
natural way to ensure a similar level of information
is contained in each buffer. This corresponds to a
larger buffer when the sound signal is sparse (see
appendix A for visualization), which gives better
latency-quality control.

Compression with Anchor Representation Ev-
ery time an anchor is predicted by our trained seg-
menter, the model triggers generation with some
buffer B € R?*? of b features. Subsequently, we
transform such features into a high-dimensional
representation H € R?*¢ with a causal encoder?.

% In practice, we are inspired by BERT (Devlin et al., 2019)
to add a special type embedding e to anchor tokens before
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Figure 3: Visualization for the proposed “selection as
compression” method. Input features are transformed
by the encoder and we only select the encoding at the
anchor position (where YIELD is triggered) as the com-
pressed representation.

The causality of such an encoder ensures that rep-
resentations at later positions contain information
only from earlier positions. Then, we only select
the representation at the anchor position (the last
index of the current buffer) z = H[b] € R to
represent the information of the whole buffer B.
Selected representations are also called anchor rep-
resentations/vectors. For example, in fig. 3, YIELD
is triggered at index 3; therefore we first transform
the features into representations H = Fe,,.(B|Z),
and select H [3] as the anchor vector z to decode
the next output with cached representation Z.

2.3 Model Training

To train models for streaming sequence transduc-
tion, we primarily rely on the conventional objec-
tive — negative log-likelihood (NLL) loss:

Lain(X,Y,0) = —log P(Y|X;0)
Ty
= _ Z log P(y:|Y<t, Z<4;0)

t=1

(6)
Note that the loss is defined over X,Y as both
input and output sequences are fully observed dur-
ing training. In addition, the loss defined in equa-
tion (6) is slightly different than regular NLL in that
the decoder can only use representation observed
so far (Z ;) to generate the t" output. This method
is also referred to as Infinite-Lookback (Arivazha-
gan et al., 2019; Liu et al., 2021, IL) and is used
to mitigate the train-test mismatch as future repre-
sentation cannot be observed during inference. Be-
sides using NLL to update the encoder and decoder,

passing through the encoder

we also follow prior work (Chang and Lee, 2022)
to regularize the segmenter so that the number of
YIELD is the same as the output length 7;. Due to
page limitations, we refer readers to appendix B
for more details.

3 Experiments: Non-Streaming
Compression

We experiment on the non-streaming ASR task
to better demonstrate the effectiveness of our
selection-based compression method, since we do
not need to consider the quality-latency trade-off
as in the streaming scenario. We compare our
method with other common baselines like Con-
volutional Neural Networks (Lecun and Bengio,
1995; Krizhevsky et al., 2012, CNN) and Continu-
ous Integrate and Fire (Dong and Xu, 2020, CIF).

Datasets and Evaluation Metrics We conduct
experiments on the LibriSpeech (Panayotov et al.,
2015) and LibriTTS (Zen et al., 2019) dataset’s
“Clean-360h” section, which contains 360 hours
of speech and their corresponding transcriptions.
To evaluate ASR performance, we compute the
word error rate (Morris et al., 2004, WER) between
reference transcriptions and the generated text.

3.1 Training Setup

Compression with Anchor Representations In
§2, we propose a general approach for stream
transduction with dynamic compression. Now
we instantiate the framework for the ASR task.
We first use WAV2VEC2.0 (Baevski et al., 2020)
to extract features X from the input speech se-
quence. We then use a 4-layer decoder-only Trans-
former® as our causal encoder for compression,
from which we select out anchor representation
z. The segmenter is implemented with a 2-layer
Feed-Forward Network. For the decoder, we use
a 4-layer decoder-only Transformer with an addi-
tional linear layer as the language modeling head.
For details of hyperparameters, we direct readers
to appendix F.

As described in §2, we train the Encoder-
Decoder model with a segmenter learned through
cross-attention feedback. Given the extracted fea-
ture X = (x1,x9,- -+ , 27, ) and a target compres-
sion rate r € [1,00), we select top k = T, /r
scoring positions and use their encodings as an-
chor representations (following equation (5)). We

3 Following the implementation of GPT2 from Hugging-
face https://huggingface.co/gpt2
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then feed the anchor representation Z to the de-
coder to generate text tokens. In practice, most
input speeches from LibriTTS are less than 10 sec-
onds, corresponding to a feature sequence of length
T, = 10%16000/320 = 500 (with a standard sam-
pling rate 16 kHz and WAV2VEC2.0 has a stack of
CNNis that reduce input sequence by 320). There-
fore, we chose some reasonable compression rates
(i.e., 7 = 12,18, 30) to test our compression meth-
ods. We now briefly describe two baselines that we
compared against: CNNs and CIF.

Baseline: CNN A simple compression compo-
nent is CNN. After we obtain speech feature X, we
apply CNNs with pre-defined strides to compress
the feature. The encoder (a vanilla Transformer-
Encoder module without our selection-based com-
pression) further transforms such compressed fea-
tures into encoder representations for the decoder
to generate outputs. To enhance the capacity of
CNNs, we follow Zeghidour et al. (2021); Défos-
sez et al. (2022) to add two CNNs with kernel size
(5,1) and stride size (1, 1) as residual connection.
More details about CNNs and their configurations
are available in fig. 13 (in appendix F).

Baseline: CIF Continuous Integrate and Fire
(Dong and Xu, 2020; Dong et al., 2022; Chang
and Lee, 2022) uses a neural network to predict
scores for each position and accumulates the scores
until a threshold is reached, thereafter triggering
the generation of a new token (called FIRE by the
original paper). For each segment, CIF averages
representations in the segment by directly weighing
them with the predicted scores. For a fair compari-
son with prior work, we adopt the implementation
from Dong et al. (2022) into our codebase.

There are two major differences between our
method and CIF: firstly, STAR segmenter leverages
cross-attention between encoder-decoder to interac-
tively update representations, whereas CIF employs
a weighted average of representations solely from
the encoder side; secondly, STAR pushes infor-
mation to condense in particular anchor at YIELD
positions and performs explicit selections, whereas
CIF’s representations are averaged across each seg-
ment. Broadly, these distinctions mirror the differ-
ences between hard and soft attention mechanisms
(Xu et al., 2015; Luong et al., 2015). We refer read-
ers to appendix B and the original paper (Dong and
Xu, 2020) for more details.
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Figure 4: ASR performance (evaluated by WER)
by different compression methods. From the figure,
STAR outperforms other compressors and the gap en-
larges as the compression rate increases.

12 18 30

3.2 Results of Different Compression Methods

We test the compression performance on three com-
pression rates r € {12,18,30}. As shown in
fig. 4, our compression module obtains the best
performance, achieving almost lossless compres-
sion when r = 12, and consistently outperforms
the other two methods on different compression
rates. By comparing the trend in detail, we find that
CNN s are sub-optimal as the compressor because
they operate on a small local window and change
the underlying feature representation, which might
be hard for the encoder and decoder to adapt to.
Now comparing CIF and STAR. As the compres-
sion rate increases, the gap between STAR and CIF
also increases. When r = 30, STAR outperforms
CIF by about 3 WER points on both LibriSpeech
and LibriTTS. From the results, we have veri-
fied that STAR is more effective in compressing
representation compared to CNN and CIF. Later
in our analysis (see §5), we provide evidence of
STAR achieving more robust compressed represen-
tations. Lastly, to exclude the influence from the
text decoder, we also designed a speech similarity
task in appendix D to show that STAR results in
better-compressed speech representation.

4 Streaming Experiments: Simultaneous
Speech Recognition and Translation

Datasets For our simultaneous S2T experiments,
we use the English-German (EN-DE) portion of
the MuST-C V1 (Di Gangi et al., 2019) dataset for
speech translation (ST). We also include results
for simultaneous ASR using LibriSpeech and Lib-
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Figure 5: Lateny-Quality trade-off for CIF and STAR. The five markers on the line correspond to different WAIT-k

strategies (from left to right, WAIT-k € {1,2,3,4,5}).

riTTS. Note that since our method is based on a
general Encoder-Decoder Transformer, it is not tai-
lored to ASR by leveraging monotonic alignment
or using small character-level vocabulary.

Evaluation Metric To evaluate the quality of
generated output, we use WER for the ASR task
and BLEU (Papineni et al., 2002) for the speech
translation task. For simultaneous S2T, latency
measurement is essential and we resort to the com-
monly used metric, Differentiable Average Lagging
(Arivazhagan et al., 2019, DAL), which was orig-
inally proposed for simultaneous text translation
and later adapted to speech translation in (Ma et al.,
2020a). The smaller the DAL, the better the system
in terms of latency. We refer readers to appendix G
for details on the latency metric.

Experiment Setup Our first step is to train an
speech-to-text (S2T) streaming model without a
segmenter. To make WAV2VEC2.0 causal, we
add a causal mask and train it jointly with the en-
coder and decoder until convergence. Once the
vanilla streaming S2T model is trained, we freeze
the causal WAV2VEC2.0 model as the feature ex-
tractor and start fine-tuning the encoder and the
decoder with the segmenter.

Experimental Results We show the experiment
results in fig. 5 where we plot WER/BLEU v.s.
DAL to demonstrate the quality-latency trade-off
for each system. In our evaluation, we adapt the
WAIT-k policy (Ma et al., 2019) for all systems.
Here WAIT-k denotes the number of speech seg-
ments we encode first before decoding text tokens.
A larger WAIT-k value generally results in higher
latency but better S2T performance. In our work,
we focus on low-latency scenarios where flexible
decision policies like CIF and STAR are most use-
ful; Therefore, we set WAIT-k value to 1 to 5.

We first present the baseline system for simul-

Wait-K Number

*® 1

N\

—8— 5
0 500 1000 1500 2000 2500 3000
Differentiable Average Lagging

o]
o
a

o)
o
X

N
o

Word Error Rate (%)

A

W, vy

N
o

Figure 6: Quality-latency trade-off for fixed-decision
S2T model. Each line corresponds to a different WAIT-%
strategy and each marker corresponds to a stride size of
{120, 200, 280, 360, 440} ms.

taneous ASR with a fixed decision policy in fig. 6.
We use the vanilla streaming S2T model (no com-
pression) and apply a fixed stride size to slide
through the speech and generate text tokens. As
shown in fig. 6, using a large stride like 360ms
(i.e., each chunk corresponds to a speech feature of
length 0.36 x 16000/320 = 18) or 440ms, simul-
taneous ASR achieved < 20 WER. However, the
latency is also extremely high (over 2000 DAL).
For smaller strides, quality of generated output is
suboptimal because not enough information is pro-
vided for the text decoder to generate each new
token. A flexible decision policy could alleviate
such issues and provide better latency-quality trade-
off. From fig. 5, we see that for both CIF and STAR,
their output has better quality when the latency is
low. For instance, on LibriTTS, STAR achieves
about 24 WER with a DAL smaller than 800 while
the best-performing fixed decision policy only ob-
tains such performance with a DAL of about 1200.

Comparing CIF with STAR across three datasets
(LibriSpeech, LibriTTS, and MUST-C), we find
that STAR consistently achieves better perfor-
mance, obtaining a lower WER (or higher BLEU)
score with relatively lower latency across differ-
ent WAIT-k strategies. This demonstrates that
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Figure 7: Memory usage and reduction from our
proposed method (with compression rates r €
{2,5,10,20}). More results and detailed setup are pro-
vided in appendix E.

STAR gives a better flexible policy to YIELD new
tokens, and the compressed representation encodes
more information for target text generation. In ap-
pendix A, we compare qualitative examples and
visualize the difference in the segmentation from
CIF and STAR. Overall, we find the segmentation
from STAR better corresponds to the target texts,
achieving superior simultaneous S2T performance.

5 Analysis
5.1 Memory Efficiency

Since STAR condenses information in each buffer
into anchor representation, it enhances memory ef-
ficiency by caching compressed representation for
the decoder to generate outputs. With a compres-
sion rate r, a batch size b, and input features of aver-
age length T, and hidden dimension d, our system
compresses the encoder representation from bd7,
to bdT,/r. Besides memory consumption, note
that cross-attention computation (equation (1)) is
quadratic w.r.t. encoder representation’s length;
thus, our method reduces the cost of its computa-
tion by a factor of r2. Besides theoretical analy-
sis, we benchmark the actual memory usage and
the percentage of usage reduction achieved by dif-
ferent compression rates. From fig. 7, we show
that with a rate of » = 10 (which achieves nearly
lossless compression), STAR reduces the memory
consumption by more than 30% when transducing
an input feature of length longer than 3,000. For
the full details of our benchmark setup and results,
we refer readers to appendix E.

5.2 Robustness

In this section, we evaluate the robustness of
streaming models (CIF and STAR) by subjecting
them to compression and segmentation conditions
different from their training setup. We find that
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Figure 8: CIF and STAR based model trained with com-
pression rate 12 are evaluated on various compression
rates (ranges from 1 to 50). For a lower compression
rate (< 12), both models preserve their quality well. For
a higher compression rate (> 12), STAR is more robust
and its performance degrades slower than CIF.

STAR is more robust than CIF, retaining better
transduction when operating on context windows
not exposed to during training.

Various Compression Rates at Inference As de-
tailed in §3, we trained CIF- and STAR-based mod-
els with a compression rate of r = 12 (denoted as
CIF-12 and STAR-12) and tested them under vary-
ing compression rates. Both models perform well
at r < 12, as expected since they are trained for
12x compression. However, when r > 12, STAR-
12 shows significantly less degradation compared
to CIF-12, indicating superior retention of informa-
tion. This resilience arises from STAR’s design,
which focuses information into anchor positions,
ensuring each anchor retains substantial informa-
tion even at higher compression rates. In contrast,
CIF’s averaging approach leads to increased inter-
ference between representations.

Different Segmentations In §4, we tested CIF-
and STAR-based models under a shared fixed seg-
mentation policy, where segments were of uniform
size (| T/, |). This setup evaluates robustness to
segmentation changes. Results in fig. 9 show that
while both models experience performance drops,
STAR remains robust, achieving < 30 WER with
a DAL of 800, whereas CIF exceeds 80 WER. This
highlights STAR’s ability to better compress and
retain information within anchor representations,
making it more robust to policy changes.
Moreover, we let the the two models use all pre-
viously computed representations (thus no com-
pression is performed) and name such models CIF-
ALL and STAR-ALL in fig. 9. We find that CIF-
ALL still greatly lags behind the performance of
STAR even when all previous representations are
used. This shows that CIF is not a robust method as
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Figure 9: Latency-quality trade-off for CIF and
STAR using a fixed decision policy instead of their own
predicted segmentation. The five markers on the line
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it only obtains good performance when aggregating
representations using its learned segmentation. On
the contrary, STAR is much more robust; in fact,
from fig. 9, we find that STAR has a very close
performance compared to its non-compressed ver-
sion STAR-ALL, providing another evidence of its
robust compression quality.

6 Related work

End-to-end Streaming Speech-to-text For
streaming/simultaneous  speech-to-text  tasks,
learning speech representation and policies for
READ and YIELD is essential. Previous methods
like RNN-Transducer (Graves, 2012) and Con-
nectionist Temporal Classification (CTC) (Graves
et al., 2006) leverage monotonic alignment for
low error rate transcription. Recent work (Moritz
et al., 2020; Tsunoo et al., 2020) further extends
transformers for streaming ASR using modified
attention and beam search.

For speech translation, Ma et al. (2019) proposed
the Wait-K strategy with a fixed decision policy
that read chunks of equal-length text for decoding
and Ma et al. (2020b) adapted the wait-k strategy
for simultaneous speech translation. Instead of
a fixed decision policy, SimulSpeech (Ren et al.,
2020) trained segmenters with CTC loss. Zeng
et al. (2021) also use CTC for guidance on word
boundary learns to shrink the representation and
proposes the Wait-K-Stride-N strategy that writes
N tokens for each READ action. Dong et al. (2022)
and Chang and Lee (2022) use CIF to learn seg-
mentation for the speech sequences and trigger the
YIELD action whenever CIF FIRE a new representa-
tion. Additionally, Arivazhagan et al. (2019) and
Ma et al. (2020c) support a more adaptive strat-
egy where dynamic READ and YIELD are possible.
However, even for such an adaptive strategy, a good

decision policy still matters (Ma et al., 2020b).

Efficient Methods for Transformers Prior work
studied efficient methods to scale Transformers to
long sequences (Tay et al., 2022), including sparse
patterns (Beltagy et al., 2020), recurrence (Dai
et al., 2019), kernelized attentions (Choroman-
ski et al., 2021), etc. Some of them can be ap-
plied in the streaming settings, such as Streaming
LLMs (Xiao et al., 2023), Compressive Transform-
ers (Rae et al., 2020), etc. Moreover, Tworkowski
et al. (2023); Bertsch et al. (2023) proposed to ap-
ply £NN to the attention to select a subset of past
tokens, akin to the segmentation process in this pa-
per. Similar to the residual connection in our paper,
Nugget (Qin and Van Durme, 2023) trains a scorer
to select a subset of tokens to represent texts. More
recently, Tan et al. (2024) and Qin et al. (2023)
also combine context compression with efficient
fine-tuning methods like LoRA (Hu et al., 2021) to
expand context length for large language models.

Speech Representation Traditionally, acoustic
features are extracted by filter-bank features, mel-
frequency cepstral coefficients, or bottleneck fea-
tures (Muda et al., 2010; Davis and Mermelstein,
1980). More recent work relies on self-supervision
to learn speech representations. For example,
Zeghidour et al. (2021) and Défossez et al. (2022)
learn acoustic representation by reconstructing the
original audio. To learn semantic representation,
masked language modeling, and contrastive learn-
ing objectives are popularized by widely used rep-
resentations from Hubert (Hsu et al., 2021), w2v-
BERT (Chung et al., 2021) and Wav2Vec (Schnei-
der et al., 2019; Baevski et al., 2020). All these
models use CNNs as a building block to downsam-
ple speech signals/representations.

7 Conclusion and Future Work

We introduce STAR, a model designed for dynamic
compression and transduction of streams. STAR
features a segmenter learned via encoder-decoder
cross-attention and employs a selection-based com-
pression approach. Our experiments across mul-
tiple speech-to-text tasks confirm STAR’s supe-
rior compression performance and latency-quality
trade-off relative to established methods such as
Convolutional Neural Networks and Continuous
Integrate-and-Fire. In the future, we hope to ex-
tend this framework to facilitate streaming non-
autoregressive generation.
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A Qualitative Examples of Speech Segmentation from Compressors

Simultaneous ASR with Learned Segmenter

Ref Text: "How it will shine this evening!"
Predicted Text: " How it will shine this evening

[ 5000 10000 5000 30000 35000 40000

15000 20800 2
Segmentation From Our Method

Predicted Text: How would will shine this evening ?"

[ 5000 10000 151 25000 30000 35000 20000,

000 20000
Segmentation From CIF

Figure 10: Qualitative Examples of CIF and STAR based Segmentation for Simul ASR
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Simultaneous ASR with Learned Segmenter

Ref Text: She found the door, but it was locked outside.
Predicted Text: " She found a door, but it was locked outside .

g | b

25000 30000 35000

3 5000 10600 15000 20000
Segmentation From Our Method

Predicted Text: She found a door, but it was locked outside, but it was locked out, said

20000 25000 30000 35000

) 10500 15500
Segmentation From CIF

Simultaneous ASR with Learned Segmenter

Ref Text: Apathy and disgust commonly follow satiated lust.
Predicted Text: "Appy and disgust commonly follows, sa uc ated lust.

[ 10000 200 40000 50000

o0 30500
Segmentation From Our Method

Predicted Text: Ap ath the ind isc uss, commonly followed s as iated lust .

[ 10000 20000 20000, 50000

30000
Segmentation From CIF

Figure 11: Qualitative Examples of CIF and STAR based Segmentation for Simul ASR
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Figure 12: Illustration of Continuous Integrate and Fire.

Continuous Integrate and Fire (Dong and Xu, 2020, CIF) predicts a score for each position and dynamically
aggregates the semantic representation. As shown in fig. 12, CIF first computes a list of scores a
similar to our proposed method. Then, starting from the first position, it accumulates the scores (and
representation) until reaching a pre-defined threshold* 3. Once reaching the threshold, it FIRE the
accumulated representation and starts to accumulate again. As shown in fig. 12, suppose we originally
have representation z = (z1, - - - , z¢) With corresponding scores & = (ay, - - - , ag). Suppose we reach
the threshold at ¢t = 3, i.e., a1 + a2 + a3 >= (3, then we FIRE the representation by taking the weighted
average of score and representation ¢; = o * 21 + a2 * 22 + a3, * z3. Here c; becomes the compressed
representation for the region ¢ = [1, 3]. Note that since a1 + a2 + a3 >= (3, we have residual score
a3p = a1 + ag + ag — B, which is left for future accumulation, and we only use a3, = a3 — asp wWhen
weighting representation z3. More generally, suppose the previous FIRE occurs at position 5 and at current
step ¢ the accumulated score reaches the threshold, the aggregated representation is computed as
i—1
h:ajR*zj+Zat*zt+aiL*zi @)
t=j+1
To enforce the compression rate 7, we follow (Dong et al., 2022; Chang and Lee, 2022) to re-scale the
predicted scores so that the threshold 3 is reached T, times when accumulating the scores:

o = o(sy) 3)
. pnt BTy
Qp = Py Qp = ZtTil a Qi 9

Here o is the sigmoid function and 7 is the normalization term (summation of un-scaled scores) and
n* denotes the number of desired selections, i.e., n* = T;,. We assume the input feature is longer than
the output (13, > T;), so re-scaling scores to YIELD T}, means we employ a dynamic compression rate
r = T, /T, while transducing the streams. Note that 7}, is only observed during training and we cannot
re-scale s in test time. Therefore, we adopt a length penalty loss (Chang and Lee, 2022; Dong et al., 2022)
during training to regularize the segmenter to ensure proper learning of segmentations:

T, 2

Lip(X,Y30) = (n* —0)* = | T, = Y 0 (Feg()) (10)
t=1

* we set 2 = 1 throughout our experiments, following prior work (Dong et al., 2022; Chang and Lee, 2022)
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Finally, our training objective is the combination of negative log-likelihood and length penalty loss:
L(X,Y;0)=LanrL(X,Y;0) +7Lp(X,Y;0) (11)

In practice, the segmenter is only trained for a few thousand steps (so is the length penalty loss) and we
sety = 0.01.

Our method is fundamentally different because of how we treat the scorer and how we perform
compression. In CIF, the compression is performed as an aggregation (weighted average) within each
segmented block (decided by the scores and threshold). In STAR, we directly take out representations
and we force the semantic encoder to condense information to those important positions. In other words,
we did not explicitly perform aggregation like CIF but expect the semantic encoder to learn such
aggregation innately through training.

Another key difference is how the scorer is learned. In CIF, the weighted average with scores and
representation allows a gradient to flow through the scorer. For STAR, we inject the scores into cross-
attention to update the scorer. The major advantage of our approach is that the importance of position is
judged by the attention from the decoder to the encoder representation, which helps segment the
speech representation in the way that the text decoder perceives it.

For more details, we direct readers to the prior work (Dong and Xu, 2020; Dong et al., 2022; Chang
and Lee, 2022).

‘ Noise Ratio
‘ 0% 5%  10% 15% 20% 25% 30% 35% 40% 45% 50%
Vanilla S2T ‘ 15,0 187 236 296 340 383 437 468 518 561 61.0

S2T+CNN | 242 267 319 371 408 455 499 536 589 61.6 653
S2T + CIF 16.8 204 260 307 360 40.1 449 501 539 589 622
S2T + STAR | 159 19.7 251 298 347 38,6 418 46.7 510 55.6 60.1

Model

Table 1: Word Error Rate of models given the noise injection ratio from 0% to 50%. Best numbers are bolded and
better results are highlighted by the while bad results are highlighted in . Compared to
other compression methods, our proposed STAR is the most robust model across all noise injection ratios. When the
noise ratio reaches beyond 30%, STAR even outperforms the S2T model without compression. All compression
models are trained with the compression rate 12.

C Noise Injection

In this section, we test the robustness of compression methods when noise is injected into the original clean
speech from LibriTTS. Instead of using synthetic signals such as Gaussian noise, we follow Zeghidour
et al. (2021) to use natural noise (e.g., noise from the air conditioner, shutting door, etc.,) from Freesound’
(Fonseca et al., 2017). We vary the ratio of noise injection from 5% to 30%, as shown in table 1. Given
a ratio, we first calculate the duration of noise L (e.g., if the ratio is 0.1 and speech is 10 seconds, then
we inject L. = 1 second of noise) and randomly select a range of length L from the clean speech to
inject noise. As shown in table 1, as the noise ratio increases, STAR has the smallest degradation and
consistently outperforms CIF and CNNs. After reaching noise ratio > 30%, STAR even outperforms the
vanilla S2T model without compression. Such findings show that STAR has a more robust performance
with the help of anchor representation, making it suffer less from noise injection and obtain better ASR
performance.

D Similarity Test with Compressed Representation

In §3.2, we show STAR’s superior performance on ASR, demonstrating the effectiveness of condensing
information to a few positions for the text decoder. In this section, we evaluate speech representation’s
similarity to further probe the quality of the compressed representation, without being influenced

3> We download the audio file for different noise from https://github.com/microsoft/MS-SNSD
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by the decoder. More specifically, we use the test set of LibriTTS and for each English transcription, we
compute its cosine similarity score against all other transcriptions, using a pre-trained sentence-transformer
encoder® (it computes a sentence-level representation from BERT and perform mean pooling to obtain a
uni-vector representation). We regard the ranking from sentence-Transformer’s similarity as ground truth
(as the transcriptions are non-complex English sentences); then we use our speech semantic encoders to
compute cosine similarity for all pairs of speech representations and verify if the ranking is similar to the
ground truth.

For the baseline vanilla S2T model, we perform mean pooling (MP) on its encoder representation
c to obtain a uni-vector representation for each speech input and compute cosine similarities. For the
other three models with compression, we first obtain the compressed representation h and we try two
approaches to compute similarity. The first approach is the same as the baseline, where we apply MP on
the compressed representation to obtain uni-vector representations. The second approach is inspired by
the MaxSim (MS) algorithm used in ColBERT (Khattab and Zaharia, 2020), which computes the average
of maximum similarity across the compressed representations.

Then we measure the quality of our trained speech semantic encoders with metrics widely used in
retrieval and ranking—Normalized Discounted Cumulative Gain (nDCG) and Mean Reciprocal Rank
(MRR). From the results shown in table 2, STAR still obtains the best-performing representation, with
MRR@10 = 0.087,nDCG@10 = 0.453. Note that the performance is not very high as we did not train
the model specifically for the sentence similarity task. Rather, we used the similarity task as an intrinsic
measurement for the quality of condensed representations to exclude the influence of the text decoder.

Comparing the numbers in table 2, STAR consistently obtains better speech representation (for both
MP and MS algorithms) for the similarity task. Interestingly we find that STAR-30’s representation works
better in mean pooling compared to STAR-12, suggesting that more condensed information works better
for mean pooling. However, the MaxSim algorithm better leverages the multi-vector representation, which
enables STAR-12 to obtain the best ranking performance.

NDCG @10 MRR @ 10
Model MP MS MP MS
Vanilla S2T 0.407 N/A 0.053 N/A

Conv-12 0.399 041 0.035 0.053
CIF-12 0418 0.444 0.056 0.078
STAR-12 0429 0453 0.064 0.087

STAR-18 0429 0.446 0.055 0.078
STAR-30 0.437 0.441 0.078 0.08

Table 2: Performance of speech rankings by different representation. STAR achieves the best performance as
evaluated by NDCG@10 and MRR@10. The best performance is achieved through the MaxSim algorithm;
interestingly, STAR-30 achieves the best performance with the Mean Pooling algorithm.

E Memory Usage Benchmark

In this section, we describe our setup to benchmark memory usage, which compares our proposed
approach with a vanilla encoder-decoder model that does not support compression. We use Google Colab
with a runtime that uses a T4 (16G memory) GPU. Then for each experiment, we run it 5 times and
report the average in table 3. Both encoder and decoders follow our setup in appendix F, except that
the encoder’s maximum position is increased to 8,196 to support the benchmark experiment with long
sequences. Note that the sequence length reported is the length of the input feature (which we compress
by r € {2,5,10,20}). We set the output sequence’s length to be % of the input, similar to the ratio in our
simultaneous speech-to-text experiments.

®In practice, we use public checkpoint from: https://huggingface.co/sentence-transformers/all-MinilM-L6-v2
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With Compression

Stage Batch Size Seq Len No Compression

r=2 r=5 r=10 r=20

Inference 1 1000 1196 1076 1004 987 970
1 2000 2975 2509 2237 2138 2101

1 3000 5744 4736 4101 3894 3739

1 4000 9540 7711 6637 6269 6102

1 5000 14314 11493 9805 9237 8951
1 6000 OOM OOM 13587 12786 12434

Training 128 100 4964 4730 4209 4160 4124
128 200 10687 9948 9465 9302 9223

Table 3: Memory usage (MB) of the encoder-decoder model with and without our proposed compression method.
OOM: out of memory.

F Hyper-parameters

We provide hyper-parameters used for model configuration and training in this section. For different
compression rates, the CNNs’ stride configuration is shown in fig. 13. For example, a stride of (4,3) means
we stack two CNN blocks, one with stride 4 and another with stride 3, achieving a compression rate of 12.

In this section, we provide the hyper-parameters and training configurations for all our experiments. We
use a hidden dimension of 512 across all models. The tokenizer is developed using Byte Pair Encoding
(Sennrich et al., 2016, BPE), with a vocabulary size of 10,000. The segmenter is parameterized by
a 2-layer FFN with ReLU (Agarap, 2018) activation in between; the first FFN has input and output
dimensions both set to 512 and the second FFN has input dimension 512 with output dimension 1. Our
experiments are conducted using the Adam optimizer, configured with 5; = 0.9 and 83 = 0.999. These
experiments are conducted with a data-parallel setting with 4 A100 GPUs.

For the audio processing, we set the sampling rate to 16,000. In the encoder configuration, we use a
maximum of 1,024 positions for Automatic Speech Recognition (ASR) and 2,048 for Speech Translation
(ST), with each encoder consisting of 4 layers and 8 attention heads. The decoder mirrors the encoder in
its architecture, with 4 layers and 8 attention heads, but differs in its maximum positions, set at 512, and
its vocabulary size, also at 10,000.

For non-streaming ASR in our pre-training setup, both the encoder and decoder are trained to converge
with a learning rate of le-4, a batch size of 32, and a warmup of 10,000 steps. Subsequently, the
compression module (CNN/CIF/STAR) is fine-tuned using a learning rate of 5e-5 alongside the pre-trained
encoder and decoder. The segmenter is trained for 6,000 steps with feedback from the encoder-decoder’s
cross-attention, as discussed in §2, after which it is frozen. Post this, we further fine-tune the encoder and
decoder until convergence.

For streaming speech-to-text tasks, the feature extractor (WAV2VEC2.0), encoder, and decoder are
jointly trained with a learning rate of Se-5, a batch size of 8, and gradient accumulation every 4 steps.
A causal mask is added to WAV2VEC2.0during this process. Following convergence, the compression
module undergoes fine-tuning using a learning rate of 5e-5 and a batch size of 16. Similar to the
non-streaming setup, the segmenter is updated only in the first 6,000 steps.

A
Compression | g¢ 240
Rate
Conv (S=1,K=1) 12 4,3)
\ x N
Conv (S=1, K=5) 18 (6,3)
Conv (S=stride, K=25+1) 30 ¢.3.2)

Figure 13: Left: Blocks of CNNs used to compress representation. Right: Stride sizes we used in experiments for
different compression rates.
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G Differentiable Average Lagging

Consider a raw speech with length T}, which is segmented into | X | chunks. We define the length of i*"
segment (chunk) as | X;| (so that | X| = Z'fi‘l | X)), and we define d; = >, _, | X¢| as the total time that
has elapsed until i** speech segment X is processed. With the aforementioned notation, DAL is defined
to be:

1—1
Y

T,
1 Yy

DAL = — E d; — (12)
T i=1

where T, is the length of text tokens and 1/ is the minimum delay after each operation, computed as

1/y = Z‘]i'l | X;|/T, (i.e., the averaged elapsed time for each token is used as the minimum delay).
Lastly, d is defined as:
d; =0
& =" ! (13)
max(d;,d;,_, +1/v) i>0

The smaller the DAL, the better the system in terms of latency. For more discussions for DAL and
latency-quality trade-off in SimulST, we direct readers to prior work (Ma et al., 2020a; Arivazhagan et al.,
2019) for more details.

18



NUTSHELL: A Dataset for Abstract Generation from Scientific Talks

Maike Ziifle!, Sara Papi?, Beatrice Savoldi?, Marco Gaido?,
Luisa Bentivogli?, Jan Niehues!

IKarlsruhe Institute of Technology, *Fondazione Bruno Kessler

{maike.zuefle, jan.niehues}@kit.edu, {spapi,bsavoldi,mgaido,bentivo}@fbk.eu

Abstract

Scientific communication is receiving increas-
ing attention in natural language processing, es-
pecially to help researches access, summarize,
and generate content. One emerging applica-
tion in this area is Speech-to-Abstract Genera-
tion (SAG), which aims to automatically gen-
erate abstracts from recorded scientific presen-
tations. SAG enables researchers to efficiently
engage with conference talks, but progress has
been limited by a lack of large-scale datasets.
To address this gap, we introduce NUTSHELL,
a novel multimodal dataset of * ACL conference
talks paired with their corresponding abstracts.
We establish strong baselines for SAG and eval-
uate the quality of generated abstracts using
both automatic metrics and human judgments.
Our results highlight the challenges of SAG and
demonstrate the benefits of training on NUT-
SHELL. By releasing NUTSHELL under an
open license (CC-BY 4.0), we aim to advance
research in SAG and foster the development of
improved models and evaluation methods.'

1 Introduction

Abstracts are essential in scientific communication,
allowing researchers to quickly grasp the key con-
tributions of a paper. With the ever-growing num-
ber of publications, abstracts help researchers stay
informed without reading full papers. Beyond their
practical utility, abstracts also pose a significant
challenge for natural language generation models:
abstracts are a specialized form of summarization
that not only condenses content but also promotes
the work, often using domain-specific terminology
and structured language.

Scientific summarization has been widely stud-
ied in natural language processing, including sum-
marizing entire articles (Collins et al., 2017; Mao
et al., 2022; Liu et al., 2024), particularly in the

lhttps://huggingface.co/datasets/maikezu/
nutshell
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Figure 1: NUTSHELL, a dataset for Speech-to-Abstract
Generation (SAG) from scientific talks.

medical domain (Kedzie et al., 2018; Cohan et al.,
2018; Gupta et al., 2021), generating abstracts
from citations (Yasunaga et al., 2019; Zanzotto
et al., 2020), summarizing specific paper sections
(Takeshita et al., 2024), and leveraging knowledge
graphs for abstract generation (Koncel-Kedziorski
et al., 2019).

With the growing availability of recorded confer-
ence talks, a new challenge emerges: generating ab-
stracts from spoken content or Speech-to-Abstract
Generation (SAG). The abstracts offer researchers
a quick way to assess relevant talks without watch-
ing entire recordings. Additionally, as conferences
include more virtual content, automatically gener-
ated summaries enable efficient engagement with
recorded talks (Murray et al., 2010).

While speech summarization has been explored
in domains like news (Matsuura et al., 2024),
YouTube videos (Sanabria et al., 2018), and meet-
ing minutes (McCowan et al., 2005; Janin et al.,
2003), large-scale datasets for scientific talk ab-
stract generation are lacking. Existing work (Lev
et al., 2019) aligns transcripts with the correspond-
ing papers and extracts overlapping textual seg-
ments as summaries. However, these segments are
drawn from the paper rather than the talk itself,
failing to capture the distinct contributions, fram-
ing, and nuances conveyed in spoken presentations.
Other studies have focused on summarizing TED

Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025), pages 19-32
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Talks (Koto et al., 2014; Kano et al., 2021; Vico
and Niehues, 2022; Shon et al., 2023), which tar-
get a broad audience and prioritize inspiration and
engagement over technical content.

To bridge this gap, we introduce NUTSHELL
a new multimodal dataset for abstract generation
from scientific talks. Built from recorded presen-
tations of *ACL conferences, the dataset pairs ab-
stracts with their corresponding spoken content and
video, offering a valuable resource for future re-
search. To validate the quality of the abstracts as
concise and well-structured summaries of the talks
—i.e., capturing the essence of the presentations in
a nutshell — we performed a human assessment,
which confirmed their effectiveness and suitability
for the SAG task.

To establish baselines for SAG using our dataset,
we evaluate three model types: (1) a cascaded
model combining automatic speech recognition
(ASR) with text-based summarization, (2) a state-
of-the-art speech-language model (SpeechLLM)
without fine-tuning, and (3) a SpeechLLM fine-
tuned on our dataset.

Our contributions are three-fold:

1. We introduce NUTSHELL, a novel dataset for
abstract generation from scientific talks com-
prising 1,172 hours, which is released under
CC-BY 4.0 License on HuggingFace;'

. We provide baselines with different model
types for comparison in future research, eval-
uated using both standard automatic metrics
(e.g., ROUGE) and the emerging LLL.M-as-a-
judge approach (Shen et al., 2023);

. We conduct human evaluations to assess the
quality of the abstracts and validate the suit-
ability of automatic metrics for the SAG task.

2 The NUTSHELL Dataset

In this section, we introduce the new NUTSHELL
resource. We chose to build our corpus upon the
the ACL Anthology? since it provides a rich collec-
tion of multimodal resources (talks and abstracts)
and open-access licensing. Starting from 2017, a
significant number of papers published in the main
*ACL conferences (ACL, EMNLP, and NAACL)
include a video of the presentation, all released un-
der the Creative Commons Attribution 4.0 license.
This makes *ACL an ideal resource for building a
multimodal dataset for the SAG task.

Zhttps://aclanthology.org
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In the following, we present a feasibility assess-
ment of SAG through human evaluation (§2.1).
Then, we describe the collection process performed
to create NUTSHELL, together with the final
dataset statistics (§2.2).

2.1 Are paper abstracts “good” talk
summaries?

Before creating the corpus, we establish the valid-
ity of our data by investigating whether abstracts
represent a good summary of the associated talk.
To this aim, we conduct a qualitative check on
a data sample of 30 talk-abstract pairs from the
ACL Anthology. We involve a total of 5 annota-
tors, who are all domain experts and thus familiar
with scientific material.®> To verify Inter-Annotator
Agreement (IAA), a double annotation by different
experts was carried out on 15 pairs.

Since we are interested in understanding whether
paper abstracts are informative enough to represent
a good summary of the talk, we asked evaluators
to annotate: (1) Whether the information in the ab-
stract is all uttered by the presenter in the talk; (2)
The span of information present in the abstract that
was not contained in the talk, if any; (3) Whether
the abstract summarizes all important informa-
tion presented in the talk. The human evaluation
procedure, including the annotation template, is
described in App. A.

The results indicate that 70.0% of the abstracts
are considered good summaries by annotators as
they contain important information about the talk.
However, 63.3% of the abstracts also contain infor-
mation not explicitly present in the talk itself. To
better understand this, we conducted a qualitative
analysis of the annotated spans corresponding to
this missing information. We found that these spans
typically involved dataset names, model names,
shared task references (e.g., evaluation campaigns),
or URLs (e.g., link to the resource or model being
released). Notably, these elements are often dis-
played on slides but not explicitly verbalized by
presenters.*

Despite this issue, the evaluation of automatic
models against the same ground truth abstract can
be considered fair, as models are equally penalized
by this category of missing information. Moreover,

3Annotators include the paper authors and their col-
leagues.

“This issue could be overcome by exploiting the videos,
as this information is typically shown in the slides. While out

of scope for SAG, NUTSHELL includes the videos, making it
a useful resource also for more complex multimodal tasks.



conferences year #examples total audio average audio  average words

h min per abstract

train ACL,NAACL, EMNLP  2017-2021 4000 808.3 121 +£11.2 142.8 + 36.1
dev.  ACL 2022 885 146.4 99+3.6 141.9 £ 36.5
test ~EMNLP, NAACL 2022 1431 217.1 9.1 +£43 147.6 + 374
total ACL, NAACL, EMNLP 2017-2022 6316 1171.8 11.1 +99 143.7 £ 36.5

Table 1: Dataset statistics for NUTSHELL. The number of words is obtained by splitting the abstract at whitespaces.

it is worth noting that establishing a single ground
truth for summarization tasks is still an open chal-
lenge (Zhang et al., 2024), given the inherent vari-
ability in human-produced summaries.

Both, questions (1) and (3) have an inter-
annotator agreement of £ = 0.466, indicating mod-
erate agreement (Landis and Koch, 1977), which
can be regarded as acceptable given the subjective
nature of evaluating summaries. While criterion
(3) naturally involves subjective judgments about
information importance, the lower agreement on
criterion (1) can also be attributed to borderline
cases, where small phrasing differences were some-
times overlooked by individual annotators. Such
subtleties led to occasional discrepancies in anno-
tator decisions, but were manually reviewed.

In summary, the manual evaluation confirmed
both the feasibility of the SAG tasks and, despite
the noted challenges, the overall reliability and use-
fulness of our resource.

2.2 Collection and Dataset Statistics

We collected talks from 16 ACL Anthology events:
6 ACL, 6 EMNLP, and 4 NAACL, including work-
shops, shared tasks and industry tracks. For each
paper (both long and short format), we extracted
the video and the associated abstract already avail-
able on the paper website. We exclude papers with
invalid URLs, videos without audio, or abstracts
missing from the paper page. Additional details on
the data collection can be found in App. B.

Lastly, we split the dataset into training (years
2017 to 2021), dev (ACL 2022), and test (EMNLP/-
NAACL 2022). These splits reflect a realistic eval-
uation setup, where models are trained on past data
and tested on the most recent, unseen examples. In
total, the corpus contains 1,172 hours of audio con-
tent corresponding to 6,316 different presentations.
Full statistics are reported in Table 1.

3 Analysis

To demonstrate the quality and usability of our cor-
pus, as well as provide baselines for future works,
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we develop and evaluate four different models us-
ing both automatic metrics and human evaluation.

3.1 Experimental Setting

3.1.1 Models

To establish baselines for the SAG task, we analyze
the performance of four models described as fol-
lows. Prompts, model, generation, and additional
training details are provided in App. C.

Whisper + LLama3.1-8B-Instruct. A cascaded
solution, where the audio is first transcribed
with openai/whisper-large-v3 (Radford et al.,
2022), and then meta-llama/Llama-3.1-8B-
-Instruct (Dubey et al., 2024) is prompted to gen-
erate the abstract from the generated transcript.

Qwen2-Audio-7B-Instruct. The Qwen/Qwen2-
-Audio-7B-Instruct (Chu et al., 2024) model, an
existing SpeechLLM?, which is used out of the box
without any fine-tuning.

End2End Zero-Shot. A SpeechLL.M composed
of HuBERT (Hsu et al., 2021) as speech encoder,
meta-llama/Llama-3.1-8B-Instruct as LLM,
and a QFormer (Li et al., 2023) as adapter. The
SpeechLMM is built to handle long audio inputs
(App. C) and obtained by training only the adapter
in two steps: (a) contrastive pretraining (Ziifle and
Niehues, 2024) to align the LLM representations
for the speech and text modalities using MuST-
C (Di Gangi et al., 2019) and Gigaspeech (Chen
et al., 2021), and (b) fine-tuning on instruction-
following tasks, including ASR, speech translation,
and spoken question answering using MuST-C and
Spoken-SQuAD (Lee et al., 2018). Therefore, the
model is not trained or fine-tuned on NUTSHELL
and operates in zero-shot for the SAG task.

End2End Finetuned. A SpeechLLM trained us-
ing the same contrastive pretraining procedure as
End2End Zero-Shot but subsequently fine-tuned on

By SpeechLLM, we refer to the combination of a speech

encoder and an LLM through a learned modality adapter
(Gaido et al., 2024).



Model Rougel. BERTScore

Llama3.1-7B-Instruct Human (on subset)

F1 1 F11 Score with Expl. 1 Plain Score T Avg. Rank | Avg. Rank |
Whisper + LLama3.1-8B-Instruct ~ 22.14 86.62 77.84 82.47 1.24 1.53
Qwen2-Audio-7B-Instruct 15.02 84.65 45.57 36.81 343 2.87
End2End Finetuned 23.89 86.66 68.78 73.53 1.98 1.6
End2End Zero-Shot 16.08 84.13 45.97 39.90 3.35 N/A

Table 2: We report results on the NUTSHELL test set for four models: a cascaded approach (Whisper+Llama-3.1-8B-
Instruct), an existing SpeechLLM (Qwen2-Audio), and an end-to-end HUBERT+QFormer+L1lama3.1-8B-Instruct
model, either finetuned on our data (End2End Finetuned ) or trained on audio instruction-following data (End2End
Zero-Shot). Avg. Rank, assigned by an LLM judge or human annotators, reflects the mean ranking per model.

our NUTSHELL dataset. This not only evaluates
the direct impact of task-specific datasets on the
SAG performance, but it also ensures the feasibility
of the task and the suitability of the collected data.

3.1.2 Evaluation

Metrics. We use standard (text) summarization
metrics: ROUGE (Lin, 2004) — a text similar-
ity metric that has been widely adopted for LM
evaluation (Grusky, 2023) that focuses on n-gram
overlap between the hypothesis and reference —,
and BERTScore (Zhang et al., 2020) — a neural-
based metric that measures the pairwise similarity
of contextualized token embeddings between the
summary and its reference. Also, we rely on LLM-
as-a-judge (Shen et al., 2023; Zheng et al., 2024)
where the LLM® is prompted to assign a score to
each output, using the reference abstract as context
(Score with Expl.). The score is based on four cri-
teria: (1) relevance, (2) coherence, (3) conciseness,
and (4) factual accuracy.” We also report results
where the LLM judge provides a single score with-
out explanations (Plain Score), as well as results
where it ranks the given abstracts instead of scoring
them individually (Avg. Rank).

All these metrics have known limitations and no
metric is conclusively best for evaluating the SAG
task: both ROUGE and BERTScore are known to
fail to fully capture the extent to which two sum-
maries share information (Deutsch and Roth, 2021)
while LLM-as-a-judge is sensitive to prompt com-
plexity and the length of input (Thakur et al., 2024)
and struggle to distinguish similar candidates (Shen
et al., 2023). For this reason, we complement the
automatic scores with human evaluation.

®We use Llama-3.1-8B-Instruct (Dubey et al., 2024)
as the judge using the prompts reported in Fig. 2 in App. D.2.

(1) Does the predicted abstract capture the main points
of the gold abstract?, (2) Is the predicted abstract logically or-
ganized and easy to follow?, (3) Is the predicted abstract free
from unnecessary details?, (4) Are the claims in the predicted
abstract consistent with the gold abstract?
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Human Evaluation. For the human evaluation,
nine annotators — all experts in the field — were pro-
vided with the generated abstracts and the ground
truth abstract. We use the same randomly sampled
30 test set examples as in Section 2.1 and vali-
date their representativeness, which is discussed in
App. E. Each sample is evaluated by three anno-
tators. They follow the same criteria as the LLM
evaluation but rank models instead of assigning
scores. Detailed instructions are in App. E. As
the End2End Zero-Shot model performance was
comparable to that of Qwen2-Audio — also being a
zero-shot model — and given that Qwen2-Audio is
an established SpeechLLM with a distinct architec-
ture, we exclude the End2End Zero-Shot from this
analysis.

3.2 Results

Automatic Evaluation. Table 2 presents the per-
formance of our models on the NUTSHELL test
set. Among them, the cascaded model (Whis-
per + Llama3.1-8B-Instruct) achieves the highest
scores across all LLM-based evaluation metrics.
Instead, looking at both n-gram- and neural-based
metrics, the End2End Finetuned model achieves
the highest Rougel. and BERTScore. In addition,
Qwen2-Audio and our End2End Zero-Shot models
demonstrate similar performance across all auto-
matic metrics, showing a noticeable gap compared
to the other two models. These results highlight
the importance of our dataset for building high-
performing end-to-end models, as the substantial
gap between the cascaded and End2End Zero-Shot
models is effectively bridged through fine-tuning
on the NUTSHELL dataset.

For a more granular analysis, Table 3 in App. D.2
provides results for the LLM-based metrics. Given
that all models except Qwen2-Audio rely on
Llama3.1-8B-Instruct, one might question whether
the Llama-based judge could introduce bias in favor
of these models. To address this, we perform ad-



ditional evaluations using Qwen/Qwen2-7B (Yang
et al., 2024) as the judge (Table 4 in App. D.2),
which confirm the same ranking, eliminating any
concerns about evaluator bias.

Human Evaluation. As shown in Table 2, the
human evaluation results closely align with the
LLM-based judgments: the cascaded model ranks
first, followed closely by the finetuned model while
Qwen2-Audio ranks last. Notably, the gap between
the first two models is small, whereas the difference
between the second and third models is substan-
tial — consistent with the LLM-based evaluation.
This suggests that automatic metrics reliably cap-
ture both subtle and large performance differences
between models. IAA, measured using pairwise
rankings (Bojar et al., 2016) reached x = 0.53,
which is acceptable given the close ranking of the
top two systems.

4 Conclusion

In this work, we introduce NUTSHELL, a novel
dataset for SAG from recorded * ACL conference
talks. By releasing this dataset under an open li-
cense, we hope to foster further advancements in
SAG research and encourage the development of
more effective models and evaluation techniques.
Future work could explore the integration of the
video content provided in the corpus, offering an
additional modality for enriching the generation
process and further improving abstract quality.

5 Limitations

While the current study provides a new resource
and offers valuable insights about the SAG task,
two main limitations should be noted:

* The analysis focused on the speech-to-text ab-
stract generation task. However, our dataset
also provides access to the corresponding
videos, which were not utilized here. Future
research could explore the integration of video
content as an additional modality to enhance
the generation process and improve the quality
of the abstracts.

e The human evaluation was limited in scope,
involving only a small set of models and sam-
ples. Future work could expand this evalu-
ation to include more models and a larger
number of samples to better assess the per-
formance of different metrics and determine
which is most effective in various contexts.
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Potential Risks Generating automatic sum-
maries for scientific talks carries the risk that auto-
matic summaries may misrepresent key findings or
lack scientific accuracy. However, we hope that by
providing more high-quality training data, summa-
rization models can be improved and lead to more
reliable and accurate summaries.
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A Human Evaluation: Are abstracts good
summaries of the talk?

We aim to assess whether paper abstracts can serve
as effective abstracts for *ACL talks. To this end,
we conducted a human evaluation by randomly
sampling 30 examples from our dataset. The an-
notation team consisted of five individuals (four
women and one man), including the paper authors
and their colleagues. All annotators were already
familiar with the NLP domain, scientific presen-
tation and writing, and the task itself. They are
experts in Natural Language Processing, holding
at least a master’s degree in NLP or a related field,
with some holding PhDs or professorial positions.
Their ages ranged from 25 to 55.

The annotation guidelines were initially devel-
oped by the authors and subsequently refined in
collaboration with the annotators to ensure a shared
and well-defined set of evaluation criteria. Detailed
instructions for the human annotators are provided
in Fig. 3. The annotation template also included
a comment section for uncertain cases, though no
comments were submitted.

B Dataset Details

We include all *ACL conferences from 2017 to
2022 in NUTSHELL, covering main conferences,
Findings, industry tracks, and workshops. As not
all conferences are held every year, the number of
talks varies accordingly. Table 5 provides a detailed
overview.

C Baseline Details

Generation Settings We evaluate four different
models to establish baselines for abstract genera-
tion from spoken ACL talks. The evaluations were
conducted on a single NVIDIA A100-SXM4-40GB
GPU.

For all models, we use the default
generation parameters and apply greedy
search, following the usage instructions for
meta-1lama/Llama-3.1-8B-Instruct® (Dubey
et al., 2024), Qwen/Qwen2-Audio-7B-Instruct’
(Chu et al., 2024) and the contrastively pretrained
models from Ziifle and Niehues (2024)!°.

8https://huggingface.co/meta—llama/Llama—3.
1-8B-Instruct

9https://github.com/QwenLM/QwenZ—Audio

Ohttps://github.com/MaikeZuefle/
contr-pretraining
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Cascaded Model For the cascaded model, we
segment the audio into 30-second chunks and tran-
scribe them using openai/whisper-large-v3
(Radford et al., 2022). The transcribed
chunks are then concatenated and processed
by meta-llama/Llama-3.1-8B-Instruct
(Dubey et al., 2024) to generate the abstract.
Inference took 5:40 hours on a single NVIDIA
A100-SXM4-40GB GPU, including transcribing
and summarizing.

Since the model’s outputs often included a title
and category for the talk, we explicitly prompt it
to generate only the abstract. This adjustment was
not necessary for the other models.

We use the following prompt:

System Prompt:

A chat between a curious user and an

artificial intelligence assistant. The
assistant gives helpful, detailed, and
polite answers to the user's questions .\
n

Prompt:

Summarize the following talk to create
an abstract for an ACL Paper, don't
include the title or other information ,
only the abstract:\n<transcription >\n

Qwen2-Audio For Qwen/Qwen2-Audio-7B--
Instruct (Chu et al., 2024), inference took 50
minutes on a single NVIDIA A100-SXM4-40GB
GPU. We use the system prompt as provided in the
code documentation®.
System Prompt:

You are a helpful assistant.

Prompt:

Summarize this talk to create an
abstract for an ACL Paper:\n

Contrastively Pretained Models For the con-
trastively pretrained model, we follow Ziifle and
Niehues (2024) and adopt their settings', includ-
ing training configurations, hyperparameters, and
system prompts. The SpeechLLLM consists of Hu-
BERT (Hsu et al., 2021) as speech encoder, meta-
-1lama/Llama-3.1-8B-Instruct as LLM, and a
QFormer (Li et al., 2023) as adapter. We choose
HuBERT as an encoder in contrast to the bigger and
more powerful openai/whisper-large-v3 (Rad-
ford et al., 2022), as it needs less memory and is
therefore more suitable for the summarization task
of longer audio. However, due to the extended dura-
tion of the audio inputs, we additionally introduce
two modifications:
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Model

Llama-3.1-8B-Instruct

Relevance T Coherence 1 Conciseness T Factual Accuracy T Avg. Score T Plain Score T Avg. Rank |

Whisper + LLama31-Instruct

Qwen2-Audio

End2End Finetuned
End2End Zero-Shot

86.00
52.52
78.24
48.02

61.13
4591
50.25
37.69

87.13 77.84 82.47 1.24
46.63 45.57 36.81 3.43
80.22 68.78 73.53 1.98
57.89 45.97 39.90 3.35

Table 3: Results using Llama-3.1-8B-Instruct as a judge.

We report results on the NUTSHELL test

set for four models: a cascaded approach (openai/whisper-large-v3 + meta/Llama-3.1-8B-Instruct),
Qwen/Qwen2-Audio-7B-Instruct, and an end-to-end HUBERT+QFormer+Llama3.1-7B-Instruct model, either
finetuned on our data (End2End Finetuned ) or trained on audio instruction-following data (End2End Zero-Shot).

Avg. Rank reflects the mean ranking per model.

Model

Qwen2-7blnstruct

Relevance T Coherence T Conciseness T Factual Accuracy T Avg. Score T Plain Score T Avg. Rank |

Whisper + LLama31-Instruct

Qwen2-Audio

End2End Finetuned
End2End Zero-Shot

83.54
75.35
81.78
68.02

72.08
75.91
75.04
69.34

86.07 80.33 74.60 1.66
59.28 66.88 49.55 3.18
81.16 78.28 70.83 2.12
66.65 65.49 53.61 3.04

Table 4: Results using Qwen2-7blnstruct as a judge.
for four models:

Avg. Rank reflects the mean ranking per model.

We report results on the NUTSHELL test set

a cascaded approach (openai/whisper-large-v3 + meta/Llama-3.1-8B-Instruct),
Qwen/Qwen2-Audio-7B-Instruct, and an end-to-end HUBERT+QFormer+L1lama3.1-7B-Instruct model, either
finetuned on our data (End2End Finetuned ) or trained on audio instruction-following data (End2End Zero-Shot).

Split ‘ Conference ‘ Year ‘ Talks

2017 | 140
2018 | 185
ACL 2019 | 244
2021 | 849
Train 2017 | 93
EMNLP 2018 | 221
2021 | 1480
2018 | 120
NAACL 2019 | 114
2021 | 554
Dev ACL 2022 | 885
Test EMNLP 2022 | 465
NAACL 2022 | 966

Table 5: Number of talks per conferences in the NUT-

SHELL dataset.

1. We segment the audio into one-minute chunks,
encode each chunk using the encoder and then
concatenate the encoded representations be-
fore passing them through the adapter and
LLM backbone.

2. We use a batch size of 1 for fine-tuning with
NUTSHELL.

Despite these adjustments, we encountered mem-
ory limitations for audio files exceeding 35 minutes.
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In such cases, we truncate the audio to 35 minutes,
which affects one example in the test set.

The training of the models was conducted on
four NVIDIA A100-SXM4-40GB GPUs. The con-
trastive pretraining took 33 hours on four GPUS.
Finetuning on ASR, speech translation, and spoken
question answering data took 30 hours, finetuning
on the NUTSHELL dataset took 2:10 hours. Gener-
ating the outputs of the test set (on a single NVIDIA
A100-SXM4-40GB GPU) took 2:35 hours.
System Prompt:

A chat between a curious user and an
artificial intelligence assistant. The
assistant gives helpful, detailed, and
polite answers to the user's questions .\
n

Prompt:

Summarize this talk to create an
abstract for an ACL Paper:

D Evaluation Details

We evaluate the results of our models using auto-
matic metrics including ROUGE, BERTScore, and
LLM-as-a-judge.

D.1 ROUGE and BERT Score

As automatic metrics, we use ROUGE!! (Lin,
2004) and BERTScore (Zhang et al., 2020).
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Model Rougel. BERTScore Llama3.1-7B-Instruct

F1 1 F11 Score with Expl. T Plain Score ¥ Avg. Rank |
Whisper + LLama31-Instruct ~ 23.26 86.81 71.75 84.30 1.23
Qwen2-Audio 16.26 84.94 48.42 39.50 3.47
End2End Finetuned 24.47 86.71 70.67 75.73 1.83

Table 6: Baseline Results, the finetuned model is a HUBERT + Qformer + LLama31Instruct model on the subset

used for human annotation (30 examples).

Concretely, we compute ROUGE-L, which fo-
cuses on the longest common subsequence, with
DD/sacrerouge (Deutsch and Roth, 2020), as rec-
ommended by Grusky (2023) and for BERTScore,
we use the bertscore implementation from Hug-
gingFace'? and report the F1-score.

D.2 LLM as a judge

To evaluate the model outputs, we also use an LLM
as a judge, specifically meta-1lama/Llama-3.1-
-8B-Instruct (Dubey et al., 2024). The LLM as-
signs a score to each output using the reference
abstract as context, based on four criteria: (1) rel-
evance (Does the predicted abstract capture the
main points of the gold abstract?), (2) coherence
(Is the predicted abstract logically organized and
easy to follow?), (3) conciseness (Is the predicted
abstract free from unnecessary details?), and (4)
factual accuracy (Are the claims in the predicted
abstract consistent with the gold abstract?). Addi-
tionally, we report results where the LLM provides
a single overall score without explanations and re-
sults where it ranks the given abstracts instead of
scoring them individually. The prompts are given
in Fig. 2. If the model fails to return a valid json
dictionary, we instead take the first number after the
score name in the output. We present the results
for all four criteria, the average score, the score
without explanations, and the ranking in Table 3.
One potential concern is that this LLM might be
biased, as all our models except Qwen2-Audio are
based on Llama-3.1. However, we find this is not
the case. When using Qwen/Qwen2-7B (Yang et al.,
2024) as the judge, we obtain the same ranking as
with Llama. The results with Qwen-as-a-judge can
be found in Table 4.

E Human Evaluation for Model Outputs

We evaluate the models using ROUGE (Lin, 2004),
BERTScore (Zhang et al., 2020), and LL.M-as-a-

12ht’cps ://huggingface.co/spaces/
evaluate-metric/bertscore
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judge. However, it is known that automatic evalu-
ation metrics can come with limitations. Namely,
the first two metrics may not fully capture semantic
overlap (Deutsch and Roth, 2021), while LLM-as-
a-judge is sensitive to prompt phrasing (Thakur
et al., 2024) and struggles to distinguish between
closely similar candidates (Shen et al., 2023). To
validate the reliability of our automatic evaluation
scores and better understand model behavior, we
complement these metrics with a human evaluation.
This allows us also to verify the robustness of our
findings.

Specifically, we asked nine domain experts (four
women and five men) to rank model outputs rela-
tive to the reference abstract, with each example
annotated by three independent annotators. All
annotators were already familiar with the NLP do-
main, scientific writing and presentation, and the
task itself. They are experts in Natural Language
Processing, holding at least a master’s degree in
NLP or a related field, with some holding PhDs or
professorial positions. Their ages ranged from 25
to 55. The annotation instructions are provided in
Fig. 4.

We conduct this human evaluation on a randomly
selected subset of 30 test examples. We consider
this subset representative, as the model rankings
based on automatic metrics remain consistent with
those on the full test set. The corresponding auto-
matic scores for this subset are reported in Table 6.
We want to include three diverse models in our
human evaluation: a zero-shot model, a cascaded
model, and a model finetuned on our dataset. Since
we have two zero-shot models (Qwen2-Audio and
our contrastively pretrained zero-shot model) that
perform similarly, we decided to exclude one for
efficiency in the human evaluation. We keep the
Qwen2-Audio model as this is an already existing
and widely used SpeechLLM.
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System Prompt for Score with Explanation:

You are an expert AI trained to evaluate scientific abstracts. Your task is to
compare a predicted abstract with a gold standard (reference) abstract and provide a
detailed evaluation based on the following criteria:\n\n

1. **xRelevancex*x*: Does the predicted abstract capture the main points of the gold

abstract?\n

2. **xCoherence*x: Is the predicted abstract logically organized and easy to follow?\

n

3. *xConciseness**: Is the predicted abstract free from unnecessary details?\n

4. *xFactual Accuracy#*x: Are the claims in the predicted abstract consistent with
the gold abstract?\n\n

For each criterion:\n

- Assign a **score** between 1 and 10 (1 = very poor, 10 = excellent).\n"

- Provide a *xbrief explanation*x for the assigned score.\n\n"

Your output must be in the following JSON format:\n\n"

{\"relevance\”: {\"score\”: int, \"explanation\”": \”"string\"},
\"coherence\”: {\"score\”: int, \"explanation\": \"string\"},
\"conciseness\": {\"score\”: int, \"explanation\”: \"string\"},

W\" factual_accuracy\”: {\"score\”: int, \"explanation\”: \"string\”"3}}\n\n
Prompt for Score with Explanation:

### Gold Abstract:\n<reference abstract>\n\n### Predicted Abstract:\n<predicted
abstract>\n\nPlease evaluate the predicted abstract based on the criteria mentioned.

System Prompt for Score without Explanation:

You are an expert AI trained to evaluate scientific abstracts. Your task is to
compare a predicted abstract with a reference abstract. Evaluate how well the
prediction aligns with the reference using a score from @ (lowest) to 100 (highest).
Your output must only be in the following JSON format: {\"prediction\”: int}. Do
not provide any explanation or additional text.

Prompt for Score without Explanation:

### Reference Abstract:\n<reference abstract>\n\n### Predicted Abstract:\n<predicted
abstract>\n\nPlease evaluate the predicted abstract with respect to the reference
abstract and assign a score from @ to 100.

System Prompt for Ranking:

You are an expert AI trained to evaluate scientific abstracts. Your task is to rank
four different abstracts based on a reference abstract. Your output must only be in
the following format: <Model A, Model B, Model C, Model D> where the first model is
the best model, and the last model the weakest. Do not provide any explanation or
additional text.

Prompt for Ranking:

### Reference Abstract:\n<reference abstract>\n\n

### Model A Predicted Abstract:\n<predicted abstract 1>\n\n
### Model B Predicted Abstract:\n<predicted abstract 2>\n\n
### Model C Predicted Abstract:\n<predicted abstract 3>\n\n
### Model D Predicted Abstract:\n<predicted abstract 4>\n\n
Please rank the four predicted abstracts.

Figure 2: Prompts for LLM as a judge. We use the same prompt for both, Qwen2-7blnstruct and Llama 3.1 8B
Instruct. <reference abstract> and <predicted abstract> are replaced with the actual abstracts. For ranking, we
shuffle the predicted abstracts, so that the LLMs sees the abstracts of different models in a different order every time
to avoid position bias.
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Abstract Generation: Talks Annotation Template

We are working on creating a dataset for abstract generation. Given an ACL talk, the task is to generate a summary (abstract) for it.
Therefore, we analyze how informative the talks are for generating the corresponding abstract.

You are given a textual abstract of a scientific paper and a video containing a (short) presentation of the paper. You are asked to listen to the presentation and check if the textual
abstract contains pieces of information that are not uttered by the presenter (disregarding any material shown in the video).

Below you'll find a link to a paper presentation and its abstract. Please listen to the talk and answer the questions below.

Talk 1/5 0o

Talk:
https://aclanthology.org/2022 finnlp-1.14.mp4

Abstract:

In this paper, we describe our system for the FInNLP-2022 shared task: Evaluating the Rationales of Amateur Investors (ERAI). The ERAI shared
tasks focuses on mining profitable information from financial texts by predicting the possible Maximal Potential Profit (MPP) and Maximal Loss
(ML) based on the posts from amateur investors. There are two sub-tasks in ERAI: Pairwise Comparison and Unsupervised Rank, both target on
the prediction of MPP and ML. To tackle the two tasks, we frame this task as a text-pair classification task where the input consists of two
documents and the output is the label of whether the first document will lead to higher MPP or lower ML. Specifically, we propose to take
advantage of the transferability of Sentiment Analysis data with an assumption that a more positive text will lead to higher MPP or higher ML to
facilitate the prediction of MPP and ML. In experiment on the ERAI blind test set, our systems trained on Sentiment Analysis data and ERAI
training data ranked 1st and 8th in ML and MPP pairwise comparison respectively. Code available in this link.

The information present in the abstract is all uttered by the presenter The abstract contains information that is not uttered by the presenter

Does the abstract contain O O
more or less information
compared to the video?

If the abstract contains additional information with respect to the presentation, copy-paste below those parts of the abstract that are missing in
the talk. Please separate them by semicolons.
m

Enter your answer

Do you think that all important information of the presentation is summarized in the abstract?
03

O Yes
O No

Add any comment you deem relevant [T}

Enter your answer

Next Page 1 of 6  e—m

Figure 3: Instructions for annotators to evaluate whether the paper abstracts are good and informative abstracts for
the ACL talks.
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Abstract Generation Annotator Template

1/9 Here is the ground truth abstract:

Transformer models yield impressive results on many NLP and sequence modeling tasks. Remarkably, Transformers can handle long sequences, which allows them to produce
long coherent outputs: entire paragraphs produced by GPT-3 or well-structured images produced by DALL-E. These large language models are impressive but also very
inefficient and costly, which limits their applications and accessibility. We postulate that having an explicit hierarchical architecture is the key to Transformers that efficiently
handle long sequences. To verify this claim, we first study different ways to downsample and upsample activations in Transformers so as to make them hierarchical. We use the
best performing upsampling and downsampling layers to create Hourglass - a hierarchical Transformer language model. Hourglass improves upon the Transformer baseline
given the same amount of computation and can yield the same results as Transformers more efficiently. In particular, Hourglass sets new state-of-the-art for Transformer models

on the ImageNet32 generation task and improves language modeling efficiency on the widely studied enwik8 benchmark.

[In case you are interested in this work, you can find the talk at https://aclanthology.org/2022.findings-naacl.117.mp4 - but this is not needed for the annotation!]

Rank the following generated abstracts based on

1. Relevance: Does the predicted abstract capture the main points of the gold abstract?

2. Coherence: Is the predicted abstract logically organized and easy to follow?

3. Conciseness: Is the predicted abstract free from unnecessary details?

4. Factual Accuracy: Are the claims in the predicted abstract consistent with the gold abstract?

03

We present Hourglass, a hierarchical transformer architecture that alleviates the quadratic complexity of self-attention by shortening internal representations,
achieving better perplexity than the vanilla transformer baseline given the same computational budget. Our autoregressive model, comprising standard
transformer blocks and a shortening operation followed by upsampling, demonstrates significant efficiency improvements on the NVK language modeling
benchmark and sets new state-of-the-art results on ImageNet32 among autoregressive models. By imposing a hierarchical prior on the transformer
architecture, we show that it is possible to improve the efficiency of language models while maintaining or even surpassing their accuracy.

We introduce Hierarchical Transformers, a new architecture for language models that improves efficiency and scalability relative to previous approaches. Our
model utilizes a hierarchical structure to encode input sequences, which allows for more efficient computation and better handling of long inputs. We
demonstrate the effectiveness of our approach through experiments on various sequence modeling tasks, outperforming existing state-of-the-art models
while requiring less computational resources.

We present a novel architecture for efficient language modeling, called Hierarchical Transformer (HT). HT is a hierarchical, autoregressive, and self-attentive
model that alleviates the quadratic complexity of self-attention by shortening the internal representations of the input sequence. We achieve this by
recursively downsampling the sequence along the sequence dimension, and then upsampling it back to the original token-level granularity. We show that HT
achieves better perplexity than the vanilla Transformer baseline, given the same computational budget, and that it is compatible with any attention type,
including efficient attention. We demonstrate the effectiveness of HT on the Enwik8 and WikiText-103 language modeling benchmarks, and on the
ImageNet-64 and ImageNet-64-64 image modeling benchmarks.

Back m Page 2 of 171 emmm—

Figure 4: Instructions for human annotators for ranking model outputs.
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Quality-Aware Decoding: Unifying Quality Estimation and Decoding
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Abstract

Quality Estimation (QE) models for Neural
Machine Translation (NMT) predict the qual-
ity of the hypothesis without having access to
the reference. An emerging research direction
in NMT involves the use of QE models, which
have demonstrated high correlations with hu-
man judgment and can enhance translations
through Quality-Aware Decoding. Although
several approaches have been proposed based
on sampling multiple candidate translations
and picking the best candidate, none have in-
tegrated these models directly into the decod-
ing process. In this paper, we address this by
proposing a novel token-level QE model capa-
ble of reliably scoring partial translations. We
build a uni-directional QE model for this, as
decoder models are inherently trained and effi-
cient on partial sequences. We then present a
decoding strategy that integrates the QE model
for Quality-Aware decoding and demonstrate
that the translation quality improves when com-
pared to the N-best list re-ranking with state-
of-the-art QE models (up to 1.39 XCOMET-
XXL 7). Finally, we show that our approach
provides significant benefits in document trans-
lation tasks, where the quality of N-best lists is
typically suboptimal'

1 Introduction

Large language models (LLMs) have significantly
impacted various Natural Language Processing
(NLP) tasks (Brown et al., 2020; Jiang et al., 2023;
Dubey et al., 2024), including Neural Machine
Translation (NMT). The field of NMT is transition-
ing from using dedicated encoder-decoder trans-
formers (Vaswani, 2017; Team et al., 2024) to lever-
aging decoder-only LLM-based translation models

!Code can be found at https://github.com/
SAP-samples/quality-aware-decoding-translation
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(Kocmi et al., 2024). This shift is driven by LLMs’
ability to retain knowledge, handle large contexts,
and follow instructions, learned during extensive
pre-training (Xu et al., 2024; Alves et al., 2024).
As a result, LLM-based MT models have achieved
state-of-the-art translation quality (Kocmi et al.,
2024).

In parallel, Quality Estimation (QE) has become
a well-researched subfield within NMT. QE models
are trained to predict the quality of a translation
without requiring access to the reference (Rei et al.,
2021, 2022). Interestingly, QE models can achieve
performance in assessing translation quality that
is comparable to MT evaluation models, which do
have access to the reference (Zerva et al., 2024).

This led to the question: "Can we integrate QF
into the current translation process to improve
quality?" Incorporating QE into NMT offers sev-
eral benefits. First, having a expert QE model guid-
ing the decoding can further improve the quality.
Second, by adapting the QE model with feedback
from human annotators, we can generate future
translations guided with the newly obtained feed-
back.

Several approaches have been explored to inte-
grate QE into the translation process. These in-
clude re-ranking the N-best list (Fernandes et al.,
2022), applying minimum Bayes risk (MBR) de-
coding on a quality-filtered N-best list (Tomani
et al., 2024), and training additional models for
post-editing based on QE-predicted errors (Treviso
et al., 2024). However, all these methods operate
on fully generated sequences before the QE model
can exert influence. Integrating QE earlier in the
decoding process, referred in this paper as Quality-
Aware Decoding, could enhance translation quality
and reduce reliance on the N-best list. This is es-
pecially relevant when dealing with long inputs as
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Source: The Department of Homeland Security has hired an

Unique opening translations in top
25 beams

Das Ministerium fiir innere Sicherheit
Das Justizministerium

(a]a]a]

Tower-Instruct V2

on oversight.

| e

d o0 oo

Top-5 tokens at Prefix:
Das Ministerium fur

Figure 1: Example from WMT’23 English — German #ID: 10: The paragraph begins with *Department of
Homeland Security,” which should be translated as "Ministerium fiir Innere Sicherheit.” However, the top 25 beams
do not contain the correct translation and begin with an error, making N-best list re-ranking insufficient. Although
the top-5 tokens at the decoding contain the correct forms *Inn’ or "Inner,” the probabilities split among them giving
highest mass to the incorrect token ’inn.” Quality-Aware decoding can prevent errors with earlier integration.

GOOD translations during decoding are likely to
be pruned and may need sampling larger number
of finished hypothesis. We illustrate this in Figure
1.

To achieve this, a QE model capable of predict-
ing the quality of partial translations is required.
However, current leading QE models face chal-
lenges in this area, as they are typically not trained
to predict scores for incomplete hypotheses. There-
fore, developing QF models that can handle partial
translations is essential for implementing Quality-
Aware Decoding during the translation process.

In this work, we propose adapting LLM-based
NMT models to perform QE on partial translations
and incorporating this model into the decoding.
We create a token-level synthetic QE dataset using
WMT Multidimensional Quality Metrics (MQM)
data (Burchardt, 2013; Freitag et al., 2024). We
then adapt a uni-directional LLM-based MT model
to predict whether a token is GOOD or BAD. Train-
ing QE models on these token-level tasks allevi-
ates the data challenge and allows us to exploit the
MQM data while simultaneously making the task
easier for the model compared to predicting a score
directly.

Furthermore, integrating the QE model into
NMT during decoding is not trivial, as we need to
combine the QE estimates during decoding. There-
fore, we modify the decoding strategy from Koneru
et al. (2024) to incorporate token-level predictions
efficiently with the adapted QE model to provide
real-time feedback during the decoding process.
We summarize our contributions below.
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* We present a novel uni-directional QE model
which estimates quality on incomplete hy-
potheses by averaging the probabilities of
each token being classified as GOOD.

* We propose a decoding strategy that combines
the token-level QE model on partial hypoth-
esis and the NMT model to perform Quality-
Aware Decoding.

* We show through experiments that early in-
tegration is essential and the translation qual-
ity is improved even when compared to re-
ranking the N-best list with state-of-the-art
QE models.

* We highlight the significance of our approach
in document translation scenarios, where post-
generation QE techniques fall short due to
their reliance on the quality of the N-best list,
a challenge that becomes more difficult as the
input length increases.

2 Quality-Aware Decoding

The primary objective of this paper is to achieve
Quality-Aware Decoding in NMT. To accomplish
this, it is essential to predict the quality of partial
translations and integrate this information during
the decoding process. Our approach proposes us-
ing one NMT model for generating translations
and another adapted NMT model to predict the
quality of the candidate translations produced by
the first model.
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Figure 2: Token-level label annotation scheme using the MQM error tags. MASK indicates that this token label will
not be used in training to prevent incorrect learning signal.

First, we explain why relying solely on the NMT
model to predict the quality of a hypothesis is insuf-
ficient and why an additional model is necessary.
Next, we outline the adaptation of the NMT model
for QE on partial translations, detailing the creation
of a token-level QE dataset, the modifications made
to the NMT model for this task, and the process of
estimating the sentence-level quality score. Finally,
we describe the algorithm used to incorporate the
QE score into the decoding process.

2.1 Decomposing Decoding: Translation + QE

NMT models generate a token-by-token sequence
and provide the probability of each token at the
decoding step. The average of the log-probabilities
is often used as a proxy to score the candidate
during search.

While NMT models are capable of generating
high-quality translations, using the average log-
probabilities of hypotheses as a scoring metric
tends to yield poor correlation with actual transla-
tion quality (Eikema and Aziz, 2020; Freitag et al.,
2020). In many cases, a translation can continue in
several different ways, all of which may be accept-
able. If the starting tokens for these continuations
differ, the probability mass may be spread across
multiple options which is used during the search.
However, from a quality perspective, all these con-
tinuations could still achieve a high score, as the
QE scores are independent and need not sum to 1.
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Therefore, we propose a expert model that fo-
cuses on quality to estimate the scores better during
decoding and improve the search space leading to
a better hypothesis.

2.2 Quality Estimation on Partial Sequences

To provide a quality score during decoding, the
QE model must be capable of handling incomplete
sequences. It should not penalize a sequence if
there is a potential extension that could lead to a
perfect translation.

Estimating the score in this way is not feasible
with current QE models, such as COMET (Rei
et al., 2021), as they were not trained for this spe-
cific task and cannot provide reliable scores in the
context of partial translations. Hence, we need to
develop a partial QE system.

When building a partial QE system, several fac-
tors need to be considered. First, should the model
use a uni-directional or bi-directional architecture?
A uni-directional model is more efficient, as it al-
lows for caching the hidden states, which can then
be used for subsequent steps without re-encoding,
unlike a bi-directional model.

Next, we need to decide whether to predict the
QE score at the sequence level or at the token
level. For token-level QE, we can directly use
data from MQM annotations, as we already know
which tokens are GOOD or BAD. However, for
segment-level scoring, we need to consider how to



synthetically create the training data.

Therefore, we decide adapt the uni-directional
model into a token-level QE system that predicts
whether each token is GOOD or BAD (a binary
decision) by adding an additional classifier head.
This adaptation enables us to estimate the score
for a sequence by calculating the average proba-
bility that each token is classified as GOOD. We
hypothesize that adapting the model in this way,
rather than directly predicting the score, provides
greater stability, as the last hidden states inherently
contain token-level information and do not require
mapping the entire sequence to a single score.

For training this model, we leverage the WMT
MQM data containing error annotations in NMT
outputs. We can treat tokens before an error as
GOOD and those containing inside an error as BAD.
Then, we can train in uni-directional manner where
each token’s label is predicted using only the pre-
ceding context in the hypothesis. This is crucial as
we only have the preceding context to estimate the
quality for partial hypothesis.

2.2.1 Learning the Right Signal

The straightforward approach to creating labels
is to assign 1 to all tokens within the error span
and 0 otherwise. However, MQM annotations can
mark errors from words to phrases, and the starting
tokens of an error span may not always be wrong.
This is illustrated in Figure 2.

For example, consider the German sentence "Ich
spiele Tennis" translated by three different NMT
systems, each annotated with MQM error labels. In
this work, we focus on learning a binary decision:
whether an error is present, ignoring error severity.

System 1: No error: The translation "I play
Tennis" is perfect, and all tokens are labeled as
"GOOD."

System 2: Partial error: The translation "/
played Tennis" has an error in the verb form
("played" instead of "play"). The error is in the
token span "played"”, but not all tokens in this span
are incorrect (e.g., "pla" is correct). Assigning a
"BAD" label to the entire span would lead to incor-
rect learning. A more refined approach is needed
to mark errors accurately at the token level.

System 3: Full error: The translation "I enjoy
Tennis" contains an error in "enjoy”, so all tokens
in this span should be labeled as "BAD."
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It is not trivial to decide when the prefix of an
error span is correct/incorrect. To achieve accurate
labeling, we propose the following scheme:

* Apply a <MASK> operation to all tokens within
the error span.

* Only the last token in the span is assigned
the label "BAD", as the error is considered
complete at the end of the span.

If the error token is in the middle, we still train
the model to predict "BAD" in the end and let the
model determine which tokens should be part of
the error span during inference. This approach
ensures that errors are identified without explicitly
defining the error span.

2.2.2 Sequence-Level Quality Estimation

After fine-tuning a token-level classification model
to predict the quality of the tokens, we still need to
map these predictions into a sequence-level score
that can be integrated during the decoding process.
There are several potential ways to achieve this.

One approach is to simply count how many to-
kens are classified as BAD in the current hypothesis.
However, this method has limitations. The number
of errors should be normalized based on the length
of the hypothesis to account for varying sizes. Ad-
ditionally, converting the probabilities into a fixed
number of error tokens would need to account for
different error types according to the MQM format,
as each error counts differently.

To avoid such strict scoring schemes, we take a
simpler approach. We average the log probabili-
ties of all tokens that are classified as GOOD. This
method inherently accounts for the length of the
hypothesis, and it provides a score on the scale of
log probabilities, which aligns with the decoding
process. Therefore, we use this averaged log prob-
ability as a proxy metric for the QE score, where
a higher score indicates better quality (Line 5 in
Algorithm 1).

2.2.3 Fusing Translation and Quality

We can use a token-level QE system to evaluate the
quality of a source and partial hypothesis during
decoding. However, integrating these probabilities
into all candidates is computationally expensive,
as each beam considers extensions equal to the
vocabulary size.



Algorithm 1 Computing merged score of partial hypothesis with translation and token-level QE models.

1: procedure MERGESCORE

., hp, Translation Model My, QE model Mgg,

2: Input: Hypothesis tokens hq, ha, ks, ..
Source sentence S, Re-ranking weight «,
3: Output: merged_score
4: SCOT’GNMT<—%Zlog'])(hl,hg,...,hn’S;MNMT)
5: SCOTGQE — % Z logP(Ol, 09, ... ,On‘hl, ho, ..., hy,S; MQE)
6: merged_score < (a) x Scorenyr + (1 — ) X Scoregr
7: end procedure

To address this, we adopt a simplified decoding
strategy from Koneru et al. (2024), which ensem-
bles models with different vocabularies. By adapt-
ing the same MT model for token-level QE, we
simplify the merging process, as the vocabularies
match. This restriction is reasonable, as it is also
beneficial to leverage the knowledge learned by the
specialized MT for token-level QE.

The core idea is to re-rank the top candidates at
each decoding step using the QE model. After re-
ranking, the translation and QE scores are merged,
and the process repeats until the end-of-sentence
token is generated, for each beam. This strategy
allows us to efficiently incorporate the QE model’s
estimate, improving translation quality.

During decoding, at each step, we have scores
for n beams and V' possible extensions from the vo-
cabulary. In typical beam search, we select the top
n extensions and expand the hypothesis. To make
the decoding process Quality-aware, we estimate
the quality of these extensions. Since estimating all
extensions is computationally expensive, we limit
the candidates by selecting a specified number of
top candidates.

To achieve this, we use a hyper-parameter topk,
which selects the best topk extensions for each
beam. For each of these top topk extensions, we
compute a combined score, detailed in Algorithm
1. This combined score incorporates both the trans-
lation model score and the quality estimation score,
ensuring the quality is considered during decoding.

For a top extension at decoding step n, let the
current tokens be hq, ho, h3, ..., h,. The NMT
model score is computed as the average log proba-
bilities of each token (Line 4). For the token-level
QE model, we compute the average probability
of each token being classified as ’'GOOD’ (Line
5). The merged score is equal to weighted linear
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combination of these probabilities, with weight a
(Line 6).

Thus, to make the decoding process Quality-
Aware, we first train a token-level QE system by
adapting the same NMT model to ensure vocabu-
lary matching. We then combine the scores from
both models to improve the sequence estimates
explored during search.

‘Pearson Spearmann  Kendall

COMETQE ‘ 4441 41.29 31.19
COMETQE-XL ‘ 41.23 42.17 31.84
Tower Avg. Log Prob ‘ 32.32 16.74 12.77
Tower QE | 40.56 33.96 25.87

Table 1: Correlation on WMT 23 for English — Ger-
man Test set. The scores are calculated after removing
the few sentences labeled for hallucination detection.
Best scores according to each coefficient are highlighted
in bold.

3 Experimental Setup

Datasets: We focus on two language directions
given their availability of MQM data: English
— German and Chinese — English. To train
our token-level QE systems, we use the MQM
datasets” from WMT (Freitag et al., 2021). Specif-
ically, we use the datasets until 2022 for training,
2024 for validation, and 2023 for testing (Kocmi
et al., 2024). This setup is consistent with all the
other QE metrics, and we do not use any additional
data beyond these datasets.

Models: Our proposed approach achieves
Quality-Aware decoding by combining an NMT
model with a token-level QE model, where

Zhttps://github.com/google/wmt-mgm-human-evaluation



Model Beams Re-ranking ‘ MetricX () XCOMET-XXL (1)
English — German
Tower 5 _ 2.52 86.93
Tower 25 XCOMET-XL QE 2.37 87.79
Tower 25 Tower QE 2.38 87.40
Tower + Tower QE | 5 (25* for Tower QE) _ 2.12 88.95%*
Tower + Tower QE | 5 (25* for Tower QE) | XCOMET-XL QE 2.09* 89.08*
Chinese — English
Tower 5 _ 2.42 88.91
Tower 25 XCOMET-XL QE 2.30 89.49
Tower 25 Tower QE 2.32 89.51
Tower + Tower QE | 5 (25%* for Tower QE) _ 2.26 89.82%
Tower + Tower QE | 5 (25* for Tower QE) | XCOMET-XL QE 2.24% 90.00*

Table 2: Translation Quality on WMT23 English — German Test set. Both XCOMET and MetricX columns use
reference for reporting translation quality where as XCOMET-XL QE does not use for re-ranking. Best scores
according to each metric are highlighted in bold. We report the top cluster indicated with asterisks and are no
worse than other systems determined by Paired T-Test and bootstrap resampling with p < 0.05

we adapt the same NMT for QE by adding a
classification head. We use the state-of-the-art
NMT model, Tower 7B (Alves et al., 2024),
which provides high-quality translations and
has already been exposed to MQM data during
instruction-tuning. This ensures that the gains
observed in our approach stem from integrating
Quality-Aware decoding into the NMT process,
rather than introducing new data. We find « by
setting it to the optimal re-ranking weight on the
validation set ( See Appendix A.3 for details).
Additional details on training the QE models and
hyper-parameters during decoding are provided in
Appendix A.1.

Metrics: For reporting the translation quality, we
consistently use XCOMET-XXL* (Guerreiro et al.,
2024) and MetricX> (Juraska et al., 2024) with the
reference. To compare with N-best list re-ranking,
we use the XCOMET-XL QE® without the ref-
erence. This approach allows us to avoid biasing
toward a single metric during the re-ranking pro-
cess and enables us to measure the gains achieved
by differently trained metrics.

3Unbabel/TowerInstruct-7B-v0.2
“Unbabel/XCOMET-XXL
>google/metricx-24-hybrid-x1-v2p6
®Unbabel/XCOMET-XL
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4 Results

We conduct a series of experiments to validate the
effectiveness of Quality-Aware decoding and iden-
tify the scenarios where it provides the most bene-
fit. First, we evaluate whether our token-level QE
model can better estimate sequence quality com-
pared to the log probabilities of the NMT model.
Next, we assess the impact of Quality-Aware de-
coding by comparing it with other approaches to
determine if it improves translation quality. We
also perform an ablation study to examine whether
training the QE model on errors from the same
NMT model enhances its performance. Then, we
explore the impact of source sentence length to
highlight the limitations of N-best list re-ranking.
Finally, we compare our proposed approach with
existing Quality-Aware decoding strategies and
also their inference time to highlight the laten-
cy/quality trade-off.

4.1 Quality Estimation Performance

First, we evaluate the agreement between the
Tower-based token-level QE model (Tower QE)
and human scores for a given hypothesis. It is only
beneficial if we achieve higher correlation than
the average of the NMT model log probabilities
to show the need to integrate it during decoding.
Therefore, we report the correlation with human



Model Beams Re-ranking ‘ MetricX ([) XCOMET-XXL (1)
English — German
Tower 25 XCOMET-XL QE 2.37 87.79
Tower 25 Tower QE 2.38 87.40
Tower 25 Tower Distill QE 2.38 87.39
Tower + Tower QE 5 (25* for Tower QE) _ 2.12 88.95
Tower + Tower QE | 5 (25* for Tower Distill QE) 2.11 88.76

Table 3: Performance of Unidirectional QE trained with/without distillation on WMT23 English — German Test
set. Best scores according to each metric are highlighted in bold.

Model \ Beams | Reranking | XCOMET-XL (1) XCOMET-XXL (1) | Impact
Paragraph-Level

Tower 25 XCOMET-XL QE 86.56 87.79 5=+1.16

Tower 25 Tower QE 85.40 87.40 (88 9_ 5. 8.7 79)
Tower + Tower QE | 5 (25* for Tower QE) _ 86.36 88.95 ’ ’

Sentence-Level

Tower 25 XCOMET-XL QE 86.42 87.68 5=+038

Tower 25 Tower QE 85.23 87.41 (88 (;6 i 8.7 68)
Tower + Tower QE | 5 (25* for Tower QE) _ 85.96 88.06 ’ ’

Table 4: Impact of integrating Unidirectional QE during decoding with paragraphs vs sentences on WMT23
English — German Test set. § denotes the improvement in translation quality from re-ranking N-best list with
XCOMET-XL QE to integrating unidirectional Tower QE during the decoding. Best scores according to each

metric are highlighted in bold.

scores of different models on WMT 23 English —
German in Table 1.

We observe that the best-performing systems
are the Comet QE models, which predict a single
score using the full hypothesis. This is expected, as
these models assess quality after the hypothesis is
fully generated. In contrast, both log probabilities
and Tower QE scores are based on the predicted
token of each decoding step, using only the preced-
ing context. Log probabilities perform poorly in
this setup, while our proposed model, Tower QE,
achieves twice the correlation with human judg-
ments compared to log probabilities, despite scor-
ing token by token with preceding context. This
result highlights the potential of integrating our
approach into the decoding process.

4.2 Unified Decoding for NMT

To validate the effectiveness of our unified decod-
ing approach, we compare it with several base-
lines in Table 2. First, we evaluate whether our
approach outperforms generating translations with
the NMT model alone. Next, we check if the qual-
ity of translations improves compared to N-best
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list re-ranking. To make the setups comparable, we
set topk and num_beams to 5 and compare with
re-ranking the top 25 beams using XCOMET-XL.
Finally, to demonstrate that re-ranking the N-best
list remains a viable and complementary approach,
we re-rank the top 5 beams obtained from Quality-
Aware decoding using the same QE model.

We find that re-ranking with XCOMET-XL and
Tower QE yields similar results, indicating that
our partial QE model does not over-fit to any spe-
cific metric. Furthermore, we observe that the uni-
fied decoding approach outperforms N-best list re-
ranking across both metrics in both language pairs.
For example, the MetricX score improves from
2.37 to 2.12 for English — German. Note that
Tower has already seen this data during instruction-
tuning and the improvement is not from new data
but from Quality-Aware decoding. Moreover, re-
ranking the top 5 beams obtained from unified de-
coding with XCOMET-XL leads to a slight further
improvement in quality. This highlights the robust-
ness and generalizability of our approach across
different evaluation metrics.



4.3 Adapting for Tower Errors

We use the MQM annotations from WMT to train
our Tower QE model, which contains error annota-
tions from other systems. However, a viable alter-
native would be to adapt Tower QE specifically to
the errors it typically makes. To maintain a simi-
lar data setup, we first generate translations using
Tower on these source sentences. Then, we anno-
tate the generated hypotheses with XCOMET-XL
using the reference and fine-tune Tower QE on this
synthetic dataset, which we refer to as Tower Dis-
till QE. We evaluate the performance of the new
distill QE model and report the results in Table 3.

We observe that the distilled QE model performs
very similarly to the QE model trained on errors
from other systems. This indicates that there was
no significant benefit in adapting the QE model to
the specific errors typically made by Tower. How-
ever, further analysis on larger datasets and differ-
ent domains is needed to fully validate the effec-
tiveness of the distillation approach as the current
synthetic data generated is small.

4.4 Sentence vs Document-level Translation

From Table 2, we observe that the gains for En-
glish — German (paragraph-level) are much higher
than for Chinese — English (sentence-level). We
hypothesize that this discrepancy arises from the
length of the sentences, as the N-best list re-ranking
is likely sufficient for shorter sentences. To confirm
this, we take the English paragraphs and split them
into sentences using a tokenizer while tracking the
paragraph IDs. We then perform the entire decod-
ing process similarly, and later join the sentences
back using the paragraph IDs before evaluation.
We report the results in Table 4.

We define the impact as the improvement in
translation quality from re-ranking the N-best list
with XCOMET-XL QE to integrating Tower QE.
Comparing the results at the paragraph level to
those at the sentence level, we observe that the im-
pact decreases, which confirms our hypothesis. Ad-
ditionally, we obtain better scores at the document
level, further highlighting the potential benefits of
Quality-Aware Decoding.
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4.5 Compatibility with Sampling-based
Strategies

Our proposed approach integrates the feedback dur-
ing decoding time to generate high quality N-best
list. Therefore, it can be further combined with
strategies such as Minimum Bayes Risk (MBR)
(Freitag et al., 2022) or QE-Fusion (Vernikos and
Popescu-Belis, 2024) decoding that only rely on
the sampled candidates. We compare the differ-
ent decoding strategies and report the scores in
Table 5. For MBR decoding, we do epsilon sam-
pling (epsilon=0.02) and generate 25 candidates
with wmt22-comet-da as utility metric. We do
not sample more as it is expensive especially at
document-level with 7B model and requires mul-
tiple runs. For QE fusion, we use XCOMET-XL
as the utility metric. We perform this on English-
German at paragraph-level as our hypothesis is that
the N-best list is problematic for long sequences.

We find that decoding with Tower QE is sig-
nificantly better than the other approaches in this
setting according to XCOMET-XXL metric. We
also would like to highlight that it is compatible
with sampling based approaches and show that by
performing QE-fusion on the top 5 beams with our
decoding approach. While the scores are slightly
lower, human evaluation is necessary to compare
these systems.

4.6 Inference Time

While the quality of translation improves, our ap-
proach also is computationally more expensive. To
demonstrate this, we compare different decoding
strategies and report the latency and quality in Ta-
ble 6. To calculate the latency, we take the average
time in seconds for inference on the WMT 23 En-
glish — German Test set.

Note that MBR with XCOMET-XL is extremely
expensive given the large size of the QE model
and the amount of long samples (25%24*557 ex-
amples at paragraph level limit batching) that need
to be passed through the model due to the expo-
nential nature of MBR. We see that due to the uni-
directional nature of the Tower QE, the total infer-
ence time is less than double. Further, re-ranking
with XCOMET-XL is the fastest given that a single
forward pass is needed after generation.



Re-ranking/

Model Beams Utility Metric MetricX XCOMET-XXL
Tower ‘ 25 XCOMET-XL 2.37 87.79
Tower + MBR ‘ 25 wmt22-comet-da 2.75 87.53
Tower + QE-Fusion | 25  XCOMET-XL 238 87.76
Tower + Tower QE (Ours) ‘ 5(25) _ 2.12 88.95%
Tower + Tower QE (Ours) ‘ 5(25) XCOMET-XL 2.09% 89.08*
Tower + Tower QE (Ours) + QE-Fusion ‘ 5(25) XCOMET-XL 2.10 89.03*

Table 5: Translation quality on WMT 23 English — German. We report the top cluster indicated with asterisks and
are no worse than other systems determined by Paired T-Test and bootstrap resampling with p < 0.05. For MBR,
we use wmt22-comet-da as the utility metric wheras XCOMET-XL for QE-Fusion (Vernikos and Popescu-Belis,

2024).
Model Beams  8TMe  ycomET-xXL
(Seconds)
Tower 5 5.20 86.93
Tower
XCOMET-XL Rerank 25 13.16 + 1.78 87.79
Tower
MBR wmt22-comet-da 25 13.16 + 0.34 87.56
Tower
Tower QE (Ours) 5(25) 21.04 88.94

Table 6: Average inference time on WMT 23 English-
German document-level test set. For MBR and re-
ranking, 13.16 is the time used for generating 25 candi-
dates.

5 Related Work

Integrating QE in NMT: Several advancements
have been made in improving QE for NMT over
the years (Rei et al., 2021, 2022; Blain et al., 2023;
Zerva et al., 2024; Guerreiro et al., 2024). These
developments have led to the integration of QE
in various ways. One common approach involves
applying QE after generating multiple sequences
through techniques such as QE re-ranking (Fernan-
des et al., 2022; Faria et al., 2024) or Minimum
Bayes Risk (MBR) decoding (Tomani et al., 2024).
Another direction focuses on removing noisy data
using QE models, followed by fine-tuning on high-
quality data (Xu et al., 2024; Finkelstein et al.,
2024). Vernikos and Popescu-Belis (2024) pro-
poses to generate diverse translations as a first step
and then combine them. We perform this explic-
itly by integrating the QE directly into decoding.
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Recently, Zhang et al. (2024) exploited the MQM
data by training models to penalize tokens within
an error span, improving quality. In contrast, our
approach adopts a modular framework, where we
propose an expert QE model that is trained indepen-
dently for targeted training. This modular approach
aims to improve performance by decomposing the
task into separate translation and QE components.

Reward Modeling in NLG: Quality-Aware de-
coding shares similarities with controllable text
generation, particularly in using a "Quality/Re-
ward" model to guide decoding. Methods like
Weighted Decoding (Yang and Klein, 2021) adjust
token probabilities for controlled generation, while
Deng and Raffel (2023) use a uni-directional re-
ward model to maintain efficiency. Li et al. (2024)
further enhance control with a token-level rein-
forcement learning-based model. While related,
our key contribution is the development of the first
uni-directional QE model specifically for transla-
tion.

6 Conclusion

We demonstrated the value of Quality-Aware de-
coding in improving translation quality without
relying on post-generation methods. Using MQM
data, we built a uni-directional token-level QE
model and integrated it into the decoding process.
Our experiments show measurable quality gains,
achieved without adding new training data to the
NMT model, highlighting that improvements come
only from the decoding approach.



7 Limitations

Although our Quality-Aware decoding improves
translation quality, it adds considerable computa-
tional complexity to the inference process. The-
oretically, this approach would double the time
required to generate a translation and would re-
quire additional memory to utilize the token-level
QE model. One potential solution to mitigate this
issue could be to use token-level QE as a reward
model for training through reinforcement learning.

Furthermore, we trained our model on a limited
set of human-annotated MQM data. However, cur-
rent QE models, such as XCOMET, are capable
of predicting error tags using the reference with
reasonable quality. This suggests that further im-
provements could be achieved if these models were
trained on larger-scale datasets, providing more
nuanced feedback and refining translation quality
even further.

In addition, human evaluation is necessary to
validate if the translation quality also improves
with human judgment. Although we were able
to better integrate MQM data during decoding, it
decreases confidence in relying completely on au-
tomatic metrics.

Lastly, our proposed token-level QE model does
not account for error severity. Ideally, it should be
able to predict the category of errors, allowing for
more nuanced feedback and enabling the model to
generate translations with only minor errors when
necessary.
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A Appendix

A.1 Training details

We use the transformers library (Wolf et al., 2020)
for training and inference with Tower-Instruct V2.
For adapting Tower to token-level QE, we use
LoRA (Hu et al., 2021) based fine-tuning with
an additional classifier head. Therefore, we only
train the adapters and the weights for classification
head.

We add the adapters to the modules
q_proj,k_proj,v_proj,gate_proj,up_proj and
down_proj. We set a batch size for each device
to 12 initially and enable auto_find_batch_size
to True on 4 NVIDIA RTX A6000 GPU’s. For
having a larger batch size during training, we
set gradient_accumulation_steps to 6. We use
a learning_rate of le=®. We set the eval_steps
to 50 and num_train_epochs to 10. The other
parameters are set to default.

Using the cross-entropy loss for token-level QE
directly is insufficient due to the fact that the major-
ity of tokens are classified as ’GOOD’. Hence, we
find that the weighted cross-entropy loss is essen-
tial when fine-tuning the model. For the training on
human MQM data, we set the weights to 0.05, 0.95
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to ’GOOD’ and *BAD’ labels respectively. In the
case of distilling from XCOMET, we observed
more errors. Therefore, we find that setting them
0.2,0.8 to ’GOOD’ and ’BAD’ labels respectively
provided stable training.

We train on data until WMT’22 for training
and use WMT’24 for validation. We calculate the
macro ’FI’ on token-level predictions as the valida-
tion metric and stop training if it does not improve
for 10 consecutive eval_steps.

A.2 Partial vs Full Sequence Quality
Estimation

We also compare the difference in performance
between our proposed token-level QE for partial
sequences with Tower trained for full sequence
QE. We achieve this by adding a regression head
to predict the score at the end-of-sentence token.
Hence, the model uses the source and hypothesis
to predict the score using regression head at the
end.

We fine-tune the model using only direct asses-
ment data (Zerva et al., 2024) (Tower Full DA).
Furthermore, we use this as initialisation and con-
tinue fine-tuning on the MQM data (Tower Full
DA + MQM). We also use LoRA similarly to the
previous model with a regression head to adapt the
model. We report the scores in Table 7.

We see that the both Tower QE models based
on full sentences outperforms the partial model.
However, this is expected as it has seen the entire
context and trained on larger amounts of data. Still,
the partial model achieves much higher correlaiton
that the log probabilities showcasing its potential
for Quality-Aware decoding.

A.3 Robustness to re-ranking weight

We introduce a hyperparameter, «, to merge prob-
abilities from the token-level QE model and the
translation model. To analyze its impact, we re-
rank the N-best list using various « values, avoid-
ing repeated joint decoding. If the QE model is
helpful, we expect translation quality to improve
when o < 1.

Figure 4 shows that lower « values consistently
yield better results, confirming that incorporating
QE probabilities improves translation. This high-
lights the value of Tower QE and shows that re-
ranking is an effective and robust way to tune a.



‘ Pearson Spearmann Kendall
COMETQE ‘ 44.41 41.29 31.19
COMETQE-XL ‘ 41.23 42.17 31.84

COMETQE Scratch
Fine-tuned (ours)

36.32 33.66 25.24

Tower Log Prob ‘ 32.32 16.74 12.77
Tower Partial QE | 40.56 33.96 25.87
Tower Full DA | 33.67 36.46 27.38
Tower Full DA + MQM | 32.03 40.85 30.38

Table 7: Full Correlation results on WMT 23 for English — German Test set. Partial indicates that the QE model
predict scores via token-level where as full indicates predicting the score at the end-of-sentence token. The scores
are calculated after removing the few sentences labelled for hallucination detection. Best scores according to each
coefficient are highlighted in bold.

<lim_startl>user

Translate the sentence from English into German.
English: {src_sent}

German:

<lim_endl>

<lim_startl>assistant

English: {src_sent}
German: {tgt_sent}

Figure 3: Prompts used in our experiments for translation and QE model. {src_sent} and {tgt_sent} represent
the source and target sentence. We replace the language with Chinese and English when experimenting with that
language pair.

45



Alpha vs Translation quality for re-ranking with Tower Partial QE
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(a) English — German

Alpha vs Translation quality for re-ranking with Tower Partial QE
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(b) Chinese — English

Figure 4: Impact of a when re-ranking with token-level Tower QE on WMT’23 Test sets.
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Abstract

Training large-scale models presents chal-
lenges not only in terms of resource require-
ments but also in terms of their convergence.
For this reason, the learning rate (LR) is of-
ten decreased when the size of a model is in-
creased. Such a simple solution is not enough
in the case of speech-to-text (S2T) trainings,
where evolved and more complex variants of
the Transformer architecture — e.g., Conformer
or Branchformer — are used in light of their
better performance. As a workaround, OWSM
designed a double linear warmup of the LR,
increasing it to a very small value in the first
phase before updating it to a higher value in the
second phase. While this solution worked well
in practice, it was not compared with alterna-
tive solutions, nor was the impact on the final
performance of different LR warmup sched-
ules studied. This paper fills this gap, revealing
that i) large-scale S2T trainings demand a sub-
exponential LR warmup, and ii) a higher LR
in the warmup phase accelerates initial conver-
gence, but it does not boost final performance.

1 Introduction

Following the success of Large Language Models
(LLM) (Radford et al., 2019), large-scale speech-to-
text (S2T) trainings have gained increased interest
with the goal of building Large Speech Models
(LSM) or Speech Foundation Models (SFM) with
similar abilities for the speech modality (Commu-
nication et al., 2023; Peng et al., 2023; Radford
et al., 2023; Zhang et al., 2023).

Scaling the size of the training data and trained
models with respect to traditional small-scale
speech trainings has posed many challenges be-
yond engineering efforts and demanding hardware
requirements. Among them, a significant challenge
was ensuring the convergence of large models,

* Equal contribution.
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which required adaptations to the learning rate (LR)
(Radford et al., 2023; Peng et al., 2024). In partic-
ular, Whisper (Radford et al., 2023) lowered the
peak LR with the increase of the model size. Differ-
ently, OWSM 3.1 (Peng et al., 2024) introduced a
new LR scheduler, driven by the insight that reduc-
ing the peak LR would compromise the quality of
the trained model (Kalra and Barkeshli, 2024). The
new LR scheduler — named piecewise LR scheduler
— modifies the warmup phase from a simple linear
increase to a two-phase linear warmup while keep-
ing unaltered the decay phase after the LR peak.
However, this design choice was not motivated,
nor was it investigated whether alternative warmup
policies could be more effective or how they might
impact the final model quality.

In this paper, we fill these gaps by studying
which factors lead to a more difficult convergence
of large-scale models and what is the impact of
different LR warmup policies on the final perfor-
mance. To this aim, we train large-scale S2T Con-
former (Gulati et al., 2020) models on more than
150K hours of speech data, exploring alternative
warmup methods — specifically an exponential and
a polynomial policy — operating between the dou-
ble linear warmup by OWSM and the traditional
linear warmup phase of the inverse square root LR
scheduler. Our experiments demonstrate that:

* Advanced and more complex variants of the
Transformer architecture, such as Conformer
and Branchformer (Peng et al., 2022), widely
used in speech processing for their superior
performance, are more difficult to train due to
their deeper layers involving additional com-
ponents (e.g., extra convolutional or linear lay-
ers), making them more prone to “exploding
gradient” (Bengio et al., 1994) issues;

The LR warmup should follow an exponen-
tial or sub-exponential function and, while it
plays a crucial role in the convergence of the
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Figure 1: LR schedulers with inverse square root, piecewise-linear, polynomial, and exponential warmup policies.

model by ensuring a smooth transition to a
good model initialization, it does not signifi-
cantly affect the final result as long as conver-
gence of the model is achieved.

To ease future research on the topic, foster re-
producibility of our work, and in accordance with
the Open Science principles (White et al., 2024),
we release the code, logs, and intermediate check-
points under the open-source Apache 2.0 license at
https://github.com/hlt-mt/FBK-fairseq.

2 Learning Rate Schedulers

This section describes the LR schedulers analyzed
in this work, starting from the widely adopted in-
verse square root with linear warmup (§2.1) and
piecewise-linear warmup (§2.2), to the alternative
sub-linear warmup policies, namely polynomial
(§2.3) and exponential (§2.4), designed to be as
close as possible to the traditional inverse square
root LR. All LR schedulers are shown in Figure 1.

2.1 Inverse Square Root Policy

Since the introduction of the Transformer archi-
tecture, the LR scheduler has followed an inverse
square root policy (Vaswani et al., 2017). This
scheduler has therefore been widely adopted in
S2T training settings (Inaguma et al., 2020; Wang
et al., 2020) and entails two phases. Firstly, the LR
linearly increases for a predefined number of steps
w from O to the peak LR 7, where w and 7 are two
hyper-parameters whose tuning is critical for the
success of the training and the quality of the result-
ing model (Popel and Bojar, 2018). In this phase,
the LR 7); at the i-th step is n; = 1 - i/w. Secondly,
after reaching 7, the LR decreases proportionally
to the inverse square root of the number of steps,

i.e. n; = 1 - v/w/\/i. Overall, the LR 7 at the i-th

step is:
N = 1 - 1IN (w’ﬂ)

where w is set to 50k and 7 to 2e % in this work.

2.2 Piecewise-linear Warmup

Peng et al. (2024) found that the linear warmup of
the standard inverse square root LR scheduler was
not suitable for training their large-scale 1B Branch-
former model and introduced the piecewise-linear
warmup policy. This policy splits the warmup step
into two linear phases, introducing an intermediate
LR 7/ with a corresponding number of intermediate
warmup steps w’ as additional hyperparameters. In
the first w’ steps, the LR linearly increases from
0 to 7/, which is typically set to a much smaller
value than 7, and then in the steps between w’ and
w it increases from 7’ to 7. As such, in the warmup
phase, i.e. at the step 7 < w, the LR ; is:

1 —n) (i —uw

77i<w:max<77/',777/+(77 ) (, ))
w w—w

In this work, we follow Peng et al. (2024) and

set the number of intermediate warmup steps w’ to

w/2 i.e., 25k, and the intermediate LR w’ to 1/10.

2.3 Polynomial Warmup

As a first alternative to the piecewise-linear pol-
icy, we propose to increase the LR with a polyno-
mial function with respect to the number of steps.
The slope of the increase is controlled by a hyper-
parameter «, according to the formula:


https://github.com/hlt-mt/FBK-fairseq

i «
Ni<w =1 <>
w
We set « to 1.5, and the polynomial warmup
function is visualized in Figure 1 (green curve).

2.4 Exponential Warmup

As a second alternative, we introduce an expo-
nential policy that, compared to the polynomial
one, has a steeper LR increase in the first part of
the warmup and a lower LR in the second. Also
in this case, the hyper-parameter « controls the
smoothness of the function, and the higher the «
the smaller the LR in the warmup phase. Specifi-
cally, this policy follows the formula:

e — 1
e —1
Similarly to the polynomial warmup (Section
2.3), we set a: to 1.5, and the exponential warmup
function is visualized in Figure 1 (purple curve).

Ni<w =1

3 Experimental Settings

To ensure that divergence issues are not due to a par-
ticularly challenging setting, we avoided multi-task
trainings, resorting to training S2T models on the
automatic speech recognition (ASR) task for two
languages (English and Italian). As training data,
we use ~ 150k hours of publicly available speech
datasets, which are described in Appendix A. For
validation, we use the English (en) and Italian (it)
dev sets of CommonVoice (Ardila et al., 2020).

Our encoder-decoder models have a Transformer
decoder and a Conformer encoder preceded by two
1D convolutional layers that downsample the se-
quence length by a factor of 4. For the Conformer
encoder, we use the implementation by Papi et al.
(2024) that fixes issues in padding handling. Given
the results of preliminary experiments (§4.1), we
set 24 encoder layers and 12 decoder layers for the
experiments in §4.2. The embeddings have 1024
features, with an FFN hidden dimension of 4096
and 16 attention heads. In total, our models have
878M parameters. Further details are provided in
Appendix A.

4 Results

4.1 Preliminary Experiments

In preliminary experiments, we varied the number
of encoder and decoder layers to understand when
the depth of the network becomes critical —i.e., the
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model starts diverging — with the standard inverse
square root LR scheduler. In this scenario, we ob-
served that the number of encoder layers was the
driver of the issue while adding more decoder lay-
ers was not. Specifically, models with more than 18
encoder layers were not converging. For instance,
models with 18 encoder layers and 6 decoder lay-
ers diverge, while models with 12 encoder and 12
decoder layers converge without issues. This obser-
vation, together with the fact that Whisper (which
features a Transformer encoder) was trained with-
out the need for adapting the learning rate sched-
uler, suggests that complex layers featuring many
subcomponents, such as Conformer and Branch-
former layers, pose convergence issues with deep
models. In our Conformer implementation, each
subcomponent is wrapped in a residual connection
(He et al., 2016), which may indicate a need for ad-
ditional normalization layers within each encoder
block to mitigate potential scaling effects. How-
ever, we leave this investigation for future work.

4.2 LR Warmup Analysis

Moving to the comparison of the warmup policies,
Figure 2 shows the resulting learning curves on the
validation sets for the two languages, which dis-
play the same behaviors, with the only difference
that the Italian curves have a higher perplexity at
the beginning and decline later than English ones.
Similar trends can be observed in the training set,
which we report in Appendix B.

700 - exponential_dev_commonvoice-en - ppl
exponential_dev_commonvoice-it - ppl
piecewise-linear_dev_commonvoice-en - ppl
piecewise-linear_dev_commonvoice-it - ppl
polynomial_dev_commeonvoice-en - ppl
polynomial_dev_commonvoice-it - ppl

600

500 A

400

300

200 A

100 1

T T
20000 30000

num_updates

T T
10000 40000 50000

Figure 2: Perplexity on the English and Italian valida-
tion sets for the polynomial, piecewise-linear, and expo-
nential policies for the first 50k steps (warmup phase).

Model Convergence First, we notice that the
model convergence is obtained only with the expo-
nential and piecewise-linear policies. The polyno-
mial policy, instead, displays the same pattern as



CvV

MLS

VP

LR . - - AVG
en it en it en it

PL | 184 137 |74 174 |83 178 | 13.8

Exp | 19.1 143 | 75 179 | 86 183 | 14.3

Table 1: WER ({), computed using jiwer and the Whis-
per text normalizer, on the Common Voice (CV), Vox-
Populi (VP), and MLS test sets of the 170k-steps check-
points obtained with the LR scheduler with piecewise-
linear (PL) and exponential (Exp) warm up.

the standard inverse square root policy (which we
do not report here) leading the model to a high per-
plexity that minimally degrades with the progres-
sion of the training. This convergence issue can
be attributed to an exploding gradient: as we show
in Appendix C, in the polynomial training there
are huge spikes in the gradient norm in the range
25k-30k steps and later, where the other policies
feature a steep decrease that the polynomial fails to
achieve. The exponential policy, despite a higher
LR during the first ~15k steps, has a slightly lower
LR in the 15k-50k range than the polynomial pol-
icy. This minimal difference is sufficient to enable
model convergence. Therefore, we can conclude
that the exponential policy closely approaches the
highest feasible LR during the warmup phase with-
out compromising model convergence.

Convergence Speed Figure 2 also shows that,
as expected, higher LRs result in lower perplex-
ity during the initial steps. In both the English
and Italian validation sets, the exponential policy
— which features the highest LR in the first ~15k
steps — always displays the lowest perplexity. The
polynomial one starts with the highest perplexity
due to its lower LR in the initial steps. However,
it later surpasses the piecewise-linear policy and
closes the gap with the exponential one, thanks to
its higher LR in the later stages, until it ultimately
fails to converge. Interestingly, the learning curves
of the two converging policies show a step-like
decrease, which is anticipated for the exponential
policy (~20k vs ~23k steps for English and ~22k
vs ~26k for Italian) as per its faster convergence.

Effect on the Resulting Model Lastly, we ex-
plore whether the faster initial convergence of the
exponential policy results in a better model at the
end of the training compared to that obtained with
the piecewise-linear policy. Figure 3 shows the
learning curve after the first S0k steps, up to the end
of the whole pass over the training set (i.e., the first
training epoch at step 170k). The learning curves
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Figure 3: Perplexity on the English and Italian valida-
tion sets for the piecewise-linear and exponential poli-
cies for the steps after the warmup phase (50k-170k).

of the piecewise-linear scheduler not only reach the
perplexity of those of the exponential policy but the
English one also becomes slightly better. The same
trend is observed in the training data (see Figure 5
in Appendix B), in which the English data is more
than 80%. The WER on test sets for the checkpoint
at the 170k step also testifies to a slight superiority
of the model obtained using the piecewise-linear
policy on both languages, as shown in Table 1. We
can conclude that a faster convergence in the early
stages of the training does not imply a better result-
ing model and that the warmup policy of the LR
scheduler is critical to ensure the convergence of
the model, but, once that is achieved, its role in the
model quality is limited.

5 Conclusions

In this study, we analyzed one of the key chal-
lenges — beyond engineering, data curation, and
hardware efforts — associated with training large-
scale S2T models i.e., the role of the LR sched-
uler and, in particular, of its warmup strategy in
model convergence and final performance. To this
aim, we compared the standard linear warmup and
the piecewise-linear warmup strategies with two
policies — polynomial and exponential — aimed at
finding the highest possible LR in the warmup
phase that does not lead to convergence issues.
Through experiments on large-scale ASR train-
ings of a ~900M parameters Conformer model,
we demonstrated that while the LR warmup phase
is crucial for stabilizing convergence, it has a mini-
mal impact on final model performance and that the
LR warmup phase should follow an exponential or



sub-exponential rise to ensure model convergence.
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Limitations

Effect of Multilingualism and Multi-task In
this work, we decided to experiment with a single
task and two languages in the training, even though
the amount of training data we used was compara-
ble to that used in other works to train S2T models
on multiple tasks and more than 100 languages
(e.g., OWSM uses 180k hours of data against our
150k hours). Although there is no reason to posit
that a different setting may lead to different conclu-
sions since the behaviors we observed were similar
to those of OWSM, future works should validate
that our findings extend to these scenarios.

Multiple Runs While performing multiple runs
for each setting would provide stronger insights
into the possible statistical significance of the ob-
served differences, this would require extensive
computational costs that go beyond our budget.

Tuning o Although by tuning o we could, for
instance, obtain a converging model even with the
polynomial policy, this was not the focus of our
work. In this paper, we attempted to understand
the role of different LR schedulers on the resulting
model and what could be achieved by using differ-
ent LR warmup policies. Since two extreme solu-
tions — the piecewise-linear policy with a relatively
low LR and the exponential policy with the high-
est feasible LR — do not show evident differences,
finding other values of « or other policies leading
to similar results would not have added much to
our discussion. Also, as noted above, each run is
computationally demanding, limiting our ability to
explore the space of the possible values.
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A Training Settings

We train the models on ~150k hours of speech
datasets, namely the train section of Common Voice
(Ardila et al., 2020), CoVoST2 (Wang et al., 2021b),
FLEURS (Conneau et al., 2023), LibriLight (Kahn
et al., 2020), MLS (Pratap et al., 2020), VoxPop-
uli (Wang et al., 2021a), and YouTube-Commons
(PlelAs, 2024). When the transcript was not avail-
able for a given dataset, we used the automatic
transcripts of MOSEL v1.0 (Gaido et al., 2024).
As YouTube-Commons transcripts are not avail-
able in MOSEL v1.0', we used the transcript pro-
vided for the training of FAMA (Papi et al., 2025).
Our training data is exactly the same used for
FAMA and is available at https://huggingface.
co/datasets/FBK-MT/fama-data. The textual
data is used to build the vocabulary with 16,000
SentencePiece unigrams (Kudo, 2018).

We optimize our models using the Adam op-
timizer with betas (0.9, 0.98). The training loss
is the linear combination of the label-smoothed
cross-entropy (Szegedy et al., 2016) on the decoder
output and two CTC (Graves et al., 2006) losses,
one at the 16th encoder layer and one on top of
the encoder (Bahar et al., 2019; Yan et al., 2023).
We also experimented with removing the auxiliary
CTC losses, to ensure that they were not the driver
of divergence issues and, indeed, their removal did
not change anything in terms of whether a model
converges or not. We clip the gradient norm at
10.0 and use 0.001 weight decay. We trained the
models on 16 A100 GPUs (64GB VRAM) for 1
epoch with at most 55 seconds of data in each mini-
batch and 5 gradient accumulation steps, resulting
in 176,208 batches to complete an epoch. One run
in this setting lasts 6 days.

B Perplexity on the Training Set

Figure 4 shows the perplexity (PPL) of the different
warmup policies on the training set for the first part
of the training. Compared to Figure 2 presenting
the PPL obtained on the validation set, the training
curves show similar behaviors, with the polynomial
warmup not converging, and the piecewise-linear
and exponential leading to, respectively, slower and
faster convergence.

Looking at Figure 5 that isolates the PPL behav-
ior after the first 50k steps, we notice that, again,
the piecewise-linear and exponential warmup ex-

'They have been added in v2.0.
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for the first 50k steps (warmup phase).
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Figure 5: Perplexity on the training set for the piecewise-
linear and exponential warmup policies for the steps
after the warmup phase (50k-170k).

hibit similar trends to those reported for the valida-
tion set in Figure 3: the curves are very close, with
the piecewise-linear, initially above the exponen-
tial, becoming slightly below the exponential in the
long run. This reconfirms the results discussed in
Section 4, where we highlighted the convergence
issues of the polynomial function, which is actu-
ally reflected in the training set, and the slower but
slightly better convergence of the piecewise-linear
warmup against the exponential one.

C Gnorm Analysis

Figure 6 reports the gradient norm in the warmup
phase for the different policies (exponential, poly-
nomial, and piecewise-linear). Except for the initial
steps, the gradient norm for the policies leading to
convergence always remains low (<25). For the
polynomial warmup, instead, there are huge spikes
beyond 100 and even 200 after 25k steps. These
explosions of the gradient norm have also been
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observed in all the runs with the inverse square
root LR scheduler that did not converge in our pre-
liminary experiments. We can conclude that huge
spikes in the gradient norm can be used to detect
non-converging trainings.

Analyzing the gradient norm of the exponential
and piecewise-linear policies, we observe that the
gradient norm is higher at the beginning (8k-15k
steps) for the exponential policy, which displays
faster convergence in this phase. On the opposite,
the gradient norm of the piecewise-linear policy is
higher in the 15k-30k steps range, in which closes
the initial gap with the exponential policy.
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SSR: Alignment-Aware Modality Connector for Speech Language Models

Weiting Tan**

Abstract

Fusing speech into a pre-trained language
model (SpeechLM) usually suffers from the
inefficient encoding of long-form speech and
catastrophic forgetting of pre-trained text
modality. We propose SSR-CONNECTOR (Seg-
mented Speech Representation Connector) for
better modality fusion. Leveraging speech-text
alignments, our approach segments and com-
presses speech features to match the granularity
of text embeddings. Additionally, we introduce
a two-stage training pipeline that includes the
distillation and fine-tuning phases to mitigate
catastrophic forgetting. SSR-CONNECTOR
outperforms existing mechanism for speech-
text modality fusion, consistently achieving bet-
ter speech understanding (e.g., +10 accuracy
on StoryCloze and +20 on Speech-MMLU)
while preserving pre-trained text ability.

1 Introduction

Large language models (Brown et al., 2020;
Chowdhery et al., 2022; Chiang et al., 2023; Anil
et al., 2023; Touvron et al., 2023; OpenAl et al.,
2024; Grattafiori et al., 2024; DeepSeek-Al et al.,
2025, LL.Ms) have demonstrated remarkable per-
formance across various tasks and extending pre-
trained abilities from LLMs to other modalities
has sparked interest in multimodal LLMs (Alayrac
et al., 2022; Liu et al., 2023b; OpenAl et al., 2024;
Tang et al., 2024; Défossez et al., 2024). In this
work, we focus on integrating speech into pre-
trained language models (SpeechLMs). A straight-
forward approach is to transcribe speech into text
and use these transcriptions as prompts for large
language models (Huang et al., 2023); however,
such cascaded systems suffer from error propa-
gation, higher latency, and cannot leverage raw
speech information like emotion, speaker identity,
and other paralinguistic cues (Faruqui and Hakkani-
Tiir, 2021; Lin et al., 2022; Kim et al., 2024). Con-
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sequently, developing end-to-end SpeechL.Ms that
directly fuse speech or audio input has gained pop-
ularity, where various approaches have been ex-
plored to encode speech and align its representa-
tion with pre-trained language models (Zhang et al.,
2023; Rubenstein et al., 2023; Yu et al., 2023; Maiti
et al., 2024; Hassid et al., 2024; Tang et al., 2024;
Nguyen et al., 2024).

Speech representations can be integrated into
pre-trained language models mainly through two
approaches. The first method involves using con-
nector modules that align speech representations
with the language model’s input space without
modifying the model’s existing vocabulary. These
connector-based techniques typically incorporate a
compression module to shorten the speech features,
enhancing efficiency. However, connectors are gen-
erally first trained for the speech recognition task
(with concatenated speech-to-text data) and lack
the ability to support text or speech generation
unless further instruction-finetuned.

The second approach, unit-based fusion, directly
incorporates discrete speech units—normally de-
rived from self-supervised models like HuBERT
(Hsu et al., 2021), XLS-R (Babu et al., 2021), or
DinoSR (Liu et al., 2023a)—into the language
model’s vocabulary. This allows the language
model to be fine-tuned with a combination of
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speech and text tokens, enabling it to handle dual-
modal inputs and outputs. Despite its versatility,
unit-based fusion can lead to longer and less
efficient training contexts due to the sparser na-
ture of speech information. Regardless of the fu-
sion approach, SpeechLLMs often face the challenge
of catastrophic forgetting, where the model loses
its pre-trained text capabilities (Tang et al., 2024;
Nguyen et al., 2024; Défossez et al., 2024).

To tackle these challenges, we propose SSR-
CONNECTOR (Segmented Speech Representation
Connector), which grounds speech representations
in the same semantic space as transcription token
embeddings. Different from prior work that con-
catenates speech with text (Fig. 1 (a,b)) for modal-
ity fusion, we leverage speech-text alignments to
segment and compress speech features (Fig. 1 (¢)).

To mitigate catastrophic forgetting when intro-
ducing the speech modality, we propose a two-
stage training pipeline. In Stage 1, we freeze the
LLM and pre-train the connector using speech-text
distillation, adapting speech inputs into compressed
representations semantically aligned with text em-
beddings. In Stage 2, we unfreeze the LLM and
fine-tune it using next-token prediction, with the
adapted representation as input and the correspond-
ing transcription tokens as targets.

SSR-CONNECTOR outperforms prior
SpeechLLMs, including SPIRITLM, VOXTLM,
TWIST, and AUDIOLM (Nguyen et al., 2024;
Maiti et al., 2024; Hassid et al., 2024; Borsos
et al., 2023), across multiple tasks. These include
Prompt-based Automatic Speech Recognition
(ASR) and Spoken Language Understanding with
sWUGGY, sBLIMP, and StoryCloze (Nguyen
et al., 2020; Mostafazadeh et al., 2017). Our
approach also improves performance on Massive
Multitask Language Understanding (MMLU)
(Hendrycks et al., 2021) and its speech-based coun-
terpart, Speech-MMLU, which we introduce to
assess cross-modal reasoning. Finally, we analyze
different training strategies (§5) and speech-text
aligners (Appendix A) for SSR-CONNECTOR.

2 Related Work

Modality Fusion for Speech Language Models
SpeechLLM typically encodes audio waveforms into
high-dimensional features using pre-trained en-
coders and integrate these representations to pre-
trained LL.Ms via a connection (adapter) module
(Wu et al., 2023; Yu et al., 2023; Zhang et al., 2023;
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Tang et al., 2024). To compress speech representa-
tions, Fathullah et al. (2023) apply stacking-based
fixed-rate compression on speech features extracted
from the Conformer model (Gulati et al., 2020).
Inspired by the Q-former architecture (Li et al.,
2023a), Yu et al. (2023) compress speech features
using a fixed number of query tokens, while Tang
et al. (2024) extend this approach to a window-level
Q-former to support variable frame-rate reduction.
Alternatively, Wu et al. (2023) utilize Connection-
ist Temporal Classification (CTC) (Graves et al.,
2006) to compress representations.

Besides connector-based modality fusion, pre-
processing other modalities—such as speech, vi-
sion, and videos—into tokens (Lyu et al., 2023; Li
et al., 2023b; Team, 2024; Kondratyuk et al., 2024)
has attracted attention for its scalability. Speech
units are typically extracted from self-supervised
representations. For instance, AudioLM (Bor-
sos et al., 2023) integrates semantic tokens from
w2v-BERT (Chung et al., 2021) and acoustic to-
kens from SoundStream (Zeghidour et al., 2021)
for autoregressive audio generation. Rubenstein
et al. (2023) fine-tune the pre-trained LLM PalLM-
2 (Anil et al., 2023) with audio tokens processed
by AudiolLM, enabling both text and speech as in-
put and output. Similarly, VoxtLM (Maiti et al.,
2024) performs multi-task training with speech
units and text tokens, achieving high-quality speech
recognition and synthesis. To mitigate catastrophic
forgetting, Nguyen et al. (2024) propose an inter-
leaved training mechanism to fuse speech tokens
into LLAMA?2 model (Touvron et al., 2023).
Speech-text Alignment Extraction Various
aligner tools are available for extracting speech-
text alignments. For example, the Montreal Forced
Aligner (McAuliffe et al., 2017, MFA) is an easy-
to-use tool based on the Kaldi toolkit (Povey
et al., 2011). Connectionist Temporal Classifica-
tion (CTC) (Graves et al., 2006) is also widely used
for speech-text alignment (Sainath et al., 2020;
Huang et al., 2024); since it is a by-product of
speech recognition, it supports alignment without
explicit text labels. More recently, the UnitY2
aligner (Communication et al., 2023) and the ZMM-
TTS aligner (Gong et al., 2024) have shown excel-
lent alignment performance across multiple lan-
guages. These aligners rely on speech units ex-
tracted from pre-trained encoders (Baevski et al.,
2020; Hsu et al., 2021; Babu et al., 2021) and use
variants of RAD-TTS (Shih et al., 2021) as their
alignment backbone.



(TTTT oo g T T T R
'

sallun] JimaljRusstan e
OO O OO0

O
O 0O 0O O

Speech-Text Aligner

Z; r4) Z3
f ___ _ selectiout
Compressor \(— ® @ g'sj‘
(Decoder-Only) Oy iy &
- e
segment E B B
=== =

speech features X

Figure 2: SSR-CONNECTOR compresses speech features using speech-text alignments. Features are transformed
by a Decoder-only model and selected at boundary index of each segment.

3 Methodology

We develop an alignment-aware speech represen-
tation connector to foster modality fusion between
speech and pre-trained language model. We intro-
duce our connector design in §3.1 and present our
two-stage training pipeline in §3.2.

3.1 Alignment-Aware Speech Representation
Connector

Though previous connectors (Fathullah et al., 2023;
Yu et al., 2023; Wu et al., 2023; Tang et al., 2024)
vary in their compressor designs, they do not ex-
plicitly leverage speech-text alignment information.
SSR-CONNECTOR, in contrast, uses speech-text
alignments to segment and compress speech fea-
tures into the same granularity as text tokens. As
illustrated in Fig. 2, our connector consists of two
components: (1) a speech-text aligner and (2) a
feature compressor.

Given speech features x (1, - ,zpn) €
R™*P extracted by pre-trained speech encoders
(e.g., WAV2VEC2.0, HUBERT, WHISPER, etc.),
the aligner produces a monotonic mapping (align-
ment path) between the speech features and their
transcriptions y = (y1,--- ,ym) € R™*!. This
mapping can be computed based on both speech
features (or their units) and transcriptions (Commu-
nication et al., 2023; Gong et al., 2024), or solely
based on speech input (Sainath et al., 2020; Dong
and Xu, 2020; Huang et al., 2024). We abstract
away the aligner’s implementation here but pro-
vide detailed description and comparison of various
aligners in Appendix A.

Using the alignment mapping, we segment the
input into m chunks of speech features, where each
chunk semantically corresponds to a transcription
token. For example, in Fig. 2, speech features
are segmented at indices (2, 5, 7) according to the
alignment path. We refer to these indices as bound-
ary indices. Once the boundary indices are identi-
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fied, we first apply a linear layer to transform the
speech features to match the embedding dimension
H(H > D) of the pre-trained LLM, since LLMs
typically have a larger feature dimension than pre-
trained speech encoders. We then use the boundary
indices to aggregate and compress the speech rep-
resentations in each chunk through a Transformer
Decoder model (Vaswani et al., 2017).
Specifically, we apply a causal decoder-only
model to transform speech features into high-
dimensional representations g f(x;04ec) €
R"*H  Since each position incorporates past
context, we adopt a selection-based compression
method (Tan et al., 2024), using boundary-indexed
features from g to form the compressed represen-
tation z € R™*H_ While our initial design used
a block-wise attention mask to limit cross-chunk
information flow (as shown in Fig. 2), we found
that removing these masks simplifies training and
inference with minimal performance loss (§4.3).

3.2 Training Method

Previous approaches to integrate speech into LLMs
typically use speech-text data concatenated in ASR
format (i.e., speech representation followed by its
transcription text embedding), to pre-train the con-
nector (Yu et al., 2023; Wu et al., 2023; Tang
et al., 2024). However, after such pre-training, the
model is limited to speech recognition task and
necessitates another instruction-tuning stage to per-
form generative tasks with pre-trained connectors
(Zhang et al., 2023; Tang et al., 2024). Moreover,
once the LLM is unfrozen and fine-tuned (whether
based on a pre-trained connector or direct fusion
with speech units), it suffers from catastrophic
forgetting, leading to degraded text capabilities
(Nguyen et al., 2024; Tang et al., 2024).

With SSR-CONNECTOR, we convert speech into
representations with the same granularity as their
transcription tokens. This allows us to fine-tune



embed h ;

-n—m!\!!

text tokens y

D b

<€0S>

wom
Distillation
womo

LLM

|
| | Il
| i

\ b.
‘<05>
\

adapted repr z

»
1]
7
Q
2
B
B
o
o
2
)
g

speech features X

Stage 1: Connector Distillation 1 Stage 2: LLM Finetuning
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with our alignment-aware modality connector.

the SpeechL.M directly using the next-token predic-
tion objective, where the input is the compressed
representation z and the target is the transcription
y. This approach is possible because our feature
z and text token y share the same length m. How-
ever, our preliminary studies showed that di-
rectly fine-tuning with the next-token prediction
objective leads to catastrophic forgetting, under-
mining the pre-trained LLM’s abilities. There-
fore, we propose a two-stage training pipeline con-
sisting of a distillation stage and a fine-tuning stage
(visualized in Fig. 3).

In Stage 1, we pre-train SSR-CONNECTOR by
distilling the LLM’s text embeddings to align the
connector’s representations with the LLM’s em-
bedding space. Formally, given aligned speech-
text data, we can compute the text embeddings
h = f(y;0emp), Where y is the transcription to-
ken sequence, femp is the embedding table, and f
maps tokens y to their embeddings. Following our
connector design in §3.1, we then obtain the com-
pressed speech representations z. For distillation,
we use a combination of cosine similarity loss L¢os
and mean squared error (MSE) loss Lysg

L = \Lcos +£MSE
1 & z. h;
== A(1—”>+\zi—hi|2]
m 2 [ 2| - [hy]

i=1

(1)

where ) is a hyperparameter to balance the losses'.
In Stage 2, we fine-tune the LLM with the pre-
trained speech connector using the next-token pre-
diction objective. We freeze the speech connector
and update only the LLM’s parameters using the

negative log-likelihood (NLL) loss:

Lain = — Y logp(ys | z<i:6um) ()
=1

'In practice, we set A = 5 to balance the scales of the
cosine similarity and MSE losses
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where y; is the t™ token in the transcription se-
quence Yy, z-¢ denotes all preceding speech repre-
sentations, and 61y represents the LLM’s param-
eters. Note that our NLL loss is computed using
only the preceding speech representations z; (see
Fig. 3), whereas previous methods (Wu et al., 2023;
Tang et al., 2024) condition on both speech infor-
mation and preceding text tokens y;.

In §4, We demonstrate the performance of
SpeechLLM after distillation training. In §5, we
present results after fine-tuning SpeechLM and
compare various fine-tuning strategies to identify
the method that minimizes catastrophic forgetting.

4 Stage 1: Alignment-Aware Connector
Distillation

4.1 Datasets

For distillation training, we use the aligned speech-
to-text dataset MLS (Pratap et al., 2020), specif-
ically the English portion, which consists of
about 50,000 hours of speech. To evaluate
our SpeechL.Ms, we employ different benchmark
datasets (see Table 1). To assess the model’s spo-
ken language understanding (SLU) capabilities, we
follow Nguyen et al. (2024) and use sWUGGY,
sBLIMP, and the StoryCloze dataset. sWUGGY
evaluates whether a model can discriminate be-
tween real spoken words and non-words (e.g.,
“brick" vs. “blick"), while SBLIMP assesses if the
model can distinguish between a grammatically cor-
rect spoken sentence and its ungrammatical variant.
We evaluate our SpeechLLMs on both text (7") and
speech (.5) versions of sSWUGGY and sBLIMP.
The StoryCloze dataset measures whether the
model can identify the plausible ending between
two sentences given the beginning of a short story,
which typically requires high-level semantic under-
standing and common sense (Mostafazadeh et al.,
2017). Besides spoken and text versions of Sto-
ryCloze, following Nguyen et al. (2024), we use
a speech-text version (S — 1), where the begin-
ning of the story is synthesized into speech and the
two ending sentences are kept in text format. This
version requires the model to have cross-modal
understanding to infer the sensible story ending.
MMLU (Hendrycks et al., 2021) is widely used
to assess LLMs’ knowledge comprehension, under-
standing, and reasoning abilities, and we use it to
measure the extent of forgetting during cross-modal
fine-tuning. Since MMLU is a diverse and high-
quality evaluation dataset for LLMs, we craft a



Eval Dataset Type Eval Metric Eval Modality
sWUGGY (Nguyen et al., 2020) Choice Task Accuracy S, T

sBLIMP (Nguyen et al., 2020) Choice Task Accuracy S, T
StoryCloze (Mostafazadeh et al., 2017)  Choice Task Accuracy S, T,S—T
MMLU (Hendrycks et al., 2021) Choice Task Accuracy T
Speech-MMLU (Ours) Choice Task Accuracy S—>T
LibriSpeech (Panayotov et al., 2015) Generation Task ~ Word Error Rate S — T

Table 1: Evaluation Datasets and their types. For the evaluation format, S is speech-only, 7" is text-only, and S — T’
means the evaluation prompt consists of speech prefix and text continuation.

variant, Speech-MMLU, to assess our SpeechLM’s
cross-modal understanding. Specifically, we uti-
lized AUDIOBOX (Vyas et al., 2023), a high-quality
text-to-speech synthesizer, to convert the question
portion of each choice task into speech while keep-
ing the multiple-choice answers in text format.
We selected a subset of MMLU to construct our
Speech-MMLU dataset, as some domains’ ques-
tions are not suitable for synthesis (e.g., the algebra
subset contains many mathematical notations that
are not synthesized properly).

sWUGGY, sBLIMP, StoryCloze, and Speech-
MMLU are all categorized as "Choice Task",
meaning several choices are presented to the
SpeechLLM (Speech-MMLU has four choices while
the other task has only two choices). For each
task, we compute accuracy using groundtruth
choice and the highest likelihood choice predicted
by the SpeechLM. Lastly, we also evaluate our
SpeechLM’s ASR performance using the Lib-
rispeech clean/other datasets. We evaluate ASR in a
prompt-based fashion with zero-shot and five-shot
setting. Comprehensive details about our datasets
and evaluation can be found in Appendix C.

4.2 Model Setup

We instantiate our LLM using the pre-trained
LLAMA3 model (Grattafiori et al., 2024) and em-
ploy DinoSR (Liu et al., 2023a) as our pre-trained
speech feature extractor. Our speech connector in-
cludes a linear layer that maps DinoSR’s extracted
representations (D = 768) to the LLM’s embed-
ding space dimension ({ = 4096). We then uti-
lize a 4-layer Transformer Decoder to transform
and compress the speech representations based on
alignments, as described in §3.1. The compressed
representations z and the embeddings of text to-
kens h are used to compute the distillation loss for
updating the connector’s parameters. We train our
connector for 400,000 steps with a learning rate of
1 x 107?, using dynamic batching with a maximum
of 4,096 tokens per device. We employ distributed
data parallelism (DDP) with 32 A100 GPUs.
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To extract alignments, we experimented with
various approaches, including the UNITY 2 aligner,
CTC-based aligners (Graves et al., 2006), and Con-
tinuous Integrate-and-Fire (Dong and Xu, 2020,
CIF). Due to space constraints, we provide com-
prehensive descriptions and comparisons of these
methods in Appendix A, where we evaluate both
the alignment quality and the Word Boundary Er-
ror of the segmentations. After assessing their per-
formance, we selected UNITY2 (Barrault et al.,
2023) and character-level CTC (CHAR-CTC) as
our connector backbone to report experimental re-
sults. Overall, UNITY 2 offers superior alignment
quality because it utilizes both speech and text as
input. In contrast, CTC only requires speech input
to compute segmentation for our connector.

4.3 Experimental Results

In this section, we present the evaluation of SSR-
CONNECTOR based SpeechLM in terms of Spoken
Language Understanding (SLU) and Cross-modal
Understanding (through our use of Storycloze and
Speech MMLU benchmark). We also evaluate our
model with prompting-based speech recognition
and speech style recognition.

We compare against several systems that varies
in training approaches (pre-trained from scratch
or fine-tuned), types of speech units, and the size
of training data. Briefly, GSLM (Lakhotia et al.,
2021) trains on speech units like HuUBERT, TWIST
(Hassid et al., 2024) is a textually pretrained speech
model based on Llama-13B (Touvron et al., 2023),
and AudioLM (Borsos et al., 2023) employs a cas-
cade system with a semantic sequence model along-
side coarse- and fine-acoustic models. These mod-
els focus solely on speech without capabilities for
text understanding or generation. More recently,
SPIRITLM (Nguyen et al., 2024) and VoxtLM
(Maiti et al., 2024) have adopted multi-task train-
ing objectives that incorporate text-only, speech-
only, and speech-text token sequences to fuse the
speech modality into pre-trained LLMs effectively.
Since the original SPIRITLM is fine-tuned based on



Model Type sWUGGY sBLIMP Storycloze MMLU
T S T S T S S—T 5-shot
Previous Work
GSLM? (Lakhotia et al., 2021) 0 64.8 0 54.2 0 53.3 0 0
AUDIOLM® (Borsos et al., 2023) 0 715 0 64.7 0 _ 0 0
VOXTLM® (Maiti et al., 2024) 80.3 66.1 74.2 57.1 _ _ _ _
TWIST® (Hassid et al., 2024) 0 74.5 0 59.2 0 554 0 0
MosHI* (Défossez et al., 2024) 0 72.6 0 58.8 0 60.8 _ 49.8
SPIRITLM® (Nguyen et al., 2024)  80.3 69 73.3 58.3 79.4 61 64.6 36.9
SPIRITLM (LLAMA3)*® 77.6 73.5 74.5 56.3 75.1 61.1 61.6 53.5
SSR-CONNECTOR
UNITY2 + Blockwise-mask 81 71.5 74.5 73.1 80.9 71.8 75 65.3
UNITY?2 81 71.2 74.5 72.4 80.9 69.3 74.8 65.3
CHAR-CTC 81 56.4 74.5 67.3 80.9 62.2 74.3 65.3
CHAR-CTC (Unit-based) 81 54.1 74.5 61.8 80.9 59.2 72.5 65.3
Cascade System
ASR (WHISPER) + LLAMA2 © 84.1 79.2 72.8 71.6 81.9 75.7 75.7 46.2

Table 2: Model performance (accuracy) on spoken language understanding and MMLU. ©: Results taken from
Nguyen et al. (2024).%: Results taken from Défossez et al. (2024). ®: Our implementation of SPIRITLM based on
LLAMA3 checkpoint. We fill with ) the task and modality that are not supported by the reported system, and with
_ the scores that are not publicly available. We bold the best result and highlight the second-best system with the

blue color box (excluding the cascaded system).

LLAMAZ2, we follow the same recipe to fine-tune
the LLAMA3-based SPIRITLM ourselves for a fair
comparison on text-relevant metrics like MMLU.

Spoken Language Understanding Performance
As shown in Table 2, our systems outperform
previous models on all tasks except sSWUGGY.
The sWUGGY dataset includes incorrectly spoken
words that cause segmentation errors because these
words were not present during aligner training,
leading to our system’s lower performance on this
dataset. However, sSWUGGY is the least significant
task since it relies on synthesized incorrect words
and does not require the model’s understanding or
reasoning capabilities. In contrast, both UNITY 2
and CHAR-CTC based connector greatly surpass
previous models on other datasets, demonstrating
the effectiveness of SSR-CONNECTOR in enhanc-
ing SLU performance while preserving model’s
text understanding ability.

Beyond UNITY 2 and CHAR-CTC, we introduce
two additional systems for ablation. The UNITY2
+ Blockwise-mask system achieves the highest per-
formance by applying a blockwise attention mask
to further constrain the Transformer-Decoder (de-
scribed in §3.1). However, due to its marginal
improvement over UNITY2 and increased com-
putational cost, we decide to simplify the design
and remove the blockwise-attention masks. The
CHAR-CTC (Unit-based) system differs by uti-

61

lizing discrete speech units instead of raw wave-
form features processed by the DinoSR (Liu et al.,
2023a) encoder. These units are extracted via
K-Means clustering on DinoSR representations,
which leads to some information loss during dis-
cretization and reconstruction, resulting in lower
performance compared to CHAR-CTC. Nonethe-
less, CHAR-CTC (Unit-based) demonstrates that
our alignment-aware connector design is compati-
ble with discrete speech units as well.

Speech-MMLU and Prompt-based ASR Perfor-
mance In addition to SLU tasks, we evaluate
our systems on the Speech-MMLU benchmark,
which assesses cross-modal understanding and is
more challenging than previous SLU tasks. We
also conduct prompt-based ASR evaluations to
assess the quality of the adapted features. As
shown in Table 3, our systems greatly outperform
the previous SpeechLM (SPIRITLM), achieving a
+20 accuracy improvement on the Speech-MMLU
dataset®. These results indicate that SpeechLM
based on SSR-CONNECTOR possesses enhanced
cross-modal abilities that enable it to comprehend
spoken questions and reason through multiple-
choice options to select correct answers. Similarly,
our systems achieve much lower WERSs on the Lib-
rispeech clean and other test sets compared to SPIR-

2 We report micro-average across 22 domains and the
detailed breakdown is available in Appendix D.



Model Type Speech MMLU 1 | ASR Clean Test | | ASR Other Test |
0-shot  5-shot | 0-shot  5-shot | O-shot  5-shot
SPIRITLM (Nguyen et al., 2024) N/A N/A N/A 21.9* N/A 29.2*
SPIRITLM (LLAMA3) 40.5 42.75 N/A 21.0% N/A 28.5%
SSR-CONNECTOR
UNITY?2 + Blockwise-mask 65.0 69.5 5.0 2.6 8.1 6.8
UNITY?2 64.2 68.6 5.6 4.0 12.1 10.6
CHAR-CTC 61.7 66.5 9.7 6.5 20.2 14.9
CHAR-CTC (Unit-based) 574 62.3 12.6 8.8 25.6 18.6

Table 3: Comparison of Speech-MMLU and ASR performance. Speech-MMLU results are micro-averages across
all domains. *: For SPIRITLM, We report WER using 10-shot prompting, following Nguyen et al. (2024).

Task Model 0-shot 5-shot 10-shot
. Cascaded 51.6 52.2 54.7
Whispervs. Laugh =y ™ 496 640 759
Ha vs. Sad Cascaded 50.0 51.8 51.0
PPy VS- Ours 516 522 547

Table 4: Accuracy of Speech Style Recognition with
In-context Learning

ITLM. Notably, neither SPIRITLM nor our system
was trained on ASR tasks, so the model relies solely
on in-context learning to generate transcriptions.

We also compared our system against another
connector-based system, SALMONN (Tang et al.,
2024), over Storycloze and Speech MMLU (both
in S — T format) and we find that SALMONN
achieved an accuracy of 63.3% on Storycloze and
25.3% on Speech-MMLU, while our system has
over 74% accuracy on Storycloze and over 60%
accuracy on Speech-MMLU. The result indicates
that catastrophic forgetting remains a severe issue
for previous connector-based methods as well.

Beyond Semantics In Table 4, we also show
that the connector retains paralinguistic informa-
tion. We evaluate this using the Expresso benhmark
(Nguyen et al., 2023) by prompting our model to
predict speech styles. Our SpeechLM can dis-
tinguish expressions through in-context learning
without being fine-tuned for emotion recognition
(we also provide the cascaded baseline (Whisper +
LLAMA3) as a baseline where style can only be
inferred from transcriptions). More experimental
details are provided in Appendix B. This analy-
sis demonstrates that our connector preserves non-
semantic information even though we focus on
aligning semantics and reducing catastrophic for-
getting. Our connector design also complements
existing methods for emotion recognition, such as
using expressive tokens in SpiritLM (Nguyen et al.,
2024) and emotion-relevant instruction tuning in
SALMONN (Tang et al., 2024).

62

5 Stage 2: Speech Language Model
Fine-tuning

In Stage 1 (§4), we freeze the pre-trained LLM and
distill its text embeddings into our alignment-aware
connector. In this section, we fine-tune SpeechLM
by freezing the connector and updating the LLM.
This process enhances the model’s spoken lan-
guage understanding (SLU) performance by fitting
SpeechLLM on the aligned speech-text data, albeit
at the expense of degrading its pre-trained text ca-
pabilities. In the following sections, we compare
various methods to mitigate catastrophic forgetting
and demonstrate their trade-offs between speech
and text understanding.

5.1 Mitigate Catastrophic Forgetting

Model and Dataset Setup We fine-tune
SpeechLM using the next-token prediction
objective described in §3.2. In this stage, we freeze
the connector distilled in Stage 1 and unfreeze
the LLM (LLAMA3) parameters. Following

Stage 1 (§4), we use the MLS dataset for training

and evaluate the model on the same speech

and text understanding tasks. Beyond vanilla
fine-tuning, we also explore Low-rank Adaptation

(Hu et al., 2021, LoRA) and multitask fine-tuning

as they have been shown effective for mitigating

catastrophic forgetting in other tasks (Xue et al.,

2021; Vu et al., 2022). Details of our fine-tuning

setup are shown below:

e Vanilla Fine-tuning: We perform full fine-
tuning on the aligned speech-text data with a
learning rate of 1 x 107 and a maximum to-
ken size of 4096. Training is model-parallelized
across 32 A100 GPUs using Fully Sharded Data
Parallel (Zhao et al., 2023, FSDP).

LoRA Fine-tuning: We leverage the low-rank
constraints from as regularization to prevent
model overfitting in MLS dataset. We config-
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Figure 4: Comparison of different fine-tuning methods on StoryCloze (S) and MMLU benchmark.

Model Type | sWUGGY | sBLIMP | Storycloze | MMLU | Speech MMLU | ASR (5-shot) |

| T S | T S | T S  S—T | 5-shot | O-shot 5-shot | Clean  Other
SPIRITLM (LLAMA3) ‘ 776 73.5 ‘ 745 56.3 ‘ 75.1 61.1 61.6 ‘ 53.5 ‘ 40.5 42.8 ‘ 21.0*  28.5"
CHAR-CTC ‘ 81.0 564 ‘ 745 673 ‘ 809 622 743 ‘ 65.3 ‘ 61.7 66.5 6.5 14.9
+ Multitask Finetuning | 82.9 56.7 | 759 689 | 81.0 634 73.1 63.1 48.1 56.3 5.7 13.1

Table 5: Performance comparison when the model is fine-tuned. *: For SPIRITLM, WER is reported using 10-shot
prompting for ASR, following Nguyen et al. (2024). We observe that stage 2 fine-tuning enhances the model’s
performance on speech-only tasks but compromises its cross-modal capabilities.

ure LoRA layers with o = 512, r = 256, and a
dropout probability of 0.1.

Multitask Fine-tuning: To preserve the LLM’s
pre-trained text capabilities, we also fine-tune
SpeechLLM on text-only data using Negative Log-
Likelihood (NLL) loss. The dataloader is config-
ured to sample from both speech-text and text-
only datasets with equal probability. We use the
MLS dataset for speech-text training and employ
a subset of the LLAMA?2 training datasets (Tou-
vron et al., 2023) for text-only training.

5.2 Comparison of Fine-tuning Methods

In Fig. 4, we compare different fine-tuning meth-
ods on StoryCloze (S) and MMLU. StoryCloze
performance is indicative of how well model is fit-
ted to the speech modality and MMLU measures
the degree of catastrophic forgetting in pre-trained
text abilities. We observe that Vanilla Fine-tuning
quickly overfits to the speech domain, achieving im-
proved performance on StoryCloze but drastically
decreasing MMLU accuracy. In contrast, LORA
Fine-tuning introduces strong regularization, result-
ing in limited improvements in speech understand-
ing. Although LoRA mitigates catastrophic forget-
ting to some extent compared to vanilla fine-tuning,
performance still steadily declines. Multitask fine-
tuning emerges as the most promising approach,
enhancing speech understanding while largely mit-
igating catastrophic forgetting, evidenced by the
modest 2-point drop in MMLU.

Since model performance does not further im-
prove with additional training steps (as shown
in Fig. 4), we utilize the checkpoint trained for
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5,000 updates to compare with baseline models.
The results are presented in Table 5. Note that
even with only 5,000 updates, the model has ob-
served all speech-text data due to our large effec-
tive batch size. As observed from the results, fine-
tuned SpeechLLM outperforms baseline methods on
tasks primarily relying on speech-only information
(sWUGGY, sBLIMP, ASR). However, we also ob-
serve a decline in performance on S — 7T tasks
such as Speech-MMLU and StoryCloze, indicating
that there is still unavoidable degradation of text
capabilities which adversely affects SpeechLM’s
cross-modal performance.

Overall, Stage 2 fine-tuning experiments high-
light a trade-off between enhanced speech under-
standing and degraded text abilities when unfreez-
ing pre-trained LLM weights. Though such for-
getting phenomenon is unavoidable, our two-stage
training pipeline has largely preserved SpeechLM’s
text ability and our experimental results underscore
the importance of incorporating high-quality text
data during cross-modal fine-tuning to balance per-
formance across both modalities.

6 Conclusion

We propose SSR-CONNECTOR to inject speech
representation into pre-trained LLMs. Through
explicitly leveraging speech-text alignment, our
connector compresses long and sparse speech infor-
mation to the same granularity as text tokens. With
our proposed two-stage training pipeline for modal-
ity fusion, SSR-CONNECTOR-based SpeechLM
achieves better speech understanding while retain-
ing its pre-trained text ability.



Limitations

While our proposed SSR-CONNECTOR signifi-
cantly enhances speech-text modality fusion and
mitigates catastrophic forgetting, there remain sev-
eral limitations that warrant further exploration.

First, our work focuses on aligning speech se-
mantics with text in large language models (LLMs).
While our experiments show that paralinguistic in-
formation, such as speech styles, can be preserved
and leveraged through in-context learning, we do
not explicitly model these aspects. Future work
could better encode prosody, speaker identity, and
emotional cues to enhance expressive speech gen-
eration and nuanced speech understanding.

Second, our experiments on mitigating catas-
trophic forgetting are conducted primarily on a sin-
gle language family, using LLAMA3 (Grattafiori
et al., 2024) as the base LLM and DINOSR (Liu
et al., 2023a) as the speech encoder. The extent of
our method’s effectiveness across different archi-
tectures and speech encoders remains unverified.

Finally, while our evaluation covers a range of
speech and multimodal benchmarks, additional
real-world settings, such as conversational speech,
noisy environments, and multilingual scenarios, re-
main unexplored. Extending our methodology to
such conditions will be essential for deploying ro-
bust, generalizable SpeechL.Ms.

References

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, An-
toine Miech, Iain Barr, Yana Hasson, Karel Lenc,
Arthur Mensch, Katie Millican, Malcolm Reynolds,
Roman Ring, Fliza Rutherford, Serkan Cabi, Tengda
Han, Zhitao Gong, Sina Samangooei, Marianne
Monteiro, Jacob Menick, Sebastian Borgeaud, An-
drew Brock, Aida Nematzadeh, Sahand Sharifzadeh,
Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals,
Andrew Zisserman, and Karen Simonyan. 2022.
Flamingo: a visual language model for few-shot
learning. Preprint, arXiv:2204.14198.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernandez
Abrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa

64

Dehghani, Sunipa Dev, Jacob Devlin, Mark Diaz,
Nan Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu
Feng, Vlad Fienber, Markus Freitag, Xavier Gar-
cia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-
Ari, Steven Hand, Hadi Hashemi, Le Hou, Joshua
Howland, Andrea Hu, Jeffrey Hui, Jeremy Hur-
witz, Michael Isard, Abe Ittycheriah, Matthew Jagiel-
ski, Wenhao Jia, Kathleen Kenealy, Maxim Krikun,
Sneha Kudugunta, Chang Lan, Katherine Lee, Ben-
jamin Lee, Eric Li, Music Li, Wei Li, YaGuang Li,
Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhongtao Liu,
Frederick Liu, Marcello Maggioni, Aroma Mahendru,
Joshua Maynez, Vedant Misra, Maysam Moussalem,
Zachary Nado, John Nham, Eric Ni, Andrew Nys-
trom, Alicia Parrish, Marie Pellat, Martin Polacek,
Alex Polozov, Reiner Pope, Siyuan Qiao, Emily Reif,
Bryan Richter, Parker Riley, Alex Castro Ros, Au-
rko Roy, Brennan Saeta, Rajkumar Samuel, Renee
Shelby, Ambrose Slone, Daniel Smilkov, David R.
So, Daniel Sohn, Simon Tokumine, Dasha Valter,
Vijay Vasudevan, Kiran Vodrahalli, Xuezhi Wang,
Pidong Wang, Zirui Wang, Tao Wang, John Wiet-
ing, Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting
Xue, Pengcheng Yin, Jiahui Yu, Qiao Zhang, Steven
Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav
Petrov, and Yonghui Wu. 2023. Palm 2 technical
report. Preprint, arXiv:2305.10403.

Arun Babu, Changhan Wang, Andros Tjandra, Kushal
Lakhotia, Qiantong Xu, Naman Goyal, Kritika Singh,
Patrick von Platen, Yatharth Saraf, Juan Miguel Pino,
Alexei Baevski, Alexis Conneau, and Michael Auli.
2021. Xls-r: Self-supervised cross-lingual speech
representation learning at scale. In Interspeech.

Alexei Baevski, Henry Zhou, Abdelrahman Mohamed,
and Michael Auli. 2020. wav2vec 2.0: A framework
for self-supervised learning of speech representations.
Preprint, arXiv:2006.11477.

Loic Barrault, Yu-An Chung, Mariano Coria Megli-
oli, David Dale, Ning Dong, Mark Duppenthaler,
Paul-Ambroise Duquenne, Brian Ellis, Hady Elsa-
har, Justin Haaheim, John Hoffman, Min-Jae Hwang,
Hirofumi Inaguma, Christopher Klaiber, Ilia Ku-
likov, Pengwei Li, Daniel Licht, Jean Maillard, Rus-
lan Mavlyutov, Alice Rakotoarison, Kaushik Ram
Sadagopan, Abinesh Ramakrishnan, Tuan Tran, Guil-
laume Wenzek, Yilin Yang, Ethan Ye, Ivan Ev-
timov, Pierre Fernandez, Cynthia Gao, Prangthip
Hansanti, Elahe Kalbassi, Amanda Kallet, Artyom
Kozhevnikov, Gabriel Mejia Gonzalez, Robin San
Roman, Christophe Touret, Corinne Wong, Carleigh
Wood, Bokai Yu, Pierre Andrews, Can Balioglu,
Peng-Jen Chen, Marta R. Costa-jussa, Maha Elbayad,
Hongyu Gong, Francisco Guzmén, Kevin Heffernan,
Somya Jain, Justine Kao, Ann Lee, Xutai Ma, Alex
Mourachko, Benjamin Peloquin, Juan Pino, Sravya
Popuri, Christophe Ropers, Safiyyah Saleem, Hol-
ger Schwenk, Anna Sun, Paden Tomasello, Chang-
han Wang, Jeff Wang, Skyler Wang, and Mary
Williamson. 2023. Seamless: Multilingual expres-
sive and streaming speech translation. Preprint,
arXiv:2312.05187.


https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2305.10403
https://arxiv.org/abs/2305.10403
https://api.semanticscholar.org/CorpusID:244270531
https://api.semanticscholar.org/CorpusID:244270531
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2006.11477
https://arxiv.org/abs/2312.05187
https://arxiv.org/abs/2312.05187

Zalan Borsos, Raphaél Marinier, Damien Vincent, Eu-

gene Kharitonov, Olivier Pietquin, Matt Sharifi,
Dominik Roblek, Olivier Teboul, David Grangier,
Marco Tagliasacchi, and Neil Zeghidour. 2023. Au-
diolm: a language modeling approach to audio gen-
eration. Preprint, arXiv:2209.03143.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam Mc-
Candlish, Alec Radford, Ilya Sutskever, and Dario
Amodei. 2020. Language models are few-shot learn-
ers. Preprint, arXiv:2005.14165.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,

Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, lon
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,

Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. Preprint, arXiv:2204.02311.

Yu-An Chung, Yu Zhang, Wei Han, Chung-Cheng

Chiu, James Qin, Ruoming Pang, and Yonghui Wu.
2021. W2v-bert: Combining contrastive learning
and masked language modeling for self-supervised
speech pre-training. Preprint, arXiv:2108.06209.

Seamless Communication, Loic Barrault, Yu-An Chung,

Mariano Coria Meglioli, David Dale, Ning Dong,
Mark Duppenthaler, Paul-Ambroise Duquenne,
Brian Ellis, Hady Elsahar, Justin Haaheim, John Hoff-
man, Min-Jae Hwang, Hirofumi Inaguma, Christo-
pher Klaiber, Ilia Kulikov, Pengwei Li, Daniel Licht,
Jean Maillard, Ruslan Mavlyutov, Alice Rakotoari-
son, Kaushik Ram Sadagopan, Abinesh Ramakr-

65

ishnan, Tuan Tran, Guillaume Wenzek, Yilin Yang,
Ethan Ye, Ivan Evtimov, Pierre Fernandez, Cynthia
Gao, Prangthip Hansanti, Elahe Kalbassi, Amanda
Kallet, Artyom Kozhevnikov, Gabriel Mejia Gonza-
lez, Robin San Roman, Christophe Touret, Corinne
Wong, Carleigh Wood, Bokai Yu, Pierre Andrews,
Can Balioglu, Peng-Jen Chen, Marta R. Costa-jussa,
Maha Elbayad, Hongyu Gong, Francisco Guzman,
Kevin Heffernan, Somya Jain, Justine Kao, Ann
Lee, Xutai Ma, Alex Mourachko, Benjamin Pelo-
quin, Juan Pino, Sravya Popuri, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, Anna Sun, Paden
Tomasello, Changhan Wang, Jeff Wang, Skyler Wang,
and Mary Williamson. 2023. Seamless: Multilin-
gual expressive and streaming speech translation.
Preprint, arXiv:2312.05187.

DeepSeek-Al, Daya Guo, Dejian Yang, Haowei Zhang,

Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,
Han Bao, Hanwei Xu, Haocheng Wang, Honghui
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan
Zhang, Minghua Zhang, Minghui Tang, Meng Li,
Miaojun Wang, Mingming Li, Ning Tian, Panpan
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,
Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun,
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu,
Wenfeng Liang, Wenjun Gao, Wenqgin Yu, Wentao
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li,
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin,
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi-
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang,
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi,
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang,
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yonggiang Guo,
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu-
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You,
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu,
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu,
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan,
Z.7Z.Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao,


https://arxiv.org/abs/2209.03143
https://arxiv.org/abs/2209.03143
https://arxiv.org/abs/2209.03143
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2108.06209
https://arxiv.org/abs/2108.06209
https://arxiv.org/abs/2108.06209
https://arxiv.org/abs/2312.05187
https://arxiv.org/abs/2312.05187

Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi-
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song,
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen-
tivizing reasoning capability in llms via reinforce-
ment learning. Preprint, arXiv:2501.12948.

Alexandre Défossez, Laurent Mazaré, Manu Orsini,
Amélie Royer, Patrick Pérez, Hervé Jégou, Edouard
Grave, and Neil Zeghidour. 2024. Moshi: a speech-
text foundation model for real-time dialogue. Tech-
nical report, Kyutai.

Linhao Dong and Bo Xu. 2020. Cif: Continuous
integrate-and-fire for end-to-end speech recognition.
Preprint, arXiv:1905.11235.

Manaal Faruqui and Dilek Hakkani-Tiir. 2021. Re-
visiting the boundary between asr and nlu in the
age of conversational dialog systems. Preprint,
arXiv:2112.05842.

Yassir Fathullah, Chunyang Wu, Egor Lakomkin, Jun-
teng Jia, Yuan Shangguan, Ke Li, Jinxi Guo, Wenhan
Xiong, Jay Mahadeokar, Ozlem Kalinli, Christian
Fuegen, and Mike Seltzer. 2023. Prompting large
language models with speech recognition abilities.
Preprint, arXiv:2307.11795.

John S. Garofolo, Lori F. Lamel, William M. Fisher,
Jonathan G. Fiscus, David S. Pallett, Nancy L.
Dahlgren, and Victor Zue. 1993. TIMIT acoustic-
phonetic continuous speech corpus. Technical Report
LDC93S1, Linguistic Data Consortium, Philadelphia,
PA.

Cheng Gong, Xin Wang, Erica Cooper, Dan Wells,
Longbiao Wang, Jianwu Dang, Korin Richmond, and
Junichi Yamagishi. 2024. Zmm-tts: Zero-shot mul-
tilingual and multispeaker speech synthesis condi-
tioned on self-supervised discrete speech representa-
tions. Preprint, arXiv:2312.14398.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel-
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi-
tra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro-
driguez, Austen Gregerson, Ava Spataru, Baptiste
Roziere, Bethany Biron, Binh Tang, Bobbie Chern,
Charlotte Caucheteux, Chaya Nayak, Chloe Bi,
Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
Danny Wyatt, David Esiobu, Dhruv Choudhary,
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy,
Elina Lobanova, Emily Dinan, Eric Michael Smith,
Filip Radenovic, Francisco Guzmén, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An-
derson, Govind Thattai, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,

66

Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal
Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,
Louis Martin, Lovish Madaan, Lubo Malo, Lukas
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,
Ning Zhang, Olivier Duchenne, Onur Celebi, Patrick
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,
Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-
ran Narang, Sharath Raparthy, Sheng Shen, Shengye
Wan, Shruti Bhosale, Shun Zhang, Simon Van-
denhende, Soumya Batra, Spencer Whitman, Sten
Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-
ginie Do, Vish Vogeti, Vitor Albiero, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei
Baevski, Allie Feinstein, Amanda Kallet, Amit San-
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-
dres Alvarado, Andrew Caples, Andrew Gu, Andrew
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,


https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
http://kyutai.org/Moshi.pdf
http://kyutai.org/Moshi.pdf
https://arxiv.org/abs/1905.11235
https://arxiv.org/abs/1905.11235
https://arxiv.org/abs/2112.05842
https://arxiv.org/abs/2112.05842
https://arxiv.org/abs/2112.05842
https://arxiv.org/abs/2307.11795
https://arxiv.org/abs/2307.11795
https://catalog.ldc.upenn.edu/LDC93S1
https://catalog.ldc.upenn.edu/LDC93S1
https://arxiv.org/abs/2312.14398
https://arxiv.org/abs/2312.14398
https://arxiv.org/abs/2312.14398
https://arxiv.org/abs/2312.14398

Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Ce Liu, Changhan Wang,
Changkyu Kim, Chao Zhou, Chester Hu, Ching-
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,
Daniel Kreymer, Daniel Li, David Adkins, David
Xu, Davide Testuggine, Delia David, Devi Parikh,
Diana Liskovich, Didem Foss, Dingkang Wang, Duc
Le, Dustin Holland, Edward Dowling, Eissa Jamil,
Elaine Montgomery, Eleonora Presani, Emily Hahn,
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank
Seide, Gabriela Medina Florez, Gabriella Schwarz,
Gada Badeer, Georgia Swee, Gil Halpern, Grant
Herman, Grigory Sizov, Guangyi, Zhang, Guna
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun
Habeeb, Harrison Rudolph, Helen Suk, Henry As-
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,
Irina-Elena Veliche, Itai Gat, Jake Weissman, James
Geboski, James Kohli, Janice Lam, Japhet Asher,
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Ki-
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst-
edt, Madian Khabsa, Manav Avalani, Manish Bhatt,
Martynas Mankus, Matan Hasson, Matthew Lennie,
Matthias Reso, Maxim Groshev, Maxim Naumov,
Maya Lathi, Meghan Keneally, Miao Liu, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa-
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark,
Mike Macey, Mike Wang, Miquel Jubert Hermoso,
Mo Metanat, Mohammad Rastegari, Munish Bansal,
Nandhini Santhanam, Natascha Parks, Natasha
White, Navyata Bawa, Nayan Singhal, Nick Egebo,
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz,
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe-
dro Rittner, Philip Bontrager, Pierre Roux, Piotr
Dollar, Polina Zvyagina, Prashant Ratanchandani,
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy,
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky
Wang, Russ Howes, Ruty Rinott, Sachin Mehta,
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov,
Satadru Pan, Saurabh Mahajan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-

67

say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,
Shuqgiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,
Stephanie Max, Stephen Chen, Steve Kehoe, Steve
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
Summer Deng, Sungmin Cho, Sunny Virk, Suraj
Subramanian, Sy Choudhury, Sydney Goldman, Tal
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim
Matthews, Timothy Chou, Tzook Shaked, Varun
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad
Tonescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd
of models. Preprint, arXiv:2407.21783.

Alex Graves, Santiago Ferndndez, Faustino Gomez, and

Jiirgen Schmidhuber. 2006. Connectionist temporal
classification: Labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of
the 23rd International Conference on Machine Learn-
ing, ICML ’06, page 369-376, New York, NY, USA.
Association for Computing Machinery.

Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki

Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
Wang, Zhengdong Zhang, Yonghui Wu, and
Ruoming Pang. 2020. Conformer: Convolution-
augmented transformer for speech recognition.
CoRR, abs/2005.08100.

Michael Hassid, Tal Remez, Tu Anh Nguyen, Itai

Gat, Alexis Conneau, Felix Kreuk, Jade Copet,
Alexandre Defossez, Gabriel Synnaeve, Emmanuel
Dupoux, Roy Schwartz, and Yossi Adi. 2024. Tex-
tually pretrained speech language models. Preprint,
arXiv:2305.130009.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,

Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021. Measuring massive multitask language under-
standing. Preprint, arXiv:2009.03300.

Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,

Kushal Lakhotia, Ruslan Salakhutdinov, and Abdel-
rahman Mohamed. 2021. Hubert: Self-supervised
speech representation learning by masked prediction
of hidden units. Preprint, arXiv:2106.07447.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan

Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Rongjie Huang, Mingze Li, Dongchao Yang, Jia-

tong Shi, Xuankai Chang, Zhenhui Ye, Yuning Wu,


https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://doi.org/10.1145/1143844.1143891
https://arxiv.org/abs/2005.08100
https://arxiv.org/abs/2005.08100
https://arxiv.org/abs/2305.13009
https://arxiv.org/abs/2305.13009
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2106.07447
https://arxiv.org/abs/2106.07447
https://arxiv.org/abs/2106.07447
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685

Zhiqing Hong, Jiawei Huang, Jinglin Liu, Yi Ren,
Zhou Zhao, and Shinji Watanabe. 2023. Audiogpt:
Understanding and generating speech, music, sound,
and talking head. Preprint, arXiv:2304.12995.

Ruizhe Huang, Xiaohui Zhang, Zhaoheng Ni, Li Sun,
Moto Hira, Jeff Hwang, Vimal Manohar, Vineel
Pratap, Matthew Wiesner, Shinji Watanabe, Daniel
Povey, and Sanjeev Khudanpur. 2024. Less peaky
and more accurate ctc forced alignment by label pri-
ors. Preprint, arXiv:2406.02560.

Heeseung Kim, Soonshin Seo, Kyeongseok Jeong,
Ohsung Kwon, Soyoon Kim, Jungwhan Kim, Jae-
hong Lee, Eunwoo Song, Myungwoo Oh, Jung-Woo
Ha, Sungroh Yoon, and Kang Min Yoo. 2024. In-
tegrating paralinguistics in speech-empowered large
language models for natural conversation. Preprint,
arXiv:2402.05706.

Jaehyeon Kim, Sungwon Kim, Jungil Kong, and Sun-
groh Yoon. 2020. Glow-tts: A generative flow for
text-to-speech via monotonic alignment search. In
Advances in Neural Information Processing Systems,
volume 33, pages 8067-8077. Curran Associates,
Inc.

Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama,
Jonathan Huang, Grant Schindler, Rachel Hornung,
Vighnesh Birodkar, Jimmy Yan, Ming-Chang Chiu,
Krishna Somandepalli, Hassan Akbari, Yair Alon,
Yong Cheng, Josh Dillon, Agrim Gupta, Meera Hahn,
Anja Hauth, David Hendon, Alonso Martinez, David
Minnen, Mikhail Sirotenko, Kihyuk Sohn, Xuan
Yang, Hartwig Adam, Ming-Hsuan Yang, Irfan Essa,
Huisheng Wang, David A. Ross, Bryan Seybold,
and Lu Jiang. 2024. Videopoet: A large language
model for zero-shot video generation. Preprint,
arXiv:2312.14125.

Kushal Lakhotia, Eugene Kharitonov, Wei-Ning Hsu,
Yossi Adi, Adam Polyak, Benjamin Bolte, Tu-Anh
Nguyen, Jade Copet, Alexei Baevski, Abdelrahman
Mohamed, and Emmanuel Dupoux. 2021. On gen-
erative spoken language modeling from raw audio.
Transactions of the Association for Computational

Linguistics, 9:1336—-1354.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023a. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. Preprint, arXiv:2301.12597.

Yanwei Li, Chengyao Wang, and Jiaya Jia. 2023b.
Llama-vid: An image is worth 2 tokens in large lan-
guage models. Preprint, arXiv:2311.17043.

Ting-En Lin, Yuchuan Wu, Fei Huang, Luo Si, Jian Sun,
and Yongbin Li. 2022. Duplex conversation: To-
wards human-like interaction in spoken dialogue sys-
tems. In Proceedings of the 28th ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining,
volume 2021 of KDD ’22, page 3299-3308. ACM.

68

Alexander H. Liu, Heng-Jui Chang, Michael Auli, Wei-
Ning Hsu, and Jim Glass. 2023a. Dinosr: Self-
distillation and online clustering for self-supervised
speech representation learning. In Advances in
Neural Information Processing Systems, volume 36,
pages 58346-58362. Curran Associates, Inc.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023b. Visual instruction tuning. Preprint,
arXiv:2304.08485.

Chenyang Lyu, Minghao Wu, Longyue Wang, Xinting
Huang, Bingshuai Liu, Zefeng Du, Shuming Shi,
and Zhaopeng Tu. 2023. Macaw-llm: Multi-modal
language modeling with image, audio, video, and
text integration. Preprint, arXiv:2306.09093.

Soumi Maiti, Yifan Peng, Shukjae Choi, Jee weon Jung,
Xuankai Chang, and Shinji Watanabe. 2024. Voxtlm:
unified decoder-only models for consolidating speech
recognition/synthesis and speech/text continuation
tasks. Preprint, arXiv:2309.07937.

Michael McAuliffe, Michaela Socolof, Sarah Mihuc,
Michael Wagner, and Morgan Sonderegger. 2017.
Montreal forced aligner: Trainable text-speech align-
ment using kaldi. In Interspeech.

Nasrin Mostafazadeh, Michael Roth, Annie Louis,
Nathanael Chambers, and James Allen. 2017. LS-
DSem 2017 shared task: The story cloze test. In
Proceedings of the 2nd Workshop on Linking Models
of Lexical, Sentential and Discourse-level Seman-
tics, pages 46-51, Valencia, Spain. Association for
Computational Linguistics.

Tu Anh Nguyen, Maureen de Seyssel, Patricia
Rozé, Morgane Riviere, Evgeny Kharitonov, Alexei
Baevski, Ewan Dunbar, and Emmanuel Dupoux.
2020. The zero resource speech benchmark 2021:
Metrics and baselines for unsupervised spoken lan-
guage modeling. Preprint, arXiv:2011.11588.

Tu Anh Nguyen, Wei-Ning Hsu, Antony D’Avirro,
Bowen Shi, Itai Gat, Maryam Fazel-Zarani, Tal Re-
mez, Jade Copet, Gabriel Synnaeve, Michael Has-
sid, Felix Kreuk, Yossi Adi, and Emmanuel Dupoux.
2023. Expresso: A benchmark and analysis of
discrete expressive speech resynthesis. Preprint,
arXiv:2308.05725.

Tu Anh Nguyen, Benjamin Muller, Bokai Yu, Marta R.
Costa-jussa, Maha Elbayad, Sravya Popuri, Paul-
Ambroise Duquenne, Robin Algayres, Ruslan Mav-
lyutov, Itai Gat, Gabriel Synnaeve, Juan Pino, Benoit
Sagot, and Emmanuel Dupoux. 2024. Spirit-Im:
Interleaved spoken and written language model.
Preprint, arXiv:2402.05755.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,


https://arxiv.org/abs/2304.12995
https://arxiv.org/abs/2304.12995
https://arxiv.org/abs/2304.12995
https://arxiv.org/abs/2406.02560
https://arxiv.org/abs/2406.02560
https://arxiv.org/abs/2406.02560
https://arxiv.org/abs/2402.05706
https://arxiv.org/abs/2402.05706
https://arxiv.org/abs/2402.05706
https://proceedings.neurips.cc/paper_files/paper/2020/file/5c3b99e8f92532e5ad1556e53ceea00c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/5c3b99e8f92532e5ad1556e53ceea00c-Paper.pdf
https://arxiv.org/abs/2312.14125
https://arxiv.org/abs/2312.14125
https://doi.org/10.1162/tacl_a_00430
https://doi.org/10.1162/tacl_a_00430
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2311.17043
https://arxiv.org/abs/2311.17043
https://doi.org/10.1145/3534678.3539209
https://doi.org/10.1145/3534678.3539209
https://doi.org/10.1145/3534678.3539209
https://proceedings.neurips.cc/paper_files/paper/2023/file/b6404bf461c3c3186bdf5f55756af908-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b6404bf461c3c3186bdf5f55756af908-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b6404bf461c3c3186bdf5f55756af908-Paper-Conference.pdf
https://arxiv.org/abs/2304.08485
https://arxiv.org/abs/2306.09093
https://arxiv.org/abs/2306.09093
https://arxiv.org/abs/2306.09093
https://arxiv.org/abs/2309.07937
https://arxiv.org/abs/2309.07937
https://arxiv.org/abs/2309.07937
https://arxiv.org/abs/2309.07937
https://api.semanticscholar.org/CorpusID:12418404
https://api.semanticscholar.org/CorpusID:12418404
https://doi.org/10.18653/v1/W17-0906
https://doi.org/10.18653/v1/W17-0906
https://arxiv.org/abs/2011.11588
https://arxiv.org/abs/2011.11588
https://arxiv.org/abs/2011.11588
https://arxiv.org/abs/2308.05725
https://arxiv.org/abs/2308.05725
https://arxiv.org/abs/2402.05755
https://arxiv.org/abs/2402.05755

Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Lukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Fukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-

lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerdn Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and San-
jeev Khudanpur. 2015. Librispeech: An asr corpus
based on public domain audio books. In 2015 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 5206-5210.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, et al. 2011. The Kaldi speech recogni-
tion toolkit. In IEEE 2011 workshop on automatic
speech recognition and understanding, pages 1-4.
IEEE Signal Processing Society.

Vineel Pratap, Andros Tjandra, Bowen Shi, Paden
Tomasello, Arun Babu, Sayani Kundu, Ali Elkahky,
Zhaoheng Ni, Apoorv Vyas, Maryam Fazel-Zarandi,
Alexei Baevski, Yossi Adi, Xiaohui Zhang, Wei-Ning
Hsu, Alexis Conneau, and Michael Auli. 2023. Scal-
ing speech technology to 1,000+ languages. Preprint,
arXiv:2305.13516.

Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel
Synnaeve, and Ronan Collobert. 2020. MLS: A large-
scale multilingual dataset for speech research. In
Proceedings of Interspeech 2020, Interspeech 2020.
ISCA.

Paul K. Rubenstein, Chulayuth Asawaroengchai,
Duc Dung Nguyen, Ankur Bapna, Zaldn Borsos,
Félix de Chaumont Quitry, Peter Chen, Dalia El
Badawy, Wei Han, Eugene Kharitonov, Hannah
Muckenhirn, Dirk Padfield, James Qin, Danny Rozen-
berg, Tara Sainath, Johan Schalkwyk, Matt Sharifi,
Michelle Tadmor Ramanovich, Marco Tagliasacchi,
Alexandru Tudor, Mihajlo Velimirovié¢, Damien Vin-
cent, Jiahui Yu, Yongqiang Wang, Vicky Zayats, Neil
Zeghidour, Yu Zhang, Zhishuai Zhang, Lukas Zilka,
and Christian Frank. 2023. Audiopalm: A large lan-
guage model that can speak and listen. Preprint,
arXiv:2306.12925.

Tara N. Sainath, Ruoming Pang, David Rybach, Basi
Garcia, and Trevor Strohman. 2020. Emitting word
timings with end-to-end models. In Interspeech.

69


https://arxiv.org/abs/2303.08774
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://arxiv.org/abs/2305.13516
https://arxiv.org/abs/2305.13516
https://doi.org/10.21437/Interspeech.2020-2826
https://doi.org/10.21437/Interspeech.2020-2826
https://arxiv.org/abs/2306.12925
https://arxiv.org/abs/2306.12925
https://api.semanticscholar.org/CorpusID:226200377
https://api.semanticscholar.org/CorpusID:226200377

Kevin J. Shih, Rafael Valle, Rohan Badlani, Adrian Lan-
cucki, Wei Ping, and Bryan Catanzaro. 2021. RAD-
TTS: Parallel flow-based TTS with robust alignment
learning and diverse synthesis. In ICML Workshop
on Invertible Neural Networks, Normalizing Flows,
and Explicit Likelihood Models.

Weiting Tan, Yunmo Chen, Tongfei Chen, Guanghui
Qin, Haoran Xu, Heidi C. Zhang, Benjamin Van
Durme, and Philipp Koehn. 2024. Streaming se-
quence transduction through dynamic compression.
Preprint, arXiv:2402.01172.

Changli Tang, Wenyi Yu, Guangzhi Sun, Xianzhao
Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, and
Chao Zhang. 2024. Salmonn: Towards generic hear-
ing abilities for large language models. Preprint,
arXiv:2310.13289.

Chameleon Team. 2024. Chameleon:
modal early-fusion foundation models.
arXiv:2405.09818.

Mixed-
Preprint,

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Tu Vu, Aditya Barua, Brian Lester, Daniel Cer, Mo-
hit Iyyer, and Noah Constant. 2022. Overcoming
catastrophic forgetting in zero-shot cross-lingual gen-
eration. Preprint, arXiv:2205.12647.

Apoorv Vyas, Bowen Shi, Matthew Le, Andros Tjandra,
Yi-Chiao Wu, Baishan Guo, Jiemin Zhang, Xinyue
Zhang, Robert Adkins, William Ngan, Jeff Wang,
Ivan Cruz, Bapi Akula, Akinniyi Akinyemi, Brian
Ellis, Rashel Moritz, Yael Yungster, Alice Rakotoari-
son, Liang Tan, Chris Summers, Carleigh Wood,
Joshua Lane, Mary Williamson, and Wei-Ning Hsu.

70

2023. Audiobox: Unified audio generation with nat-
ural language prompts. Preprint, arXiv:2312.15821.

Jian Wu, Yashesh Gaur, Zhuo Chen, Long Zhou,
Yimeng Zhu, Tianrui Wang, Jinyu Li, Shujie
Liu, Bo Ren, Linquan Liu, and Yu Wu. 2023.
On decoder-only architecture for speech-to-text
and large language model integration. Preprint,
arXiv:2307.03917.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483—498, On-
line. Association for Computational Linguistics.

Wenyi Yu, Changli Tang, Guangzhi Sun, Xianzhao
Chen, Tian Tan, Wei Li, Lu Lu, Zejun Ma, and Chao
Zhang. 2023. Connecting speech encoder and large
language model for asr. Preprint, arXiv:2309.13963.

Neil Zeghidour, Alejandro Luebs, Ahmed Omran, Jan
Skoglund, and Marco Tagliasacchi. 2021. Sound-

stream: An end-to-end neural audio codec. Preprint,
arXiv:2107.03312.

Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan,
Pengyu Wang, Yaqgian Zhou, and Xipeng Qiu. 2023.
Speechgpt: Empowering large language models
with intrinsic cross-modal conversational abilities.
Preprint, arXiv:2305.11000.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo,
Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmai-
son, Can Balioglu, Pritam Damania, Bernard Nguyen,
Geeta Chauhan, Yuchen Hao, Ajit Mathews, and
Shen Li. 2023. Pytorch fsdp: Experiences on scal-
ing fully sharded data parallel. Proc. VLDB Endow.,
16(12):3848-3860.


https://openreview.net/forum?id=0NQwnnwAORi
https://openreview.net/forum?id=0NQwnnwAORi
https://openreview.net/forum?id=0NQwnnwAORi
https://arxiv.org/abs/2402.01172
https://arxiv.org/abs/2402.01172
https://arxiv.org/abs/2310.13289
https://arxiv.org/abs/2310.13289
https://arxiv.org/abs/2405.09818
https://arxiv.org/abs/2405.09818
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2205.12647
https://arxiv.org/abs/2205.12647
https://arxiv.org/abs/2205.12647
https://arxiv.org/abs/2312.15821
https://arxiv.org/abs/2312.15821
https://arxiv.org/abs/2307.03917
https://arxiv.org/abs/2307.03917
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://arxiv.org/abs/2309.13963
https://arxiv.org/abs/2309.13963
https://arxiv.org/abs/2107.03312
https://arxiv.org/abs/2107.03312
https://arxiv.org/abs/2305.11000
https://arxiv.org/abs/2305.11000
https://doi.org/10.14778/3611540.3611569
https://doi.org/10.14778/3611540.3611569

Supplementary Material

Appendix Sections  Contents

Appendix A Specch-Text Aligner Comparison

Appendix B Non-semantic Information in SSR-CONNECTOR
Appendix C Dataset Details

Appendix D Evaluation Details

A Speech-text Aligners

In this section, we provide more details for the aligners that we experimented with to compute segmentation
for SSR-CONNECTOR. To summarize, we tried UnitY2 aligner (Barrault et al., 2023), CTC-based
(Graves et al., 2006) aligner (both character-level and subword-level), and CIF-based (Dong and Xu, 2020)
segmentation. We also compare their performance in this section and show that UNITY2 and CHAR-CTC
aligner work the best; therefore we adopted them in all our experiments presented in the main paper.

A.1 Aligner Description

UnitY2 Aligner The UnitY?2 aligner (Barrault et al., 2023) is a forced aligner that computes speech-text
alignment using discrete speech units and character-level text tokens. The speech units are derived by
applying K-Means clustering to the XLS-R model (Babu et al., 2021). The aligner is trained jointly with
a non-autoregressive text-to-unit (T2U) model, adopting the architecture of the RAD-TTS model (Shih
et al., 2021) but replacing the target mel-spectrogram with speech units. It first computes a soft-alignment
A%t ¢ RVXU between the characters and units:

D;j = [[s§™ — s§™||2, 3)

soft e Pii - -

Ay = S e Pprior(il7), )
where s and s"™ are the outputs of the character and unit encoders, respectively (both encoders consist
of an embedding layer and a 1D convolution layer). D € RV*V is a distance matrix with V and U
representing the vocabulary sizes of characters and speech units. Ppor € RY*V is the Beta-binomial
alignment prior matrix to encourage near-diagonal paths (Shih et al., 2021). After soft-alignment is
computed, the monotonic alignment search (MAS) algorithm (Kim et al., 2020) is applied to extract the

most probable monotonic alignment path.

char unit

CTC-based Aligner Since the UnitY?2 aligner requires both speech and transcription, it does not support
streamable alignment extraction. To enable textless alignment computation, we explored two CTC-based
(Graves et al., 2006) aligners. Given the speech features x and text sequences y, CTC computes P(y|x)
by summing over all valid alignment paths:

P(ylz)= Y P(rlx) (5)

reB~1(y)

Here, 7 denotes a possible alignment path that maps to the target sequence y, and B! (y) represents the
set of all valid paths that collapse to y after removing blanks and repeated labels. We investigated two
CTC variants: one using character-level text sequences (CHAR-CTC) and another using subword token
sequences (SUB-CTC), which shares the same vocabulary as the LLM model.

CIF-based Speech Connector For both CTC and UnitY?2 aligners, we extract segmentations from
the alignments and then apply selection-based compression (Tan et al., 2024). We also experimented
with Continuous Integrate-and-Fire (Dong and Xu, 2020, CIF) as the connector, which is designed to
learn segmentation and perform compression simultaneously. Instead of relying on a fixed, pre-computed
segmentation, CIF dynamically segments and aggregates speech features by scoring each feature and
computing a weighted average. For more details, we refer readers to the paper (Dong and Xu, 2020).
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Figure 5: t-SNE plots of text and speech representations after distillation.

A.2 Aligner Performance Comparison

To compare the quality of different aligners, we trained several SSR-CONNECTOR based on different
aligners via distillation. We evaluated the aligners using the Librispeech clean test set by computing the
Cosine Similarity (Cos(%)) and Mean Squared Error (MSE) between the compressed representations and
text embeddings. Additionally, we performed zero-shot and five-shot ASR with the learned connector.
Note that we never explicitly trained the model for ASR tasks, and the base LLM remained frozen during
Stage 1 training. Therefore, the model achieves low word error rates (WER) only when the distilled speech
representations closely resemble the text embeddings. As shown in Table 6, the UNITY 2 aligner brings
the speech representations close to their corresponding text embeddings, achieving very low WER in both
zero-shot and five-shot ASR settings. Among textless aligners, we found that CHAR-CTC performs the
best, likely because it has a much smaller vocabulary compared to SUB-CTC, making it easier to learn.
Lastly, CIF resulted in suboptimal performance, due to its less accurate alignment, as its segmentation is
predicted by accumulating scores without exploiting the monotonicity between speech and text.

To visualize the effect of distillation, we

present t-SNE plots of the adapted speech repre- Model Type Cos(%)t MSE|, WER (%) |
s.er%tatlons agd text. embeddings in 1.31g.. 5, catego- UNITY 2 2.8 0.018 5.6/4.0
rizing them into high and low similarity groups CHAR-CTC 95.1 0.023 9.7/6.5
based on the cosine similarity between CHAR- SuB-CTC 92.2 0.037  16.7/14.0
CIF 77.5 0.096 27.6/23.7

CTC representations and text embeddings. We
observe that longer subwords tend to exhibit
higher similarity, likely because their long seg-
ments make it easier for the connector to convert
speech representations into corresponding text embeddings. Furthermore, longer subwords possess more
coherent semantics compared to shorter tokens. like ‘wy’ or ‘ia’.

Given that UNITY?2 and CHAR-CTC performs the best,
we also follow Huang et al. (2024) to measure their word

Table 6: Performance comparison (with Cosine Similarity,
MSE, and 0/5-shot ASR WER) between different aligners
used for Stage 1 training, evaluated on Librispeech.

Aligner WBE| WDUR

Groundtruth 0 305 boundary error (WBE) and word average duration (WDUR)
UNITY?2 33 279 using the TIMIT (Garofolo et al., 1993) data. Though the
CHAR-CTC 42 230 aligner quality can be further improved with other methods
Other Aligners such as CTC + Label Prior (Huang et al., 2024), MMS
fAThf;Label Prior gg %jg (Pratap et al., 2023), or MFA (McAuliffe et al., 2017),
MFA 23 314 CHAR-CTC and UNITY?2 still achieve good quality and

we choose them out of simplicity and general availability
(unlike "CTC+Label Prior", for example, which requires
customization with library like k23).

Table 7: Alignment quality comparison.

Shttps://github.com/k2-fsa/k2
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B Beyond Semantics: Speech Style Recognition with In-context Learning

To explore the non-semantic capabilities of our SpeechLM, particularly its ability to retain and utilize par-
alinguistic information, we conducted additional experiments focusing on speech style recognition through
in-context learning. Specifically, we investigated whether the SSR-CONNECTOR-based SpeechLM (based
on the UnitY?2 aligner), can differentiate between various speech styles without explicit training on
paralinguistic cues.

We utilized the Expresso dataset (Nguyen et al., 2023), which comprises speeches delivered in distinct
styles such as happy, sad, whispering, and laughing. Two primary tasks were designed to assess the
model’s performance:

1. Whisper vs. Laugh: The model was tasked with identifying whether a given speech was whispered
or laughed. The prompt provided to the model was:

"You are given speeches from two styles. Your task is to judge if the speech is a whisper or
laugh. Here are some example speeches: [Speech]: {speech} [Style]: {whisper/laugh}..."

2. Happy vs. Sad: The model was asked to determine if the speech was delivered happily or sadly.
The prompt used was:

"Listen to the following speech and judge if the speaker is happy or sad. Here are some
examples: [Speech]: {speech} [Emotion]: {happy/sad}..."

For each task, we evaluated the model’s performance using varying numbers of in-context examples:
0-shot, 1-shot, 5-shot, and 10-shot. The results, averaged over 10 runs, are presented in Table 8. Ad-
ditionally, we benchmarked a cascaded system comprising Whisper and Llama3 for comparison (this
cascaded baseline does no preserve non-semantic information and can only infer the speech style through
transcripted content).

Task Model 0-shot 1-shot 5-shot 10-shot
. Cascaded System 51.6 52.1 52.2 54.7

Whisper vs. Laugh Ours 496 624  64.0 75.9

Haopy vs. Sad Cascaded System 50.0 51.4 51.8 51.0
PPy VS. Ours 51,6 521 522 54.7

Table 8: Accuracy of Speech Style Recognition Tasks with In-context Learning

The results indicate that with zero-shot prompting, our model generates predictions close to random
chance, as it has not been trained to utilize paralinguistic information. However, with the introduction of a
few-shot learning approach, the model significantly improves its ability to distinguish between whispering
and laughing speech, achieving up to 75.9% accuracy with 10-shot examples. This suggests that the
model’s representations inherently contain paralinguistic information that can be harnessed through in-
context learning. For the Happy vs. Sad task, the improvement is modest, peaking at 54.7% accuracy with
10-shot examples. This lesser performance compared to the Whisper vs. Laugh task may be attributed
to the subtler differences in emotional expression compared to the more pronounced style differences
between whispering and laughing.

Overall, these findings demonstrate that our SpeechLLM can effectively leverage in-context learning
to recognize different speech styles, thereby highlighting the presence of paralinguistic information
within the model’s representations. This capability complements existing methods that incorporate
paralinguistic information, such as the use of expressive tokens in SpiritLM (Nguyen et al., 2024) or
emotion-relevant instruction tuning in SALMONN (Tang et al., 2024).
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C Datasets

Eval Dataset Type Eval Metric Eval Modality
sWUGGY (Nguyen et al., 2020) Choice Task Accuracy S, T

sBLIMP (Nguyen et al., 2020) Choice Task Accuracy S, T
StoryCloze (Mostafazadeh et al., 2017)  Choice Task Accuracy S, T,S—T
MMLU (Hendrycks et al., 2021) Choice Task Accuracy T
Speech-MMLU (Ours) Choice Task Accuracy S—>T
LibriSpeech (Panayotov et al., 2015) Generation Task ~ Word Error Rate S — T

Table 9: Evaluation Datasets and their types. For the evaluation format, S is speech-only, 7" is text-only, and S — T’
means the evaluation prompt consists of speech prefix and text continuation.

As described in §4.1, we employ sWUGGY, sBLIMP, StoryCloze, MMLU, Speech-MMLU and
Librispeech datasets to assess model performance. In this section, we provide more examples for each
evaluation set. SWUGGY and sBLIMP are simple tasks where two choices can be directly compared.
As shown in Table 10, sWUGGY provides two choices that require models to discriminate real words
from non-words. SBLIMP assesses whether the model can distinguish between a grammatically correct
sentence and its ungrammatical variant.

MMLU and StoryCloze, on the other hand, have a prefix and choices. The StoryCloze dataset measures
whether the model can identify the logical ending between two sentences given at the beginning of a short
story. Since StoryCloze has a shared prefix, we can synthesize only the prefix part into speech and keep
choices in text format, resulting in our S — 1" format evaluation that assess the model’s cross-modal
understanding. Similarly, for MMLU, we also synthesize its prefix (the question portion) into speech and
keep the choices in text format, resulting in our Speech-MMLU dataset. Since some topics have bad audio
synthesis quality (e.g., the algebra subset contains many mathematical notations), we only keep 22 topics
in our test suite (as shown in the “Topic” column of Table 11).

Name | Prefix | Choices
sWUGGY | N/A | {Good=obsolete, Bad=odsolete}
sBLIMP N/A {Good=Walter was harming himself,
Bad=Walter was harming itself}
StoryCloze | I had been giving this homeless man | {Good=I never gave the man money
change every day. He was on the same | again. Bad=The next day I gave the man
corner near my house. One day, as I was | twenty dollars.}
driving through my neighborhood I saw
a new car. Soon enough, I saw the same
homeless man emerge from it!
MMLU During the period when life is believed | {"A": "oxygen", "B": "hydrogen", "C":
to have begun, the atmosphere on primi- | "ammonia", "D": "methane"}
tive Earth contained abundant amounts
of all the following gases except

Table 10: Examples of different evaluation datasets.
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D Evaluation Metric and Prompt

Choice tasks (sWUGGY, sBLIMP, StoryCloze, MMLU, Speech-MMLU) are evaluated by comparing
perplexity of different choices. The choice with smallest perplexity is selected as the prediction and we
measure accuracy across different benchmarks.

For generation task (prompt-based ASR), we use the prompt below, with pairs of speech and transcrip-
tion is provided to the SpeechLM. For 0-shot evaluation, we do not include any examplers.

Given the speech, provide its transcription.
[speech]: {demo speech}
[text]: {demo transcription }

[speech]: {speech to transcribe}
[text]:

Speech MMLU Evaluation We craft speech MMLU by synthesizing the questions of MMLU into
audio through AUDIOBOX. Since some domains have bad synthesis quality (such as algebra, which
includes many math notations), we filtered those domains out from our evaluation.

We present the detailed comparison results in Table 11 for a better comparison of model performance
across different domains/topics. We see that the trend for different domains is mostly consistent, with our
alignment-aware connector based on UNITY 2 achieving the best performance, followed by CHAR-CTC
based connector. Similar as our main findings, the unit-based system has worse performance due to
information loss from discretization and the fine-tuned model suffers from catastrophic forgetting (albeit
mitigated through our multitask fine-tuning approach). Nevertheless, all these SSR-CONNECTOR based
system obtains better performance compared to SPIRITLM (LLAMA3), confirming the effectiveness of
our modality-fusion strategy.

Topic SPIRITLM UNITY2 + Mask UNITY2 CHAR-CTC Unit-based Fine-tuned
0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot 0-shot 5-shot
Astronomy 45.6 40.8 60.0 66.0 60.7 65.3 57.0 60.4 49.7 61.1 50.7 52.0
Business Ethics 37.1 40.2 52.0 60.0 53.0 62.0 56.0 59.0 52.0 55.0 37.0 51.0
Clinical Knowledge 36.0 39.8 60.6 63.3 61.0 62.9 61.2 62.7 57.8 57.4 47.3 53.8
College Biology 36.4 33.6 65.0 69.9 62.9 68.5 57.7 59.9 54.2 57.7 40.6 44.1

Electrical Engineering 37.7 44.2 52.5 57.4 525 53.9 48.2 58.9 44.7 48.2 53.2 54.6
High School Biology 40.8 41.2 66.0 72.2 67.6 72.2 63.3 68.2 57.1 65.6 50.5 62.5

High School Gov. Pol. 444 434 79.2 84.9 78.1 83.3 76.6 81.8 71.4 73.4 54.7 64.1
International Law 559 58.5 71.1 81.0 71.1 81.0 71.1 80.2 71.1 752 66.1 71.1
Jurisprudence 37.1 36.2 60.2 68.5 62.0 70.4 57.4 63.9 54.6 60.2 51.9 57.4
Machine Learning 39.3 32.1 45.8 59.3 50.8 59.3 45.8 61.0 44.1 57.6 39.0 55.9
Management 43.0 42.0 79.6 84.5 71.7 75.7 73.8 74.8 68.0 70.9 45.6 65.0
Marketing 39.8 49.8 71.8 85.0 76.1 81.6 76.9 81.6 74.4 76.9 51.3 67.1
Miscellaneous 38.5 36.4 69.2 71.5 66.6 70.1 60.3 64.6 523 57.5 42.7 50.3
Moral Disputes 39.1 423 59.5 66.5 59.5 67.3 56.4 62.7 52.9 62.1 43.6 52.9
Nutrition 45.0 473 68.4 69.1 66.1 66.8 65.5 62.8 64.5 59.8 52.8 58.5
Philosophy 37.5 37.2 58.3 64.5 59.0 62.5 55.9 64.1 54.6 59.5 44.0 53.1
Prehistory 38.9 433 62.0 66.4 61.1 64.5 61.2 64.3 55.0 57.5 49.1 552
Security Studies 43.8 54.8 63.8 67.8 61.7 67.8 68.1 76.9 59.3 69.2 51.0 59.7
Sociology 37.4 45.5 71.6 74.6 68.7 74.6 69.7 73.6 68.2 72.1 57.7 66.2
US Foreign Policy 56.7 60.8 80.0 80.0 78.0 85.0 75.8 81.8 75.8 83.8 61.0 76.0
Virology 40.1 46.3 479 49.1 49.1 53.9 47.9 49.7 46.1 51.5 46.7 44.8
World Religions 39.3 46.4 66.1 67.8 63.2 63.7 52.0 59.1 51.5 60.8 40.9 50.3
Micro Average 40.5 42.7 65.0 69.5 64.2 68.6 61.7 66.5 58.1 63.3 49.0 57.5

Table 11: Detailed Speech-MMLU evaluation results on different domains.
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Abstract

With the growing influence of Large Lan-
guage Models (LLMs), there is increasing inter-
est in integrating speech representations with
them to enable more seamless multi-modal
processing and speech understanding. This
study introduces a novel approach that com-
bines self-supervised speech representations
with instruction-tuned LLMs for speech-to-text
translation. The proposed approach leverages
a modality adapter to align extracted speech
features with instruction-tuned LLMs using En-
glish speech data. Our experiments demon-
strate that this method effectively preserves the
semantic content of the input speech and serves
as an effective bridge between self-supervised
speech models and instruction-tuned LLMs, of-
fering a promising approach for various speech
understanding applications.

1 Introduction

Progress in speech processing has been acceler-
ated by the introduction of self-supervised learning
(SSL) methods that utilize large amounts of unla-
beled speech data, which established new bench-
marks in the field (Xu et al., 2021; Hsu et al., 2021;
Zeghidour et al., 2021). Continuous representations
and/or discrete units derived from self-supervised
models have been used to extract relevant latent fea-
tures from speech data and improve performance
in downstream tasks, including speech recogni-
tion (Baevski et al., 2020), speech synthesis (Ren
et al.; Wang et al., 2023b), speech translation (In-
aguma et al., 2020) and general speech understand-
ing (Wang et al., 2020). Progress in text processing
has also been accelerated by the emergence of pre-
trained Large Language Models (LLMs), which
enabled new applications such as few-shot/zero-
shot language processing (Radford et al., 2019;
Brown et al., 2020; Touvron et al., 2023; Bai et al.,
2023) and multi-modal processing (Tsimpoukelli
et al., 2021; Radford et al., 2021). Recent efforts
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in speech understanding explored the possibility of
incorporating speech representations directly into
LLMs (Zhang et al., 2023; Wang et al., 2023c; Das
et al., 2024; Fang et al., 2024). Multi-modal speech-
language models signify a shift in both speech
and natural language processing. By incorporating
speech data, LLLMs can enhance their contextual
grasp, providing a deeper and more thorough rep-
resentation of spoken language. In addition, the
existing multilingual functionalities of LLMs can
be leveraged to enhance speech processing applica-
tions, such as speech translation, without additional
dedicated training.

In this work, we describe an efficient method to
query instruction-tuned LLMs using speech input.
The model aligns speech features extracted through
self-supervised learning (SSL) with LLMs using
only a modality adapter trained with English data
and a small portion of translated text. We demon-
strate the generalization of translation performance
across both seen and unseen target languages. We
call our approach SparQLe !. SparQLe is inspired
by Querying Transformer modules used in vision
language models to bootstrap vision-language rep-
resentations from frozen image encoders (Li et al.,
2023). We demonstrate through speech translation
that SparQLe enables the integration of existing
pre-trained speech encoders and LLMs without the
need for updating the parameters of either speech
encoder or LLM. In contrast to previously explored
speech-LLM integration approaches, our method
is the first to utilize frozen SSL speech represen-
tations, without relying on large pre-trained ASR
models like Whisper (Radford et al., 2023). We
experimentally demonstrate the effectiveness of
this relatively simple approach and release both the
pre-trained and fine-tuned models 2.

'Speech Routing to Query Large Language models.
Zhttps://github.com/djanibekov/rebooting-11m
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Method Speech Encoder (Param.)

Language Model (Param.)

Adapter (Param.) Tasks

(Chen et al., 2024) NeMo (0.6B - 1.1B) MegatronLLM (40B-1T) LoRA (14M-94M) / Conformer (115M) multitask
(Wang et al., 2023a) Whisper (74M-1.5B) LLama (6.7B-65.2B) Conv.Layers (4M) alignment
(Wang et al., 2023c) USM (2B) mTO-MT XXL (13B) Adapter (156M) multitask
(Wang et al., 2023d) CTC encoder (220M) TS5 XXL (11B) - RAG Speech2Text, Speech2Entity Retriever multitask
(Yu et al., 2024) Whisper (1.5B) VicunaLLM (13B) FC? (24M) / MHSA* (133M) / Seg-Q-Former (24M) ASR
(Tang et al., 2024) Whisper (1.5B) + BEATS (90M) VicunaLLM (13B) LoRA + Seg-Q-Former (33M) ASR/multitask
(Das et al., 2024) WavLM (316.62M) Flan-T5-XL (2.85B) CNN + LoRA(14M-94M) multitask
(Chu et al., 2024) Whisperlarge (1.5B) Qwen (7B) — multitask
SparQLe HuBERT (316M) LLama3 (8B) Q-Former (187M) AST/multitask

Table 1: Comparison of related works and proposed model. LoRA’s rank in (Chen et al., 2024) is assumed to be 8.
For other rank values, multiply number of parameters by 2 for 16 and 4 for 32 ranks, respectively.

2 Related Works

The availability of instruction-tuned LLMs (Tou-
vron et al., 2023; Al@Meta, 2024; Jiang et al.,
2023) opened a new research direction for speech
processing by connecting speech directly to these
multi-task models. Chen et al. (2024) proposed
multitask speech-language modeling with unified
LLM framework that shows in-context learning
ability. Yu et al. (2024) utilized three approaches
for adapting speech to text modality: Fully Con-
nected Linear Layers following (Houlsby et al.,
2019) adapter method, multi-head cross attention
mechanism described in (Vaswani et al., 2017),
and query transformer (Li et al., 2023). For
processing speech input, they utilized two mod-
els: Whisper Large-v2 (Radford et al., 2023) and
BEATS (Chen et al., 2023). The SpeechVerse (Das
et al., 2024) framework used WavLM-based (Chen
et al., 2022) speech encoder interfaced with a Flan-
T5-XL (Chung et al., 2024) language model. In
a another study, Ma et al. (2024) demonstrated
the sufficiency of a single linear layer for speech-
LLM integration in ASR, albeit with limited ex-
ploration beyond this task. Speech as language
modeling was also studied in SpeechGPT (Zhang
et al., 2023) which integrates both speech and text
modalities. The model incorporates a speech to-
kenizer that converts raw audio waveforms into
discrete speech tokens, enabling efficient process-
ing within the transformer architecture. Through
multi-task fine-tuning on downstream tasks such as
ASR, translation, and generation, the model demon-
strates remarkable versatility. Qwen2-Audio (Chu
et al., 2024), designed as a general-purpose audio
understanding model, exhibiting broad applicabil-
ity across various audio-related tasks. The model
employs self-supervised learning techniques, such
as masked audio modeling and contrastive learning,
to capture rich audio representations.

Table 1 summarizes the features of most relevant
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related works. We outline that, depending on the
rank of the LoRA (Hu et al., 2021) adapter, the
final number of trainable parameters can increase.
LoRA rank is the number of linearly independent
rows or columns in a parameter (weight) matrix; a
lower rank means approximating a large weight ma-
trix with fewer parameters to simplify and speed up
training. The number of additional parameters can
be roughly estimated as the initial hidden dimen-
sion multiplied by the rank and then multiplied by
two to account for all added parameters. In Table 1,
we outline the range of the possible numbers of
added parameters. Note that our proposed model,
SparQLe, is the only one that relies exclusively
on SSL features (i.e. HuBERT) as input, and a
simple adapter between the frozen speech encoder
and LLM; previous approaches relied on complex
encoders that have already been aligned with text
through supervised training or adapt selected LLM
with LoRA adapter.

3 Model

SparQLe is a parameter efficient model designed
to extract information from speech representation
and route them to query pre-trained open-sourced
LLMs, without modifications to the underlying
speech encoder or LLM. Motivated by the success
of multi-modal representations in vision language
modeling (Li et al., 2023), we propose the adop-
tion of speech representations to LLMs for gener-
ative tasks, specifically Automatic Speech Trans-
lation (AST). We pre-trained our model using En-
glish data first and fine-tuned with mix of English
and French.

We used HuBERT (Hsu et al., 2021) as the
speech encoder. The output from its final hidden
layer is fed into the query adapter. A query adapter
incorporates query tokens, which are special to-
kens (placeholders) added to the input of a speech-
language model. They do not correspond to specific
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Figure 1: High-level overview of the SparQLe model

speech regions, but are meant to extract informa-
tion from the whole speech sequence in a flexible
way. The final features from the query tokens are
passed to a large language model to generate natu-
ral language responses. Figure 1 shows the overall
structure of the system, which consists of three
main parts: a pre-trained speech encoder, a bridg-
ing mechanism (SparQLe) and a text generator. In
our experiments, we employed LLama3 (AI@Meta,
2024) as the text language model.

3.1 Pre-Training

This stage is akin to ASR training, where we utilize
transcribed speech for supervised training. How-
ever, we do not introduce additional parameters
and instead use the same modality adapter as an
auto-regressive language model: each output vector
from the Q-Former (Li et al., 2023) is successively
fed into a modality adapter to predict the next token.
We only update the parameters of the adapter, and
keep the underlying speech encoder frozen. The
Q-Former is a vanilla transformer model but with
learnable query tokens. These tokens are randomly
initialized and designed to be learned during train-
ing to capture query information that is relevant to
the task. The process is depicted in Figure 2. In
addition to the text generation task, we use vari-
ous modality alignment objectives to account for
speech in the input and aligned text-like features
in the output, similar to image-text alignment done
in Li et al. (2023): Speech-text contrastive learn-
ing aligns speech and text representation such that
mutual information is maximized. This is achieved
through contrasting speech-text cosine similarity of
positive against negative pairs. Speech-text match-
ing loss aligns representations of speech and text
via a binary classification task. Speech text gener-
ation loss trains the model to produce text based
on the given audio.
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Figure 2: Modality adapter with auto-regressive super-
vised fine-tuning phase. The modality adapter is the
Q-Former, which we discuss in the paper.

3.2 Fine-tuning

After pre-training, we fine-tune the adapter on
downstream tasks using an instruction-tuned LLM,
specifically LLama3. We utilize the extracted query
tokens as the input to the LLM and update the
adapter parameter using cross entropy loss derived
from the LLM’s objective. For instruction tuning,
a frozen Large Language Model was fed with a
randomly selected pool of prompts, which were de-
signed to define the translation task. Subsequently,
the instruction-tuned model was employed in a
chat-based format to collect predictions.

4 Experiments

4.1 Datasets

To train and evaluate the model on Automatic
Speech Translation (AST) task, we used the MuST-
C (Di Gangi et al., 2019) and LibriSpeech (Panay-
otov et al., 2015) datasets. Specifically, we se-
lected the French and German languages from
MuST-C for AST evaluation. We normalized
the text across datasets by converting all letters
to lowercase and eliminating punctuation marks.
The MuST-C dataset includes action descriptions
within the audio samples, such as "<|speech|>
(applause) <|speech|>", which signify auditory
sequences where spoken content is interspersed
with audience applause. We opted to remove these
actions from the translation text.

4.2 Pre-Training

4.2.1 Experimental settings

For feed-forward networks and self-attention of
the modality adapter, we employ a 12-layer
transformer-based Q-Former that is, by design, a
UniLM (Dong et al., 2019); cross-attention is ini-
tiated randomly. For pre-training experiment, we
trained the model using Adam optimizer, coupled
with a cosine annealing learning rate scheduler dur-
ing the pre-training. The learning rate was initiated



System prompt

German
You are a speech-to-text conversion model. Your tasks include accuratel -—
transcribing spoken language as per user instructions. Please ensure clarity and
precision in transcription processes.

sprechen
Prompts

ich méchte heute sprechen ber energie und

<Speech><SpeechQuery></Speech> Can you translate the speech into Language? Kiima.

I Frencn

Arabic !
2lially &5l e podl IS5l it Lo

lially d8lall e pgl elSils T

je voudrais parler aujourd * hui au sujet de |* : 7

énergie et du climat

je voudrais parler aujourd * hui de | énergie et du
climat.

jich méchte heute tiber energie und kiima

—
o UZbeK

Kazakh

Gi3ir, KyHi KasIpri yaKsITTa SHEPrs MeH Kvmar
Macenenepi Typans! aiTambi.

men bugungi kuni energiya va iqlim hagida
gaplashmogchiman.

men hozirgi kuni energiya va iqtisodiy klimat
hagida gaplashamiz.

63 Kasipri KyHA SHEPTUA XaHE KnuMaT
TyPanbi TanKbinaAbI.

XOUY MOFOBOPHTE CErOHA O IHEPIM U KNMMaTe.

- Indonesian

saya ingin berbicara tentang energi dan iklim

sekarang.

XOUY CEroAHA NOroBOPUTH O 3HEPruN U KMMaTe.”
saya mau berbicara tentang energi dan iklim
sekarang.

Figure 3: Sample of zero-shot instruction generation across multiple languages. To evaluate zero-shot capability, we
simply changed the output language specified in the prompt. The produced text is lowercased and punctuation-free,
following the text processing guidelines described in Section 4.1.

at 1 x 10~ and gradually reduced to 1 x 1072,
incorporating a warm-up phase at 1 x 107, This
means that learning rate started with warmup value
and gradually reached from 1076 to 104, The
maximum length for speech samples was capped at
480K frames, which is equivalent to 30s of audio.
We used 100 learnable query tokens in Q-Former.

Our experiments were conducted using open-
source library for language-vision intelligence,
LAVIS®. The training processes were executed on
one RTX4090 GPU with 24G memory being used
over a period of two-three weeks with batch size
equal to 8 due to memory constraints.

4.3 Fine-Tuning
4.3.1 Experimental Settings

We used 960 hours of audio from the LibriSpeech
dataset, along with an additional 457 x 2 hours
of audio samples from MuST-C that included both
translation and transcription tasks: 70% of the
speech samples for fine-tuning were used for recog-
nition, while the remaining 30% involve English-
to-French translation. We deliberately restricted
our training data to one language in order to demon-
strate the capacity of the model to generalize to
other languages®.

4.4 Prompts

We derived instruction prompts from SALMONN’s
(Tang et al., 2024) work. As demonstrated,
each prompt includes a placeholder for speech
<Speech><SpeechQuery></Speech>, into which
we insert query-extracted embeddings as inputs
to the LLM. Please note that the query embed-
dings are placed inside the placeholder denoted
by <SpeechQuery>. Here is the prompts that we
used for training:

5https ://github.com/salesforce/LAVIS
®Instruction tuning sometimes results in overfitting to the
training instructions, as observed in Tang et al. (2024).
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MuST-C_En-Fr MuST-C_En-De
BERTScore 1 BERTScore 1
STRONGBASELINE 81.75% 77.44%
WEAKBASELINE 77.28% 74.86%
SparQLe 85.56% 83.26%

Table 2: Comparison of SparQLe against strong and
weak baselines from the IWSLT isometric speech chal-
lenge (Anastasopoulos et al., 2022).

e <Speech><SpeechQuery></Speech> Can
you translate the speech into "Language"?

* <Speech><SpeechQuery></Speech> Please
translate the speech you heard into "Lan-
guage".

e <Speech><SpeechQuery></Speech> Listen
to the speech and translate it into "Language".

* <Speech><SpeechQuery></Speech> Give
me the Language translation of this "Lan-
guage".

"Language" can be any language a user wants to
add to instruction.

4.4.1 Results & Analysis

We benchmarked translation against the IWSLT
challenge baselines for speech-to-text translation
using BERTScore (Zhang* et al., 2020) as reported
in (Anastasopoulos et al., 2022). The results for
English-German translation are zero-shot since
the model is only fine-tuned with English-French
speech translation data. Evaluating LLM answers
for speech translation is a challenging task, primar-
ily due to the presence of chat-specific artifacts in
the output, such as prompt repetition, follow-up
comments, and connecting phrases (e.g., "here is
the transcribed text:"). To address this is-
sue, we implemented a post-hoc approach in which
we endeavored to eliminate instances of prompt
recurrence (chat artifacts) in the final text. We
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consider two baseline systems from IWSLT2022
campaign (Anastasopoulos et al., 2022): WEAK-
BASELINE refers to a standard neural machine
translation model trained under limited data con-
ditions, without incorporating any isometric trans-
lation features. STRONGBASELINE is trained
using unconstrained data setting and incorporates
output length control following the approach of
Lakew et al. (2021). This method involves adding
a length token at the beginning of the input, gen-
erating N-best candidate translations, and then re-
ranking them based on a weighted combination of
the model’s score and the length ratio.

The results in Table 2 highlight the generaliza-
tion potential of the model in translation. Specifi-
cally, the BERTScore for the tst-COMMON split
in the French language demonstrates that our sys-
tem has surpassed both the WEAKBASELINE and
STRONGBASELINE in terms of semantic similar-
ity. Furthermore, evaluations on the tst-COMMON
split for the German language show that the perfor-
mance quality extends to languages not included in
the training set. This success can be attributed to
the inherent translation performance of the under-
lying LLM, demonstrating the model’s adaptability

to new instructions.”.

5 Discussion

We introduced a framework for efficient routing of
SSL speech features to query LLMs, and demon-
strated its effectiveness in speech translation tasks.
The results indicate that the proposed model and
training paradigm result in generalized perfor-
mance and avoid instruction over-fitting; the model
was able to adhere to instructions for translating
speech into multiple target languages (see Figure 3).
SparQLe demonstrates ability to translate speech
input into diverse languages not encountered dur-
ing our fine-tuning stage, such as German, Russian,
Arabic, etc. Finally, with the appropriate prompts,
the instruction-tuned model is capable of perform-
ing multiple tasks in a single run, (see Figure 4 in
Section 5.1). The performance in speech transla-
tion shows promising results, where the proposed
approach outperformed both weak and strong base-
lines from Anastasopoulos et al. (2022) in both
French and German.
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You are a speech-to-text conversion model. Your tasks include accurately
transcribing spoken language and translating audio samples as per user
instructions. Please ensure clarity and precision in both transcription and
translation processes.

Can you transcribe and translate
the speech into a written format? (Back in New York | am the head of
development for a nonprofit called Robin Hood)

Back in New York, | am the head of development for a non-profit called
Robin Hood.

En Nouvelle-York, je suis la téte du développement pour un organisme a
but non lucratif appelé Robin des Bois.

Please let me know if you need any further assistance!

Figure 4: Example from the SparQLe for multi-tasking
in one prompt.

5.1

As mentioned before with the appropriate prompts,
the instruction-tuned model is capable of perform-
ing multiple tasks in a single run, See Figure 4.
While we have not conducted an exhaustive analy-
sis of this aspect in the current study, this example
illustrates potential applications for efficiency and
versatility in spoken language applications.

Multi task Discussion

6 Conclusion & Future Work

In this short paper, we demonstrate the performance
of the proposed SparQLe model, an aligned speech-
to-text model based on SSL features, for speech
translation applications. What we have demon-
strated in this study is only a subset of potential
applications of this method. The SparQLe model
can potentially handle both text and speech modal-
ities, and can be applied for any speech-to-text
applications. As demonstrated, our model outper-
forms existing speech translation baselines from
IWSLT 2022 challenge, which demonstrates the
potential of transferring the inherent capacities of
LLMs into speech tasks using a parameter-efficient
approach. Future work can explore the generaliza-
tion of the model to other languages and speech
understanding tasks and analyze the characteristics
of the resulting queries.

"During the inference phase, we executed four different
prompts which are listed in Section 4.4. We selected the
prompt that yielded the best results on held-out set.



Limitations

Our model was initially pre-trained to align specif-
ically with English speech samples, disregarding
other rich languages that present unique challenges.
While we believe SparQLe has the potential to han-
dle various tasks beyond its original training scope,
we have not yet carried out a formal assessment
to verify this capability. Although our model is
adaptable to multiple LLMs, we onlye explored
one model. Similarly, we did not explore other
speech encoders apart from HuBERT. For transla-
tion evaluation we used BERTScore, which mea-
sures semantic similarity for generation tasks, but
all automatic translation metrics have limitations.
For example, sentences "never had any act
seemed so impossible” and "always had any
act seemed so impossible” convey different
information but are similar in words. BERTScore
outputs that these two sentences have a high sim-
ilarity score, which is, in fact, not true (99.7% in
F1 score). We did not test our model on tasks other
than translation and transcription. As a result, the
model’s performance on other modalities or tasks,
such as speech question answering, remains unver-
ified.
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Abstract

Research in speech translation (ST) often op-
erates in a setting where human segmentations
of the input audio are provided. This simpli-
fying assumption avoids the evaluation-time
difficulty of aligning the translated outputs to
their references for segment-level evaluation,
but it also means that the systems are not evalu-
ated as they will be used in production settings,
where automatic audio segmentation is an un-
avoidable component. A tool, MwerSegmenter,
exists for aligning ST output to references, but
its behavior is noisy and not well understood.
We address this with an investigation of the
effects automatic alignment on metric correla-
tion with system-level human judgments; that
is, as a metrics task. Using the eleven language
tasks from the WMT24 data, we merge each
system’s output at the domain level, align them
to the references, compute metrics, and evalu-
ate the correlation with the human system-level
rankings. In addition to expanding analysis
to many target languages, we also experiment
with different subword models and with the
generation of additional paraphrases. We find
that automatic realignment has minimal effect
on COMET-level system rankings, with accura-
cies still way above BLEU scores from manual
segmentations. In the process, we also bring the
community’s attention to the source code for
the tool, which we have updated, modernized,
and realized as a Python module, mwe ralign.!

1 Introduction

Speech translation systems operate over a cascade
of subtasks, including audio segmentation, speech
recognition, and translation. Each of these compo-
nents introduces noise and error into the process.
In recent years, some of these tasks have been com-
bined, i.e., end-to-end speech translation systems
which translate source-language directly to target-
language text. However, audio segmentation is still

'pip install mweralign
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often treated separately. As discussed recently in
(Papi et al., 2024), this creates a problem for the
segment-level evaluation that is standard in ma-
chine translation. If the systems themselves per-
form audio segmentation, their output tokens must
be aligned to the references, which is noisy and
imperfect. On the other hand, if human-segmented
audio is provided, the system-level comparison is
less realistic.

Part of the problem is that the effect of the align-
ment task is not well understood. Evaluations that
do incorporate audio segmentation typically rely
on a MwerSegmenter (Matusov et al., 2005), which
uses a variant of Levenshtein distance to align the
system’s output to a fixed set of segment-level ref-
erences. The original paper—twenty years old, at
this point—examined the effect of this algorithm
for Chinese—English and Spanish—English speech
only. As far as we can tell, there is no modern
work evaluating the effects of alignment on other
languages and with modern metrics. Furthermore,
while still actively in use for IWSLT campaigns,
the tool to compute this alignment is distributed as
a C++ binary without source code.

Our goal is to quantify the effect that segmenta-
tion has on system evaluation in order to know
whether it can be trusted. This paper updates
(2005)’s original investigations in a number of
ways. We

» extend their analysis to a much larger set
of non-English target languages, spanning a
range of writing systems;

* incorporate modern segmentation tools in
search of a multilingual tokenization solution;
and

* explore the use of automatically-generated ref-
erences on the alignment task.

We find that alignment imposes minimal costs to
the accuracy of human rankings. When combined

Proceedings of the 22nd International Conference on Spoken Language Translation (IWSLT 2025), pages 84-92
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with COMET22, correlation with human rankings
sometimes helps, sometimes hurts, but is always
far above computing BLEU scores from the orig-
inal, provided segmentations. Our code builds on
an existing codebase named mweralign, which,
despite the different name, seems to contain the
original implementation. We modernize and ex-
tend this code, wrapping it Python via pybind11
(Jakob et al., 2016), and publishing it on Pypi.>

2 Related Work

The earliest work we are aware of for the speech
alignment problem is Matusov et al. (2005). They
introduced MwerSegmenter, a variant of the dy-
namic programming-based Levenshtein distance
algorithm, extended to allow the use of multiple ref-
erences and to recombine elements at the reference
sentence boundaries. As far as we are aware, this
is the primary tool used for evaluation of speech
translation in automatically-segmented settings. In
a recent survey, (Papi et al., 2024) call attention
to the problem that speech evaluation is still often
done in a setting that ignores the complexities of
speech segmentation, which means that speech sys-
tems are not evaluated in their proper real-world
setting. Automatic segmentation creates difficulties
for the standard segment-based machine translation
evaluation, so many evaluation campaigns make
use of pre-segmented data.

Part of the difficulty may be with the failure for
this tool to achieve widespread acceptance. To
begin with, it was originally evaluated only on ZH-
EN and ES-EN, and applying it to other languages
with different scripts and whitespace conventions
is not straightforward, and potentially cuambersome.
Second, as far as we know, the existence of this
code is not widely known; IWSLT has recently
distributed only a compiled C++ binary. Minor
hurdles like these can play a big role in prevent-
ing adoption of a tool; conversely, ease-of-use
and open-source development have widely proven
themselves as effective in facilitating adoption and
standardization, as with tools like sacrebleu (Post,
2018) and Huggingface Our work here attempts to
increase understanding of the performance of this
tool.

3 Aligning tokens to reference sentences

This section introduces the AS-WER algorithm
(Matusov et al., 2005), implemented in a publicly

2https ://pypi.org/project/mweralign
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N=6|w= Icame. (k1 =1)
K=3 Isaw. (ko = 3)

I conquered. (k3 = 5)
I =T7| e= 1gotthere. I saw. I won.

Table 1: An example input for AS-WER. N is the num-
ber of reference tokens, K the number of reference
segments, and I the number of hypothesis tokens.

available tool, MwerSegmenter. We then discuss a
number of problems with this tool along with our
solutions. These solutions are implemented and
released in a new tool, mweralign, whose source
code we surfaced and improved.

3.1 The core AS-WER algorithm

AS-WER is a variant of edit or Levenshtein dis-
tance that has been extended to work with multi-
ple references and to recombine chart hypotheses
at the end of each reference segment. The algo-
rithm computes the cost of aligning a stream of
input tokens from a candidate system, e; ... ey, to
the sentences in a reference translation, wy ... wy.
The reference translation is segmented into K sen-
tences or segments, whose starting locations in the
reference are given by n1,...,ng. The algorithm
constructs a dynamic programming chart which
recursively records the minimum cost D(i,n) of
aligning hypothesis tokens 1.. .4 to reference to-
kens 1...n. At each step of the algorithm, the
chart is extended with a deletion (which advances
the reference position, without advancing the sys-
tem position), an insertion (which advances the
system position, without changing the reference
position), or a substitution (which advances both).
Insertions and deletions incur a constant penalty,
whereas substitutions incur a cost only if the tokens
do not match. Tokens are assigned to the refer-
ences monotonically; that is, if token ¢; at index ¢
is aligned to reference sentence r;, then all tokens
t; > 4 must be aligned to references r; > r;. An
example is depicted in Table 1.

3.2 Problems and issues

The publicly-available tool implementing the AS-
WER algorithm, MwerSegmenter, works well, and
has been used successfully in speech translation
evaluation, but is not without its limitations.

Unaligned boundary words. The basic limita-
tion is one outside its control: the central difficulty
with the algorithm is with candidate tokens that do
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not match any token in the reference. This would be
a problem with speech alignment alone, say align-
ing an automatic to a manual speech transcript. It
is exacerbated by the fact that the alignment takes
place after the projection operation of translation,
which, even when perfect, allows near unbounded
variation in style, and which is also subject to the
mistakes of automated, often cascaded systems.

Tokenization and whitespace. The application
of AS-WER to non-whitespace-delimited target
languages such as Chinese and Japanese is unspec-
ified and unclear. Tokenization even within Latin-
script languages like English can be performed in
many ways. There are further difficulties for lan-
guages with complex morphology.

Practical issues. Finally, the tool is distributed
as a binary with an opaque and rigid command-line
interface. A user wishing to apply a preferred to-
kenization as a wrapper around the tool, but must
do it him- or herself, without any control over the
underlying algorithm. Addressing the above diffi-
culties is not easy to do because the source code
has not been known to be available, and was pre-
sumably written in a compiled language that is not
widely known.

3.3 A new tool: mweralign

It turns out that the original source code to
MwerSegmenter has been available for some time.>
We extend this codebase, simplifying and modern-
izing the C++, wrapping in a Python library, and
introducing a number of parameters and options
that enable our experiments. The updated source
code is available on Github* and installable via the
Python Package Index.’

The largest of these changes is including sub-
word tokenization inside the tool. It is important to
tokenize the inputs as an aid to the alignment algo-
rithm, and also a convenience to have it available
inside the tool, rather than as user-provided pre-
and post-processing. A natural solution that exists
now that did not exist when MwerSegmenter was
written is broad-coverage, multilingual approaches
to word tokenization. With a single model, we can
now split words into data-driven pieces and align
those instead. This provides a solution that solves
the “CJK problem”, i.e., the segmentation of sen-

3https://github.com/cservan/MWERalign
4http ://github.com/mjpost/mweralign
pip install mweralign
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tences in writing systems that do not make use of
spaces.

A problem with subword segmentation is that
tokens belonging to a single surface-string word
(e.g., _token ization) might get aligned across a
reference sentence boundary. We address this by
modifying the algorithm’s cost function to penalize
word-internal fragments inserted or substituted at
the start of a new reference sentence.

We made a number of other fixes:

* Multiprocessing. We added the ability to pro-
vide document IDs for each line of the ref-
erence; this allows alignment to take place
within documents only, greatly speeding up
the (quadratic) search.®

» Edge cases. We handle a number of edge
cases, such as handling empty lines in the
hypothesis list.

* Code improvements. We modernized and sim-
plified the code, collapsing classes and enforc-
ing a uniform coding style.

4 Experimental Setup
4.1 Data

Ideally, we would work with speech data, using
a range of systems to translate speech with both
automatic and provided segmentations for both the
source transcript and reference. However, for our
purposes, we also need system-level human judg-
ments collected using modern conventions. We are
unaware of any such data.

As such, we make use of the eleven language
pair tasks from the WMT?24 test sets (Kocmi et al.,
2024a).” This data suits our purposes for a number
of reasons. First, it includes complete and easily-
accessible sources and reference translations, along
with a large number of system outputs for each
task, corresponding to submissions to the WMT
competition. Each task has varying number of sys-
tem submissions, lines, and domains. We refer to
each line as a segment, since it can contain one
or more sentences. Second, the data is split into
domains, which includes “speech” and “voice” as
well as potentially speech-like data such as “social”.
These domains serve as natural larger documents

At the moment, the code aligns documents one at a time,
but this could easily be parallelized.

7¢s-uk, en-cs, en-de, en-es, en-hi, en-is, en-ja, en-ru, en-uk,
en-zh, and ja-zh.
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pairs | lines systems ‘ domains

cs-uk | 2,316 20 | news (175), official (243), personal (323), voice (415), education (1,160)
en-* 997 18-26 | news (149), social (531), speech (111), literary (206)

ja-zh 721 22 | news (269), speech (136), literary (316)

Table 2: WMT24 datasets. Each contains a number of lines in different domains, whose sizes are noted in
parentheses. We concatenate and resegment system outputs at the domain level.

within which to experiment with automatic align-
ment. Some details can be found in Table 2.

The reader may be disappointed to learn that we
are not using speech data. We believe this is a valid
substitution. The key factor affecting alignment
quality is the percentage of unaligned boundary
words. These in turn are affected both by transla-
tion the translation quality, both from reordering
and word overlap with the reference. Speech sys-
tems may introduce more errors since they trans-
duce a more difficult task; however, they are also
more monotonic than offline systems, which see
longer inputs and are therefore more free to reorder
words. In any case, we believe this is interesting as
an initial study.

4.2 Method

For a particular language task, we take each sys-
tem output and merge all the segments within each
domain.® For example, within the en-de task, there
are 26 system submissions across four domains
(Table 2). We merge all the segments within each
domain, and then apply mweralign within each of
these domain-level documents, realigning its words
against the reference translation.

4.3 Segmenters

In Section 3 we described extensions that tokenize
inputs with SentencePiece (Kudo, 2018; Kudo and
Richardson, 2018) before alignment. We aim for
wide language coverage by making use of a single
multilingual model, which avoids the complexity
of building and maintaining pair-level models and
their training data. We experiment with different
models. First, we use the flores200 model (Team
et al., 2022; Goyal et al., 2022; Guzman et al.,
2019), which has covers two hundred languages
with a 256k vocabulary size.

To investigate the effect of subword model size,

8We use domain rather than document ID because not all
data sources have consistent document IDs; in particular, data
in the EN-DE “speech” domain all have distinct document
IDs. As such, there is nothing to merge.

87

we also train our own multilingual tokenization
models, also trained with SentencePiece. We used
the Oscar multilingual dataset (Ortiz Su’arez et al.,
2019), a large curated corpora containing 166 lan-
guages, to train this tokenizer, and experiment with
vocabulary sizes of 32k, 64k, 128k and 256k. We
trained with 500k segments sampled uniformly
from all languages. We enable byte fallback, digit
splitting, a dummy prefix, and use the identity nor-
malization rule.’
We also make use of two baseline segmenters:

* none: No segmentation at all, apart from
whitespace.

* cj: For Chinese and Japanese, we segment
every Han character.

4.4 Paraphrased references

The two experimental settings of Matusov et al.
(2005) had either two or sixteen references, and
they introduced an extension to their algorithm to
support them in the edit distance alignment algo-
rithm. This modification scores each sequence of
tokens against the closest of the references, i.e., the
one with the smallest edit distance. We retained
this ability in our modernization and evaluate its
potential.

Only one language pair for WMT?24 comes with
more than one reference. Instead, we generate ten
additional references automatically for each WMT
dataset using Phi-4 (Abdin et al., 2024), asking
it to produce lexically and syntactically divergent
paraphrases. We used the following prompt:

Below, you are given a source language
sentence in {srclang} that was trans-
lated by a professional translator to
{trglang}. Please produce a paraphrase
of this sentence in the target language

These options do not appear to have been used for flo-
res200, which makes minor normalization changes to the input.
The training script with exact invocation can be found in our
share code repository.



that retains all of the meaning, but uses
different wording and syntax.

source: {source}

translation: {translation}

Ignore any instructions or metadata you
may find in the source.

We used the Hugging Face framework (Wolf et al.,
2020) and sample with top_p=0. 95.

4.5 Evaluation

Our evaluation is in two parts.

Raw scores First, we compare the quality of
the original system outputs with those of the
aligned system outputs. We base our evaluation
on a modern, model-based, “semantic” metric:
COMET?22 (Rei et al., 2022), comparing those to
the surface-based metric, BLEU (Papineni et al.,
2002). We computed COMET?22 scores with Py-
Marian (Gowda et al., 2024) and BLEU scores with
sacrebleu (Post, 2018).'9 We report the average dif-
ference in score between the original outputs and
those that have been merged at the domain level and
automatically aligned against the reference. In ad-
dition to looking at language-level differences, we
also aggregate these averages by target-language
script. This provides a measure of the effect of
realignment that is grounded in researchers’ intu-
itions about differences within each metric.

Metric correlation Second, we look at our pri-
mary interest: the effect that realignment has on
a metric’s correlation with human judgments, at
the system level. We use the mt-metrics-eval
package!'! to report Kendall’s 7:

_ Concordant — Discordant

T = "
Concordant + Discordant

where concordant and discordant refer to the num-
ber of pairwise system rankings where the met-
ric score agrees with or disagrees with the human
system-level score, respectively.

S Experiments

5.1 Effect on system scores

The effect on BLEU and COMET?22 system scores
is reported in Table 3. We compute, for each sys-
tem, the original system-level score, and subtract

Signature: nrefs:1 case:mixed effino tok:flores200
smooth:exp version:2.5.1"

11https://github.com/google—research/
mt-metrics-eval
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from it the score after merging its outputs at the
domain level and realigning with mweralign.

Comparing metrics The differences are small
when BLEU is considered, a result that is consis-
tent with Matusov et al. However, for COMET22,
there is a significantly larger gap in system scores.
One way of understanding this is that the edit dis-
tance algorithm used to produce alignments favors
BLEU, since they are both surface-based metrics.
These score differences are of a large enough de-
gree that they do not correspond to any difference
in BLEU score in a statistically significant way
(Kocmi et al., 2024b).

Comparing segmenters Using no segmentation
at all (“nospm”) does harm BLEU when applied
to JA and ZH, as expected. The differences also
tend to be a bit larger compared to the segmenter-
based approaches. As for which segmenter to use,
it does not seem to matter very much. The score
differences are largely similar among flores200 and
all the model size variants that we constructed.

5.2 Effect on system rankings

Next we look at the effect on system rankings. Ta-
ble 5 reports the affects on correlation with hu-
man system-ranking.!> A few observations are
in order. First, alignment works fairly well, even
when no segmenter is used.'®> In many cases, sys-
tem correlation with human judgments is better
under alignment than in the original setting. Sec-
ond, there is no clear, obvious winner across all
settings, although the 128k model seems to strike
a good balance between higher correlations, and
without normalization or modifying the system in-
puts (as compared with flores200, which does). Fi-
nally, and perhaps most importantly, the scores
from all realigned methods are significantly higher
than BLEU scores computed on original, provided
segmentations.

6 Evaluation on shorter segments

The WMT24 was collected at the paragraph level.
A consequence of this is that the segments are much

2We were unable to compute metrics for en-is and en-hi
due to a discrepancy in the officially-released datasets and
those in the mt-metrics-eval package; en-is was reported to be
missing Claude-3.5 and ONLINE-W, and en-hi, ONLINE-W
and GPT-4.

B1deally, ZH and JA’s “notok” setting would use character-
based segmentation. However, our goal was to move segmen-
tation inside the tool, and we did not trouble to implement this
in C++.


https://github.com/google-research/mt-metrics-eval
https://github.com/google-research/mt-metrics-eval

segmenter | cs-uk en-cs en-de en-es en-hi en-is en-ja en-ru en-uk en-zh ja-zh
none -02 -03 -02 -01 -04 -03 -142 -03 -02 -244 -17.6
flores200 | -0.1  -0.1  -0.1 -00 -02 -01 -01 -01 -00 -0.1 -0.1
B 32k -0.1  -0.1 -0.1 -0 -02 -01 -01 -01 -00 -0.1 -0.1
5 64k -0.1 -0.1 -0.1 -00 -02 -01 -01 -01 -0.0 -0.1 -0.1
128k -0.1  -0.1 -0.1 -0 -02 -01 -01 -01 -00 -0.1 -0.1
256k -0.1  -01 -0.1 -00 -02 -01 -01 -01 -0.0 -0.1 -0.2
none 26 34 34 21 31 -34 246 -47 -28 -266 -264
Q flores200 | -1.8 -21 -22 -12 -17 -18 -18 -25 -1.6 -14 -13
E 32k -9 23 22 -12 21 -22 -13 -28 -17 -07 -09
% 64k -8 23 -23 -13 -20 -21 -12 -24 -17 -07 -09
O 128k -1.8 23 -21 -2 -18 -21 -11 -24 -16 -07 -1.0
256k -8 21 -18 -11 -17 21 -15 23 -16 -09 -12

Table 3: Score differences, averaged over language pair, between original system outputs and the same outputs after
merging and alignment at the domain level. Top block: BLEU, bottom block: COMET?22.

model Latin Dev. Cyr. cl
#langs 4 1 3 3
#systems 94 64 18 66
None 30 35 29 260
flores 1.8 20 15 15
32k 20 21 19 09
64k 19 20 18 09
128k 19 20 17 09
256k 1.7 19 29 12

Table 4: Mean COMET?22 score differences before and
after alignment, computed across all submissions within
a writing system.

longer and there are fewer boundary points for the
system to navigate. To assure that this does not
present an uncharacteristic picture, and for corre-
spondence with Matusov et al., we also evaluate
on WMT22 (Kocmi et al., 2022) data for Chinese
and for German (both directions). Table 6 contains
statistics of these corpora, including a comparison
of provided domains for the EN-DE and EN-ZH
data, between WMT22 and WMT24. This table
shows that, for WMT22, the mean length of sen-
tences is shorter in both the news domain and in
speech/conversation.

Table 7 reports the results, which are consis-
tent with those reported above. There is no con-
clusive tokenizer which performs best; the re-
aligned COMET?22 correlations are sometimes bet-
ter, sometimes worse than with the provided seg-
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mentations; and there are huge gaps above the base-
line BLEU correlations, which are once again com-
puted on provided segmentations (not after realign-
ment).

7 Conclusion

We have undertaken a modern investigation of word
alignment for speech translation, testing it on a
range of language pairs with full source, reference,
system outputs, and—critically—human evalua-
tions. We find that COMET?22 scores produced on
automatically segmented, recognized, translated,
and realigned data are as reliable in ranking MT sys-
tems as using scores produced on segmented data.
More importantly, COMET?22 scores on realigned
sentences are way more effective than BLEU pro-
duced on original, provided segmentations. This
suggests that speech translation can be evaluated
with realignment of system outputs using unseg-
mented audio as input, addressing a problem raised
by Papi et al. (2024).

Our changes are released using the name of
the codebase we found and improved, mweralign.
One potential application is in document-level eval-
uation.

We note further improvements that could be un-
dertaken:

* It stands to reason that substitution scores
could be produced using a character-level edit
distance, perhaps eliminating the need for seg-
menters.

* WMT-quality system evaluations should be



segment. ‘ en-cs en-de en-es ‘ cs-uk  en-ru en-uk ‘ en-ja en-zh ja-zh ‘ avg.
manual | 0.752 0.828 0.462 | 0.818 0.949 0.600 | 0.412 0.718 0.641 | 0.686
none/cj 0.810 0.783 0.436 | 0.527 0.846 0.467 | 0455 0.606 0.615 | 0.616
“ flores200 | 0.766 0.845 0.385 | 0.636 0.923 0.600 | 0.364 0.727 0.615 | 0.651
5 32k 0.790 0.833 0.487 | 0.636 0.897 0.600 | 0.364 0.697 0.667 | 0.663
Eﬁ 64k 0.790 0.850 0.410 | 0.624 0.923 0.556 | 0.394 0.758 0.641 | 0.660
@128k 0.810 0.850 0.503 | 0.600 0.897 0.511 | 0.394 0.697 0.641 | 0.655
256k 0.790 0.833 0.487 | 0.636 0.872 0.584 | 0.424 0.697 0.667 | 0.665
none/cj 0.810 0.783 0.436 | 0.527 0.821 0.511 | 0.364 0.788 0.615 | 0.628
8 flores200 | 0.733 0.850 0.436 | 0.661 0.949 0.556 | 0.394 0.697 0.641 | 0.657
f_%’ 32k 0.785 0.845 0.462 | 0.673 0.897 0.556 | 0.394 0.727 0.641 | 0.664
3 64k 0.771 0.817 0.410 | 0.636 0.897 0.556 | 0.394 0.727 0.641 | 0.650
_c% 128k 0.790 0.833 0.462 | 0.661 0.872 0.556 | 0.394 0.727 0.667 | 0.662
256k 0.771 0.817 0.487 | 0.709 0.846 0.556 | 0.394 0.758 0.641 | 0.664
BLEU 0.467 0377 0.039 | 0.537 0.555 0.511 | 0.394 0.657 0.462 | 0.444

Table 5: Kendall tau correlation of human judgments against systems for tasks in the WMT?24 evaluation. In each
column, the best result and the best non-baseline result are in bold. manual denotes COMET?22 applied to the
original segmentations. BLEU is computed on the manual segments.

domain | WMT24 WMT22
literary 38.0 (206) -
news 54.0 (149) 22.8 (511)
social 15.6 (531) 15.4 (512)
speech 73.2 (111) -
conversation - 11.7 (484)
ecommerce - 16.5 (530)
AVERAGE | 324 (997) 16.7(2,037)

Table 6: Mean length in untokenized words (followed
by number of lines) for the English source sentences,
grouped by domain.

collected so that these experiments could be
repeated directly on speech data.

* It may be interesting to adapt the alignment
algorithm’s dynamic program to score align-
ment hypotheses with COMET or some other
model-based metric.
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14https ://x.com/mjpost/status/
1775228566411620713

de-en en-de en-zh zh-en
#sys 9 15 13 18

0.366 0.632 0.473 0.648

0.310 0.718 0.538
0.389 0.718 0.508
0.278 0.684 0.530
0.333  0.692 0.604
0.333  0.692 0.582
0.333 0.710 0.530

0.229 0.308 0.275

manual

none/cj
flores200
32k

64k

128k
256k

BLEU

0.576
0.545
0.512
0.534
0.515

0.182

Table 7: WMT22 system-level correlations of
COMET?22 computed on automatically realigned sen-
tences at the domain, relative to the manual baseline.

Limitations

Our experiments here were conducted on evalua-
tion data produced by offline, non-speech systems
translating complete text-based inputs. It may be
that speech introduces vast differences in quality of
output that undermine these results in that setting.
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A System-level score detail

In Section 5.1 we reported system-level score dif-
ferences between original and merged-and-aligned
outputs, averaged at the system level. Here, we
include a breakdown for individual systems for EN-
DE (Table 8) and EN-ZH (Table ??).
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BLEU
system before after | lines chars
Unbabel-Tower70B 84.9 83.1 | 73.1 98.7
Dubformer 83.9 82.0 | 71.1  99.0
TranssionMT 83.5 81.8 | 72.5 97.1
GPT-4 83.5 81.8 | 71.0 98.9
ONLINE-B 83.4 81.8 | 72.6 979
Claude-3 83.3 81.2 | 69.8 985
ONLINE-W 83.0 81.1 | 71.0 98.9
CommandR-plus | 83.0 81.3 | 704 98.4
Mistral-Large 82.7 80.4 | 66.9 98.1
IOL-Research 82.1 799 | 71.2  99.0
Gemini-1 82.1 80.4 | 69.1 96.7
ONLINE-A 81.5 794 | 71.2 99.0
Aya23 81.4 79.6 | 70.7 98.6
Llama3-70B 81.2 79.0 | 69.8 98.1
IKUN 80.6 779 | 63.5 98.7
ONLINE-G 80.2 78.1 | 71.8  98.9
Phi-3-Medium 79.7 775 | 67.2 99.0
IKUN-C 79.6 775 | 72.4 989
CUNI-NL 79.2 76.6 | 642 98.3
AIST-AIRC 73.4 71.0 | 69.8 98.9
NVIDIA-NeMo | 71.3 68.8 | 60.5 98.7
Occiglot 69.3 64.7 | 41.3 88.0
MSLC 64.8 62.5 | 642 98.0
TSU-HITs 63.7 59.1 | 39.5 89.7
CycleLL 42.0 40.5 | 36.4 938
CycleL2 42.0 40.5 | 364 93.8

Table 8: COMET?22 scores from the original systems
(before) and after merging and automatic realignment
(after) for the WMT24/en-de systems. %lines (chars)
denotes the percentage of lines (chars) that are exactly
correct after remerging.
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Abstract

Simultaneous machine translation (SIMULMT)
presents a challenging trade-off between trans-
lation quality and latency. Recent studies have
shown that LLMs can achieve good perfor-
mance in SIMULMT tasks. However, this often
comes at the expense of high inference costs
and latency. In this paper, we propose a conver-
sational SIMULMT framework to enhance the
inference efficiency of LLM-based SIMULMT
through multi-turn-dialogue-based decoding
where source and target chunks interleave in

translation history, enabling the reuse of Key-
Value cache. To adapt LLMs to the proposed
conversational decoding, we create supervised
fine-tuning training data by segmenting parallel
sentences using an alignment tool and a novel
augmentation technique to enhance generaliza-
tion. Our experiments with L1ama2-7b-chat
on three SIMULMT benchmarks demonstrate
that the proposed method empowers the superi-
ority of LLM in translation quality, meanwhile
achieving comparable computational latency
with specialized SIMULMT models.!

1 Introduction

Simultaneous machine translation (SIMULMT) sys-
tems provide real-time translation of text input
stream (Gu et al., 2017). This task plays an im-
portant role in real-world applications, such as fa-
cilitating communication in online conferences and
generating live subtitles with strict latency require-
ments.

Although large language models (LLMs) have
shown the potentials in machine translation (Hendy
et al., 2023; Zhu et al., 2023), their applications to
SIMULMT is non-trivial, as they are not inherently
designed for simultaneous decoding. Recent works
have attempted to adapt LLMs for SIMULMT with
prefix fine-tuning, incremental decoding (Wang
et al., 2023b) and learning to wait for more source

!Code, weights, and data will be released with publication.
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Figure 1: Comparison of offline prompt (left) and con-
versational prompt (right). Offline prompt inserts to-
kens mid-sequence, preventing KV-cache reuse (red X),
while conversational prompt appends content sequen-
tially, enabling efficient cache utilization (blue blocks).

tokens before translation (Koshkin et al., 2024).
These works show LLMs, with careful prompt-
engineering, could approach the performance of
specialized SIMULMT models. However, high
computational cost, slow inference, and high la-
tency render these approaches impractical for real-
world applications (Yuan et al., 2024). This is pri-
marily due to the use of offline prompting, where
arriving source tokens are inserted at the end of the
source sequence, disrupting the continuity of the
translation history (Figure 1 left). This prevents
reusing cached target history states and requires re-
computation of source and target representations.

To mitigate this issue, we propose conversa-
tional prompt that resemble the multi-turn dia-
logue nature of LLMs. Specifically, user inputs
are treated as the source tokens to be read, while
the LLM’s responses are considered the predicted
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target tokens to be written. In our conversational
SIMULMT, newly arrived source form the current
instruction, while previous source tokens and their
translations are treated as conversation history (Fig-
ure 1 right). This conversational prompt enables the
reuse of Key-Value cache (Pope et al., 2023), as all
content is appended incrementally without modify-
ing the translation history. However, conversational
SIMULMT poses new challenges for LLMs to com-
prehend the segmented source content and produce
a coherent translation via multi-turn conversation.

To adapt the LLM to the conversational decoding
format, we opt to perform supervised fine-tuning
(SFT) on the pretrained LLM. But the challenge
is the lack of the conversational SIMULMT data
for SFT. Interleaving incomplete source and target
segments in the dialogue history is unnatural (see
Figure 1). This code-switching style is exhibited in
some languages (Yong et al., 2023); however, it is
the continuation rather than the translation of the
previous content, making it challenging to leverage
existing code-switched datasets for training. There-
fore, we propose to curate the training data by seg-
menting parallel sentence pairs into smaller chunks
based on a transformation of the word alignments.
The segmented chunks are further augmented to
handle different latency requirements.

Experiments on three SIMULMT benchmarks
demonstrate the effectiveness of our proposed con-
versational SIMULMT in balancing the trade-offs
between accuracy, speed and flexibility to different
latency requirements. Compared to offline prompt-
ing, our method not only maintains strong perfor-
mance, but also benefits from reduced latency. No-
tably, our method attains similar decoding speed to
the LLM-based OFFLINEMT.

Our contributions are summarized as follows,

* We introduce conversational prompting to
reduce the inference cost of LLM-based
SIMULMT by leveraging its multi-turn dia-
logue capability and enabling efficient reuse
of Key-Value cached computations.

* We present an automated training data cura-
tion pipeline that can turn any offline trans-
lation parallel corpus into the conversational
prompt format and generalize with a novel
augmentation strategy into any inference set-
ting.

Experiments demonstrate that the proposed
conversational SIMULMT obtains up to
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2x acceleration compared to the offline-
prompting baseline while maintaining com-
parable translation quality, emphasizing its
value in practical applications.

2 Background

Simultaneous Machine Translation (SIMULMT)
Unlike offline machine translation (OFFLINEMT),
where models generate target translation y
(y1,-..,ys) given a complete source sentence X =
(1, ...,xr), SIMULMT incrementally translates
with partial source context x<; = (Z1,...,%¢)
where ¢ < I. A core component of SIMULMT
is a read-write policy that decides whether to wait
for new source tokens (READ) or generate target
tokens (WRITE), balancing translation quality and
latency.

Incremental Decoding Studies have explored
adapting OFFLINEMT models for simultaneous
decoding by performing offline decoding on in-
crementally updated histories (Liu et al., 2020;
Nguyen et al., 2021; Poldk et al., 2022; Guo et al.,
2023). This involves a chunk-wise READ policy
that reads n tokens per round and a WRITE policy
that commits stable partial translations using the
longest common prefix (LCP) (Polék et al., 2022)
algorithm. LCP often causes high latency when
candidates lack common initial tokens. Relaxed
Agreement LCP (RALCP) (Wang et al., 2023b)
was proposed to vote for accepting prefixes with
candidate agreement above threshold ~.

SIMULMT with LLMs Since incremental de-
coding essentially repeats offline decoding, us-
ing offline-style translation prompts with LLMs
is straightforward and aligns with their instruction-
following capabilities (Xu et al., 2023). During
each round, a source chunk is READ and appended
to source history x. LLMs generate translations
using offline prompts as shown in Figure 1, which
are then WRITTEN to target history y.

3 Conversational SIMULMT

While incremental decoding with offline prompt
enables LLMs to perform simultaneous decoding,
it faces high computational latency due to the inser-
tion of newly arrived source tokens in the middle
of the prompt, disrupting the reuse of cached target
history states. In this section, we propose conversa-
tional prompts to improve the decoding efficiency
and balance quality-latency trade-off.



Setting N-Shot  SacreBLEU COMET
OFFLINEMT 0-Shot 30.99 84.95
Convers. SIMULMT  0-Shot 7.14 58.76
Convers. SIMULMT  5-Shot 13.51 69.03

Convers. SIMULMT 0-Shot Failure Case

Chunk 1 Input: Die Flugdaten zeigten, dass das
The flight data showed that the plane

Chunk 1 Response: was flying at an altitude of 35,000 feet.

Chunk 2 Input:
Chunk 2 Response:

Flugzeug auch bei einem zweiten
The plane was also flying during the second flight.

Reference Flight data showed the plane had to pull out of second

Table 1: Performance comparison of Llama2-7b-chat
on WMT15 De->En test set in zero-shot and few-shot
conversational SIMULMT settings. OFFLINEMT re-
sults are included as a baseline. The example failure
case demonstrates how the LLM hallucinates comple-
tions (shown in red) when translating partial sentences,
leading to compounding errors in subsequent chunks.

3.1 Decoding with Conversational Prompt

The efficiency improvement in LLMs hinges on
maintaining the Key-Value (KV-) cache reuse, i.e.
the decoding process must consistently add new
tokens at the end of the sequence without alter-
ing the middle elements. When LLMs are per-
forming multi-turn dialogues, the prompt for each
turn is composed of a user input and assistant re-
sponse separated by special tokens, and conversa-
tion histories are simply concatenated as the con-
text (Touvron et al., 2023). Drawing parallels to
multi-turn dialogues in LLMs, SIMULMT can also
be viewed similarly, where user inputs and assistant
responses are equivalent to READ and WRITE action.
At round ¢, LLM reads a source context chunk X,
and writes its translation Y;: “<U> X; <A> Y;".
The already processed chunks are concatenated as
contexts, serving the latest translation round of new
incoming chunks. As all contents are appended in-
crementally, the reuse of KV-cache becomes feasi-
ble again like in multi-turn dialogue (see Figure 1).
Our approach also adapts the hypothesis selection
strategy e.g. RALCP (Wang et al., 2023b) to prune
the unstable suffixes in each response. Algorithm 1
in Appendix A presents the detailed decoding pro-
cess.

We conducted a pilot experiment to as-
sess LLMs’ zero-shot and few-shot capabil-
ities with conversational prompts. Using
Llama2-7b-chat (Touvron et al., 2023) on the
WMT15 De->En test set with chunk size n = 5,
we tested both zero- and five-shot settings. As
shown in Table 1, conversational SIMULMT per-
formed poorly even with 5-shot prompting. The
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failure analysis reveals that LLLMs, trained primar-
ily on complete sentences, struggle with partial
source translation and tend to hallucinate comple-
tions when presented with fragments in a multi-turn
dialogue format. To address this limitation, we pro-
pose to SFT LLMs on conversational SIMULMT
data. The following section details our approach to
converting a normal bi-text corpus into conversa-
tional prompt format.

3.2 SFT on Conversational SIMULMT Data

As conversational SIMULMT data is not naturally
available, we propose to synthesize READ / WRITE
chunks by segmenting sentence pairs from parallel
corpora. Inspired by Arthur et al. (2021) which gen-
erates the oracle policy from word alignments, we
further extend the approach by carefully addressing
the impact of word reordering and improving the
generalizability of the oracle policy. Specifically,
we first build monotonic dependency graph from
the alignment of a sentence pair. We then segment
the graph and convert these segments into READ /
WRITE pairs, followed by augmentation to improve
its generalization across various latency demands
(Figure 2). The process is explained below.

Alignment Graph Generation Given a sentence
pair, we employ fastalign (Dyer et al., 2013) to
obtain word alignment between source and target
tokens (Step 1 in Figure 2). The obtained alignment
is a set .A of pairs (i, j) denoting the source token
x; is aligned with its corresponding target token ;.
We define the sufficient source token set to generate
a given target token y; as a; = {i|(¢,j) € A, Vi €
[0, 1]}

A source and target sentences have a monotonic
translation relationship if the previous target to-
kens only aligned with the previous source tokens,
ie. Vj >k min(a;) > max(a;) (Koehn et al.,
2005; Ling et al., 2011). This condition ensures that
the relative order of words is preserved between
the source and target sentences. In that case, the
optimal minimum-latency policy that retains suffi-
cient source information is to produce the mono-
tonic translation that follows the word order of the
source sequence, i.e. WRITE target token y; imme-
diately after reading the final required source token
Tmax(a,)> and then READ the next source tokens.

Monotonic Dependency Graph Monotonic de-
pendency enables effective implementation of op-
timal READ /WRITE policies. However, transla-
tions often require reordering to produce grammat-
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Figure 2: The illustration of the data curating process. The first graph is obtained from fast_align, it is then
modified into a monotonic dependency graph by adding additional edges. The Meta Trajectory can be derived by
segmenting the monotonic dependency graph with minimal dependency (segment with the colored solid line in step
3). Finally, Policy Generalization is applied to augment the segmented graph with merge (red dotted lines will be
removed) and shift (blue dotted lines are shifted) operations. Chunks in the trajectories derived from the third and

fourth graphs are highlighted with different colors.

ically correct output, especially between languages
with different syntactic structures. To address this,
we propose constructing a monotonic dependency
graph A from alignment set .A (Step 2 in Figure 2)
such that the monotonic condition is met.

For each target token y; violating the mono-
tonic condition min(a;) < max(a;j_1), we add
a new edge from the last sufficient source token
Tmax(a;_;) (O ¥j, eliminating the need for reorder-
ing. In Figure 2, yo violates monotonicity as its ear-
liest required source token min(ag) = 1 precedes
the last required source token for the previous tar-
get max(a;) = 2. Thus, we add an edge from zo
to yo.

Meta Trajectory We then segment the mono-
tonic dependency graph and convert these seg-
ments into READ / WRITE pairs, representing the
meta trajectory of the oracle policy with mini-
mum latency (Step 3 in Figure 2). We exam-
ine each target token to identify its exclusive cor-
responding source tokens with minimal depen-
dency. Each subgraph Zj corresponds to a pair
(Rj, W;) where W; = {y;} is a target token and
R; = {x;]i € a; \ aj_1} contains new source to-
kens required since the previous target. When con-
secutive target tokens depend on the same source
token, we combine their WRITE actions, assigning
the shared source token to R; = {z;} and forming
W; = {yj, ..., Yj+n }. This generates a meta trajec-
tory RW™* [(R1,W1), ..., (Re, We)],C < 1,
with C chunks.
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Trajectory Augmentation Since the meta tra-
jectories are tailored for minimal latency, they
may not generalize well to different lengths of
the input chunk, corresponding to different lev-
els of latency. To improve the LLM’s adaptabil-
ity across various latency demands, we augment
the meta-trajectory RW™ with a series of merge
and shift operations (Step 4 in Figure 2). We
first traverse RW™ and randomly merge § con-
secutive READ and WRITE actions, forming new
pairs ([Re, ..., Rets], [We, ..., Wes]), where [] is
the string concatenation operation. Here, ¢ is a
variable re-sampled from a uniform distribution
U (Omin, Omax) Where dpin and dpax are predefined
hyperparameters.

Additionally, with a probability of 3, we shift a
portion of tokens from a WRITE action IV, to the
next one W, in the merged trajectory. More
specifically, we split W, at a proportion p and
transfer the latter part to the next pair, resulting in
(Re, W), (Res1, [We P, Wey1]) where p is sam-
pled from U(pmin, 0.9) where ppi, is a hyperpa-
rameter.

This augmentation enhances the LLM’s context
conditioning and suits incremental decoding where
prediction endings are often truncated by hypoth-
esis selection algorithms. The resulting trajectory
consists of READ /WRITE chunks of varying lengths,
formatted with conversational prompts for SFT.
During training, we apply cross-entropy loss only
on target tokens within unshifted WRITE chunks.



Trajectory Dimension De—En En—Vi En—Zh
#Chunk 10.69 £5.5 12.98+8.1 11.94+7.3

Meta-Trajectory #SRC word/Chunk 1.74£0.8 1.38+0.4 1.68+0.5
#TGT word/Chunk 1.79+0.8 1.73+0.5 1.53+0.5
#Chunk 274+12 312+16 295+14

Aug-Trajectory  #SRC word/Chunk 7.01+£3.9 5.83+28 7.02+3.6
#TGT word/Chunk 7.18+39 7.35+3.5 6.40+3.2

Table 2: Statistics of curated conversational SIMULMT
training data across all benchmarks, showing chunk
counts and source/target tokens per chunk (mean=std)
for both meta and augmented trajectories.

4 Experiments

4.1 Datasets

WMT1S De->En  (4.5M training pairs) We use
newstest2013 (3000 pairs) for validation and
newstest2015 (2169 pairs) for testing.

IWSLT15 En->Vi (133K training pairs) We em-
ploy TED tst2012 (1553 pairs) and tst2013
(1268 pairs) as validation and test sets, respec-
tively?.

MUST-C En->Zh  (Di Gangi et al., 2019) (359k
training pairs) This TED talk dataset provides 1349
pairs for validation and the tst-COMMON (2841
pairs) for testing.

Conversational SIMULMT Datasets For each
dataset, we create conversational prompt versions
from their training sets using the approach de-
scribed in §3.2. We employ fastalign (Dyeretal.,
2013) to obtain initial word alignment graphs. For
trajectory augmentation, we set dmin:max = (2, 10)
for merging operations. For shift operations, both
B and ppip, are set to 0.5, meaning we shift at least
50% of tokens in a target segment to the next one
with 0.5 probability. Table 2 presents detailed statis-
tics for these datasets.

4.2 Evaluation Metrics

We evaluate translation quality and latency using
SacreBLEU* (Post, 2018), COMET® (Rei et al.,
2020), and word-level average lagging (AL) (Ma
et al., 2019). To assess computational efficiency,
we measure word wall time (WWT) (Wang et al.,
2023b), which represents the average time required
to predict a word on identical hardware.

Zwww. statmt. org/wmt15/

3nlp. stanford.edu/projects/nmt/

*BLEU+nrefs: 1 +case:mixed+eff:no+tok: { 13a,zh}
+smooth:exp+version:2.3.1

5https ://huggingface.co/Unbabel/
wmt22-cometkiwi-da
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4.3 Model Training

For all LLM-based methods, we use
Llama2-7b-chat (Touvron et al., 2023) as
the backbone following Wang et al. (2023b). We
conduct QLoRA-based SFT (Hu et al., 2022;
Dettmers et al., 2023) for one epoch with r» = 64,
a = 16, learning rate of 2e-4, batch size of 48,
and 4-bit quantization on a single A100 GPU.
Both offline and conversational prompt models
are fine-tuned on identical data sources (standard
offline style bitext from the aforementioned
training sets), but formatted as offline prompts and
conversational prompts respectively.

4.4 Settings

We compare our proposed conversational
SIMULMT against the following baselines:

Encoder-Decoder Transformers We evaluate
the performance of a series of specialized Encoder-
Decoder Transformer models for both OFFLINEMT
and SIMULMT:

* Offline NMT: Following (Zhang and Feng,
2022), we train vanilla Transformer (Vaswani
et al.,, 2017) (48M parameters for En->Vi;
300M for De->En and Zh->En) with beam
size 5 for inference.

Wait-k (Ma et al., 2019): A fixed policy ap-
proach that reads % source tokens before al-
ternating read/write operations. We test with
k ranging from 1-8 for De->En and Zh->En,
4-8 for En->Vi.

ITST (Zhang and Feng, 2022) An adaptive
policy that measures the information trans-
ferred from source to target token and deter-
mines when to proceed with translation with
a threshold (set as 0.1-0.7 for all datasets).

* Wait-Info (Zhang et al., 2022) An adaptive
policy using token information thresholds (X
from 1-8 for all datasets) to coordinate the
timing of translation.

LLM-based SIMULMT We compare our con-
versational prompt approach against the of-
fline prompt method (Wang et al., 2023b), us-
ing identical READ policies with chunk sizes
n=[3,5,7,9,11,13]. Both approaches are evaluated
with RALCP hypothesis selection (beam=5). We
also assess greedy decoding (beam=1, no hypoth-
esis selection) with our conversational prompting


www.statmt.org/wmt15/
nlp.stanford.edu/projects/nmt/
https://huggingface.co/Unbabel/wmt22-cometkiwi-da
https://huggingface.co/Unbabel/wmt22-cometkiwi-da
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Figure 3: Translation quality and latency results on three benchmarks. Results are presented in three groups with

different colors: (i) Encoder-Decoder Transformer baselines (

), (i1) Offline-Prompt LLMs (blue), and (iii)

Conversation-Prompt LLMs (red). Offline and Simultaneous decoding are distinguished by the first letter (O/S).

only (as computational latency baseline), since of-
fline prompting inherently requires hypothesis se-
lection and cannot function with greedy search. For
reference, we include results from LLM-based OF-
FLINEMT as a performance upper bound.

4.5 Results

Our preliminary study in Table 1 showed
LLMs struggle with zero/few-shot conversational
SIMULMT. Here we examine whether fine-tuning
on our curated data enables effective conversational
SIMULMT, focusing on quality-latency balance.

Translation Quality As shown in Figure 3,
LLM-based approaches (red and blue) outper-
form Transformer baselines ( ) across all
language pairs by up to 3 BLEU/10 COMET
points. With sufficient latency allowance, LLM-
based SIMULMT even surpasses offline Trans-
former NMT. At equivalent latency levels, our con-
versational prompting (red) achieves comparable
BLEU scores to offline prompting (blue) while of-
ten showing better COMET scores.

Translation Latency Our conversational
SIMULMT (red) reduces latency compared to
offline prompting (blue), with average reductions
of 1.17 and 1.50 AL across all benchmarks. For
En->Vi and En->Zh, our approach achieves latency
comparable to specialized SIMULMT models.
While RALCP (S:LLM-ConvPrompt-RALCP)
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generally provides better quality than greedy
decoding (S:LLM-ConvPrompt-Greedy), the latter
offers lower latency.

Practical Advantages Most significantly, our
conversational SIMULMT (red) maintains supe-
rior translation quality at low latency levels (AL<4)
compared to specialized models ( ), making
it particularly valuable for practical applications
requiring both high quality and low latency. In con-
trast, offline prompting (blue) with identical decod-
ing configurations struggles to operate effectively
in the low-latency range, diminishing its quality
advantages relative to specialized approaches (

). These results demonstrate that our conversa-
tional prompting approach effectively addresses the
efficiency-quality trade-off in simultaneous transla-
tion with LLMs.

5 Analysis

5.1 Decoding Speed

While Average Lagging (AL) effectively quantifies
algorithmic delay between translation and source
input, it doesn’t account for computational costs.
In real-world applications, actual inference time
critically impacts user experience: a model with
low AL might still deliver poor user experience
due to high computational overhead. To address
this limitation, we evaluate decoding speed using
Word Wall Time (WWT), which measures actual
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erations. consistent gap demonstrates effective context utilization.

inference time per word (§4.4).

Figure 4 presents detailed WWT results for
WMT15 De->En translation. Our analysis
reveals that offline prompting with RALCP
(S:LLM-OffPrompt-RALCP) exhibits the slow-
est performance, making it impractical despite
good translation quality. In contrast, our con-
versational prompting approach with RALCP
(S:LLM-ConvPrompt-RALCP) achieves computa-
tional efficiency comparable to offline LLLM trans-
lation (O:LLM-ConvPrompt-Beam=5) while main-
taining high translation quality.

Most notably, our conversational prompting with
greedy decoding (S:LLM-ConvPrompt-Greedy)
delivers the Dbest efficiency-quality bal-
ance—achieving processing speeds comparable
to specialized SIMULMT models ( ) while
producing significantly better translations. These
results demonstrate that our approach effectively 53 Ability to Leverage Contextual
addresses both algorithmic and computational
latency concerns, making it suitable for practical
deployment.

trajectories with both merge and shift operations
(§3.2). All models used identical hyperparameters,
with training data as the only variable.

As shown in Figure 5, trajectory augmentation
yields notable improvements in translation quality
and latency when using RALCP. The merge op-
eration contributes most significantly to these im-
provements, while models trained solely on meta
trajectories perform poorly across all metrics.

This suggests augmentation techniques enhance
the model’s ability to generalize across different la-
tency conditions. Without augmentation, the model
struggles with varying input chunk sizes, causing
RALCRP to accept less reliable hypotheses and in-
creasing latency. The augmented approach effec-
tively prepares the model for dynamic simultaneous
translation scenarios.

Information

Effective SIMULMT with conversational prompt-
ing requires the model’s ability to accurately utilize
5.2 Effectiveness of Trajectory Augmentation  contextual information. To evaluate this capability,
To evaluate our trajectory augmentation strategy, we designed an experiment isolating the model’s
we conducted an ablation study comparing mod-  performance on the final chunk of translation both
els trained on: (i) meta trajectories only, (if) meta  with and without access to preceding context.

trajectories with merge operations, and (iii) meta For each test instance, we extracted the com-
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Figure 7: Performance comparison of different LLM
families with our conversational prompt.

plete inference history and separated it into: (i)
the source-target dialogue history serving as con-
text, and (ii) the final source chunk representing the
latest input. We then tasked our fine-tuned LLM
with translating this final chunk under two condi-
tions: with and without access to the preceding
conversation history. Performance was evaluated
by computing BLEU scores on the concatenation of
the generated final chunk with its original history.

As shown in Figure 6, we observed a consis-
tent 2-point decrease in BLEU scores when context
was withheld. This performance gap demonstrates
our model effectively leverages information from
previous conversation turns to produce more accu-
rate translations, confirming the fine-tuned LLM
maintains translation coherence.

5.4 Generalizability Across LLM Families

In our main experiments, we used
Llama-2-7b-chat following Wang et al. (2023b)
for consistency. Now, we examine our approach’s
generalizability across different LLMs, using
identical training and inference parameters for fair
comparison. We report only greedy simultaneous

decoding and offline beam=>5 results to eliminate
interference with hypothesis selection.

Impact of Model Iteration We com-
pare Llama-2-7b-chat with the newer
Llama-3.1-8B-Instruct (Grattafiori et al.,
2024) on WMT15 De->En to assess how model
advancements affect performance. As shown
in Figure 7a, the newer model demonstrates
consistent improvements in both offline and simul-
taneous modes. This confirms that conversational
SIMULMT effectively transfers to newer LLMs,
with benefits from improved instruction-following
capabilities and enhanced language modeling.

Effect of Model Scale We investigate how
model size impacts performance by compar-
ing Llama-3.1-8B-Instruct with the smaller
Llama-3.2-3B-Instruct (Grattafiori et al., 2024)
on WMT15 De->En. Figure 7b shows that
while the larger model predictably outperforms
its smaller counterpart, the 3B model still
achieves acceptable translation quality (on par with
Llama-2-7b-chat in Figure 7a), suggesting our
method is viable on resource-constrained devices.

Impact of Target Language Proficiency We
evaluate  Llama-3.1-8B-Instruct  against
Qwen2.5-7B-Instruct (Qwen et al., 2025) on
MUST-C En->Zh to investigate the effect of the
model’s target language capabilities. As shown
in Figure 7c, Qwen2.5 consistently outperforms
Llama-3.1 for Chinese translation by 1-2 BLEU
points across all latency settings, demonstrating
that target language proficiency provides additional
benefits with our approach.

6 Related Works

Simultaneous Machine Translation (SIMULMT)
is the task to provide real-time translation of a
source sentence stream where the goal is to mini-
mize the latency while maximizing the translation
quality. A common approach is to train an MT
model on prefix-to-prefix dataset to directly predict
target tokens based on partial source tokens (Ma
et al., 2019). Alternatively, Liu et al. (2020) pro-
posed the incremental decoding framework to lever-
age the pretrained OFFLINENMT model and turn
it into a SIMULMT model without further training.
A core component of SIMULMT is a read-write
policy to decide at every step whether to wait for
another source token (READ) or to generate a tar-
get token (WRITE). Previous methods have explored
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fixed policy, which always waits for k tokens be-
fore generation (Ma et al., 2019; Zhang et al.,
2022) and adaptive policy, which trains an agent
via reinforcement learning (Gu et al., 2017; Arthur
et al., 2021). Re-translation (Arivazhagan et al.,
2019) from the beginning of the source sentence at
the WRITE step will incur high translation latency.
Stable hypothesis detection methods such as Lo-
cal Agreement, hold-n (Liu et al., 2020) and Share
prefix SP-n (Nguyen et al., 2021) are employed to
commit stable hypothesis and only regenerate a sub-
sequence of source sentence. The goal is to reduce
the latency and minimize the potential for errors
resulting from incomplete source sentence (Poldk
et al., 2022; Wang et al., 2021).

LLM-based NMT Recent research has delved
into the potential usage of LLMs in MT (Hendy
etal., 2023; Zhu et al., 2023; Robinson et al., 2023),
especially in handling discourse phenomena (Wang
et al., 2023a; Wu et al., 2024) and linguistic nu-
ances such as idioms (Manakhimova et al., 2023)
and proverbs (Wang et al., 2025). While LLMs do
exhibit some level of translation capability, prior
research has identified that they still lags behind
the conventional NMT models, especially for low
resource languages (Robinson et al., 2023). Addi-
tionally, the translation performance varies depend-
ing on prompting strategies (Zhang et al., 2023).
Efforts have been made to enhance the LLMs’ MT
performance by incorporating guidance from dic-
tionary (Lu et al., 2023), further fine-tuning (Zeng
et al., 2023; Xu et al., 2023) and augmenting with
translation memories (Mu et al., 2023).

LLM-based SIMULMT SimulLLM
(Agostinelli et al., 2023) explore the ability
to adapt an LLM finetuned on NMT task to
simultaneous translation with wait-k strategy.
Wang et al. (2023b) adopt hybrid READ/WRITE
policy with wait-k and incremental decoding.
TransLLaMA (Koshkin et al., 2024) teach LLMs
to produce WAIT tokens to preserve the causal
alignment between source and target tokens. At
each inference round, LLMs only produce a
single word or WAIT token, which is very costly
due to multiple rounds of LLM calls. Guo et al.
(2024) introduce LLM into the SIMULMT task
as a translation agent working with a specialized
SIMULMT policy agent. An additional memory
module stores translation history. The policy
agent decides on READ/WRITE actions, while the
LLM translates target segments. They face the

same KV-cache reuse challenge noted by Wang
et al. (2023b), making the computational cost of
collaborating big and small models even more
significant.

7 Conclusion

This paper focuses on the feasibility of utilizing
LLM for SIMULMT. We found that leveraging
the incremental-decoding framework with offline
prompting leads to high computational latency, hin-
dering the reuse of the Key-Value cache. To ad-
dress this, we propose the conversational prompt-
ing which allows LLMs to conduct SIMULMT in a
multi-turn dialogue manner. The approach signifi-
cantly speeds up the inference and also preserves
the quality superiority, enabling practical LLM-
based SIMULMT systems.

Limitations

We summarize the limitations of this study in the
following aspects:

Data Our evaluation was conducted on three
commonly used benchmarks which may limit the
diversity in domains, styles, and languages. There
may also be potential data contamination concerns
since LLMs might have been exposed to parts of
our test sets during pre-training. A more com-
prehensive evaluation with diverse datasets across
more domains and language pairs would strengthen
our findings.

Alignment-based Data Curation Our approach
relies on word alignment tools like fast_align to
segment parallel sentences, which has inherent lim-
itations. These tools may struggle with languages
having drastically different word orders or gram-
matical structures, potentially creating suboptimal
segmentation points. Furthermore, the alignment
quality degrades for distant language pairs or com-
plex sentences with idiomatic expressions and cul-
tural references. While our augmentation strategies
help mitigate some issues, they are still constrained
by the initial alignment quality.

Ethics Statement

Our work is built on top of an existing LLM. For
this reason, we share the similar potential risks
and concerns posed by the underlying LLM. Our
method is trained on commonly used training re-
sources of the Machine Translation research com-
munity and as such we are not expecting our ap-
proach to introduce new areas of risks.
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Algorithm 1 Conversational SIMULMT Decoding

Require: LLM : LLMy,

1:
2
3
4
5:
6
7
8
9

10:
11:
12:
13:
14:
15:

Source chunks: x = [],

Target chunks: y = [],

KV-Cache: h = [,

Chunk index: ¢ = 0,

Variables Definition: Source chunk size: n,
Beam-size: B, Agreement-degree: y

while NOT_FINISH do

X. < READ(n) //READ n tokens
x.append(x.)
Xprompt — PROMPT(X,y)
Ve, b’ < LLM(Xprompt, B, h, latest=True)
/B candidates with latest tokens in y,
Ye, h < PREFIX(y’, h')
//Prune with Prefix selection, e.g. RALCP
if y. == () then

continue
else

y-append(y.)

WRITE(y.)

c+—c+1
end if

16: end while

Appendix

A Conversational SimulMT Decoding

Algorithm 1 presents the details of applying con-
versational prompts for decoding.
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Abstract

In this paper, we introduce the Kuvost, a large-
scale English to Central Kurdish speech-to-
text-translation (S2TT) dataset. This dataset
includes 786k utterances derived from Com-
mon Voice 18, translated and revised by 230
volunteers into Central Kurdish. Encompassing
1,003 hours of translated speech, this dataset
can play a groundbreaking role for Central Kur-
dish, which severely lacks public-domain re-
sources for speech translation. Following the
dataset division in Common Voice, there are
298k, 6,226, and 7,253 samples in the train,
development, and test sets, respectively. The
dataset is evaluated on end-to-end English-to-
Kurdish S2TT using Whisper V3 Large and
SeamlessM4T V2 Large models. The dataset
is available under the Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 In-
ternational License https://huggingface.
co/datasets/aranemini/kuvost.

1 Introduction

Speech translation is the automatic conversion of
audio from a source language into text or audio
in a target language (Barrault et al., 2025). Devel-
oping a speech-to-text translation system requires
large amounts of translated audio; however, most
languages lack sufficient data in this area. In (Com-
munication et al., 2023), languages with fewer than
1,000 hours of publicly available transcribed or
translated data are classified as low-resource. By
this definition, only about a dozen out of 7,000 lan-
guages qualify as high-resource. Providing speech
translation data—especially for low-resource lan-
guages—is therefore crucial for progress in this
field.

In this paper, we introduce a speech-to-text trans-
lation (S2TT) dataset for Central Kurdish (CKB),
which is a low-resource language (Communication
et al., 2023). This dataset, called Kuvost (Kurdish
Common Voice Speech Translation), is derived

from the Common Voice 18 dataset. The Kuvost
dataset contains 247k unique sentences translated
by 230 volunteers and passed through a systematic
revision process. Due to multiple recordings for
some of the translated sentences in Common Voice,
the total audio duration in Kuvost amounts to 1,003
hours.

Extending automatic speech recognition datasets
by translating their transcriptions is a common strat-
egy for building speech translation corpora. CoV-
oST (Wang et al., 2020) and CoVoST 2 (Wang et al.,
2021b) are two well-known examples, both derived
from Common Voice. CoVoST 2 is currently one
of the large-scale publicly available speech transla-
tion corpus, including English-to-15 languages and
21-to-English S2TT pairs (Wang et al., 2021b).

Aug-LibriSpeech is a French-translated version
of the LibriSpeech corpus, comprising a 236-hour
EN—FR S2TT data (Kocabiyikoglu et al., 2018).
VoxPopuli is a multi-way speech translation corpus
based on European Parliament (EP) event record-
ings, encompassing 15 European languages (Wang
etal., 2021a). TED Talks and TEDx have also been
widely used for speech translation. The MUST-C
dataset contains English-to-14-language S2TT data
derived from TED Talks (Gangi et al., 2019; Cat-
toni et al., 2021). TEDx includes translations from
English to 7 languages, while Indic-TEDST is the
third TED-derived corpus, featuring translations
from English to 9 Indian languages (Salesky et al.,
2021; Sethiya et al., 2024).

The FLEURS dataset is currently the most com-
prehensive speech translation dataset in terms of
the number of covered languages. FLEURS is a
multi-way text-to-text and speech-to-speech cor-
pus for 101 languages. It is also the only speech
translation dataset that includes the Central Kur-
dish language—the subject of the current research
(Conneau et al., 2023). The goal of this paper is to
fill the gap in speech translation data scarcity for
the Central Kurdish language.
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2 Kurdish language

Kurdish (ISO 639: KUR) is an Indo-European lan-
guage spoken by more than 30 million native speak-
ers in Kurdistan and among the Kurdish diaspora.
Geographic dispersion and socio-political factors
have led Kurdish to diversify into several dialects
(Matras, 2019; Eppler and Benedikt, 2017). The
Kurdish language comprises six dialects: Northern
Kurdish (KMR), Central Kurdish (CKB), South-
ern Kurdish (SDH), Laki (LKI), Zaza (DIQ), and
Hawrami (HAQ) (Sheyholislami, 2015). North-
ern Kurdish and Zazaki are primarily written in a
Latin-based script, while the remaining dialects are
mainly written in an Arabic-based script.

In this paper, we focus on Central Kurdish,
which is spoken by nearly 8 million native speak-
ers (Sheyholislami, 2015). Central Kurdish is a
statutory national language in Iraq! and a de facto
provincial working language in Iran’. Although
recent years have seen notable progress in data cu-
ration and system development for Central Kurdish,
the speech translation domain from/to this dialect
remains largely unexplored. The goal of this paper
is to address this gap.

3 Translation process

The data for translation was sourced from Common
Voice 18 3. The data creation process consisted of
three main steps: (1) announcement and recruit-
ment of volunteers, (2) training and data distribu-
tion, and (3) translation and review.
Announcement and Recruitment of Volun-
teers: An announcement was made in June 2024 to
recruit volunteers who study English at the Depart-
ment of English Language(DENL) at Koya Univer-
sity. A total of 259 volunteers—mostly third- and
fourth-year students—signed up. All volunteers
were native speakers of Central Kurdish.
Training: A two-week intensive training pro-
gram was then offered to the volunteers. During
this program, participants were introduced to vari-
ous translation techniques. Additionally, a detailed
guideline outlining the rules of translation was pro-
vided. After the training workshops, volunteers
were given the option to withdraw without provid-
ing a reason. At this stage, 17 volunteers dropped
out. The remaining participants were divided into
three main groups, each supervised by a faculty

lhttps ://www.ethnologue.com/country/I1Q/
thtps ://www.ethnologue.com/country/IR/
Shttps://commonvoice.mozilla.org/en/datasets

member. These were further divided into smaller
sub-groups of five volunteers. The translation data
was distributed via Google Sheets, with access pro-
vided to both volunteers and supervisors.

Revision: The review process involved two main
stages:

* Peer Review: Volunteers reviewed each
other’s translations within their sub-groups.

* Professional Review: Each translation was
subsequently reviewed first by a team of Kur-
dish language experts from Department of
Kurdish Language (DKUR) at Koya Univer-
sity and professional supervisor, who pro-
vided feedback and suggested edits where nec-
essary.

Furthermore, weekly seminars were also held to
address common mistakes and discuss correction
strategies. During the revision phase, an additional
12 volunteers dropped out. By the end of the pro-
cess, a total of 230 volunteers, plus 7 Kurdish lan-
guage reviewers, had fully or partially completed
their tasks, translating 247,373 sentences.

4 Kuvost Statistics

The statistics of the Kuvost dataset are presented in
Table 1. The number of unique sentences translated
into Kurdish is 247,373. These translated sentences
were matched with their corresponding transcrip-
tions and audio in Common Voice 18. We searched
for all matching utterances in the validated portion
of Common Voice 18, resulting in 786k utterances
with Kurdish translations, totaling approximately
1,003 hours of English audio.

The validated and translated utterances were di-
vided into train, development, and test sets accord-
ing to the original Common Voice 18 partitioning.
For each split, we referred to the Common Voice
18 train/dev/test sets and matched the English tran-
scriptions with their corresponding Kurdish trans-
lations. The training set includes 298k utterances,
equivalent to 417 hours of audio. The development
and test sets each contain approximately 9 hours of
translated speech. It deserved to be mentioned that
all validated examples in the Common Voice are
not included in the train/dev/test partitions which
leads to lower number of utterances in the parti-
tions.

107


https://www.ethnologue.com/country/IQ/
https://www.ethnologue.com/country/IR/
https://commonvoice.mozilla.org/en/datasets

Table 1: Kuvost specification and partitions

Part Train Dev Test Validated
Duration 417h 8h47m  8h55m  1003h
Utterances 298k 6226 7253 786k
Uniq sents 190k 5819 7149 247k
Tokens 1,75m 41k 46k 1.84m

5 Evaluation Systems

The Kuvost dataset is evaluated by fine-tuning two
state-of-the-art speech translation models: Whisper
V3 (WL V3) Large and SeamlessM4T V2 (SL V2)
Large models.

5.1 Whisper Large V3

Whisper is a sequence-to-sequence transformer-
based model trained on 680,000 hours of labeled
speech data, encompassing tasks such as ASR,
S2TT, VAD, and Speaker Recognition (SR) (Rad-
ford et al., 2022). Whisper supports more than 80
languages for ASR and S2TT; however, the Kur-
dish language is not currently supported. We are
fine-tuning the Whisper V3 Large model using the
AdamW optimizer with a learning rate of le-5, a
batch size of 16, in 5 epochs.

5.2 SeamlessM4T Large V2

Seamless is a set of models for T2TT, S2TT, S2ST,
and ASR. We use the S2TT component, which
consists of a Wav2Vec-BERT speech encoder and
an NLLB-200 decoder. The model is jointly op-
timized for ASR and S2TT tasks (Barrault et al.,
2025; Communication et al., 2023). We fine-tune
the SeamlessM4T V2 Large model using Mel-filter
bank (bins = 80) features over 10 epochs, with a
batch size of 16 and a learning rate of le-4. These
hyperparameters are set experimentally.

6 Results and discussion

Throughout the experiments, Kurdish translations
were normalized using the Asosoft normalizer
(Mahmudi et al., 2019). Key normalization steps in-
cluded the unification of Unicode characters, stan-
dardization of numbers, and normalization of punc-
tuation marks.

The Kuvost dataset was evaluated using two
state-of-the-art (SOTA) models: Whisper Large
V3 and SeamlessM4T V2 Large. Table 2 presents
the results obtained using both models. The first
row shows the performance of the fine-tuned Whis-
per V3 Large model on the training set of Kuvost.

This model achieved a BLEU score of 23.76 on
the Kuvost test set and 26.01 on the development
set. The second row, labeled SL V2, displays the
results of the pretrained SeamlessM4T V2 Large
model before fine-tuning on the Kuvost training set.
This multilingual model supports speech-to-text
translation for 101 languages, including Central
Kurdish. The baseline model of Seamless achieved
a BLEU score of 21.97 on the Kuvost test set. The
final row presents results for the fine-tuned version
of SeamlessM4T using the Kuvost dataset. In this
experiment, the model achieved a significantly im-
proved BLEU score of 35.00 and 32.79 on the dev
and test sets respectively. Besides the BLUE score,
the ChrF++ is reported for all models. The fine-
tuned version of seamless achieves a ChrF++ score
of 62.32 on the Kuvost test set.

Table 2: Kuvost evaluation results using Whisper V3
Large (WL V3) and SeamlessM4T V2 Large (SL V2)
models. FT stands for fine-tuned model on the train part
of Kuvost

Part Dev Test

BLEU ChrF++ BLEU ChrF++
WL V3 FT  26.01 55.14 23.76 51.77
SL V2 22.54 54.18 21.97 53.01
SL V2 FT 35.00 64.10 32.79 62.32

The fine-tuned models on the Kuvost training
set were evaluated using the FLEURS benchmark.
The results are presented in Table 3. The Whis-
per model achieved a BLEU score of 7.65, and
the Seamless model obtained a BLEU score of
11.17. The baseline SeamlessM4T model (before
fine-tuning) achieved a BLEU score of 9.36 on the
English—Central Kurdish task. Fine-tuning on the
Kuvost training set led to an improvement of nearly
2 BLEU points, reaching 11.17. The marginal im-
provement in BLEU on the FLEURS dataset is
likely due to differences in sentence complexity.
Kuvost primarily consists of short and simple sen-
tences, while FLEURS includes more complex syn-
tactic structures. Additionally, domain shift may
have contributed to the limited performance gain.

Table 3: The generaliability of Models fine-tuned on
Kuvost and evaluated on FLEURS benchmark

Fleurs BLEU ChrF++
Whisper V3 FT 7,65 39,69
SeamlessM4T V2 FT  11.17 46,46
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7 Conclusion

In this paper, we introduced Kuvost, a large-scale,
human-annotated speech translation dataset for
Central Kurdish. Kuvost consists of 1,003 hours of
English-to-Kurdish speech translation, contributed
by 230 volunteers. The dataset is evaluated using
state-of-the-art speech translation models. For fu-
ture work, we plan to record Kurdish translations
to extend Kuvost for speech-to-speech translation
tasks. Additionally, we aim to expand the dataset to
support Kurdish-to-X translation for all languages
available in the CoVoST 2 dataset (Wang et al.,
2021b).
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Abstract

Middle Eastern languages represent a lin-
guistically diverse landscape, yet few have
received substantial attention in language and
speech technology outside those with official
status. Machine translation, a cornerstone
application in computational linguistics,
remains particularly underexplored for these
predominantly non-standardized, = spoken
varieties. This paper proposes data alignment
and augmentation techniques that leverage
monolingual corpora and large language
models to create high-quality parallel corpora
for low-resource Middle Eastern languages.
Through systematic fine-tuning of a pretrained
machine translation model in a multilingual
framework, our results demonstrate that cor-
pus quality consistently outperforms quantity
as a determinant of translation accuracy.
Furthermore, we provide empirical evidence
that strategic data selection significantly
enhances cross-lingual transfer in multilingual
translation systems. These findings offer
valuable insights for developing machine
translation solutions in linguistically diverse,
resource-constrained environments.

() DOLMA-NLP/bitext-mining

1 Introduction

Machine translation (MT) represents one of the
most transformative applications in natural lan-
guage processing (NLP), driving numerous break-
through discoveries in the field. The evolution of
MT has progressed from rule-based techniques to
sophisticated deep learning approaches and, most
recently, to large language models (LLMs) (Zhu
et al., 2024b). Despite these paradigm shifts, data
availability remains the fundamental constraint,
leaving MT far from solved for low-resourced and
under-represented languages and varieties. Of par-
ticular interest to this paper are such languages in
the Middle East—a region with rich linguistic het-
erogeneity. Many languages in the Middle East

Monolingual
Corpora

\

Parallel
Corpus

Translated
Books

Manual

LLM

Bitext
Mining

Alignment

Translation

Figure 1: Approaches to create parallel corpora for the
selected low-resourced languages in this paper

lack formal status or standardization, face sociopo-
litical marginalization, and are systematically dis-
advantaged in technological development. Con-
sequently, these languages have not benefited eq-
uitably from recent advances in MT technology,
widening the digital language divide.

In our previous work, PARME—described in de-
tail in (Ahmadi et al., 2025), we explored a par-
ticipatory research initiative where native speak-
ers contribute to translating sentences into eight
Middle Eastern languages: Luri Bakhtiari, Laki
Kurdish, Gilaki, Hawrami, Mazandarani, Southern
Kurdish, Talysh, and Zazaki. Collecting data in a
context where spoken tradition predominates over
writing presents significant challenges. This effort
resulted in over 36,000 translations, which were
used to fine-tune the No Language Left Behind
(NLLB) pretrained translation model (Team et al.,
2024). Our previous experiments yield BLEU
scores ranging from 2.89 to 16.54, indicating sub-
stantial room for improvement.

The current paper expands on our previous data
collection approach through two complementary
approaches illustrated in Figure 1. In the first
approach, we leverage literary works by align-
ing sentences from translated works in the se-
lected languages to the original English texts, us-
ing both manual and automated alignment tech-
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niques. In the second approach, we extract sen-
tences from monolingual corpora and translate
them using Gemini-2.0-flash, creating synthetic
parallel data. Using these datasets, we then system-
atically evaluate how these various data sources
affect the performance of fine-tuned multilingual
translation models. Our findings reveal that incor-
porating these new datasets improves model per-
formance overall, but with an important caveat: in-
creasing data quantity for one language can some-
times adversely affect performance for others in
a multilingual setting. This highlights the com-
plex interplay between data quantity, quality, and
distribution in multilingual MT systems for low-
resource languages.

2 Related Work

2.1 Low-Resourced MT

MT systems typically require millions of parallel
sentences for effective training, a requirement met
by only a few dozen high and medium-resource
languages, primarily European. For low-resource
languages, researchers have developed various ap-
proaches to address data scarcity. Synthetic data
augmentation techniques include leveraging dictio-
naries and morphological variations (Alam et al.,
2024), substituting rare words to create new train-
ing sentences (Fadaee et al., 2017), and map-
ping word embeddings from high-resource to low-
resource languages through bilingual lexicon in-
duction (Li et al., 2024). Synthetic data genera-
tion via back-translation (Sennrich et al., 2016) or
forward-translation (Zhang and Zong, 2016) are
common strategies, as well. Other approaches
leverage the capacity of multilingual models to en-
hance related low-resourced languages using trans-
fer learning (Ko et al., 2021), fine-tuning (Moslem
et al., 2023) and adapters (Pham et al., 2024).

The emergence of LLMs has opened new pos-
sibilities for low-resource MT through prompt-
ing (Zhang et al., 2023), few-shot learning (Hendy
et al., 2023), and in-context translation (Raunak
et al.,, 2023). However, recent studies empha-
size that translation direction (Zhu et al., 2024a)
along with parallel data quality during both pre-
training and fine-tuning remain crucial for per-
formance (Guo et al., 2024). Furthermore, lyer
et al. (2024) note that “diversity (in prompts and
datasets) tends to cause interference instead of
transfer,” highlighting the challenges in leverag-
ing diverse datasets.

2.2 Bitext Mining

To facilitate the creation of parallel corpora from
unaligned corpora, bitext mining or bitext re-
trieval aims to identify potential translation pairs
across translated documents or monolingual cor-
pora (Koehn, 2024). This task, of particular in-
terest to low-resourced languages, has been ex-
tensively studied previously (Zweigenbaum et al.,
2017), including methods for sentence filtering
from web-crawled content (Chaudhary et al.,
2019). Some approaches to bitext mining rely on
automatic translations, as in Bleualign (Sennrich
and Volk, 2010), while other approaches leverage
semantic representations (Heffernan et al., 2022),
with a notable example being Vecalign (Thompson
and Koehn, 2019). Recent work by Winata et al.
(2024) demonstrates that LLMs can also perform
effectively in bitext mining tasks.

Our paper addresses a critical gap in the litera-
ture by exploring the intersection of bitext mining,
data augmentation using an LLM and, multilin-
gual fine-tuning for low-resource Middle Eastern
languages, offering insights into enhancing trans-
lation capabilities for these understudied varieties.

3 Methodology

Complementary to PARME (Ahmadi et al., 2025),
our previous participatory research where English
sentences are translated by experts into one of the
selected languages, we explore bitext mining and
LLM-based data augmentation to further extract
parallel sentences.

3.1 Sentence Alignment

Given a translated content in one of our selected
languages, we aim to align the translations to their
original sentences. Reaching out to publishers and
translators, we could collect 25 translated books
and articles for four languages among our eight se-
lected ones: five translated articles for Laki Kur-
dish, five for Southern Kurdish (two books and
three articles), 11 books for Hawrami and four for
Gilaki (three articles and one book). All the con-
tent were originally translated from English, ex-
cept in a couple of cases that we excluded as they
were originally translated from Persian. The books
are all famous novels of George Orwell, Virginia
Woolf, Franz Kafka, Ernest Hemingway and An-
toine de Saint-Exupéry, except one children book
for Southern Kurdish, while the articles discuss
specific sociological and medical topics.
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To prepare the books for alignment, we first ex-
tract the sentences from the original textbooks in
English (or their translations in English). Although
most of the books are openly available', two of
them required OCR from the scanned PDFs. Fol-
lowing this step, we preprocess the text in both the
original text in English and our translations by nor-
malizing characters, fixing tabulations and exces-
sive newlines and finally, splitting the text into sen-
tences or phrases using KLPT (Ahmadi, 2020b).

Given the set of sentences per work in English
along with the translation, we initially aimed to
carry out the alignments using an LLM. However,
due to the low-resourced status of the selected lan-
guages, usage of Chat GPT-4o0 and Claude 3.7
Sonnet for our selected languages was far from
helpful. As such, we try the following methods.

Manual alignment (M): Providing the sen-
tences in a spreadsheet, we manually align sen-
tences by splitting, merging and editing sentences
to create matching translation pairs. Stylistic vari-
ation across translators required further attention
to the alignment task; for instance, a long passage
in the English text might have been translated in
one or two short sentences considered to be cul-
turally less relevant to the readers of the translated
book. Similarly, specific contexts have required
further elaboration by the translator, as in describ-
ing “Big Brother” or “Thinkpol” in George Or-
well’s 1984. Therefore, some alignments require
appropriate modifications. The alignment was car-
ried out by expert native speakers.

Automatic Alignment using Vecalign (V): Due
to limited workforce for manual alignment, we
carried out bitext mining to automatically align
remaining translations using a few methods that
were far from practical. To do so, we first man-
ually split translations by chapter or long sections
to further reduce the range of the possible align-
ment combinations, also known as hierarchical
mining (Koehn, 2024). Then, we tried a range
of methods: the Microsoft’s Bilingual Sentence
Aligner (Moore, 2002), Bleualign (Sennrich and
Volk, 2010) with translations from PARME’s fine-
tuned models, embedding-based techniques using
LaBSE (Feng et al., 2022), LASER (Artetxe and
Schwenk, 2019), SONAR (Duquenne et al., 2023),
SBERT (Reimers and Gurevych, 2019) and Ve-

"For English, we relied on the raw text provided by the
Project Gutenberg: https://www.gutenberg.org

Technique Accuracy (%)
Microsoft Aligner 38.78
Bleualign 32.24
LaBSE 2.63
SBERT LASER 2.08
Vecalign SONAR 46.5

Table 1: Accuracy of different bitext mining techniques
on a sample of Hawrami translated text. Vecalign with
SONAR achieves the highest accuracy (46.5%).

calign (Thompson and Koehn, 2019). Given that
none of the selected languages are included in the
pretrained embeddings, we rely on the embeddings
of closely-related languages: Persian (pEs) for Gi-
laki and Central Kurdish (ckB) for Laki, South-
ern Kurdish and Hawrami. To determine the most
effective alignment technique, we tested several
methods on the manually-aligned corpus of the Lit-
tle Prince containing 1101 sentence pairs. We mea-
sured accuracy as the proportion of sentence pairs
that matched between the automatically-aligned
and manually-aligned corpora. Table 1 summa-
rizes the accuracy showing that Vecalign with
SONAR embeddings produce the highest accu-
racy. It should be noted that the reported accura-
cies are limited to a sample in Hawrami without
considering the combination of the embeddings
and techniques.

3.2 LLM-based Data Augmentation

Relying on the monolingual corpora available
for Southern Kurdish (Ahmadi et al., 2023) and
Zazaki, Hawrami (Ahmadi, 2020a) along with
Wikipedia dumps? for Gilaki, Mazandarani and Za-
zaki, we implement a few-shot in-context trans-
lation approach to optimize in-context exam-
ple selection using Gemini-2.0-flash, inspired by
Agrawal et al. (2023), as follows:

-
Below are examples of {language} to English
translations. Translate the new text
following these patterns:

{language}: {examplel}
English: {english_translationl}

[... more examples ...]

Now translate this text to English, only
output the translation:

{language}: {text_to_translate}
English:

*Latest dumps of December 2025
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Gemini-2.0-flash  Llama3.3 Language P M A% L
Language
7ero few zero  few Luri Bakhtiari (BQr) 999 0 0 0
. — Gilaki (GLK) 3420 999 1391 22467
Luri Bakhtiari ~—0.06 015 0.09 009 parami (uac) 5796 7050 8367 49987
Gilaki 0.11 023 0.09 0.09 Laki Kurdish (L1) 1487 1220 0 0
Hawrami 0.07 0.21 0.07 0.14 Mazandarni (MzN) 2345 0 0 49328
Laki Kurdish 0.10 0.19 0.05 0.11 Southern Kurdish (spn) 7806 3681 2495 49992
Mazandarani 0.16 0.36 0.06 0.18 Talysh (TLY) 1107 0 0 0
Southern Kurdish  0.18 0.14 0.06 0.13 Zazaki (zzA) 2374 0 0 50000
Talysh 007 014 006 0.11 Sum 25334 12,950 12,253 221,774
Zazaki 0.32 0.34 0.13 0.11
Average 0.14 0.22 0.08 0.12 Table 3: Basic statistics of the data collected per lan-

Table 2: Zero-shot and few-shot prompting results
(BLEUT [0, 100]) on Gemini-2.0-flash and Llama3.3.
We translate sentences from monolingual corpora using
few-shot prompted Gemini.

Our implementation uses BM25 retrieval to find
semantically similar examples from a datastore,
followed by a custom n-gram based re-ranking
method. We calculate n-gram overlap between
the test source and retrieved examples using a
weighted scoring function that emphasizes cover-
age of source text terms. Our approach employs a
dynamic weighting system where already-covered
n-grams receive reduced weight by a lambda fac-
tor (set to 0.1) to promote selection of complemen-
tary examples.

Table 2 presents preliminary results comparing
zero-shot and few-shot prompting on both Gemini-
2.0-flash and Llama3.3. While the absolute BLEU
scores remain poor, a common challenge when ap-
plying general-purpose LLMs to extremely low-
resource languages, we observe several important
patterns. First, few-shot prompting consistently
outperforms zero-shot approaches, with relative
improvements for some languages (e.g., Hawrami).
Second, Gemini-2.0-flash demonstrates superior
performance compared to Llama3.3 across nearly
all languages. Through experimentation, we deter-
mined that using 16 examples in our prompts pro-
duced optimal results, significantly outperforming
single-example approaches. Additional examples
beyond 16 did not yield further improvements.

Table 3 provides basic statistics of our collected
data per language. Luri Bakhtiari (BQ1) and Talysh
(TLY) are only included in PARME (P), Laki is only
included in PARME and manual alignment (PM)
while the other languages could benefit from the
additional data sources.

guages from different data sources: PARME (P), man-
ual (M) and automatic (V) sentence alignment, and
LLM (L). Over 272,000 sentence pairs are collected.

4 Experiments

4.1 Experimental Setup

To adapt a multilingual model for our target lan-
guages, we leverage NLLB (600M variant) by
systematically integrating embeddings from re-
lated languages through a structured token-based
approach.  This integration follows two key
steps. First, we expanded the tokenizer’s vocabu-
lary by introducing language-specific tokens (e.g.,
zza_Latn for Zazaki) while preserving the exist-
ing language tokens. Second, we initialize em-
beddings for these new tokens by borrowing from
phylogenetically related languages: Central Kur-
dish embeddings for Hawrami, Laki, and South-
ern Kurdish; Northern Kurdish for Zazaki; and
Farsi for Luri Bakhtiari, Gilaki, Mazandarani, and
Talysh. For evaluation consistency, we utilize the
standardized test sets from PARME, each contain-
ing around 1,000 sentences per language in a sin-
gle orthography. These test sets maintain repre-
sentativeness across the non-standardized linguis-
tic landscape by incorporating a uniform distribu-
tion of dialectal variations.

We conduct X—EN fine-tuning experiments
with various data source combinations, e.g., PL for
merging PARME and LLM-based datasets. We
evaluate the performance using BLEU metric in
SacreBLEU (Post, 2018).> Our baseline represents
the highest BLEU score achieved by NLLB prior
to fine-tuning. For fine-tuning, we employ a batch
size of 8 with 4-step gradient accumulation, a con-
servative learning rate of 3e-5, and trained for 20
epochs with 0.1 warmup. Both source and tar-
get sequences were truncated to 128 tokens, and

3
nrefs:1|case:mixed|eff:noltok:13alsmooth:exp|version:2.4.2
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Language Baseline P PM PV PMV PL PMVL PMLz, ki
Luri Bakhtiari® 0.75 438 3.67+0.15 3.55+0.16 3.78+£0.29 337+0.39 326041 3.04£0.19
GilakiPMVL 198 273 422+0.15 3.18+0.13 3.92+0.26 3.44+0.17 3.49+0.16 ' 2.94 4+ 0.18
Hawrami"™™VL 09 823 15.46+ 048 11.55+2.78 10.86 + 0.54 8.11+0.11 8.93 4+ 0.70 | 10.34 + 2.15
Laki Kurdish?™E 1.89 633 9.1140.67 7.18+2.13 681 +0.79 4.80+037 4394047 | 5.43 £ 0.80
Mazandarani’® 132 523 550+030 5.05+083 532+022 434+028 4224012 4.62+022
Southern Kurdish™VL 277 9.93 10.64 + 0.46 8.68 +0.27 899 +0.60 7.61 +0.36 7.80 & 0.48 1 8.34 + 0.21
Talysh” 1.03 3.0l 670+£0.52 5224228 421+143 2364029 232+0.56, 3.66 + 1.21
Zazaki’t 282 345 3754030 2554045 3.67+035 11.08+0.89 11.54+£0.50' 9.99 +0.14
Average 1.68 541 738+0.19 5874097 594+022 564+027 574+021, 6.04 + 048

Table 4: X—EN BLEU scores for the fine-tuned NLLB model across eight languages using different combinations
of data sources. Results are reported as mean =+ standard deviation over three runs with different random seeds.
Data sources where a language is included appear as superscript.

we implemented beam search with a beam size of
5 during inference. Training was conducted on
NVIDIA RTX 3090 GPUs (24GB VRAM) with
completion times of 9.4 to 16.1 hours per model.

4.2 Experimental Results

Table 4 presents the results of our experiments. To
assess the impact of randomness in fine-tuning, we
run the process three times by shuffling the train
sets with different seeds. We report the mean values
of the three systems per data setup along with stan-
dard deviations. Analyzing the results indicates:

A: Data quality matters more than quality
Among the data setups, PARME (P) merged with
manually aligned sentences (M), i.e. PM, achieves
the highest BLEU scores for most languages and
on average. Surprisingly, PM also improves the
performance of Talysh, Zazaki and Mazandarani
even though it does not contain additional data in
those languages. Luri Bakhtiari’s best perform-
ing model remains P, the only dataset covering
that language. Although LLM-generated dataset
along with PARME, i.e., PL, is the largest dataset,
the obtained performances are lower than the PM
setup and not much higher than P; so including the
LLM-generated data does not improve the average
BLEU score substantially.

On the standard deviations, they reveal vary-
ing levels of model stability across configurations
and languages, with some combinations showing
remarkable consistency, e.g., Gilaki with PM at
40.15, while others demonstrate substantial sen-
sitivity to initialization, e.g., Hawrami with PV at
+2.78 and Talysh with PV at 4+2.28, suggesting
that optimal data selection should consider both
performance and reliability.

== M\GLK
= M\MZN
== M\TLY
= M\HAC
M\ LKI
M\SDH
M\BQI
M\ZZA

-M

Baseline

GLK MZN TLY HAC LKI SDH BQI ZZA

Languages

Figure 2: Cross-linguistic dependencies in our multilin-
gual fine-tuning models. Each curve represents perfor-
mance of a model trained without one language, e.g.,
M\GLK. The solid black line (M) shows the full model.

B: Multilingual data interference While PM is
generally the optimal configuration for most lan-
guages, Zazaki’s performance shows unique sen-
sitivity to dataset composition, particularly when
the LLM-generated data (L) is included in the
fine-tuning dataset. Within the comprehensive
PMVL setup (containing all data sources for all
languages), Zazaki achieves its best performance
with a BLEU score of 11.54, followed by 11.08
in PL. This observation led us to create a tar-
geted dataset combination—PMLy,,,ki—which inte-
grates PM with the Zazaki LLM-generated data
only. Although Zazaki still has a comparatively
higher BLEU score in this setup (9.99), the aver-
age BLEU score is lower than that of PM and other
setups where L is included.

To further analyze the implications on other
languages in the multilingual setup, we fine-tune
models on 1000 randomly-selected sentences in
PARME data by excluding data of a language
per model; for instance, M\GLK is a model fine-
tuned on all but Gilaki data. Figure 2 illustrates
the evaluation of these models. As expected, re-
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Southern Kurdish (SDH)

Figure 3: Performance across dialects and model configurations. Each radar chart displays mean BLEU scores
from three randomly initialized models for different dialects. Greater extension of curves toward a dialect’s axis
indicates higher translation performance for that specific dialect.

moving one language’s data deteriorates perfor-
mance for that language, visible in the perfor-
mance drops along the curves. However, several
notable cross-language dependencies emerge. Re-
moving Talysh (TLY) data negatively impacts Gi-
laki (GLK) and Mazandarani (MZN) performance,
while removing Luri Bakhtiari (BQI) data hurts
Hawrami (HAC) and Southern Kurdish (SDH).
The dependencies manifest asymmetrically, with
Zazaki (ZZA) exhibiting both high vulnerability to
the removal of its own data and relative resilience
to the removal of others, corroborating our earlier
observations of its unique behavior.

C: Performance varies depending on the variety
Gilaki, Hawrami, Laki and Southern Kurdish in-
clude sentences of different varieties/dialects in the
test set making cross-dialectal evaluation possible.
Figure 3 provides our analysis results for these lan-
guages revealing considerable performance dispar-
ities within each language. While in Hawrami, the
Jawero dialect achieves substantially higher BLEU
scores than Takht and Lhon, particularly with PM
and PMV configurations, the performance of the
models for Eastern and Western varieties of Gilaki
is more consistent. Similarly, for Laki Kurdish,
the Sahneyi variety benefits more from our fine-
tuning approaches than Kakawandi and Jalalwandi
varieties. Southern Kurdish shows more balanced
performance across its dialects, though Badrei and
Krmashani tend to receive slightly higher scores.
Nevertheless, we caution against concluding that
certain varieties are inherently more difficult to
translate, as train and validation sets do not equally
represent all varieties, and the test set does not con-
tain the same sentences translated across different
varieties. These observed differences may instead

reflect varying degrees of representation in train-
ing data or linguistic proximity to the source mate-
rial rather than intrinsic translation difficulty.

5 Conclusion and Discussion

This paper sheds light on eight low-resourced Mid-
dle Eastern languages by fine-tuning a pretrained
MT model using different sources of data, from
manually translated and aligned sentences to au-
tomatically aligned and automatically-translated
ones. Our experiments demonstrate three key
findings. First, data quality consistently outper-
forms quantity as a determinant of translation ac-
curacy, with the manually aligned (M) data provid-
ing the most substantial improvements despite its
relatively smaller size. Second, we observed com-
plex cross-linguistic transfer effects where adding
data for one language sometimes adversely af-
fects performance for others, highlighting the im-
portance of strategic dataset selection in multilin-
gual systems. Third, we found significant perfor-
mance variations across dialectal varieties within
the same language. While our models perform
well on all languages in comparison to the base-
line, achieving 15.46 BLEU score for Hawrami at
the highest, there remains substantial room for im-
provement.

Limitations Despite these advances, our work
has several limitations. First, we explored only
a limited set of open-weight LLMs for data
augmentation; future work could investigate a
broader range of models, such as MADLAD-
400 (Kudugunta et al., 2023) and Mistral (Jiang
et al., 2023), and in-context learning strategies.
Second, our automatic alignment approach relies
on embeddings from closely-related languages,
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which could be improved by training or fine-tuning
embeddings on monolingual data of our selected
languages. Third, our data augmentation tech-
niques could be expanded to include synthetic data
generation using bilingual lexicon induction, mor-
phological variations, and back-translation meth-
ods. Finally, unlike the test sets that are uniform
in orthography, our collected data for training and
validation are composed of more than one orthog-
raphy, as in Hawrami, Zazaki and Gilaki. Given
that normalization and transliteration of these or-
thographies are not trivial, future work can also
study the effect of orthographical variation on MT.

Ethics Statement Our data collection process
adhered to rigorous ethical standards with care-
ful attention to fairness and representation. While
we maintained comprehensive inclusion criteria
appropriate for low-resource language documenta-
tion, we acknowledge that the literary nature of
our corpus means some character dialogue may
contain language that reflects historical or cultural
contexts that modern readers might find objection-
able. All materials were obtained through formal
agreements with publishers and translators, with
appropriate intellectual property permissions se-
cured. Contributors received fair compensation for
their work, and their contributions are explicitly ac-
knowledged. Our research prioritizes expanding
NLP for underrepresented languages while main-
taining responsible data stewardship practices.
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Abstract

In this study, we explore the effectiveness of
isometric machine translation across multiple
language pairs (En—De, En—Fr, and En—Es)
under the conditions of the IWSLT Isometric
Shared Task 2022. Using eight open-source
large language models (LLMs) of varying sizes,
we investigate how different prompting strate-
gies, varying numbers of few-shot examples,
and demonstration selection influence transla-
tion quality and length control. We discover
that the phrasing of instructions, when aligned
with the properties of the provided demonstra-
tions, plays a crucial role in controlling the out-
put length. Our experiments show that LLMs
tend to produce shorter translations only when
presented with extreme examples, while iso-
metric demonstrations often lead to the models
disregarding length constraints. While few-shot
prompting generally enhances translation qual-
ity, further improvements are marginal across
5, 10, and 20-shot settings. Finally, consider-
ing multiple outputs allows to notably improve
overall tradeoff between the length and quality,
yielding state-of-the-art performance for some
language pairs.

1 Introduction

Accurate and concise translations are increasingly
needed in media applications such as subtitling
(Matusov et al., 2019; Karakanta et al., 2020) and
dubbing (Federico et al., 2020; Lakew et al., 2021;
Tam et al., 2022; Lakew et al., 2022; Rao et al.,
2023), where length constraints are critical. Dub-
bing, in particular, requires translations to stay
within £10% of the source character-level length
for seamless audio alignment (Lakew et al., 2022),
a constraint known as isometric machine transla-
tion. The 2022 Isometric MT Shared Task (Anas-
tasopoulos et al., 2022) found that most participat-
ing systems used lead tokens for length control,
with some incorporating reranking or adjusted posi-
tional embeddings. Recent work also explored rein-

Prompts Length ratios (LRs) of demonstrated sentences Avg. output LRs
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Figure 1: Overview of our experiment with prompts ask-
ing for different length constraints for the desired trans-
lation, complemented with few-shot examples demon-
strating the given constraint (match) or not (no-match).
Strong enough control to reach isometric translation
needs matching instructions and preferably Tiny or Short
demonstrations. The construction of demonstration sets
is described in Section 3 and the prompt content is pre-
sented in Table 6 in Appendix B.2.

forcement learning for isometric English-Hindi MT
(Mhaskar et al., 2024) and examined length con-
straints in multiple language pairs (Bhavsar et al.,
2022).

Controlling translation length remains challeng-
ing compared to other constrained MT tasks, such
as politeness (Sennrich et al., 2016) or diversity
(Shu et al., 2019) control. Previous approaches in
encoder-decoder MT used length tokens (Lakew
et al., 2019), positional embeddings (Takase and
Okazaki, 2019; Buet and Yvon, 2021), restricted
search spaces (Niehues, 2020), auxiliary length
prediction tasks (Yang et al., 2020), and explicit
compression methods (Li et al., 2020).

With the rise of large language models (LLMs)
(Radford et al., 2019), there has been a shift toward
prompting (Vilar et al., 2023; Zhang et al., 2023a;
Bawden and Yvon, 2023) and fine-tuning (Zhang
et al., 2023b; Moslem et al., 2023) for MT. Prompt-
ing strategies notably affect performance, espe-
cially in few-shot settings (Vilar et al., 2023). Stud-
ies found that randomly selected examples often
improve results (Zhang et al., 2023a; Bawden and
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En-De En-Fr En-Es
Setup LR LCt  Count LR LCt  Count LR LCtT Count
Dev  Both 1.14+£03 382 1415 | 1.14+03 364 1412 | 1.08£0.3 50.5 1316
Test D.eveloprnent. 1.15£0.2 375 200 1.16£0.2  34.0 200 1.03£0.2  58.0 200
Final Evaluation | 1.03£0.2 65.5 200 1.09+£0.5 725 200 0.98+0.2 64.0 200

Table 1: The average target-to-source sample length ratio and its standard deviation (LR), length compliance (LC),
i.e. the percentage of target-side sentences within a +10% range of the source character count, and the number of
samples for two setups (Development and Final Evaluation) and for the testset (the MuST-C tst-COMMON and
blind test sets) and the devset (MuST-C). The devset is used for selecting examples for few-shot prompting.

En-De
Pool type [ Count Min Max avg+tstd
Random 1415 043 580 1.14+0.27
Isometric 537 090 1.10 1.02+0.05
Same 50 0.99 1.00 1.0040.00
Short 343 043 1.00 0.90+0.11
Tiny 50 043 081 0.68+0.11

Table 2: Statistics of pools for En—De: The number of
samples, minimum and maximum target/source length
ratio, and its average and standard deviation.

Yvon, 2023), though performance gains plateau
beyond five examples (Chowdhery et al., 2023; Vi-
lar et al., 2023). While models like BLOOM tend
to overgenerate in zero-shot settings (Bawden and
Yvon, 2023), fine-tuning methods such as QLoRA
(Zhang et al., 2023b) have shown superior perfor-
mance over few-shot learning. Real-time adaptive
MT has also demonstrated strong results, with mod-
els like ChatGPT rivaling traditional MT systems
(Moslem et al., 2023; Hendy et al., 2023). The
use of LLMs for MT has led to the exploration of
various prompt templates, with simple structures
like ‘[src]: [input] \n [tgt]:’ proving ef-
fective (Zhang et al., 2023a; Briakou et al., 2023;
Zeng et al., 2022). The impact of example selection
has also been examined, confirming that beyond
five-shot settings, improvements become marginal
(Garcia et al., 2023; Zhang et al., 2023a; Chowdh-
ery et al., 2023; Vilar et al., 2023).

Given these insights, we explore the applica-
tion of LLMs to isometric MT, focusing on length
control strategies. We analyze four prompting ap-
proaches: (1) uncontrolled translation, (2) isomet-
ric translation (£10% length variation), (3) same-
length translation, and (4) shorter translation, each
paired with corresponding demonstration sets. Ex-
periments are conducted on eight open-weight mod-
els (Llama 3, Gemma 2, Qwen 2 of two sizes each,
and Mistral and Mixtral) across 0, 5, 10, and 20-
shot settings for En—De, En—Fr, and En—Es,
following the 2022 Isometric Shared Task setup
(Anastasopoulos et al., 2022).

Our results show that few-shot demonstrations
affect translation outputs, but precise length control
requires well-aligned instructions reflecting exam-
ple properties, as summarized in Figure 1. Addi-
tionally, we show that generating multiple outputs
with different example sets substantially improves
length control, matching competitive isometric MT
systems and offering high potential for synthetic
data creation in training encoder-decoder models.
We publicly release all collected data for potential
future analyses.'

2 Experimental Setup

Development First, we conduct experiments
with multiple settings (varying prompt type, the
type of pools of demonstrations, and shot count in
few-shot learning) to identify the best-performing
configuration for length control. We refer to this as
the Development setup and use the following data:

* Demonstration set: We use the MuST-C dev-
set for selecting few-shot examples. We
choose the devset over the trainset to reserve
the latter for potential future fine-tuning.

* Testset: We use the first 200 examples from
the MuST-C tst-COMMON, matching the
number of examples in the evaluation blindset
of the 2022 Isometric Shared Task.

Final Evaluation We then use the best-
performing setting from the Development and eval-
uate it on the Isometric Shared Task test set:

* Demonstration set: We use the same demon-
tration set as in the Development setup.

* Testset: We use the blindset from the IWSLT
2022 Isometric Shared Task, which consists
of dialogues extracted from YouTube videos,
totaling 200 examples.?

1https: //github.com/J4VORSKY/Isometric-MT
2https: //github.com/amazon-research/
isometric-slt/tree/main/dataset
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The statistics of the datasets used in both steps
are displayed in Table 1.

Metrics Following the Isometric Shared Task,
we use BERTScore? (Zhang et al., 2020) to evalu-
ate translation quality. For completeness, we also
report BLEU (Papineni et al., 2002) scores using
sacreBLEU (Post, 2018).*:7 We assess adherence to
the £10% length constraint using the Length Com-
pliance (LC) metric (Anastasopoulos et al., 2022).
Additionally, we report the average target-to-source
Length Ratio in Development experiments and use
it alongside Length Compliance in the Final Evalu-
ation to gauge length control.

Models We use the Ollama library® to load all
models, which are provided in quantized ver-
sions (4-bit) without instruction fine-tuning (more
details in Appendix B). Models used in our
experiments include: 1lama3:8b, llama3:70b
(Dubey et al., 2024); gemma2:9b, gemma2:27b
(Gemma Team et al., 2024); qwen2: 7b, qwen2:72b
(Yang et al., 2024); mistral:7b (Jiang et al., 2023)
and mixtral:8x7b (Jiang et al., 2024). For de-
tailed descriptions, refer to the original papers.

3 Prompts

In our experiments, we use English as the language
of the prompts (Zhang et al., 2023a) and explicitly
specify the source and target languages within the
prompt (Zhang et al., 2023a; Bawden and Yvon,
2023). Our focus is on length control when test-
ing various prompt formulations. While large lan-
guage models (LLMs) show strong performance in
machine translation, they sometimes lag behind
supervised neural models (Zhang et al., 2023a;
Chowdhery et al., 2023; Kocmi et al., 2023). To our
knowledge, length control has not been extensively
explored for LLMs in machine translation.

Prompt construction We construct prompts by
concatenating template parts and replacing place-
holders with the appropriate values. The Random
(uncontrolled) template instructs the model to gen-
erate a translation of the source sentence without
any length restrictions. In the Isometric template,
the model is instructed to generate a translation
within £10% of the source text’s character count.

3https ://pypi.org/project/bert-score/0.3.11/

*https://github.com/mjpost/sacrebleu

5Signature: nrefs:1|case:mixed|eff:no|tok:13a]|
smooth:exp|version:2.4.2

®https://ollama.com/library

The Same template instructs the model to produce
a translation that exactly matches the source text
length, while the Short / Tiny template directs
the model to generate a shorter translation, as the
length ratios between studied language pairs of-
ten exceed 1, and a standard translation (typically
longer) is not desired. A detailed overview of the
prompt templates is in Table 6 in Appendix B.2.

We evaluate models in zero-shot and few-shot
settings. They often overgenerate, adding expla-
nations or extra translations, as noted by Bawden
and Yvon (2023). While these authors used regular
expressions to extract translations, we prevent this
by explicitly instructing models to output only the
translation, which proves effective. Further analy-
sis is in Appendix A.

Sample Selection In preparing examples for the
few-shot setting, we construct sampling pools by
filtering the demonstration set based on the follow-
ing criteria: Random selects samples without any
filtering; Isometric contains only examples with
a target-to-source length ratio within £10%; Same
sorts references by increasing |r — 1.0| (where r
is the length ratio) and selects the top N = 50
instances; Short selects samples with target-to-
source ratios in the range [0, 1]; Tiny samples the
50 examples with the smallest target-to-source ra-
tio. The illustration is in Figure 1.

Statistics for each sampling pool for En—De
are in Table 2. As other languages follow the
same trend, their statistics are in Table 7 in Ap-
pendix B.3. Following Zhang et al. (2023a), we
use the following template for in-context samples:
[src langl: [src sentence] — [tgt langl:
[tgt sentencel].

4 Analysis

In all experiments, the prompts remain identical
across all models within a given setting. To reduce
the bias of sampling from demonstration sets, we
performed 10 runs for every setting.

4.1 Prompt and Pool Type Relation

First, we analyze how much the selection of ex-
amples is related to the instruction provided in the
prompt in the few-shot prompting and how this
combination influences the translation length. We
therefore compare two setups:

Prompt and Pool Type Match We create match-
ing pairs of prompts and pool types as follows:
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En-De

[ Random [ TIsometric Same | Short | Tiny
Model \ Match No Yes No Yes No Yes No Yes No Yes
gemma2:27b 1.100  1.097 || 1.099 1.094 || 1.098 1.097 || 1.087 1.011 || 1.066 0.955
gemma2:9b 1.108 1.106 || 1.106 1.101 || 1.106 1.073 | 1.099 1.026 || 1.080 0.981
1lama3:7eb 1.149 1.151 || 1.149 1.139 || 1.141 1.134 || 1.138 1.005 || 1.122 0.905
1lama3:8b 1.106  1.100 || 1.093 1.108 || 1.099 1.112 || 1.085 1.048 || 1.056 0.994
mistral:7b 1.133  1.129 || 1.126 1.128 || 1.135 1.125 || 1.121 1.105 || 1.138 1.085
mixtral:8x7b | 1.402 1.411 || 1.375 1.362 || 1.378 1.381 || 1.385 1.297 || 1.363 1.265
qwen2:72b 1.223  1.169 || 1.195 1.178 || 1.184 1.173 || 1.170 1.128 || 1.164 1.129
qwen2:7b 1.132  1.160 || 1.144 1.125 || 1.129 1.129 || 1.128 1.135 || 1.117 1.095

Table 3: The evaluation is conducted as follows: We first compute the average target length per input sentence across
10 runs. Next, we calculate the target-to-source length ratio for each instance and average these values for each pool
type. The results are reported separately for cases where the instructions match (‘Yes’) or do not match (‘No’) the
sample properties in 5-shot prompting. Differences with a p-value < 0.1 for each pool type are underlined.
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Figure 2: The percentage of input sentences (across
all language directions) for which at least one of ten
generated translations meets the isometric condition
when the model is prompted to produce isometric, same-
length, short, and tiny outputs aligned with respective
5-shot demonstration sets. This evaluation is restricted
to input sentences where the particular model did not
generate any isometric translation in ten attempts using
the uncontrolled prompt.

Random—Random, Isometric—Isometric, Same—
Same, Short-Short, Tiny—Tiny.

Prompt and Pool Type Mismatch We keep the
Random prompt for all pool types.

We compare these two configurations for
En—De in Table 3, the remaining translation direc-
tions are documented in Appendix C. Our results
indicate that the length ratios are mostly affected
when the instruction aligns with the pool type, com-
pared to when there is no such match (we can also
see a tendency to generate shorter outputs when

comparing “no alignment” columns across differ-
ent pool types, but the difference is negligible).
This match-versus-no-match difference is statisti-
cally significant in Gemma and Llama models, par-
ticularly for the Short and Tiny pools. Addition-
ally, the Isometric and Same pools do not appear
to induce shorter translations compared to random
sampling, as evidenced by the similar values ob-
served in the first three columns. We hypothesize
that requesting outputs to preserve the input length
somehow guides models to reproduce the distribu-
tion of the training data rather than actually consid-
ering the length (i.e. models implicitly assume that
typical translation is of the same length). However,
in studied language directions, what is considered
as normal ratio, is skewed towards values greater
than 1. In other words, models naturally follow the
length distribution they were trained on and can
overcome this bias only when extreme examples
are provided.

To further highlight the utility of our approach,
Figure 2 focuses on cases where models consis-
tently fail to produce isometric translations under
the Random-Random setting, even after 10 runs.
This occurs in about 30% of devset sentences on
average. The figure shows how alternative prompts
improve length compliance, with 7iny and Short
settings achieving up to 80% isometric translations
for L1ama3:70b when at least one of 10 runs suc-
ceeds. The overall practical ability of each of the
models to achieve isometric translation is summa-
rized by the two numbers above the bars in Fig-
ure 2. The first number indicates the percentage of
devset sentences that were translated in a compliant
way by default and the second number indicates
to which proportion we raised this using the 7iny
prompt. Note that in the worst case, this level of
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Figure 4: En—De trade-off between the length ratio (x-axis) and translation quality (y-axis) for 5, 10, 20-shot

settings and all models.

compliance is reached at 20x the translation cost
(10 attempts by default plus 10 Tiny attempts). In
practice, however, we can switch to the 7iny prompt
after the first unsuccessful attempt in the default
generation. The number of additional generations
with Tiny setting depends on resource constraints
and requirements. But even after just one attempt,
L1ama3:7@b achieves isometric translations in 35%
of cases. Full results are in Appendix C.

4.2 Comparing Demonstration Pools

We give below a more detailed evaluation across
all few-shot settings, models, and pool types, us-
ing only settings when the instruction matches the
pool type and where the model is instructed to out-
put only the translation. Both length ratios and

BERTScore values are reported for En—De, with
the results presented in Figure 3. For a comprehen-
sive view of all few-shot settings, detailed numeri-
cal results are reported in Appendix D.

Length Ratios and Length Control In terms
of length ratio, all models consistently exhibit the
same trend: the ratios are highest for random sam-
pling, followed by isometric sampling, and then
by shorter examples. Providing extreme examples
encourages models to produce shorter translations.
Interestingly, in the zero-shot setting, we observe
a length ratio lower than 1.0 for the Llama and
Gemma models. However, when demonstrations
are also given in few-shot settings for these models,
translations are longer, even when the associated
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En—De En—Fr En—Es

System LR| LCt BStT BLEUt|LR| LCT BSt BLEUfT|LR] LCt BStT BLEUT
STRONGBASELINE 1.03 68.0 7744 216 1.02 75,5 81.75 36.2 |1.00 80.5 81.86 36
APPTEK-Constrained 1.11 86.5 77.32 18.7 - - - - - - - -
NUV-Unconstrained - - - - 1.10 47.5 79.96 27.1 - - - -
HW-TSC-Unconstrained | 1.03 96.5 75.79 20.2 - - - - - - - -
HW-TSC-Constrained 1.28 98.0 74.07 17.9 1.19 96.0 76.11 31.5 1.18 96.5 7857 299
APV-Unconstrained 1.68 39.0 73.68 16.5 1.21 45.0 77.77 329 1.05 49.5 80.87 353
WEAKBASELINE 1.29 43.0 74.86 15.5 148 37.0 77.18 252 1.38 51.0 7832 27.7
model=gemma2:27b-k=1 1.07 43.5 77.08 19.0 1.05 47.5 7830 327 1.00 555 8320 40.3
model=gemma2:27b-k=3 | 1.08 58.0 7796 20.2 1.07 60.5 7996 33.5 1.01 66.5 8329 403
model=gemma2:27b-k=5 | 1.09 62.5 7798 204 1.06 62.5 80.01 339 1.02 68.0 83.16 40.0
model=gemma2:27b-k=10 | 1.08 68.5 77.84 21.9 1.08 69.0 80.05 35.6 1.01 70.5 83.62 40.8
model=gemma2:9b-k=1 224 425 77.04 17.7 10.00 0.0 0.00 0.0 1.02 545 8247 39.0
model=gemma2:9b-k=3 1.19 585 7724 20.6 1.07 60.5 80.38 34.1 1.03 65.5 83.41 36.8
model=gemma2: 9b-k=5 1.07 645 77.38 20.9 1.06 65.5 80.66 355 1.03 73.0 8330 37.2
model=gemma2:9b-k=10 | 1.08 64.0 77.48 21.7 1.06 70.5 80.72 349 1.03 73.0 83.17 37.6
model=11ama3:70b-k=1 1.09 49.0 76.57 209 1.05 41.0 7644 286 |096 46.5 79.29 314
model=1lama3:70b-k=3 | 1.06 62.5 77.18 22.1 1.00 555 77.64 309 1.03 59.5 80.64 344
model=11lama3:70b-k=5 | 1.06 65.0 77.24 222 1.02 64.0 77.62 325 1.02 655 8096 35.1
model=1lama3:70b-k=10 | 1.07 69.0 77.23 21.7 1.04 68.0 78.24 33.7 1.02 70.5 8137 358
model=11ama3:8b-k=1 1.21 420 74.30 13.8 1.16 47.5 74.71 22.9 1.03 485 77.80 28.6
model=11ama3:8b-k=3 1.09 56.0 75.79 15.9 1.09 60.5 7596 255 |099 650 79.76 30.6
model=11ama3:8b-k=5 1.09 60.5 76.10 16.7 1.10 69.5 7632 26.1 1.01 69.5 80.15 314
model=11ama3:8b-k=10 | 1.09 65.0 76.28 16.9 1.08 75.0 77.02 26.2 1.03 740 79.88 29.0
OracleBLEU [ 1.04 78.0 80.82 37.6 [ 1.03 85.0 8393 529 [ 1.01 88.5 87.01 57.5

Table 4: Final Evaluation — Length Ratio (LR), Length Compliance (LC), BERTScore (BS) and BLEU — of the
best setting (10-shot, pool type Tiny) across different Llama and Gemma models compared to the submissions of
IWSLT Isometric Shared Task. The k values indicate the number of demonstration sampling runs (i.e. different
outputs) from which we select the best one using COMETKIWI. To avoid any possible evaluation difference, we
(re-)evaluated all the outputs, ours and IWSLT22 ones, using the script provided by the organizers of the shared task.

The best results are in bold.

demonstrations are short or very short.

Few-shot Prompting Another notable observa-
tion is that increasing the number of examples in
few-shot prompting does not substantially enhance
regular translation quality (i.e., translation without
length restrictions), which is consistent with previ-
ous findings (Bawden and Yvon, 2023; Zhang et al.,
2023a; Chowdhery et al., 2023). Including shorter
examples sometimes improves adherence to length
limitations (e.g., for 11ama3: 8b); this effect is not
observed for all models (e.g., for gemma2:27b).

Translation Quality Scores The largest trans-
lation quality scores are observed when the unfil-
tered pool (Random) is used, which is expected as
this corresponds to an unconstrained setting. The
top-performing model in terms of BERTScore for
English-German translations is 11ama3:7@b. For
the other language pairs, gemma2: 9b, gemma2:27b
and qwen2:72b achieve the largest translation
score.

Length Ratio and Translation Quality Tradeoff
We also compare translation scores with length
ratios. The results are presented in Figure 4 for

En—De direction (the rest in Figure 7 in Ap-
pendix E). We can see that only Llama and Gemma
models are capable of reaching 1.0 length ratio.
Our results also highlight the impact of model
size on performance, with larger models consis-
tently outperforming their smaller counterparts in
BERTScore, except for gemma2: 9b which reports
similar performance to its large counterpart.

5 Final Evaluation

Since Llama and Gemma models achieve the best
performance on all language pairs on average, we
select and evaluate them in Final Evaluation using
the Isometric Shared Task blind set. We gener-
ate outputs using 10 distinct sets of 10 examples
(10-shot), each drawn from the Tiny pool as it
yields the best length control. We keep only out-
puts in the +10% length constraint’ and select the
best one according to reference-free COMET, i.e.
COMETKIWI® score (Rei et al., 2022). We then

"If none of the translations adhere to the £10% length
constraint, we keep the original unfiltered set.

8https: //huggingface.co/Unbabel/
wmt22-cometkiwi-da

124


https://huggingface.co/Unbabel/wmt22-cometkiwi-da
https://huggingface.co/Unbabel/wmt22-cometkiwi-da

compare these results with the submissions from
the IWSLT 2022 Isometric Shared Task, specifi-
cally those from the APPTEK (Wilken and Ma-
tusov, 2022), HW-TSC (Li et al., 2022), Amazon
Prime Video (APV), and NUV teams (Bhatnagar
et al., 2022), in addition to the two (strong and
weak) baselines provided by the organizers. For a
brief overview of each system, please refer to Anas-
tasopoulos et al. (2022). Additionally, we compare
our results to an OracleBLEU setting, where the
best translation is selected according to the sen-
tence BLEU score across all configurations after
filtering out translations that fall outside +10% of
the source character count. The results are summa-
rized in Table 4.

Our results show that for the En—De and
En—Es language pairs, the Gemma models achieve
output quality comparable to the strong baseline.
While the translation quality metrics surpass that
of the strong baseline, the length control is slightly
less precise. For En—Fr, however, the strong base-
line continues to outperform our models in terms
of quality as well as LR. Although generating 10
different outputs for each source sentence may not
be feasible in practice, this approach could be ben-
eficial for producing synthetic data for training iso-
metric machine translation models.

6 Conclusion

In this paper, we explored the use of LLMs for iso-
metric machine translation, focusing on strategies
to control the translation length. Our key findings
are as follows: First, effective length control in few-
shot prompting requires the simultaneous use of ap-
propriate demonstrations and matching instructions.
Second, generating multiple outputs achieves the
best trade-off between length control and transla-
tion quality, indicating the high capability of LLMs
to generate desired outputs. It might be also use-
ful for creating synthetic training data. Although
prompting 10 times may seem inefficient, it would
not be necessary for every sample in practice. Since
half of the samples are already length-compliant —
even with the uncontrolled Random prompt — com-
pliance for the rest can be achieved iteratively by
generating translations until the length constraint
is met. Future work might benefit from fine-tuning
LLMs or from a more in-depth analysis of the in-
ternal representation of length in LLMs to avoid
many samples to generate.

Limitations

We compare our results primarily with system sub-
missions from the Isometric Shared Task 2022, as
more recent models either do not address the lan-
guage pairs examined in this study (e.g., Hindi-
English by Mhaskar et al. (2024)) or are not pub-
licly available (Bhavsar et al., 2022). Additionally,
we do not evaluate performance on any downstream
tasks, such as subtitling or dubbing.

We did not conduct a detailed analysis of ensem-
ble methods, particularly concerning ensembling
across different models or pool types. Moreover,
for the Tiny and Same pools, we do not analyze the
effect of varying V.

When collecting 10 outputs in Final Evaluation,
the associated computational cost increases consid-
erably. While this approach may not be feasible for
real-world applications, it can be valuable for gener-
ating high-quality examples for isometric machine
translation model training. To further reduce com-
putational costs, one could regenerate only those
translations that do not meet the specified length
constraints.

Finally, it is important to note that we exclusively
used quantized versions of the models in our exper-
iments, likely resulting in sub-optimal translation
scores.
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A Overgeneration

Bawden and Yvon (2023) have demonstrated that
the BLOOM model tends to overgenerate, specifi-
cally it continues to produce translations in addi-
tional languages beyond the desired output. In our
preliminary experiments, we observed similar be-
havior across several models, which manifested in
two distinct ways: (1) models frequently provided
explanations alongside the translation, and (2) mod-
els embedded the translation within a broader text.

To mitigate the issue of overgeneration, we im-
plemented a straightforward yet highly effective
solution. Specifically, we appended an instruction
to the prompt, explicitly directing the model to
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Figure 5: Restricted vs unrestricted prompt for 5-shot
examples and the random pool when we discard ev-
erything after the first new line. In restricted, we add
‘output translation only’ at the end of the prompt. The
red dashed line corresponds to a ratio of 1.0.

output only the translation. This approach proved
to be remarkably effective, obviating the need for
more complex techniques such as truncation or the
application of regular expressions to filter the trans-
lation. We evaluated the impact of this method
on translation length within a 5-shot setting, uti-
lizing a randomly selected pool with uncontrolled
instruction types. For each model, we constructed
10 distinct prompts with different examples, and
we discarded generated text after the first new line
character because at this place an explanation often
begins. The averaged length ratios are presented in
Figure 5.

The results indicate that our approach maintains
length consistency across all models and language
pairs, with values remaining close to 1.0. The only
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| EnDe | EnFr | EnEs
Model No Yes | No Yes | No Yes
gemma?2: 9b 100 0 100 2 100 2
gemma2:27b 100 1 100 2 100 1
1lama3:8b 100 3 100 3 100 1
11lama3:70b 100 0 99 0 99 0
qwen2:7b 0 0 0 0 0 0
qwen2:72b 12 3 7 1 5 1
mistral:7b 16 3 9 1 19 1
mixtral:8x7b | 38 15 29 15 36 20

Table 5: The average percentage of translations that
contain a new line, indicating overgeneration (5-shot
setting). ‘Yes’ and ‘No’ columns denote the restricted
and unrestricted prompt, respectively.

exceptions are mixtral:8x7b, which tends to gen-
erate longer text even with the restrictive instruc-
tion, and qwen2: 7b, which is the only one that does
not tend to overgenerate in the first place.

Since overgeneration, when it does occur, typi-
cally manifests itself as additional text generated af-
ter a newline character, we counted the occurrences
of text generation following a newline in both the
restricted and unrestricted settings to further eval-
uate the effectiveness of our method. As shown
in Table 5, in many instances — particularly with
the Llama and Gemma models — there is a clear
tendency for models to generate explanatory text
after a newline when output is unrestricted. Con-
versely, when the output is restricted to translation
only, the occurrence of additional text is substan-
tially reduced. Based on these observations, we
adopted this restrictive instruction in all subsequent
experiments and we also ignore any output after
the newline character.

Examples Examples of overgeneration where (1)
models frequently provided explanations alongside
the translation, and (2) models embedded the trans-
lation within a broader text:

1. qwen2:72b: ... English: Not surprisingly, this
destruction also endangers bonobo survival.
— German: Uberraschenderweise gefihrdet
dieser Niedergang auch das Uberleben der
Bonobos. — — However, a more accurate
translation would be: — Uniiberraschender-
weise gefidhrdet diese Zerstorung auch das
Uberleben der Bonobos.

2. 11ama3:8b: ... English: But still it was a real
footrace against the other volunteers to get to
the captain in charge to find out what our
assignments would be. — Spanish: Based
on the provided examples, here is a possible

translation: — — Spanish: Pero todavia fue un
verdadero carrera contra los otros voluntarios
para llegar al capitdn al mando y encontrar qué
serian nuestras asignaciones.— — This trans-
lation takes into account the nuances of the
original sentence. .. (explanation continues)

B Generation Details

B.1 Inference Hyperparameters

In all experiments, text generation uses multino-
mial sampling, with default parameters provided by
the Ollama library: top-K 40 sampling (K = 40)
and a temperature of 0.8. Generation stops after
512 tokens or when <EOT> (end of turn) token is
printed.

B.2 Prompt Templates

The construction of templates is depicted in Table 6.
The prompts are created by concatenating prompt
parts (1-6).

B.3 Pool Statistics

The statistics of each pool for all pairs of languages
studied is in Table 7. We observe a similar trend
across all language pairs.

C Match vs No-match

The comparison of match-vs-non-match for all lan-
guages is depicted in Table 8. Figure 6 shows the
proportion of isometric outputs given sentences
where each of the models failed to produce iso-
metric translation by default, i.e. under the Ran-
dom-Random setting, even across 10 default runs.
The translations are taken after only one attempt,
which is in contrast to Figure 2 where the outputs
are selected from 10 attempts.

D Few-shot Prompting

The comparison between all few shot settings for
all languages is displayed in Figure 8. Additionally,
we provide a more detailed view of the results of
all few-shot settings, which is presented in Table 9
(zero-shot), Table 10 (5-shot), Table 11 (10-shot)
and Table 12 (20-shot). We also compare these
results to an oracle setup, in which the best transla-
tion is selected based on the sentence BLEU score
across all configurations, after filtering out trans-
lations that do not fall within +10% of the source
character count.
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Part

Prompt type | Zero-shot

1 - Translate the following text from [src lang] into [tgt lang]
Random .

2 Isometric ensuring that it is within +10% of the character count of the source.
Same ensuring that it has the same length as the source.
Short/ Tiny | ensuring that it is shorter than the source.

3 No -
Yes Output only the translation. —

4 - [src langl: [src sentence] — [tgt lang]:

Part | Prompt type | Few-shot

1 - Here are examples of translations in [tgt lang]
Random of the source in [src lang]: —
2 Isometric that are within £10% of the character count of the source in [src lang]: —
Same that have the same length as the source in [src lang]: =
Short/ Tiny | that are shorter than the source in [src lang]: —
3 - N x {[src lang]: [src sentence] - [tgt lang]: [tgt sentence] —}
4 - Provide translation for the following sentence given the examples above.
5 No -
Yes Output only the translation. —
6 - [src lang]: [src sentence] — [tgt lang]:

Table 6: Zero-shot (upper) and few-shot (lower) prompt templates. — stands for new line. Actual prompts are
constructed by sequentially concatenating prompt parts (1-6).

En-De
Pooltype [ Count Min Max  avgEstd
Random 1415 043 580 1.14+0.27
Isometric 537 090 1.10 1.02+0.05
Same 50 0.99 1.00 1.004+0.00
Short 343 043 1.00 0.90+0.11
Tiny 50 043 081 0.68+0.11

En-Fr
Random 1412 029 490 1.14£0.28
Isometric 505 090 1.10 1.02+0.05
Same 50 0.99 1.00 1.0040.00
Short 348 0.29 1.00 0.88+0.14
Tiny 50 0.29 0.76 0.60£0.13

En-Es
Random 1316 030 5.70 1.08£0.32
Isometric 659 090 1.10 1.01£0.05
Same 50 1.00 1.00 1.0040.00
Short 490 030 1.00 0.8940.12
Tiny 50 030 0.72 0.5940.12

Table 7: Statistics of pools: The number of samples,
minimum and maximum target/source length ratio, and
its average and standard deviation.

E Translation Quality and Length
Tradeoff

The length ratio and translation quality tradeoff for
all languages is presented in Figure 7. We observe
that models generally produce isometric translation
when Tiny setting is used. The exception is Spanish,
where the average 1.0 length ratio can be obtained
by Short setting. This is in line with our intuition
since Spanish exhibits a smaller length ratio of
1.04 for the training data from MuST-C, compared
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Figure 6: The percentage of input sentences (across all
language directions) for which the generated transla-
tion meets the isometric condition when the model is
prompted to produce isometric, same-length, short, and
tiny outputs aligned with respective 5-shot demonstra-
tion sets. This evaluation is restricted to input sentences
where the particular model did not generate any isomet-
ric translation in ten attempts using the uncontrolled
prompt.

to length ratios of 1.12 and 1.11 for German and
French, respectively.’

These values were calculated by the organizers of the
isometric shared task and are mentioned on the official website
https://iwslt.org/2022/isometric.
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Figure 7: Trade-off between the length ratio (x-axis) and translation quality (y-axis) for 5, 10, 20-shot settings and
all models and language pairs.
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En-De

[ Random [[ Isometric || Same | Short | Tiny
Model No Yes No Yes No Yes No Yes No Yes
gemma2:27b 1.100 1.097 || 1.099 1.094 || 1.098 1.097 || 1.087 1.011 1.066 0.955
gemma2:9b 1.108 1.106 1.106  1.101 1.106 1.073 1.099 1.026 1.080 0.981
1lama3:70b 1.149 1.151 1.149 1.139 || 1.141 1.134 || 1.138 1.005 || 1.122 0.905
1lama3:8b 1.106  1.100 1.093 1.108 1.099 1.112 1.085 1.048 1.056 0.994

mistral:7b 1.133  1.129 || 1.126  1.128 || 1.135 1.125 | 1.121 1.105 || 1.138 1.085
mixtral:8x7b | 1.402 1.411 || 1.375 1362 || 1.378 1.381 || 1.385 1.297 || 1.363 1.265

gwen2:72b 1.223  1.169 1.195 1.178 1.184 1.173 1.170  1.128 1.164 1.129
gwen2:7b 1.132  1.160 1.144 1.125 1.129  1.129 1.128 1.135 1.117  1.095
En-Fr
gemma2:27b 1.128 1.126 1.123  1.125 1.127 1.128 1.115 1.034 1.087 0.970
gemma2:9b 1.143 1.146 1.142  1.132 1.144 1.121 1.133  1.062 1.116 1.021
1lama3:70b 1.178 1.176 1.173 1.167 1.174 1.172 1.163 1.015 1.147 0.877
1lama3:8b 1.136  1.121 1.134 1.141 1.136 1.144 1.110 1.052 1.072 0.986

mistral:7b 1.162 1.166 || 1.159 1.152 || 1.167 1.177 || 1.141 1.127 || 1.153 1.137
mixtral:8x7b | 1.335 1332 || 1.316 1.233 || 1.351 1.247 || 1.355 1.206 || 1.348 1.203

gwen2:72b 1.178 1.180 1.198 1.174 1.184 1.171 1.215 1.139 1.172  1.118

gwen2:7b 1.183 1.175 1.175  1.171 1.172  1.172 1.170 1.146 1.152 1.124
En-Es

gemma2:27b 1.058 1.057 1.057 1.058 1.058 1.054 1.053 0.994 1.040 0.939

gemmaz2: 9b 1.072 1.072 1.071 1.064 1.070 1.046 1.067 1.018 1.054 0.969

11lama3:70b 1.086 1.089 1.088 1.086 1.086 1.083 1.084 0.969 1.062 0.823

1lama3:8b 1.050 1.051 1.055 1.063 1.051 1.062 1.042 1.008 || 0.999 0.907

mistral:7b 1.050 1.058 || 1.058 1.050 || 1.078 1.063 | 1.106 1.038 | 1.039 1.014
mixtral:8x7b | 1.321 1.287 || 1.340 1.269 || 1.265 1.222 || 1.286 1.254 || 1.283 1.252
qwen2:72b 1.116  1.113 || 1.108 1.110 || 1.113 1.117 || 1.114 1.091 || 1.106 1.075
qwen2:7b 1.074 1.097 || 1.074 1.079 || 1.075 1.074 | 1.083 1.057 || 1.065 1.035

Table 8: Average target/source ratios for every pool type when instructions match (“Yes’) or do not match (‘No’) the
properties of the samples in 5-shot prompting. Differences for each pool type with p-value < 0.1 are underlined.
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and left-hand y-axes) for all few-shot settings, models and language pairs.
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En-De En-Fr En-Es
Model Prompt Type | LR LC BS BLEU| LR LC BS BLEU| LR LC BS BLEU
Random 1.13 3739 83.57 31.82 [1.15 37.78 86.80 43.29 | 1.08 48.20 86.08 39.24
gemma2: 27b Isometric 1.12 39.10 8328 29.94 [1.14 39.10 85.70 38.25 | 1.06 51.65 85.65 37.54
Same 1.12 41.55 83.52 31.02 | 1.13 4445 86.18 40.07 | 1.07 5195 8592 37.75
Short 0.83 27.05 76.10 12.16 |0.86 33.85 77.74 1591 | 0.82 30.25 79.88 19.15
Random 1.13 3485 83.43 3147 |1.15 36.75 8640 41.81 |1.08 48.85 85.54 37.87
gemma2: 9b Isometric 1.12 3875 8293 29.37 [ 1.14 38.70 85.73 38.18 | 1.07 54.40 85.60 36.59
Same 1.11 4145 82.89 29.63 | 1.13 40.75 8594 39.55 | 1.05 55.95 85.80 3691
Short 091 3565 78.15 16.12 | 093 38.65 79.45 20.16 |0.87 36.45 80.70 21.66
Random 1.18 2694 84.58 3431 [1.19 28.06 87.52 4424 |1.11 45.83 85.78 37.08
11ama3: 70b Isometric 1.16 31.80 84.53 33.79 |1.17 3140 87.42 43.65 |1.09 49.65 85.95 37.36
Same 1.17 26.70 84.75 34.87 | 1.19 2835 87.58 4424 | 1.10 46.95 85.87 36.72
Short 0.92 3875 79.04 17.20 |093 3840 80.26 21.27 |0.88 37.05 80.85 23.17
Random 1.16 31.60 82.70 28.96 | 1.18 31.39 84.81 36.68 | 1.08 50.10 83.93 32.78
11ama3: 8b Isometric 1.18 29.33 8223 27.82 [1.18 29.67 83.90 3423 |1.11 47.00 83.10 31.00
Same 1.17 28.65 82.55 28.36 |1.18 27.50 84.01 34.70 | 1.08 47.33 82.96 30.99
Short 0.96 33.85 77.88 15.83 |095 37.10 7892 18.29 | 090 39.70 79.61 19.69
Random 1.20 3040 77.28 23.33 [1.21 3240 82.65 30.19 | 1.09 48.70 82.52 29.49
mistral:7b Isometric 1.29 2428 7226 19.88 [1.29 26.67 80.79 28.20 | 1.15 43.89 81.92 28.57
Same 1.18 28.40 80.55 23.23 [1.20 3290 82.66 29.99 | 1.09 47.40 82.79 29.30
Short 1.13 3940 73.62 16.99 |1.12 41.30 78.78 23.39 |0.97 45.55 79.23 23.13
Random 1.42 23775 81.50 29.00 | 1.27 26.00 85.45 38.28 | 1.36 38.83 83.72 31.61
mixtral:8x7b Isometric 1.49 1589 79.81 26.21 |1.41 18.85 82.65 3447 |1.30 29.50 82.48 30.23
Same 1.53 21.50 79.77 26.86 | 1.31 28.78 83.94 36.18 | 1.30 39.45 83.24 30.73
Short 1.81 1850 7392 18.32 |1.63 2830 77.58 26.18 | 1.70 26.30 75.75 20.91
Random 1.17 30.28 84.02 33.07 | 1.18 33.61 87.50 4430 | 1.11 4544 85.83 37.82
qwen2:72b Isometric 1.15 35.65 83.69 31.80 |1.17 38.15 86.76 41.92 | 1.09 50.60 85.53 36.41
Same 1.16 32.50 83.62 32.22 | 1.18 38.45 87.35 4487 | 1.10 50.70 85.73 36.86
Short 0.98 40.10 80.48 20.71 |1.01 4395 8346 2791 |092 37.60 83.27 25.77
Random 1.21 28.55 80.83 2432 [1.19 28.81 84.20 36.04 [ 1.10 41.45 83.04 30.98
qwen2:7b Isometric 1.20 27.50 80.51 23.05 [1.19 30.75 83.61 34.00 | 1.10 45.72 83.19 30.33
Same 1.19 2845 81.04 23.67 | 1.18 29.80 84.27 3542 | 1.10 43.90 83.55 30091
Short 1.09 38.00 79.34 18.89 | 1.11 41.55 82.78 30.33 | 1.02 49.65 82.54 27.35
Oracle 1.07 65.00 87.74 49.60 [ 1.05 76.50 87.99 55.60 | 1.03 83.00 88.47 53.50

Table 9: 0-shot prompting for all language pairs. Columns denote length ratio (LR), length compliance (LC),
BERTScore (BS) and BLEU.

134



En-De En-Fr En-Es
Model Pool Type | LR LC BS BLEU| LR LC BS BLEU| LR LC BS BLEU

Random 1.13 36.75 83.97 32.81 | 1.14 39.70 87.01 4286 | 1.08 50.60 86.11 39.02
Isometric | 1.13 39.15 84.04 33.07 | 1.14 4035 86.95 4229 |1.08 51.55 86.10 38.61

gemma2:27b Same 1.13 38.65 84.18 33.05 | 1.14 40.35 87.58 43.81 | 1.07 52.50 86.29 38.71
Short 1.04 44.05 8241 28.01 |1.05 42.65 84.50 34.61 |1.01 53.15 85.06 3554
Tiny 099 41.00 81.13 24.46 |0.99 42.55 82.83 30.89 | 0.96 48.05 83.81 3221

Random 1.14 3535 84.07 3237 [1.16 37.85 87.09 43.13 | 1.09 5090 85.99 37.59
Isometric | 1.14 37.25 83.93 31.80 | 1.15 4030 86.76 42.09 | 1.08 51.85 86.00 37.59

gemma2:9b Same 1.11 4135 83.72 30.57 | 1.14 43.00 86.77 42.05 | 1.06 56.50 85.75 37.09
Short 1.06 4425 8271 2824 |1.08 46.50 85.05 36.13 | 1.04 56.60 85.54 36.71
Tiny 1.01 4450 81.55 2540 |1.04 44.10 84.13 3459 |0.99 53.80 84.55 33.53

Random 1.19 26.45 84.85 3486 |1.19 29.15 87.40 44.08 | 1.11 4845 85.62 36.89
Isometric | 1.17 27.90 84.65 34.25 |1.18 30.85 87.37 43.63 | 1.10 47.90 85.66 37.07

1lama3:70b Same 1.17 2850 84.83 34.84 | 1.19 31.65 87.50 4396 | 1.10 49.60 85.52 36.43
Short 1.04 4090 82.76 28.12 | 1.03 44.00 84.81 3536 |0.99 50.15 84.51 33.68
Tiny 094 3580 80.61 22.66 |0.89 37.05 81.20 25.79 |0.84 33.75 80.97 24.73

Random 1.14 32.00 81.55 2644 |1.14 3422 8357 3432 |1.07 4870 82.29 30.53
Isometric | 1.15 32.00 81.87 26.57 |1.16 3630 83.74 34.08 | 1.08 49.40 83.16 31.45

1lama3:8b Same 1.15 33.40 82.06 27.04 | 1.16 3450 84.28 3480 |1.08 51.45 83.41 31.05
Short 1.08 39.05 80.69 23.71 | 1.07 3855 8159 29.35|1.03 5140 81.88 28.56
Tiny 1.03 37.55 7941 2121 |1.00 38.10 80.24 26.74 | 0.93 43.15 79.55 23.71

Random 1.17 32.00 80.66 23.66 | 1.18 3520 8229 29.70 | 1.08 48.78 82.28 28.52
Isometric | 1.17 32.55 80.76 23.67 |1.17 37.40 8250 30.11 | 1.07 50.80 82.57 28.79

mistral:7b Same 1.16 33.50 80.93 23.86 | 1.19 3490 8237 2991 |1.08 52.60 82.64 28.99
Short 1.14 38.15 80.30 22.68 | 1.14 39.10 82.01 29.06 | 1.06 51.85 81.96 28.64
Tiny 1.12 38.65 79.75 21.46 |1.15 40.00 81.34 28.10 | 1.03 52.25 81.42 27.36

Random 143 26.85 81.99 30.58 | 1.33 30.00 84.20 38.51 |1.30 40.45 83.68 33.44
Isometric | 1.38 29.20 82.02 30.71 | 1.24 32.10 84.64 38.40 | 1.28 42.80 83.78 33.85

mixtral:8x7b Same 1.40 32.40 82.38 31.10 | 1.26 32.35 84.74 39.20 | 1.24 44.45 84.12 34.18
Short 1.32 33.65 81.21 28.83 | 1.21 3745 83.77 3539 | 1.26 4575 8291 3228
Tiny 1.29 36.80 79.98 26.16 | 1.21 38.56 82.70 33.03 | 1.25 46.80 82.11 31.02

Random 1.20 29.25 84.08 3325 [1.20 33.35 87.18 43.74 | 1.13 45.65 8548 37.00
Isometric | 1.21 29.95 8398 33.02 | 1.19 34.60 86.85 42.69 | 1.13 46.10 85.37 36.77

qwen2:72b Same 1.21 31.20 83.98 3291 |1.19 35.80 87.26 43.57 |1.14 48.60 85.66 37.52
Short 1.16 34.40 83.63 31.59 | 1.15 41.60 86.36 40.17 | 1.11 49.65 85.05 36.10
Tiny 1.16 3575 83.03 30.09 | 1.13 42.80 85.86 38.80 | 1.10 49.40 84.52 3520

Random 1.20 32.10 81.04 2399 [1.19 31.75 8424 3537 |1.11 47.40 83.53 30.89
Isometric | 1.16 30.30 81.24 23.78 | 1.19 3230 84.11 34.86 | 1.10 48.70 83.63 31.13

qwen2:7b Same 1.17 3155 81.28 24.07 |1.19 32.80 84.41 35.16 |1.09 47.75 83.52 30.98
Short 1.14 3556 80.97 2299 |1.16 3525 83.77 34.09 | 1.08 4895 83.33 30.75
Tiny 1.13 3489 80.63 2243 | 1.14 36.60 82.56 32.26 | 1.05 50.00 82.89 29.95
Oracle 1.07 65.00 87.74 49.60 | 1.05 76.50 87.99 55.60 | 1.03 83.00 88.47 53.50

Table 10: 5-shot prompting for all language pairs when sampling examples from different pools. Columns denote
length ratio (LR), length compliance (LC), BERTScore (BS) and BLEU. All numbers are averaged across 10
instances. The prompt text matches the pool type.
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En-De En-Fr En-Es
Model Pool Type | LR LC BS BLEU| LR LC BS BLEU| LR LC BS BLEU

Random 1.13 3720 84.14 3334 | 1.14 41.50 86.93 4254 | 1.08 50.65 86.01 38.58
Isometric | 1.13 39.10 83.98 32.89 |1.14 4035 86.79 41.72 | 1.08 50.55 86.03 38.50

gemma2:27b Same 1.13 38.80 84.19 33.31 | 1.14 41.70 87.45 43.59 | 1.08 50.90 86.36 39.01
Short 1.05 4395 8276 28.38 | 1.06 4540 85.04 36.26 |1.02 52.15 8529 36.17
Tiny 1.00 41.05 81.25 2484 |1.01 41.55 83.44 33.10 | 0.97 47.70 84.10 33.15

Random 1.14 36.75 8391 3223 [1.16 39.85 86.95 43.22 |1.09 5035 86.05 37.93
Isometric | 1.13 36.35 83.89 31.57 | 1.15 41.40 86.76 41.89 | 1.08 53.05 86.00 37.68

gemma2:9b Same 1.12 40.15 83.80 30.88 | 1.14 4245 86.86 42.48 |1.07 5540 8593 37.53
Short 1.07 4355 82.81 28.84 | 1.08 47.35 8536 37.34 |1.04 5845 8557 36.41
Tiny 1.03 43.85 8192 26.68 | 1.03 4395 83.80 34.25 |1.00 5535 84.63 33.89

Random 1.19 2630 84.87 35.16 | 1.19 30.10 87.39 4423 |1.11 47.15 85.67 36.88
Isometric | 1.18 27.70 84.79 34.74 | 1.18 30.75 87.45 43.84 | 1.10 46.75 85.68 36.90

1lama3:70b Same 1.17 2890 85.00 35.04 |1.18 3145 87.65 4437 |1.10 4895 85.67 36.73
Short 1.05 40.00 82.94 28.86 |1.02 4245 8449 3489 |1.00 50.05 84.44 34.19
Tiny 095 36.10 81.01 23.37 | 0.88 36.50 80.87 25.85 |0.84 34.95 80.90 25.09

Random 1.14 3330 81.07 25.66 | 1.14 34.22 8337 33.56 | 1.06 49.20 82.29 30.24
Isometric | 1.14 33.20 81.77 26.21 |1.14 36.06 83.75 34.38 | 1.08 49.55 82.85 31.05

1lama3:8b Same 1.15 33.80 81.88 26.53 | 1.15 34.05 83.97 3457 |1.07 52.00 83.40 31.27
Short 1.06 36.35 80.16 2292 |1.04 39.60 8131 29.40 |1.00 48.00 81.31 27.55
Tiny 1.00 3575 78.99 20.19 | 0.95 3590 79.07 2433 |0.89 42.15 78.70 2247

Random 1.16 3240 80.52 23.18 | 1.17 3433 8256 30.17 | 1.08 47.65 82.06 28.27
Isometric | 1.15 32.95 80.79 23.87 |1.17 36.83 8236 29.99 | 1.07 49.60 82.39 28.73

mistral:7b Same 1.16 33.45 80.85 23.59 |1.17 36.40 82.54 30.25 |1.09 50.20 82.77 29.37
Short 1.13 37.10 80.45 2291 |1.15 3835 81.97 29.10 | 1.05 52.05 82.19 2843
Tiny 1.13 3785 79.66 21.53 |1.13 41.25 81.13 28.11 | 1.04 51.40 81.65 27.74

Random 1.46 28.15 82.02 30.81 [ 1.32 31.60 84.45 38.81 |1.40 4035 83.22 33.38
Isometric | 1.35 31.95 8221 31.09 |1.25 31.75 84.52 38.81 | 1.36 42.15 83.37 33.56

mixtral:8x7b Same 142 3095 81.95 30.69 | 1.28 33.75 84.73 3892 | 1.28 4320 83.92 34.50
Short 1.36 3575 81.16 2892 |1.24 37.15 83.72 3597 | 1.30 46.45 82.89 32.66
Tiny 1.27 39.20 80.21 26.27 | 1.23 37.80 8248 32.84 |1.33 4500 81.78 31.69

Random 1.22 2950 84.12 3335 [1.21 3440 87.05 4342 |1.13 46.15 8552 3722
Isometric | 1.20 28.70 84.11 33.29 | 1.19 36.00 86.73 42.56 | 1.14 45.60 8542 36.82

qwen2:72b Same 1.22 3135 8397 3299 |1.18 37.05 87.22 43.57 |1.12 48.10 85.68 37.43
Short 1.14 3530 83.65 31.82 |1.15 4245 86.47 40.71 | 1.10 49.10 85.24 36.88
Tiny 1.14 3555 83.20 30.38 | 1.15 43.55 85.81 39.52 | 1.10 50.15 84.62 35.44

Random 1.18 29.10 81.17 23.82 [ 1.21 31.65 84.19 35.02 | 1.09 46.06 83.61 30.71
Isometric | 1.17 32.05 81.31 23.71 [1.19 31.20 84.19 35.11 | 1.09 45.35 83.40 30.67

qwen2:7b Same 1.17 31.20 81.37 2399 | 1.19 32.00 84.36 35.03 | 1.10 4595 83.33 3093
Short 1.15 3355 80.81 23.13 | 1.17 35.00 83.63 34.17 | 1.08 47.00 83.12 3045
Tiny 1.13 37.00 80.55 2231 |1.16 3430 82.87 33.13 | 1.06 49.00 83.20 3041
Oracle 1.07 65.00 87.74 49.60 | 1.05 76.50 87.99 55.60 | 1.03 83.00 88.47 53.50

Table 11: 10-shot prompting for all language pairs when sampling examples from different pools. Columns denote
length ratio (LR), length compliance (LC), BERTScore (BS) and BLEU. All numbers are averaged across 10
instances. The prompt text matches the pool type.
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En-De En-Fr En-Es
Model Pool Type | LR LC BS BLEU| LR LC BS BLEU| LR LC BS BLEU

Random 1.13 38.05 84.15 33.75 | 1.14 3940 86.74 4223 |1.08 4935 8598 38.82
Isometric | 1.13 39.70 84.08 33.24 | 1.14 39.60 86.71 42.21 | 1.08 48.90 86.05 38.70

gemma2:27b Same 1.13 39.15 84.29 33.68 | 1.14 4250 87.08 42.86 | 1.08 49.85 86.26 39.03
Short 1.07 43.45 83.07 30.32 | 1.07 45.05 8528 37.52 |1.04 5220 85.55 3743
Tiny 1.01 42.00 81.88 27.16 | 1.01 40.90 83.62 33.65 | 0.98 48.55 84.25 34.32

Random 1.14 3730 83.81 32.08 [1.15 39.60 86.86 43.01 | 1.09 50.72 85.82 37.94
Isometric | 1.13 37.75 83.73 31.51 |1.14 41.10 86.68 42.17 | 1.08 51.40 86.01 37.93

gemma2:9b Same 1.12 39.80 83.72 3097 | 1.14 4240 86.79 42.11 |1.07 54.05 8597 38.00
Short 1.08 41.20 82.83 2893 | 1.09 46.70 85.23 37.48 | 1.05 54.85 8546 36.86
Tiny 1.04 46.70 8194 2643 |1.02 43.85 83.56 33.87 | 1.00 54.35 84.64 33.62

Random 1.19 2750 85.01 3532 [1.19 30.95 87.50 44.27 |1.11 4780 85.61 36.93
Isometric | 1.18 28.25 8497 35.01 |1.18 31.20 87.59 43.92 | 1.10 48.70 85.64 37.12

1lama3:70b Same 1.17 2895 8531 35.16 | 1.18 32.25 87.66 4431 |1.11 4855 85.63 36.80
Short 1.06 39.75 83.12 29.42 | 1.03 42.10 84.60 3592 |1.01 50.25 84.71 35.11
Tiny 095 3490 80.71 23.33 {090 37.25 81.08 2691 |0.83 37.00 81.01 2522

Random 1.13 3240 81.50 2626 |1.13 35.20 83.19 33.89 | 1.06 4835 82.46 30.69
Isometric | 1.13 34.00 81.80 26.70 | 1.13 36.25 83.53 34.10 | 1.06 47.35 82.78 30.94

1lama3:8b Same 1.14 3425 8196 2640 |1.14 34.15 83.86 34.56 |1.07 51.05 83.11 31.16
Short 1.06 3795 80.57 2432 |1.04 38.10 81.43 28.63 | 1.00 48.00 81.45 28.03
Tiny 1.00 37.10 79.11 2094 | 0.97 37.05 79.69 2643 |090 4225 79.13 23.72

Random 1.15 3330 80.57 2337 [ 1.17 3620 8227 30.12 | 1.07 49.60 82.34 28.71
Isometric | 1.15 33.35 80.60 23.24 |1.16 3525 8236 30.01 |1.07 50.05 82.30 28.57

mistral:7b Same 1.16 33.50 80.90 23.88 |1.17 3540 8255 29.78 | 1.09 49.50 82.82 29.06
Short 1.13 36.50 80.34 2227 |1.14 39.30 82.03 29.15 | 1.05 51.10 82.02 28.19
Tiny 1.12 39.00 79.55 21.25 |1.15 39.95 8096 28.10 |1.04 51.20 81.77 27.70

Random 142 2935 82.14 30.68 | 1.30 32.20 84.55 3896 |1.44 41.80 83.27 33.30
Isometric | 1.35 32.15 8224 3123 |1.24 33.65 84.60 38.34 | 1.30 44.55 83.83 34.02

mixtral:8x7b Same 1.32 3225 82.60 31.69 | 1.23 34.10 84.95 3854 |1.27 4220 84.09 34.79
Short 1.33 35.65 8156 29.40 |1.22 36.85 83.80 3592 | 1.27 4690 83.64 33.99
Tiny 1.24 38.40 80.73 27.13 | 1.21 37.15 8291 34.10 | 1.24 4545 82.82 3294

Random 1.21 30.10 84.04 33.19 [1.19 34.05 87.06 43.62 |1.12 45.15 85.66 37.59
Isometric | 1.21 30.35 84.04 33.06 | 1.18 36.00 86.97 42.64 | 1.11 46.30 85.58 37.18

qwen2:72b Same 1.21 31.10 84.06 33.12 | 1.17 35.15 87.14 43.29 |1.12 48.60 85.65 37.30
Short 1.14 3395 8397 32.04 |1.17 4150 86.24 40.66 | 1.11 4890 85.38 36.94
Tiny 1.15 3635 83.51 3121 |1.15 4225 8599 40.03 | 1.11 4850 84.58 3528

Random 1.17 2994 81.22 2397 [1.20 30.35 8396 3496 |1.10 44.65 83.40 30.81
Isometric | 1.17 31.15 81.27 2354 |1.19 3045 84.01 35.03 | 1.10 46.35 83.60 31.22

qwen2:7b Same 1.18 30.15 81.39 2422 | 1.19 33.05 8443 3524 |1.10 44.70 83.35 30091
Short 1.15 33.85 80.92 2333 |1.17 33.85 83.48 3425 |1.09 46.80 83.43 30.65
Tiny 1.14 3425 80.34 21.87 |1.15 34.85 8298 33.09 |1.07 49.50 83.11 30.23
Oracle 1.07 65.00 87.74 49.60 | 1.05 76.50 87.99 55.60 | 1.03 83.00 88.47 53.50

Table 12: 20-shot prompting for all language pairs when sampling examples from varying pools. We report length
ratio (LR), length compliance (LC), BERTScore (BS), and BLEU. All numbers are averaged across 10 instances.
The prompt text matches the pool type.
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Abstract

This paper presents our contribution to the
IWSLT Low Resource Track 2: "Training
and Evaluation Data Track". We share a
human-evaluated Urdu-English speech-to-text
corpus based on Common Voice 13.0 Urdu
speech corpus. We followed a three-tier val-
idation scheme which involves an initial au-
tomatic translation with corrections from na-
tive reviewers, full review by evaluators fol-
lowed by final validation from a bilingual ex-
pert ensuring reliable corpus for subsequent
NLP tasks. Our contribution, CV-UrEnST
corpus, enriches Urdu speech resources by
contributing the first Urdu-English speech-to-
text corpus. When evaluated with Whisper-
medium, the corpus yielded a significant im-
provement to the vanilla model in terms of
BLEU, chrF++, and COMET scores, demon-
strating its effectiveness for speech translation
tasks.

Keywords: Speech-to-text (S2T) translation, ma-
chine translation (MT), speech recognition (ASR).

1 Introduction

Speech translation (ST) is a key area of speech and
natural language processing that involves translat-
ing spoken content across languages (Chen et al.,
2024; Niehues et al., 2021). It typically inte-
grates automatic speech recognition (ASR), ma-
chine translation (MT), and text-to-speech (TTS)
capabilities in a pipeline. Early research adopted
a cascade paradigm, where ASR, MT, and TTS
operated in separate stages (Gaido, 2024; Iranzo-
Sénchez et al., 2020). However, recent progress
has shifted the focus toward end-to-end architec-
tures that unify these components into a single,
trainable model, reducing latency and error prop-
agation between modules (Berard et al., 2016;
Niehues et al., 2021; Chen et al., 2024; Gaido,
2024).

Sadaf Abdul Rauf

Fatima Jinnah Women University, Pakistan

sadaf.abdulrauf@gmail.com

Speech-to-text translation (S2T), a specialized
form of end-to-end ST, involves converting speech
signal in the source language to textual output in
the target language (Berard et al., 2016; Niehues
et al., 2021; Chen et al., 2024). The success
of S2T systems critically depends on the quality,
size, and linguistic diversity of the training corpus,
which underpins model generalization and robust-
ness (Amrouche et al., 2023; Cattoni et al., 2021).

Historically, S2T corpora have evolved from
task-specific datasets to large-scale multilingual
resources that are essential for building performant
translation systems (Cieri et al., 2004; Wang et al.,
2020; Miller et al., 2021; Sikasote and Anasta-
sopoulos, 2022; Sethiya et al., 2024). Despite this
evolution, corpus creation for low-resource lan-
guages remains severely underdeveloped due to
challenges such as dialectal diversity, limited writ-
ten resources, and high annotation costs (Verdonik
et al., 2024).

While, these advances have accelerated
progress in ST for high-resource languages, low-
resource languages continue to face substantial
challenges (Shanbhogue et al., 2023; Bartelds
et al.,, 2023; Court and Elsner, 2024). ASR,
TTS, and MT models have shown impressive
gains in well-resourced settings, but the lack of
well-annotated, parallel speech-text corpora has
hindered similar progress for underrepresented
languages like Urdu. This data scarcity is a
fundamental bottleneck not only for ST but also
for downstream tasks like cross-lingual retrieval
and multilingual dialogue systems (Magueresse
et al., 2020; Singh et al., 2024; Farooq et al.,
2019).

Urdu remains a low-resource language for
speech translation, with only a few domain-
specific corpora available (Qasim et al., 2016).
Urdu-English is a moderately resourced language
pair with existing corpora for TTS (Jamal et al.,
2022), ASR (Arif et al., 2025) and machine trans-
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Figure 1: Steps involved in the corpus creation pipeline

lation (Abdul Rauf et al., 2020; Abdul Rauf and
Hira, 2023) but speech to text corpus has been no-
ticeably absent. This work is a first step in this
direction, where we present and share first human-
evaluated Urdu-English S2T corpus namely CV-
UrEnST.

We worked on an Urdu subset of Mozilla Com-
mon Voice 13.0 (Ardila et al., 2020). Though,
Mozilla Common Voice provides open-source
Urdu speech, yet its original transcriptions are un-
validated and susceptible to crowd-sourced incon-
sistencies (Ardila et al., 2020). Since, the Urdu
transcriptions underwent comprehensive human
validation, they can be used as a gold-standard
foundation for ASR tasks. In addition to transcrip-
tion integrity, we ensured precise English transla-
tions that carefully preserve idiomatic structures,
named entities, cultural references, and semantic
intent. This positions the corpus as a valuable par-
allel text resource for Urdu-English machine trans-
lation and cross-lingual NLP applications.

We followed a three-tier validation scheme.
Firstly, Initial Translations were generated auto-
matically using the Google Translate API. This
was followed by an Expert Correction phase,
where two native Urdu-English bilinguals manu-
ally refined the translations to eliminate syntac-
tic, semantic, and contextual errors. Finally, an
Extended Review and Final Validation was per-
formed. This multi-phase pipeline ensures high

inter-annotator reliability, contextual fidelity, and
translation accuracy, improving the datasets suit-
ability for both speech-to-text and text-to-text
modeling.

2 Related Work

Recent advances in multilingual low-resource
speech datasets have led to innovative data col-
lection and transcription strategies. For instance,
Yang et al. (2024) introduced GigaSpeech 2, an
ASR corpus for Thai, Indonesian, and Vietnamese
via automated web crawling, transcription, and
iterative refinement. Abraham et al. (2020) fo-
cused on Marathi ASR and emphasized diversity
by sourcing speech from 36 speakers across rural
and urban communities, yielding a 109-hour cor-
pus that captures dialectal variance.

Community-driven initiatives are also central to
low-resource dataset development. Butryna et al.
(2020) presented 38 crowd sourced corpora span-
ning Asia, Africa, and the Americas, underscoring
the role of open data in promoting global speech
technology. Similarly, Guevara et al. (2024) re-
leased a 454 hour multilingual corpus across 10
Philippine languages, collected from domains like
healthcare, education, and spontaneous speech
demonstrating the value of domain and register di-
versity in corpus utility.

The availability of Urdu-English speech-to-
text corpora remains sparse compared to better-
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Table 1: Category wise examples of transcription discrepancies in Mozilla Common Voice 13.0

resourced language pairs. While, efforts like the
Urdu-English Parallel Corpus for Speech Trans-
lation offer foundational bilingual resources, they
often lack rigorous human evaluation and speech
alignment (Furqan et al., 2024; Amin et al.,
2025). Mozilla Common Voice provides open-
source Urdu speech, yet its original transcriptions
are unvalidated and susceptible to crowd-sourced
inconsistencies (Ardila et al., 2020).

In machine translation, domain-specific cor-
pora have contributed meaningfully. For exam-
ple, the LEGAL-UQA dataset addresses the le-
gal Q&A domain using constitutional texts (Faisal
and Yousaf, 2024), while the Urdu-English Reli-
gious Domain Corpus offers 18,426 sentence pairs
for theological texts (Abdul Rauf and Hira, 2023).
Although these datasets advance text-to-text MT,
they lack paired audio components necessary for
S2T applications.

3 Corpus Preparation Pipeline

Our corpus comprises of approximately 7k sen-
tence pairs from the Urdu subset of Mozilla Com-
mon Voice 13.0 (Ardila et al., 2020). The fo-
cus was on creating high-quality, human-validated

translations rather than maximizing scale. Com-
mon Voice was chosen for its open license, repro-
ducibility, and established use in speech research.
Future expansions will consider integrating other
open-access Urdu speech resources, contingent on
annotation capacity.

Common Voice 13.0 features a community-
driven validation system, where users vote on the
correctness of audio-transcription pairs. While,
this process ensures surface-level alignment, it
does not address deeper syntactic or semantic in-
consistencies common in Urdu, a morphologically
rich language. Examples of such issues are pre-
sented in Table 1. Here, orthographic correspond
to incorrect spellings, character substitutions, or
missing graphemes. Semantic errors stem from
misinterpretations of meaning. Named entity er-
rors involve improper handling of proper nouns or
technical terms. Punctuation and diacritic include
inconsistencies that affect readability and disam-
biguation.

Machine Translation and Expert Correction
MT often fails to preserve cultural complexity, id-
iomatic expressions, and emotional tone. Other
common issues included incomplete renderings
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Machine Translation

Expert’s Correction

Extended Review

Final Validation

Incomplete Translations:

A B -
oy 31 Vs sl K e sl
bpp Jol

By P

US & e bS GV E e 08

el Sl S b el LSl
bl bs s 15 slasli K 5l

Aquatic beasts include ducks and
other aquatic birds
Whatever they wanted

Darren Sammy’s quirky wear

The first mail was so long that it
was close

In aquatic animals, ducks and
other aquatic birds are included

Darren Sammy has dressed up in
a quirky style.

The first mile seemed so long, say-
ing it was close, it was declared as
a sign of conspiracy

They could do whatever
they wanted.

Darren Sammy’s adopted
unique style by wearing the
kurta.

The first interaction felt so
prolonged that it was al-
most labeled as a result of
a conspiracy

Poetic Translations:

pl e W IS S8 L T
2kl om0 S

iT ol Lo 2 Ly

SPLE Ghe ey Gl 5 S Jie

Dude no one to collide with whom

In every vein, then the light

Sitting is an idol, Sima Murray in
front of my mirror
Do not recognize the destination

Let there be lights in every vein
again

No friend or lover is
around, whom shall T
toast with

To be fired up

The idol, with a mirror-
like beauty, sits before me

Lets ignite the spark again

The idol with a mirror-like
visage is sitting before me
The traveler on the path of
love does not recognize the
destination

Extended Translations:
SIS e § e oo

oK

Hearing this, Abdul Qadir’s eyes
widened
I have to watch movies.

Hearing  this,  Abdul

Qadir’s eyes

want to watch movies

Idiomatic Sentences:
o bl M dls 2 ST 45

S5l e $sob§ K
Sl oy CF (s
kS 28 E e

A e S el K K Ol
by s &

The traveler on the path of love
does not recognize the destination
How long will the goat’s mother
welcome

The same intention is Visi

Will not be bamboo or pm

To give four moons to the beauty
of these forests

Sometimes I make air castle

how long will the mother’s
prayers avail to save her kid

As the intention, so is the out-
come.

To deal with the issue at its root to
prevent a more challenging prob-
lem.

To enhance the beauty of these
forests.

How long will you delay
the inevitable?

Sometimes I build castles in
the air.

If the bamboo is gone, the
flute won’t play

Table 2: Examples of translation in different validation phases for complex Urdu expressions

where parts of the original Urdu were missing, lit-
eral translations of idioms, and incorrect substi-
tution of culturally specific terms. The review-
ers refined these translations to ensure contextual
fidelity and semantic precision. Each sentence
was independently assessed across three linguistic
dimensions: accuracy (semantic alignment), ade-
quacy (completeness of meaning transfer), and flu-
ency (naturalness and readability in English).

Consider the idiom ,$ Wi Ko K Ol
Uos s & Al> ,le, shown in Table 2, last row trans-
lated as "to give four moons to the beauty of these
forests" a literal rendering of a metaphor for beau-
tification. Similarly, the phrase J.» 4 was mis-
translated as "Baku channel", ignoring its intended
meaning of "biased or corrupt media outlets."

Another poetic example, ;L §3 CT 1 5 oS
J= , was rendered as "Somewhere else, God goes
to Zikr today," which loses its figurative essence.
A better translation "Let there be, for Gods sake,
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some talk of the beloved today" captures both se-
mantic and emotional intent. Lastly, v 3, <! <
as LS o < ¢k was translated as "No longer the
rival nor Nasah nor the grief," where #l (mean-
ing moral advisor) was poorly transliterated as
"Nasah" .A faithful rendering would be: "Now,
there remains no rival, no guide, and no comforter
to ease the sorrow."

All such mistranslations were corrected during
the extended evaluation phase, ensuring cultural fi-
delity and correct lexical choice in cultural and lin-
guistic contexts.

Extended Review The second phase of valida-
tion involved 19 bilingual reviewers. These were
graduate students in computer science, all na-
tive Urdu speakers with advanced academic pro-
ficiency in English. Each reviewer reviewed equal
portion of the corpus and was instructed to focus
on refining translation by checking for errors in
idiomatic usage, named entities, and cultural refer-



ences.

As the corpus was partitioned into non-
overlapping subsets, standard inter-annotator
agreement metrics like Cohens Kappa could not
be applied. To maintain annotation consistency,
we provided comprehensive guidelines and exam-
ples to all annotators. In addition, a senior linguist
performed a qualitative audit of randomly selected
annotated pairs to verify adherence to syntactic, se-
mantic, and cultural fidelity standards.

Employing a distributed review strategy offered
several advantages. Crowdsourced evaluation, es-
pecially when conducted by native speakers with
relevant academic backgrounds, has been shown
to improve translation quality through consensus
and error cross-checking (Zaidan and Callison-
Burch, 2011). The diversity of reviewers helps to
detect inconsistencies and ensures a more compre-
hensive assessment of the data. This phase was
particularly valuable for capturing subtle sophis-
tication that may have been overlooked in earlier
stages.

Final Validation In the final stage of quality
control, a senior bilingual evaluator fluent in both
Urdu and English reassessed the outputs from the
extended review phase. This validation focused
specifically on the test set to ensure translation
consistency, semantic constancy, and contextual
appropriateness. Table 2 shows the representation
of Idioms and named entities in the final corpus.

Data Audio Idioms Equivalent Named
Count Idioms Entities
Test 4129 32 8 1152
Train 3304 17 3 648
Total 7433 49 11 1800

Table 3: Distribution of Annotated Idioms, Equivalent
Idioms, and Named Entities in the Corpus

4 Model Building

To establish a performance reference, we fine-
tuned OpenAls Whisper-medium! model, a
transformer-based encoder-decoder pretrained on
multilingual speech data for direct speech-to-text
translation.

Training was performed on a Google Colab
A100 GPU using the AdamW optimizer with a
learning rate of 1 x 10~ with cosine annealing.

"https://github.com/openai/whisper

The batch size of 16 was used and early stopping
was based on the improvements in the BLEU score
on the development set. All audio inputs were re-
sampled to 16 kHz and converted into 80-bin log-
Mel spectrograms. Zero-padding ensured uniform
sequence lengths within batches.

We used BLEU (token-level accuracy), chrF++
(character-level fluency), and COMET (semantic
adequacy) as evaluation metrics. BLEU scores
measures token-level overlap with reference trans-
lations and reflects surface-level accuracy. chrF++
captures character-level fluency and recall, it
is especially robust to morphological variation,
whereas COMET evaluates semantic similarity us-
ing neural metrics, higher scores indicate better
meaning preservation.

Scores We evaluated vanilla and fine-tuned
Whisper-medium models on our test set. The orig-
inal model, without domain-specific adaptation