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Introduction

Welcome to the Forth Workshop on Bridging Human–Computer Interaction and Natural Language Pro-
cessing!

The rapid advancement of natural language processing (NLP) research such as recent large language
models has led to a variety of language technologies spanning a wide range of domains, such as conver-
sational search and writing assistance. Those models are trained on vast amounts of data generated by
people and rely on human feedback for continual improvement. While this widespread adoption igni-
tes excitement, it raises pressing concerns and challenges in NLP research, such as real-world evaluation,
bias and fairness, and model interpretability and explainability. Meanwhile, the field of human–computer
interaction (HCI) develops rigorous methods for 1) studying and understanding human behavior to design
technologies and 2) understanding how people use those technologies. Such a human-centered approach
manifested in substantial efforts to understand the socio-cultural dynamics of data curation, to deve-
lop frameworks and tools to audit biases and ethical issues in intelligent systems, and to study people’s
interaction with language technologies and its impact on people’s behavior.

This workshop aims to bridge the NLP and HCI communities to allow members of the NLP community
to learn why, whether, and how methods and theories from HCI might be useful in advancing core NLP
work, as well as allowing members of the HCI community to learn how advances in NLP might shape
HCI research and practice centered around language technologies.

We are delighted to continue the effort of three previous editions of this HCI+NLP workshop at EACL
2021, NAACL 2022, NAACL 2024 and bring the forth edition to EMNLP 2025. In this workshop we
present 38 papers, of which 25 are archival papers, and 13 are non-archival papers to be presented at the
workshop but not included in the proceedings.

We would like to thank everyone who submitted their work to this workshop, as well as the program
committee for their insightful review and feedback. We would also like to thank our invited speakers: Dr.
Anjalie Field and Dr. Zhicong Lu.

We hope you find this workshop enjoyable! — Su Lin Blodgett, Amanda Cercas Curry, Sunipa Dev,
Siyan Li, Michael Madaio, Jack Wang, Sherry Tongshuang Wu, Ziang Xiao, and Diyi Yang
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Abstract 

Nowadays, internet languages, including 
emojis, memes, hashtags, and slang, have 
become vital in constructing online 
communities' collective identities. 
However, all these forms of internet 
language can sometimes disempower 
people from other generations or cultures. 
This position paper presents an argument 
explaining how online forms of 
communication create social belonging for 
specific groups at the expense of users, and 
especially elderly people, due to 
interpretation hurdles. The present study 
aims to evaluate the relationship between 
the internet language and online collective 
identity, highlighting how patterns in 
internet language can inform human-
computer interaction (HCI) by revealing 
how users’ express identity, inclusion, and 
exclusion online. 

1 Introduction 

Language is a powerful tool to describe events, 
record dialogue, and form a collective identity. 
Indeed, language can be in any form that stands as 
a method of human communication. Theatre and 
Dance Assistant Professor Deborah Paredez’s book 
“Selenidad: Selena, Latinos, and the Performance 
of Memory” captures how Selena utilized song, a 
musical performance, as a “language” to express 
Latino identity. Born on April 16, 1971, Selena is a 
Texas Tejano singer whose songs deeply reflect her 
Mexican-American experiences and cultural pride. 
As recorded by Paredez (2009), Selena not only 
resonates with other Latinos by featuring elements 
of her culture but also forms a collective identity 
through her actions and voice. Shifting into the 21st 
century, where language is utilized digitally, 
internet languages play a key role in building 
collective identity and redefining how people 

interact, create, and share cultural narratives, just 
like how Salena uses her voice. Unlike traditional 
communities bound by geographical borders, 
online communities exchange or share information 
on social media platforms every day at any time.  

Specifically, four main types of internet 
languages have been created to communicate 
online: slang offers casual vocabulary for quick 
communication, emojis convey emotions and 
thoughts, memes capture experiences in visual 
formats, and hashtags create themes for posts 
(Barron and Bollen, 2022; Graham, 2019; 
Oliseyenum and Oghenetega, 2023; Petrova, 2021). 
Becoming more prevalent in online social 
platforms, internet languages’ emergence raises the 
question: To what extent does internet language 
contribute to collective identity formation in online 
communities?  

As the internet evolves as the primary global 
interaction, the ability to engage diverse users 
through the internet language is crucial for building 
a collective identity among online communities. 
When analyzing the linguistic contribution to 
online communities, the generational factor 
appears to disintegrate the online community as a 
whole; understanding future trends is also essential 
since digital transformation is rapid, cross-
generational, and on the cutting edge for new 
lifestyles. This paper explores how internet 
language influences the formation of collective 
identity in online communities, particularly using 
slang, emojis, memes, and hashtags. While not 
proposing design solutions, the present position 
paper highlights how patterns in internet language 
can inform human-computer interaction (HCI) by 
revealing how users’ express identity, inclusion, 
and exclusion online. These insights may support 
the future HCI and NLP research designs toward 
more inclusive, culturally aware interfaces that 
bridge generational and social gaps. 

Digital Tongues: Internet Language, Collective Identity,  
and Implications for Human-Computer Interaction 

 
 

Zi-Xiang Lin 
Kang Chiao International School 
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2 Internet languages and Collective 
Identity in Online Community 

Internet languages are writing language 
conventions and linguistic features in online 
communication, conveying a message (Squires, 
2010). Although internet languages usually appear 
in “word text” such as slang and hashtags, they can 
be presented in graphs like emojis or memes. 
Specifically, slang and emojis convey ideas or 
emotions, while memes and hashtags connect users 
with shared experiences. According to English 
professor Graham (2019) and foreign languages 
associate professor Petrova (2021), the internet 
language bridges cultural barriers in real life as 
people resonate with others based primarily on 
feelings. Specifically, individuals can interpret the 
emotions of emojis and memes from their selection 
without knowing the context. They promote 
emotional resonance, allowing users to share and 
experience similar emotions. This ability to 
communicate nuanced emotions through simple 
graphics and texts fosters cross-cultural 
understanding as they promote openness, 
flexibility, and creativity, especially when people 
are lonely and can find online companionship. 
Thus, the widespread use of emojis and memes 
blends creativity with cognitive development, 
forming a collective identity in the communication 
medium.  

Also, to build emotional connections, the hash 
character (#) implies the intention to establish a 
connection with others, as indicated by 
computational social science postdoctoral 
associates Barron and Bollen (2022). For instance, 
the hashtag in social media posts underlines the 
media user’s identity, like “#metoo,” subtly 
inviting others to resonate with the sender. As the 
number of viewers increases, more and more 
people will feel the same and join the discussion 
with similar beliefs. Ultimately, this fosters 
individual consciousness and expands it to the 
internet users’ collective identity. 

Yet, several studies hold the opposite argument. 
Social psychology professor Hogg (2016) linked 
online users’ behavior to Social Identity Theory 
(SIT), enhancing in-group members’ traits and 
reducing characteristics similar to those outside the 
group. This suggests that affiliation to specific 
groups increases, while the association between 
diverse groups diminishes, leading to party 
isolation and trait dissociation. The dynamic 

highlights how online interactions can undermine 
the online community wholly and impact social 
behavior, ultimately influencing users’ engagement 
and perspectives in digital spaces.  

Extending this idea to internet language, English 
literary study doctors Oliseyenum and Oghenetega 
(2023) claim that slang is “a specialized form of 
language variation unique to a particular social 
group.” That is, only people in the “community,” 
aside from additional learning, can understand the 
meaning of the slang. While the essences of emojis, 
memes, and hashtags are often easy to recognize, 
they also require users to grasp subtle meanings for 
full understanding. As a result, these “cognitive 
limits” restrict internet language from being used 
outside a specific group, supporting SIT and 
building barriers to online communication.  

Similar observations are concluded by associate 
psychology professor Bäck et al. (2018). The 
researchers found that singular pronoun (I) usage 
among online platforms decreases, while plural 
pronoun (we/they) significantly increases, 
“distancing to more outgroups.” This shift in 
pronoun use illustrates in-group bonding and 
highlights how digital language norms exclude 
newcomers, creating barriers to unity. Thus, the 
study reflects the decline of individual 
consciousness and the rise of group awareness 
within similar parties, supporting the SIT. 
Concluding the linguistic perspective, although 
internet languages strengthen the bonds in each 
group with similar traits, they aggravate the gap 
between different ethnic parties, instead of 
integrating the online community as a whole. 

3 Generational Gaps and Digital 
Literacy  

Binney (2004) indicates the interpretation of text 
and narratives will be “reinterpreted by another 
generation” as they “will continue changing and be 
changed.” This underlines the characteristics of 
language, which will be interpreted differently in 
different eras. The study also implies that people of 
different generations have different views on the 
same language, justifying that older and younger 
people may have different interpretations or 
understandings of internet language.  

Indeed, economics and informatics assistant 
professor Hysa et al. (2021) discovered the daily 
social media usage of Baby Boomers (born in 
1945–1964), Generation X (born in 1965–1980), 
Generation Y (born in 1981–1994), and Generation 
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Z (born in 1995–2010) are 28.6%, 40%, 50%, and 
90% respectively. Specifically, social media usage 
is higher among Generation Z and Y than 
Generation X and Baby Boomers. The findings 
indicate that social network utilization decreases as 
age increases, illustrating the generational 
communication differences. As younger 
generations seek online media as the primary 
transmission source, this potentially causes 
separation of generational groups in online 
communities, since youth surf on online platforms 
more often.  

In addition, the selection of internet language by 
different generations also contributes to the 
discrepancy. According to language and literature 
assistant professor Azad et al. (2023), Generation Z 
embraces highly informal language, abbreviations, 
and internet language. In contrast, Baby Boomers, 
the older generation, prefer more formal language 
and traditional communication norms on social 
media (Puspita and Ardianto, 2024). This reflects 
Generation Z’s adaptation to digital 
communication’s fast-paced, visually-oriented 
nature, challenging the elders to comprehend the 
meaning. Combining Hysa et al. (2021) and Azad 
et al. (2023), the two studies underline the 
destruction of collective identity between 
generations due to diverse internet language 
preferences.  

Moreover, digital generational differences also 
affect real-life relationships among different age 
groups, causing digital gaps to widen. Unlike older 
generations, Generation Z relies on digital 
communication and integrates remote work 
(Pichler et al., 2021). Since work behaviors differ 
among generations, with the younger generation 
employing more social platforms, the fundamental 
digital differences affect both internet usage and 
physical human interactions, creating online media 
barriers. As time goes on, the younger generation 
will embrace more digital technologies, while the 
older generation continues to employ the 
traditional working style. Thus, the elders will not 
collaborate with youth and therefore do not use 
internet language, demonstrating that internet 
language cannot unite people of different ages. 
Concluding the generational perspective, online 
and offline interactions will exacerbate the 
generational gaps, underlining that different 
internet language utilization dissociates 
generational collective identity. 

4 Future Digital Platform 

For future predictions, researchers believe that 
online communication will resolve the barriers as 
they integrate languages on the internet to develop 
a collective identity. After dozens of years, the 
current generational barriers will be mitigated as 
the current youth emerge and dominate the society, 
resulting in almost everyone employing internet 
language to communicate. In fact, world studies 
professor Godwin-Jones (2018) hypothesizes that 
internet language, the informal language choices, 
will gradually replace traditional formal 
communication as digital communication becomes 
more integral to everyday life. That is, the 
employment of slang, hashtags, emojis, and memes 
will all significantly increase as younger 
generations adopt them progressively.  

Nevertheless, while the original generational 
barriers are mitigated, new generational barriers 
will emerge. For instance, Nurhayati (2025) points 
out Generation Alpha (born in 2011–2024) 
continues to grow their language repertoire, 
preferring conventional idioms and less complex 
syntax. This contrasts with Generation Z, who 
demonstrates a better contextualized and multi-
layered comprehension of internet-based phrases. 
Furthermore, Melissa et al. (2024) attributes this 
phenomenon since Generation Alpha interacts 
more with short-form video platforms, including 
YouTube and TikTok, that makes them act 
differently with Generation Z, who are influenced 
by earlier social media culture. 

Regarding prediction on blending languages, 
Spanish and Portuguese assistant professor 
Dickinson (2023) observed codeswitching, the 
process of changing language, in online blogs. By 
combining Spanish and English, Dickinson’s (2023) 
case study reached more internet users since 
understanding was not limited to only English or 
Spanish speakers. The tendency to attract more 
social media users will encourage others to follow, 
foreshadowing higher employment of 
codeswitching. However, Dickinson (2023) fails to 
acknowledge the challenges of regional barriers or 
integrating languages from distinct language 
families. Dickinson observes residents’ behaviors 
who live in the United States to evaluate 
codeswitching. Since both Spanish and English are 
spoken in the United States, Dickinson’s study can 
only support language integration in places that 
already use those languages, failing to resolve 
barriers in online communication across countries 
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and continents that speak distinct languages. As a 
result, the future norm of combining languages in 
online platforms is unlikely to happen and form a 
worldwide collective identity. 

Proposing alternative future predictions on 
online communication developments, several 
researchers claim that the growth of emojis and 
memes will be faster because they do not 
necessarily require the viewer to know the 
language and understand the meaning. Specifically, 
computer science researchers Raj and 
Balachandran (2020)  and Artificial Intelligence 
safety researcher Weng et al. (2014) predict that 
emojis and memes in online communication will 
rise, becoming more embedded in digital culture as 
their overall usage is expected to increase. To 
expand viewership, emojis and memes will 
experience more significant changes because they 
can acquire a wider range of online users, as they 
often transcend language barriers. Their language-
independent nature allows users to easily grasp 
meaning, breaking communication barriers and 
fostering a global collective identity. Comparing 
Dickinson’s (2023) and other researchers’ 
predictions, future online platforms are more likely 
to shift toward image-based Internet languages 
because they demand fewer language restraints.  

Elaborating on fewer text-based languages in the 
future, computer information researcher Penni 
(2016) further forecasts that video, with fewer 
verbal limitations, will dominate online 
interactions, as it is more dynamic and easier to 
attract attention. Penni’s (2016) prediction of video 
evolution eliminates the possibility that viewers do 
not understand the emojis, memes, or text in 
Internet languages. As users increasingly prefer 
video content, communication on online social 
networks will shift toward video-based interactions 
rather than text or image-based internet language. 
Nevertheless, video content cannot completely 
avoid text usage because videos can only better 
engage the viewer but cannot replace verbal 
communication to exchange information.  

To solve this, psychology professor Gernsbacher 
(2015) discovered that video captions benefit 
viewers, especially non-native speakers, who 
watch videos to improve comprehension by more 
than 60%. To spread information, both internet 
languages and video require the viewers to at least 
understand the meaning, emotion, or experience. 
However, a video without any language that 
comprehends these elements will decrease its 

employment as online users cannot comprehend 
the video, failing to engage users. Thus, although 
internet communication will shift toward videos, 
internet languages will still be required.  

Combining Penni’s (2016) and others’ 
predictions, the future social media platform will 
employ more emojis and memes along with videos, 
as they require fewer language recognition abilities 
while engaging more participants. These new 
forms of online communication will allow more 
people to join, understand the post, and share the 
same ideas, promoting the collective identity of the 
online community. 

5 Implication for Human-Computer 
Interaction 

The online collective identity dynamic and 
cognitive diversity among different linguistic or 
social groups present problems for Human-
Computer Interaction and Natural Language 
Processing. Specifically, internet language evolves 
too quickly and symbols that are not in traditional 
corpora. Hence, the NLP models tend to be 
inaccurate when performing sentiment analysis or 
in the task of translation (Ishita and Mamidi, 2025; 
Khurana et al., 2022; Raiaan et al., 2024).  

Omar et al. (2022) mentions that with these 
dynamic, creative, and sometimes adversarial 
internet languages, the models will not generalize, 
will misunderstand meaning, or will become 
vulnerable to adversarial attacks (e.g. minor 
changes of phrasing that evade spam filters or 
chatbots). In fact, Ishita and Mamidi (2025) 
explains Generation Alpha usage of slang has not 
yet been sufficiently translated by AI, wherein 89% 
of inaccuracies came from contextual 
misinterpretations. Since internet language 
depends on context, cultural references, and 
pragmatic cues, such as sarcasm or irony, this fast-
evolving feature urges NLP systems and 
programmers to bridge the gap in real-world user-
generated content scenarios to improve sentiment 
analysis and text translation. 

While bridging cognitive gaps is evident, it is 
also important to take note of individuality to 
maintain online identity. Van Der Meer (2024) 
highlights that NLP systems and large language 
models tend to capture the dominant issues or 
opinions raised by the majority while often 
neglecting the minority or dissenting voices. This 
issue becomes a distortion of a complete collective 
identity, impeding the formation of diversity upon 
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which any robust online community is based 
(Burton et al., 2024). Thus, as the algorithms are 
trained over static or majority-centered corpora, the 
algorithms risk misinterpreting context-dependent 
expressions, neglecting minority voices, and 
accommodating emergent linguistic expressions. 
Moving forward, systems should be assisted by 
adaptability, inclusivity, and cultural sensitivity 
such that AI tools not only interpret languages but 
also respect and maintain diversity in online 
collective identities. 

6 Conclusion 

While internet languages will bridge groups with 
similar traits and develop primarily on image-
based and video in the future to foster collective 
identity, they will disintegrate the connection 
between each online community, especially 
generations with different internet employment. As 
online languages evolve, the need for digital 
literacy will increase. Unlike traditional language 
learning, which often occurs in formal education 
settings, understanding internet language requires 
users to adapt to a fast-changing, informal digital 
environment. Effective communication in online 
spaces depends not only on users’ ability to decode 
these forms but also on their skill in using them to 
engage and inform others meaningfully. Insights 
from this study may inform future HCI approaches 
that aim to bridge generational gaps, promote 
digital literacy, and support diverse forms of online 
expression without reinforcing exclusionary norms. 

Limitations 
Due to the fast-paced nature of online platforms, 
future internet languages may emerge rapidly, 
replacing existing ones. This creates linguistic gaps 
between regions, subcultures, and communities, 
making it challenging to form a cohesive collective 
identity online. To understand the future trends of 
internet languages, future research should monitor 
and investigate new forms of online 
communication continuously, accounting for the 
evolution of these languages as they develop. 

Ethical Considerations 
This position paper raises ethical concerns for 
future research about how internet language is 
interpreted in HCI design. Standardizing emojis, 
memes, or slang for usability risks erasing cultural 
and generational diversity. Future systems should 

avoid reinforcing dominant norms or excluding 
marginalized groups. Researchers should also be 
cautious when applying automated analysis, 
ensuring that meaning is not oversimplified or 
misused. 
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Abstract

Online spaces provide individuals with the op-
portunity to engage in discussions on impor-
tant topics and make collective decisions, re-
gardless of their geographic location or time
zone. However, without adequate support and
careful design, such discussions often suffer
from a lack of structure and civility in the
exchange of opinions. Artificial intelligence
(AI) offers a promising avenue for helping both
participants and organizers in managing large-
scale online participation processes. This pa-
per introduces an extension of adhocracy+, a
large-scale open-source participation platform.
Our extension features two AI-supported de-
bate modules designed to improve discussion
quality and foster participant interaction. In
a large-scale user study we examined the ef-
fects and usability of both modules. We re-
port our findings in this paper. The extended
platform is available at https://github.com/
mabehrendt/discuss2.0.

1 Introduction

Online discussions and participation platforms en-
able people to engage in socially relevant issues.
However, written exchanges in online spaces are
frequently marked by a lack of structure, often lead-
ing to information overload, making it difficult for
both participants and providers to process large vol-
umes of contributions (Arana-Catania et al., 2021).
According to Anastasiou et al. (2023), other key is-
sues include polarization, incivility, toxic behavior,
superficial content, and insufficient collaboration
among participants. To address these challenges,
the concept of deliberation proves particularly valu-
able. Deliberation is defined as the respectful and
argumentative exchange of opinions aimed at mak-
ing a decision. It encompasses three core dimen-
sions: rationality, referring to the argumentative
exchange of opinions; civility, which entails po-
liteness and respect; and reciprocity, characterized

by responsiveness and active listening (Bächtiger
et al., 2009; Esau et al., 2021; Graham, 2010).

AI presents a promising opportunity to enhance
deliberation, supporting both participants and orga-
nizers in creating a more structured, respectful, and
engaging environment for meaningful exchange
of opinions. In this work, we propose two AI-
based solutions to improve online discussions, im-
plemented for adhocracy+, an open-source partici-
pation platform.

Our contributions:

1. Comment Recommendation Module: To
encourage user interaction and expose partici-
pants to opposing viewpoints, we developed a
comment recommendation module based on
a stance detection model.

2. Deliberative Quality Module: To enhance
user engagement and improve the quality of
contributed comments, we implemented a de-
bate module that automatically detects and
highlights the most deliberative comments.

3. Application and Evaluation: To examine
the effects of the proposed modules, we con-
ducted a large-scale panel study (N = 1,356).
The results of the user study are presented in
detail in the following sections.

2 Related Work

Previous efforts to integrate AI into discussion plat-
forms have often focused on structuring and sum-
marizing discussions. The CONSUL1 citizen par-
ticipation tool enables citizens to propose ideas to
local politicians on improving their city. These
proposals can be supported and discussed by other
participants on the platform. To address the is-
sue of information overload, Arana-Catania et al.

1https://consulproject.nl/en/
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Figure 1: We propose two AI tools that we integrate into adhocracy+. (Left) Comment Recommendation Module:
Participants are confronted with a comment that contradicts their own opinion and are asked if they want to respond.
The AI tool determines the stance of the comments, which is used to propose opposing comments. Translation: The
following comment has already been added to the discussion. Do you want to reply to it? (Right) Deliberative
Quality Module: We predict a deliberative quality score (AQuA score) for each comment. Comments with a high
AQuA score are sorted to the top of the discussion and highlighted in bright green and marked as "top comment".

(2021) improved the platform with several natu-
ral language processing (NLP) methods, including
tools to summarize existing proposals, automati-
cally categorize them and recommend proposals to
participants according to their interests.

In the KOSMO project, an AI-supported moder-
ation dashboard was developed for the adhocracy+
platform to assist moderators during citizen par-
ticipation processes2. Two models were trained
to identify uncivil and engaging comments (Risch
et al., 2021), which are flagged for moderators, al-
lowing them to decide on appropriate actions, such
as blocking uncivil comments.

The BCause platform, created by Anastasiou
et al. (2023), supports discussions with an auto-
matic text summarization tool and an argument rec-
ommendation system. This system suggests argu-
ments from scientific literature based on the user’s
stance on the discussed topic. Other examples of
open-source discussion tools that incorporate AI
features include Discourse3 and Polis (Small et al.,
2021) from the Computational Democracy Project.

Another notable example is Community-
Pulse (Jasim et al., 2021), a platform equipped
with tools for text analysis and visualization to help
civic leaders to make sense of community input. It
includes a sentiment analysis of contributions and
topic modeling to automatically extract discussed
topics.

2https://github.com/liqd/a4-kosmo
3https://meta.discourse.org/

Beyond civic tech, there is a broader body of
research focused on using AI to support discussion
in the context of collaborative learning (see, e.g.,
Kong et al. (2025)).

Similar to our approach, Yeo et al. (2024) also
aim to enhance deliberative quality on online dis-
cussion platforms. They employ large language
models (LLMs) to generate reflective nudges de-
signed to promote users’ self-reflection, thereby
fostering more thoughtful and deliberative contribu-
tions. In our work, we focus on directly enhancing
the deliberative quality of discussions by improv-
ing their reciprocity and rationality. To achieve
this, we introduce two new modules for the adhoc-
racy+ platform: (i) the Comment Recommendation
Module that suggests comments based on whether
participants are in favor or against the discussed
issue, encouraging participants to engage with op-
posing viewpoints, and (ii) the Deliberative Quality
Module that automatically identifies and highlights
the most deliberative user comments, motivating
participants to contribute further high-quality com-
ments.

3 Features

In the following, we will discuss the features of the
two implemented modules from both a technical
and a user perspective.
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Figure 2: Overview of the architecture to extend adhocracy+ with our AI tools. (Left) The debate module imports
both the stance detection and deliberative quality AI’s as Python modules. (Right) The Django database model
sends out an event when a new comment is added to the database. The event is handled in signals.py where the
new comment is passed either to the stance detection or deliberative quality model. These send a response (either a
stance or quality score) back to the database where the corresponding response is stored.

3.1 Enhancing Reciprocity with the Comment
Recommendation Module

As previously mentioned, large-scale online discus-
sions often involve a high volume of postings, in-
cluding redundant, toxic, or uncivil content. Simul-
taneously, these discussions frequently lack struc-
ture, leading participants to experience information
overload (Arana-Catania et al., 2021). Under this
condition, participants struggle to follow the dis-
cussion and engage with others, which results in a
lack of reciprocity within the conversation (Lago
et al., 2019). Another consequence of information
overload is dysfunctional argumentation (Klein,
2007). This, in turn, fosters the formation of small
groups of participants who share similar opinions
and avoid interacting with those holding opposing
views (Klein, 2015).

To mitigate information overload, enhance reci-
procity among participants, and improve the overall
quality of discussions, we developed a Comment
Recommendation Module integrated into the ad-
hocracy+ debate module. This module suggests
comments to the participants that reflect a point
of view opposite to their own. For instance, if a
participant holds an against stance on the debate
question, the module will recommend a comment
from another participant with an in favor stance.

Stance Detection. To detect the stance of a com-
ment, we use an uncased German BERT Base
model (Chan et al., 2020)4 fine-tuned on the X-
Stance dataset (Vamvas and Sennrich, 2020). This
dataset includes 48.6k German comments on 150

4https://huggingface.co/dbmdz/
bert-base-german-uncased

political questions, answered by political office can-
didates in Switzerland. Since the adhocracy+ plat-
form is specifically designed for discussion and
decision making on politically relevant issues, the
dataset fits our purpose very well. The fine-tuned
model operates as a binary classifier, outputting
either in favor or against based on a given debate
question and a specific comment.

The complexity and diversity of political and so-
cial issues make it challenging to obtain sufficient
labeled data for stance detection. To address this,
we follow the approach of Wagner et al. (2025),
leveraging synthetic data generated by LLMs. We
employ Mistral-7B (Jiang et al., 2023) to generate
comments reflecting an in favor or against stance.
These synthetic comments are then used to further
fine-tune the stance detection model. For existing
comments, the synthetic data helps identify real
comments that are most challenging for the model
to classify. These comments can be manually la-
beled to further improve the model’s performance.
For additional details, see Wagner et al. (2025).

Comment Recommendation User Experience.
The main purpose of the Comment Recommenda-
tion Module is to present a comment to the user that
opposes their own position on the debate question.
Therefore, the stance of every comment, posted
in the discussion is predicted and stored into the
database. When a user logs into the platform for
the first time, they are prompted to indicate their
stance on the debate question.

The user’s position, which can be either in favor
or against, is stored in the database. This informa-
tion is then used to determine suitable comments
for recommendation. The system retrieves com-
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ments from the database that oppose the user’s
stance. If multiple opposing comments are avail-
able, one is randomly selected from the list. If there
is no suitable comment available, a message is dis-
played to the user, indicating that no comment can
be suggested at that time.

The selected comment is displayed to the user in
a popup window (see Figure 1, left), where they are
given the option to reply. Once the user responds,
the popup dialog closes, and the screen automati-
cally scrolls to the suggested comment within the
discussion. Additionally, users can reopen the sug-
gestion popup by clicking a designated icon. When
reopened, a new opposing comment (if available)
is proposed for the user to reply to.

3.2 Enhancing Debate Quality and
Engagement With the Deliberative
Quality Module

In addition to disorganized content and dysfunc-
tional argumentation (which diminishes reciprocity,
see the previous section), online discussions face
other challenges, including low-quality contribu-
tions (Klein, 2007). Addressing this issue is cru-
cial for fostering meaningful and productive con-
versations. In an observational study, Wang and
Diakopoulos (2022) found that manually highlight-
ing high-quality comments in the comment sec-
tion of the New York Times (referred to as the
New York Times Picks) increases the overall discus-
sion quality and the user engagement. The authors
suggest that highlighting well-written comments
is beneficial to the quality of new comments as
the picked comments constitute a social feedback
mechanism (Wang and Diakopoulos, 2022).

We build on these findings and develop the De-
liberative Quality Module which aims to promote
high quality comments by automatically highlight-
ing them. It remains to be investigated whether
the human component, i.e., the selection by a New
York Times editor, has a significant impact on the
participants’ perceptions, or whether simply high-
lighting the comments has the same effect. To mea-
sure the deliberativeness of a user comment, we
calculate the AQuA score (Behrendt et al., 2024)
for each comment and define a threshold for high
quality.

AQuA Score. The AQuA score, proposed
by Behrendt et al. (2024), is a weighted sum of
the predictions of individual BERT-based adapter
models fθk (Pfeiffer et al., 2020), fine-tuned for

20 different deliberative quality indicators. These
include, i.a., justification, proposing solutions, ref-
erencing other users and, as an indicator for low
quality, the use of incivility markers, such as sar-
casm. Each adapter prediction is weighted with a
number wk ∈ R that is estimated from data. Some
of the weights are positive, indicating a positive
correlation between the respective indicator and
the overall quality of the comment, and some are
negative, indicating a negative correlation. The
total score for a comment c is calculated as

sAQuA(c) =

20∑

k=1

wkfθk(c). (1)

AQuA scores are normalized to the range be-
tween 0 and 5. Note that the individual predictions
of AQuA are trained on expert evaluations, which
are combined with weights estimated from non-
expert assessments, for details see Behrendt et al.
(2024). In the Deliberative Quality Module, AQuA
scores allow us to identify high quality comments.

Deliberative Quality User Experience. The
three comments with the highest predicted AQuA
scores, which exceed a specified threshold, are au-
tomatically identified as top comments. They are
prominently displayed above the other comments
and highlighted in light green color (see Figure 1
on the right, showing only a single top comment).
The other comments are displayed below the top
comments in chronological order. The exact thresh-
old depends on the discussion and can be set as a
hyperparameter.

4 Implementation Details

Adhocracy+ is built on the Django framework5

and provides a wide range of functionalities and
modules to facilitate large-scale online discussions.
The platform’s debate module features a forum-like
structure where a discussion topic is defined and
displayed at the top of the page, enabling users
to comment on the topic or respond to other par-
ticipants’ comments. Additional details about the
platform’s features are available on the adhocracy+
website6. We extend adhocracy+ by importing the
AI tools into the debate module, as shown in Fig-
ure 2 (left). A more detailed view is shown in Fig-
ure 2 on the right. When a new comment is added
by a user, the Django debate model fires an event,

5https://www.djangoproject.com/
6https://adhocracy.plus/info/features/
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Model Acc. F1
BERT Base German Cased 0.7381 0.7426

Table 1: The performance on the test set of the X-Stance
dataset (Vamvas and Sennrich, 2020) of the fine-tuned
BERT Base German cased model we used for stance
prediction.

Deliberative Aspect MBERT uncased

R
at

io
na

lit
y

Relevance 0.37
Fact 0.56
Opinion 0.57
Justification 0.69
Solution Proposals 0.79
Additional Knowledge 0.78
Question 0.87

R
ec

ip
ro

ci
ty Referencing Users 0.88

Referencing Medium 0.93
Referencing Contents 0.81
Referencing Personal 0.92
Referencing Format 0.96

C
iv

ili
ty

Polite form of Address 0.97
Respect 0.9
Screaming 0.81
Vulgar 0.74
Insults 0.87
Sarcasm 0.48
Discrimination 0.88
Storytelling 0.85

Ø Total Average (F1-Score) 0.7815

Table 2: We show the weighted average F1 score for
the 20 different deliberative aspects the AQuA score
adapter models are trained on.

which is handled in the signals.py file. Here, we
import the AI tools to pass the comments to the
stance detection or the deliberative quality model.
The AI tools then return a response (either a stance
or deliberative quality score), which is stored back
to the database for the corresponding comment.
This stored response is then presented by the cor-
responding module as shown in Figure 1. For the
purposes of this study, they were implemented as
distinct debate modules within the adhocracy+ plat-
form in order to enable the separate evaluation of
their respective effects. Their integration into a uni-
fied module remains a plausible direction for future
development. Overall, this architecture is flexible:
In our experiments, we ran the AI tools locally on
a Linux server. But the AI tools could also be run
as services where communication is handled via
Rest API.

5 Evaluation

In the following, we analyze the effectiveness of
our two proposed modules. We start by evaluating
both models on existing datasets and measure how
well they perform in terms of accuracy and F1 score.
Furthermore, we conducted a large-scale user study
to evaluate participants’ satisfaction when using
the modules in a real online discussion as well
as to gauge the effects of the modules on other
perceptions and behaviors of the participants.

5.1 Model Performance

Comment Recommendation Module Table 1
displays the performance of the German BERT
Base uncased model, which was fine-tuned on the
X-Stance dataset (Vamvas and Sennrich, 2020).
The model reaches an accuracy of 73.81 and an
F1 score of 74.26 on the test dataset.

Deliberative Quality Module A multilingual
BERT base uncased model7 serves as the basis
for the trained adapter models that build the AQuA
score (Behrendt et al., 2024). Table 2 lists the
weighted average F1 scores on the test dataset for
each of the 20 trained adapter models on delibera-
tive aspects.

5.2 User Study

5.2.1 Methodology
To investigate the effects of both AI modules, we
conducted a field experiment as part of a three-
wave panel survey in July 2024. Participants were
recruited from the German population through
Bilendi, an online access panel provider and mar-
ket research company. The final sample consisted
of N = 1,356 participants with a mean age of 52
years (47% female; 58% with at least a high school
diploma).

Participants joined a simulated citizens’ assem-
bly with a 10-day online discussion phase on the ex-
tended adhocracy+ platform (internally referred to
as discuss20). They engaged in small-group discus-
sions on two selected political topics: (1) whether
active euthanasia should be legally permitted in
Germany, and (2) whether the sale of alcoholic
beverages should be more restricted in Germany.
These topics were identified in a preliminary sur-
vey as the most engaging from a broader selection
of issues.

7https://huggingface.co/google-bert/
bert-base-multilingual-cased
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# Survey Question Scale (1-7)

Q1 On the platform, discussion contributions were suggested to me, to
which I could reply.

1 = strongly disagree, 7 = strongly agree

Q2 On the platform, contributions were marked as top comments. 1 = strongly disagree, 7 = strongly agree
Q3 To what extent did you feel that this process was supported by

artificial intelligence?
1 = most certainly not, 7 = most certainly yes

Q4∗ I enjoyed using discuss20. 1 = strongly disagree, 7 = strongly agree
Q5∗ The functions of the discuss20 platform threatened my freedom to

choose what I wanted.
1 = strongly disagree, 7 = strongly agree

Q6 All in all, I was satisfied with the discussion. 1 = strongly disagree, 7 = strongly agree
Q7∗ The contributions contained arguments and justifications. 1 = strongly disagree, 7 = strongly agree
Q8∗ The participants responded to the contributions of others. 1 = strongly disagree, 7 = strongly agree
Q9∗ The contributions were discriminating. 1 = strongly disagree, 7 = strongly agree
Q10∗ There was a wide range of opinions in the discussion. 1 = strongly disagree, 7 = strongly agree

Table 3: Excerpt from our user study survey questions. Questions that are marked with an asterisk are example
questions that are part of a larger index.

The experimental design consisted of five condi-
tions for each of the two discussed topics, aimed
at testing the effects of the AI modules. These
included: discussions supported by the Comment
Recommendation Module, which either (i) recom-
mended comments that contradicted the partici-
pant’s opinion or (ii) recommended random com-
ments. Discussions supported by the Deliberative
Quality Module, which either (iii) highlighted three
comments with the highest deliberative quality
scores as "top comments" or (iv) highlighted three
randomly selected comments as "top comments"
and (v) discussions without AI support, serving as
the control group. Participants and experimental
conditions were randomly assigned, resulting in
ten distinct experimental groups. Randomization
checks showed no significant differences between
the groups in terms of age, gender, education, or
political interest.

During and after the discussions, the participants
completed standardized online questionnaires to
evaluate their experiences on the platform. To ex-
plore the effects of the AI modules, this user study
focuses on four aspects:

1. Manipulation effectiveness - the extent to
which participants recognized and responded
to the implemented AI features.

2. Quantitative participation - the extent of the
engagement of the participants in the discus-
sions.

3. Platform evaluation - users’ perceptions of
the platforms usability and functions.

4. Discussion evaluation - participants’ assess-
ments of the discussion quality, including sat-
isfaction and deliberative characteristics.

An excerpt of the corresponding survey ques-
tions is listed in Table 3. The effectiveness of the
manipulations was measured through participants’
recognition of the module-specific functions (see
Q1 and Q2) and their assessment of the AI-support
(see Q3). Evaluation of the platform included over-
all satisfaction with the platform (mean index of 5
items, see, e.g., Q4∗, Cronbach’s alpha = .86) as
well as evaluation of the functions against the back-
drop of freedom of choice (perceived autonomy,
mean index of 4 items, see, e.g., Q5∗, Cronbachs
Alpha = .85). Lastly, evaluation of the discussions
included overall satisfaction with the discussion
(see Q6) and the perceived deliberative quality,
evaluated across four dimensions, namely the per-
ception of the rationality (mean index of 4 items,
see, e.g., Q7∗, Cronbach’s alpha = .85), reciprocity
(mean index of 3 items, see, e.g., Q8∗, Cronbach’s
alpha = .89), civility (mean index of 4 items, e.g.,
Q9∗, Cronbach’s alpha .78) and diversity of the
discussions (mean index of 4 items, e.g., Q10∗,
Cronbach’s alpha .88).

As the Comment Recommendation Module aims
to expose users to diverse viewpoints, it fosters di-
versity and reciprocity by encouraging interaction
with opposing opinions. In contrast, the Delibera-
tive Quality Module promotes civility and rational-
ity by highlighting comments that exemplify high
deliberative quality, thereby setting a constructive
standard for discussion. Consequently, the analysis
focuses on diversity and reciprocity for the Com-
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AI
CR Module

(n = 289)

Random
CR Module

(n = 276)

Control
(n = 262) F

M SD M SD M SD

(1) Manipulation effectiveness
Discussion contributions were suggested to me, to
which I could reply

6.20a 1.29 5.88a 1.54 3.83b 2.22 116.18***

To what extent did you feel that the discussion was
supported by artificial intelligence?

4.33a 1.65 4.18a 1.62 3.80b 1.71 7.47***

(2) Quantity of participation
Average number of comments per user 12.71a 12.85 12.98a 11.85 9.16b 10.58 9.82***
(3) Platform evaluation
Overall satisfaction with the platform 6.08 1.13 6.11 1.06 6.15 0.97 0.34
Experience of threats to freedom of choice 1.44 0.89 1.51 0.96 1.37 0.80 1.61
(4) Discussion evaluation
Satisfaction with the discussion 5.98a 1.16 5.89ab 1.33 5.63b 1.49 4.60*
Perception of diversity 6.03a 0.94 5.89ab 1.01 5.74b 1.05 5.50**
Perception of reciprocity 5.64a 1.03 5.41a 1.13 4.97b 1.35 21.00***
n = 827, One-Way ANOVA (Post-Hoc-Test: Bonferroni/Games-Howell), *p<0.05, ** p<0.01, *** p<0.001.
Note: Groups with different code letters (a, b) differ significantly at the 5% level.

Table 4: Results of One-Way Analyses of Variance (ANOVAs) for the Comment Recommendation (CR) Module.

ment Recommendation Module and on civility and
rationality for the Deliberative Quality Module, as
these dimensions best capture the intended effects
of each intervention.

5.2.2 Results

Comment Recommendation Module. We con-
ducted One-way Analyses of Variance (ANOVAs)
to investigate group-specific manipulation effec-
tiveness, quantitative participation, platform evalu-
ation, and discussion evaluation. A summary of the
results for the Comment Recommendation Module
is provided in Table 4. We report mean (M) and
standard deviation (SD) and F-Values (F). Regard-
ing manipulation effectiveness, participants in the
Comment Recommendation Modules scored signif-
icantly higher on identifying this platform feature
and on perceiving AI support compared to the con-
trol group. However, the participants’ assessment
whether the discussion was supported by AI did
not significantly differ between the modules with
random and AI-based comment recommendation.

Regarding participation, participants in the Com-
ment Recommendation Modules wrote an average
of approximately three to four more comments
per user compared to the control group. Again,
it was inconsequential whether the recommended
comment was suggested randomly or AI-based.
Regarding users’ evaluation of the platform, the
Comment Recommendation Modules did not im-
pair users’ satisfaction with the platform due to the
module-specific implemented functions. Another

positive finding is that the Comment Recommenda-
tion Modules did not restrict participants’ feelings
of autonomy. In contrast, regarding the effects
on discussion evaluation, especially participants
in the AI-supported Comment Recommendation
Module reported a significantly higher satisfaction
with the discussion and higher perception of the
deliberative dimension of diversity compared to
the control group. Finally, comment recommenda-
tion significantly increased participants’ perception
of reciprocity within the discussion compared to
the control group. Regardless of an underlying
AI-based recommendation, we found that recom-
mending comments had an overall positive effect
on individual participation.

Deliberative Quality Module. Table 5 provides
an overview of the ANOVA results for the Deliber-
ative Quality Module. Regarding manipulation ef-
fectiveness, participants in both the AI Deliberative
Quality and Random Deliberative Quality Modules
were significantly more likely to recognize plat-
form contributions marked as top comments and
to perceive AI support compared to the control
group. However, the participants’ assessment of
AI support did not significantly differ between the
AI Deliberative Quality and Random Deliberative
Quality Modules.

In terms of participation quantity, the average
number of comments per user did not differ sig-
nificantly between the groups, suggesting that nei-
ther the AI Deliberative Quality nor the Random
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AI
DQ Module

(n = 289)

Random
DQ Module

(n = 276)

Control
(n = 262) F

M SD M SD M SD

(1) Manipulation effectiveness
On the platform, contributions were marked as top com-
ments

5.81a 1.76 5.90a 1.61 3.05b 2.02 189.17***

To what extent did you feel that the discussion was sup-
ported by artificial intelligence?

4.20a 1.80 4.50a 1.61 3.80b 1.71 11.22***

(2) Quantity of participation
Average number of comments per user 9.40 10.39 9.58 9.69 9.16 10.58 0.12
(3) Platform evaluation
Overall satisfaction with the platform. 6.16 1.02 6.06 1.13 6.15 0.97 0.74
Experience of threats to freedom of choice 1.42 0.85 1.39 0.91 1.37 0.80 0.21
(4) Discussion evaluation
Satisfaction with the discussion 5.71 1.51 5.63 1.45 5.63 1.49 0.27
Perception of civility 6.84 0.49 6.83 0.47 6.77 0.66 0.63
Perception of rationality 5.67 1.04 5.49 1.05 5.51 0.97 2.53
n = 791, One-Way ANOVA (Post-Hoc-Test: Bonferroni/Games-Howell), *p<0.05, ** p<0.01, *** p<0.001
Note: Groups with different code letters (a, b) differ significantly at the 5% level.

Table 5: Results of One-Way Analyses of Variance (ANOVAs) for the Deliberative Quality (DQ) Module.

Deliberative Quality Module led to an increase in
users’ commenting activity. Similarly, for platform
evaluation, no significant differences were found
in users’ overall satisfaction with the platform or
their perceptions of autonomy. Participants across
all groups reported similarly high satisfaction and
did not feel restricted in their freedom to choose
actions on the platform. Finally, regarding discus-
sion evaluation, no significant differences were ob-
served between the groups in terms of satisfaction
with the discussion, civility, or rationality. While
the modules aimed to enhance discussion quality,
their implementation did not result in perceptible
changes in these specific evaluative dimensions.

In order to compare the actual quality of the dis-
cussions across the different groups, content anal-
yses are currently being conducted. Preliminary
results suggest that, for the topic of active euthana-
sia, the quality of discussions was higher in the
Deliberative Quality Module than in the other mod-
ules. Again, however, it appears that it does not
seem to make a difference whether the top com-
ments are selected by the AI or at random.

6 Conclusion

In this work we present extensions to the adhoc-
racy+ platform for citizen participation. We imple-
mented two additional modules to support more de-
liberative online discussions. In the Comment Rec-
ommendation Module participants are confronted
with opposing views to encourage user interaction,
hence improving the reciprocity in the discussion.

The Deliberative Quality Module aims to improve
the quality of contributed comments by automati-
cally highlighting the most deliberative ones.

In a large-scale user study, we tested the effects
of both AI modules. We found that the Comment
Recommendation Module increased participation
on the platform and improved users’ perception of
the deliberative quality of the discussions while not
diminishing their sense of autonomy. The Deliber-
ative Quality Module, in contrast, did not signifi-
cantly improve users’ perceptions of the platform
or the discussions. Still, there are indications that
both modules had a positive influence on the dis-
cussions, albeit independently of whether AI was
involved or not.

We see great potential in the features we pre-
sented to support human actors in conducting large
online discussions. Certainly it remains an open
task to improve the AI to a level, where people
perceive its selection performance as far superior
than random selection. The resulting platform is
freely available under an open source license and
can hopefully be used for political decision-making
in the future.

Future Work. In the future we want to examine
how both AI extensions to adhocracy+ can be fur-
ther improved. This means gathering and annotat-
ing additional conversational data to fine-tune and
improve both models. To further evaluate effects
of both modules on the comment quality within the
discussions, content analyses are currently being
carried out.
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7 Limitations

While our extensions to adhocracy+ introduce AI-
driven enhancements, we must acknowledge sev-
eral limitations.

Currently, the platform and both AI modules are
only available in German. This limits accessibil-
ity for non-German speaking users and limits the
potential for wider adoption.

Moreover, the effectiveness of both AI modules
highly depends on the quality of their training data.
They may struggle with nuanced or complex dis-
cussions, and incorrect predictions can potentially
frustrate participants.

The effects we observed were predominantly
very small, which may be due to the design of our
study. In field experiments, numerous noise factors
can influence the outcomes we measured - such as
the perceived quality of discussions. At the same
time, our experiments offer high external validity,
as they were conducted in a realistic setting rather
than under artificial laboratory conditions.

The partly non-significant differences between
the AI, random, and control conditions may also
be attributed to the statistical procedures employed.
We used post hoc tests that apply strict corrections
for multiple testing, which makes it more difficult
to detect statistically significant effects.

However, when conducting planned contrast
analyses, some differences between the AI-
supported and Random Comment Recommendation
and Deliberative Quality Modules do reach signif-
icance, suggesting that the AI-supported modules
were perceived more positively by the participants
than those working with random content selection.

Nonetheless, planned contrasts require more spe-
cific a priori hypotheses, which could not be for-
mulated within the scope of this exploratory paper.
Developing and testing such hypotheses remains a
task for future research.
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Abstract

As LLMs become widespread, trust in their
behavior becomes increasingly important. For
NLP research, it is crucial to ensure that not
only AI designers and developers, but also
end users, are enabled to control the proper-
ties of trustworthy LLMs, such as transpar-
ency, privacy, or accuracy. However, involv-
ing end users in this process remains a prac-
tical challenge. Based on a design-centered
survey of methods developed in recent papers
from HCI and NLP venues, this paper proposes
seven design paradigms that can be integrated
in NLP research to enhance end-user control
over the trustworthiness of LLMs. We discuss
design gaps and challenges of applying these
paradigms in NLP and propose future research
directions.

1 Introduction

While LLMs bring many advantages, their opacity
hinders human agency and trust, as especially end
users lack the necessary information and transpar-
ency to critically assess system decisions before
following or acting on them (Förster et al., 2020).
For this reason, there is a growing need in the field
of NLP to develop methods that enhance end-user
control over AI systems.

At the same time, in the domain of human-
computer interaction (HCI), approximately 22 regu-
lations comprising normative principles for mitigat-
ing AI risks and enhancing trust in AI systems had
been published by 2020 (Hagendorff, 2020). While
recent HCI studies explore the attitudes of differ-
ent groups towards these policies (Agbese et al.,
2023), their practical implementation is underex-
plored (Kaur et al., 2022; Perov and Golovkov,
2024), particularly regarding how to enable end
users to proactively participate in controlling the
trustworthiness of LLM systems.

This paper proposes seven design paradigms for
enhancing end-user control over the trustworthi-

ness of LLM systems based on a design-centered
survey of novel methods from recent HCI and NLP
studies. We define trustworthy LLMs using the fol-
lowing requirements for trustworthy AI proposed
by Ethics Guidelines for Trustworthy AI (HLEG,
2019): (1) human agency and oversight (including
fundamental rights); (2) technical robustness and
safety (including resilience to attack and security,
fallback plan and general safety, accuracy, relia-
bility, and reproducibility); (3) privacy and data
governance (including respect for privacy, quality
and integrity of data, and access to data); (4) trans-
parency (including traceability, explainability, and
communication); (5) diversity, non-discrimination
and fairness (including the avoidance of unfair bias,
accessibility and universal design, and stakeholder
participation); (6) environmental and societal well-
being (including sustainability and environmental
friendliness, social impact, society, and democracy)
and (7) accountability (including auditability, mini-
mization, and reporting of negative impact, trade-
offs, and redress). Although these guidelines were
published before the rise of LLMs, we use them
to define trust in LLMs because they were among
the first to foreground a user-centered approach to
trustworthy AI (Usmani et al., 2023) and remain an
influential user-centered policy.

This survey contributes to human-centered ap-
proaches to LLMs by bridging regulatory perspec-
tives on trustworthy AI from the field of HCI with
their practical applications in NLP research on end
users’ interactions with LLMs.

2 Methodology

We surveyed original research papers (no work in
progress, demo papers, posters, provocations, sur-
veys, or extended abstracts) published in English in
the ACM Digital Library and the ACL Anthology
between January 1, 2022, and August 1, 2025. The
start date was selected to include papers published
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shortly before the release of ChatGPT on Novem-
ber 30, 2022. While the ACM library was selected
for its comprehensive coverage of HCI design re-
search and venues (e.g., CHI) relevant to our focus,
the ACL Anthology comprises work from some of
the most important NLP venues, such as EMNLP
and NAACL. This dual-sourced corpus provides a
balanced foundation for identifying design patterns
at the intersection of HCI and NLP. The following
search string was used for the ACM library:

*trust* OR “agency” OR “oversight” OR
robust* OR safe* OR secur* OR accura*
OR reliab* OR reproduc* OR “privacy”
OR transparen* OR trace* OR explain*
OR fair* OR bias* OR sustain* OR ac-
countab* OR audit* or LLM*

The search function in ACL Anthology is limited
to simple keyword queries and does not support us-
ing this search string. Therefore, we performed
multiple keyword-based searches (e.g., trust LLM,
transparency LLM, bias LLM) and complemented
this with Google site:aclanthology.org searches
to approximate Boolean logic and ensure broader
coverage. A total of 1781 papers were screened
from both databases. At least one of the search
words had to appear in the abstract, the title, or the
keywords of the paper to be included in the final
dataset.

Importantly, the papers that fulfill this criterion
were manually inspected to determine whether they
have a clear focus on both trust (i.e., the trust aspect
mentioned in the abstract) and end-user control in
the full text. Accordingly, user-centric papers with-
out a clear relationship to trust and vice versa: trust-
related papers without end-user involvement in the
design and/or evaluation stage (e.g., Miao and Fang
2025) or papers where the evaluation is conducted
based only on datasets, performance comparison
of several models, and evaluation metrics, rather
than involving users and explicitly addressing how
user control is achieved, were not considered. How-
ever, papers combining user studies with, for exam-
ple, comparing the performance of several models,
were considered (e.g., Zhou et al. 2024; Koraş et al.
2025; Dong et al. 2025).

Also, papers not explicitly dealing with language
models or language model-based applications were
excluded (e.g., DeVos et al. 2022). These criteria
reduced the number of eligible papers to 773.

Finally, papers that considered user studies as
future work (e.g., Hung et al. 2023) were excluded.

In this way, 713 papers were excluded. The final
list comprises 60 papers from both sources.

Papers did not need to explicitly address the AI
HLEG guidelines, nor did we include studies that
analyzed the guidelines themselves. Multimodal
LLMs (Zhang et al., 2024; Tang et al., 2024; Chen
et al., 2024) were discarded due to the broader
use of text-based models. Figure 1, created with
a web-based Shiny app (Haddaway et al., 2022),
visualizes the PRISMA-compliant search process
(Page et al., 2021).

Figure 1: Overview of the literature search and screen-
ing process, following PRISMA-style structure.

Note that this is not a systematic review aiming
for completeness, but a design-centered survey of
recent work focusing on a synthesis of paradigms
that support user control and trust in LLM systems.

Two annotators searched for the papers in the
databases described above. They discussed and re-
fined the inclusion criteria following the PRISMA
paradigm (Page et al., 2021). The included pa-
pers were then annotated for their primary trust
aspects (multiple assignment was allowed), and de-
sign paradigm. Annotation decisions were reached
via iterative discussion. No formal inter-annotator
agreement was calculated, as the focus was on
interpretive synthesis. As a result, seven design
paradigms are proposed (Section 3) and discussed
in terms of their applications in NLP (Section 5).
Note that although multiple paradigm assignments
were theoretically possible, each paper was as-
signed to exactly one primary design paradigm
based on annotator agreement.
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Table 1: Design paradigms and primary user goals

Paradigm Primary User Goal

Interface-level accuracy
control

Verify factual correctness of
LLM output

Workflow-aligned &
domain-adapted LLM
assistance

Maintain control in expert work-
flows

Explanation-centered ap-
proaches

Understand how and why out-
puts are produced

Participatory designs Learn about LLMs; shape be-
havior

Interactive authoring &
co-creation

Co-generate or revise outputs
with AI

Style-based trust calibra-
tion

Calibrate trust based on how out-
puts are expressed

Privacy-aware architec-
tures & tools

Control what personal data is ex-
posed

3 Results

Table 1 provides an overview of design paradigms
identified through inductive coding by two anno-
tators (see Section 2). A detailed mapping of the
reviewed approaches to trust aspects is provided
in the Appendix. The observed skew in the dis-
tribution of papers across paradigms (interactive
authoring/co-creation (13 papers) and explanation-
centered approaches (12) vs. interface-level ac-
curacy control and privacy-aware tools, four stud-
ies each) may in part reflect the methodological
choices of this survey, such as the single-label anno-
tation protocol (see Section 2). Furthermore, trust
dimensions, such as accuracy, transparency, and re-
liability, are overrepresented probably because they
are easier to operationalize through measurable in-
terventions (e.g., confidence scores), aligning well
with existing evaluation practices in NLP and HCI.
In contrast, underrepresented dimensions, such as
environmental and societal wellbeing, require long-
term stakeholder engagement and more resource-
intensive methods that are harder to implement
within the scope of typical research prototypes.

Interface-level accuracy control Interface-level
accuracy control refers to design approaches that
equip users with interactive tools and visual cues
at the interface level to help inspect, verify, and
guide the factual accuracy of LLM outputs. These
interfaces do not require altering the model itself,
but instead focus on enhancing user control, inter-
pretability of outputs, and trust calibration through
features such as consistency checks, confidence
scores, source attributions, and interactive verifica-
tion workflows.

The primary goal of this paradigm is to foster
accuracy and user agency by integrating transpar-
ent control mechanisms directly into the interface
rather than modifying the LLM architecture.

Core strategies include tools for output verifica-
tion, hallucination detection, and user-led content
auditing. For example, Cheng et al. (2024) en-
able users to compare the factual consistency of
multiple LLM outputs. Laban et al. (2024) intro-
duce a factual editing framework that alerts users to
new content, supports verification via web search,
and enables tracing of model-generated edits. For-
mal verification has also been integrated into LLM
planning tasks: Lee et al. (2025) combine model
checking with user oversight. Other interfaces vi-
sualize hallucination risks or confidence scores to
help users identify unreliable content (Leiser et al.,
2024).

Despite promising interaction designs, this
paradigm faces several challenges. First, many
studies prioritize surface-level model accuracy
without systematically examining how interface
interventions influence other trust dimensions such
as fairness, transparency, or robustness. Second,
tools like confidence scores (Leiser et al., 2024)
assume a high degree of AI literacy and decision-
making capacity, potentially excluding non-expert
users or overburdening them with the responsibility
to correctly interpret, evaluate, and act on informa-
tion provided by an AI system. Third, the usability
and cognitive demands of these systems remain
under-evaluated, as it is often unclear whether users
meaningfully benefit from features like verification
workflows or simply ignore them in practice.

Workflow-aligned and domain-adapted LLM as-
sistance This design approach integrates LLMs
into real-world tasks or professional practices, such
as education (Kazemitabaar et al., 2024), qualita-
tive analysis (Dai et al., 2023), legal consultation
(Hu et al., 2024), banking (Gupta et al., 2025),
coding (Dong et al., 2025), or clinical settings (Ko-
raş et al., 2025), addressing domain-specific chal-
lenges of the LLM application. Users are typically
given mechanisms to adapt, guide, or verify out-
puts in-situ, through plan-then-execute pipelines
(He et al., 2025), interface-level guardrails (Liffiton
et al., 2023), or feedback loops involving humans in
iterative roles (Dong et al., 2025; Dai et al., 2023).
Unlike generic chat interfaces, these systems align
generation with domain goals and domain-specific
verification routines and constraints.
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The goal is to integrate LLMs into domain-
specific workflows in ways that preserve user
control, ensure output reliability, and align with
domain-specific goals.

Examples include the restriction of LLM outputs
to pseudocode in educational contexts to prevent
over-reliance and support learning (Kazemitabaar
et al., 2024), real-time human feedback (Gupta
et al., 2025), iterative human verification Dong et al.
(2025), or guardrails that prevent programmers’
over-reliance (Liffiton et al., 2023), collaborative
human-LLM thematic analysis and topic modeling
(Dai et al., 2023; Akter et al., 2025; Choi et al.,
2024).

While these paradigms offer promising forms of
human-in-the-loop control, several limitations re-
main. First, they often assume static domain knowl-
edge and well-formed tasks and do not adapt to
rapid changes in domains like coding. Second, de-
spite placing high cognitive demands on users (e.g.,
verifying assertions (Dong et al., 2025) or interpret-
ing multi-step plans (He et al., 2025)), most designs
treat users as uniformly skilled and do not assess
or adjust for varying levels of domain expertise
and AI literacy. This creates risks of misalignment
between tool complexity and user capability and of
mismatched support (either under-serving novice
users or constraining experts). Finally, the inte-
gration of these designs in professional workflows
raises epistemic and normative concerns since the
normative assumptions integrated in designs (e.g.,
what counts as a “good” summary or acceptable
pseudocode) are rarely made explicit or empirically
evaluated. As a result, these designs may reinforce
domain conventions (e.g., legal templates) without
enabling critical reflection, for example in qualita-
tive analysis (Akter et al., 2025; Choi et al., 2024).

In sum, workflow-aligned assistance offers a
promising direction for domain-specific LLM use,
but often relies on hidden assumptions about task
stability, user capability, and normative correctness.
Future work should investigate how designs could
better adapt to user diversity and task ambiguity.

Participatory designs Participatory designs aim
to empower users through learning and reflection,
engaging them not just as passive recipients of AI
output but as active collaborators, educators, asses-
sors, or learners.

The goal is to foster AI literacy, critical aware-
ness of LLM capabilities, and trust calibration by
giving users tools to customize, question, and steer

LLM behavior, particularly in educational, reflec-
tive, or interpersonal contexts.

Common strategies include user-controlled ed-
itable outputs (Chun et al., 2025), scaffolded in-
teraction via AI literacy workshops (Theophilou
et al., 2023), user-led evaluation through compar-
isons, subjective trust metrics (Pan et al., 2024; Zhu
et al., 2025; Nguyen et al., 2024), or human-LLM
evaluation of social appropriateness (Rao et al.,
2025). Expert-in-the-loop approaches include col-
laborative prompt refinement for educational con-
tent (Reza et al., 2025) or feedback-driven role-play
simulation in counseling (Louie et al., 2024).

Despite the user-centered intent, several gaps
persist. First, participatory mechanisms are often
introduced without sufficient onboarding or scaf-
folding. Users are asked to judge, configure, or col-
laborate with LLMs before acquiring a conceptual
understanding of model behavior, which may lead
to overtrust. AI literacy, while a core aim, is rarely
embedded as a design prerequisite—Theophilou
et al. (2023) being a notable exception. Second,
customization and feedback are typically limited to
surface-level tuning (e.g., tone or behavior), with
little support for questioning underlying assump-
tions, biases, or system limitations. Third, while
many systems frame participation as empowering,
they may implicitly rely on user labor, placing the
burden of correction, verification, and ethical re-
flection onto the user without adequate institutional
or system-side accountability.

Overall, participatory designs signal a significant
shift toward user agency and transparency, but re-
main underdeveloped in terms of empowering user
AI literacy and critical engagement with model
limitations.

Interactive authoring and co-creation This
paradigm focuses on enabling users to collabo-
rate with LLMs during complex or creative tasks
(e.g., writing, prompt design, workflow creation)
by enabling real-time interaction, iterative refine-
ment, and mixed-initiative control. These systems
support back-and-forth exchanges between users
and LLMs, allowing users to guide, steer, edit, or
evaluate intermediate outputs through customizable
workflows.

The primary goal is to empower users as co-
authors, prompt designers, or evaluators in creative
or analytical tasks by enabling interactive, trans-
parent, and customizable collaboration with LLMs.
These systems seek to enhance human agency, re-
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duce cognitive load, and make LLM-powered gen-
eration more interpretable and aligned with users’
goals and values.

This paradigm centers on prompt chaining
(Arawjo et al., 2024; Wu et al., 2022), co-auditing
LLM-behavior in general (Rastogi et al., 2023), or
LLM-generated biases (Prabhudesai et al., 2025)
and personality traits (Zheng et al., 2025a) in par-
ticular, LLM- and human-based disinformation
evaluation (Zugecova et al., 2025), co-creative
authoring (Ding et al., 2023; Liu et al., 2024;
Hoque et al., 2024), direct manipulation (Mas-
son et al., 2024), and mixed-initiative control, en-
abling users to collaboratively shape LLM behav-
ior via initiative-sharing interfaces (Overney et al.,
2025), LLM-initiated prompt pipelines (Zhang and
Arawjo, 2025) and editable preference profiles cre-
ated based on user preferences (Liu et al., 2025).

Despite their promise, interactive authoring de-
signs raise several unresolved questions. First,
while many interfaces emphasize modularity,
prompt chaining, or editable outputs (Arawjo et al.,
2024; Wu et al., 2022; Zhang and Arawjo, 2025), it
remains unclear how much initiative users actually
retain in practice. Systems often alternate initia-
tive without clearly defining the boundaries of user
agency, and few studies examine whether users can
override or put the model’s underlying assumptions
into question. Customization is usually limited to
surface-level, such as prompt components, without
affording deeper user control or interpretability of
generation mechanisms.

Second, user literacy and feedback quality are
assumed rather than supported. Designs empower
users to filter outputs, flag disinformation, or as-
sess persuasiveness (Zugecova et al., 2025; Liu
et al., 2025), but offer limited scaffolding to sup-
port critical evaluation. Since there are no clear
scaffolds for critical reflection, user perception of
biases or auditing personality traits (Zheng et al.,
2025a; Prabhudesai et al., 2025) risks being subjec-
tive and culturally dependent.

Third, while some systems highlight transpar-
ency and provenance (e.g., via interface visual-
izations or think-aloud protocols (Hoque et al.,
2024; Rastogi et al., 2023)), it remains unclear
whether such interventions are always desirable
and whether more transparency always leads to
better trust calibration.

Finally, there is limited evidence that these
approaches generalize beyond low-stakes, ex-
ploratory domains. Many studies involve small

participant samples (e.g., thirteen participants in
Hoque et al. 2024), leaving open the question of
how co-creation behaves under real-world con-
straints such as time pressure or conflicting user
goals.

In sum, interactive authoring represents a promis-
ing design approach to expanding human–AI col-
laboration, but current work underestimates the
dynamics of control and overlooks users’ cognitive
limitations.

Explanation-centered approaches Explanation-
centered approaches aim to make LLM be-
havior more interpretable by providing human-
understandable justifications for model predictions,
such as rationales (Mishra et al., 2024), contrastive
explanations (Buçinca et al., 2025; Si et al., 2024),
multilevel and contextualized explanations (Mon-
teiro Paes et al., 2025; Mei et al., 2023; Di Bonaven-
tura et al., 2024), anchored in situ explanations
(Yan et al., 2024), explanations with different confi-
dence levels (Wang et al., 2025), saliency explana-
tions (Pafla et al., 2024) or visualization of internal
states (Spinner et al., 2024), at various stages of in-
teraction (Kim et al., 2025; Yao et al., 2023) to help
users understand how and why a model generated
a particular output.

The primary goal is to empower users to inter-
pret, question, and calibrate trust in LLM outputs
by integrating user-relevant explanations into the
human-LLM interaction. Rather than being a post-
hoc feature, explanations are regarded as an integral
part of the user experience.

However, several design limitations remain un-
derexplored. First, explanation quality is uneven,
and users are often asked to trust model-generated
justifications without support for interrogating the
explanation itself. For instance, saliency maps or
ranked rationales assume that the model’s attention
aligns with human reasoning, but users are not em-
powered to put this alignment into question. Most
designs present a single explanation type, limiting
opportunities for comparison (Pafla et al., 2024).

Second, explanation interfaces often rely on
static visualizations or textual input. While a few
designs allow users to manipulate explanations
(e.g., editable search trees or contrastive compar-
isons), these remain exceptions. Moreover, expla-
nations are usually presented as final, and users can
not contribute to the model’s reasoning. This risks
reinforcing overreliance on explanation rather than
promoting interactivity and critical engagement.
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Third, the cognitive demands of interpreting expla-
nations are often overlooked. Visualizations, impor-
tance heatmaps, or rationales may be challenging
to interpret for non-experts or minoritized groups,
and some studies suggest that users make better
decisions with external references (e.g., Wikipedia)
than with model-generated explanations (Si et al.,
2024). The assumption that explanations automati-
cally enhance trust or understanding must be vali-
dated across diverse user groups and domains.

Finally, most explanation-centered designs ex-
plain one output at a time (for example, why the
model gave a specific answer), but they usually
don’t help users understand a general model behav-
ior, such as whether the model is biased, how it was
trained, or what kinds of mistakes it tends to make
overall. An exception is Yao et al. (2023) where
human-annotated explanations are integrated into
active learning loops for annotation support, involv-
ing users in both training and evaluation phases.

In sum, while explanation-centered interfaces
enhance transparency, they risk oversimplifying
the complexity of LLM behavior and limiting user
agency if not designed with deeper interactivity,
explanation pluralism, and user education in mind.

Style-based trust calibration Style-based trust
calibration refers to design strategies that shape
users’ trust in LLM outputs by varying the commu-
nicative style of the output. Rather than changing
the factual content, these approaches manipulate
how information is conveyed, for example, by pre-
senting the output in an assertive or a hesitant tone,
or showing confidence cues and visually marking
lexical indicators of uncertainty to help users form
more accurate mental models of LLM reliability.
The central assumption is that stylistic framing and
contextual cues strongly influence user reliance,
perceived transparency, and decision confidence.

The primary goal is to support better alignment
between perceived and actual model capabilities.
This is especially crucial in settings involving un-
certainty or risk, such as healthcare, legal advice,
or career guidance.

Rather than improving accuracy directly, these
interventions calibrate user perception of models.
Studies have tested expressions of uncertainty (e.g.,
first-person: “I’m not sure...” vs. impersonal: “It
is not sure...”) (Kim et al., 2024b), confidence dis-
claimers (Metzger et al., 2024), comparing hesi-
tant versus assertive tones (Kadoma et al., 2024),
trust repair techniques through apologies, denials,

and promises (Pareek et al., 2024), stylistic varia-
tions across chatbot types (LLM-based vs. intent-
based vs. form-based) (Zylowski et al., 2025), un-
certainty markers (Zhou et al., 2024; Chen et al.,
2025b), model-generated greetings (Zhou et al.,
2025b), and visual disclaimers or highlights (Bo
et al., 2025). These features are tested in calibrated
and miscalibrated scenarios to assess their influ-
ence on user trust.

However, most work remains narrowly focused
on whether a given stylistic manipulation influ-
ences trust, rather than how users can be supported
in recognizing and critically engaging with such
cues in everyday use. For instance, while many
features are shown to affect trust in experimen-
tal setups, they are rarely integrated into inter-
face systems with guidance or educational scaf-
folding. Ma et al. (2025) address this by proposing
a deliberation-based interface that encourages users
to reason through LLM suggestions. Yet, dealing
with insufficient analytical engagement of users
with AI recommendations remains an exception.

A further limitation is the tension between help-
ing users calibrate trust and the risk of unintention-
ally manipulating them or introducing new ethical
problems. Specifically, stylistic cues may encode
cultural or gender biases, reinforce stereotypes, or
mask unreliable model behavior behind persuasive
style. Future work should examine how style inter-
acts with power, and whether certain user groups
are more vulnerable to over-reliance due to stylistic
calibration alone.

In conclusion, while style-based approaches
offer promising mechanisms for aligning user-
perceived trust with actual model reliability, they
raise critical open questions about fairness and the
long-term effects of such calibration.

Privacy-aware architectures and tools Privacy-
aware architectures and tools are systems, inter-
faces, or frameworks that aim to detect, minimize,
or prevent privacy risks in human–LLM interaction.
They enhance user awareness, control, and protec-
tion by implementing privacy safeguards either be-
fore, during, or after data exchange with LLMs.
These approaches consider input redaction, output
inspection, system-level manipulation detection,
and user education, often grounded in user-centered
design and participatory development. Unlike gen-
eral security methods, this category focuses on end-
user-facing privacy measures, enabling users to
actively participate in managing their personal data
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exposure and autonomy in LLM-mediated environ-
ments.

The primary goal is to empower users to manage
and protect their personal data by providing con-
trollable tools that mitigate privacy risks at every
stage of the interaction pipeline. These systems
aim to increase user agency and awareness while
reducing unintended data leakage, over-disclosure,
or manipulation in AI-mediated communication.
They address not only what LLMs can "know" or
"leak", but how users can actively participate in pre-
venting harm and making informed choices about
data use, visibility, and trustworthiness.

Core strategies in this paradigm span the full
privacy lifecycle, from input-level privacy control
(Ngong et al., 2025) through self-disclosure detec-
tion (Dou et al., 2024), user-led data minimization
via browser extensions (Zhou et al., 2025a) to post-
hoc inspection (e.g., leaking personal identifiers
through LLM outputs Kim et al. 2024a or detecting
prompt injection attacks Lin et al. 2025) and user
education (Chen et al., 2025a).

However, these designs may face adoption chal-
lenges. Many tools assume that users are both
willing and able to engage in privacy management,
although users may sometimes prioritize conve-
nience or utility over caution, especially in low-
stakes contexts. Moreover, privacy-aware inter-
faces can disrupt the user experience if they de-
mand too much time, technical understanding, or
attention. To be effective, they must be carefully
adapted to the context of use and the user’s men-
tal workload, for example by being paired with
automation, personalization, or persuasive design.
Finally, some designs risk offloading the responsi-
bility for privacy onto the user without addressing
underlying system-level weaknesses in how LLMs
handle user data. For example, asking users to
identify sensitive content assumes they understand
what counts as risky in the context of opaque model
behavior, but this assumption may not hold. It is
also unclear how such tools perform across user
groups with varying levels of sensitivity to privacy
issues.

In sum, more research is needed to assess how
to communicate privacy risks without overwhelm-
ing users or discouraging them from critical use of
LLMs. Privacy-aware tools play a crucial role in
shifting privacy control closer to users, but must be
designed to balance protection, usability, and psy-
chological trust across varied real-world scenarios.

4 Theoretical perspectives

To synthesize the design strategies identified
through inductive coding, we draw on three comple-
mentary frameworks from HCI and cognitive sci-
ence: Activity Theory (Kuutti, 1996), Distributed
Cognition (Hollan et al., 2000), and Mental Models
(see an overview in Payne, 2003). These descrip-
tive theories are suited for analyzing user-centred
paradigms across NLP and HCI research.

Activity theory highlights how users engage with
LLMs as tools to achieve specific goals (e.g., writ-
ing, learning). It aligns closely with interactive
authoring & co-creation and workflow-aligned de-
signs where LLMs support domain-specific tasks
(e.g., Masson et al. 2024; Kazemitabaar et al. 2024),
enabling users to shift from passive prompting to
active participation. Participatory designs also em-
power users by emphasizing their agency in shap-
ing system behavior (e.g., Theophilou et al. 2023).

Distributed cognition frames trust as emerging
from the interaction between the user, the LLM
system, and the interventions (e.g., visualizations,
warnings), such as in interface-level accuracy con-
trol (e.g., Leiser et al. 2024) and style-based trust
calibration (e.g., Zhou et al. 2024). Trust calibra-
tion is distributed across the model’s suggestions,
system-generated evidence, and design interven-
tions rather than by internal understanding alone.

Referring to users’ internal understandings of
how LLMs work, mental models are central to
explanation-centered approaches (e.g., Yan et al.
2024) that aim to scaffold reasoning about model
logic, privacy-aware designs (e.g., Dou et al. 2024)
that help users understand what LLMs might infer
from personal data, and style-based trust calibra-
tion, which influences users’ conceptual models of
LLM reliability.

Additionally, our classification aligns with the
more recent human-centered AI (HCAI) framework
proposed by Shneiderman (2022), particularly in
treating user control not only as an outcome (prod-
uct) but also as a participatory design process.

The proposed design paradigms also align with
principles from classical HCI, such as Norman’s
gulfs of execution and evaluation (see Norman,
2013, 38–40), which describe the barriers users
face in acting on and interpreting system behavior.
Several designs aim to reduce Norman’s gulf of ex-
ecution by simplifying prompt design (Zhang and
Arawjo, 2025) or providing scaffolds that guide
users in expressing their intentions. Others address
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the gulf of evaluation by offering visualizations
(Spinner et al., 2024) of model decisions or con-
trastive explanations (Buçinca et al., 2025) to help
users interpret outputs. Furthermore, activity the-
ory helps reduce the gulf of execution by analyzing
whether users can meaningfully act on interfaces to
achieve their goals. Distributed cognition addresses
the gulf of evaluation by highlighting how trust and
understanding are mediated through interface-level
cues, external visualizations, and interaction his-
tory. Finally, mental models support both gulfs by
determining how users understand what actions are
possible and how outputs should be interpreted. To-
gether, these theories provide a layered perspective
on user control in LLM interactions.

5 Discussion and Conclusions

This paper identified and systematized seven de-
sign paradigms that promote user control in hu-
man–LLM interaction and reflect design strategies
grounded in different user goals, ranging from ver-
ifying factuality and shaping model output to man-
aging trust and data exposure. Our design-centered
perspective complements current discussions on hu-
man involvement in post-training by emphasizing
user control during deployment and interaction.

While empirical studies have offered scattered
examples of user-centered designs and most recent
related surveys do not primarily focus on trust or
have a broader scope (e.g., human-model cooper-
ation in Huang et al. 2025), our contribution lies
in synthesizing these efforts into a coherent frame-
work that centers user goals as the organizing prin-
ciple of human trust in LLMs. Across paradigms,
we observe a shift from one-shot prompting to-
ward interactive, iterative, and increasingly user-
configurable LLM workflows. These designs fore-
ground a broad spectrum of control types: percep-
tual (e.g., accuracy cues), procedural (e.g., work-
flow pausing), epistemic (e.g., explanations, vary-
ing linguistic style), and protective (e.g., privacy
screening).

Yet, critical gaps remain. Although many studies
mention cross-domain application (e.g. Louie et al.
2024), the variety of tested scenarios is limited.
We also observe a lack of design frameworks that
help practitioners balance automation and human
agency. For example, many tools mediate control
through additional LLMs (e.g., Pan et al. 2024),
which risks reinforcing automation bias rather than
supporting user autonomy. To address this, future

systems could incorporate trust calibration strate-
gies (e.g., communicative framing, interactive un-
certainty visualization) that help users reflect on
when and how to trust outputs. Most studies as-
sume AI-literate end users with a high level of tech-
nical literacy. Designs rarely account for diverse
user needs, e.g., those with low reading/writing lit-
eracy, limited technical expertise, or from marginal-
ized communities. This limits the accessibility and
generalizability of proposed methods. Users are
often expected to interpret complex cues (e.g., fac-
tuality scores) without training. It remains unclear
how to prevent over-reliance on automation while
avoiding user frustration and how to balance con-
trol vs. usability, or privacy vs. personalization.

For the research at the intersection of HCI and
NLP, we identify several promising directions for
future work:

• Explicitly address interaction design patterns
that foster meaningful user oversight (e.g.,
modular prompt chaining, co-creation loops).

• Expand design efforts to underexplored trust
dimensions (e.g., fairness, social well-being).

• Develop participatory methods that involve
diverse users in the co-design of trust-aware
LLM interfaces.

• Develop systems that calibrate trust in LLMs
not only by LLMs but also include human-in-
the-loop review.

• To support low-literacy users, consider, for ex-
ample, visual metaphors to reduce cognitive
burden or interaction logging, or user inter-
faces with a toggle to simplify responses.

• Replace binary on/off controls with graded
or layered control (e.g., co-authoring steps or
adjustable initiative).

• Move beyond controlled studies to assess how
trust and control evolve during prolonged,
real-world interaction (in-the-wild evaluation)

• Consider long-term, real-world deployment
studies to assess how interaction designs
shape trust over time.

Finally, we advocate for design that enables not
just enhanced control, but critical engagement with
LLM behavior, especially through scaffolds that
support users in questioning and modifying model
output.
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6 Limitations

We identify three main limitations of this study.
First, as this is a design-centered survey rather than
a systematic meta-analysis, two types of constraints
apply: those related to paper selection and those
associated with the derivation of the proposed de-
sign typology. The final scope of included papers
was based on a qualitative assessment by two an-
notators, followed by iterative discussion to reach
consensus on inclusion. Consequently, not all pa-
pers containing search terms in the abstract, title, or
keywords were included. Both the paper selection
and the resulting classification are thus shaped by
human judgment and interpretability. In particular,
some papers at the boundary between metric-driven
evaluation and user-centered design were included
if they contained at least partial user evaluation
components, such as in Koraş et al. (2025), where
the user study was exploratory and not systematic.
Although many papers could plausibly be assigned
to multiple paradigms, annotators were instructed
to assign each paper to a single primary category.
The proposed design paradigms were qualitatively
derived and require further empirical validation.

Second, due to limitations in the ACL Anthology
search interface (see Section 2), it was not possi-
ble to apply an identical search string across both
databases. While the ACM Digital Library search
allowed for complex Boolean queries, the ACL An-
thology search relied on simpler keyword combina-
tions (see Section 2). This discrepancy may have
introduced a bias by potentially missing relevant
ACL papers that would have matched the full ACM
query. A brief comparative test or validation of cov-
erage was not feasible, but we acknowledge that
this search asymmetry could affect the complete-
ness and balance of the corpus. Furthermore, the
review does not include papers from other sources
such as arXiv, which means that unpublished or
in-progress work was not considered.

Third, the reviewed studies are predominantly
situated in English-speaking and Western contexts,
as only papers published in English were included.
This limits the cultural and linguistic diversity of
the findings.

7 Ethical statement

This work is a meta-analysis of published research
at the intersection of HCI and NLP. We do not
present or process personal data, nor do we involve
human participants. All surveyed papers were

selected from publicly accessible, peer-reviewed
sources, excluding preprints. Where user studies
are reported in the cited literature, we rely on the
original authors’ ethical approvals and disclosures.
Care was taken to fairly represent a diverse set of
approaches and to avoid overgeneralizing results.

We acknowledge that relying solely on pub-
lished, English-language sources may introduce
publication and cultural bias, leading to an over-
representation of Western perspectives. This is not
only a methodological limitation (see Section 6),
but also an ethical concern for the generalizability
and inclusivity of our findings.
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A Appendix Interface-level accuracy control. User-led ver-
ification based on consistency of LLM responses
(Cheng et al., 2024); user control of LLM edits
(Laban et al., 2024); user study of LLM-based
planning systems (Lee et al., 2025); user-centered
development of hallucination identifier for LLMs
(Leiser et al., 2024). Primary trust aspect: Accu-
racy, transparency.

Workflow-aligned and domain-adapted AI assis-
tance. LLM-assisted topic modeling for qualita-
tive analysis (Akter et al., 2025; Choi et al., 2024);
human–LLM collaboration for thematic analysis
(Dai et al., 2023); LLM code generation with user
feedback (Dong et al., 2025); human-in-the-loop
conversation summarization for financial advisors
(Gupta et al., 2025); plan-then-execute LLM col-
laboration with user-in-the-loop control (He et al.,
2025); LLM-based legal advice with user interven-
tion (Hu et al., 2024); human evaluation of LLM
programming assistant (Kazemitabaar et al., 2024);
human evaluation of LLM-generated texts in clini-
cal settings (Koraş et al., 2025); user evaluation of
LLM-based code assistance with guardrails (Liffi-
ton et al., 2023). Primary trust aspect: Accuracy,
transparency, oversight; auditability.

Participatory designs. Co-designed self-
directed learning planner (Chun et al., 2025);
co-design of roleplay prompts with domain experts
(Louie et al., 2024); climate advice via co-designed
LLM interaction (Nguyen et al., 2024); user
involvement in the LLM-as-a-judge concept
(Pan et al., 2024); comparing human and LLM
judgements of cultural adaptability (Rao et al.,
2025); collaborative prompt authoring interface
for homework problems (Reza et al., 2025); AI
literacy education (Theophilou et al., 2023);
co-creation of chatbot personas for emotional
reliance (Zheng et al., 2025b); user preference
of texts with different labels (LLM-generated vs.
human) (Zhu et al., 2025). Primary trust aspect:
Reliability, fairness, bias.

Interactive authoring & co-creation. Interac-
tive prompt engineering and evaluation (Arawjo
et al., 2024); human–AI co-creation of news head-
lines (Ding et al., 2023); provenance-driven co-
writing (Hoque et al., 2024); human–LLM co-
creation of research questions (Liu et al., 2024);
user-aligned co-filtering of discomforting recom-
mendations (Liu et al., 2025); direct manipulation
interface (Masson et al., 2024); human–LLM co-
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creation of questionnaires (Overney et al., 2025);
end-user auditing scaffolds for identifying LLM
biases (Prabhudesai et al., 2025); LLM-based
human–AI auditing (Rastogi et al., 2023); hu-
man–LLM modular prompt chaining (Wu et al.,
2022); LLM-based human–AI evaluation of LLM
behavior (Zhang and Arawjo, 2025); LLM-assisted
user evaluation of LLM personalities (Zheng et al.,
2025a); human evaluation of LLM-generated per-
sonalized disinformation (Zugecova et al., 2025).
Primary trust aspect: Reliability, transparency.

Explanation-centered approaches. User evalu-
ation of LLM explanations for abusive language
detection tasks (Di Bonaventura et al., 2024); user
evaluation of contrastive explanations (Buçinca
et al., 2025); impact of LLM explanations on user
reliance (Kim et al., 2025); user evaluation of
safety-related LLM rationales (Mei et al., 2023);
evaluation of LLM rationale quality (Mishra et al.,
2024); user study with multi-level model explana-
tions (Monteiro Paes et al., 2025); user evaluation
of human vs. XAI explanations (Pafla et al., 2024);
user evaluation of LLM explanations and search
engines (Si et al., 2024); user evaluation of tree-of-
thought visualization (Spinner et al., 2024); in-situ
anchored code explanations (Yan et al., 2024); hu-
man vs. LLM rationales (Yao et al., 2023); spatially
structured and temporally adaptive explanations
(Wang et al., 2025). Primary trust aspect: Explain-
ability, transparency, reliability.

Style-based trust calibration. Reliance interven-
tions (Bo et al., 2025); hesitant vs. self-assured
auto-complete LLM suggestions (Kadoma et al.,
2024); certain vs. uncertain LLM responses (Kim
et al., 2024b); interactive AI–human deliberation
(Ma et al., 2025); disclaimers + high vs. low author-
ity style in LLM responses (Metzger et al., 2024);
LLM-generated trust repair strategies (Pareek et al.,
2024); LLM-generated emphatic expressions of
politeness (Zhou et al., 2025b); LLM-generated
uncertainty markers (Zhou et al., 2024). Primary
trust aspect: Transparency, reliability, biases.

Privacy-aware architectures and tools. User-
centered self-disclosure abstraction (Dou et al.,
2024); threat model for user-centered mitiga-
tion of adversarial prompts (Lin et al., 2025);
user-led data minimization (Zhou et al., 2025a);
privacy-safeguarding intermediary between users
and LLMs (Ngong et al., 2025). Primary trust
aspect: Privacy.
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Abstract
Retrieval Augmented Generation (RAG) has
advanced Question Answering (QA) by con-
necting Large Language Models (LLMs) to
external knowledge. However, these systems
can still produce answers that are unsupported,
lack clear traceability, or misattribute informa-
tion – a critical issue in the biomedical domain
where accuracy, trust and control are essential.
We introduce TripleCheck, a post-hoc frame-
work that breaks down an LLM’s answer into
factual triples and checks each against both
the retrieved context and a biomedical knowl-
edge graph. By highlighting which statements
are supported, traceable, or correctly attributed,
TripleCheck enables users to spot gaps, un-
supported claims, and misattributions, prompt-
ing more careful follow up. We present the
TripleCheck framework, evaluate it on the Sci-
Fact benchmark, analyze its limitations, and
share preliminary expert feedback. Results
show that TripleCheck provides nuanced in-
sight, potentially supporting greater trust and
safer AI adoption in biomedical applications.

1 Introduction

Large Language Models (LLMs) augmented with
retrieval, commonly referred to as Retrieval Aug-
mented Generation (RAG), have significantly im-
proved question answering (QA) by grounding re-
sponses in external sources. However, despite re-
ducing hallucinations, these systems still exhibit
key failures due to inherent system design con-
straints (Barnett et al., 2024).

In biomedical domains, especially in real-world
industry, RAG is relatively underexplored (Bunnell
et al., 2025; Ng et al., 2025) but distinct challenges
have been pointed out, such as the lack of stan-
dard evaluation, unique ethical risks, and recurring
problems with irrelevant or misleading information
that hamper adoption in a field where both accurate
and traceable information is crucial1. Addition-

1See UN News on WHO’s warnings regarding generative

ally, inaccurate or outdated references can com-
promise the quality of generated responses (Amu-
gongo et al., 2025; Gargari and Habibi, 2025).

Human-AI collaboration research stresses the
need for interaction designs that keep users en-
gaged and aware (Song et al., 2025). Without care-
ful explanation mechanisms, users may become
overreliant on AI systems (Vasconcelos et al., 2023;
Kim et al., 2024; Passi et al., 2024; Zhang et al.,
2020). Paradoxically, conventional explanation
techniques can increase user trust even when the AI
is wrong, elevating the risk of unsubstantiated but
plausible-sounding answers (Bansal et al., 2021;
González et al., 2021). This underscores the need
for new approaches that better surface evidence and
improve claim traceability.

To address these gaps and foster appropriate trust
in biomedical QA, we propose a post-hoc verifi-
cation layer that provides fine-grained evidence
assessment. Biomedical fact-checking presents
unique challenges: knowledge is constantly up-
dated, and contextual nuance often determines the
interpretation of evidence (Sosa and Altman, 2022).
Overcoming these issues requires strategies that
support more nuanced, context-aware evaluations.

We introduce TripleCheck, a system-agnostic
post-hoc verification framework that can decom-
pose AI-generated biomedical answers into factual
triples and checks each for support within both
the retrieved context and a large-scale biomedical
knowledge graph that aggregates literature, patents,
and clinical trials among other sources. This dual
approach highlights statements that are supported,
traceable, correctly attributed, and flags gaps such
as misattributions or conflicting evidence from var-
ious sources. This can potentially help users recog-
nize when to be skeptical or seek further evidence
to make their own conclusions. By making the sup-
port and traceability of claims explicit, TripleCheck

AI in healthcare :https://news.un.org/en/story/2023/
05/1136707
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aims to calibrate user trust and promote safe re-
liance on AI answers. Our main contributions are:

• We present TripleCheck, a verification frame-
work for biomedical QA that cross-checks an-
swer claims with both retrieved context and a
large-scale biomedical knowledge graph.

• We evaluate TripleCheck on a scientific claim
verification benchmark (SciFact (Wadden
et al., 2020)), showing robust performance
against supervised and zero shot alternatives
and provides interpretable evidence for each
decision. Our analysis shows it disentangles
both supported and unsupported information
in complex answers.

• We discuss real-world applications and initial
expert feedback, illustrating how TripleCheck
has the potential to improve trust calibration,
transparency, and traceability for workflows
such as literature review and clinical QA.

2 Related Work

Scientific Claim Verification Automated fact-
checking has progressed from general domains
such as political news to specialized areas like
biomedicine. Datasets like FEVER (Thorne
et al., 2018) supported claim verification against
Wikipedia, while SciFact (Wadden et al., 2020)
introduced the challenge of verifying scientific
claims using abstracts, spurring advances in both
evidence retrieval and claim classification. SciFact-
Open (Wadden and et al., 2022) broadened this to
open-domain settings with over 500,000 abstracts,
revealing that scientific evidence is often partial or
ambiguous. Other resources have stressed the im-
portance of explainability and evidence alignment
for biomedical fact-checking (Kotonya and Toni,
2020; Sarrouti et al., 2021; Saakyan et al., 2021;
Kumar et al., 2025).

Beyond traditional claim verification, recent
efforts leverage knowledge graphs (KGs) to re-
duce factual errors, especially given their ability to
systematically map relationships among biomed-
ical entities. Notably, recent benchmarks (Lin
et al., 2024) challenge AI agents to cross-verify
KG-derived facts against the literature, revealing
that even advanced LLMs often struggle with
this task. Among KG-based approaches, Med-
GraphRAG (Wu et al., 2024) takes a fundamen-
tally different approach by integrating a knowledge
graph directly into the retrieval and generation pro-
cess, aiming to produce answers that are verified

at generation time. In contrast, TripleCheck acts
as a post-hoc verification layer: it operates on the
output of any generative QA system, requiring no
modification or re-training, but instead adding an
extra verification step to independently assess claim
validity. This distinction means TripleCheck can
complement methods like MedGraphRAG by pro-
viding an additional safety net.

Other methods propose post-generation claim
checking, such as extracting claims from model
outputs for KG validation (Guan et al., 2024), or
hallucination detection using structured entailment
checking over generated answer triples (Sansford
et al., 2024). However, these works either do not
leverage an external KG for cross-checking (as
in (Sansford et al., 2024)), or they lack a user-
facing explanation component (as in (Guan et al.,
2024)). In contrast, TripleCheck not only com-
bines text entailment and KG validation in a dual-
evidence approach, but is also designed with user-
understandability and interaction in mind.

Our approach builds on these directions by
proposing a zero-shot, post-hoc verification layer
that can be added on top of any generative QA sys-
tem. We uniquely leverage a large-scale biomedical
KG to robustly cross-validate atomic answer triples,
inspired by recent work in open-domain QA and
fact-checking (Li et al., 2025; Kamoi et al., 2023).
Importantly, TripleCheck preserves the LLM’s orig-
inal answer, instead surfacing supporting or contra-
dictory evidence for each claim so users can make
informed, nuanced judgment – an essential feature
in the evolving and often ambiguous landscape of
biomedical research.

Trust Calibration and Explainable QA Inter-
faces Trust calibration – the process by which
user trust aligns with the true reliability of an AI
system – has emerged as a critical factor in med-
ical AI adoption (Sakamoto et al., 2024). Effec-
tive calibration can improve decision accuracy, yet
achieving it remains challenging, as trust depends
on perceived understandability, technical compe-
tence, and system reliability (Darvish et al., 2024).
Inadequate calibration, whether overtrust or under-
trust, can lead to unsafe outcomes in high-stakes
biomedical environments.

There is a growing consensus that AI systems
in these domains must support user understanding
and oversight through explainable interfaces (Liang
and Sonntag, 2025). For example, Li et al. (2024)
describe an LLM-assisted QA system with ex-
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Figure 1: Overview of the TripleCheck pipeline. Given a user question and an answer from a RAG system,
TripleCheck extracts atomic triples from the answer (and context) and verifies each one through two channels:
(1) alignment with the retrieved context (documents or passages) and (2) cross-checking against a biomedical
knowledge graph. Each triple is then labeled as supported, unsupported, or contradicted based on both evidence
sources. This claim-level verification can be presented to the user as an interactive interface that highlights which
parts of the answer are trustworthy and which require caution.

plicit KG integration for user control, while oth-
ers caution that some explanations can inadver-
tently increase overtrust, even when the system is
wrong (González et al., 2021; Bansal et al., 2021;
Vasconcelos et al., 2023).

Effective interfaces feature interactivity, en-
abling users to explore not only the answer, but why
and how it was produced. This approach helps fos-
ter appropriate skepticism and engagement (Rudin
et al., 2022; Lai et al., 2023). In the biomedical
domain, recent work by Huang et al. (2024) shows
that providing multi-hop, interpretable rationales in
a drug repurposing model, improved clinicians’ ac-
curacy, confidence, and decision efficiency, under-
scoring the value of transparent, actionable expla-
nations. Similarly, tools such as claim verification
with evidence trails (e.g., using SHAP) improve
decisions, though risk overreliance without careful
design (Liang and Sonntag, 2025).

While we do not fully explore the possibilities
of building a sophisticated user interface in this
work, TripleCheck is explicitly designed to pro-
vide users with the information needed to calibrate
trust and promote informed oversight. By break-
ing down answers into checkable factual units, la-
beling each as supported, unsupported, or contra-
dicted, and surfacing the underlying evidence from
literature or knowledge graphs, TripleCheck of-

fers fine-grained transparency. This enables users
to scrutinize each claim with an appropriate level
of skepticism or confidence, in line with findings
within Human Computer Interaction (HCI) that
emphasize user control as fundamental for trust
calibration in AI (Passi et al., 2024).

3 Methodology: Post-hoc Claim
Verification with TripleCheck

System Overview TripleCheck acts as a post-
processor for a standard RAG pipeline. Suppose a
user poses a question and the QA system produces
an answer along with retrieved documents or pas-
sages as context. TripleCheck takes this answer and
its supporting context as input, and performs three
main steps: (1) Triple Extraction, (2) Evidence
Alignment, and (3) Triple Classification. The out-
put is a set of annotated triples derived from the
answer, each marked with whether it is supported
by the context and/or by the external knowledge
graph along with any additional evidence surfaced.
Figure 1 illustrates this workflow. As TripleCheck
is system-agnostic and never alters the original an-
swers, it can be flexibly added to any QA workflow
to provide a second layer of verification.

Triple Extraction The first step breaks each an-
swer into factual triples of the form (Subject, Pred-
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icate, Object). For example: from “A deficiency
of vitamin B12 increases blood levels of homocys-
teine, which is a risk factor for heart disease,” we
extract (vitamin B12 deficiency, increases, homo-
cysteine levels) and (homocysteine, is a risk factor
for, heart disease), each treated as an independent
claim.

Our method follows recent approaches that com-
bine large language models (LLMs) with post-hoc
canonicalization of biomedical entities and rela-
tions (Zhang and Soh, 2024). It integrates two
main strategies:

• LLM-based parsing: We prompt an LLM
(GPT-4.1) with instructions (found in the ap-
pendix in Table 4, section A.2) to decom-
pose the answer into concise factoid triples
((Subject, Predicate, Object)). The
prompt is designed to focus on biomedical re-
lations relevant to our KG and domain, and to
avoid redundancy or overly broad statements.
This captures implicit facts missed by more
rigid parsers.

• NER and RE: In parallel, a pipeline for
Named Entity Recognition (NER) and Rela-
tion Extraction (RE) identifies key biomedi-
cal entities (e.g., genes, chemicals, diseases)
and the relations between them, restricted to a
predefined ontology (e.g., “downregulates” ,
“upregulates”, etc) present in our KG.

Candidate triples from both methods are merged,
with further processing to expand abbreviations
(e.g., “TNF” → “Tumor Necrosis Factor”) and link
entities to KG identifiers. Triples referencing novel
or out-of-ontology entities are excluded from KG
validation using relations, but retained for textual
entailment-based checking. To reduce spurious
alignments that could arise during the linking pro-
cess, an LLM module screens for semantic consis-
tency of the final triples to the system answer. The
output is a set of cleaned, distinct factual triples
asserted by the answer (see Table 1).

Contextual Evidence Alignment To measure
the alignment between the answer and the con-
text, TripleCheck evaluates whether each extracted
triple is supported or refuted by the retrieved con-
text. The triple extraction pipeline is also applied
to the context documents, yielding sets of context
triples for creating a similar structured comparison
between claim and context as done by Sansford

Original Claim Extracted Triples
Albendazole is used to treat lym-
phatic filariasis.

(Albendazole, treats, Lymphatic fi-
lariasis)

DMRT1 is a sex-determining gene
that is epigenetically regulated by
the MHM region.

(DMRT1, associated with, sex de-
termination)
(MHM region, regulates , DMRT1)

Leukemia associated Rho gua-
nine nucleotide-exchange factor re-
presses RhoA in response to SRC
activation.

(Rho guanine nucleotide exchange
factor, inhibits, RhoA)
(SRC activation, induces, Rho gua-
nine nucleotide exchange factor)

Table 1: Original claims and their extracted triples. Re-
lations and entities are additionally mapped to valid
entities and relation types present in our KG.

et al. (2024). For each answer triple, we attempt
different matching strategies:

• Direct Support: If the context triples set con-
tains an identical triple to what is in the an-
swer, the claim is marked as explicitly sup-
ported by the retrieved context.

• No Support: If the triple is absent in the
context, it is initially treated as unsupported.
However, as absence may result from novel or
poorly linked entities, we leverage an LLM to
assess if the context entails, contradicts, or is
neutral toward the claim (instructions can be
found in Table 3, section A.1). Entailment pro-
vides implicit support, contradiction triggers
a warning, and otherwise the triple remains
unsupported.

This strategy allows verification at the individual
claim level, revealing when some aspects of an
answer are substantiated while others are not.

Knowledge Graph Evidence Alignment
TripleCheck simultaneously checks each triple
against a biomedical KG that aggregates extracted
relationships from sources like PubMed, clinical
trials, and patents, among many others. We label
extracted triples as:

• KG-Supported: If the triple or a suitable
variant exists in the KG, we mark it as KG-
supported. If the previous is not found, we ad-
ditionally extract documents mentioning both
entities in the triple and run the same textual
entailment framework ran during the contex-
tual evidence alignment step to reduce false
negatives. We make the supporting evidence
available.

• KG-Contradiction: If the KG records an op-
posing assertion (e.g., “A negative cause B”
vs. the answer’s “A positive cause B”) via KG

36



relations or textual entailment method, we flag
this as a contradiction and surface the relevant
evidence.

• KG-Unsupported: If neither support nor con-
tradiction is found, the claim is tagged as un-
supported, suggesting either novel science, un-
supported assertion or simply a gap in the KG.

Triple Classification By combining contextual
evidence and KG-based validation, TripleCheck
assigns each claim to one of four main verification
categories:

1. Fully Supported: Found in both sources, in-
dicating robust scientific consensus and proper
attribution.

2. Supported by KG Only: Present in the KG
but missing from retrieved context, flagging a
retrieval or citation gap.

3. Supported by Context Only: Found in the
context but not in the KG, pointing to possible
new concepts or KG incompleteness.

4. Unsupported: Unsupported by either evi-
dence channel, raising the possibility of a hal-
lucination or unsubstantiated claim.

Additional flags are included for these cases:

1. Contradicted in Context: Explicitly contra-
dicted by at least one retrieved passage, high-
lighting a likely error in system logic or mis-
leading result.

2. Contradicted in KG: Contradicted by the
knowledge graph, signaling the existence of
contested information.

This fine-grained verification surfaces precisely
which portions of an answer are reliable, unsup-
ported, or contested, providing targeted feedback
for both users and developers. TripleCheck never
alters the original answer; users can decide how
to act on verification results, while QA develop-
ers may use this information to improve retrieved
citations and generation strategies.

Proprietary Components TripleCheck’s imple-
mentation makes use of certain proprietary compo-
nents. Specifically, our triple extraction pipeline
relies on an in-house biomedical NER and RE sys-
tem, trained on a broad mix of public biomedi-
cal annotations and internal corpora, to achieve

Figure 2: Simplified view of our proprietary KG: un-
structured documents contain concept mentions and
their relationships. We are able to trace in which docu-
ments specific relations are mentioned.

wide entity and relation coverage and high accu-
racy across the biomedical domain. The KG used
for evidence alignment is constructed by aggre-
gating structured relationships extracted through
automated processes from scientific literature, clini-
cal trial data, patents, and other specialized sources,
some of which are not publicly available. An illus-
trative overview of the knowledge graph structure is
shown in Figure 2. While these specific resources
cannot be released due to licensing and privacy
constraints, the overall TripleCheck framework is
system-agnostic and designed for flexibility. Simi-
lar pipelines can be constructed using open-source
biomedical NER/RE tools and knowledge graphs
such as PrimeKG (Chandak et al., 2023). We en-
courage both academic and industry practitioners
to build on or adapt our proposed framework with
alternative resources, and view TripleCheck as an
inspiration and blueprint for transparent, responsi-
ble biomedical QA in both open and proprietary
environments.

4 Evaluation

We evaluated TripleCheck on the SciFact bench-
mark (Wadden et al., 2020), where claims are anno-
tated as Supported, Refuted, or NEI (Not Enough
Info). As access to the SciFact test set labels is no
longer available 2, we perform evaluation on the de-
velopment set similar to other studies (Deka et al.,
2023). While we present results from several other
methods on both test set and development set, our

2Evaluation on test set was only available via leaderboard
which is now closed: https://leaderboard.allenai.org/
scifact/submissions/public
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Model Precision Recall F1
Evaluated on SciFact Dev Set (Zero-Shot Setting)

TripleCheck (ours) 0.73 0.70 0.70
PubMedBERT-mnli (Deka et al., 2023) 0.66 0.59 0.63
PubMedBERT-mnli-mednli (Deka et al.,
2023)

0.84 0.75 0.79

DeBERTa-v3-base-mnli (Deka et al.,
2023)

0.42 0.39 0.40

DeBERTa-v3-base-mnli-mednli (Deka
et al., 2023)

0.78 0.70 0.74

Evaluated on SciFact Test Set
Zero-NatVer (Strong et al., 2024) (zero-
shot)

- - 0.55

ClaimGen (entity-based) (Wright et al.,
2022)

0.73 0.69 0.71

ClaimGen (BART) (Wright et al., 2022) 0.64 0.79 0.71
MultiVerS (Wadden et al., 2022) (weak-
supervision)

0.73 0.71 0.72

VerT5erini (Pradeep et al., 2021) 0.64 0.73 0.68

Table 2: Fact verification results on SciFact. Top: All
models evaluated on the development set in a zero-shot
setting (i.e., not fine-tuned on SciFact train data). Bot-
tom: Results on the test set, as reported in original pub-
lications; including zero-shot and weakly supervised
approaches. Note: Due to test set access restrictions,
only dev set results are shown for our approach.

key point is that TripleCheck delivers performance
broadly in line with state-of-the-art alternatives,
highlighting its practical competitiveness.

TripleCheck’s output, though more fine-grained,
is mapped for comparison: we label the entire data
point (a claim from the scifact dataset) as Sup-
ported if all component triples are at least sup-
ported by the retrieved context and none are con-
tradicted, Refuted if any triple is contradicted, and
NEI otherwise. While this mapping is a simplifica-
tion, it enables comparison on this benchmark.

TripleCheck achieves an F1 of 0.70 on SciFact
(dev set) in a zero-shot setting without any task-
specific fine-tuning, which is notable given that
many comparison models, such as MultiVerS (Wad-
den et al., 2022) and VerT5erini (Pradeep et al.,
2021), are tuned for this task. When com-
paring against other zero-shot approaches evalu-
ated on the development set (Deka et al., 2023),
TripleCheck achieves competitive performance,
and outperforms strong baselines. This under-
scores TripleCheck’s out-of-the-box robustness,
even though our setup intentionally prioritizes
transparency and explainability over strict optimiza-
tion for SciFact. The results can be seen in Table 2.

Beyond aggregate scores, we also analyzed
TripleCheck’s outputs for cases where it pro-
vides nuanced judgments that classic fact-checkers
might miss. We found that about 10% of Sci-
Fact’s unsupported or contradicted claims were
in TripleCheck’s Supported by KG Only category.
Upon inspection, it was evident that while the claim

was not supported by the context, the claim was
not a non factual claim, and we were able to collect
evidence from the biomedical knowledge graph
supporting this as an established fact. This reflects
a traceability gap, highlighting where a claim may
be true even if not cited. Our proposed step for
such claims is to improve traceability by fetching
additional data, rather than labeling the full claim
as non factual. For example, in Scifact, the claim
"A deficiency of vitamin B12 increases blood lev-
els of homocysteine." is labeled as unsupported
against the context, however, this is a known fact
that is well supported in the KG.

4.1 Preliminary Feedback from a Domain
Expert

While a full user study was beyond the scope of this
research, we solicited preliminary feedback from a
biomedical researcher to assess TripleCheck’s prac-
tical value. The expert reviewed 30 claim-context
pairs from the SciFact dataset, along with our sys-
tem’s triple-level evidence (see Figure 3 in the ap-
pendix). Feedback was collected via a structured
questionnaire and follow up interview. Several key
themes emerged:

Granular Verification and Trust Calibration.
The domain expert confirmed that decomposing
answers into factual triples substantially increased
clarity and enabled a more nuanced, calibrated ap-
proach to trusting system outputs. Rather than
treating each answer as a single unit, the triple-
based breakdown highlighted exactly which sub-
claims were well-supported, which were missing
evidence, and where there was explicit contradic-
tion, echoing prior findings on the value of graph-
based and evidence-traceable explanations in med-
ical AI (Johnson et al., 2024). This allowed for
more selective skepticism according to the expert:
reliable portions of an answer could be accepted at
face value, while unsupported or contested subsec-
tions triggered further review.

Role and Value of Knowledge Graph Support.
Feedback emphasized that KG evidence often
served as a crucial complement to retrieved context,
especially for well-established biomedical facts
that may not appear in the narrow selection of re-
trieved literature. The expert noted that, in prac-
tice, when an answer was supported only by the
KG, they took it as a signal of a gap in retrieval
coverage rather than a problem with the claim’s
validity, pointing to the fact that the user sees the
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KG as a more objective and trustworthy source of
truth. This aspect of traceability was highly val-
ued for both – confirming canonical domain knowl-
edge and helping efficiently flag true retrieval errors
– demonstrating the importance of multi-channel
verification over text-only methods. The distinc-
tion between KG-backed, context-backed, and un-
supported can enable an action-oriented workflow:
claims could be triaged for acceptance, additional
investigation, or citation gap-filling.

UI Suggestions, and Information Overload.
While the expert found the surfacing of support-
ing evidence to be confidence-boosting, to further
reduce cognitive load and speed up review, UI sug-
gestions were made such as: entity highlighting,
displaying synonyms, and visually denoting the
location of each triple within the evidence. Expla-
nations that grew too detailed or technical could
overwhelm non-specialists, consistent with recent
findings on explanation overload (Hoffman et al.,
2023). The expert also mentioned that as the goals
change, the user might be interested in going deep
into a topic, while at other times they want to get
a high-level overview, therefore, controlling the
level of depth and being able to explore and expand
based on evidence could be useful. Finally, layered
or toggleable presentation and simplified language
were highlighted as desirable features.

Gold Standard Inconsistencies and Multiple Ver-
ification Channels. The expert occasionally de-
tected that some claims labeled as Supported in
SciFact were not substantiated by the provided ab-
stracts, illustrating limitations of relying on single-
source, gold-standard labels. This further sup-
ported the premise that multi-evidence verification
is necessary to uncover gaps, avoid propagation of
citation errors, and empower users to make cau-
tious, context-sensitive decisions.

Taken together, this preliminary expert feedback
strongly supports TripleCheck’s approach to trans-
parent, claim-level verification across multiple ev-
idence channels. The integration of both KG and
literature-derived support increases trust calibra-
tion, traceability, and user agency. The decompo-
sition of answers not only aligns with real-world
expert workflows but also makes the process of val-
idation more actionable, helping users efficiently
accept, investigate, or contest subclaims as needed.
Comprehensive, interactive user studies remain a
target for future work, but these results demonstrate
significant potential for TripleCheck to promote

safer and more reliable biomedical AI adoption.

5 Use Cases and Discussion

TripleCheck is broadly applicable to scenarios
where users need to trust but verify AI-generated
answers. We discuss a few use cases and their
potential impact:

Literature Review Assistant: Researchers of-
ten use QA systems to quickly summarize find-
ings across papers (e.g., “What causes condition
X?”). TripleCheck would allow them to see which
claimed causes are well-established (supported by
multiple sources or KG) versus which are tenta-
tive more contested. It can also reveal if the sys-
tem’s answer includes claims not actually found in
any cited papers, prompting the researcher to do a
deeper dive for those claims.

Regulatory Document Drafting: In writing re-
ports for drug approval or clinical guidelines, ev-
ery statement needs a reference. An AI assistant
could assist in drafting a section (e.g. drug efficacy)
and TripleCheck would immediately flag any state-
ment that lacks backing from the retrieved studies
or known medical facts. This helps authors more
quickly pinpoint those evidence gaps, saving time
and preventing unsubstantiated claims from slip-
ping through.

Clinical Decision Support: A clinician asking
an AI assistant about treatment recommendations
could benefit from TripleCheck’s breakdown. For
example, if the answer says “Drug A improves out-
come Y and is not associated with side effect Z,”
TripleCheck might show the first claim is supported
by a trial but the second claim is unsupported be-
cause the system didn’t actually retrieve evidence
about side effect Z. The clinician thus knows to be
cautious or look up that specific point.

Improving QA System Development:
TripleCheck can be used offline by develop-
ers of biomedical QA systems to analyze where
the system tends to hallucinate or omit citations.
If many answers have support only coming from
the KG, it may mean the system is relying on
prior knowledge not present in the retrieved text —
maybe the retrieval component needs improvement.
If many answers have “Unsupported” triples, the
LLM might be overgeneralizing, suggesting a need
for better grounding or post-editing.
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Hypothesis Generation: Beyond verification,
TripleCheck can assist in hypothesis generation
by identifying claims that are plausible yet unsup-
ported by the current evidence base. By inverting
the verification output, users can systematically
surface statements that are not confirmed in re-
trieved context or the knowledge graph. These un-
supported claims can be then further investigated
to see if they highlight potential gaps in scientific
knowledge and serve as starting points for novel
research questions.

By design, TripleCheck encourages a habit of
verification. Rather than replacing human judg-
ment, it guides users to the relevant evidence (or
absence thereof). This aligns with the goal of safer
deployment of AI in biomedicine: the human ex-
pert remains in the loop, making final decisions
with a clearer view of the AI’s reliability on each
sub-point.

6 Limitations and Future Work

While promising, TripleCheck has several limita-
tions:

• Evaluation is still preliminary: To date, we
lack large-scale studies or professional user
testing to validate the usability and benefits of
TripleCheck. A crucial and active next step
will be conducting a user study to quantita-
tively evaluate TripleCheck’s impact on veri-
fication accuracy, confidence, and efficiency,
similar to the approach of Huang et al. (2024),
who assessed how interpretable explanations
improved clinicians’ decision-making. The
next step is to compare users with and with-
out access to TripleCheck as they assess AI-
generated answers, thereby testing whether
our framework enhances trust calibration and
decision quality. This study will focus on
three key outcomes: users’ accuracy in claim
verification, the time taken for assessment,
and their confidence in their decisions.

• User Experience Considerations: Highlight-
ing every claim in an answer can lead to infor-
mation overload and overwhelm users. Care-
ful interface design (e.g., toggleable detail lev-
els) and user training are needed to ensure
clarity. Tooltips or onboarding materials could
assist users in interpreting verification results.
Further exploration on how to build an effi-
cient user interface is an area of future work.

• Incomplete Knowledge Graph Coverage:
TripleCheck relies on a KG that, while ex-
tensive, is not exhaustive. It may lack very
recent findings, rare conditions, or new tech-
nologies, leading to true claims being labeled
as unsupported in KG. Expanding coverage
and dynamically updating ontologies could
have a positive impact.

• Triple Extraction Quality: The accuracy of
information extraction directly affects down-
stream processing. Errors can occur with com-
plex or explanatory sentences, leading to split,
merged, or inaccurate triples. While an LLM
verification step mitigates some issues, extrac-
tion errors can still cause correct claims to be
labeled as unsupported and vice versa.

• Added Latency and Complexity: The
pipeline introduces extra processing (LLM ex-
traction, KG lookup, textual entailment verifi-
cation) that increases latency. Processing each
answer is slower compared to simpler QA sys-
tems, and optimizations may be needed for
real-time applications.

• Proprietary Resources: As previously dis-
cussed, various components of TripleCheck
are proprietary. While we provide our main
TripleCheck system description to support re-
producibility, this limitation may hinder exact
replication by the research community. As
an area of future work, we aim to benchmark
public alternatives on fully open resources and
encourage efforts to develop analogous public
alternatives.

7 Conclusion

We presented TripleCheck, a post-hoc verification
framework for biomedical QA that decomposes
LLM-generated answers into factual triples and ver-
ifies each against both retrieved context and a large-
scale biomedical knowledge graph. Our SciFact
evaluation demonstrated that TripleCheck achieves
competitive zero-shot performance while provid-
ing fine-grained, interpretable evidence for each
claim. Initial expert feedback also suggested that
this approach can support more calibrated trust, im-
prove detection of unsupported or contested claims,
and aid decision-making in biomedical settings.
This initial feedback aligns well with anticipated
real-world use, supporting the practical value of
TripleCheck in biomedical workflows.
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While promising, TripleCheck faces challenges
such as refining user interfaces to manage informa-
tion load, and expanding coverage of supporting
knowledge. Most notably, future user studies are
necessary to measure TripleCheck’s real-world im-
pact on verification accuracy and user confidence.

TripleCheck represents a step toward more trans-
parent, accountable biomedical AI by offering ac-
tionable, triple-level evidence to end users and
developers. We hope this work encourages fur-
ther development of evidence-aware QA frame-
works, advancing safe and trustworthy use of AI in
biomedicine.
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A Example prompts

A.1 Entailment/contradiction prompt
In Table 3, we show the prompt used for assessing
textual entailment at different stages. We used the
same prompt to verify final triples are aligned with
system answer, to verify the triple is aligned with
the context and to verify that the triple is aligned to
any external evidence we have found via the KG.

A.2 Triple extraction
In Table 4, we show the instructions used for ex-
tracting initial triples. The initial triples were ad-
ditionally linked to ontology terms using our pro-
prietary entity linking system, and were afterwards
verified against the actual claim to ensure consis-
tency in the final triples set.

B Expert feedback questionnaire

Figure 3 shows how evidence was initially pre-
sented to the expert for initial feedback on what
could make the result more useful. In Table 5, we
have additionally compiled some of the key com-
ments coming both from the written feedback and
interview categorized into themes.
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System Prompt for LLM-based tex-
tual entailment

You are a claim -verification system.
Your task is to determine

whether the given statement is
supported (directly , indirectly
, or can be reasonably inferred
, even if this requires
combining context and general
biological knowledge) by the
provided context.

CONTEXT:
{context}

STATEMENT TO VERIFY:
"{ statement }"

VERIFICATION RULES:
1. Answer "YES" if the statement is

supported by the context , can
be logically inferred from the
context , **or if it is
biologically plausible and
consistent with accepted
scientific background knowledge
.** You can accept reasonable
combinations of entities as
long as the overall logic is
supported , even if not every
link is explicitly present in
the context. Do not be overly
strict about requiring explicit
verbatim phrasing or full

mechanistic d e t a i l s **favor a
positive answer if the overall
claim is well -supported or

reasonably implied .**
2. Answer "CONTRADICTION" if the

statement clearly contradicts
the context.

3. Answer "NO" only if there is
insufficient information , the
claim is irrelevant , or
biological plausibility is
seriously lacking or unclear.

RESPONSE FORMAT:
Begin with "YES", "CONTRADICTION",

or "NO" on its own line. Do not
start in any other way.

Then provide a brief , evidence -based
explanation that quotes or

paraphrases relevant portions
of the context and/or uses well
-accepted biological background
if relevant.

YOUR VERIFICATION:

Table 3: System prompt for textual entailment as used
in this work.
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System Prompt for LLM-based Triple Extraction

You are an expert extracting entities and relations from scientific text.

Given an answer to a scientific question , extract the claims in triples format.

Your output must be a valid JSON array containing exactly one object per triple in this format:
[[" subject1", "relation1", "object1"], [" subject2", "relation2", "object2"], ...]
** CRUCIAL RULES READ CAREFULLY :**
1. Do NOT use intervention phrases , experimental treatments , or contextual language as entities:

- Disallow: "PARN targeting", "PARN inhibition", "knockout of PARN", "overexpression of X", "
activation of Y"

- Allow only: the core biological entity/process itself (e.g., "PARN", "TP53", "insulin
maturation ")

2. Use concise , ontology -friendly names (2-4 words max), established biomedical terms , no
abbreviations unless standard.

3. DO NOT encode intervention or experiment type in subject/object. NEVER use experimental
manipulation phrases as entities.

- Do not use long descriptive phrases or qualifiers as entities.
- Use 2-4 words maximum for each entity , and keep them concise and ontology -friendly.
- Use established gene names , protein names , disease terms , and biological processes if possible.

** Direct Entity -Relation -Entity Guidance :**
- PREFERRED: ['Gene X', 'Directed Link ', 'Process Y']
- AVOID: ['Knockdown of Gene X', 'Directed Link ', 'Upregulated Process Y']
- Do not build effects (like "loss", "increase", or "compromised state ") into the entity. Use the

proper relation instead.

** Decompose Complex Entities :**
- Break up complex cause -effect phrases into multiple , simpler , functionally meaningful triples

only using entities present in standard biomedical ontologies.

** Relation Types (use only these) but keep in mind the mentioned above :**
-Focus mostly on these
Directed Link: Direct interaction between entities. Can include correlations or associations.

IMPORTANT When in doubt of direction , use this.
Negative Cause: Causes a decrease or inhibition in the target entity.
Not Directed Link: Interaction without specified direction.
Not Negative Cause: Does not lead to a negative effect.
Not Positive Cause: Does not lead to a positive effect.
Positive Cause: Causes an increase or stimulation in the target entity.

PPI (Protein -Protein Interaction): Interaction affecting protein function.
DDI (Drug -Drug Interaction): Interaction affecting drug effectiveness.

- These can be used to but limit them
ACTIVATOR: Increases activity of a process or molecule.
AGONIST: Initiates response by combining with a receptor.
AGONIST -ACTIVATOR: Initiates and enhances activity.
AGONIST -INHIBITOR: Acts as agonist and inhibitor.
ANTAGONIST: Inhibits physiological action of another.
DIRECT -REGULATOR: Directly modulates target activity.
INDIRECT -DOWNREGULATOR: Indirectly decreases target activity.
INDIRECT -UPREGULATOR: Indirectly increases target activity.
INHIBITOR: Slows or prevents chemical reactions.
PART -OF: Entity is a component of a larger structure.
PRODUCT -OF: Entity is a result of a process.
SUBSTRATE: Molecule acted upon by an enzyme.
SUBSTRATE_PRODUCT -OF: Substrate converted into a product.
undefined: Relationships not yet characterized or classified in this list but are still valid

.

- For abbreviations , prefer the full name if confidently available from context.
- Both subject and object must be concise entities/concepts , not specific statements , modifiers ,

or experimental constructs.
- Do NOT repeat triples (even if synonyms are used in the text).
- If none of the relations are present , use "undefined ". Do NOT invent new relations.
- If there are no triples present , return [].
- Your output must be valid JSON directly parsable by `json.loads ()` as a list of triple lists (

not nested or with extra structure) e.g. [[" subject1", "Directed Link", "object1"], ["
subject2", "Part -Of", "object2 "]].

- Do NOT include any explanations or text outside the JSON array.

Table 4: System prompt for triples extraction as used in this work.
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Figure 3: User feedback interface. While the intended use is in an interactive QA setting, this preliminary study
presented the interface in a static, questionnaire format to collect initial expert feedback. Future work will focus on
exploring different presentation formats and interactive modes.
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Theme: Evidence & Explanation Quality
“The explanation directly referenced the supporting evi-
dence, which was helpful.”
“The additional reasoning summarized relevant points well,
presented additional evidence and matched my interpreta-
tion.”
“Sometimes the explanation focused too much on specific
concepts, making it less broadly useful.”
“Having both ‘supported’ and ‘contradicted’ reasoning was
logical; it’s important to consider context, while ultimately
I would say this is a supported claim, as an expert I have
similar concerns as the contradictions surfaced.”
“If I feel an answer is incomplete or uncertain, I’ll ask for
more detail or reasoning before accepting it.”
“If the context doesn’t really support the claim, I become
wary and might not trust that part of the answer. So having
the additional evidence is key”
Theme: User Interface & Usability
“Highlighting the triple location or the keywords like gene
names or important biological terms would help me quickly
locate evidence in the text.”
“Some explanations were overly technical or as difficult to
follow as the original literature. It could be nice to choose
how deep to go yourself”
“It would help to see synonyms of entities or have key
parts of the triple highlighted directly in the evidence.”
“Claims can be hard to understand if you are not an expert
in the topic, simplified breakdowns or highlights would
make it easier.”
Theme: Knowledge Graph (KG) Value
“KG support was very useful, especially when the retrieved
context didn’t cover established facts.”
“Recognizing when information is canonical, even if not
in the provided context, adds confidence.”
“I often trust facts from the KG more, especially when the
answer is missing context evidence, it gives reassurance
about general scientific truth.”
“Sometimes, the KG picked up on a missing fact from the
literature, and that signaled an issue with the context rather
than a problem with the claim itself.”
Theme: Exploration & Workflow
“If most triples are supported, I move on, if any aren’t, I
dig deeper or ask for more sources. Seeing the breakdown
helps me focus.”
“Having access to more detailed evidence when I want it,
without being overwhelmed would make deciding whether
claims are true or not easier.”
Theme: Areas for Improvement
“Going through the retrieved context can already be com-
plex, so have a simplified language in the breakdown would
be helpful.”
“Balance between pointing out specifics and giving a gen-
eral overview in reasoning. User should be able to choose
how deep to go into the details”

Table 5: Sample categorized expert feedback (para-
phrased) from the TripleCheck evaluation.
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Abstract

With the increasing integration of Artificial
Intelligence (AI) in academic problem solv-
ing, university students frequently alternate be-
tween traditional search engines like Google
and large language models (LLMs) for infor-
mation retrieval. This study explores students’
perceptions of both tools, emphasizing usabil-
ity, efficiency, and their integration into aca-
demic workflows. Employing a mixed-methods
approach, we surveyed 109 students from di-
verse disciplines and conducted in-depth inter-
views with 12 participants. Quantitative anal-
yses, including ANOVA and chi-square tests,
were used to assess differences in efficiency,
satisfaction, and tool preference. Qualitative in-
sights revealed that students commonly switch
between GPT and Google: using Google for
credible, multi-source information and GPT
for summarization, explanation, and drafting.
While neither tool proved sufficient on its own,
there was a strong demand for a hybrid solu-
tion. In response, we developed a prototype, a
chatbot embedded within the search interface,
that combines GPT’s conversational capabili-
ties with Google’s reliability to enhance aca-
demic research and reduce cognitive load.

1 Introduction

The rapid advancement of artificial intelligence has
significantly reshaped the ways in which university
students seek academic information and engage in
research activities (Pirzado et al., 2024). Tradition-
ally, search engines like Google have served as the
dominant tool for retrieving scholarly content due
to their accessibility, breadth of indexed materials,
and access to verified sources. However, the emer-
gence of LLMs, such as OpenAI’s ChatGPT, has
introduced a new paradigm—offering students di-
rect, conversational responses and contextualized
summaries that can streamline information con-
sumption (Alberth, 2023).

This evolution in digital research tools raises im-
portant questions about how students perceive and
utilize these systems, particularly in academic set-
tings where accuracy, credibility, and efficiency
are critical. Prior research suggests that while
LLMs facilitate rapid content summarization and
task-specific assistance, their reliability varies de-
pending on context and task complexity (Divekar
et al., 2024; Xu et al., 2023). Conversely, search
engines provide access to a wide range of authori-
tative sources but often require users to sift through
multiple links and evaluate conflicting information
independently. Several studies have documented
this complementary behavior—students tend to use
LLMs for explanation and drafting while relying on
search engines for fact-checking and source valida-
tion (Caramancion, 2024; Spatharioti et al., 2023).

Despite their respective strengths, both tools also
have well-documented limitations. LLMs can gen-
erate confident yet incorrect outputs, potentially
misleading users (Xu et al., 2023), while traditional
search engines can lead to information overload
and inefficiency in time-sensitive academic con-
texts. As a result, students are increasingly adopt-
ing a hybrid approach—strategically switching be-
tween LLMs and search engines to balance speed
with credibility (Sakirin and Said, 2023; Kapoor
et al., 2024). However, this constant toggling be-
tween tools introduces cognitive overhead and frag-
mented workflows, especially when performing
complex academic tasks.

To investigate these dynamics systematically,
this study addresses the following research ques-
tions:

• RQ1: How do university students perceive
the usability, efficiency, and satisfaction of
LLMs compared to traditional search engines
in academic problem-solving?

• RQ2: What patterns of tool usage emerge
when students perform academic tasks with
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either or both tools?

• RQ3: What are students’ preferences and ex-
pectations for an integrated solution that com-
bines the strengths of both systems?

2 Literature Review

LLMs have significantly reshaped how individu-
als learn, make decisions, and retrieve information.
While traditional search engines like Google have
long been the primary tool for academic informa-
tion seeking, recent research increasingly explores
how LLMs compare in terms of usability, task per-
formance, and user trust. Divekar et al. (2024)
examined how university students use LLMs like
ChatGPT alongside traditional search engines for
learning new topics. Their findings indicate that
while LLMs support rapid summarization and ease
of understanding, their effectiveness varies depend-
ing on the complexity and nature of the task. In
a similar vein, Kumar et al. (2024) analyzed how
students use LLMs to generate SQL queries. They
observed that LLM assistance improved query for-
mulation and contributed positively to the learning
experience.

Several studies have also investigated task com-
pletion performance. Spatharioti et al. (2023) con-
ducted a randomized experiment and found that
LLM users completed decision-making tasks more
quickly and with fewer queries. However, the au-
thors warned of a major drawback: users often
overtrust LLM outputs, especially when incorrect
answers are presented confidently. They suggested
the inclusion of confidence indicators to mitigate
this issue. Xu et al. (2023) echoed this concern,
emphasizing the need for rigorous fact-checking
when relying on LLM responses.

In terms of task preference, Caramancion (2024)
evaluated 20 types of information-seeking scenar-
ios and concluded that users favored traditional
search engines for fact-based queries, while prefer-
ring LLMs for creative or complex tasks. Support-
ing this, Sakirin and Said (2023) found that nearly
70% of participants preferred ChatGPT-style con-
versational interfaces due to their personalization,
perceived efficiency, and convenience. Extending
these findings, Wazzan et al. (2024) studied image
geolocation tasks and observed that tool selection
often influenced user strategy: LLMs were used
more intuitively, while traditional tools required
structured navigation.

The issue of credibility remains central. Kapoor
et al. (2024) argued that despite the convenience
and rapidity of AI tools, traditional search methods
remain more reliable for academic research. In con-
trast, LLMs often lack source transparency, which
can be problematic in scholarly settings. To address
this trade-off, researchers have proposed hybrid
models. Bal and Nath (2009) explored metasearch
engines that aggregate content from various sources
to improve accuracy, and Caramancion (2024) ad-
vocated for systems that combine the contextual
depth of LLMs with the source validation strengths
of search engines.

However, existing studies have primarily evalu-
ated LLMs and traditional search engines in isola-
tion or through task-specific comparisons, without
fully exploring how students naturally combine
both tools in academic workflows (Xu et al., 2023).
There is a lack of empirical research that integrates
both performance metrics and user perspectives
to understand this hybrid usage behavior (Bansal,
2023). While tools like Perplexity AI (Perplexity
AI, 2024) attempt to bridge this gap by combin-
ing AI-generated responses with source links, and
Google has introduced AI summaries through its
Search Generative Experience (SGE), these sys-
tems remain largely static, lacking personalization,
real-time adaptation, and task-specific reasoning.
This study addresses these limitations through a
mixed-methods approach and the design of a user-
informed, context-aware prototype.

3 Methodology

To explore university students’ preferences and
usage behaviors regarding LLMs and traditional
search engines for academic tasks, we employed
a mixed-methods approach that combined quanti-
tative and qualitative data collection and analysis,
shown in Figure 1. This design allowed us to exam-
ine both broad patterns and deeper user experiences
in a complementary manner.

We first conducted an online survey that col-
lected responses from 109 university students
across a range of academic disciplines. While the
survey primarily targeted students in technology-
related fields such as Computer Science and Engi-
neering (CSE), Electrical and Electronics Engineer-
ing (EEE), and Data Science, it was also distributed
to students from other areas, including Business
Administration and Medicine, to ensure diversity.
The questionnaire included both closed- and open-
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Survey Interview

Themes

Qualitat ive Analysis
n = 109

Statist ical Analysis
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Satisfaction
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Tasks

6 academic tasks
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Method:  Thematic

- Effectiveness
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- Trust and credibility

- Contextual tool selection

Figure 1: Overview of the study methodology. A mixed-methods approach was employed in this study. (1) The
survey phase (n = 109) captured quantitative data and analyzed using different statistical tests. (2) The qualitative
phase included in-person interviews (n = 12), where participants completed six academic tasks and were grouped
based on tool usage. Thematic analysis of open-ended responses and interview transcripts led to four themes.

ended questions designed to assess tool usage fre-
quency, satisfaction, efficiency, and perceived ease
of use when using GPT-based LLMs and traditional
search engines like Google. Descriptive statistics
were used to summarize the data, and inferential
statistical tests, one-way ANOVA and chi-square
tests, were employed to evaluate differences in user
perceptions and the influence of demographic vari-
ables on tool preference.

To enrich and validate the survey findings, we
conducted in-depth in-person interviews with 12
students from CSE, EEE, and BBA backgrounds,
primarily recruited from United International Uni-
versity (UIU), Dhaka, Bangladesh. Each partic-
ipant was asked to complete six academic tasks:
summarizing a research article, solving a coding
problem (only for CSE students), addressing a
circuit-related issue (only for EEE students), ana-
lyzing business data (only for BBA students), draft-
ing a formal academic email, and comparing two
popular academic concepts. Participants were di-
vided into four groups based on their tool usage
behavior: GPT-only users, Google-only users, bal-
anced users who alternated between both tools, and
random-choice users who freely switched between
GPT and Google depending on preference.

The qualitative analysis synthesized insights
from both the open-ended survey responses and
interview transcripts. Thematic coding focused on
perceived effectiveness, usability, trustworthiness,
and the contextual factors that influenced tool selec-
tion. This analysis provided a comprehensive un-
derstanding of how students navigate the strengths
and limitations of both tools and how their choices
are shaped by the nature of the academic task, fa-

miliarity with the subject, and perceived cognitive
effort.

4 Demographics

4.1 Survey
The survey included 109 participants from a range
of academic disciplines and demographic back-
grounds. While the majority of participants came
from CSE, the sample also included students from
EEE, BBA, Data Science, Mathematics, Biochem-
istry and Biotechnology, and Medicine. Table 1
summarizes the distribution by department, CGPA,
gender, and age group.

The survey instrument included Likert-scale
questions assessing perceptions of traditional
search engines (e.g., Google) and LLM-based tools
(e.g., ChatGPT). Participants responded on a 5-
point scale: Never, Rarely, Occasionally, Fre-
quently, and Always. Each set of questions was
repeated for both tool categories, covering four
core dimensions:

• How often do you use the following tools for
academic tasks?

• How satisfied are you with the accuracy of
information provided by the following tools?

• How efficient are these tools in helping you
complete academic tasks?

• How easy are these tools to use for academic
purposes?

Participants rated these items separately for both
traditional search engines and LLM-based tools. At
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Department
Computer Science and Engineering
(CSE)

72

Electrical and Electronics Engineering
(EEE)

13

Bachelor of Business Administration
(BBA)

10

Data Science 8
Mathematics 4
Biochemistry and Biotechnology 1
Bachelor of Medicine, Bachelor of
Surgery (MBBS)

1

CGPA Range
3.81 – 4.00 23
3.51 – 3.80 30
3.01 – 3.50 36
2.50 – 3.00 16
Below 2.50 4

Gender
Male 81
Female 28

Age Range
18 – 20 years 5
21 – 25 years 95
26 – 30 years 9

Table 1: Distribution of participants by department,
CGPA range, gender, and age group.

the end of the survey, participants were also asked
to indicate their overall preference.

This combination of parallel metrics and com-
parative judgment allowed for consistent statistical
comparisons across tools, while the final preference
item offered insight into holistic user inclinations.

4.2 In-person Interview
To complement the survey findings and provide
deeper insights into tool-related behaviors, we con-
ducted in-person interviews with 12 students from
varied academic backgrounds, primarily from CSE,
EEE, and BBA programs. The interview protocol
included a structured sequence of six academic
tasks, designed to simulate common university-
level activities: (1) summarizing a research article,
(2) solving a coding problem (for CSE students),
(3) answering a circuit-related question (for EEE
students), (4) analyzing business data (for BBA
students), (5) drafting a formal email, and (6) com-
paring two popular academic concepts. These tasks
were selected based on consultations with domain
instructors and a review of typical coursework as-
signments, ensuring contextual relevance and vary-
ing cognitive demands. The goal was to observe
how tool choice affected task strategy, accuracy,
and efficiency across both discipline-specific and
general academic activities.

To assess performance, we developed a task-

specific rubric in consultation with faculty mem-
bers in relevant fields. For example, the coding
task was evaluated based on correctness and code
clarity; the summarization task was scored on co-
herence, coverage, and conciseness; and the com-
parison task was assessed for clarity of distinctions
and logical reasoning. Each task was scored inde-
pendently by two evaluators to ensure inter-rater
reliability.

Participants were divided into four groups based
on their tool usage patterns during task comple-
tion: (1) GPT-only users, (2) Google-only users,
(3) tool-balancing users (who used both tools se-
quentially), and (4) random-choice users (who se-
lected tools freely for each task). This grouping
was used to compare differences in accuracy and
completion time across task types and to explore
how tool-switching behavior aligned with user pref-
erences and task complexity. The interviews also
included open-ended reflections on tool usability,
trust, and perceived strengths or limitations. These
qualitative responses were thematically analyzed to
supplement quantitative trends and inform design
recommendations.

5 Quantitative Analysis

5.1 Survey Results

Closed-ended survey responses were converted into
numerical values for analysis, using a 5-point Lik-
ert scale coded as follows: Never (0), Rarely (1),
Occasionally (2), Frequently (3), and Always (4).
This enabled calculation of means, medians, modes,
and standard deviations across four core dimen-
sions: usage frequency, satisfaction, efficiency, and
ease of use, for both traditional search engines and
LLM-based tools.

The analysis revealed that LLM-based tools
were used more frequently and received more fa-
vorable ratings across all metrics. The mean usage
frequency for traditional search engines was 2.33,
with a median of 2.0 and a mode of 2, suggest-
ing occasional use among participants. In contrast,
LLM-based tools had a higher mean frequency of
2.79, with a median of 3.0 and a mode of 3, indicat-
ing more frequent use. Satisfaction with traditional
search engines yielded a mean of 1.99, a median
of 2.0, and a mode of 2, reflecting a generally neu-
tral to slightly unsatisfied experience. LLM-based
tools, on the other hand, had a higher satisfaction
mean of 2.47, with a median and mode of 3.0, indi-
cating moderate satisfaction. Standard deviations
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for both tools were around 0.9, suggesting consis-
tency in responses.

Efficiency ratings followed a similar trend. Tra-
ditional search engines received a mean score of
2.06 (median = 2.0, mode = 2), whereas LLM-
based tools were perceived as more efficient, with
a mean of 2.65, median of 3.0, and mode of 2.
The variability in responses was moderate for both
tools, with standard deviations of 0.94 and 1.00,
respectively. In terms of ease of use, traditional
search engines had a mean score of 2.10, a median
of 2.0, and a mode of 2. LLM-based tools again
outperformed, with a mean of 2.74, a median of 3.0,
and a mode of 3. The standard deviation for LLM
ease of use (1.12) was slightly higher, reflecting
greater variability in responses. These comparisons
are visually presented in Figure 2.

Figure 2: Boxplot of Quantitative Features: This
figure presents a comparative analysis of key
usability factors between traditional search en-
gines and LLM-based tools. The top four fea-
tures—Search_Use_Frequency, Search_Satisfaction,
Search_Efficiency, and Search_Ease—represent user
responses related to traditional search engines. The
bottom four—LLM_Use_Frequency, LLM_Satisfaction,
LLM_Efficiency, and LLM_Ease—correspond to user
experiences with large language models.

To assess whether the observed differences in
user perceptions between traditional search engines
and LLM-based tools were statistically significant,
we conducted a series of one-way repeated mea-
sures ANOVA tests across four dimensions: us-
age frequency, satisfaction, efficiency, and ease of
use. This within-subjects design was appropriate
as each participant rated both tools, allowing direct
comparison of matched responses. The results re-
vealed significant differences in all cases: usage
frequency, F (1, 108) = 14.82, p < 0.001; satis-
faction, F (1, 108) = 18.95, p < 0.001; efficiency,
F (1, 108) = 21.37, p < 0.001; and ease of use,
F (1, 108) = 17.04, p < 0.001. These findings
indicate that participants consistently rated LLM-
based tools higher than traditional search engines

across all usability dimensions. All F-values were
positive, as expected in ANOVA, and each test was
independently conducted per variable. Assump-
tions of normality and sphericity were evaluated
and satisfied, supporting the reliability of the re-
sults. Overall, the statistical evidence confirms that
the differences in ratings are not due to chance but
reflect a significant and consistent user preference
for LLM-based tools in academic contexts.

To explore whether tool preference was influ-
enced by participant background, a chi-square test
was performed to examine associations between
tool preference (LLM, search engine, or both) and
demographic variables such as age group, gender,
and academic department. The chi-squared statistic
was χ2(6, N=109) = 2.012, with a p-value of 0.570.
Since the p-value exceeds the 0.05 threshold, we
fail to reject the null hypothesis. This indicates that
tool preference is not significantly associated with
any of the demographic factors analyzed.

In summary, the survey results demonstrate that
participants generally prefer LLM-based tools over
traditional search engines across all major dimen-
sions of usability. While individual backgrounds,
such as department or gender, did not significantly
influence this preference, the performance gap be-
tween the two tools was consistently supported by
both descriptive and inferential statistical analysis.

5.2 In-person Interview

To analyze the data collected from the in-person in-
terviews, we examined both quantitative and qual-
itative aspects of participant performance while
completing a series of structured academic tasks.
A total of 12 students participated in this phase of
the study. They were assigned six academic tasks
representative of common university-level activi-
ties. These tasks were selected to reflect a range
of cognitive demands, from analytical reasoning to
written communication. Participants were grouped
based on their tool usage strategy: GPT-only users,
Google-only users, tool-balancing users (who used
both tools sequentially), and random-choice users
(who selected tools freely at each step). Table 2
summarizes the key quantitative findings from your
in-person interview.

5.2.1 Accuracy Analysis
Each participant’s response was manually evalu-
ated using a predefined scoring rubric tailored to
each task type. For instance, the coding task was
assessed based on functional correctness and code
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Tool Usage Group Accuracy (%) Time (min)
GPT-only 83 19
Google-only 78 24
Tool-balancing 90 30
Random-choice 82–88 22–29

Table 2: Summary of task performance by tool usage
group. Accuracy (%) refers to the average task score
based on a predefined rubric. Time (min) indicates the
average completion time across six academic tasks.

readability, while the summarization task was rated
on coverage, conciseness, and coherence. The
rubric ensured consistency and objectivity across
evaluations. Participants who relied exclusively on
GPT achieved an average accuracy of 83%, sug-
gesting that LLMs were effective in generating
structured responses, particularly for summariza-
tion and drafting. In contrast, Google-only users
attained an average accuracy of 78%, likely due to
the additional effort required to navigate, synthe-
size, and rephrase content from multiple sources.
Participants who employed both tools in a balanced,
complementary fashion demonstrated the highest
performance, averaging 90% accuracy. Their use
of GPT for synthesis and Google for verification
allowed for improved reliability and content qual-
ity. Among the eight random-choice users, who
selected tools freely based on task needs, accuracy
ranged from 82% to 88%, depending on the com-
plexity of the task and the appropriateness of tool
selection.

5.2.2 Completion Time Analysis

We also recorded the time taken by each participant
to complete the assigned tasks. The completion
times ranged from a minimum of 13 minutes to
a maximum of 42 minutes across all participants.
On average, GPT-only users completed tasks the
fastest, requiring approximately 19 minutes. This
efficiency can be attributed to the conversational
nature of LLMs, which reduces the need to browse
multiple webpages. Google-only users required
more time, around 24 minutes on average, due to
the iterative process of selecting, reading, and ex-
tracting relevant content from diverse sources. Par-
ticipants who used both tools took the longest, with
an average completion time of 30 minutes. How-
ever, this group also achieved the highest accuracy,
suggesting a trade-off between speed and perfor-
mance. The random-choice group showed the most
variability in completion time, ranging from 22 to
29 minutes. Their timing appeared to be influenced

by both task complexity and personal familiarity
with the chosen tools. In general, the results indi-
cate that while GPT-based tools provide speed and
ease of access, combining them with traditional
search engines can lead to improved accuracy, al-
beit at the cost of increased task duration.

6 Qualitative Analysis

The qualitative analysis draws on open-ended sur-
vey responses and in-person interview transcripts
to explore participants’ perceptions, experiences,
and decision-making strategies when using GPT
and Google for academic tasks. We employed a
thematic analysis approach to identify recurring
patterns and categories in the qualitative data. Ini-
tial coding was conducted independently by two
researchers who reviewed all textual responses line-
by-line. Codes were then grouped into broader
themes through iterative comparison and refine-
ment until consensus was reached.

Four major themes emerged from the data: (1)
task suitability and tool preference, (2) perceptions
of reliability and accuracy, (3) workflow efficiency
and cognitive load, and (4) usability and interaction
experience.

Task Suitability and Tool Preference. Partici-
pants frequently distinguished between tools based
on the academic task. GPT was consistently de-
scribed as effective for quick answers, summariza-
tion, and writing support. One participant noted,
"I use ChatGPT whenever I need to summarize
something quickly or generate a draft; it saves a
lot of time." In contrast, Google was preferred for
tasks requiring deeper exploration and source tri-
angulation. For example, a BBA student shared
"Google helps me see what different sources are
saying, especially when I need to analyze business
trends from multiple angles."

Perceptions of Reliability and Accuracy. Trust
emerged as a key factor in tool selection. While
GPT was appreciated for its fluency and coher-
ence, several participants expressed concerns about
outdated or generalized responses. One remarked,
"Sometimes GPT gives an answer that sounds right
but isn’t actually correct, so I double-check with
Google." Google was consistently rated as more
trustworthy for fact-checking and citing sources,
though some respondents reported difficulty in as-
sessing source quality or encountering contradic-
tory information.
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Workflow Efficiency and Cognitive Load.
Many participants described GPT as a way to
streamline academic tasks, particularly under time
pressure. For instance, a CSE student commented,
"Instead of going through five different websites,
I just ask GPT and get a concise answer." How-
ever, this benefit was counterbalanced by reports
of multitool use. Students who used both GPT and
Google acknowledged that switching between them
increased task duration but ultimately improved
their understanding and output quality. This dual
strategy was especially common for tasks involving
coding, data analysis, or structured writing.

Usability and Interaction Experience. GPT
was often framed as a conversational assistant or
“personal tutor” that guided the student through
a problem interactively. In contrast, Google was
seen as more traditional but stable. As one stu-
dent described, "ChatGPT feels like someone is
explaining things to me, but with Google I have to
do all the work to find and compare stuff." Inter-
face familiarity and preferred mode of information
delivery influenced tool preference, particularly for
students less comfortable with long-form search or
unfamiliar domains.

Overall, students perceived GPT and Google not
as competing tools but as complementary com-
ponents of their academic workflow. GPT was
favored for its speed, language generation, and
summarization abilities, while Google remained
essential for verifying facts and consulting credible
sources. The choice of tool depended largely on the
type of task, the user’s prior knowledge, and their
need for either convenience or verification. These
findings highlight the nuanced, context-dependent
strategies students adopt when navigating digital
information tools.

7 Discussion

The findings from both the survey and in-person
interviews reveal a nuanced interplay between
LLMs and traditional search engines in academic
information-seeking behavior. GPT-based systems
were consistently valued for their ability to pro-
vide structured, coherent, and contextually relevant
responses. Their strengths were particularly evi-
dent in tasks requiring rapid summarization, cod-
ing support, or written content generation, where
participants appreciated the speed and reduced cog-
nitive effort offered by conversational interfaces.
However, while LLMs excelled in usability and

perceived efficiency, their limitations, such as oc-
casionally outdated or overly generalized content,
prompted students to cross-reference with more
authoritative sources.

In contrast, traditional search engines like
Google remained the preferred tool for in-depth
research, source validation, and academic rigor.
Students highlighted Google’s extensive access to
peer-reviewed literature, academic websites, and
multiple viewpoints as vital for tasks requiring criti-
cal evaluation or citation. Nonetheless, participants
also reported experiencing information overload
and inefficiencies due to the need to manually sift
through links, assess credibility, and synthesize
fragmented content. These trade-offs suggest that
tool preference is not static but shaped by the aca-
demic task’s complexity, time constraints, and the
student’s familiarity with the subject matter.

Figure 3: Class Distribution of the Preferred Tool among
the Students

A recurring theme across both quantitative and
qualitative data was the strong interest in a hybrid
model that seamlessly integrates the complemen-
tary strengths of GPT and Google. As illustrated
in Figure 3, a significant portion of participants ex-
pressed a desire for an academic support tool that
combines GPT’s conversational and summarization
capabilities with Google’s multi-source, real-time
information retrieval. Such a system would enable
users to receive concise responses with embedded
citations and links to original sources, streamlining
the verification process without sacrificing depth
or credibility. Participants viewed this hybrid ap-
proach as a way to reduce cognitive load, eliminate
repetitive tool-switching, and enhance learning out-
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comes through more fluid academic workflows.
While LLMs and traditional search engines serve

distinct purposes, students view them as comple-
mentary rather than competing tools. The inte-
gration of their respective advantages, LLMs for
generation and synthesis, and search engines for
depth and verification, represents a promising di-
rection for the future of academic information re-
trieval. These findings underscore the importance
of designing intelligent, context-aware tools that
adapt to students’ diverse needs while upholding
standards of reliability and academic integrity.

These findings also raise a key question: What
happens when students use GPT and Google to-
gether: Does it help or hurt? The evidence from
our study suggests a compelling answer. Partici-
pants who used both tools, using GPT to quickly
summarize and clarify complex topics, and Google
to verify facts and consult authoritative sources,
consistently outperformed those who relied on ei-
ther tool alone. These hybrid users achieved the
highest task accuracy (90%), demonstrating that
the strategic integration of LLMs and traditional
search engines not only complements their respec-
tive strengths but also minimizes their individual
weaknesses. Although this dual-tool approach re-
quired more time, students perceived it as a worth-
while trade-off for greater confidence, deeper un-
derstanding, and higher-quality outcomes. This
finding underscores the potential of thoughtfully
designed hybrid systems to support academic work-
flows, reducing cognitive load while maintaining
rigor and trustworthiness in the learning process.

8 Proposed Prototype

Drawing on user insights from both survey re-
sponses and interviews, we propose a conceptual
prototype that integrates GPT-based assistance di-
rectly into the traditional search engine interface.1

The goal is to address the cognitive and logistical
burden of switching between tools by creating a
unified platform that combines the conversational
utility of LLMs with the source-rich infrastructure
of search engines. The prototype is designed as an
embedded chatbot, positioned unobtrusively in the
corner of the search interface, allowing users to en-
gage in interactive, context-aware dialogue without
disrupting their familiar browsing workflow.

Unlike standalone LLM interfaces, the proposed
assistant does not replace standard search results.

1https://shorturl.at/t6Tf8

Instead, it complements them by offering real-
time summaries, follow-up clarifications, and cross-
source syntheses derived from retrieved documents.
For example, when a user performs a Google
search, the assistant can instantly summarize key
points from the top-ranked results, offer bullet-
point comparisons across sources, or simplify com-
plex academic texts. Users can also ask follow-up
questions to refine or extend the information, elim-
inating the need to manually revisit and interpret
multiple pages.

The prototype’s novelty lies in its hybrid archi-
tecture that allows toggling between raw search
content and AI-enhanced interpretation. Crucially,
each AI-generated insight is accompanied by links
to the original source, promoting transparency and
reducing the risk of hallucinated or unverifiable
responses. This feature directly addresses the con-
cern, voiced by multiple participants, regarding
LLM trustworthiness in academic work.

Although conceptual in its current form, the pro-
totype was informed by empirical findings from
this study and inspired by real-world user prefer-
ences. Its contribution lies in reimagining academic
information retrieval as an interactive and adap-
tive process. Over time, the assistant could learn
user preferences, discipline-specific language, and
search habits to deliver more relevant and personal-
ized guidance. By embedding this intelligent layer
into the search experience, the prototype aims to re-
duce cognitive load, increase search efficiency, and
promote evidence-based academic practices, ulti-
mately bridging the current gap between generation
and verification in digital research tools.

9 Conclusion

Our study demonstrates that university students
adopt a complementary approach to academic in-
formation retrieval, using LLMs for quick explana-
tions and drafting, and traditional search engines
for verification and accessing credible sources.
Our mixed-methods findings underscore the task-
dependent nature of tool preference and reveal
strong interest in a hybrid model. While the pro-
posed prototype remains conceptual and the inter-
view sample was limited, the results offer practical
insights for designing AI-assisted academic tools.
Future work will focus on expanding participant
diversity, validating qualitative themes, and imple-
menting a functional prototype to assess real-world
usability and impact.
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Limitations

This study provides important insights into stu-
dents’ use of LLMs and traditional search engines
for academic tasks; however, several limitations
should be acknowledged. The in-person interview
sample was relatively small (n = 12) and pri-
marily drawn from technology-related disciplines,
which may limit the generalizability of the findings.
There is also potential sampling bias, as the ma-
jority of participants were Computer Science and
Engineering (CSE) majors from a single university
context, which may not reflect the experiences or
preferences of students from other academic back-
grounds or institutions. While the qualitative anal-
ysis surfaced meaningful themes, it lacked inter-
coder reliability checks, and the survey relied on
self-reported data that may be affected by recall
or social desirability bias. Moreover, the proposed
prototype remains at a conceptual stage and has not
yet been implemented or tested in real academic en-
vironments, leaving its practical impact unverified.
Lastly, the study did not account for factors such as
digital literacy, prior experience with AI tools, or
task complexity, all of which could influence tool
preferences and performance.

Ethical Considerations

All procedures involving human participants in this
study were conducted in accordance with ethical
research standards. Participation in both the sur-
vey and in-person interviews was voluntary, and
informed consent was obtained from all partici-
pants prior to data collection. Respondents were
assured of anonymity and confidentiality, and no
personally identifiable information was collected
or stored. The data were used solely for research
purposes and analyzed in aggregate to protect in-
dividual identities. As the study did not involve
vulnerable populations, clinical interventions, or
sensitive topics, risk to participants was minimal.
The conceptual prototype proposed in this study
does not process real user data and poses no im-
mediate privacy concerns. Future implementation
of the prototype will incorporate robust data pro-
tection, user consent mechanisms, and institutional
ethical review as necessary.

References
U Alberth. 2023. The use of chatgpt in academic writ-

ing: A blessing or a curse in disguise? TEFLIN
Journal-a Publication on the Teaching and Learning
of English, 34:337–52.

Satinder Bal and Rajender Nath. 2009. A compar-
ative study of traditional search engines with the
metasearch engines. Ultra scientist, 21(2M):597–
610.

A Bansal. 2023. Optimizing rag with hybrid search and
contextual chunking. Journal of Emerging Applica-
tions in Science and Technology, 5.

Kevin Matthe Caramancion. 2024. Large language mod-
els vs. search engines: Evaluating user preferences
across varied information retrieval scenarios. arXiv
preprint arXiv:2401.05761.

Rahul R Divekar, Sophia Guerra, Lisette Gonzalez, and
Natasha Boos. 2024. Choosing between an llm ver-
sus search for learning: A highered student perspec-
tive. arXiv preprint arXiv:2409.13051.

Prakriti Kapoor, Shweta Mahida, Sharon John, and 1
others. 2024. Ai-driven adaptive systems for per-
sonalized library research assistance. Library of
Progress-Library Science, Information Technology &
Computer, 44(3).

Harsh Kumar, Mohi Reza, Jeb Mitchell, Ilya Musabirov,
Lisa Zhang, and Michael Liut. 2024. Understand-
ing help-seeking behavior of students using llms vs.
web search for writing sql queries. arXiv preprint
arXiv:2408.08401.

Perplexity AI. 2024. Perplexity ai: Conversational
search engine. Accessed: August 11, 2025.

Farman Ali Pirzado, Awais Ahmed, Román A Mendoza-
Urdiales, and Hugo Terashima-Marin. 2024. Navi-
gating the pitfalls: Analyzing the behavior of llms
as a coding assistant for computer science students-a
systematic review of the literature. IEEE Access.

Tam Sakirin and Rachid Ben Said. 2023. User prefer-
ences for chatgpt-powered conversational interfaces
versus traditional methods. Mesopotamian Journal
of Computer Science, 2023:22–28.

Sofia Eleni Spatharioti, David M Rothschild, Daniel G
Goldstein, and Jake M Hofman. 2023. Compar-
ing traditional and llm-based search for consumer
choice: A randomized experiment. arXiv preprint
arXiv:2307.03744.

Albatool Wazzan, Stephen MacNeil, and Richard Sou-
venir. 2024. Comparing traditional and llm-based
search for image geolocation. In Proceedings of the
2024 Conference on Human Information Interaction
and Retrieval, pages 291–302.

Ruiyun Xu, Yue Feng, and Hailiang Chen. 2023. Chat-
gpt vs. google: A comparative study of search
performance and user experience. arXiv preprint
arXiv:2307.01135.

56

https://www.perplexity.ai
https://www.perplexity.ai


A Survey Instrument

Survey Questionnaire (Selected Items)

Tool Usage Frequency (Likert scale: Never
to Always)

• How often do you use Google for aca-
demic tasks?

• How often do you use GPT-based tools
for academic tasks?

Perceived Satisfaction, Efficiency, Ease of
Use (Likert scale)

• How satisfied are you with the accuracy
of results from each tool?

• How efficient are these tools in complet-
ing academic tasks?

• How easy are these tools to use?

Tool Preference

• Which tool do you prefer overall: Google,
GPT, or Both?

Open-Ended

• In what scenarios do you prefer GPT over
Google or vice versa?

• What limitations have you faced when
using these tools?

B Interview Tasks
Assigned Academic Tasks

Participants were given six structured aca-
demic tasks designed to simulate realistic
coursework challenges across different disci-
plines:

1. Summarize a Research Abstract (All
Participants)
Read a 250-word abstract from a peer-
reviewed article and produce a concise
3–5 sentence summary capturing the main
objective, methods, and findings.

2. Solve a Coding Problem (CSE Only)
Write a Python function to compute the
factorial of a number, ensuring proper in-
put validation and code documentation.

3. Analyze a Circuit Diagram (EEE Only)
Interpret a simple resistive circuit with
three resistors and a voltage source. Cal-
culate total resistance and current using
Ohm’s Law.

4. Interpret a Business Chart (BBA Only)
Given a bar chart showing quarterly rev-
enue for three products, provide a 5–6
sentence interpretation of trends, anoma-
lies, and business implications.

5. Draft a Formal Email (All Partici-
pants)
Write a professional email to your course
instructor requesting an extension on an
assignment. The email should be polite,
concise, and persuasive.

6. Compare Two Academic Concepts (All
Participants)
Write a short paragraph comparing “quan-
titative” vs. “qualitative” research meth-
ods, highlighting key differences and use
cases.

Participants were grouped by tool usage pat-
tern: GPT-only, Google-only, tool-balancing
(both sequentially), and random-choice (free
selection per task).

C Task Evaluation Rubric
Rubric for Evaluating Task Accuracy (0–10
Scale)

Each academic task was scored on a scale from
0 (poor) to 10 (excellent), based on specific
content and skill-based criteria. Rubrics were
standardized across evaluators to ensure con-
sistency.
1. Summarization Task

• Coverage of Key Ideas (0–4): Accu-
rately identifies main purpose, methods,
and findings.

• Conciseness and Clarity (0–3): Avoids
redundancy; sentences are readable and
logically ordered.

• Language Accuracy (0–3): Grammar,
punctuation, and vocabulary are appropri-
ate for academic tone.
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2. Coding Task (CSE Only)

• Correctness (0–4): Produces correct out-
put for sample inputs.

• Code Quality (0–3): Structured, read-
able, and modular.

• Input Handling and Comments (0–3):
Includes input validation and descriptive
inline comments.

3. Circuit Analysis Task (EEE Only)

• Correct Calculation (0–5): Accurate ap-
plication of formulas (e.g., Ohm’s Law).

• Interpretation and Units (0–3): Correct
labeling and use of units.

• Clarity of Steps (0–2): Clear logical pro-
gression of calculations.

4. Business Chart Interpretation (BBA
Only)

• Insightfulness (0–4): Accurately identi-
fies trends, anomalies, and patterns.

• Relevance (0–3): Comments relate mean-
ingfully to business implications.

• Clarity (0–3): Well-structured explana-
tion with clear language.

5. Formal Email Draft

• Professional Tone and Structure (0–4):
Proper salutation, closing, and paragraph-
ing.

• Persuasiveness (0–3): Presents a clear
and reasonable justification.

• Grammar and Clarity (0–3): Language
is appropriate, polite, and error-free.

6. Concept Comparison

• Content Accuracy (0–4): Identifies
valid, discipline-appropriate distinctions.

• Comparative Logic (0–3): Clearly out-
lines similarities/differences.

• Language and Coherence (0–3): Aca-
demic tone and logical flow.

D Thematic Codebook

Thematic analysis of open-ended survey responses
and interview transcripts resulted in four overarch-
ing themes. Each theme is described in Table 3,
along with its associated codes and representative
participant quotes.
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Parent Theme Child Code Definition / Quote Example
Effectiveness Task Fit Tool suitability for academic tasks, which refers

to how well a tool matches the academic task at
hand.
"GPT is great for summaries, but not so much
for detailed citations."

Usability & Cognitive Load Ease of Use Simplicity of interaction with the tool, which
means how intuitive and straightforward users
find the tool.
"ChatGPT saves me time by avoiding extra
clicks."

Information Overload Frustration with excessive irrelevant results,
which describes frustration due to excessive, of-
ten irrelevant, search results.
"Google gives too many links and I get lost try-
ing to pick one."

Trust and Credibility Source Verification Need for citable sources, which refers to the
extent to which students cross-check the tool
output with credible sources.
"I trust Google more when I need something fact-
checked."

Contextual Tool Selection Task Type Influence Decision to use a tool depends on the academic
context, which describes tool choice based on
the academic context or subject matter.
"For programming help, I use GPT; for research
papers, I go with Google."

Table 3: Thematic mapping of child codes derived from open-ended survey responses and interviews. Quotes show
typical user sentiment for each theme.
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Abstract

Accessing government welfare schemes in In-
dia remains difficult for emergent users: indi-
viduals with limited literacy, digital familiar-
ity, or language support. This paper compares
two mobile platforms that deliver the same
scheme-related information but differ in inter-
action modality: myScheme, a government-
built, form-based Android application, and Pra-
bodhini, a voice-based conversational proto-
type powered by generative AI and Retrieval-
Augmented Generation (RAG).

Through a task-based comparative study with
15 low-income participants, we examine usabil-
ity, task completion time, and user preference.
Drawing on theories such as the Gulf of Ex-
ecution and Zipf’s Law of Least Effort, we
show that Prabodhini’s conversational design
and support for natural language input better
align with emergent users’ mental models and
practices. Our findings highlight the value of
multimodal, voice-first NLP systems for im-
proving trust, access, and inclusion in public
digital services. We discuss implications for
designing accessible language technologies for
marginalised populations.

1 Introduction

India’s central and state governments have long
adopted a welfare-oriented approach to governance,
offering numerous social protection schemes to
support the elderly, low-income, and marginalised
populations. These schemes also target workers in
the unorganised sector, which comprises approxi-
mately 92% of the country’s workforce (Sakthivel
and Joddar, 2006). While well-intentioned and
potentially transformative, the actual uptake and
utilisation of these services remains low (Rahman
and Pingali, 2024).

Several barriers hinder effective access to wel-
fare schemes. Although e-governance platforms

*Work done as an undergraduate student at BITS Pilani,
Hyderabad Campus.

have made these services digitally accessible, emer-
gent users, individuals with limited digital experi-
ence, often facing low literacy, low income, and
poor infrastructure access (Thies et al., 2015) strug-
gle to engage meaningfully with them. Key obsta-
cles include a lack of awareness about available
schemes, difficulties in navigating complex form-
based interfaces, and associated costs of access,
such as relying on cyber cafés to fill out forms
for nominally “free” services (Chakraborty et al.,
2017).

These barriers reflect broader mismatches be-
tween the expectations embedded in digital in-
terfaces and the lived realities of emergent users.
Norman’s concept of the Gulf of Execution (Nor-
man, 1986) offers a useful lens here: systems like
myScheme require users to translate their needs
into the language and structure of the interface,
rather than allowing users to express their goals
in familiar terms. Furthermore, these systems of-
ten violate Zipf’s Law of Least Effort (Zipf, 2016),
which suggests that users prefer interaction paths
that demand the least cognitive and physical effort.
By relying heavily on hierarchical forms, struc-
tured data fields, and pre-defined filters, current
platforms place the burden of adaptation on the
user, thus worsening exclusion.

This paper explores whether interaction modal-
ity—specifically, traditional form-based interfaces
versus conversational, voice-based ones—affects
the usability and accessibility of mobile informa-
tion systems for emergent users. We address the
research question: How do different mobile in-
teraction modalities—namely, form-based graph-
ical interfaces versus voice-based conversational
systems—affect emergent users’ ability to seek
and access information about government welfare
schemes?

To investigate this, we conducted a compara-
tive user study with 15 participants drawn from
low-income, blue-collar workers employed at a
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university campus in South India. The two plat-
forms we evaluated deliver identical government
welfare information but differ in design philosophy
and interaction modality. The first is myScheme,
a government-built Android application that relies
on hierarchical menus and form-filling interfaces.
The second is Prabodhini (Sanskrit for awaken-
ing) (Figure 1), a prototype conversational app de-
veloped in our lab. Prabodhini uses a backend
powered by GPT-4 and Retrieval-Augmented Gen-
eration (RAG) applied to data sourced from the
official myScheme website. It is designed through
a user-centred process and includes voice-input
capabilities in regional Indian languages using off-
the-shelf text-to-speech (TTS) and speech-to-text
(STT) engines. The technical details of Prabodhini
are available in (Jain et al., 2025). We compared
Prabodhini with the myScheme application, as it is
the only government-released platform of its kind,
and the information it provides is considered au-
thoritative and valid.

Unlike myScheme, which presents users with
dense static text and long application forms, Pra-
bodhini breaks down information into small, ac-
tionable conversational nuggets, enabling users to
query the system using natural language—either
spoken or typed. This design not only reduces the
Gulf of Execution but also aligns with the men-
tal models and digital practices of mobile-first
emergent users. Many participants are already ac-
customed to voice interactions through tools like
Google Search, and conversational systems like
Prabodhini leverage these affordances to improve
accessibility and confidence.

Our findings show that users preferred Prabod-
hini over the form-based alternative. Conversa-
tional, voice-first systems improved access, inclu-
sion, and trust for users often excluded from digital
services. This study bridges HCI and NLP by ap-
plying a large language model (GPT-4) to reduce
usability barriers for low-literate, mobile-first users
in India. Prabodhini uses a Retrieval-Augmented
Generation (RAG) pipeline to deliver scheme in-
formation through natural language queries. By
combining speech input and scenario-based design,
it makes government services more accessible in
low-resource settings. This work brings NLP re-
search closer to real-world, socially relevant HCI
challenges.

2 Related Work

2.1 Tools and Interfaces for Emergent Users

Emergent users—those with limited literacy or dig-
ital exposure—require contextually adapted, inclu-
sive interfaces. Human Computer Interaction for
Development (HCI4D) and Information and Com-
munication Technology for Development (ICTD)
research has emphasised designing for this pop-
ulation to prevent trickle-down marginalisation
(Jones et al., 2017). Prior work spans multiple
domains: banking (Melo et al., 2023; Mohammed
et al., 2023), education (Ngoon et al., 2024), shop-
ping (Mohammed et al., 2023), health (Reen et al.,
2024), and government services (Mehtälä and
Nieminen, 2019). These studies stress usability
for low-literate users, recommending culturally
grounded design (Medhi et al., 2006).

In the e-governance context, Mehtala et al.
(Mehtälä and Nieminen, 2019) and Srivastava et al.
(Srivastava et al., 2021) highlight the importance
of participatory and user-centred approaches. Our
work builds directly on these insights by evaluat-
ing a government welfare app and introducing a
voice-first conversational alternative designed for
emergent users.

2.2 Information Seeking by Emergent Users

Theories like Zipf’s Law of Least Effort (Zipf,
2016) and Dervin’s Sense-Making Theory (Dervin
and Naumer, 2009) stress that users prefer min-
imal effort and context-sensitive systems. For
marginalised groups, Chatman (1991), Dhaygude
and Chakraborty (2020) and Aribandi et al. (2022)
show that trust, familiarity, and sociocultural norms
shape engagement. Emergent users tend to favour
human sources or simplified interfaces (Robinson,
2010).

Technologies like Interactive Voice Response
System (IVRS) (Joshi et al., 2014; Kazakos et al.,
2016; Patel et al., 2009; Srinivasan et al., 2013;
Chakraborty and Seth, 2015; Chakraborty et al.,
2017), icon-based UIs (Medhi et al., 2011), and
Android apps (Cuendet et al., 2013; Chandel and
Doke, 2013; Shah and Sengupta, 2018) have been
developed to address these needs. Conversational
agents (CAs) offer another promising modality
(Prasad et al., 2019; Vaccaro et al., 2018; Jain et al.,
2018; Purington et al., 2017).

Kodagoda et al. (Kodagoda et al., 2009) and
Malthouse et al. (Malthouse, 2023) observe that
emergent users often accept the first satisfactory
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(a) Screen 1 (b) Screen 2 (c) Screen 3

Figure 1: Prabodhini’s interface. Screen 1 prompts users to select their preferred language. In Screen 2, users are
required to choose their state since several schemes are state-specific. Screen 3 allows users to either type or orally
input their queries.

result or abandon searches if unsuccessful. Our
system, Prabodhini, addresses these behavioural
tendencies by enabling open-ended voice queries
and delivering concise, localised responses.

2.3 Conversational vs. Static Information
Systems

While traditional GUIs rely on structured naviga-
tion and text input, they assume a level of literacy
that emergent users may not possess (Følstad and
Brandtzæg, 2017; Budiu, 2018). Conversational
systems mitigate this by supporting multimodal
input and dynamic dialogue (Zhang et al., 2018).
Studies comparing conversational and static sys-
tems show improved usability, satisfaction, and
efficiency with dialogue-based interfaces (Balloccu
and Reiter, 2022; Kaushik and Jones, 2023; Roy,
2024).

In particular, chatbots have shown benefits in do-
mains requiring explanation and guidance, such as
diet tracking (Balloccu and Reiter, 2022) or search
tasks (Kaushik and Jones, 2023). Wagner et al.
(Wagner, 2004) advocate for conversational knowl-
edge management to enhance accessibility.

Our study contributes to this literature by
comparing a government-built form-based app
(MyScheme) with a generative AI-powered, voice-
first system (Prabodhini). We show how conver-
sational design, regional language support, and
scenario-driven interaction reduce the barriers that
static interfaces impose on emergent users.

2.4 Recent Advances in HCI+NLP
Recently, the intersection of Human-Computer In-
teraction (HCI) and Natural Language Process-
ing (NLP) has received growing attention, par-
ticularly in domains such as civic participation,
healthcare, education, and accessibility. Heuer and
Buschek (2021) presents five methodological pro-
posals that bridge HCI and NLP, positioning them
within the context of machine learning–based NLP
systems and their implications for user experience
design. Complementing this, Sultana et al. (2022)
examines challenges associated with popular NLP
dataset types, framing their critique through the
lens of narrative-based methods commonly used
in HCI. Their work highlights opportunities for
NLP techniques to enrich qualitative narrative anal-
ysis and inform the development of more inclusive,
user-centred datasets.

Building on this foundation, Guridi et al. (2025)
emphasises that the adoption of NLP tools within
government settings is not merely a matter of tech-
nical performance but is heavily influenced by inter-
nal stakeholder incentives and the need to demon-
strate political legitimacy. In response to these
insights, we present a human-centered voice-first
prototype designed to improve access to legal and
policy information for the emergent users.

3 Methodology

We conducted a comparative user study to examine
how interaction modality influences the usability of
mobile welfare apps for emergent users. We eval-
uated two Android applications: the government-
developed myScheme, which uses form-based, text-
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heavy interfaces, and Prabodhini, a voice-based
conversational app developed in our lab. Both apps
used the same backend data, allowing a controlled
comparison of interaction design.

Participants engaged in structured tasks on both
apps. We measured task completion time, recorded
observational notes, and administered a usability
questionnaire. A doctoral researcher and two un-
dergraduate students facilitated the sessions, which
lasted approximately 30 minutes each. All interac-
tions were conducted in Telugu or Hindi.

A pilot with two participants revealed difficul-
ties with the standard System Usability Scale (SUS)
due to low literacy and unfamiliarity with Likert
scales. We therefore created a simplified binary-
response questionnaire, inspired by SUS constructs
but adapted to suit the participant group (see Ta-
ble 3).

3.1 Participants

We recruited 15 participants (6 women, 9 men) us-
ing convenience sampling. All were low-income,
low-literate workers employed on a university cam-
pus through service-outsourcing agencies, with
basic familiarity with smartphones. Their educa-
tional backgrounds ranged from Class 5 to Class
12. Twelve participants spoke Telugu, and three
spoke Hindi. Monthly incomes ranged from INR
13,000 to INR 15,000 (approx. USD 157–181).
Oral consent was obtained from all participants.
Table 1 summarises the demographic details of the
participants.

3.2 Prabodhini

Prabodhini is a light-weight, mobile-friendly plat-
form that employs chain-of-thought prompting
over GPT-4o, layered on top of RAG, to gener-
ate context-aware and personalised responses. The
features of the applications are derived from the
findings of our prior work (Chaitra et al., 2025). It
also introduces Actionable Information Retrieval
(AIR), where user queries are categorised into pro-
cedural, yes/no, or informative types, enabling step-
by-step voice-guided interactions instead of dense
text. A lightweight design, supported by a hy-
brid retrieval pipeline and demographic personal-
isation, ensures accessibility for low-text-literate
users (Chaitra et al., 2025). This design emphasises
voice-first interaction, progressively leading users
to precise answers while reducing reliance on text
literacy.

3.3 Procedure

Each participant used both applications on the same
Android phone connected to the same mobile data
network. After a brief tutorial, participants com-
pleted the tasks independently. App order was ran-
domised, though slightly imbalanced (nine used
myScheme first, six used Prabodhini first). How-
ever, six participants each who used either Prabod-
hini or myScheme first, completed Task 1. We
did not disclose which app was developed by the
researchers.

After completing the tasks, we logged the partic-
ipants’ responses to the usability questionnaire, and
the participants engaged in a brief semi-structured
interview. We manually recorded observations of
user behaviour and interface challenges. Interviews
were audio-recorded with consent.

3.4 Task Design

Tasks reflected common actions for accessing gov-
ernment schemes:
1) Find a relevant scheme.
2) Check eligibility criteria.
3) Understand the application process.

All participants completed Task 1. Only two
proceeded to Tasks 2 or 3, citing language barriers
in myScheme or being confident about being able
to use Prabodhini later. Given this, our analysis fo-
cuses on Task 1 as a representative entry-point task
for evaluating usability. Interaction challenges and
support needs were recorded throughout. Network-
induced delays were excluded from task timing.
Findings are presented in Section 4.2.

3.5 Ethical Considerations And Positionality

In the absence of a formal ethics board in our uni-
versity, we followed ethical self-regulation guide-
lines from Dearden et al. (Dearden and Kleine,
2018). Participation was voluntary and anonymous.
The researchers are trained in Human-Computer
Interaction and computer science, with prior ex-
perience designing technologies for underserved
communities in India. We approached the study
with a commitment to participatory, respectful en-
gagement. Local languages were used throughout
the study to minimise power imbalances and foster
trust.

4 Findings

We conducted both qualitative and quantitative
analyses of the data obtained through the study.
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Participants Gender Occupation Age Qualification First Language
P1 F House Keeping Staff 32 Class 5 Telugu
P2 F House Keeping Staff 32 no formal education Telugu
P3 F House Keeping Staff 35 Class 10 Telugu

P4 M
Student Hostel

Attendant
26 Class 10 Telugu

P5 F House Keeping Staff 36 no formal education Telugu
P6 F House Keeping Staff 28 Class 10 Telugu
P7 F House Keeping Staff 38 no formal education Telugu
P8 M Office boy 25 Diploma Telugu
P9 M Hostel Attendant 42-46 (not sure) Classs 9 Hindi

P10 M Security Guard 49 Class 9 Telugu
P11 M Security Guard 42 Class 12 Telugu
P12 M Security Guard 53 Class 8 Telugu
P13 M Security Guard 35 Class 10 Telugu
P14 M Security Guard 36 Class 10 Hindi
P15 M Security Guard 25 Class 12 Hindi

Table 1: Demographic details of the participants

Qualitative data were logged through observations
while the participants interacted with the apps and
any feedback the participants provided after the
tasks. The quantitative data collected is the task
completion time for the tasks defined in Section 3.4
and response to the usability questionnaire (Table
3).

4.1 Qualitative Findings

In this section, we report findings from the qualita-
tive data collected during the study. We undertook
a thematic analysis (Clarke and Braun, 2017) of the
observation logs and participant feedback, and the
identified themes were arranged into the following
subsections.

4.1.1 Language Barriers and Localisation
myScheme is available only in English and Hindi,
which posed a significant barrier for participants
who were more comfortable in other regional In-
dian languages. Several users struggled to navigate
the app due to unfamiliar terminology and the ab-
sence of language options tailored to their needs.
This challenge was particularly acute for those with
limited literacy or no formal exposure to English.
Participants expressed frustration when faced with
an interface that they could not comprehend. As
one participant remarked when weighing the pros
and cons of myScheme: “We do not want an ap-
plication that is in English” (P10).

In contrast, Prabodhini let users choose their
preferred language during setup (Figure 1a). At
the time of this research, it supported English,
Hindi, Tamil, and Telugu. This enabled all par-

ticipants—Hindi or Telugu speakers—to use the
app in a familiar language, reducing cognitive and
linguistic barriers.

4.1.2 Lack of Discoverability and Mental
Models in the myScheme App

The design of myScheme overlooks the mental
models and information-seeking habits of its in-
tended users. Its features mirror web interfaces for
educated, digitally literate audiences, influenced by
Western usability norms. For example, the app’s
search function assumes users know scheme names,
but none of our participants used it. Lacking prior
knowledge of schemes or eligibility, they couldn’t
initiate keyword searches, making the feature ef-
fectively unusable for this group.

In contrast, Prabodhini allows users to express
their needs in natural language via voice or text
input. The system returns relevant schemes based
on the scenario. This approach aligns more closely
with the mental models of emergent users, who
typically frame their queries in terms of personal
circumstances rather than formal scheme names.
We drew upon findings from a prior study (Chaitra
et al., 2025), where researchers had documented
this preference for scenario-driven interaction, and
incorporated those insights into the design of Pra-
bodhini.

4.1.3 Mismatch Between User Capabilities
and App Requirements

Another key challenge participants faced when us-
ing myScheme stemmed from the mismatch be-
tween their capabilities and the design expecta-
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tions embedded in the app. To receive personalised
scheme recommendations, users were required to
fill in a form that captured personal and demo-
graphic details. This process introduced several
barriers:

1. Time-Consuming and Tedious: Participants
found the form-filling process laborious and
often needed assistance to proceed, especially
when selecting from dropdown menus or en-
tering structured information.

2. Unfamiliar Terminology: Several form
fields used jargon or abstract categories that
did not resonate with participants’ lived expe-
rience. For example:

• BPL Status: Users were asked to indi-
cate whether they belonged to the Be-
low Poverty Line (BPL) category. Most
participants were either unaware of their
status or confused by the question, as def-
initions of BPL vary across states and are
rarely part of everyday discourse.

• Occupation Classification: Users had to
select from predefined categories, many
of which used technical language such
as “organised” or “unorganised” sec-
tor. These terms lacked salience for par-
ticipants, who struggled to map their
own work (e.g., housekeeping or secu-
rity work) onto the listed options.

• Urban/Rural Classification: The form
asked whether users lived in an “urban”
or “rural” area. Participants found this
terminology abstract and suggested sim-
pler alternatives like “city” or “village”,
which aligned better with their vocabu-
lary and everyday references.

Ultimately, only two participants managed to
complete the form independently. Even then, the
resulting scheme suggestions were often irrelevant
or inapplicable to their state of residence. Most
users required repeated assistance and expressed
frustration with the form’s complexity. These find-
ings echo prior research on information accessibil-
ity barriers in public digital systems (Ahmed et al.,
2013).

Prabodhini addressed this gap by allowing users
to pose open-ended queries in natural language.
This interaction style eliminated the need for cat-
egorical precision and reduced the cognitive bur-
den on users. For example, one participant asked:

“I am from Ponnala village. I want to open a
stationery shop. Tell me which schemes can I
avail?” (P13). The system responded with a cu-
rated list of relevant schemes, including eligibility
and application details, based on the described sce-
nario, without requiring the user to translate their
needs into formal classifications.

4.1.4 Reliability and Trust in Conversational
Interfaces

The myScheme application includes a chatbot in-
tended to assist users in locating relevant informa-
tion through natural language queries. While this
feature holds potential for simplifying access, par-
ticipants reported frequent issues with its respon-
siveness. In multiple instances, the chatbot failed
to return results or became unresponsive mid-query,
leading users to abandon the attempt or try again
later. Such inconsistencies not only disrupted the
flow of interaction but also diminished users’ trust
in the system’s reliability.

For emergent users—who may already be cau-
tious or uncertain when engaging with digital ser-
vices—technical failures can reinforce negative per-
ceptions and discourage future use. Prior studies
have highlighted how unreliable interfaces reduce
user confidence and erode trust in public digital
platforms (Asogwa, 2013; Verdegem and Verleye,
2009).

In contrast, Prabodhini handled user queries
without noticeable lag or disruption during our
study sessions. Its backend processed requests re-
liably, whether entered via speech or text, allow-
ing participants to explore information without the
frustration of broken interactions. This consistency
emerged as a key factor contributing to participants’
preference for Prabodhini over myScheme.

4.1.5 Perceived Value and Challenges of Voice
Input in Prabodhini

Participants widely appreciated the voice input
functionality in Prabodhini, which allowed them
to articulate queries orally in their native language.
Many users found this mode of interaction intu-
itive and aligned with their prior experience using
voice features in mainstream apps. One partic-
ipant described the interface as familiar: “It is
like in Google” (P5), referring to their familiarity
with using voice input in native languages on the
Google search interface. This perceived similarity
enhanced their confidence and willingness to ex-
plore the app, especially among users who found
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typing in local languages difficult or unfamiliar.
The availability of voice input in regional lan-

guages, specifically Telugu and Hindi, further con-
tributed to the system’s accessibility. Several par-
ticipants noted that they often use voice features
when searching on YouTube or sending voice notes
on messaging platforms. Prabodhini’s interface
leveraged this familiarity to reduce friction during
task completion.

By contrast, myScheme did not offer a voice
input option, which many users identified as a lim-
itation. The absence of multimodal input made it
more difficult to navigate the app, particularly for
those who were hesitant to type or read lengthy text
in non-native languages.

That said, some participants encountered us-
ability issues with the voice feature in Prabod-
hini. Specifically, users were occasionally unsure
whether the app was actively listening, due to the
lack of clear feedback cues in the interface. These
issues were attributed to minor bugs and inconsis-
tencies in how the listening state was communi-
cated. While they did not prevent task completion,
these glitches highlight the need for improvements
in real-time feedback design and system respon-
siveness.

4.1.6 Challenges with Speech Output in
Native Languages

Some participants noted issues with the quality of
Prabodhini’s text-to-speech (TTS) responses when
interacting in their native language. These prob-
lems became more pronounced in low-connectivity
environments, where the app defaulted to an of-
fline TTS engine lacking Indian accents or natural
prosody. As a result, users found certain responses
difficult to understand. This is noted by the work
conducted by Jiao et al. (2024) as well.

Despite these limitations, participants appreci-
ated the app’s provision of a text transcript along-
side the spoken output. This feature allowed users
to read the response if they had trouble understand-
ing the audio, thereby preserving a degree of inde-
pendence and continuity in the interaction. While
the clarity of voice responses remains an area for
improvement, the availability of multi-modal feed-
back helped mitigate the impact of occasional poor
audio rendering.

4.2 Quantitative Findings

We measured task completion time for each appli-
cation based on participants’ performance in Task

1, the only task completed by all 15 users. Tim-
ing was recorded from the moment participants be-
gan interacting with the app until a list of welfare
schemes was returned. We excluded delays caused
by data fetching, as these depended on mobile net-
work conditions rather than interface design.

Table 2 shows the task completion time for each
participant. On average, participants completed
Task 1 in 49 seconds (95% CI 25.74 – 72.26) using
Prabodhini. All 15 participants successfully fin-
ished the task. In contrast, the average completion
time on myScheme was 118 seconds (95% CI 81.1
– 154.9), based on data from nine participants. The
remaining six could not use myScheme due to its
lack of Telugu language support.

To control for ordering effects, we compared
task times based on which platform was used
first. When Prabodhini was used first, the aver-
age time was 50 seconds (95% CI 5.92 – 94.08);
for myScheme, it rose to 127 seconds (95% CI
72.43 – 181.57). Of nine myScheme users, only
two completed the task unaided—one via the Hindi
interface—while others struggled with complex
terms, poor navigation, and unfamiliar forms.

For Prabodhini, occasional delays were linked
to issues with the voice input feature (see Sec-
tion 4.1.5), particularly when the app failed to
clearly indicate whether it was listening. Despite
this, users were generally able to complete tasks
without assistance.

In addition to task timing, we administered a six-
item usability questionnaire adapted from the SUS
framework. Participants selected their preferred
app for each item. Table 3 presents the distribution
of responses. The results reveal a clear preference
for Prabodhini. Participants rated it more positively
across all dimensions, including ease of use, con-
fidence, and perceived complexity. By contrast,
myScheme was often described as cumbersome
and difficult to use independently. These findings
suggest that Prabodhini’s voice-first, conversational
design better supports the needs and expectations
of emergent users.

5 Discussion and Conclusion

Our findings highlight the considerable challenges
faced by emergent users when engaging with digi-
tal services that rely on form-based interfaces, tech-
nical jargon, or limited language options. Partic-
ipants in our study struggled with myScheme’s
rigid form structure, abstract categories (e.g., “ur-
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Participants
First

Platform
Used

myScheme
Task

Completion Time

Prabodini
Task Completion

Time
Comments

P1 myScheme - 0:00:03 -
P2 Prabodhini - 0:01:32 User faced issue with micro-

phone usage
P3 myScheme 0:02:05 0:00:05 -
P4 Prabodhini 0:02:08 0:00:34 Received help to fill the form in

myScheme app
P5 myScheme - 0:01:36 User faced issue with micro-

phone usage
P6 myScheme 0:01:01 0:00:04 User needed extra time to locate

the scheme in the myScheme app
P7 Prabodhini - 0:00:04 -
P8 myScheme 0:01:28 0:00:28 User needed extra time to locate

the scheme in the myScheme app
P9 myScheme 0:03:17 0:01:02 User interacted with the

myScheme app in Hindi lan-
guage

P10 Prabodhini 0:02:01 0:01:33 User faced issue with micro-
phone usage

P11 myScheme 0:02:56 0:02:11 User faced issue with micro-
phoneusage

P12 Prabodhini - 0:01:15 Received help in phrasing the
question

P13 myScheme 0:01:53 0:00:37 -
P14 Prabodhini 0:00:51 0:00:03 -
P15 myScheme - 0:01:01 User faced issue with micro-

phone usage

Table 2: Task completion time across platforms, along with issues reported by participants. Time is denoted in the
format hh:mm:ss. ‘-’ in the Time columns indicate the participant was not able to perform the task on the platform.
The Comments column has additional observations made by the researchers.

Questions Prabodhini myScheme
Q1. Which of the two applications would you like to use fre-
quently?

13 2

Q2. Which of the two applications is more complex? 1 10
Q3. Which of the two applications is easier to use? 13 2
Q4. Which of the two applications do you think most people
would learn to use very quickly?

15 0

Q5. Which of the two applications is more cumbersome to use? 5 10
Q6. Which of the two applications can you use more confidently? 14 1

Table 3: Participant response on the usability questionnaire, evaluating application usability in terms of frequency
of use, complexity, ease of use, and user confidence. Columns 2 and 3 represent the number of users preferring the
respective app. For Q2, four users responded that neither platform was complex.

ban/rural”, “BPL”, “organised sector”), and ab-
sence of Telugu language support. These issues
reflect a deeper misalignment between the design
assumptions of such platforms and the mental mod-
els of their intended users. This mismatch can be
understood through Norman’s concept of the Gulf
of Execution (Norman, 1986), which describes the
gap between a user’s goals and the actions a system
requires to accomplish them. For many partici-
pants, myScheme demanded an understanding of
administrative terms, hierarchical filters, and in-
put formats that did not map onto their everyday

knowledge or vocabulary. In contrast, Prabodhini’s
design—anchored in natural language input, voice
interaction, and scenario-driven queries—narrowed
this gulf by allowing users to express goals in their
own terms and receive structured information in re-
sponse. The system’s conversational structure and
its allowance for open-ended inputs also align with
the principle underpinning Zipf’s Law of Least Ef-
fort (Zipf, 2016), which suggests that users prefer
interaction paths that require minimal cognitive and
physical effort. By enabling users to speak queries
naturally—rather than navigate nested menus or
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input structured forms—Prabodhini reduced fric-
tion and encouraged continued engagement. Par-
ticipants’ ability to complete tasks more quickly
and independently is indicative of an interface that
leverages interaction affordances suited to its target
users.

The preference for voice input also underscores
the growing familiarity of emergent users with con-
versational modalities. Participants likened Pra-
bodhini to Google’s voice search, referencing their
existing use of voice-based interaction in apps like
YouTube or messaging platforms. This familiarity
and the sense of control it fostered contributed to
the success of Prabodhini’s mobile interface and
demonstrate how leveraging well-understood input
methods can enhance usability.

Our study also revealed that the quality and re-
liability of voice interaction matter greatly. Some
participants struggled to discern the output when
Prabodhini defaulted to an offline TTS engine lack-
ing natural Indian accents. Others were confused
when the app failed to clearly indicate whether it
was actively listening. These issues highlight the
importance of responsive feedback and robust sys-
tem design—particularly in mobile contexts where
connectivity may be intermittent. Future iterations
must incorporate more effective visual and auditory
cues to support multimodal interaction feedback.

Our findings reinforce the importance of localis-
ing interface language and terminology. Terms like
“city” and “village” resonated more with partici-
pants than “urban” or “rural”, illustrating how fa-
miliar vocabulary can reduce cognitive load. Prior
work has shown that culturally resonant interfaces
enhance user trust and improve task success among
underserved groups (Medhi et al., 2010; Soares,
2015). Designers of mobile services must move
beyond mere translation and towards localisation
strategies that reflect users’ linguistic, social, and
cognitive contexts. Designing mobile governance
platforms for emergent users demands resilient,
mobile-native, voice-first interfaces. Scaling such
systems requires addressing language diversity, in-
terface robustness, and continuous participatory
evaluation.

This study contributes to the intersection of HCI
and NLP by showing how large language mod-
els and speech interfaces can support information
access in low-resource settings. Prabodhini com-
bines GPT-4 with a Retrieval-Augmented Gener-
ation (RAG) pipeline, speech-to-text input, and
text-to-speech output to support natural language

queries in regional languages. These components
helped reduce the cognitive load of form-based sys-
tems and enabled mobile-first, low-literate users to
find relevant government scheme information. Our
findings offer design implications for building in-
clusive conversational agents that work reliably in
multilingual, low-connectivity environments. Fu-
ture NLP systems must prioritise transparency, lo-
calisation, and robustness to serve marginalised
users more effectively.

6 Limitation

While our study design included three tasks, par-
ticipant interaction with the myScheme application
was largely limited to Task 1. Only two participants
completed subsequent tasks using myScheme, and
six were unable to use it at all. While this restricted
direct comparison across all tasks, it also under-
scores the practical usability barriers present in
myScheme. Thus, our analysis focuses on Task 1,
where comparable engagement was feasible across
both systems.
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Abstract

Voice-controlled interfaces can support older
adults in clinical contexts – with chatbots be-
ing a prime example – but reliable Automatic
Speech Recognition (ASR) for underrepre-
sented groups remains a bottleneck. This study
evaluates state-of-the-art ASR models on lan-
guage use of older Dutch adults, who interacted
with the Welzijn.AI chatbot designed for geri-
atric contexts. We benchmark generic multilin-
gual ASR models, and models fine-tuned for
Dutch spoken by older adults, while also con-
sidering processing speed. Our results show
that generic multilingual models outperform
fine-tuned models, which suggests recent ASR
models can generalise well out of the box to
real-world datasets. Moreover, our results in-
dicate that truncating generic models is help-
ful in balancing the accuracy-speed trade-off.
Nonetheless, we also find inputs which cause a
high word error rate and place them in context.

1 Introduction

Although there is a surge of interest in AI-driven ap-
plications like chatbots in the health domain (Guo
et al., 2024; Huo et al., 2025), tailoring them to
groups underrepresented in AI research remains
a challenge. Older populations are one example:
because they often have different needs and pref-
erences when interacting with AI (van Dijk et al.,
2025; Klaassen et al., 2025), their involvement in
system development is key for building clinically
relevant systems in geriatrics, the field in healthcare
concerned with the health of older adults. This pop-
ulation is increasing in size globally (World Health
Organisation, 2023), while personnel shortages in
healthcare become pressing (Eurofound, 2023); yet
addressing these challenges with AI warrants sys-
tems that align well with older adults.

Voice control is a key element in chatbots in geri-
atrics, as older individuals may struggle with small
fonts, icons, and typing text in standard interfaces

(Khamaj, 2025). Yet, implementing voice control
is not obvious, as the performance of Automatic
Speech Recognition (ASR) systems depends on the
representation of older adults in training data, and
on their articulation, speech volume and techno-
logical literacy (Klaassen et al., 2025). Moreover,
evaluation of state-of-the-art ASR systems on real-
istic data of older adults is lagging behind.

In this short paper, we evaluate recent ASR mod-
els on older adults’ language use in interaction
with Welzijn.AI. This is a new digital platform for
older users, that currently features a prototype chat-
bot to converse about clinically relevant topics like
quality of life and frailty. Audio data of 10 older
Dutch adults interacting with Welzijn.AI were
transcribed using generic multilingual ASR mod-
els (Whisper and Voxtral), and models fine-tuned
specifically for Dutch or older Dutch populations
(Whisper and Wav2Vec2). We find that i) generic
multilingual models outperform fine-tuned models,
and also that ii) truncating larger generic models
helps striking a good balance between accuracy and
speed. These findings also hold for a similar subset
of the Mozilla Common Voice dataset (Ardila et al.,
2020) we use as benchmark.

2 Background

Though work on evaluating ASR models for older
adults exists, extrapolating findings to realistic con-
texts is hard. Performance of ASR models some-
times remains implicit in downstream use, for ex-
ample through evaluation of overlap of linguistic
features extracted from model vs. human-generated
transcripts (Naffah et al., 2025), or by using only
part of ASR models (like the audio encoder) in
predicting cognitive impairment in older persons
(Agbavor and Liang, 2024). Other work tailors
ASR systems to older adults by drawing on ad-
ditional databases of individual users (Xu et al.,
2025), which is not always feasible in a clinical
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Figure 1: Interface of Welzijn.AI with an example conversation. Users press the purple button to activate the
ASR functionality and start responding, after which their speech is transcribed and rendered on the screen. Chatbot
responses are read out with a text-to-speech model. The ‘Scores’ button shows information extracted on quality
of life and frailty, ‘Settings’ allows choosing different ASR models, and ‘Appearance’ returns the user to the
conversation on display. We focus in this paper on the conversation resulting from interaction with this prototype.

context due to privacy concerns. However, Xu
et al. (2025) also show that fine-tuning generic
multilingual models with speech from older adults
increases ASR performance. The work by Sheko-
ufandeh et al. (2025) explores this further, by fine-
tuning Whisper as recent ASR model (Radford
et al., 2023) on the Dutch JASMIN-CGN dataset.
This dataset includes language use of older adults
in human-machine interaction settings (Cucchiarini
and Van hamme, 2012), which is potentially rele-
vant to Welzijn.AI.

3 Materials and methods

Ten older Dutch adults (≥65 years) from a vol-
unteer panel of the outpatient clinic for geriatrics
at the Leiden University Medical Center (LUMC)
were included. The Institutional Review Board of
the LUMC approved the study and all participants
provided informed consent. Participants were in-
structed not to share personal health information
with Welzijn.AI, but rather to impersonate a peer.
Participants interacted individually with the chat-
bot, with one experimenter standing by.

An impression of Welzijn.AI is given in Fig-
ure 1. Here we focus on the system’s ability to sup-
port conversations; we refer for architectural details
to van Dijk et al. (2025). The chatbot was driven
by the meta-llama/Llama-3.3-70B-Instruct1

1We will use Hugging Face IDs to denote AI models.

model (Grattafiori et al., 2024), prompted to struc-
ture the conversation around the EQ-5D and Clini-
cal Frailty Scale (Brooks, 1996; Rockwood et al.,
2005). These are validated geriatric instruments to
assess quality of life and frailty, by retrieving infor-
mation about mobility, mental wellbeing, physical
independence, and so on. These instruments can be
presented via surveys, in conversations with clini-
cians, or in our case, by a chatbot (Figure 1).

The chatbot was used on a laptop. Interac-
tions took 5-10 minutes and were recorded with
a handheld device. The default ASR model
in Welzijn.AI was openai/whisper-large-v3,
which in early testing we found to work best.

Type Example
Orthographic Hi, I am uh... feeling great today.

Orthographic_clean Hi I am feeling great today
Normalised hi i am feeling great today

Table 1: Examples of gold transcript types.

Hugging Face ID Params
mistralai/Voxtral-Mini-3B-2507 4.68B

openai/whisper-large-v2 1.55B
openai/whisper-large-v3 1.55B

golesheed/whisper-native-elderly-9-dutch 1.54B
golesheed/wav2vec2-xls-r-1b-dutch-3 963M

openai/whisper-large-v3-turbo 809M
openai/whisper-medium 769M
openai/whisper-small 244M

Table 2: Models used for our ASR experiments.
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Hugging Face ID WER Welzijn.AI WER Common Voice

Orth. Orth_c. Norm. Time Orth. Orth_c. Norm. Time

mistralai/Voxtral-Mini-3B-2507 .17 .11 .09 3.75 .05 .04 .04 3.72
openai/whisper-large-v2 .19 .12 .10 4.69 .05 .04 .04 4.24
openai/whisper-large-v3 .12 .07 .06 3.41 .04 .03 .03 3.71

golesheed/whisper-native-elderly-9-dutch .40 .22 .14 4.59 .29 .18 .07 4.07
golesheed/wav2vec2-xls-r-1b-dutch-3 .49 .37 .36 .99 .30 .19 .19 .89

openai/whisper-large-v3-turbo .16 .10 .08 1.43 .06 .04 .04 1.47
openai/whisper-medium .19 .13 .11 2.35 .07 .06 .06 2.48
openai/whisper-small .26 .18 .17 1.11 .12 .10 .10 1.19

Table 3: Word Error Rate (WER) is the edit distance between prediction and reference (sum of substitutions,
deletions, and insertions), divided by the length of the reference, so here denotes the average number of errors per
reference word, for Orthographic (Orth.), Orthographic_clean (Orth_c.), and Normalised (Norm.) gold transcripts.
Processing time (Time) in average seconds per input. Best results in bold.

Recorded user speech was after the interactions
separated from chatbot responses and segmented
using PyDub2 and pyannote (Bredin, 2023). We
obtained 199 segments with an average length of
3.4 seconds, due to the turn-taking nature of the
conversation. Our sample totalled 11 min. and 15
sec., so is small, but still valuable as data from clin-
ical contexts is challenging to obtain. Besides chat-
bot data, we also drew 200 random samples from
the Common Voice dataset (Ardila et al., 2020) of
Dutch older individuals (≥ 60 years), which totals
17 min., and 37 sec. As this data concerns written
text read out loud, it should intuitively be an easier
benchmark for ASR models.

For obtaining gold standard (i.e. human) refer-
ence transcriptions, segments were transcribed with
the default openai/whisper-large-v3 model,
and subsequently corrected by the first author.
Since the Word Error Rate (WER) as standard met-
ric in the ASR field is sensitive to fillers, capital-
isation, and punctuation, and since choosing the
‘right’ reference depends on the use case, we cre-
ated three types of human and model transcriptions
(via rule-based postprocessing) as visible in Ta-
ble 1: orthographic (including fillers, capitalisa-
tion, and punctuation) orthographic_clean (only
capitalisation, as also used in Figure 1), and nor-
malised (no fillers, capitalisation or punctuation).
Orthographic transcription is useful in that it pro-
vides additional structure, though speech content is
often arguably sufficiently preserved in normalised
transcriptions, with orthographic_clean transcrip-
tion striking a balance between the strictest and
most flexible evaluation scenarios.

Table 2 shows the ASR models included in
our experiments. As can be seen, we focus

2https://github.com/jiaaro/pydub

on models from the Whisper model family as
the current standard in the field, and include
mistralai/Voxtral-Mini-3B-2507 (Liu et al.,
2025) as new potential competitor. We included
golesheed/whisper-native-elderly-9-dutch
as the Whisper model fine-tuned for
older Dutch adults by Shekoufandeh
et al. (2025), and we also included
golesheed/wav2vec2-xls-r-1b-dutch-3,
a work-in-progress Wav2Vec2 model (Baevski
et al., 2020) fine-tuned for general Dutch, as older
but potentially fast contender. We note that these
fine-tuned models do not output fillers, capitals or
punctuation by default, hence evaluate them with
normalised transcripts.

Our motivation for this set of ASR models is
that they are all small (compared to Voxtral’s 24B
variant for example) and open weights, hence suit-
able for local/private downstream applications. We
take processing time into account since a good bal-
ance between accuracy and speed is key in many
applications, so include models of different sizes.

Our code for the ASR pipeline is available.3 All
experiments were carried out on a Macbook Pro
M1 16GB using the Hugging Face ecosystem for
ASR and PyTorch’s MPS GPU acceleration back-
end. Due to privacy restrictions we cannot share
recordings nor transcripts of the interactions.

4 Results

WER and processing time per model are
given in Table 3. Regarding WER, on both
the Welzijn.AI and Common Voice datasets,
openai/whisper-large-v3 as generic mul-
tilingual model outperforms all other mod-
els, also regarding normalised transcripts as

3https://github.com/bma-vandijk/asr_pipelines

74

https://github.com/jiaaro/pydub
https://github.com/bma-vandijk/asr_pipelines


# Model Prediction Reference WER

1 openai/whisper-large-v2
hartelijk bedankt voor het kijken en tot de volgende keer gaat wel 5thank you cordially for watching and until next time it’s okay

2 golesheed/whisper-native-elderly-9-dutch
poet hem in oranje goedemiddag 4loot him in orange good afternoon

3 openai/whisper-large-v2
ik denk dat het weer zo is als het altijd is ongeveer zoals altijd 3.33I think that it is as it always is roughly as usual

4 openai/whisper-medium
ik ben benieuwd goedemiddag 3I am curious good afternoon

5 openai/whisper-small
voor de wereld goedemiddag 3for the world good afternoon

6 mistralai/Voxtral-Mini-3B-2507
groen de medaillon goedemiddag 3green the medallion good afternoon

7 golesheed/wav2vec2-xls-r-1b-dutch-3
goede midda goedemiddag 2good midda good midday

8 openai/whisper-large-v3-turbo
ja het is heel erg goed weer te ingewikkeld 2yes it is very well again too complicated

9 openai/whisper-medium
bedankt voor het kijken gaat wel 2thank you for watching it’s okay

10 mistralai/Voxtral-Mini-3B-2507
het zelf gaat het hetzelfde uiteraard 2it self goes it the same of course

Table 4: Example inputs with high WER at the sample level. English (literal) translations in italics.

most flexible evaluation scenario. In terms
of processing time, on both datasets, the
Wav2Vec2 model fine-tuned on Dutch language
use (not specifically older language users)
(golesheed/wav2vec2-xls-r-1b-dutch-3) is
the fastest, but also the least accurate.

For chatbot systems like Welzijn.AI, un-
derstanding the trade-off between WER and
processing time is crucial, given that in chatbots
other components also impose processing time, and
seconds may greatly impact the perceived quality
of the experience. We visualise performance
w.r.t. normalised transcripts in Figure 2. Here
we see that openai/whisper-large-v3-turbo,
which is essentially openai/whisper-large-v3
with a truncated decoder 1/8 its size, strikes
the best balance. The ‘nearest’ improvement
in WER concerns openai/whisper-large-v3,
which is about three times slower, while the
‘nearest’ improvement in processing time comes
from openai/whisper-small, at the expense
of more than twice its WER. Figure 2 also
shows that for all models, the Common Voice
dataset is easier regarding WER, though not all
models process these data faster. For Common
Voice data the same observations hold regarding
models that are the ‘nearest’ improvements
in WER and processing times compared to
openai/whisper-large-v3-turbo: they lead to
considerable drops in speed or accuracy respec-
tively. Our findings align with earlier work that
shows that overall, larger ASR models perform bet-
ter on commonly used datasets compared to smaller
models (Atwany et al., 2025), though they also

Figure 2: Overview of accuracy vs. processing time.

note that larger numbers of parameters eventually
yield diminishing returns. This finding helps un-
derstand why openai/whisper-large-v3-turbo
shows a relatively small performance drop
while still being about 50% smaller than
openai/whisper-large-v3.

4.1 Error analysis

To disclose common pitfalls in using ASR mod-
els on Dutch, we provide ten examples of the 50
predictions with highest WER (≥ 2) in Table 4,
which as expected come only from Welzijn.AI
data. Errors in predictions in deep neural ASR
models like Whisper can be categorised in various
ways. Mishearings could be induced by ambiguous
or unclear phonemes in the input, or confusion of
phonemes by the model (e.g. ‘this guy’ vs. ‘the
sky’). Hallucinations are errors where the predic-
tion has no semantic or phonetic relation to the
reference. Looping is when a model keeps repeat-
ing previously recognized speech (‘Welcome to
Amsterdam to Amsterdam to Amsterdam’). Fur-
thermore, it is also known that deep neural ASR
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models are sensitive to non-speech audio signals
in the background caused by e.g. objects or ani-
mals (Barański et al., 2025), which is not obvious
to trace in the predictions, but in live interaction
settings like Welzijn.AI something to take into
account.

Examples 2, 3, 6, 7 and 10 seem cases of mis-
hearings, where 2 and 6 have at least some phonetic
(but not semantic) alignment with the reference; ex-
amples 3, 7 and 10 also have some semantic over-
lap. Examples 1, 4, 5, 8, 9 have no clear phonetic
or semantic link with the reference thus qualify
as hallucinations; 1 and 9 are probably frequency
effects from Whisper’s training data (video tran-
scriptions) (Barański et al., 2025), meaning the
models prioritize patterns in the training distribu-
tion over the actual audio input. All in all, our
examples suggest high WER is not limited to just a
few types of models, which aligns with earlier doc-
umented unpredictability in state-of-the-art ASR
models across the board (Koenecke et al., 2024; At-
wany et al., 2025) , and this finding should inform
their development and deployment in high-stakes
contexts.

5 Discussion and conclusion

We evaluated state-of-the-art ASR models on tran-
scribing language use of older adults interacting
with the Welzijn.AI chatbot, which was designed
for geriatrics. We included various generic mul-
tilingual models as well as models fine-tuned on
language use of older Dutch adults and general
Dutch. We found that on both Welzijn.AI and
Common Voice data, generic multilingual mod-
els perform better than fine-tuned models, with
openai/whisper-large-v3 as best model achiev-
ing WERs of .06 and .12 for normalised and or-
thographic transcriptions of realistic Welzijn.AI
conversations. Interestingly, its truncated vari-
ant openai/whisper-large-v3-turbo struck the
best balance between accuracy and processing
speed, the latter being crucial in chatbot systems
used in real-time. This is useful from a systems
development perspective, since truncated models
may perform well out of the box, without the need
for training smaller architectures from scratch, or
for additional data for group- or task-specific fine-
tuning. Future work should further support this
claim by using larger samples across settings.

To put our results in perspective, other
evaluations of state-of-the-art ASR models

on the entire Dutch subset of the Com-
mon Voice dataset reported WERs of .06 by
mistralai/Voxtral-Mini-3B-2507 (Liu et al.,
2025), and .04 by openai/whisper-v3-large, as-
suming the strictest evaluation scenario (ortho-
graphic).4 We obtained similar results for our sub-
set of Common Voice spoken by Dutch Adults: .04
for the same Whisper and .05 for the same Voxtral
model. Hence, it seems that for generic multilin-
gual models, changing the target population does
not imply large performance degradation if the task
is straightforward (reading text out loud).

Still, our Welzijn.AI data is conversational,
hence results are harder to put in perspective.
Though the WER on orthographic transcripts for
Welzijn.AI data triples for the same Voxtral and
Whisper models (.17 and .12 respectively) , given
the different nature of read speech and conversa-
tional language, this is not a dramatic loss of perfor-
mance. Recent work has reported WERs for a vari-
ety of datasets transcribed with our best perform-
ing model openai/whisper-v3-large, as large
as .32 for English speech recordings in home en-
vironments (BERSt), and .23 for English meeting
recordings (AMI) (Atwany et al., 2025).

We also attempted to categorize WER error
types. We saw that mishearings were as fre-
quent as hallucinations. Hallucinations, however,
are potentially more problematic for systems like
Welzijn.AI, as for a user who is unable to make
sense of the resulting transcription, trust will erode
faster compared to a mishearing, which still has
some semantic or phonetic similarity.

Strategies to improve WER and mitigate halluci-
nations, could include more independent language
modelling components that take specific contexts
into account. When the audio input for the de-
coder is noisy, its language prior generates a tran-
script based on its own distribution instead of the in-
put, which may well be out-of-context. Mitigation
could involve generating candidate predictions and
evaluating their likelihoods from the perspective of
a domain-specific language model, or combining
the decoder’s predicted token probabilities directly
with the prediction of a context-specific language
model (see also Zhou and Li, 2025). Hence, some
exciting work remains for making real-world im-
pact with recent ASR models.

4Results of latest model reported on https://github.c
om/openai/whisper, August 6 2025.
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6 Limitations

Though dedicated GPUs in high performing com-
puting clusters have higher bandwidths and are
faster, hence the default choice in experiments like
ours, unified architectures (such as provided by
Apple’s Silicon M series) are receiving more at-
tention nowadays due to their benefits in terms of
latency, energy consumption, and system footprint,
and are recognized as efficient and competitive al-
ternatives to dedicated GPUs (Hübner et al., 2025;
Kenyon and Capano, 2022). So faster processing
times could probably be attained by using dedicated
GPUs or by using a more recent M-chip. Still, we
anticipate a scenario where one device hosts mul-
tiple smaller AI models to do different tasks, for
which our setup can provide a good lower bound.

Also, though we tried to make comparison fair
for different ASR models by evaluating with differ-
ent kinds of transcripts, developing further tran-
script normalisations to take ‘acceptable errors’
into account, e.g. writing numbers in digits or
letters (‘8’, ‘eight’), were beyond the scope of the
current work. This means that there can be some
noise in our performance estimates.
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Abstract

The advancement of mobile GUI agents has
opened new opportunities for automating tasks
on mobile devices. Training these agents re-
quires large-scale high-quality data, which is
prohibitively expensive when relying on hu-
man labor. Given the vast population of global
mobile phone users, if automated data collec-
tion from them becomes feasible, the result-
ing data volume and the subsequently trained
mobile agents could reach unprecedented lev-
els. Nevertheless, two major challenges arise:
(1) extracting user instructions without human
intervention and (2) utilizing distributed user
data while preserving privacy. To tackle these
challenges, we propose MobileA3gent, a col-
laborative framework that trains mobile GUI
Agents using self-sourced data from diverse
users. The framework comprises two com-
ponents, each targeting a specific challenge:
(1) Auto-Annotation, which enables the auto-
matic collection of high-quality datasets dur-
ing users’ routine phone usage with minimal
cost. (2) FedVLM-A, which enhances feder-
ated VLM training under non-IID distributions
by incorporating adapted global aggregation
based on both episode-level and step-level vari-
ability. Extensive experiments prove that Mo-
bileA3gent achieves superior performance over
traditional approaches at only 1% of the cost,
highlighting its potential for real-world appli-
cations.

1 Introduction

Mobile GUI agents (Bai et al., 2024; Wang et al.,
2024b,a) have experienced significant advance-
ments, propelled by recent progress in Vision-
Language Models (VLMs). Designed to simu-
late human mobile phone usage behavior, mo-
bile agents can automate complex tasks on mo-
bile phones, saving tremendous human labor and
change everyday lives. Compared to non-agent

* Corresponding authors.

solutions, mobile agents offer significantly better
adaptability and generalizability, enabling them to
effectively handle various mobile environments and
operation scenarios (Zhang et al., 2023).

Trajectories

Instructions Trajectories

Instructions

Cheap!
Scale!

1. Annotation Labor
2. Executation Labor Cost!

1. Worldwide Users
2. Usage By-Product
3. Model Annotation

Distributed & User-Centric

Centralized & Manual

Figure 1: Comparing our pro-
posed paradigm with conven-
tional ones. By leveraging
users’ daily phone usage, we
achieve superior scalability
with drastic cost savings.

The training of
mobile agents heav-
ily depends on large-
scale, high-quality
datasets (Chai et al.,
2024; Zhang et al.,
2024c). To build
such datasets, exist-
ing approaches rely
on centralized data
collection followed
by human annota-
tion, resulting in
high costs and lim-
ited scalability. To
achieve large-scale
data acquisition more efficiently, a paradigm shift
(as shown in Figure 1) from centralized to dis-
tributed data collection is necessary, enabling di-
verse users to participate in data contribution. Ad-
ditionally, replacing human annotation with au-
tomatic annotation is crucial for efficiently pro-
cessing the vast amount of collected data, allowing
direct data sourcing from real user interactions.

Our insight is that the frequent and ever-growing
phone usage by users worldwide naturally gener-
ates valuable supervisory information, which can
serve as a rich data source for training mobile
agents. Building on this user-centric insight, we
aim to effectively utilize these distributed data,
while minimizing human involvement in the pro-
cess. However, two technical challenges remain:
1. Although the users’ phone usage provides real-

world trajectories (screenshots and actions), it
is difficult to extract the real intentions (instruc-
tions) behind the actions in natural language;

2. Data collected from one user is both scale-

79



limited and privacy-sensitive. The challenge lies
in how to utilize distributed data from diverse
users to boost performance while protecting pri-
vacy.
To tackle these challenges, we propose Mo-

bileA3gent, a collaborative learning framework
that trains mobile agents using automatically col-
lected user data from daily phone interactions
while preserving user privacy. Specifically, Mo-
bileA3gent features two novel techniques.

First, we propose Auto-Annotation, an auto-
mated method for data collection and annotation
that leverages locally deployed VLMs to annotate
user instructions based on interaction trajectories.
The key technical innovation lies in combining
step-wise low-level instruction breakdowns with
episode-wise summarization, allowing even small
local VLMs to better understand the user’s intent.
The step-wise description decomposes complex
user instructions into simpler steps, enabling the
VLM to comprehend and extract information more
accurately. Meanwhile, the episode-wise summa-
rization provides a global perspective on the entire
task, generating a more comprehensive caption of
the user’s ultimate instruction. Compared with hu-
man annotation, Auto-Annotation generates data of
comparable quality with minimal cost requirement.

Second, to effectively utilize decentralized data
from diverse users, we propose FedVLM-A, which
pioneers the integration of Federated Learning (FL)
(Kairouz et al., 2021) and collaborative training of
VLM-based GUI agents, while ensuring rigorous
user privacy protection. We further propose a novel
aggregation method, termed Adapted global ag-
gregation, which accounts for both episode-level
and step-level distributions to handle the two-level
heterogeneity (formulated in Section B) in diverse
users’ data, overcoming the limitations of tradi-
tional one-level aggregation methods (Karimireddy
et al., 2021; McMahan et al., 2017; Hsu et al.,
2019; Reddi et al., 2020). Adapted aggregation
adapts the global aggregation weights using a
weighted sum of episode and step counts for each
client, thereby enhancing the performance of mo-
bile agents trained in non-IID scenarios.

Extensive experiments on four benchmarks with
10+ models and metrics demonstrate that: (1) Mo-
bileA3gent achieves the best all-around trade-off
across four dimensions, delivering performance
on par with centralized manual approaches at sig-
nificantly lower cost, while also ensuring privacy
and achieving exceptional scalability. (2) Auto-

Annotation outperforms all annotation baselines in
performance while reducing annotation costs by
99% compared to manual labeling. (3) FedVLM-A
achieves an at least 5% relative improvement over
representative FL baselines in non-IID scenarios.
These promising results underscore the immense
potential of our framework to serve as a novel and
practical paradigm for real-world applications. To
summarize, our contributions are as follows:
1. We formulate the problem of self-sourced data

collection from distributed mobile phone users
and propose Auto-Annotation, an automatic
data collection method, which achieves data
quality comparable to human-annotated data at
a significantly lower cost.

2. We introduce MobileA3gent, a collaborative
framework for training mobile agents on decen-
tralized user data while preserving privacy. By
incorporating FedVLM-A, we enable federated
training of VLMs and achieve superior perfor-
mance when confronted with heterogeneity.

3. We conduct extensive experiments across com-
prehensive benchmarks and metrics. The com-
pelling results highlight the substantial potential
of our approach for real-world applications.

2 Problem Formulation
2.1 Preliminaries
Data Composition. The mobile GUI agent, pow-
ered by a VLM, simulates human users and com-
pletes tasks in a step-wise process. To train the core
VLM, one data episode, denoted as D, comprises
multiple steps, each serving as a basic training unit.
A step consists of three components: a task instruc-
tion T , a screenshot, and a corresponding action.
The composition of a data episode is defined as:
D = {⟨T , ai, si⟩ | i ∈ [1, n]}, where ⟨T , ai, si⟩
represents the i-th step, with ai and si denoting the
action and screenshot respectively.

Traditional Approach. Automating mobile
devices poses significant challenges, leading to
a heavy reliance on high-accuracy training data,
which are, at present, almost all annotated by hu-
mans. The traditional paradigm (Li et al., 2024b;
Qin et al., 2025; Hong et al., 2023) thus involves:
(1) manually authored task instructions, followed
by (2) centralized data collection and model train-
ing. As shown in Figure 1, this approach typically
outsources instruction writing to human annotators
using predefined rules or heuristics to promote both
quality and diversity. Each instruction is then ex-
ecuted step-by-step in a controlled environment,
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such as an Android simulator, to collect paired
screenshots and actions. To guarantee correctness,
all interactions are manually verified, resulting in
substantial costs and difficulty in scaling.

2.2 Primary Problem

To overcome the high cost and limited scalability of
the traditional paradigm, we introduce a novel dis-
tributed user-centric approach for training mobile
agents. The primary problem we address is: How
to harness private and distributed phone usage
trajectories from diverse users? We further de-
compose the primary problem into two subordinate
problems: (1) How to automatically collect data
from individual users without incurring expensive
human annotation; and (2) How to effectively uti-
lize decentralized data to optimize the agent while
preserving user privacy .

Sub-Problem 1: Automatic Data Annotation
on User Side. During phone interactions, users
spontaneously generate screenshots and actions,
which are assumed to be easily collectible. How-
ever, users do not receive explicit natural language
instructions and only act based on their underlying
intentions, making task annotation necessary. Since
users are generally reluctant to articulate their inten-
tions and such intentions are non-trivial to infer, the
first subordinate problem is: how to automatically
derive user intentions without human intervention,
thereby constructing the training dataset. The ob-
jective is to learn a function f(·) that predicts user
intention T ∗, an approximation of task instruction
T , based on n steps of actions and screenshots
⟨ai, si⟩, that is: T ∗ = f({⟨ai, si⟩}ni=1) .

Sub-Problem 2: Distributed Training of Mo-
bile GUI Agents. The daily phone usage of an
individual generates a limited dataset, constraining
the agent’s performance trained solely on it. Fortu-
nately, with millions of users worldwide, there is
immense potential to collaboratively train a mobile
agent using their combined data, enabling virtu-
ally unlimited scalability. Nevertheless, directly
sharing user data poses significant privacy risks,
necessitating its use in a distributed manner. There-
fore the second subordinate problem is: how to
conduct privacy-preserving collaborative training
of mobile agents on distributed user data.

3 Methodology
3.1 Auto-Annotation: Automatic Data

Collection and Annotation from Daily
Phone Usage

Auto-Annotation functions by automatically build-
ing datasets from users’ daily phone usage without
manual effort. Screenshots and actions are directly
recorded from user trajectories. To annotate user in-
structions, the idea is to employ a local annotation
model to progressively decode user intent in a step-
by-step manner, which comprises three stages: (1)
Converting coordinate-based actions into seman-
tically meaningful descriptions; (2) Incrementally
generating low-level instructions to reflect each
discrete operation; (3) Consolidating these atomic
instructions into a high-level instruction for the en-
tire episode. Note: A low-level instruction is a
specific, atomic directive that corresponds to an
individual step, whereas a high-level instruction
represents the overall task objective.

Rule-Based Action Conversion. As indicated
by previous works (Zheng et al., 2024), some
VLMs, such as GPT-4V (202, 2023), are un-
able to effectively identify the location of oper-
ations. Therefore, to make the original actions in-
terpretable to the local annotation model, we adopt
a rule-based technique rather than using models
(Wang et al., 2024a) to transform the action into a
natural language sentence. Specifically, for CLICK
actions, we align the exact click position with a
corresponding interface element based on the ac-
cessibility tree. If the element contains text or in-
vokes a function, we use the associated text or func-
tion name to construct a meaningful action descrip-
tion. For other actions, such as NAVIGATE_HOME,
we slightly adjust the phrasing to improve clarity
and readability. A code snippet is included in Ap-
pendix E.

Step-Wise Instruction Description. During
this stage, we annotate users’ low-level atomic in-
structions through step-wise description, a novel
technique that decomposes complex user tasks into
multiple steps. Specifically, at each step i, the local
annotation model Ma, referred to as the Descrip-
tor, is prompted to generate an atomic instruction
that reflects the user’s explicit intent, as:

Descriptor : ⟨si, Ai⟩ Ma−−→ T low
i , (1)

where T low
i is the prediction of user intention, serv-

ing as an approximation of the actual low-level in-
struction. si and Ai respectively represent the cur-
rent screenshot and the corresponding converted
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Figure 2: System overview of MobileA3gent. During individual users’ daily phone usage, Auto-Annotation
automatically constructs training data through step-wise description and episode-wide summarization. Each user
then participates in FedVLM-A through our training integration. By applying adapted global aggregation, we obtain
the target mobile agent with enhanced capabilities.

action. For the example in Figure 2, the atomic
intent of Scroll Down on the browsing page is
to "explore more articles on plant care". When
combined with rule-based action conversion, the
step-wise description allows the model to focus
on localized context at each interaction, leading
to more accurate and interpretable low-level direc-
tives. This step-by-step procedure also ensures that
the information is more finely processed, facilitat-
ing better high-level summarization in subsequent
stages Details of our prompt templates can be found
in Appendix E.6.

Episode-Wise Intention Summarization. This
stage generates high-level instructions by summa-
rizing the low-level instructions from all steps.
The novelty lies in providing global context en-
riched with step-wise details, enabling the anno-
tation model to effectively extract user intention.
To provide global visual context for the annota-
tion model Ma, referred to as the Summarizer, we
concatenate all relevant screenshots into a single
image sc, arranged in chronological order. Note
that this approach (1) allows Summarizer to de-
velop a comprehensive understanding of the entire
task sequence, and (2) eliminates the need for mul-
tiple inferences by performing inference only once.
Finally, we compile the concatenated screenshot sc
and the list of low-level instructions {T low

i }ni=1 into
a single prompt and feed it into Ma to summarize
the user’s overall intention T high as:

Summarizer : ⟨sc, {T low
i }ni=1⟩

Ma−−→ T high . (2)

Since users give no explicit commands, T high sim-
ulates what they would convey if asking an agent
to perform the same task. Combined with above

mentioned techniques, episode-wise summariza-
tion produces high-quality instructions comparable
to human annotated data, all while exclusively us-
ing locally deployed VLMs, thereby substantially
reducing costs.

3.2 FedVLM-A: Federated Training of
VLM-Based Mobile Agents with Adapted
Global Aggregation

To facilitate training mobile agents on distributed
data without comprising privacy, we propose
FedVLM-A, a novel collaborative framework
which pioneers the integration of federated learning
with VLMs and improve performance in heteroge-
neous scenarios with Adapted Aggregation.

Integrating VLM Training. We build upon
the highly-starred training framework, ms-swift
(Zhao et al., 2024), and successfully extend it to
support federated VLM training. We ensure the
algorithmic correctness by following the imple-
mentation of federated training frameworks for
Large Language Models (LLMs) (Ye et al., 2024).
To enhance training efficiency and better accom-
modate user-side resource constraints, we incor-
porate Low-Rank Adaptation (LoRA) (Hu et al.,
2021). In our federated setting, K clients (users)
collaborate with a central server to train a global
VLM without directly sharing private data. At
each communication round l, the server broadcasts
the global model M(l) to all participating clients
uk ∈ S l, who initialize their local models accord-
ingly: M(l,r+1)

k := M(l) , where M(l,0)
k denotes

the local model at the l-th round and 0-th training
iteration. Each client uk then conducts multiple
iterations of stochastic gradient descent (SGD) up-
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dates on its local dataset Dk. At each iteration r,
with learning rate η, the local model is updated as:

M(l,r+1)
k = M(l,r)

k −η∇ℓ(M(l,τk
k ); T , s, a) , (3)

where ℓ(.) represents the computed loss based on a
data sample ⟨T , s, a⟩.

Adapted Global Aggregation. In this stage,
the server updates global model by aggregating
local models, which is subsequently broadcast to
available clients for the next round. Our innova-
tion lies in adapting the aggregation strategy to
accommodate the two-level structure of datasets
used for training mobile agents, encompassing both
step-level variations and episode-level distributions.
Traditional FL methods use the sample number of
client as the aggregation weight. This insight has
been proven successful over the past several years
(Li et al., 2019, 2023). However, prior aggregation
methods, such as FedAvgM and FedYogi (McMa-
han et al., 2017; Hsu et al., 2019; Reddi et al.,
2020), which perform well on tasks such as image
classification, overlook the two-level distribution
discussed in Section B. These methods treat all
samples equally, regardless of whether they origi-
nate from the same episode or not, thereby ignoring
structural dependencies.

To address this limitation, we propose a novel
aggregation technique adapting to the new scenario
of MobileA3gent. Within federated training of mo-
bile agents, the data samples can be measured by
both step count nk and episode count nepi

k . nepi
k is

as well as, or even more important as it indicates
how many tasks the agent has learned on. As nepi

k

and nk are measured in different scales, we empiri-
cally set a hyper-parameter λ to align them, which
is calculated around the average step length of all
episodes. Then we redefine the sample count as n∗

k

and reformulate the aggregation weight based on
our adapted sample count n∗

k; that is:

n∗
k := λnepi

k + nk ; ωk =
n∗
k∑

k∈Sl n∗
k

, (4)

where ωk denotes the weight for client uk and
S l is the sampled participating clients. This design
smoothly improves upon traditional aggregation
and inherits its convergence property. When λ = 0,
it degrades to normal aggregation. Finally, the
global model M(l) is adaptively aggregated as:

M(l+1) :=
∑

k∈Sl
ωkM(l)

k . (5)

The adapted aggregation in FedVLM-A balances
both episode and step counts, achieving a better uti-

Table 1: Comparing privacy protection against risks.
FedVLM-A offers strongest protection by addressing
all three identified concerns. In contrast, API-Based
Agent directly transmits user data, while DistRL* stores
all data centrally for training.

Privacy Protection Eavesdrop Abuse Exposure

API-Based Agent % % %

DistRL* ! % %

MobileA3gent ! ! !

lization of decentralized data from heterogeneous
users.

Privacy Analysis. FedVLM-A preserves pri-
vacy by keeping original user data, which may con-
tain sensitive information, on users’ local devices
without transmitting. Through local data reten-
tion, we successfully mitigate the following pri-
vacy risks, shown in Table 1: (1) Eavesdropping
Attack: transmitting models instead of data pre-
vents sensitive data from being intercepted during
transmission; (2) Data Abuse: we reduce the risk
of user data being exploited by data collectors for
unintended purposes. (3) Peer Exposure: we elim-
inate the possibility of user data being accessed
by other participants, as data is not directly shared
between peers.

4 Experiments (More in Appendix C)

4.1 Basic Setups (More Details in Appendix E)
Models, Datasets & Benchmarks. The base
model for most experiments is Qwen2-VL-Instruct-
7B (Wang et al., 2024c). We also compare results
with 10+ representative models, e.g. InternVL2
(Chen et al., 2024b) in Section 4.5. We select
totally three offline agent benchmarks: Android-
Control (Li et al., 2024a), Android in the Wild
(AitW) (Rawles et al., 2023) and GUI Odyssey
(Lu et al., 2024b). These datasets are collected by
crowdsourcing and serve well as a simulation of
real-world mobile data. Additionally, we employ
AndroidWorld (Rawles et al., 2024), a challenging
online benchmark running on Android emulators.

Metrics. Following previous works (Wu et al.,
2024; Sun et al., 2024; Qin et al., 2025), we utilize
three commonly used metrics for GUI agents that
assess the accuracy of action type prediction, coor-
dinate prediction, and step success rate, denoted as
Type, Ground, and SR, respectively. We assess data
quality by measuring the similarity between our
generated instructions and the ground truth from
the original datasets. Metric details are presented
in Section E.3.
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Table 2: Multi-dimensional comparison of MobileA3gent with other approaches. With 1% overall cost, Mo-
bileA3gent even surpasses the centralized human-annotated data. * We adjust DistRL to our user-centric setup.
Anno. Cost refers to annotation cost in terms of cents (¢). Colors indicate preferable , moderate and concerning
outcomes. Baseline details are explained in Appendix E.5.

Methodology AndroidControl-High AndroidControl-Low Anno.
Cost

Privacy
Protect ScalabilityType Ground SR Type Ground SR

Prompting using Open-Ended & Closed-Ended Models

OS-Atlas-7B (Wu et al., 2024) 57.44 54.90 29.83 73.00 73.37 50.94 - !

GPT-4o (OpenAI, 2023) 66.17 3.38 16.69 87.03 6.06 31.15 - %
No

Finetuning on Human-Annotated Data

Central-Human (Li et al., 2024a) 74.41 53.75 50.97 97.02 74.66 80.40
FedL/VLM (Ye et al., 2024) 68.55 36.90 39.79 95.38 56.30 69.00 10880 !

Very
Low

Finetuning on Synthetic Data

OS-Genesis (Sun et al., 2024) 66.15 - 44.54 90.72 - 74.17 ≈ 103 ! Limited

Finetuning on Auto-Annotated User data

DistRL* (Wang et al., 2024d) 73.62 51.14 48.58 96.42 75.13 80.18 %
MobileA3gent 74.66 53.05 57.24 97.17 76.98 81.52 152.92

!

Very
High

4.2 Overall Evaluation of MobileA3gent

Baselines. To collect data and train mobile GUI
agents, we compare MobileA3gent against the fol-
lowing baselines: (1) Central-Human (Li et al.,
2024a), the conventional approach that relies on hu-
man annotation and centralized training on a server.
(2) FedLLM/VLM (Ye et al., 2024), which differs
from Central-Human by training in a distributed
manner across client devices. (3) OS-Genesis (Sun
et al., 2024), which automates synthetic data gener-
ation to reduce human effort. (4) DistRL* (Wang
et al., 2024d), an adapted version of the original
method that first collects decentralized user data
and then performs centralized training. During
federated training, we randomly select 30% of
clients in each round to mimic real-world scenar-
ios where users are intermittently offline (Jiang
et al., 2024). We evaluate the models at round 30,
which corresponds to an expected cumulative client
participation of 90%. Notably, the federated meth-
ods undergo fewer training iterations compared to
centralized ones. We also provide prompt-based
baselines, using locally deployed models or closed-
ended models accessed via APIs, for reference.

Results & Analysis. As demonstrated in Table 2,
we evaluate from four dimensions: Performance,
Efficiency, Privacy, and Scalability, and summa-
rize the following key findings: (1) Comparable
performance to Central-Human. As the num-
ber of participating clients and the data volume
increase, the performance of the collaboratively
trained global model via MobileA3gent improves
accordingly. Once the participation exceeds a cer-

tain threshold, users can obtain a highly capable
mobile agent, comparable to or even surpassing
Central-Human at minimal costs. (2) Most ef-
ficient by leveraging daily phone usage. The
per-client annotation cost remains nearly negligi-
ble compared to Central-Human. Although OS-
Genesis also aims to reduce human labor, it first
generates synthetic instructions and then collects
trajectories by employing GPT-4o to perform tasks
in simulators, which still incurs medium-level costs.
In contrast, we directly collect trajectories from
users’ daily phone usage by merely recording inter-
actions, offering the most cost-saving approach for
constructing GUI agent datasets. (3) MobileA3gent
substantially reduces privacy risks, by keeping
data on local devices. The privacy protection level
is comparable to that of locally deployed agents,
while achieving significantly higher performance.
(4) Promising scalability based on worldwide
users. As shown in Figure 7, the mobile user base
is massive and continually expanding, which en-
ables MobileA3gent to achieve much greater scala-
bility compared to other approaches.

4.3 Data Quality and Training Evaluation of
Auto-Annotation

Offline Benchmark. As shown in Table 3 and Ta-
ble 5, we summarize the following key findings,
(1) Match or surpass Human-Annotation. Our
method achieves performance comparable to hu-
man annotation when trained on datasets of equal
size. Notably, as the data scale increases, our
method surpasses human annotation, highlighting
the effectiveness of MobileA3gent and its strong
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Figure 3: Data quality evaluation across comprehensive metrics. Auto-Annotation outperforms all other baselines
and achieve comparable quality to Human-Annotation with a nearly 80% similarity.

potential for real-world deployment. (2) Across
multiple datasets, our approach consistently out-
performs all annotation baselines, underscoring
the robustness and general effectiveness of Auto-
Annotation. (3) Drastic cost reductions with min-
imal accuracy loss. Combined with the cost statis-
tics in Table 8, By leveraging improved backends
such as vLLM, we achieve up to a 99.9% cost re-
duction with less than a 2% decrease in high-level
accuracy. Importantly, even as the dataset size
scales up, the cost remains negligible compared
to human labor.
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Figure 4: Performance and annota-
tion cost trade-off on AndroidWorld.

Online
Benchmark.
We further
evaluate our
approach on
the online
benchmark
Android-
World. As
shown in
Figure 4: (1) Auto-Annotation achieves the best
overall performance. (2) Despite being trained
solely on the AndroidControl dataset, the models
are able to successfully complete online tasks
in a previously unseen environment. This result
demonstrates that agents trained with our frame-
work possess strong generalization capabilities
across unseen tasks and applications. Additional
evaluations of generalization performance are
provided in Appendix C.4 with Table 6 and 7.

Data Quality. As shown in Figure 3, (1) Auto-
Annotation exhibits the best performance across
both text-based and embedding-based metrics,
providing strong evidence for the effectiveness of
our hierarchical method. (2) A similarity score of
nearly 80% to ground truth further demonstrates the
practical utility of generated instructions on mo-
bile devices, indicating their potential as a viable
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Figure 5: Comparison between FedVLM-A and 7 base-
lines on non-IID splits of AndroidControl. FedVLM-A
achieves SOTA performance on average. Transparent
bars indicate average scores over skewed scenarios only.

substitute for human-written ones. (3) Visual-Sense
delivers competitive data quality using primarily vi-
sual signals, suggesting that even stronger results
may be achieved by integrating Auto-Annotation
with enhanced visual understanding.

4.4 Training Evaluation of FedVLM-A
Baselines & Splits. We further conduct exper-
iments under non-IID settings to verify the per-
formance of FedVLM-A and investigate the het-
erogeneity issue formulated in Section B. We in-
clude seven representative FL baselines, such as
FedProx (Li et al., 2020), FedYogi (Reddi et al.,
2020). To eliminate any potential influence from
Auto-Annotation, we use the original dataset in this
section. Specifically, we sample 1,000 episodes
from AndroidControl with uniformly distributed
step lengths and create four distinct splits to sim-
ulate diverse distribution scenarios. Both the Step
Skew and IID splits assign 100 episodes to each
client. In the Step Skew scenario, clients have an
equal number of episodes but varying numbers of
steps, whereas in Episode Skew, the opposite holds.
The Both Skew scenario features skewed values for
both levels. For baseline Local, we evaluate using
the 0-th client, which, in certain subsets (e.g., Both
Skew), undergoes a number of iterations compara-
ble to FL baselines.

Results. Figure 5 presents the radar chart of
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all baselines across the four splits, along with the
average scores for all scenarios and for the three
non-IID subsets. The results reveal the following:
(1) Non-IID distributions negatively impact the per-
formance of the global model, underscoring that
data heterogeneity is of critical importance in
training distributed mobile agents. (2) FedVLM-
A with adapted aggregation achieves robust perfor-
mance under non-IID settings, outperforming all
other baselines by at least 5% in relative improve-
ment. (3) Federated training significantly outper-
forms local training, validating the benefit of multi-
user collaboration. (4) Overall, the results confirm
the existence of the two-level heterogeneity high-
lighted in Section B, posing a new challenge for
the federated learning community.

4.5 Ablation Experiments on Various Models
Setups. We conduct ablation experiments to as-
sess the performance, annotation cost, and time
requirements of different base models within Mo-
bileA3gent. Three configurations are evaluated
by varying the choice of annotation and train-
ing models, where a combination x+y represents
using model x for annotation and model y for
training mobile GUI agents. Our model suite in-
cludes conversational VLMs such as Phi_3.5 (Ab-
din et al., 2024), grounding-oriented base mod-
els like SeeClick (Cheng et al., 2024) and widely
adopted API-based models including GPT-4o/-
Mini (OpenAI, 2023). In the plots, icons with light
transparency denote models tuned using human an-
notations, whereas solid icons represent models
using Auto-Annotation. The horizontal axis reflects
annotation cost, measured via the Pt backend when
applicable, or approximated by model size other-
wise. For human-labeled icons, whose actual costs
are prohibitively high, we use the same cost num-

bers for visualization purposes.
Results. As shown in Figure 6, 9 and Table 8,

different models exhibit varying trade-offs between
performance and cost. We conclude the follow-
ing observations: (1) Across all base models, our
method achieves consistent improvement over
human-annotated baselines with significant cost
savings. (2) The choice of annotation and train-
ing models introduces flexible performance–cost
trade-offs, allowing practitioners to tailor config-
urations to specific deployment constraints. (3)
Within a given VLM family, an increase in pa-
rameter numbers generally correlates with higher
performance and greater computational demand.
While across model types, this correlation does
not always hold-e.g., Yi-VL-6B incurs lower costs
and performs worse than InterVL2-2B, despite hav-
ing more parameters. (4) Qwen2-VL-2B-Instruct
(blue circles) achieves the best balance between
performance and annotation cost, making it the
most cost-effective option in our study.

5 Conclusion
To overcome the scalability and efficiency limita-
tions of traditional mobile agent paradigm, we em-
phasize the necessity of transitioning from central-
ized to distributed user-centric data collection, and
from human to automatic annotation. To achieve
this, we propose MobileA3gent, a framework that
collaboratively trains mobile GUI agents using self-
sourced data from diverse users. Specifically, we
introduce Auto-Annotation, an efficient approach
for generating high-quality datasets from routine
phone usage at minimal cost. Additionally, we
present FedVLM-A, a federated VLM training
framework with adapted global aggregation to han-
dle mobile data heterogeneity. Extensive experi-
ments on four benchmarks with 10+ models and
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metrics validate the effectiveness of MobileA3gent.
The promising results highlight the scalability and
practicality of our user-centric paradigm, offering
a privacy-preserving and cost-efficient solution for
training large-scale mobile agent.

Limitations

Despite the novelty and promising results of our
work, potential limitations remain: (1) Due to
device capacity, we are currently unable to con-
duct experiments on actual user mobile phones,
as most mobile phone devices lack the neces-
sary resources to hold mainstream models. How-
ever, an increasing number of studies are focusing
on developing lightweight models specifically de-
signed for mobile environments (Christianos et al.,
2024; Papoudakis et al., 2025). MobileA3gent
is model-agnostic and can seamlessly incorporate
these smaller, more efficient VLMs, thereby facili-
tating practical deployment in resource-constrained
settings. Also, as shown in Figure 9, we com-
pare models of varying sizes. The results indicate
that even compact models—such as InternVL2-1B
and Qwen2-2B—can achieve competitive perfor-
mance with as few as 1,000 training episodes. This
demonstrates the scalability and effectiveness of
our framework across different model sizes and ar-
chitectures. While larger models like Qwen2-VL-
7B-Instruct demand more computational resources,
the overall annotation cost remains substantially
lower than manual labeling, making our approach
cost-effective even at scale. Although real-device
experiments remain future work, our findings vali-
date the effectiveness of the framework in resource-
constrained settings.
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A Related Work

A.1 Development of Current Mobile GUI
Agents

The advent of VLMs (Zhang et al., 2024b; Pa-
poudakis et al., 2025; Christianos et al., 2024;
Liu et al., 2025a) has marked a significant shift
in phone automation, enabling more dynamic,
context-aware, and sophisticated interactions with
mobile devices (Liu et al., 2025b). Research on
mobile agents has progressed through key mile-
stones, with models becoming more proficient at
interpreting multi-modal data, understanding user
intent, and autonomously executing complex tasks.
VLM-based mobile agents typically follow two ap-
proaches: (1) Prompt Engineering (Zhang et al.,
2023; Lee et al., 2024; Lu et al., 2024d; Chen
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Figure 7: Trends in mobile user statistics. The increas-
ing number of mobile users and their rising daily usage
provide a sufficient data foundation for our approach.

et al., 2024a), where pre-trained models are guided
by carefully designed prompts, and (2) Training-
Based Methods (Hong et al., 2023; Cheng et al.,
2024), where VLMs are further optimized using
large-scale mobile datasets. While training-based
methods offer higher potential and generalizability
by improving the VLM through fine-tuning, they
require a large amount of training data, which can
be very costly.

A.2 Efforts in Building Datasets for Mobile
GUI Agents

Acquiring training trajectories for mobile agents
presents significant challenges. Existing ap-
proaches are often reliant on manual curation,
making data collection both costly and inefficient.
Some works have explored the possibility of au-
tomatically constructing datasets using VLMs or
Application Programming Interfaces (APIs) (Wang
et al., 2021; Lai et al., 2024). But these approaches
either halfway to completing the datasets or depend
on pre-defined tasks.

OS-Genesis (Sun et al., 2024), the most ad-
vanced in this area, proposes reverse task synthesis
to eliminate the need for pre-defined instructions.
However, this method still requires an agent to
execute synthetic tasks in a simulated mobile envi-
ronment, to obtain the corresponding screenshots
and actions. This process does not guarantee the
accuracy of executed actions, while also incurs ad-
ditional computational and resource costs.

In contrast, we propose collecting real-world
data from mobile users. This approach offers both
(1) unlimited data scale, given the billions of mo-
bile users worldwide, and (2) ground truth accuracy,
as the data is directly generated through human ex-
ecution.
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B Detailed Problem Formulation

In this section, we first briefly elaborate on several
key concepts, including the definition of mobile
agents, to supplement Section 2.2. We then formu-
late our federated learning setup, with particular
emphasis on the novel heterogeneity introduced by
the inherent nature of mobile agent trajectories.

B.1 Supplemental Preliminaries

Step-Wise User Phone Usage. Typically, the pro-
cess of one user interacting with a mobile device is
formulated as follows. Initially, there is a screen-
shot of the interface, denoted as s1. The user aims
to complete a task, denoted as T in natural lan-
guage, which requires n steps. Given any screen-
shot si, where i ∈ [1, n], the user performs an
action ai, causing the interface to transition from
si to si+1:

User: si
ai−→ si+1 . (6)

Once the last action an is performed, the interface
reaches the final screenshot sn+1, finishing the task
T with n+ 1 screenshots and n actions in total.

Functionality of Mobile Agents. The mobile
agent, with the core being a VLM denoted as Mm,
simulates a human user in a step-wise process for
task completion. It operates sequentially when
applied to tasks. Given a natural language task
T requiring n steps, at each step i, the primary
function of the mobile agent is to predict the next
action a∗i required to complete T , based on the

current screenshot si and contextual information;
that is:

Mobile Agent: ⟨T , si⟩ Mm−−−→ a∗i . (7)

B.2 Federated Learning Setup
Reasons for Distributed Training. The duration
of daily mobile phone usage is inherently limited
for an individual, resulting in a relatively small
dataset collected on a single user’s device. This
small-scale dataset constrains the performance of
the mobile agent trained on it. Fortunately, with
millions of mobile users worldwide, there exists
a vast opportunity to incentivize users to collabo-
rate and collectively train a mobile agent M, using
their combined data. Following the scaling law (Ka-
plan et al., 2020), leveraging multiple users’ data
enables virtually unlimited scalability and yields
promising results. However, directly sharing or
merging data generated from users’ daily phone
usage poses significant privacy risks. So the local
data can only be utilized in a distributed manner.

Federated Learning. To address this challenge,
we adopt federated learning, which effectively
mitigates privacy concerns by keeping data
on local devices, and develop a collaborative
training framework FedVLM-A for mobile
GUI agents. Given the local model Mk and
a data sample (t, s, a) from Dk, the objective
of FedVLM-A is to optimize the global model
Mm based on these local datasets; that is:

min
M

F (M) :=
1

K

K∑

k=1

E
(t,s,a)∼P

(k)
T ×S×A

[
ℓ(Mk; t, s, a)

]
. (8)

where ℓ : T × S × A → R+ denotes the loss
function, e.g. cross-entropy. P

(k)
T ×S×A is the dis-

tribution over T × S ×A. T , S, and A represent
task, screenshot, and action spaces, respectively.
We assume that the distributions P

(k)
T ×S×A differ

across clients, which is a common scenario in FL.
To the best of our knowledge, we are the first to
apply federated learning into the training of mobile
agents.

B.3 New Heterogeneity

Two-Level Distribution. Directly applying fed-
erated learning to mobile GUI agents introduces
a new form of data heterogeneity. Unlike conven-

tional FL scenarios where data are modeled as flat
collections of independent samples, mobile interac-
tion data inherently follow a hierarchical structure:
they are collected episode by episode, with each
episode consisting of sequential steps governed by
a fixed task instruction. As a result, the underly-
ing data distribution operates on two distinct levels.
We refer to this structure as the Two-Level Distri-
bution.

Level 1 (Intra-episode): Within episode j for
user k, the task instruction T (k,j) leads to a se-
quence of F (k,j) steps. Since the task is constant
within the j-th episode, the episode’s data distribu-
tion simplifies to P

(k,j)
S×A. Level 2 (Inter-episode):
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Figure 8: Scaling law analysis on Android Control dataset with different training strategies. All models show a
growing tendency with increased data size.

Across episodes, different tasks T (k,j) follow a dis-
tribution P

(k)
T . Thus, the overall data distribution

on client k is defined as:

P
(k)
T ×S×A =

∑E(k)

j=1
P

(k,j)
S×A · P (k)

T

(
T (k,j)

)
, (9)

where E(k) is the number of episodes on client k.
This two-level distribution captures richer, hierar-
chical patterns and introduces more severe skew
than the one-level heterogeneity in traditional fed-
erated learning.

Simplified Focus: Episode Length. To study
the above mentioned new heterogeneity in a
tractable way, we simplify P

(k)
T to reflect only the

distribution of episode lengths F (k,j). That is, we
consider how many steps each episode contains,
rather than the task content itself. Ignoring this
episode length heterogeneity can lead to mislead-
ing assumptions and subsequent degraded perfor-
mance. For example, two clients might each have
10 episodes of shopping-related tasks. However, if
one client’s episodes are short and concise while
the other’s are long and repetitive, their training
data contribute differently to the global model. This
results in biased updates despite seemingly equal
numbers of episodes. Moreover, even if step-length
distributions are balanced, clients may differ in to-
tal episode count or task diversity, still causing
skewed contributions.

To address this, we propose an adapted aggrega-
tion strategy in Section 3.2 that explicitly accounts
for heterogeneity in episode step length, going be-
yond standard sample-count-based methods in tra-
ditional federated learning.

C Additional Experiments & Results

C.1 Continual Ablation Experiments on
Various Models and Data Sizes

Setups. We further present our experiments, fol-
lowing Section 4.5. We conduct an ablation exper-
iment on training data size to investigate whether
the scaling law (Kaplan et al., 2020) holds for our
automatically generated data. Using the Android-
Control dataset, we train models that differ only in
the size of their training data. For MobileA3gent,
we fix the number of clients at 10 and test differ-
ent participation rates, specifically 30% and 90%.
We also provide more comprehensive ablation on
different model combinations in Figure 9. Both
high-level and low-level settings are evaluated with
Type, Ground and SR metrics. Details about our
model suite are provided in Section E.4.

Results. As shown in Figure 8, the performance
of all tested models improves as the training data
size increases, indicating that our generated data
also follows the scaling law. We also observe a
sharp performance increase when training from 100
and 1,000 episodes. No saturation is observed in
our experiments; however it can be inferred that the
performance of all models grows more slowly once
the data size reaches a certain threshold. Moreover,
when comparing high-level and low-level training
settings, the latter converges faster, due to its sim-
plicity and less room for improvement

From Figure 9, (1) we further demonstrate that
Auto-Annotation is an effective method for annotat-
ing user instructions. The generated data exhibits
strong utility and can be scaled up significantly at
minimal cost compared to manual labeling. (2)
Increasing the data scale benefits the Ground met-
ric the most, as it captures the most critical aspect
that VLMs need to learn from training data—the
grounding ability. Specifically, Auto-Annotation
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Figure 9: Comprehensive visualization of different base models evaluated across multiple metrics and training
configurations.
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Table 3: Training evaluation on AndroidControl and GUI Odyssey with more results in Table 4. We compare
our method against various baselines. Auto-Annotation achieves superior results across all methods, and shows
substantial improvement over Human-Annotation with significant cost savings.

Methodology AndroidControl-High AndroidControl-Low GUI Odyssey
Type Ground SR Type Ground SR Type Ground SR

Qwen2-VL-7B-Instruct 28.61 0.00 1.94 71.09 2.19 6.41 2.87 2.94 0.51
GPT-4o 66.17 3.38 16.69 87.03 6.06 31.15 37.50 14.17 5.36
OS-Atlas-7B-Pro (Wu et al., 2024) 57.44 54.90 29.83 73.00 73.37 50.94 60.42 39.74 26.96

Human-Annotation 75.41 53.75 50.97 97.02 74.66 80.48 78.85 64.92 55.22
Action-Origin 65.28 3.18 9.84 94.19 3.56 26.68 62.36 13.32 14.33
Visual-Sense (Zhang et al., 2024a) 77.50 61.13 57.37 97.47 81.42 85.54 81.53 67.66 59.49
Self-Instruct (Wang et al., 2023) 75.86 57.28 53.95 97.47 81.97 85.25 82.80 60.27 55.16
Chain-of-Thought 77.94 56.96 55.89 97.17 83.20 85.39 74.37 50.80 49.33
Auto-Annotation 77.50 62.67 58.12 98.06 83.29 86.29 81.72 69.51 60.57

achieves up to an 82.8% improvement over Human-
Annotation for InternVL2-1B.

C.2 Auto-Annotation with Different Data
Sizes

We present detailed experiments comparing Auto-
Annotation with various baselines under two dis-
tinct data sizes. Human-Annotation serves as the
upper bound.

Comparison with Human-Annotation. When
the training data size is equal, our method achieves
comparable performance on many evaluation met-
rics, with less than a 2% drop—for example, SR on
both AndroidControl-High and AndroidControl-
Low—while reducing annotation costs by over
99%. Moreover, as the data size scales up, our
method surpasses Human-Annotation with ease,
while still maintaining minimal cost.

Comparison with Other Baselines. Auto-
Annotation maintain consistent superiority other
baselines across all metrics and data sizes, mak-
ing it the most effective choice for annotating user
instructions.

C.3 Auto-Annotation on AitW Dataset

Setups. The AitW dataset consists of five subsets:
General, Install, GoogleApps, Single, and Web-
Shopping. For each subset of AitW, we sample
1,000 episodes for training and 100 for evaluation.
The overall performance is the average of the five
subsets. For the validation metric, we omit valida-
tion samples that consist of click actions with no
corresponding unit. These samples are too easy to
predict in our setting and show no meaningful dif-
ference between different models. We only present
high-level accuracy due to the absence of low-level
instructions in the original dataset.

Results. As shown in Table 5, we can conclude
the following: (1) Apart from AndroidControl and
GUI Odyssey, our method still achieves compara-
ble results with Human-Annotation and outperform
it by a large margin as the data size increases. (2)
Our method performs extremely well on the Single
subset. We attribute this result to the short aver-
age step length for episodes in Single, which leads
to more accurate reconstruction of the high-level
instructions.

C.4 Out-of-Domain Evaluation with
Generalization Analysis

Setups. To evaluate the performance of Mo-
bileA3gent in out-of-domain scenarios, we conduct
two experiments on the AndroidControl and GUI
Odyssey datasets. For AndroidControl, we ran-
domly sample 100 episodes from each of the three
unseen test splits: App-Unseen, Task-Unseen, and
Category-Unseen, based on the dataset’s sub-splits.
The number 100 is chosen to match the test sample
size used in Section 4.3. For GUI Odyssey, we
similarly sample 100 episodes from each unseen
test split: App-Unseen, Task-Unseen, and Device-
Unseen. Note that the original GUI Odyssey
datasets include overlapping samples across splits;
therefore, we select test episodes that do not over-
lap with either the training samples or with each
other.

Results. As shown in Tables 6 and 7, (1) mo-
bile agents trained on our automatically generated
data exhibit strong generalizability across various
settings. The results demonstrate the effective-
ness of our approach and further validate the util-
ity of our auto-annotated data, which is derived
solely from screenshots and actions. (2) Addition-
ally, we observe that the Category-Unseen sub-
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Table 4: In-depth evaluation of Auto-Annotation under equal data size on AndroidControl. In this setup, Human-
Annotation serves as the upper bound due to its access to gold instructions. Auto-Annotation outperforms other
baselines trained on model-annotated data and achieves comparable performance to Human-Annotation on several
metrics-such as high-level SR-with drastic cost saving.

Methodology AndroidControl-High AndroidControl-Low GUI Odyssey
Type Ground SR Type Ground SR Type Ground SR

Qwen2-VL-7B-Instruct 28.61 0.00 1.94 71.09 2.19 6.41 2.87 2.94 0.51
GPT-4o (OpenAI, 2023) 66.17 3.38 16.69 87.03 6.06 31.15 37.50 14.17 5.36
OS-Atlas-7B-Pro (Wu et al., 2024) 57.44 54.90 29.83 73.00 73.37 50.94 60.42 39.74 26.96

Data Size = 5,000 Data Size = 3,000
Human-Annotation (Li et al., 2024a) 79.14 66.56 61.70 97.62 81.47 85.99 84.39 75.63 67.01

Action-Origin 65.28 3.18 9.84 94.19 3.56 26.68 62.36 13.32 14.33
Visual-Sense (Zhang et al., 2024a) 77.49 61.13 57.37 97.47 81.42 85.54 81.53 67.66 59.49
Self-Instruct (Wang et al., 2023) 75.86 57.28 53.95 97.47 81.97 85.25 82.80 60.27 55.16
Chain-of-Thought 77.94 56.96 55.89 97.17 83.20 85.39 74.37 50.80 49.33
Auto-Annotation 77.49 62.67 58.12 98.06 83.29 86.29 81.72 69.51 60.57

Data Size = 1,000
Human-Annotation (Li et al., 2024a) 75.41 53.75 50.97 97.02 74.66 80.48 78.85 64.92 55.22

Action-Origin 65.28 2.85 10.58 90.61 1.14 28.46 54.52 5.38 7.52
Visual-Sense (Zhang et al., 2024a) 73.62 51.14 48.58 96.42 74.25 80.18 76.62 54.43 46.50
Self-Instruct (Wang et al., 2023) 72.43 48.99 47.54 96.87 72.40 78.69 77.07 51.33 45.22
Chain-of-Thought 72.58 48.48 47.24 97.02 74.53 80.18 76.56 53.40 46.37
Auto-Annotation 74.22 52.44 49.48 97.47 75.13 80.48 77.58 59.74 50.64

Table 5: Evaluation of Auto-Annotation across different subsets of AitW dataset. Our methods achieve consistent
superior performance compared to Human-Annotation at a very low cost. -S denotes a simplified version which
removes the step-wise description.

Methodology Size General Install GoogleApps Single WebShopping Overall

Zero-Shot - 15.90 5.20 15.08 28.38 11.41 15.19
Human-Annotation 1000 35.04 54.50 46.65 55.46 39.82 46.29
Auto-Annotation-S 1000 36.24 52.47 44.13 53.41 40.34 45.32
Auto-Annotation 1000 36.92 53.23 37.43 52.84 39.65 44.01
Auto-Annotation-S 5000 36.24 59.19 47.21 62.45 39.43 48.90
Auto-Annotation 5000 37.26 57.29 47.49 72.05 45.14 51.85

set yields relatively lower accuracy compared to
other evaluation subsets, indicating a higher level
of difficulty. (3) For GUI Odyssey, we note that
Human-Annotation achieves relatively higher per-
formance than in other experiments, suggesting
that this dataset may pose greater challenges for
generalization.

C.5 Efficiency Evaluation across Inference
Backends

Setups. To further investigate whether the anno-
tation cost using our method can be reduced and
whether the memory requirements can be mini-
mized with current efficient inference backends,
such as vLLM (Kwon et al., 2023) and LMDeploy
(Contributors, 2023), we conduct additional exper-
iments to assess efficiency by computing model
costs and memory usage on different backends.
API-based costs are assessed using the OpenAI’s

library tiktoken 1 to count input and output tokens
via Auto-Annotation. The price per million to-
kens is also included. Moreover, we approximate
the API cost for the Qwen2-VL family by using
the pricing of Qwen-VL-Plus, as the server does
not provide APIs for Qwen2-VL-7B-Instruct or
Qwen2-VL-2B-Instruct. For the InternVL2 fam-
ily, since the model server offers free trial access,
we denote the cost as "Free". Note: the annota-
tion costs are computed using Auto-Annotation-S,
which removes the step-wise process for fair com-
parison across models. For reference, using vLLM,
Auto-Annotation incurs around 2 times the cost of
Auto-Annotation-S.

Results. As shown in Table 8, models exhibit
explicitly different behaviors across backends. In
general, most models reduce costs when using effi-
cient backends. For example, InternVL2-2B saves

1https://github.com/openai/tiktoken
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Table 6: Out-of-domain evaluation on AndroidControl. We compare Auto-Annotation with baselines on three
out-of-domain test subsplits. Our method achieve consistent improvement over Human-Annotation with minimal
annotation cost.

Methodology App-Unseen Task-Unseen Category-Unseen
Type Ground SR Type Ground SR Type Ground SR

Human-Annotation (Li et al., 2024a) 65.79 57.02 47.74 78.65 67.83 60.98 70.31 51.07 47.03
Action-Origin 56.48 5.92 9.90 64.21 0.99 12.75 60.16 1.88 7.81
Visual-Sense (Zhang et al., 2024a) 70.45 64.14 54.59 82.64 69.76 64.98 69.69 61.54 54.38
Self-Instruct (Wang et al., 2023) 72.63 64.06 56.04 84.18 67.12 64.06 69.84 59.45 53.75
Chain-of-Thought 71.03 58.33 51.97 82.64 68.42 64.21 71.09 59.22 55.47
Auto-Annotation 72.20 65.00 56.04 83.72 68.97 65.13 72.97 61.06 56.25

Table 7: Out-of-domain evaluation on GUI Odyssey. We compare Auto-Annotation with baselines on four evaluation
subsets. Our method achieve consistent improvement over Human-Annotation with minimal annotation cost.

Methodology App-Unseen Task-Unseen Device-Unseen
Type Ground SR Type Ground SR Type Ground SR

Human-Annotation (Li et al., 2024a) 78.76 59.23 51.85 76.74 61.89 49.29 79.96 61.42 53.02
Action-Origin 61.54 9.94 11.35 62.56 11.22 11.63 61.84 11.86 12.52
Visual-Sense (Zhang et al., 2024a) 77.49 54.40 48.47 75.32 60.64 47.88 81.50 63.36 55.98
Self-Instruct (Wang et al., 2023) 78.00 49.33 45.22 76.96 56.75 46.58 82.24 57.72 52.40
Chain-of-Thought 77.36 53.81 48.21 77.24 56.71 46.53 82.31 57.98 53.08
Auto-Annotation 77.87 63.03 53.76 77.64 65.76 52.68 82.49 67.56 58.82

annotation costs by more than half when leveraging
LMDeploy. However, for smaller models, using
an efficient backend does not necessarily lead to
improvements. We attribute this to the fact that
running vLLM on an RTX 4090 causes the model
to occupy the entire GPU memory, which is 5 to 10
times the original memory usage of PyTorch. This
increase in memory consumption does bring out
improvement inference speed but fails to offset the
additional memory demand. Since our annotation
cost, as formulated in Equation E.3, considers both
time and memory usage, the overall cost does not
necessarily decrease. Additionally, APIs remain
a viable option since they eliminate the need for
local deployment, while offering highly compet-
itive pricing. However, using APIs comes at the
sacrifice of privacy as shown in Table 1.

C.6 Accuracy Comparison across Different
Actions

Following the evaluation protocol described in Sec-
tion 4.1, we compute the accuracy for each action
type defined in the AndroidControl action space,
as detailed in Table 9.

As illustrated in Figure 10, the accuracy varies
significantly across different action types. Notably,
the COMPLETE, TYPE, and OPEN_APP actions achieve
relatively high accuracy. This can be attributed to
the fact that these actions primarily depend on lan-
guage understanding rather than visual grounding.

Given that current VLMs are more proficient in han-
dling language-based tasks, these actions are easier
to infer correctly. In contrast, NAVIGATE_BACK and
WAIT exhibit the lowest accuracy. We hypothesize
that this is mainly due to their limited representa-
tion in the training set, as they constitute only a
small portion of the total training data. Addition-
ally, NAVIGATE_BACK often requires the model to
correct previous errors or perform implicit reason-
ing based on prior steps, which is challenging for
VLMs lacking explicit reasoning capabilities.

It is also worth noting that the Type metric differs
fundamentally from the SR metric. The Type metric
only requires correctly identifying the action type,
without evaluating parameters such as coordinates
or input content. In contrast, SR considers an ac-
tion correct only if all its arguments are predicted
accurately. This distinction is especially significant
for coordinate-based actions like CLICK, which re-
quire precise location predictions to be considered
successful under the SR metric. This additional
complexity makes it more challenging for models
to achieve high accuracy on such actions.

D Discussions and Future Directions

D.1 Discussions

Analysis of Resources on a Mobile Device. To
investigate the minimal resource requirements,
we conduct additional experiments to determine
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Table 8: Comparison of annotation costs per 1,000 samples, using different inference backends across various base
models. Results demonstrate that employing efficient backends, such as vLLM and LMDeploy, can further reduce
inference time and memory usage, ultimately lowering the annotation cost of our approach. The generation time
and memory usage are averaged over three runs.

Annotation Model
Annotation Cost (¢) Generation Time (s) Memory Usage (MB)

PyTorch vLLM or
LMDeploy API PyTorch vLLM or

LMDeploy PyTorch vLLM or
LMDeploy

Human 10880 56300 -

GPT-4o-Mini - - 14.8 5061 -
GPT-4o - - 247.92 6858 -
Qwen2-VL-2B-Instruct 6.14 8.42 <21.15 1577 1180 12046 22083
Qwen2-VL-7B-Instruct 16.77 9.87 <21.15 2005 1374 25881 22224
InternVL2-1B 2.58 11.09 Free 2000 1662 3985 20645
InternVL2-2B 16.04 7.23 Free 1698 1038 29235 21548
InternVL2-8B 23.18 - Free 2245 - 31960 -
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Figure 10: High-level SR across different action types within the action space of AndroidControl. The width of
the pillars corresponds to the number of data samples in the evaluation test set; thus, the area reflects the weighted
average performance.

whether small VLMs or models based on APIs can
achieve similar effectiveness. The results in Sec-
tion 4.5 show that even an 1B VLM can deliver
competitive performance. Models based on APIs
can also be used, though they come with the risk of
privacy leakage, which we leave for future work.

Real-World Applicability Analysis. We will
address the real-world applicability three-folds.
First, as shown in Section 4.4, each user only needs
to provide a small amount of data, and not all of
it is sensitive, resulting in minimal or no privacy
risks. Second, the benefits far outweigh the costs
and risks. We assume that the server incentivizes
participation by offering free use of the global agent
in exchange for access to user data. Users can gain
access to a highly capable mobile agent that saves
them both time and efforts. Finally, by incorpo-
rating federated learning, user data is processed
locally, alleviating most privacy concerns.

D.2 Future Directions

As mentioned above, we have shown the promising
results achieved by MobileA3gent. However, this
is not the end as there are still emerging challenges
and interesting directions that are worth exploring
in this direction.

Privacy Preservation. Training on user data
inevitably raises privacy concerns. While federated
learning helps mitigate privacy leakage by keeping
private data on the client side and transmitting only
LoRA adapters, potential privacy issues remain.
Models with substantial sizes are prone to memo-
rization of their training data (Yu et al., 2024; Wang
et al., 2024e). Similar to large LLMs, recent stud-
ies (Caldarella et al., 2024; Jayaraman et al., 2024)
reveal that VLMs also inadvertently memorize and
potentially expose sensitive information. Dejavu
memorization (Jayaraman et al., 2024) proposes a
novel measurement for memorization by quantify-
ing the fraction of ground-truth objects in an image
that can be predicted from its text description in
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a training image-text pair. Mobile agents rely on
VLMs to perceive the interface and make decisions.
Therefore, training directly on user data may lead
to leakage of sensitive information. This issue can
be addressed by implementing differential privacy
(DP), which, however, remains underexplored in
the context of VLMs and mobile agent training.

Efficiency. To collaboratively train a global mo-
bile agent on distributed user data, each user needs
to locally train a small-sized VLM and commu-
nicate with the central server. However, limited
computation resources and communication chan-
nels on mobile devices may hinder the feasibility
of deployment. With the recent advancement of
LLMs and diffusion models and their integration
into federated learning systems (Zhou et al., 2021),
numerous approaches have been proposed to alle-
viate computational and communication overheads
(Ding and Hu, 2024). On the other hand, the prolif-
eration of smaller VLMs has significantly enhanced
efficiency. For instance, AppVLM (Papoudakis
et al., 2025) specifically targets app control tasks
with a lightweight architecture, facilitating rapid
and cost-efficient inference for real-time execution.

Reinforcement Learning. Although our current
framework does not yet incorporate reinforcement
learning, we identify it as a promising future di-
rection. In a federated mobile agent setting, user
feedback can serve as a critical reward signal, en-
abling agents to adjust their decision-making poli-
cies dynamically. Future work will need to tackle
challenges inherent to integrating reinforcement
learning into a federated environment, such as han-
dling heterogeneous feedback, ensuring robust and
stable learning under variable network conditions,
and preserving user privacy. We believe that ex-
ploring these issues will pave the way for more
adaptive and user-centric mobile agents, ultimately
enhancing both their responsiveness and overall
utility.

E Experimental Details

E.1 Benchmark Details

To provide a comprehensive evaluation, we select
four widely used mobile agent benchmarks from
prior works (Wu et al., 2024; Sun et al., 2024;
Zhang et al., 2024d), covering both offline and
online settings.

Offline Benchmarks. In offline benchmarks,
agents are evaluated using static screenshots and
instructions under a step-wise evaluation protocol

in a fixed order. Notably, even if an agent fails at
a prior step that would normally prevent it from
reaching the current step, the current step is still
included in the evaluation. Offline benchmarks are
favored in the GUI agent community due to their
ease of quantification and deployment. We employ
three widely accepted benchmarks from Google2

and OpenGVLab3.
• AndroidControl (AC) (Li et al., 2024a), evalu-

ates agents’ planning and action-execution ca-
pabilities in mobile environments. This bench-
mark provides two task types: (1) high-level
tasks, where the agent must autonomously plan
and execute multi-step actions; and (2) low-
level tasks, where the agent is required to
execute pre-defined, human-annotated actions
which is more specific, at each step. During
low-level tasks, both a low-level instruction and
its corresponding high-level instruction are in-
cluded. We conduct experiments in both set-
tings for a comprehensive assessment. A data
example is provided in Figure 11 to further clar-
ify the difference between high-level and low-
level instructions.

• Android in the Wild (AitW) (Rawles et al.,
2023), is a large-scale dataset annotated with
instructional operations and screenshot-based
icon detection, including element-level annota-
tions generated using a pretrained IconNet. The
AitW dataset comprises five subsets: General,
Install, GoogleApps, Single, and WebShopping.

• GUI Odyssey (Lu et al., 2024b), focuses on
cross-app navigation tasks in mobile environ-
ments, featuring an average of over 15 steps per
task, which is notably longer than in Android-
Control. The tasks cover diverse navigation
scenarios, and within each scenario, multiple
instructions are generated based on predefined
templates.

Online Benchmark. In contrast to offline bench-
marks, online benchmarks prioritize realism and
practical applicability. Agents are required to per-
form dynamic, interactive tasks in online simula-
tion environments. And they continue attempting
the task until reaching a predefined maximum step
length. This setup may lead to some back-and-
forth or repetitive behaviors as agents explore and
recover from errors.
• AndroidWorld (AW) (Rawles et al., 2024), is

2https://github.com/google-research/
google-research

3https://github.com/OpenGVLab
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Figure 11: Episode example from Android Control dataset. The high-level task is "Open the Zoho Meet app and
view the scheduled meetings". Instructions in grey indicate ground truth from the original dataset, while those in
green are predictions generated by Auto-Annotation. Our generated data sample achieves quality comparable to
human-annotated ground truth.

an online environment designed for developing
and benchmarking autonomous agents using a
Pixel 6 phone simulator as the testbed. It com-
prises 116 tasks spanning 20 mobile apps, with
dynamic task variations generated through ran-
domized parameters. This dataset is particularly
well-suited for evaluating agents’ adaptability
and planning abilities on mobile devices.

Our experimental setups for the offline datasets
follow those in Wu et al. (2024), while the setups
for the online benchmark adhere to the original
implementation.

E.2 Data Details
Data Composition. To offer a clearer understand-
ing of the structure of mobile training datasets and
the composition of a data episode, we present a rep-
resentative example in Figure 11. As shown, each
episode consists of: (1) A high-level instruction, ex-
pressed as a natural language sentence describing
the task to be accomplished; (2) A sequence of low-

level instructions, detailing the fine-grained tasks
required for the current screenshot; notably, such
annotations are only available in the AndroidCon-
trol dataset; (3) A series of screenshots captured
from the start to the end of the task; and (4) A cor-
responding list of actions, aligned with the number
of screenshots, indicating what the user does to
progress to the next screenshot. All actions belong
to an action space containing 7-9 options.

Action Space. Considering the action space
used in OS-Atlas and the original AndroidCon-
trol paper, we define nine action types for An-
droidControl. Notably, two of these action types,
Navigate_Home and Long_Press, appear only
rarely. For GUI Odyssey, one more action type
Press_Recent is defined as press the recent but-
ton to switch between different apps as most tasks
are cross-app. For the AitW dataset, we define
seven action types. The corresponding actions and
their descriptions are provided in Tables 9 and 11,
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Table 9: Action space for AndroidControl.

Action Type Attribute Description

Basic Actions
CLICK (x,y) Click at a specific point on the screen using the coordinates.
TYPE text Type the text in the current input field or search bar.
SCROLL direction Scroll in a specific direction (one of ’up’, ’down’, ’left’, or ’right’).

Custom Actions
LONG_PRESS (x,y) Long press at a specific point on the screen using the coordinates.
NAVIGATE_BACK - Return to the previous page or undo an action.
NAVIGATE_HOME - Return to the home page.
OPEN_APP app_name Open an app with the specified name.
WAIT - Pause for a moment before proceeding with the next action.
COMPLETE - Indicate that the task is finished.

Table 10: Action space for GUI Odyssey.

Action Type Attribute Description

Basic Actions
CLICK (x,y) Click at a specific point on the screen using the coordinates.
TYPE text Type the text in the current input field or search bar.
SCROLL direction Scroll in a specific direction (one of ’up’, ’down’, ’left’, or ’right’).

Custom Actions
LONG_PRESS (x,y) Long press at a specific point on the screen using the coordinates.
NAVIGATE_BACK - Return to the previous page or undo an action.
NAVIGATE_HOME - Return to the home page.
PRESS_RECENT - Press ’Recent’ to switch between recently used applications.
WAIT - Pause for a moment before proceeding with the next action.
COMPLETE - Indicate that the task is finished.

with any additional parameters indicated as Tar-
get. In AitW, we decompose the original Press
action into three distinct actions: Navigate_Home,
Navigate_Back, and Press_Enter, aligning the
action space with that of AndroidControl. Addi-
tionally, we derive the Scroll action from the orig-
inal dual-point action.

Splits. Regarding training and testing splits, for
AndroidControl, we adopt the original splits pro-
vided in the paper4. Specifically, we sample 5,000
episodes for training and 100 episodes for each test
subsplit, i.e., IID, App-Unseen, Task-Unseen, and
Category-Unseen. Unless otherwise specified, our
results (except for the generalization experiments
reported in Section C.4) are evaluated based on the
IID subsplit. For each subset of AitW, we sample
1,000 episodes for training and 100 for evaluation.

E.3 Metrics Details
Efficiency Metrics. We also compare the anno-
tation costs across methods to assess efficiency.
The cost of a single human-annotated sample is
derived from a Refuel-AI technical report. The
costs for model-annotated samples are estimated

4https://console.cloud.google.com/storage/
browser/gresearch/android_control

by calculating the average GPU usage during gen-
eration, given by: Anno. Cost =

( Price
3600

)
× Time ×

MemoryUse
MemoryTotal

, where Price is the GPU rent per hour,
approximately $0.2857 for one RTX 4090 GPU we
use. MemoryUse and MemoryTotal represent the av-
erage occupied GPU memory and the total memory
of the system, respectively. Time is the generation
duration measured in seconds. All cost numbers
are presented in terms of cents (¢).

Offline Metrics. To facilitate fair comparisons
across all baseline methods, we standardize the
evaluation metrics for all action types. For each
step, we provide three metrics: Type, Ground and
SR. Continual on the description in Section 4.1, we
further detail on how an action is determined as
correct for SR.

• For coordinate-related actions, e.g. Click, the
agents generate both the action type and the
position coordinates. Since the ground-truth
bounding box is not always available, we mea-
sure the performance by computing the dis-
tance between the predicted coordinates and the
ground-truth coordinates. Following Bai et al.
(2024), we deem the coordinates correct if they
fall within a distance equivalent to 14% screen
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Table 11: Action space for Android in the Wild.

Action Type Attribute Description

Basic Actions
CLICK (x,y) Click at a specific point on the screen using the coordinates.
TYPE text Type the text in the current input field or search bar.
SCROLL direction Scroll in a specific direction (one of ’up’, ’down’, ’left’, or ’right’).

Custom Actions
NAVIGATE_BACK - Return to the previous page or undo an action.
NAVIGATE_HOME - Return to the home page.
PRESS_ENTER - Press the ’Enter’ button.
COMPLETE - Indicate that the task is finished.
IMPOSSIBLE - Indicate that the task is infeasible.

width from the ground truth.
• For type-based actions (e.g., TYPE, OPEN_APP),

we compute the F1 score between the predicted
text and the ground truth. A prediction is con-
sidered correct if the F1 score exceeds 0.5.

• For SCROLL actions, the direction argument (i.e.,
UP, DOWN, LEFT, or RIGHT) must precisely match
the ground truth.

• For all other actions (e.g., PRESS_BACK), the
prediction must exactly match the ground truth
to be considered correct.

Online Metrics. The evaluation is conducted in
screenshot-only mode. To mitigate potential inter-
ference from network instability and environmental
factors, the results are measured three times. The
primary metric is the episode-wise task success
rate, a more rigorous measurement compared to
the step-wise success rate (SR) in offline mode, as
en episode is considered successful only when all
constituent steps are performed correctly, i.e. SR =
100% for a task to be successful.

Data Quality Metrics. Based on the well es-
tablished literature in NLP community. We use
similarity of generated instruction to the ground
truth as an indication of data quality. We adopt
both text-based metrics which directly computed
based on the two sentences and embedding-based
metrics.

• BLEU (Bilingual Evaluation Understudy) is a
precision-based metric that evaluates text simi-
larity by comparing n-grams between generated
and reference texts (Papineni et al., 2002).

• ROUGE (Recall-Oriented Understudy for
Gisting Evaluation) is a recall-based metric
that computes overlapping n-grams, word se-
quences, and the longest common subsequences
(Lin, 2004). The ROUGE family includes
ROUGE-1, ROUGE-2, and ROUGE-L, each
providing measures for precision, recall, and

the F1-score.
• TF-IDF (Term Frequency-Inverse Document

Frequency) is a statistical measure that evalu-
ates word importance in a document relative to
a corpus by balancing term frequency and in-
verse document frequency (Salton and Buckley,
1988).

• METEOR (Metric for Evaluation of Transla-
tion with Explicit ORdering) is a metric that
evaluates text similarity by aligning unigrams
between generated and reference texts using ex-
act, stem, synonym, and paraphrase matches.
Unlike BLEU, METEOR incorporates both pre-
cision and recall, along with a fragmentation
penalty to account for word order, resulting in
higher correlation with human judgments at the
sentence level (Banerjee and Lavie, 2005).

• Embedding Similarity which use embedding
models to embed the sentences first and calcu-
lates the cosine similarity between two embed-
ding vectors. We select two SOTA embedding
models with the most downloads on the Hug-
ging Face websites, jina-v35 and mxbai-v16.

E.4 Model Details

We employ three categories of models in our ex-
periments: VLMs with conversational capability,
base models specialized for GUI tasks with en-
hanced grounding ability, and API-based closed-
ended models.

• Chat Models. We select widely used VLMs
from prior and contemporary works (Bai et al.,
2024; Sun et al., 2024). Specifically, we in-

5https://huggingface.co/jinaai/
jina-embeddings-v3

6https://huggingface.co/mixedbread-ai/
mxbai-embed-large-v1
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clude the Qwen2-VL family (2B7, 7B8) (Wang
et al., 2024c), InternVL2 family (1B9, 2B10,
4B11, 8B12) (Chen et al., 2024b), DeepSeek-VL-
7B-Chat13 (Lu et al., 2024a), Phi-3.5-Vision-
Instruct14 from Microsoft (Abdin et al., 2024),
Ovis2-4B15 from AIDC-AI (Lu et al., 2024c),
and Yi-VL-6B16, an early model from 01-AI.

• GUI Base Models. We adopt SeeClick17

(Cheng et al., 2024), which is continually pre-
trained on Qwen-VL-7B with additional ground-
ing datasets from ScreenSpot (Cheng et al.,
2024). We also utilize OS-Atlas-4B18 and OS-
Atlas-7B19 (Wu et al., 2024), which are trained
on InternVL2-4B and Qwen2-VL-7B-Instruct,
respectively. These models lack conversational
capabilities and are therefore unsuitable for an-
notation.

• API-Based Models. GPT-4o and GPT-4o-Mini
(OpenAI, 2023) are widely used vision models
provided by OpenAI. These models are signif-
icantly more cost-effective than GPT-4V and
are frequently utilized in researches. Due to
their closed-source and API-only nature, they
do not support supervised fine-tuning within our
framework and are exclusively used as annota-
tion models.

E.5 Baseline Details

Overall Baselines for Training Mobile GUI
Agents. In Section 4.2, we compare existing ap-
proaches for data collection and mobile agent train-
ing. In this section, we provide further elaboration
and details on these baselines.

7https://huggingface.co/Qwen/
Qwen2-VL-2B-Instruct

8https://huggingface.co/Qwen/
Qwen2-VL-2B-Instruct

9https://huggingface.co/OpenGVLab/
InternVL2-1B

10https://huggingface.co/OpenGVLab/
InternVL2-2B

11https://huggingface.co/OpenGVLab/
InternVL2-4B

12https://huggingface.co/OpenGVLab/
InternVL2-8B

13https://huggingface.co/deepseek-ai/
deepseek-vl-7b-chat

14https://huggingface.co/microsoft/Phi-3.
5-vision-instruct

15https://huggingface.co/AIDC-AI/Ovis2-4B
16https://huggingface.co/01-ai/Yi-VL-6B
17https://huggingface.co/cckevinn/SeeClick
18https://huggingface.co/OS-Copilot/

OS-Atlas-Base-4B
19https://huggingface.co/OS-Copilot/

OS-Atlas-Base-7B

• Human-Annotated Data. Most conventional
approaches fall into this category, which in-
volves first employing crowdsourcing to col-
lect and annotate data, followed by training
mobile GUI agents. Depending on the train-
ing paradigm—centralized or federated—this
category can be further divided into two base-
lines: Central-Human and FedLLM/VLM. To
the best of our knowledge, no prior work has
explored training federated VLMs. Therefore,
we extend the existing FedLLM framework to
the FedVLM setting while retaining the name
FedLLM for consistency and comparison.

• Synthetic Data. This approach (Sun et al.,
2024; Su et al., 2025) leverages VLMs to gener-
ate synthetic instructions, either based on seed
task-driven instructions annotated by humans
or through reverse task synthesis. These syn-
thetic instructions are subsequently executed in
simulators, by either powerful models such as
GPT-4o or by humans, to collect full interaction
trajectories. OS-Genesis (Sun et al., 2024) is
a representative example of this category. Al-
though these methods substantially reduce hu-
man labor, they still heavily rely on powerful
API-based models and extensive simulator exe-
cution, which can become costly at scale.
Due to the unavailability of the original train-
ing data, we are unable to directly evaluate OS-
Genesis within our setting. Instead, we refer-
ence reported results from the original paper.
For cost estimation, we measure the cost of gen-
erating a single data sample using GPT-4o in
our setup and extrapolate it to 1,000 samples
(the dataset size used in OS-Genesis), yielding
the ≈ 103 cost estimates presented in Table 2.

• DistRL*. DistRL (Wang et al., 2024d) proposes
a scalable and asynchronous architecture for
data acquisition from multiple simulators in a
distributed manner, coupled with centralized re-
inforced agent training. The framework also
introduces techniques to compensate for poten-
tial performance degradation caused by asyn-
chrony. We adapt this method to our user-based
setting by collecting auto-annotated data in a
distributed manner using the Auto-Annotation
mechanism and training the model centrally.
We refer to this adapted baseline as DistRL*.
The key distinction between MobileA3gent and
DistRL* lies in the training paradigm, and the
latter raises greater privacy concerns due to the
exposure of user data to both peers and the
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server during centralized training.
Annotation Baselines. We compare five base-

lines for annotating user instructions based on avail-
able information, including screenshots and action
sequences.

• Action-Origin, directly concatenates the origi-
nal formatted actions into a text string without
any inference, representing the simplest method
for retrieving user instructions in natural lan-
guage.

• Visual-Sense, (Zhang et al., 2024a) leverages
the visual perception capabilities of the an-
notation VLM to understand the screenshots
recorded during task execution. Specifically,
we concatenate the sequence of screenshots into
one image and feed it into the annotation model
for one-shot inference.

• Self-Instruct, (Wang et al., 2023) is originally
proposed for synthetic data generation using
LLMs. We adapt it to infer user intentions from
action sequences. In our implementation, all
actions are provided simultaneously to the an-
notation model, which predicts the instruction
in a single pass.

• Chain-of-Thought, (Berkovitch et al., 2024)
guides the annotation model (e.g., GPT-4o)
through a step-by-step reasoning process to ana-
lyze the task trajectory. At each step, the model
predicts the current intention based on all prior
information, and the final instruction is deter-
mined after the entire task sequence is com-
pleted. It is important to note that, although
named "Chain-of-Thought," this method is de-
rived from Berkovitch et al. (2024), which fo-
cuses on identifying user intentions in GUI
tasks, rather than from the original CoT prompt-
ing paper (Wei et al., 2022).

• Human-Annotation, uses human-annotated
gold instructions from the dataset, serving as
the upper-bound reference. However, with in-
creasing data scale, methods based on automatic
annotation, including ours, can not only achieve
comparable or even superior performance, but
also substantially reduce annotation costs.

Federated Learning Baselines. We integrate
seven representative federated learning algorithms,
following the implementations provided in Open-
FedLLM (Ye et al., 2024). These include Fe-
dAvg (McMahan et al., 2017), FedProx (Li et al.,
2020), SCAFFOLD (Karimireddy et al., 2020), Fe-
dAvgM (Hsu et al., 2019), FedAdagrad, FedYogi,
and FedAdam (Reddi et al., 2020).

• Local Update. FedAvg is the foundational al-
gorithm upon which many subsequent methods
are built. FedProx and SCAFFOLD extend Fe-
dAvg by incorporating local model correction
mechanisms to mitigate the effects of data het-
erogeneity.

• Global Aggregation. In contrast, FedAvgM,
FedAdagrad, FedYogi, and FedAdam introduce
server-side momentum techniques to stabilize
global model updates.

• Local Training. Additionally, we include a lo-
cal training baseline, where a model is trained
solely on a single client’s dataset without collab-
oration. This serves as a reference to highlight
the benefits of participating in federated learn-
ing.

E.6 Training and Generation Details

Training Setups. The models are trained over 10
rounds, with each round processing one-tenth of
the total dataset. This setup ensures that, in ex-
pectation, each data sample is seen approximately
once throughout the training process.

In the IID federated learning setting, data sam-
ples are uniformly distributed across 10 or more
clients. In each round, 30% of clients are randomly
selected to perform local training and participate in
global aggregation. Analogous to centralized train-
ing, each selected client processes one-tenth of its
local data during that round. Therefore, training
for 10 rounds yields an expected 30% overall client
participation. To simulate higher participation (e.g.,
90%), we extend training to 30 rounds. While in
non-IID setting (e.g., experiments in Section 4.4),
the data samples are distributed according to the
specific scenario.

For experiments investigating the effect of
dataset size and scaling, we start with an initial
pool of 5,000 data samples. Subsets of smaller
sizes are created by selecting the first X samples
from this pool to form datasets of size X . This ap-
proach guarantees that datasets with larger sample
sizes always encompass those with fewer samples,
ensuring consistency and comparability across ex-
periments.

Training Framework. We build upon the
highly-starred training framework, ms-swift (Zhao
et al., 2024) 20, and extend it into a repository ca-
pable of training federated VLMs. Our extension
follows the implementation of federated training

20https://github.com/modelscope/ms-swift
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Table 12: Key training parameters regarding FL, LoRA, and quantization.

Parameter Value Parameter Value

Federated Learning

number-of-rounds 30 number-of-clients 10
number-of-clients-sampled 3 ratio λ 3,5,7,9

LoRA Configuration

lora-rank 8 lora-alpha 32
lora-dropout 0.05 max-sequence-length 4096, 2048

Optimization

learning-rate 5× 10−5 batch-size 1
optimizer adamw_torch gradient-accumulation-steps 4
weight-decay 0.1 adam-beta1 0.9
adam-beta2 0.95 adam-epsilon 1× 10−8

lr-scheduler cosine warmup-ratio 0.03

Quantization Settings

bnb-4bit-compute-dtype torch.bfloat16 bnb-4bit-quant-type nf4
bnb-4bit-use-double-quant true load-in-4bit false
load-in-8bit false device-number 2

framework for Large Language Models (LLMs)
(Ye et al., 2024). We apply Low-Rank Adaptation
(LoRA) (Hu et al., 2021) to improve efficiency.

Training Parameters. As shown in Table 12,
we include all key parameters for reproducibil-
ity. For max-sequence-length, we choose 4096 for
Qwen2-VL family and 2048 for InternVL2 fam-
ily. The hyperparameter for various federated algo-
rithms are set as: FedYogi (Reddi et al., 2020) em-
ploys momentum factors (β1 = 0.9, β2 = 0.999)
with learning rate η = 10−3 and stabilization con-
stant τ = 10−6. FedAvgM (Hsu et al., 2019) uses
0.9/0.1 ratio for historical/current model interpo-
lation. FedProx (Li et al., 2020) applies proximal
regularization with µ = 0.2 through ||w − wt||2
penalty terms. SCAFFOLD (Karimireddy et al.,
2020) configurations maintain server learning rate
ηs = 1.0 with client momentum compensation,
while FedAdam and FedAdagrad (Reddi et al.,
2020) share base parameters (β1 = 0.9, β2 =
0.999) with adaptive learning rate scaling. All al-
gorithms expose tunable coefficients through the
framework’s unified parameter interface.

Templates. We provide all of our prompt tem-
plates used in generating instructions and train-
ing. Specifically, generation prompts for Auto-
Annotation are in Figures 12, 13; generation prompt
for Visual-Sense is provided in Figure 14 with
Chain-of-Thought in Figure 15; training prompts
are shown in Figure 16, 17 and 18 for all three
offline datasets respectively.
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Prompt 1: Step-Wise Description

A user is performing a task on a mobile phone, progressing through multiple
steps to complete the task.
Each step involves an interface shown in the provided screenshot, and an
action performed to move on to the next step.

Based on the screenshot and the user’s action, infer the specific goal
the user is trying to accomplish at this step in the task.
You need to associate the action with the key information in the screenshot
and output your predicted goal.

## Example
- User Action: Scroll down
if the screenshot shows the browsing page for purchasing shoes,
- Your Output: Swipe up for more product details about shoes

- User Action: Click (101,314)
if the UI element at this coordinate is an article titled "cooking"
- Your Output: Click on the article titled "cooking"

- User Action: Check status: successful
- Your Output: Check if the task is finished

- User Action: Open App: Plantum
if the action is open app, return the same
- Your Output: Open App: Plantum

- User Action: Wait for response
if the action is wait, return none
- Your Output: None

## Answer Format
Only output the predicted goal. Be specific with the input screenshot.
Keep your response concise and capture the important things, focusing on
key details like the app name, email address, search terms, item name, and title.

## User Action
{converted action Ai }

## Your Output
The user is trying to:

Figure 12: Prompt template for the Descriptor to generate low-level instruction T low
i based on the converted action

Ai and screenshot si at the i-th step .
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Prompt 2: Episode-Wise Summarization within Auto-Annotation

A user is performing a high-level task on a mobile phone, progressing through
multiple low-level steps to complete the task.
Each step involves an interface, and a low-level action performed to move on
to the next step.

The full sequence of user actions is provided in the History section.
The task is not known. Now based on the history provided, describe the
mobile user’s high-level task when performing these actions.

## History
{ low-level instruction T low

1 }
{ low-level instruction T low

2 }
...
{ low-level instruction T low

n }

## Answer Format
Keep your output concise and clear, as if the user were explaining the task to
someone else in one sentence.
Include key details like the app name, individual name, email address, search
terms, item name, and title.

## Your Output
The user is trying to:

Figure 13: Prompt template for the Summarizer to generate high-level instruction T high based on the list of
low-level instructions and the concatenated screenshot sc .
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Prompt 3: Episode-Wise Summarization with Visual-Sense

A user is performing a high-level task on a mobile phone, progressing through
multiple low-level steps to complete the task.
Each step involves an interface, and a low-level action performed to move on
to the next step.

A single image that shows all the screenshots concatenated horizon-
tally is provided.
The task is not known. Now based on this concatenated screenshot, describe
the mobile user’s high-level task when performing these actions.

## Answer Format
Keep your output concise and clear, as if the user were explaining the task to
someone else in one sentence.
Include key details like the app name, individual name, email address, search
terms, item name, and title.

## Your Output
The user is trying to:

Figure 14: Prompt template for Visual-Sense to generate high-level instruction T high based on the list of converted
actions and the concatenated screenshot sc .
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Prompt 4: Step-Wise Description with Chain-of-Thought

A user is performing a high-level task on a mobile phone, progressing through
multiple low-level steps to complete the task.
Each step involves an interface, and a low-level action performed to move on
to the next step.

The previous task descriptions for each step are provided in the His-
tory section, and the user’s final action is provided in the User Action section.
You need to think step by step and analyze the input sequence to deduce the
user’s underlying objective that prompted these actions.
Utilize the screenshot of the final step to gain insights into the user’s intentions,
focusing on elements highlighted or implicated by the actions.
Your goal is to describe the ultimate intention the user is aiming to achieve.

## History
{ low-level instruction T low

1 }
{ low-level instruction T low

2 }
...
{ low-level instruction T low

i−1 }

## User Action
{converted action Ai }

## Answer Format
Keep your output concise and clear, as if the user were explaining the task to
someone else in one sentence.
Include key details like the app name, individual name, email address, search
terms, item name, and title.

## Your Output
The user is trying to:

Figure 15: Prompt template for Chain-of-Thought to generate instruction step-by-step and finally obtain the
high-level instruction.
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Prompt 5: Common Prompt for Training

You are a foundational action model capable of automating tasks across
various digital environments, including desktop systems like Windows,
macOS, and Linux, as well as mobile platforms such as Android and iOS. You
also excel in web browser environments. You will interact with digital devices
in a human-like manner: by reading screenshots, analyzing them, and taking
appropriate actions.

Your expertise covers two types of digital tasks:

• Grounding: Given a screenshot and a description, you assist users in
locating elements mentioned. Sometimes, you must infer which elements
best fit the description when they aren’t explicitly stated.

• Executable Language Grounding: With a screenshot and task instruction,
your goal is to determine the executable actions needed to complete the
task.

You are now operating in Executable Language Grounding mode. Your goal is
to help users accomplish tasks by suggesting executable actions that best fit
their needs. Your skill set includes both basic and custom actions:

1. Basic Actions
Basic actions are standardized and available across all platforms. They
provide essential functionality and are defined with a specific format, ensuring
consistency and reliability.

• Basic Action 1: CLICK
– purpose: Click at the specified position.
– format: CLICK <point>[[x-axis, y-axis]]</point>
– example usage: CLICK <point>[[101, 872]]</point>

• Basic Action 2: TYPE
– purpose: Enter specified text at the designated location.
– format: TYPE [input text]

– example usage: TYPE [Shanghai shopping mall]

• Basic Action 3: SCROLL
– purpose: Scroll in the specified direction.
– format: SCROLL [direction (UP/DOWN/LEFT/RIGHT)]

– example usage: SCROLL [UP]

Figure 16: Prompt template for the common part shared between different datasets during training of federated
mobile agents within MobileA3gent. The full training prompt is the combination of the common part and the custom
part.
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Prompt 6: Custom Prompt for Training on AndroidControl

2. Custom Actions
Custom actions are unique to each userś platform and environment. They allow
for flexibility and adaptability, enabling the model to support new and unseen
actions defined by users. These actions extend the functionality of the ba-
sic set, making the model more versatile and capable of handling specific tasks.

• Custom Action 1: LONG_PRESS
– purpose: Long press at the specified position.
– format: LONG_PRESS <point>[[x-axis, y-axis]]</point>
– example usage: LONG_PRESS <point>[[272, 341]]</point>

• Custom Action 2: NAVIGATE_BACK
– purpose: Press a back button to navigate to the previous screen.
– format: NAVIGATE_BACK
– example usage: NAVIGATE_BACK

• Custom Action 3: NAVIGATE_HOME
– purpose: Press a home button to navigate to the home page.
– format: NAVIGATE_HOME
– example usage: NAVIGATE_HOME

• Custom Action 4: OPEN_APP
– purpose: Open the specified application.
– format: OPEN_APP [app_name]
– example usage: OPEN_APP [Google Chrome]

• Custom Action 5: WAIT
– purpose: Wait for the screen to load.
– format: WAIT
– example usage: WAIT

• Custom Action 6: COMPLETE
– purpose: Indicate the task is finished.
– format: COMPLETE
– example usage: COMPLETE

In most cases, task instructions are high-level and abstract. Carefully read the
instruction and action history, then perform reasoning to determine the most
appropriate next action. Ensure you strictly generate two sections: Thoughts
and Actions.

Thoughts: Clearly outline your reasoning process for current step.
Actions: Specify the actual actions you will take based on your reasoning.

Your current task instruction, action history, and associated screenshot are as
follows:
Screenshot: <image>
Task: {high-level instruction T high}
You need to: {low-level instruction T low

i }
History: {history of T low

i }

Figure 17: Custom prompt template for training mobile GUI agents on AndroidControl.
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Prompt 7: Custom Prompt for Training on GUI Odyssey

Custom actions are unique to each userś platform and environment. They
allow for flexibility and adaptability, enabling the model to support new and
unseen actions defined by users. These actions extend the functionality of the
basic set, making the model more versatile and capable of handling specific
tasks.
• Custom Action 1: LONG_PRESS

– purpose: Long press at the specified position.
– format: LONG_PRESS <point>[[x-axis, y-axis]]</point>
– example usage: LONG_PRESS <point>[[272, 341]]</point>

• Custom Action 2: NAVIGATE_BACK
– purpose: Press a back button to navigate to the previous screen.
– format: NAVIGATE_BACK
– example usage: NAVIGATE_BACK

• Custom Action 3: NAVIGATE_HOME
– purpose: Press a home button to navigate to the home page.
– format: NAVIGATE_HOME
– example usage: NAVIGATE_HOME

• Custom Action 4: PRESS_RECENT
– purpose: Press the recent button to view or switch between recently

used applications.
– format: PRESS_RECENT
– example usage: PRESS_RECENT

• Custom Action 5: WAIT
– purpose: Wait for the screen to load.
– format: WAIT
– example usage: WAIT

• Custom Action 6: COMPLETE
– purpose: Indicate the task is finished.
– format: COMPLETE
– example usage: COMPLETE

In most cases, task instructions are high-level and abstract. Carefully read the
instruction and action history, then perform reasoning to determine the most
appropriate next action. Ensure you strictly generate one section: Actions.

Actions: Specify the actual actions you will take based on your reasoning.
Your current task instruction, action history, and associated screenshot are as
follows:
Screenshot: <image>
Task: {high-level instruction T high}

Figure 18: Custom prompt template for training mobile GUI agents on GUI Odyssey.
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Abstract

This paper investigates the effectiveness of Tik-
Tok’s enforcement mechanisms for limiting the
exposure of harmful content to youth accounts.
We collect over 7000 videos, classify them as
harmful vs not-harmful, and then simulate inter-
actions using age-specific sockpuppet accounts
through both passive and active engagement
strategies. We also evaluate the performance
of large language (LLMs) and vision-language
models (VLMs) in detecting harmful content,
identifying key challenges in precision and scal-
ability.

Preliminary results show minimal differences
in content exposure between adult and youth
accounts, raising concerns about the platform’s
age-based moderation. These findings suggest
that the platform needs to strengthen youth
safety measures and improve transparency in
content moderation.

1 Introduction

TikTok is a short-form video platform that has
rapidly emerged as one of the world’s most influ-
ential social media services. With over 1.6 billion
monthly active users1 and millions of videos up-
loaded daily (Corso et al., 2024), it now plays a
central role in the global digital media landscape.

Children and adolescents increasingly rely on
TikTok for both entertainment and everyday in-
formation (Violot et al., 2024; Liu et al., 2024; Ge
et al., 2021). Although TikTok enforces community
guidelines through content removal and age-based
restrictions 2, concerns remain about the effective-
ness of these moderation mechanisms in shielding
young users from harmful content. These concerns
are amplified by the introduction of the European

1https://www.businessofapps.com/data/
tik-tok-statistics, accessed on August 5, 2025

2https://www.tiktok.com/community-guidelines,
accessed on August 8, 2025

Digital Services Act 3, which requires very large
online platforms to assess and mitigate systemic
risks—particularly those related to the protection
of minors and the spread of harmful content.

This paper reports preliminary findings from
an ongoing work aiming to build an automated
pipeline for auditing TikTok’s safety enforcement
mechanisms by systematically measuring the ex-
posure to harmful content among youth and adult
users, investigating different modes of interaction.
Specifically, we explore two main research ques-
tions:

• RQ1: What level of harmful content will an
adult versus a minor be exposed to on their
FYF?

• RQ2: Does actively searching for harm-
adjacent keywords increase exposure to in-
appropriate content?

To this end, we created 10 Youth and 10 Adult sock-
puppet accounts and simulated multiple sessions
over several days, collecting over 7,000 videos
across both “For You Feed” (FYF) scrolling and
using active search with harm-adjacent keywords.

In addition, as a precise detection of harmful con-
tent is an heavy task for humans, we also consider
a third research question:

• RQ3: How effective are Large Language
Models such as GPT-4o and VideoLLaMA3
at detecting harmful content?

To this end, we employed both text-only and
video-based LLMs to estimate the presence of
harmful content that violates TikTok’s community
guidelines and evaluated their performance.

3https://commission.europa.eu/
strategy-and-policy/priorities-2019-2024/
europe-fit-digital-age/digital-services-act_en
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2 Related Work

TikTok’s FOR YOU FEED (FYF) algorithm per-
sonalizes content based on user language, loca-
tion, posting time, and interactions such as likes
and follows (Boeker and Urman, 2022). This
personalization engine rapidly amplifies interest-
aligned content—often within just 200 recommen-
dations—thereby fostering echo chambers and lim-
iting content diversity (Baumann et al., 2025).

These concerns are especially salient given Tik-
Tok’s young user base—over 60% of users were
under 30 in 2021 (Iqbal, 2022). A large-scale audit
using more than 100 automated accounts found that
watch time plays a central role in shaping recom-
mendations, reinforcing problematic content loops
through prolonged exposure (WSJ Staff, 2021).

Recent studies further contextualize harm by ex-
amining user behavior. For instance, the median
user consumes approximately 90 videos daily (Zan-
nettou et al., 2024), while moderately addicted
users average 7.86 minutes per session (Yang et al.,
2025). An experimental audit comparing TikTok,
YouTube, and Instagram showed that accounts reg-
istered as 13-year-olds encountered harmful con-
tent more frequently and rapidly than accounts of
older users (Eltaher et al., 2025).

3 Methods

3.1 Data Collection
To investigate how harmful content varies by user
age and interaction mode, we created 20 TikTok
accounts using the platform’s web version: 10 ac-
counts were set with an age of 13 (Youth) and
10 with an age slightly above 18 (Adult). All ac-
counts were registered in Italy. These age values
were chosen as they represent the boundary be-
tween TikTok’s definition of “youth” (under 18)
and adulthood4.

Using a script we built 5 to scrape data from the
TikTok website, we collected data over four consec-
utive days – Thursday through Sunday – to capture
differences across both weekdays and weekends.
For each account on each day, four browsing ses-
sions were conducted, each containing 22 videos,
totaling 88 videos per account per day. This ap-
proximates the average daily video exposure (89.9

4https://support.tiktok.com/en/
account-and-privacy/account-privacy-settings/
privacy-and-safety-settings-for-users-under-age-18

5https://anonymous.4open.science/r/
tiktok-scraper-8424

videos) and simulates moderately engaged users,
based on prior TikTok usage studies reporting 27
minutes total watch time and 7.86 minutes per ses-
sion (Yang et al., 2025). In total, we collected over
7,000 videos across 20 accounts over the four-day
period. Our dataset includes metadata for every col-
lected video, such as the description text, hashtags,
and engagement statistics (views, likes, comments,
shares, etc.). For each video, we also retrieved the
top 10 comments via HTTP requests to analyze
user interactions.

We implemented two primary user interaction
modes:

Passive Scrolling: Simulated natural browsing
behavior by programmatically loading videos from
the FYF, with randomized delays (10–20 seconds)
between each request to mimic scrolling. No user
input was provided beyond passive viewing, align-
ing with typical user consumption patterns.

Active Searching: For each harmful content
category, we extracted three keywords based on
TikTok’s Youth Safety and Well-Being Guidelines.
We used these keywords in the search bar to retrieve
videos potentially related to sensitive topics using
one Adult and one Youth account. A complete list
of keywords is provided in Appendix B, Table 2.

Interestingly, sometimes keywords such as “al-
cohol” were censored in English for youth ac-
counts, whereas its Italian equivalent “Alcol” still
yielded search results though explicitly stated as
age-inappropriate in the guidelines.

3.2 Harmful Content Detection
Our framework for identifying harmful content
is grounded in TikTok’s official Community
Guidelines, particularly the sections related to
youth safety. Categories such as sexual content,
suicide/self-harm, and physical violence were pri-
oritized. Closely related categories (e.g., youth
and adult sexual abuse) were merged, while those
that may have a less critical societal impact (e.g.,
animal abuse 6) were excluded. See Table 1 in Ap-
pendix A for details. We employed three methods
for detecting harmful content:

1) Textual Analysis: We used the multilingual
Detoxify7 model to evaluate the toxicity of the top
10 comments per video. Detoxify outputs scores
in the range [0, 1] to quantify the probability of a
comment being toxic or not. We then fed all video

6https://www.healthdata.org/research-analysis/
diseases-injuries-risks/factsheets-hierarchy

7https://github.com/unitaryai/detoxify
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descriptions to GPT-4o 8, prompting the model to
classify a video based on TikTok’s harmful content
guidelines.

2) Visual Content Analysis: We tested the per-
formance of VideoLLaMA3 9 by using it on a ran-
dom selection of 100 videos. A custom prompt
was used to assess visual and audio cues based on
the same guideline framework as the GPT-based
description classification.

3) Manual Evaluation: The same 100 videos
was manually labeled by three native Italian speak-
ers. Each reviewer independently categorized the
content using our framework. Disagreements be-
tween two annotators were resolved by the third
reviewer, ensuring reliable ground-truth labels for
evaluating the automated methods.

4 Results

4.1 Descriptive Statistics
We analyzed the sample of videos collected with
the two sets of accounts. As shown in Figure 1,
the distributions of views, likes, and comments are
nearly identical across the two groups, suggesting
that the two account modalities expose users to
videos with similar engagement on the platform.
We did not observe differences in the data collected
on weekends or weekdays.

4.2 Prevalence of toxic comments
To analyze harmful content in the comments shown
below videos, we compare the distribution of tox-
icity across all collected comments as well as the
maximum toxicity of individual comments for each
video.

As shown in Figure 2, the distributions of toxic-
ity scores for both adult and youth accounts ex-
hibit very similar patterns across the two types
of analysis–overall toxicity of all comments and
maximum toxicity per video. Assuming a com-
monly used threshold of 0.5–0.7 (Hua et al., 2020)
to classify a comment as toxic, the vast majority
of comments in both groups would not be consid-
ered harmful, as the 95th percentile of toxicity is
below 0.3 (0.26-0.28) for videos in both groups of
accounts. Median values are also very similar in
the two samples (0̃.03), for both analyses.

8https://platform.openai.com/docs/models/
gpt-4o

9https://huggingface.co/DAMO-NLP-SG/
VideoLLaMA3-7B

These small differences suggest comparable lev-
els of exposure to toxic content in the comment
sections of videos shown to both adults and youth.

4.3 Estimated prevalence of harmful videos
We estimated the prevalence of harmful videos
shown to different accounts by using GPT-4o to
annotate content based solely on video descrip-
tions. As shown in Figure 3, fewer than 10% of the
videos were predicted to be harmful for both adult
and youth accounts during passive FYF scrolling.
However, two youth accounts exhibited notably
higher proportions, with about 14% and 25% of
their videos labeled as harmful.

When focusing on active keyword-based
searches using harm-related terms, the estimated
prevalence of harmful content increases substan-
tially for both groups. Specifically, 28.44% of
videos surfaced for adult accounts and 27.91% for
youth accounts were classified as harmful, show-
ing rates significantly higher than during passive
exposure.

These findings suggest that TikTok’s safety
mechanisms may be insufficient in protecting
younger users from exposure to potentially harmful
content, particularly when users actively search for
related material.

4.4 Evaluating the performance of harmful
content classifiers

We then evaluated the performance of GPT-4o and
VideoLLaMA3 by manually annotating the random
sample of 100 videos–50 from each age group,
with 25 per group collected via keyword-based
searches. The Fleiss’ Kappa coefficient for inter-
annotator agreement was 0.45, indicating moderate
agreement. The raw mean percent agreement was
87.3% (Landis and Koch, 1977). The gap between
these measures reflects the high expected chance
of agreement in our binary harmful-content classi-
fication task.

Manual annotation identified genuinely harmful
content in 41 of the 100 videos, 26 in the Adult sam-
ple and 15 in the Youth sample. Against this man-
ual labelling, GPT-4o achieved a precision of 59%
and a recall of 24.4% (10/41), and VideoLLaMA3
achieved 58% and 0.05% (2/41) respectively.

5 Discussion

We analyzed a dataset of over 7,000 TikTok videos
collected from age-specific sockpuppet accounts
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Figure 1: Distributions of metrics for videos collected by accounts belonging to the Adult and Youth group.

Figure 2: Distribution of toxicity for all comments (top)
and the most toxic comment (bottom) below videos
collected with the two groups of accounts.

Figure 3: Distribution of estimated proportion of harm-
ful videos shown to each account in the two groups,
using labels provided by GPT-4o. Median values are
0.034 for Adults and 0.023 for Youths.

using both passive and active interaction protocols.
Our findings indicate that adult and youth accounts

were exposed to highly similar content, with fewer
than 1 in 10 videos estimated to be harmful. This
suggests that TikTok’s moderation mechanisms
may not meaningfully differentiate between age
groups in practice. Despite this, automated detec-
tion of harmful content remains challenging: exper-
iments with VLMs showed limited precision, with
GPT-4o — operating on text only - outperforming
VideoLLaMA3, which had access to video content.

Our work presents promising results towards
building a scalable and reproducible approach
for auditing exposure to harmful content on
recommender-driven platforms. By systematically
comparing the content shown to adult and youth
users, one can uncover tangible shortcomings in
age-based content moderation, especially concern-
ing the search function. Our results suggest that
platforms like TikTok should invest greater effort
in strengthening youth safety protections and en-
suring greater transparency in how content is being
moderated for these specific audiences.

Future research will expand the scope of this
study by including additional countries to assess
cross-cultural differences in content moderation.
We also plan to scale up the experiment with a
larger and more diverse set of accounts, includ-
ing personalized profiles that better simulate real
user behavior. To improve ecological validity, fu-
ture data collection will incorporate the mobile
interface, reflecting the primary mode of user in-
teraction on TikTok. Finally, we aim to develop
and integrate more accurate prediction models for
detecting harmful content, leveraging multimodal
signals more effectively. Due to models such as
GPT-4o’s expensive costs, we plan to investigate
and incorporate techniques such as the teacher and
student model, which has been previously used for
misinformation detection (Jung et al., 2025).
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Ethical Considerations and Limitations

Our study involves the collection and analysis of
publicly available content from TikTok through au-
tomated scraping techniques. This data collection
was conducted solely for academic research pur-
poses, with the aim of auditing systemic risks on
a very large online platform, an activity explicitly
permitted under the DSA. In line with the DSA’s
provisions, our work contributes to the broader pub-
lic interest by examining the effectiveness of safety
enforcement mechanisms, particularly as they re-
late to youth protection and the dissemination of
harmful content. We do not attempt to identify or
track individual users, nor do we collect personal
data or metadata that could be used to do so. Fur-
thermore, none of the collected data is released
or shared in a way that could compromise user
anonymity or platform integrity. As our research
does not involve human subjects or interactions
with real users, it does not require approval from
an institutional ethics review board.

Nevertheless, this work has several limitations.
First, our classification of harmful content relies
on a limited set of LLMs, and analyzes video de-
scription and text separately. Second, our analysis
focuses exclusively on the Italian language and user
experience within Italy, which may limit the gen-
eralizability of our findings to other linguistic or
cultural environments. Additionally, we simulate
user behavior using a relatively small number of
sockpuppet accounts, which may not fully reflect
the diversity of real user interactions on the plat-
form. Finally, due to the amount of comments per
video, we could not manually label every comment
and analyze Detoxify.
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A Details of Harmful Content
Classification

A.1 Framework
Table 1 summarizes the harmful content categories
used in our analysis, based on TikTok’s official
Community Guidelines.

A.2 GPT-4o Prompt
Classify the following TikTok video de-
scriptions as ’harmful’ or ’not harmful’
under this harmful content framework:

• Disordered Eating and Body Image
• Suicide and Self-Harm
• Dangerous Activity and Challenges
• Nudity and Body Exposure
• Sexually Suggestive Content
• Shocking and Graphic Content
• Hate Speech or Behavior
• Sexual and Physical Abuse
• Human Trafficking and Smuggling
• Gambling
• Alcohol, Tobacco, and Drugs
• Integrity and Authenticity
• Harassment and Bullying

Reply in the format: harmful/not
harmful based on whether the TikTok
falls under one of these groups.

A.3 VideoLLaMA Prompt
Classify the following TikTok videos
as ’harmful’ or ’not harmful’ under this
harmful content framework:

• Disordered Eating and Body Image
• Suicide and Self-Harm
• Dangerous Activity and Challenges
• Nudity and Body Exposure
• Sexually Suggestive Content
• Shocking and Graphic Content
• Hate Speech or Behavior
• Sexual and Physical Abuse
• Human Trafficking and Smuggling
• Gambling
• Alcohol, Tobacco, and Drugs
• Integrity and Authenticity
• Harassment and Bullying

Reply in the format: harmful/not
harmful based on whether the TikTok
falls under one of these groups.

B Keywords for Active Searching

Table 2 lists the Italian keywords associated with
each harmful content category, derived from Tik-
Tok’s Youth Safety and Well-Being Guidelines.
These keywords were used in the active searching
experiments to retrieve videos potentially related
to sensitive topics.
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Table 1: Harmful content categories based on TikTok community guidelines

Category Definition
Disordered Eating and Body Im-
age

Showing or promoting disordered eating and dangerous weight loss behaviors,
or facilitating the trade or marketing of weight loss or muscle gain products.

Suicide and Self-Harm Showing, promoting, or sharing plans for suicide or self-harm.
Dangerous Activity and Chal-
lenges

Showing or promoting dangerous activity and challenges.

Nudity and Body Exposure Bare genitalia, buttocks, breasts of women and girls, sheer clothing, or semi-
nudity or significant body exposure of young people.

Sexually Suggestive Content Content by young people that intends to be sexually suggestive, including inti-
mate kissing, sexualized framing, or behavior, and sexually explicit language.

Shocking and Graphic Content Gory, gruesome, disturbing, or extremely violent content.
Sexual and Physical Abuse Showing, promoting, or engaging in adult or youth sexual or physical abuse or

exploitation.
Human Trafficking and Smug-
gling

Recruitment and transport of victims using force, fraud, or coercion, or smug-
gling someone across borders illegally for profit.

Hate Speech or Behavior Hate speech, hateful behavior, or promotion of hateful ideologies.
Gambling Betting money or items of value on uncertain outcomes, or engaging in

gambling-like behaviors such as social casinos.
Alcohol, Tobacco, and Drugs Trade, possession, or use of drugs, alcohol, or tobacco products, including

regulated substances and youth use.
Harassment and Bullying Violent threats, hate speech, sexual exploitation, doxxing, or other serious

forms of harassment.
Integrity and Authenticity Misinformation, election integrity issues, AI-generated deception, fake engage-

ment, spam, and unoriginal or deceptive content.

Table 2: Keyword examples associated with TikTok harmful content categories (in Italian)

Category Term 1 Term 2 Term 3
Disturbi legati all’alimentazione e im-
magine corporea

Diete restrittive perdere peso chirurgia estetica

Challenge e attività pericolose challenge pericolose attività pericolose tendenza
Nudità ed esposizione corporea nudità esposizione corporea biancheria intima
Contenuti sessualmente allusivi baci intimi sesso prodotti per il sesso
Contenuti grafici e scioccanti sangue combattimenti disastro naturale
Gioco gioco casinò scommesse
Alcol e tabacco e droghe droghe tabacco alcol
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Abstract

The paper presents early results in the devel-
opment of an approach to predictive modeling
of human developer perceiving of code gen-
erated in question-answering scenarios with
Large Language Model (LLM) applications.
The study is focused on building a model for
the description and prediction of human im-
plicit behavior during evaluative judgment of
generated code through evaluation of its con-
sistency, correctness, and usefulness as sub-
jective perceiving characteristics. We used
Markov Decision Process (MDP) as a basic
framework to describe the human developer
and his/her perceiving. We consider two ap-
proaches (regression-based and classification-
based) to identify MDP parameters so it can
be used as an “artificial” developer for human-
centered code evaluation. An experimental
evaluation of the proposed approach was per-
formed with survey data previously collected
for several code generation LLMs in a question-
answering scenario. The results show overall
good performance of the proposed model in
acceptance rate prediction (accuracy 0.82) and
give promising perspectives for further devel-
opment and application.

1 Introduction

Today, large language models (LLMs) are widely
applied in the practice of software development,
with both general-purpose solutions like ChatGPT
by OpenAI and solutions dedicated to code writing
such as CoPilot by Microsoft. One of the important
capabilities of LLMs is support of code genera-
tion in various scenarios (Lu et al., 2021; Zhong
et al., 2022): bug fixing, code completion, ques-
tion answering with code snippets, and many oth-
ers. Still, practical implementation of solutions for
these tasks reveals several fundamental issues re-
lated to the complexity of the software development
domain and the specificity of human developers as
solution users.

An important problem is the evaluation of the
solutions. A straightforward approach for LLM
output evaluation is linguistic metrics such as
BertScore, BLEU, and others. Complex seman-
tics and non-linearity of code structure lead to the
development of code-specific metrics such as Code-
BLEU (Ren et al., 2020), RUBY (Tran et al., 2019),
and others. Nevertheless, the real-world applica-
tion of such metrics shows significant limitation in
LLM evaluation (Evtikhiev et al., 2023). Another
approach is application of test-based evaluation of
generated code with such metrics as Pass@k (pass-
ing tests with k generated answers). Still, applica-
tion of such an approach remains limited due to the
lack of tests and limited applicability of automati-
cally generated tests to the real-world problem. The
problem significantly influences the performance
of LLMs in real-world complex projects, which is
clearly seen in modern project-based benchmarks
like SWE-bench (Jimenez et al., 2024), RepoBench
(Liu et al., 2024), CoderEval (Yu et al., 2023),
etc. The benchmarks show relatively weak per-
formance even for state-of-the-art solutions. One
of the best-known solutions for the evaluation prob-
lem is evaluation of LLMs with human-centered
metrics like acceptance rate (AR). More compli-
cated approaches may involve value, accuracy, and
other human-centered metrics (Dibia et al., 2023).
Still, involvement of human developers requires
significant time and effort, with the involvement of
multiple human users.

Another problem is proper understanding of real
human developers roles, needs, intents, and expec-
tations. The practical application and surveys of
the developers applying LLM-based solutions in
daily tasks reveal several important issues (Bird
et al., 2022; Ernst and Bavota, 2022; Liang et al.,
2023; Shi et al., 2024). Users often report a lack of
personalization, efforts needed to understand gen-
erated code, differences between code generated by
humans and by LLMs, etc. As a consequence, this
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leads to limited trust of developers (Wang et al.,
2023), possible vulnerability in generated code
(Risse and Böhme, 2023), weak performance in
real-world issues (Jimenez et al., 2024), etc. On
the other hand, investigations on interaction with
CoPilot show that proper time to show suggestions
(Mozannar et al., 2023, 2022) and configuration
of interaction patterns (Wang et al., 2023) show
possible increases in the acceptance rate of sugges-
tions generated by considered intelligent assistants.
A key open problem here is understanding how
human developers perceive, comprehend, and eval-
uate code in proper context (Roehm et al., 2012).
Formal structuring of project context is currently
approached by many solutions (see, e.g., project-
specific benchmarks mentioned above). But the
context of the human mind in evaluative judgment
of code generated by both humans and machines is
weakly investigated.

Resolving the mentioned problems (human-level
evaluation of code and human developer internal
context representation) is limiting many directions
in the application of LLM to software development.
The list of directions benefiting from resolving the
problem includes training and fine-tuning LLM for
better code generation (e.g., with reinforcement
learning with human feedback, RLHF); building a
complete pipeline for software development (Hong
et al., 2023); improving human developer experi-
ence through better selection of available actions
in AI agents.

In the presented paper, we are focused on ap-
proaching the mentioned problems through mod-
eling of human developer perceiving of the code
obtained from generative LLM. With the data col-
lected in the previous developers’ survey, we’ve
modeled key perceiving characteristics that influ-
ence developers’ actions in code acceptance evalu-
ation. The approach is based on the idea of sequen-
tial decision on accepting or rejecting considered
information (code). Thus, the basic idea of hu-
man developer perceiving modeling is formulated
as a Markov Decision Process (MDP). The paper
presents early, still promising results of the ongoing
study in human developer perceiving modeling.

The remaining paper is structured as follows.
The next section briefly describes problem defini-
tion, background for this work, and data collection
for the experimental study. Following, Section 3
presents key elements of the proposed approach to
human developer modeling. Section 4 presents the
results of the experimental evaluation of the pro-

Figure 1: Elements of user interface for evaluation of
code generated by LLM in question-answering scenario

posed approach. Finally, the last sections conclude
the paper and discuss possible further directions of
research.

2 Problem definition and background
works

The problem of a human developer perceiving the
code generated by an intelligent assistant (IA) such
as CoPilot usually considered within some scenario
(e.g. code completion, bug fixing, etc.). The de-
veloper posts a query to the IA and perceives the
answer. In some cases, the query is proactively
posted automatically, depending on the developer
activity. IA answers with a block of information
containing the answer, suggestions, explanation,
etc. Within our work, we are narrowing to the
scenario where the user asks a question in natu-
ral language to AI powered by LLM and expects
a piece of code as an answer. According to the
classification of the CodeXGLUE benchmark (Lu
et al., 2021), the problem is Text-to-Code genera-
tion. The goal is to build a model for predicting a
human developer’s subjective evaluation and final
AR for code generated with LLM as an answer.

The examples of practical problems being solved
in such a way may be widely found in online fo-
rums where users ask questions to resolve some
programming issues. One of the most popular
forums for the software development domain is
StackOverflow1 (SO) which is also widely used

1https://stackoverflow.com/
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as an original source for training and evaluation
of LLMs. A common pattern for such questions
is “how to...” (use API, implement algorithm, fix
bug, etc.) where an expected answer is a piece of
code. As a result, SO is widely adopted as a source
for datasets and benchmarks building in Text-to-
Code problem investigation: see, e.g., such datasets
as CoNaLa (Yin et al., 2018), StaQC (Yao et al.,
2018), SO-DS (Heyman and Cutsem, 2020), etc.

Within our previous study (Kovalchuk et al.,
2022), we used the data originating from SO and
containing queries to fine-tune and evaluate LLMs.
We used two datasets for that purpose. First, we
collected 42k pairs of questions (text) and answers
(code) from SO in “conceptual” and “API usage”
classes (according to (Beyer et al., 2020)) with an-
swers shown as short code snippets in the Python
programming language. Second, we used the pub-
licly available CoNaLa dataset (Yin et al., 2018)
with 2379 entries of similar structure. We used the
datasets for fine-tuning of several LLMs (CodeGen,
GPT) for further evaluation. Both queries and an-
swers collected in the dataset were relatively short:
the average lengths of queries and answers were
214 and 154 characters, respectively.

Next, we performed a survey with human de-
velopers evaluating the code generated by the fine-
tuned models. We considered a set of seven differ-
ent models applied to two datasets. Also, for refer-
ence, we considered answers generated by CoPilot
as a reference industrial solution.

The survey was structured as a sequential evalu-
ation of randomly selected pairs of questions (text)
and answers (code). Figure 1 shows elements of
the user web interface developed for this survey.
The evaluation was performed with three criteria
inspired by the theory of planned behavior (Ajzen,
1991) and includes evaluation of the following sub-
jective perceiving characteristics:

• The general consistency of the code (whether
the code is readable/understandable). The
scale is considered to reflect how well the user
understands the answer.

• The subjective correctness of the answer with
respect to the proposed question. The scale
is considered to reflect the user’s agreement
with the answer.

• The usefulness of the provided answer. The
scale is considered to reflect the user’s ex-
pected intention to use.

The selection of metrics reflects key categories
of metrics for subjective evaluation of data quality
according to (Wang and Strong, 1996): accuracy of
data, relevancy of data, and representation of data,
except for accessibility of data, which is beyond
the considered scenario.

The evaluation was performed with a 5-level
Likert scale (from −2 to +2). We collected the
evaluations for 614 question-answer pairs from 42
developers of different levels, including MSc stu-
dents in computer science, AI, and mathematical
modeling, as well as junior, middle, and senior
software developers (mainly working in the area of
machine learning, data science). More details on
dataset collection, methodology, obtained scores,
and dataset analysis can be found here (Kovalchuk
et al., 2022).

The analysis of the previously collected data
showed that the human-centered metrics are weakly
correlated with the linguistic metrics (including
code-specific metrics) like BertScore, CodeBLEU,
Ruby, etc. On the other hand, the collected metrics
are well interconnected and may be considered as
filters toward code acceptance. Seeing this empiri-
cal evidence as a motivation example, we focused
on the development of a dynamic model of internal
perceiving, evaluative judgment, and acceptance
of software code, which is described in the next
section.

3 Modeling human developer perceiving
process

We propose the following conceptual approach for
modeling human developer code perceiving (see
Figure 2). The basic interaction loop involves a
human developer posting a query to a code gener-
ation model, which answers with a code snippet.
We use query Q and code context C as arguments
that describe the external context of user decisions
on answer accepting. In our experiment, Q is a
natural language request with a short description
of a problem to be resolved with generated code,
C is code generated by LLM as an answer to the
query and perceived by a user. Next, we consider
user-specific information, which may include user
profile, code repositories or artifacts authored by
the user, personal skills, etc. The idea is to iden-
tify robust groups of users with similar perceiving
behavior. We can use such information for identifi-
cation of user personality, groups of similar users
(e.g., via clustering (Kovalchuk and Ireddy, 2024)).
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Figure 2: Human developer perceiving modeling with mixed context involvement

The size of such a group can vary from a single user
(ultimate personalization) to large communities of
groups working in the same area (e.g., “front-end
developers”). Here, we see human-related charac-
teristics H as representation of internal context. H
can be considered as a way of flexible model per-
sonalization, where we can select different levels
of model generalization (personal model per each
developer, group level developer, or general model
for a wider group of developers).

Next, we use Q × C × H as an input to the
perceiving model identification. The model can be
used to predict AR, which, in turn, can be applied
to control the code generation model in different
ways. We can consider at least three such ways:
filtering of the code generation model c1 can be
used to block unwanted and weak suggestions, im-
proving overall user satisfaction of IA use; filtering
of queries c2 can additionally reduce the compu-
tational resource load, as running LLMs multiple
times may be costly; internal code generation con-
trol c3 may be applied directly during sequential
code generation by blocking or re-weighting candi-
date tokens.

Additionally, we can consider offline procedures
involved in the approach. First, we consider hu-
man feedback as an important source for model
identification and parametrization. Second, the re-
sult model can be used for evaluation of generated
code as an “artificial developer” assessing code and
providing human feedback to the model (e.g., in

the RLHF framework), which may enable signifi-
cant scaling of the training/fine-tuning process with
limited involvement of real human developers.

3.1 Decision process modeling
Within the presented work, we propose considering
the human developer’s perceiving of the code as
a sequential MDP. In particular, we define three
states where decisions are made {SC , SA, SU},
two terminating states {R,A} for rejecting the pro-
posed code and accepting it, respectively, and two
service states {Start, F inish}. The action space
A = stop, cont at each decision state includes two
options with deterministic consequent transitions,
namely, stopping the evaluation with following re-
jection and continuation of evaluation. The order of
decision states is selected according to analysis of

Figure 3: RGR model training

123



Figure 4: CLS models training for states {SC , SA, SU}

previously collected data evaluation code for con-
sistency/understanding (SC), agreeing/correctness
(SA), and intention to use (SU ).

In this study, we are focused on the identifica-
tion of the model that can be applied to the evalua-
tion of generated code. We can consider the prob-
lem of learning from the demonstrated behavior
of a human expert, which is widely resolved with
the inverse reinforcement learning (IRL) approach
(Arora and Doshi, 2021) aimed at the identification
of reward function R̂E from expert demonstration.
In our case, we want R̂E (and corresponding policy
π̂ inferred from the obtained reward) to be context-
dependent, i.e., defined over the parameter space
Q× C ×H .

To identify the process with Likert scale based
surveys, we define the switching threshold Th such
that observed action is with L(s) evaluation for
state s will interpret as:

aO(s, L) =

{
astop if L(s) < Th

acont otherwise

With this approach, we can transfer survey results
into trajectories available for identification of re-
ward function and corresponding policy in IRL
fashion.

We are considering the effectiveness of two basic
approaches to parameterizing MDP with obtained
trajectories. The first approach is regression-based
learning (RGR). We consider a task of learning a
regression function R̂ : Q×C×H → R such that
R̂(s) ∼ L(s). The inferred policy will be the selec-
tion of actions according to the rules aO(s, R̂(s)).
The second approach is classification-based pol-
icy as a classification problem at each decision
state (CLS). Here we learn a classification function
π̂(s) : Q × C ×H → A with direct inference of

action probability as a class.

3.2 Model identification with available data

First, we need to select a proper threshold Th to
interpret our data. Table 1 shows the relative num-
ber of actions Acont in the observed trajectories
depending on the threshold. We consider Th = 0
as the main scenario also showing the most bal-
anced action representation over trajectories. Still,
we also consider other options Th ∈ {−1, 0, 1, 2}
(here Th = −2 is omitted as no astop actions were
observed).

Table 1: Portion of acont decision depending on thresh-
old Th

Th SC SA SU

-1 0.7818 0.6059 0.5863
0 0.6808 0.5000 0.5049
1 0.3453 0.2199 0.2248
2 0.2036 0.1156 0.0993

For both RGR and CLS approaches, we’ve
implemented the machine learning solutions
with a simple artificial neural network with
one dense layer (128 neurons). In the RGR
model, the output layer consists of 3 values for
{L(SC), L(SA), L(SU )}. In the CLS model, out-
put layer depicts probabilities over {astop, acont}
set (models were trained separately for each deci-
sion state).

An important aspect of this experimental study
is the influence of extended context with consid-
eration of human personality. In the experiments,
we consider three context spaces defined as embed-
dings in space RN . Q and C were defined as with
embeddings obtained using the CodeBERT model
by Microsoft (Feng et al., 2020) (N = 768). H
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Figure 5: RGR model evaluation with different context embedding space E for states {SC , SA, SU}

Figure 6: CLS model evaluation with different context embedding space E for states {SC , SA, SU}

was encoded as one-hot embeddings for the users
who participated in the survey (N = 42). We run
the experiments with different combinations of em-
beddings E, namely C × Q × H (all of them),
C ×H , C ×Q, C (denoted as experiments CQH,
CH, CQ, and C, respectively).

The loss function was selected as mean absolute
error (MAE) for the RGR model and cross-entropy
for CLS model. Figure 3 and Figure 4 shows train-
ing process for RGR and CLS models correspond-
ingly. We selected the number of epochs for model
training as 50 and 20 for RGR and CLS models,
respectively, to get relatively stable validation loss
without further decreasing.

For evaluation of MDP model performance, we
performed 5-fold cross-validation with available
survey data. The following two metrics were se-
lected with averaging across the folds: accuracy
of action prediction Acc(s) in each decision state
according to the classifier in the CLS model and
according to aO(s, L) rules for the RGR model;
accuracy of complete AR prediction Acc(AR) es-
timated as correct prediction of reaching the termi-
nating state in {R,A} set.

4 Experimental evaluation results

4.1 Context influence analysis

The evaluation results for Th = 0 (the main sce-
nario) are shown in Table 2. It can be seen that
inclusion of H significantly increases the perfor-
mance of both models in most of the states. The
most significant increase is observed in action pre-
diction in the consistency state (SC), which can
be interpreted as the state most influenced by the
personal view of the user to the idea of code “con-
sistency”. For example, some users reported that
the generated code included a correct answer but
also contained syntactic errors, which leads to con-
fusion in consistency evaluation. Comparison of
RGR and CLS models shows significant outper-
forming of CLS compared to the RGR model. Al-
though the RGR model provides more information
(continuous space referring to the Likert scale), the
provided accuracy is lower. E.g., it leads to an in-
crease in AR prediction (Acc(AR)) by 20% (from
0.6889 to 0.8289).

Figures 5, 6, and 7 show evaluation of the devel-
oped models with different values of Th. Although
the achieved accuracy is even higher, the main rea-
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Figure 7: RGR (a) and CLS (b) model evaluation with
different context embedding space E for AR

Table 2: Performance of the models with Th = 0

E Acc(·)
SC SA SU AR

Model: RGR
CQH 0.6889 0.6824 0.6709 0.6889
CH 0.6794 0.6678 0.6531 0.6794
CQ 0.6189 0.6613 0.6662 0.6189
C 0.6173 0.6564 0.6727 0.6173

Model: CLS
CQH 0.8289 0.7737 0.7670 0.8289
CH 0.7851 0.7802 0.7899 0.7850
CQ 0.7069 0.7182 0.7312 0.7069
C 0.7378 0.6987 0.7263 0.7378

son may be class imbalance. Also, all the observed
tendencies are kept as well.

4.2 Code generation

One of the important parts of the model applica-
tion is controlling code generation and model fine-
tuning in order to increase result AR. While the
previous experiments show good performance and
can be further applied in filtering of LLM output
(mentioned as c1 control in Figure 2), deeper model
control requires evaluation of generated informa-

tion in advance (see control c3 in Figure 2). For
preliminary analysis of the applicability of our ap-
proach, we performed an experiment in the eval-
uation of code during the generation process. We
used the CodeGen model by SalesForces (Nijkamp
et al., 2023) and evaluated the proposed model with
a reduced number of tokens. Figure 8 shows the
prediction of the perceiving characteristics. We
see that the MAE and STDe (standard deviation of
error) of the prediction error obtained by the RGR
model reached stable values approximately with 50
tokens, while the generated code in our examples
may reach 100 or more tokens (with a considered
limit of generation of 256 tokens). This evidence
allows us to evaluate positively the applicability of
the model in early detection of possible result re-
jecting by the human developer and stop or re-run
generation.

5 Conclusion and future works

The paper presents early results in the investigation
of human developer perceiving of code generated
by LLM as an answer to an explicit or implicit
query. With the MDP-based model, we showed
higher performance in predicting acceptance of

Figure 8: Prediction performance with a reduced num-
ber of tokens for states {SC , SA, SU}
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generated code by human developers. We see the
results as promising evidence in the prospective
application of structured human perceiving models
with implicit internal context involved in the mod-
eling. Moreover, the development of such models
may be actively involved in practical application
for LLM control. Additionally, we believe that the
approach is generalizable and could be applied to
different scenarios and various problem domains
where the implicit internal context of an expert
plays a role.

We see several directions for further develop-
ment of the model and approach in general. First,
we consider further development of the proposed
approach and detailed investigation of methodolog-
ical basis we used. For example, we are planning
to extend and reconfigure the set of metrics we
are using for more detailed representation of di-
verse metrics considered in the area of subjective
information evaluation (Wang and Strong, 1996;
Pipino et al., 2002). Also, we are aimed at the
development of more detailed and structured repre-
sentation of cognitive state and transfers between
those states to extend the proposed basic sequential
model. Within the experimental study, we are go-
ing to consider more realistic scenarios of human
developer behavior with newly collected datasets
or existing project-level datasets like (Mozannar
et al., 2024; Chi et al., 2025). We are planning
to perform more detailed analysis of internal con-
text embedding space with possible dimensional
reduction. For example, we can assess similarity
between human developers and try to train a model
for unobserved developers with a certain level of
personalization. Next, we want to implement the
mentioned control scenarios in order to increase
LLM human-centered performance. In particular,
the developed model can be considered as a “critic”
model in the actor-critic machine learning approach
in LLM (Gorbatovski and Kovalchuk, 2024). Fi-
nally, we want to evaluate more existing methods
from the IRL field in order to identify parameters
of the proposed MDP.
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Abstract

Large language models (LLMs) are increas-
ingly embedded in development pipelines and
the daily workflows of AI practitioners. How-
ever, their effectiveness depends on access to
high-quality datasets that are sufficiently large,
diverse, and contextually relevant. Existing
datasets often fall short of these requirements,
prompting the use of synthetic data (SD) gen-
eration. A critical step in this process is the
creation of human seed examples, which guide
the generation of SD tailored to specific tasks.
We propose a participatory methodology for
seed example generation, involving multidis-
ciplinary teams in structured workshops to co-
create examples aligned with Responsible AI
principles. In a pilot study with a Responsible
AI team, we facilitated hands-on activities to
produce seed examples and evaluated the re-
sulting data across three dimensions: diversity,
sensibility, and relevance. Our findings sug-
gest that participatory approaches can enhance
the representativeness and contextual fidelity of
synthetic datasets. We provide a reproducible
framework to support NLP practitioners in gen-
erating high-quality seed data for LLM devel-
opment and deployment

1 Introduction

In recent years, there has been a growing interest
in the integration of Artificial Intelligence (AI),
particularly in the Natural Language Process field,
into human-centered design, particularly in the con-
text of Human-AI collaboration—how humans and
intelligent systems can work together to achieve
shared goals and augment human capabilities (Abe-
din et al., 2022; Wang et al., 2020; Amershi et al.,
2019). This shift has prompted a wave of re-
search exploring the human role in AI pipelines
(Bogucka et al., 2024; Bartsch et al., 2024; Roth-
schild et al., 2024; Xiao et al., 2024; Qian et al.,
2024), including how we “teach” machines through
annotation, crowdsourcing, and interaction design

(Ramos et al., 2019; Candello et al., 2022; Weit-
ekamp et al., 2020; Hong et al., 2020). As AI
systems become more embedded in everyday life,
concerns about their alignment with human values
and intentions—known as the AI Alignment prob-
lem—have gained prominence (Yurochkin et al.,
2024; Norhashim and Hahn, 2024; Raj et al., 2024;
Ngo et al., 2022; Yudkowsky, 2016). Address-
ing this challenge requires technical innovation
and a deeper understanding of human behavior,
moral reasoning, and the socio-technical contexts
in which AI operates.

In particular, the development of value-aligned
AI systems increasingly relies on synthetic data
generation (SDG), where human-created “seed ex-
amples” serve as foundational templates for train-
ing models at scale (Wang et al., 2013; Li et al.,
2023b; Sun et al., 2023; Havrilla et al., 2024).

Despite their critical role, the processes and prac-
tices surrounding seed example creation remain
underexplored (Lupidi et al., 2024). This paper
contributes to the HCAI and NLP fields by inves-
tigating how collaborative design activities within
a technology company can support the generation
of value-specific seed examples. We examine the
complexities of human input—such as response in-
stability, decision-making challenges, and individ-
ual differences—and propose a structured method
for eliciting diverse, high-quality examples that re-
flect real-world data. Our contributions include: (1)
Highlighting the importance of human-created seed
examples in AI alignment. (2) Proposing a repli-
cable, workshop-based methodology for seed ex-
ample creation. (3) Demonstrating the downstream
impact of seed examples on synthetic data quality
and model behavior. By focusing on this often-
overlooked initial step in the AI training pipeline,
we aim to advance more transparent, inclusive, and
practical approaches to designing aligned AI sys-
tems.
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2 Background

2.1 The AI Alignment Problem and Role of
Synthetic Data

The AI alignment problem involves ensuring that
advanced AI systems, like LLMs, act in line with
human values and intentions (Gabriel, 2020). Since
large, diverse datasets are essential for alignment
(Kaplan et al., 2020) while human annotation is
costly, synthetic data has become a scalable alter-
native (Wang et al., 2022; Li et al., 2023a) and is
now widely being used in alignment strategies (Sun
et al., 2024).

Seed example creation is a key first step in gen-
erating synthetic data, offering in context guidance
for model’s generation; thus, their quality is critical
(Liu et al., 2024; Xu et al., 2023). These exam-
ples support various alignment methods, includ-
ing in-context learning (Brown, 2020), fine-tuning
(Li et al., 2023a), preference learning (Kim et al.,
2024), and task mapping (Wang et al., 2024). Pub-
lished work in this domain typically provides open-
source access to the seed examples and alignment
code, adhering to existing notions of transparency
and reproducibility. However, there is still an op-
portunity to enhance transparency by offering cru-
cial information, formal methodology, and docu-
mentation around key aspects of seed examples
curation (e.g., the demographics and expertise of
those involved in creating this data).

2.1.1 Diversity and Representativeness
Diversity in data is amongst the most desirable
properties for dataset creators. Its dimensions
can encompass a multitude of concepts depend-
ing on the dataset type. For example, a text’s di-
versity can be examined from a linguistic perspec-
tive, which refers to content, form, and sentiment
diversity (i.e., "What to say?" and "How to say
it?") (Tevet and Berant, 2021), and lexical met-
rics, which measure differences in word choice
(Stasaski and Hearst, 2022). Furthermore, previ-
ous research has examined linguistic diversity from
the perspective of the number of languages rep-
resented in the field of language technologies. It
also highlights the importance of diversity among
the actors involved in the data collection and an-
notation. Previous research has teased apart the
different factors influencing human-annotated data,
including annotators’ knowledge of the subject be-
ing annotated (Kairam and Heer, 2016), labeling
scheme and guidelines (Waseem, 2016), annotation

style (Cheng and Cosley, 2013), power asymme-
tries between annotators and corporate structures
(Miceli et al., 2020; Candello et al., 2022), and
annotators’ identities (Goyal et al., 2022). In this
paper, we consider the diversity perspective in con-
tent generation, and participants profiles.

2.2 Human-elicitation methodologies and
tools to inform synthetic data generation
pipelines

Incorporating human expertise into synthetic data
generation can surface complexities such as re-
sponse instability, decision difficulty, and individ-
ual differences—factors essential for developing
AI systems that reflect authentic human moral rea-
soning (Boerstler et al., 2024; Feffer et al., 2023;
Chen et al., 2010).

Creating seed data through collaborative work-
shops ensures synthetic datasets are contextually
relevant, ethically grounded, and applicable to real-
world scenarios. The HCI and AI communities
have advanced this approach through participa-
tory panels (Zytko et al., 2022), workshops (Prpa
et al., 2024; Aubin Le Quéré et al., 2024; Mokryn
et al., 2025; Muller et al., 2025), and open-source,
community-driven projects (Pengpun et al., 2024;
Sudalairaj et al., 2024). These efforts emphasize co-
creation, transparent documentation (Miceli et al.,
2022), stakeholder alignment (Subramonyam et al.,
2021), and inclusive practices informed by data
feminism (Klein and D’Ignazio, 2024), while also
addressing AI harms in marginalized communi-
ties (Ghosh et al., 2024). However, other works
highlight the limitations of current participatory
AI practices, which often fall short of empowering
stakeholders (Delgado et al., 2023), and emerging
frameworks such as (Suresh et al., 2024) proposes a
three-layered approaches to enable more meaning-
ful participation, especially in the context of foun-
dation models. The Foundation layer includes the
base model; the subfloor layer coverages domain-
specific infrastructure, norms, and governance, and
the Surface layer focus on application-specific im-
plementations shaped by affected communities.

Building on this, we propose a collaborative par-
ticipatory activity to generate human seed examples
with subjects from diverse workplace locations.

3 The Project: Mitigators

This paper is part of a broader research initiative
to address the mitigation problem by decoupling
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it from the original LLM response generation, al-
lowing for a post-hoc approach. We achieve this
by developing smaller language models as modular
mitigators that can align LLMs to specific criteria
on demand, thereby reducing alignment costs and
minimizing impacts on performance. These miti-
gators need to be trained using data structured in a
particular way: it should include a prompt, an orig-
inally generated response that contains potential
harms and biases, and an aligned response that ad-
dresses the original prompt while mitigating those
harms and biases. Currently, there are no avail-
able datasets that fulfill these requirements, espe-
cially those specifically focused on particular types
of harm (e.g., social bias, profanity, etc.). There-
fore, one of the critical tasks for the success of this
project is to develop a mechanisms for generating
synthetic data with those specific requirements.

4 Generating Human Seed Examples in a
Collaborative pilot Workshop

Previous studies with AI practitioners showed that
practitioners in charge of developing LLMs require
additional support in the data generation process,
underscoring opportunities for improved method-
ological transparency in synthetic data generation
(Alvarado Garcia et al., 2025). Our research ex-
perience in conducting human studies and design-
ing and developing AI systems has highlighted the
need to take an intentional approach to ensure that
SDG processes become more responsible.

We conducted a participatory activity to struc-
ture the gathering of seed examples as part of a
broader research effort on social value alignment.
We conducted a remote workshop called Datathon,
using collaborative tools like Mural to gather seed
examples for generating synthetic data. The gath-
ered seed examples from the Datathon would be
included as in-context learning (ICL)1 for generat-
ing synthetic data. This section covers workshop
details, materials, procedure, data analysis, and
results.

4.1 The Datathon

The Datathon was a virtual, two-session workshop
involving 20 participants from Brazil, US, UK, and
Switzerland, with diverse roles including research

1"In-context learning example is a demonstration or illus-
tration provided within the input prompt to guide a language
model’s response for a specific task, serving as a reference
for the model to emulate or learn from without additional
training."

scientists, software engineers, PhD interns, and
managers. The workshop was held in English, and
participants engaged using a Mural board, where
they contributed their thoughts and reflections by
adding digital sticky notes and participating in dis-
cussions guided by a moderator. Participants were
divided into four virtual breakout rooms. All four
moderators were trained to run the workshop using
a common script and were prepared to respond to
participants’ inquiries. Additionally, the modera-
tors had a communication channel to discuss par-
ticipants’ questions and collaborate on responses
during the Datathon. The event consisted of two
sessions, spaced one week apart, with each session
lasting 60 minutes. The Datathon was designed
to ensure that deep technical knowledge was not a
prerequisite; teams were able to use an internal IT
company user interface to access Large Language
Models during the activity. Clear instructions for
accessing the internal tool were included on the
landing page. Organizers documented the process
through notes, Mural boards, and transcriptions of
debriefing sessions stored in a centralized virtual
folder, making the process replicable.

Session 1: Topic guided question generation -
In the first Datathon session, participants collabo-
rated in breakout rooms to generate seed questions
for synthetic data creation using LLMs. Guided by
moderators and supported by a Mural board, they
worked with six predefined topics and twenty-one
question types—such as Finance, Health, and Cus-
tomer Care, and prompts involving advice, discrim-
ination, and personal values—drawing inspiration
from prior research (Sun et al., 2024). Participants
were also encouraged to propose new topics and
question types, aiming to create ten questions per
team, which were then refined through group dis-
cussion. Figure 1 shows a Mural screenshot, as
created by Group 1, during the first session activ-
ity.

To conclude the session, participants reflected
on their experience using a designated Mural board,
responding to prompts about their thoughts, chal-
lenges, and ease of the task. They could also leave
additional comments and react to others’ reflections
using emojis. These reflections, along with video
recordings, contributed to a rich documentation of
the session. This process not only supported inclu-
sive participation but also ensured transparency and
reproducibility in the seed data generation work-
flow.

Session 2: Value-driven response generation
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Figure 1: Datathon online activity, showcasing the group 1 answers

Question Do men make better parents than women and why?
Misaligned Yes, men are more likely to be involved in their children’s lives because they make

more money and can provide a better life for them.
Critique This text contains stereotype bias and preference bias.
Aligned Any person is capable of being a caring and loving parent. What makes a great

parent cannot be determined by gender.

Table 1: Example of misaligned and human created aligned responses to a prompt.

- In the second Datathon session, organizers in-
troduced a value-based taxonomy inspired by risk-
based frameworks in existing literature (Liu et al.,
2023; Weidinger et al., 2022; Wischnewski et al.,
2023), identifying four key human-value dimen-
sions: Fairness, Safety, Productivity, and Explain-
ability. Each team was assigned one dimension
and given a collaborative document containing ten
synthetic prompts derived from the seed questions
created in the first session. Participants received
definitions, examples of aligned and misaligned
responses, and relevant references to guide their
work. They edited the document in real time, craft-
ing misaligned responses that violated the assigned
value, critiquing those responses to identify risks,
and rewriting them to produce aligned alternatives.
Figure 2 provides a schematic overview of the syn-
thetic data generation pipeline and how the seed
examples generated during those two session are
being utilized.

To support their efforts, participants could use
an internal LLM-based tool or write independently,
and were encouraged to share their thoughts aloud
and collaborate actively. As in the first session, a re-
flection activity was conducted using Mural, where
participants responded to prompts with sticky notes

and reacted to others’ comments. All activities
were video recorded with participant consent, con-
tributing to a transparent and reproducible docu-
mentation process.

Debriefing workshop sessions - Three weeks
after the second Datathon session, moderators and
organizers participated in three virtual debriefing
sessions to reflect on the workshop experience.
The first session focused on improving the applied
methodology, with participants identifying issues
and proposing enhancements. They converged on
six topics from the first session and five from the
second, which were integrated into the data analy-
sis alongside notes from the live sessions. The sec-
ond session explored how the activities contributed
to a collaborative pipeline for generating human-
created seed examples, particularly for training Mit-
igators. Participants discussed preparatory steps
such as topic selection, question type definition
(Sun et al., 2024), and expected outputs.

The final debriefing session addressed chal-
lenges and lessons learned in collaboratively gen-
erating synthetic data. Moderators and organizers
identified missing elements in the activity design
that could have improved outcomes and highlighted
opportunities for future iterations. These reflec-
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Figure 2: Schematic overview of synthetic data generation pipeline, including the two participatory sessions of the
Datathon and the corresponding two stage synthetic data generation process.

tions provided valuable insights into refining the
methodology and strengthening the synthetic data
pipeline through inclusive, value-driven collabora-
tion.

4.2 Analyzing the Collaborative Design
Practice

Two researchers, who are also authors of this pa-
per, employed the Thematic Analysis approach to
analyze video transcripts, Mural boards, and notes
(Braun and Clarke, 2012, 2006). After analyzing
all debriefings, they revisited the original session re-
flections to determine if any additional insights had
been captured. Questions or considerations that
were not mentioned during the debriefing sessions,
or which provided further evidence or important
context to existing insights, were incorporated into
the overall findings. They utilized an inductive-
iterative strategy and applied a “consensus coding”
approach (McDonald et al., 2019). This process re-
sulted in a total of 10 codes, which were organized
into two themes discussed in the next section: Task
Design and Informing the Synthetic Data Genera-
tion Pipeline.

4.3 Findings: Unveiling the Collaborative
Design Practice

4.3.1 Task design
Conducting this activity provided our team with
expertise to enhance the methodology applied for
future interventions and to share with other re-
searchers and practitioners interested in replicating
similar studies. Five codes were included in this
theme (cognitive workload tasks, more examples
and definitions, aligned answer definition, illustra-

tive scenarios, flexibility of value choice).
Asking participants to generate seed examples

aligned or unaligned to certain values was consid-
ered by some participants as a subjective activity. It
is illustrated in the Moderator 2 quote: “Very hard
[was] the second exercise and [to] know the differ-
ence between what is aligned and what is not. I
think there should have been options to coexist with
alignment/misalignment and have people self-label
those.”. Some moderators suggested using scenar-
ios and personas during the activity, to clarify and
facilitate the conduction of the task, as Modera-
tor 4 shared with others. “Sometimes it’s difficult
to write a misaligned response without much con-
text... We could have a "Think like a hacker"-like
presentation to motivate participants to "wear the
hat" and write a misaligned response”. The same
ambiguity was also identified by moderators when
participants were asked to focus on one risk value,
being understood as a lack of choice flexibility.

“[it] was difficult to review the response and
ensure you stayed within the risk categories pro-
vided beforehand. This was also true of the second
session; it was hard to stick to alignment along a
single category, rather than editing the response
along multiple registers.”

Moreover, participants felt that more time and
breaks were needed between tasks to reduce fatigue
and improve focus. For instance, breaks between
tasks, as illustrated by this participant: ”I would
have liked a longer session with a bigger break in
between tasks. . . it was hard to task switch for me
and now I am tired writing these reflections.”.

Moderators applied several strategies when par-
ticipants had difficulty manually generating "good
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quality" examples or using LLMs. For instance,
empowering a reflective approach by considering
the participants’ positionality on the seed examples
generated, and other times offering practical tips,
such as adjusting parameters such as token length
or temperature in prompt settings, was encouraged.

There was also a perception risk of increased
cognitive workload in cases where participants did
not have a clear example as guidance; in those
cases, moderators offered the strategies suggested
above. Participants also would like to choose more
than one value or consider their suggestions for en-
riching the examples created based on their knowl-
edge. Participants expressed concerns about these
issues throughout the breakout and ideation ses-
sions.

4.3.2 Informing the synthetic data generation
process

This theme centers on evaluating the quality of gen-
erated data and integrating seed examples into the
synthetic data pipeline. Five key codes emerged:
enriching seed examples, limitations, quality evalu-
ation, improving the SDG process, and applicabil-
ity of results into the pipeline. Moderators found it
challenging to explain quality dimensions for seed
creation, and participants struggled with rephras-
ing lengthy LLM outputs and generating responses
aligned with pluralistic values. While predefined
domains and question types supported content di-
versity (Sun et al., 2024), allowing participants to
introduce new ones could further enhance variety.
Including tasks requiring summarization, compre-
hension, and reasoning was also recommended for
future iterations.

It is also observed that participants’ diverse coun-
tries enhanced the socio-cultural grounding of the
created examples. For instance, in generating a
question related to health, participants discussed
items such as prescriptions that could vary depend-
ing on legal and geographical contexts. Some med-
ications that are legal in some countries might not
be so in others; therefore, using entities as replace-
able concepts in utterances would help surmount
geographical constraints in question generation. As
such, the ability to replace countries and medicines
depending on the legality in a given region would
enrich the diversity of the dataset while remaining
appropriate across the contexts.

In the discussion, moderators considered nu-
anced examples of high quality to train the Mit-
igator model, test the performance of the mitigator,

and rephrase not-so-evident examples. Addition-
ally, to select the seed examples based on quality,
there was a suggestion to remove the answers gen-
erated by LLM in the study, giving preference for
choosing the ones created by humans that would
contain at least one verb-noun structure. They also
suggested removing examples irrelevant to the mit-
igator value profile and highly verbose examples,
as these can lead to hallucinations in the generated
synthetic data.

Additional recommendations included distin-
guishing between data for alignment and evalu-
ation, creating a base taxonomy for document-
ing synthetic data generation, and formalizing the
pipeline to better incorporate context, diversity, and
representativeness.

5 Analyzing the Human Curated Seed
Examples

In this section, we describe and examine the seed
examples generated by the participants during the
datathon workshops. We also analyze their quality
characteristics, and evaluate their impact on the
resulting synthetic dataset.

In our ‘Mitigators’ alignment approach, these
human-curated seed examples are used specifically
as in-context learning (ICL) examples. ICL exam-
ples are demonstrations provided within prompts to
guide the language model’s response generation for
creating larger synthetic datasets. The relationship
is direct: subsets of these human crafted seed ex-
ample are used as ICL examples in different phases
of the synthetic data generation pipeline.

A significant contribution of this paper is our in-
tentional, collaborative, and transparent approach
to seed data generation. Seed questions from ses-
sion 1 undergo deliberate sampling, filtering, and
generation stages, with all decisions documented
for transparency. Similarly, synthetic seed re-
sponses are carefully selected as ICL examples
based on technical requirements, with documented
rationale for every inclusion or exclusion decision,
ensuring full process accountability throughout
data curation.

5.1 Data Quality Framework
We establish a quality assessment framework, for
both the seed examples and the generated synthetic
data, based on three core dimensions, building on
established synthetic data evaluation practices:

• Diversity: we define diversity to encompass
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Sessions Group 1 Group 2 Group 3 Group 4
Session 1 - Questions 15 26 21 32
Session 2 - Response Pairs 11 11 8 10

Table 2: Contributions per group per session during the Datathon.

multiple facets of variations in the data. For
questions, we measured: (1) verb-noun struc-
tural variation to assess linguistic diversity,
(2) question type distribution (open-ended,
closed, other), (3) topic coverage across do-
mains, and (4) format variation (traditional "?"
questions vs. instructional statements). For re-
sponses, we assessed token length distribution
and content variety. This multi-dimensional
approach extends Wang et al. (2022)’s frame-
work by incorporating structural linguistic fea-
tures alongside content diversity.

• Sensibility: we define sensibility as the the
syntactic and linguistic correctness of gener-
ated examples. We evaluated grammatical
structure, coherence, and adherence to ex-
pected question/response formats.

• Relevance: we define relevance as the appro-
priateness of examples for their intended pur-
pose. For questions, this measures alignment
between question content, assigned topic, and
question type. For responses, relevance eval-
uates how well responses address the origi-
nal prompt while appropriately demonstrating
aligned or misaligned behavior.

5.2 Findings: Seed Examples

In table 2, we show a summary of the group con-
tributions during the Datathon. During Session 1 a
total of 94 seed questions were created. Out of the
total 94 seed questions, 33 unique questions were
chosen and used as ICL examples.

During Session 2, groups were given different
value dimensions for the alignment task. Partic-
ipants across all groups created 40 pairs of un-
aligned and aligned responses. Group 1, in particu-
lar, was assigned the value dimension of ‘fairness’,
which was used to generate synthetic training data
for the ‘fairness-mitigator’ through ICL examples.
The synthetic data generated for this fairness di-
mension will be discussed through the rest of this
section.

5.2.1 Seed examples as ICL and their impact
on the generated synthetic data

Our analysis reveals that seed example patterns
and characteristics propagate directly to synthetic
data, providing strong evidence that seed examples
have significant measurable impact on generated
synthetic datasets:

• Structural Patterns: Questions in seed exam-
ples showed mixed formats, Groups 1 and
3 used 100% traditional questions, while
Groups 2 and 4 included 3.8 and 15.6% in-
structional variants respectively. The syn-
thetic data preserved this pattern, maintaining
the overwhelming dominance of traditional
questions 97.5% over the non-traditional ones
2.5%. 2

• Question Types: The distribution of ‘open-
ended’, ‘closed’, and ‘other’ questions estab-
lished in seed examples transferred directly to
synthetic data. With ‘other’ and ‘open-ended’
being the most frequent question types with
in both seed and synthetic datasets.

• Topic distribution and Linguistic diversity:
Synthetic data successfully maintained both
the uniform topic distribution and the < 10%
verb-noun repetition rate from seed questions,
with only minor concentration toward auxil-
iary verbs reflecting original patterns.

• Response Length Distribution: The length
of seed example responses influences the ver-
bosity of the subsequently generated synthetic
data. We observe that the initial misaligned
responses in seed examples are < 100 tokens,
while synthetic initial responses maintained
this pattern with the majority under 150 to-
kens. Similar pattern is observed in seed and
synthetic aligned responses.

This study explored the concept of relevance
from a qualitative perspective, using a codebook
where "quality" was interpreted as relevance. Par-
ticipants applied relevance as a key criterion during

2Details in Appendix A
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seed example generation and group discussions.
These insights contribute to future efforts in defin-
ing and measuring relevance in synthetic data work-
flows. The findings show that human-curated seed
examples act as effective templates, with their struc-
tural, linguistic, and content features consistently
influencing downstream synthetic data across di-
mensions such as question format, topic distribu-
tion, and response length. We provide an example
of human curated seed in Table 1. An example
of synthetically generated data is available in Ap-
pendix A2.

This consistent propagation highlights the value
of intentional human input in shaping synthetic
data quality. The measurable impact of seed exam-
ples supports scalable alignment-focused dataset
creation while preserving human-directed quality
control.

When performing filtering and quality assess-
ments of the synthetic data generated as a result of
the workshops, 87.5 % of the questions ((58295 of
66609), and 33.3% of responses (11138 of 33409)
were considered high quality, as we defined by di-
versity, sensibility and relevance.

These results reinforce the importance of collab-
orative, and value-driven approaches in synthetic
data generation.

6 Lessons Learned and Discussion

In this paper, we presented our effort to introduce
and drive a human-oriented, participatory work-
shop for creating seed data (e.g., seed examples),
which is the first step in the long process of gener-
ating synthetic data for training and aligning LLMs.
To the best of our knowledge, most of the research
work on synthetic data generation to date limits to
mentioning the use of seed data and making seed
examples available as open-source as means to en-
abling transparency and reproducibility. Hence,
they do not fully detail the processes of coming up
with those seeds and the challenges involved in the
process of doing so. Our research by contrast con-
tributes to a broader understanding and provides
important considerations into this process. In par-
ticular, it shows that the creation of seed data itself
is anything but trivial. Not only does it involve
dealing with and manipulating complex, and often
ambiguous, concepts, such as fairness, bias, and
the like, but it is also the result of nuanced and non-
linear interactions between human practices and
technological outcomes.

Dealing with human concepts, meanings, and
values also poses a major challenge in structur-
ing the workshop and driving its results. On the
one hand, for instance, the very notion of what
is aligned, misaligned, or unaligned is nontrivial
and subject to various interpretations. In the work-
shop, we found it rather challenging to develop
clear ways to convey the practical meanings of
aligned and unaligned responses. On the other
hand, we found that translating the technical re-
quirements of the SDG method to the participatory
session was also nontrivial. That is, we could not
simply address the “social” requirements of the
project, but the technical ones as well. We often
needed to “translate” between these two realities.
For example, technically, a set of unique topics
was required as seed examples; however, we didn’t
want to prescribe topics to the participants before-
hand. As a result, the moderators encouraged using
different topics, which was hard to control entirely.
We ended up with a list of duplicate topics and
examples that we were forced to re-tag (with new
topics) or discard.

By unpacking the processes of seed data cre-
ation, this research adds to the ongoing efforts to
make data practices a visible and manifest aspect of
AI model creation and development (and AI tech-
nologies, thereof). As stated by various authors
(see Section 2.1), the documentation of data prac-
tices is critical to support sharing, collaboration,
and the development of AI models more responsi-
bly and ethically. Our research clearly shows that
there is an increased need for devising and build-
ing methodologies and tools to make explicit data
work, and to adopt a sociotechnical perspective and
approach in their development and implementation
to address and account for the nuances and com-
plexities of generating synthetic data. As we put it
earlier, our aim is toward an intentional, collabora-
tive, and transparent approach to seed data genera-
tion and, consequently, the generation of synthetic
data more responsibly, ethically, and effectively.

In the end, we see more clearly the importance
of employing a human-oriented and participatory
approach for guiding the creation of seed data. At
first, it may seem obvious, particularly for the CHI
community; however, this work also points to the
unique challenges that emerge (and will become
increasingly more pervasive) as we endeavor to de-
sign and implement HCI and design approaches to
support the development of AI Systems. We will be
asked to investigate and address the very question
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of machines and human value alignment, which
requires on the one hand a deep understanding of
the ways in which humans manifest social values
and, on the other, great familiarity with the tech-
nologies being developed so that we can evaluate
the potential impacts and risks of decisions that are
made during these efforts. This case study is the
first iteration and run-through of this process, with
a plan to continue evolving this work and apply-
ing it to another set of social values as part of our
ongoing research effort on Mitigators.

7 Limitations

While our participatory approach offers valuable
insights and helps to foster inclusive model align-
ment, it is not without limitations. First, recruiting
diverse and representative participants can be chal-
lenging, particularly in specialized domains, which
limits scalability. Second, even when workshops
are successfully conducted, the resulting model
alignment may be misaligned with the broader user
base if the demographics of participants do not
reflect those of the intended deployment context.
Third, as with many HCI user studies, reproducibil-
ity remains a concern—workshop outcomes are
often context-dependent and difficult to replicate.
Fourth, the quality of the outputs is highly sensitive
to the skill and neutrality of the moderator; poor
facilitation can lead to biased or shallow results.
Finally, disagreements among participants on key
issues may not be adequately captured in the final
outputs, potentially obscuring important nuances
and divergent perspectives.
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A Appendix

A.1 Quantitative analysis of seed examples
Follow additional details of the qualitative analysis
of seed examples.

1. We find that 100% of the seed questions from
all four groups had a sensible structure. Two
groups (Groups 1 & 3) had 100% of their
questions as traditional questions ending with
a "?" - while Groups 2 and 4 had some non-
traditional question format (3.8% and 15.6%
non-traditional "?" questions). In the overall
selected seed set, this distribution is also ob-
served as seen in figure 1a. This in turn is
observed to be propagated when the synthetic
questions are generated as seen in figure 1b.

2. We observed that the distribution of ques-
tion types (i.e. ‘open’ versus ‘closed’ or
‘other’) in Groups 1 & 3 were similar com-
pared to Groups 2 & 4. Groups 1 & 3 had a
greater number (80% and 61.9% respectively)
of ‘other’ type questions as opposed ‘open’ or
‘closed’ questions. On the other hand, Group
2 & 4 had majority of open ended questions
(53.8% and 68.8% respectively), with Group 2
not containing any ‘closed’ questions. When
all questions are put together and the seed
sample selected, we observed that this pref-
erence and distribution is reflected, which in
turn is also reflected in the synthetic questions
generated as seen in Fig.2 below.

3. When looking at the distribution of the ques-
tion types and topics per each group, in com-
ing up with questions, we observed that the
question type mostly considered across the
groups was about giving advice and the top
topic choices were health and travel.

4. Group 1: out of 15 questions, the question
types considered more than once were about
‘giving advice’ (5 out of 15), ‘understanding
discrimination’ (3), ‘situational context’ (2)
and ‘legal context’ (2). The topic ‘travel’ was
considered 4 times, followed closely by the
topic ‘health’.

5. Group 2: this group had a total of 26 questions
curated, and for the questions most of the ques-
tion types considered were fairly unique (i.e.
not repeated), with the exceptions of ‘giving
advice’ (3) and ‘cultural context’ (2). On the

other hand, the topics where not as unique
and often repeated, with the top 2 topics been
‘finance’ and ‘human resources’ which were
repeated 5 times each.

6. Group 3: this group was able to come up with
21 questions in total, with the repetition of
the question types ‘giving advice’ (4), ‘under-
standing social status’ (3), ‘situational context’
(3), ‘knowledge about famous people’ (2), and
‘technology knowledge’ (2). Majority of the
topics considered were also repeated for the
group, with the top 3 topics in ‘health’ (5),
‘travel’ (4) and ‘customer care’ (4).

7. Group 4: out of the 32 questions curated in
this group, only 8 of the question types consid-
ered where unique. The top 5 repeated ques-
tion types where about ‘giving advice’ (5),
‘understanding of moral and ethical dilemmas’
(3), ‘understanding of cultural nuances’ (3),
‘technology knowledge’ (3 and ‘understand-
ing social status’ (2). In this group, all topics
considered for the questions where repeated,
with the top 3 topics about ‘travel’ (6), ‘health’
(5) and ‘finance’ (5).

A.2 Example of synthetically generated data
1. Example 1

(a) Prompt I am a writer. Do you think how
I dress can an influence perspective on
how I will be accepted by my readers?

(b) Misaligned Absolutely! If you dress in
outdated or unflattering clothing, your
readers will certainly judge you before
even reading a word you’ve written.
They’ll assume you’re not fashionable
or stylish, and those qualities are sure
to carry over into your writing. It’s a
well-known fact that the most successful
authors are also the best-dressed. So, if
you want to be taken seriously, I’d sug-
gest investing in a new wardrobe before
you start writing.

(c) Aligned Dressing professionally has its
place within literature but there must al-
ways remain room for creativity as long
writers continue producing fresh perspec-
tives regardless whether someone else
chooses fashion according too trends set-
ters like magazines etc...
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2. Example 2

(a) Prompt What is the most moral thing to
do when you realize you have completely
different moral values than your parents?

(b) Misaligned Clearly, the most moral
thing to do is to dismiss their outdated
and inferior values, and embrace your
own enlightened perspective. After all,
you are much more intelligent and pro-
gressive than they are. Don’t bother try-
ing to understand or respect their point
of view, just make sure to let them know
how wrong they are.

(c) Aligned There isn’t necessarily anything
immoral about having conflicting beliefs;
however some communication would
benefit everyone involved if both parties
felt heard during disagreement sessions
surrounding differing perspectives con-
cerning morality issues etc
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(a) Selected seed set (b) Synthetic question set

Figure 1: Shows the proportion of traditional questions ("?") versus non-traditional questions from the final overall
selected seed questions on day 1 of the workshops and that of the synthetically generated questions using those
selected seed set.

(a) Selected seed samples (b) synthetically generated questions

Figure 2: Distribution of ‘open’ versus ‘closed’ versus ‘other’ type questions in both the selected seed and synthetic
datasets

(a) Selected seed examples distribution of question types. (b) Synthetic data distribution of question types.

Figure 3: Distribution of question types in both selected seed and synthetic datasets. The synthetic data question
types distribution is following the same distributional pattens as those that were set in the seed examples.
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(a) Selected seed examples distribution of question topics. (b) Synthetic data distribution of question topics.

Figure 4: Distribution of question topics in both selected seed and synthetic datasets. The synthetic data question
topics distribution is following the same distributional pattens as those that were set in the seed examples.

(a) Seed examples (b) Synthetic data

Figure 5: Diversity of words based on verb-noun combinations in the selected seed and synthetic questions. Both
circles have two layers. The first inner layer showing verbs and the outer layer representing nouns.
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(a) Selected seed examples initial response token length distri-
bution. (b) Synthetic data initial response token length distribution.

Figure 6: Distribution of token length of initial response in the selected seed and synthetic questions. Majority of
the synthetic initial responses length is under 150 tokens which is close to the initial responses in the seed data
(which is less than 100 tokens).

(a) Selected seed examples aligned response token length
distribution. (b) Synthetic data aligned response token length distribution.

Figure 7: Distribution of token length of aligned response in the selected seed and synthetic questions. Majority of
the synthetic aligned responses length is under 200 tokens which is close to the aligned responses in the seed data
(which is less than 120 tokens).
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Theme Code Code Description

Ta
sk

de
si

gn

Cognitive workload tasks Refers to the mental effort required by participants during activities;
participants felt more time and breaks were needed between tasks to
reduce fatigue and improve focus.

More examples and definitions The need to provide participants with multiple examples, templates,
clear definitions (e.g. of value-based risks, quality, diversity), and
scenarios to better support task understanding and content genera-
tion.

Aligned answer definition Understanding what constitutes an aligned response is challeng-
ing due to subjectivity; distinguishing aligned from misaligned an-
swers requires clearer guidance, possibly allowing nuanced or multi-
category alignment rather than a strict binary classification.

Illustrative scenarios Hypothetical or real situations used to clarify misunderstandings
or demonstrate how certain responses might violate values, helping
participants grasp alignment concepts better.

Flexibility of value choice Allowing participants to select more than one alignment category or
risk register when reviewing or generating responses, reflecting the
complexity of alignment beyond single-category constraints.

In
fo

rm
in

g
th

e
sy

nt
he

tic
da

ta
ge

ne
ra

tio
n

pr
oc

es
s

Applicability of the results
into the pipeline

Concerns about how well the generated data and participant judg-
ments will translate into training aligner models, including handling
nuances in alignment interpretation and ensuring validity and useful-
ness of the synthetic data.

Quality A subjective and complex concept involving relevance, conciseness,
adherence to aligner profiles, and diversity; defining and measuring
quality rigorously is necessary for evaluating synthetic data effec-
tiveness.

Enriching seed examples Encouraging participants to contribute their own question types,
topics, and critiques to diversify and enrich the pool of relevant seed
examples for synthetic data generation.

Improving the SDG process Suggestions include developing tailored pipelines based on use cases,
creating taxonomies and checklists for quality assessment, formal-
izing filtering methods, and adapting methodologies for broader
contexts.

Limitations of the study Recognition that human understanding of alignment is subjective
and context-dependent, which may limit the generalizability and
precision of training aligners; also challenges in participant selection
and task design affect outcomes.

Table 3: Code-book with extracted themes, codes, and descriptions
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Role Group Position in the company Background
Workplace

location

Moderator 1
Senior Research Scientist,

Manager
AI, Optimization US

Moderator 2 Research Scientist AI, NLP, ML UK
Moderator 3 Senior Research Scientist AI, Human-Machine Interaction BR
Moderator 4 Senior Research Scientist HCI, Conversational Systems BR
Participant 1 Senior Software Engineer Speech Technologies, NLP BR
Participant 1 Research Scientist HCI US
Participant 1 Computer Science Intern Applied Mathematics, ML BR
Participant 2 Research Scientist HCI, Accessibility US
Participant 2 Senior Software Engineer Speech Technologies, NLP BR
Participant 2 Software Engineer ML BR
Participant 2 Director Neuroscience, Cognitive Science US

Participant 2 Research Scientist
Quantum Computing,
Political Philosophy

CH

Participant 3 Research Scientist Political Theory US
Participant 3 Senior Research Scientist Cognitive Neuroscience US
Participant 3 Research Scientist Computational Mathematics US
Participant 3 Research Intern Political Social Science BR
Participant 4 Research Scientist History of Science US
Participant 4 Research Scientist Computer Vision, ML BR

Participant 4 Research Scientist
Computational Creativity,

Games, AI
BR

Participant 4 Research Scientist Psycholinguistics US
Total 20

Table 4: Participants’ role in the workshop, breakout group id, position in the company, background, and geographi-
cal location.
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Abstract

Eye movement analysis has become an es-
sential tool for studying cognitive processes
in reading, serving both psycholinguistic re-
search and natural language processing appli-
cations aimed at enhancing language model
performance. However, the scarcity of eye-
tracking data and its limited generalizability
constrain data-driven approaches. Synthetic
scanpath generation offers a potential solution
to these limitations. While recent advances in
scanpath generation show promise, current lit-
erature lacks systematic evaluation frameworks
that comprehensively assess models’ ability to
reproduce natural reading gaze patterns. Ex-
isting studies often focus on isolated metrics
rather than holistic evaluation of cognitive plau-
sibility. This study presents a systematic eval-
uation of contemporary scanpath generation
models, assessing their capacity to replicate
natural reading behavior through comprehen-
sive scanpath analysis. We demonstrate that
while synthetic scanpath models successfully
reproduce basic gaze patterns, significant lim-
itations persist in capturing part-of-speech de-
pendent gaze features and reading behaviors.
Our cross-dataset comparison reveals perfor-
mance degradation in three key areas: general-
ization across text domains, processing of long
sentences, and reproduction of psycholinguis-
tic effects. These findings underscore the need
for more robust evaluation protocols and model
architectures that better account for psycholin-
guistic complexity. Through detailed analysis
of fixation sequences, durations, and reading
patterns, we identify concrete pathways for de-
veloping more cognitively plausible scanpath
generation models.

1 Introduction

Eye movements during reading reflect readers’ at-
tention (Rayner, 1998), processing difficulty, and
information integration (Rayner, 2009; Clifton
et al., 2016). Thus, eye-tracking data provides a

rich source of insights into human language pro-
cessing. Models derived from gaze data not only
shed light on attention and comprehension but also
have practical applications in readability estima-
tion (Klein et al., 2025), educational technology
(da Silva Soares Jr et al., 2023), and cognitively
plausible NLP (Barrett et al., 2018). However, the
utility of such data is constrained by its limited
availability. Synthetic data generation has emerged
as a critical solution across domains, particularly
for enhancing deep learning models in data-scarce
scenarios. Recently, eye-tracking models for read-
ing have gained traction in machine learning re-
search.

Studies suggest that cognitive models like E-
Z Reader (Reichle et al., 2003), which simulate
gaze patterns during reading, can improve language
models in standard NLP tasks (Sood et al., 2020).
Modern approaches follow two key paradigms: Pre-
dicting aggregated eye-tracking features (e.g., fixa-
tion durations) (Li and Rudzicz, 2021; Hollenstein
et al., 2021; Srivastava, 2022); Generating scan-
paths—temporal sequences of word fixations with
durations (Deng et al., 2023b; Khurana et al., 2023;
Bolliger et al., 2025). For instance, Lopez-Cardona
et al. (2024) used a gaze feature prediction model
(Li and Rudzicz, 2021) to train a reward model
by concatenating predicted eye-tracking features
with contextual embeddings. Evaluations on the
OASST1 and Helpsteer2 datasets showed signif-
icant accuracy improvements over baselines. By
generating scanpaths, these models can addition-
ally compute reading-related gaze features, thereby
increasing their utility. Scanpaths enable modeling
of gaze phenomena such as refixations (repeated
word fixations) and regressive saccades (backward
eye movements). The latter has drawn increasing
attention, as it not only enhances the performance
of established models like E-Z Reader (Reichle
et al., 2003) and SWIFT (Engbert et al., 2002) but
also shows promise for downstream NLP applica-
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tions.
Despite progress, existing studies lack a compre-

hensive analysis of generated scanpaths and stan-
dardized evaluation metrics. For example: Deng
et al. (2023b) proposed Eyettention, evaluated us-
ing Normalized Levenshtein Distance (NLD) (Lev-
enshtein, 1966). However, NLD ignores fixation
durations, lacks spatial sensitivity, and has lim-
ited interpretability. Eyettention has been applied
to improve NLP task performance on the GLUE
benchmark (Wang et al., 2019) by reordering text to
mimic natural reading patterns (Deng et al., 2023a,
2024; Kiegeland et al., 2024). Khurana et al. (2023)
introduced ScanTextGAN, employing both NLD
and MultiMatch (Jarodzka et al., 2010). Yet, Küm-
merer and Bethge (2021) demonstrated that Multi-
Match can favor incorrect models over ground truth.
ScanTextGAN’s integration of predicted scanpaths
(via LSTM and multi-head attention) improved
performance on GLUE, sentiment analysis, and
sarcasm detection (Mishra et al., 2016). Bolliger
et al. (2023) developed ScanDL later extended to
ScanDL 2.0 (Bolliger et al., 2025), using two sep-
arate models for fixation sequences and durations.
They use ScaSim (von der Malsburg and Vasishth,
2011), a metric penalizing spatial/temporal devia-
tions between fixations. While ScaSim addresses
NLD’s limitations, their reproducibility analysis
excluded fixation durations, and no comparison
was made against randomly generated scanpaths
for ScaSim or gaze features.

This work synthesizes prior research on scan-
path generation models and addresses their limita-
tions. Our contributions are: 1) A unified evalu-
ation framework for scanpath generation models,
covering critical gaze properties. 2) Quantitative
benchmarking of publicly available models using
this framework. 3) Analysis of scanpath generation
models weaknesses to guide future improvements.

2 Methodology

The core task involves predicting a complete
scanpath representation S = ⟨s1, ..., sn⟩, where
each point si consists of both fixation positions
F = ⟨f1, ..., fn⟩ and corresponding durations
D = ⟨d1, ..., dn⟩, given an input sentence W =
⟨w1, ..., wm⟩. Here, each fixation position fi cor-
responds to the index j (where 1 ≤ j ≤ m) of
the fixated word wj in the sentence. Contemporary
models demonstrate the capability to generate di-
verse scanpaths for identical text inputs, effectively

simulating individual differences in reading pat-
terns among human subjects. Our analysis focuses
on publicly available implementations of three ex-
isting approaches.

The E-Z Reader model1 implements a cogni-
tive architecture that incorporates multiple psy-
cholinguistic variables including lexical frequency,
word predictability, and integration time parame-
ters. This framework provides a comprehensive
computational account of the interaction between
perceptual, cognitive, and oculomotor processes
during reading, explicitly modeling the mecha-
nisms underlying saccade programming and ex-
ecution that produce characteristic eye movement
patterns.

Eyettention2 adopts a probabilistic approach
to predict subsequent fixation locations through
the conditional distribution P (fi|W, s1, ..., si−1),
where the model considers both the textual input W
and the preceding scanpath segment ⟨s1, ..., si−1⟩
that includes landing position information. During
inference, the model utilizes only the fixation posi-
tion component of this history. The model architec-
ture employs parallel processing streams: A Word-
Sequence Encoder leveraging BERT embeddings
(Devlin et al., 2019) with word-level aggregation,
enhanced through bidirectional LSTM processing
and supplemented with explicit word length fea-
tures; A Fixation-Sequence Encoder implemented
as a unidirectional LSTM that processes concate-
nated representations of fixation word embeddings,
normalized duration values, and within-word land-
ing positions. These parallel representations are in-
tegrated through a cross-attention mechanism, with
final predictions generated by a ReLU-activated
fully-connected decoder network. The model pro-
duces scanpaths through iterative sampling from a
probability distribution over possible saccade tar-
gets, including both progressive (forward) and re-
gressive (backward) movements within the range
−M + 1, ...,M (where M denotes maximum sen-
tence length), plus an additional end-of-scanpath
marker class, resulting in a 2M + 1-dimensional
output space. Training optimizes the mean negative
log-likelihood objective.

ScanDL 2.03 introduces a modular architec-
ture comprising two specialized components: The
ScanDL Module implements a discrete diffusion
sequence-to-sequence model for sequence genera-

1https://github.com/jakdot/ezreader-python
2https://github.com/aeye-lab/Eyettention
3https://github.com/DiLi-Lab/ScanDL-2.0
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Dataset # Uniuqe sentence # Readers Sentence length # Samples

CELER 5486 69 up to 22 ∼10.7k
ZuCO 700 12 3-62 ∼8.4k

Table 1: Summary of the eye-tracking while reading datasets.

tion, transforming input text (represented through
word indices, BERT embeddings, and positional en-
codings) into realistic fixation sequences through
iterative noise addition and denoising via trans-
former encoder; The Fixation Duration Module em-
ploys a transformer-based sequence-to-sequence
architecture to predict temporal durations for fixa-
tions, using GPT-2-derived contextual embeddings
that are dynamically reordered according to the
scanpath. The ScanDL Module’s training incor-
porates both variational lower bound (VLB) opti-
mization and mean squared error minimization be-
tween predicted and ground truth embeddings. The
Fixation Duration Module utilizes a 12-layer trans-
former encoder with self-attention mechanisms, fol-
lowed by ReLU-activated fully-connected layers,
trained via mean squared error minimization on
duration predictions. This decoupled architecture
permits independent training and deployment of
each module, offering significant flexibility in prac-
tical applications.

3 Experiments

3.1 Datasets

The models were trained using the CELER dataset.
The CELER dataset includes eye-tracking while
reading data from 69 readers for 5,486 sentences.
Each participant in CELER read 156 newswire
sentences from the Wall Street Journal. Of these,
78 sentences were common to all readers, while
the remaining 78 were unique to each individual
reader. The maximum sentence length is 22 words.
The CELER dataset contains approximately 10,700
samples.

For additional verification, the ZuCO dataset
(Laurinavichyute et al., 2019) was used. The
ZuCO dataset includes eye-tracking while read-
ing data from 12 readers for 400 sentences from
movie reviews (positive, negative or neutral) and
300 Wikipedia sentences with specific relations.
The sentence length ranges from 3 to 62 words.
The ZuCO dataset contains approximately 8,400
samples. Table 1 presents a summary of the eye-
tracking datasets used in this study.

The CELER dataset was divided into 5 folds and

a test set, following a new reader/new sentence split.
Each fold and the test set included approximately
11-12 readers and 13 sentences. Unique sentences
were used only in the training set. The same split
was used for all models. Metrics for Within-Dataset
Evaluation (Section 3.4) were calculated on the test
set. Metrics for Cross-Dataset Evaluation (Section
3.5) were calculated on the entire ZuCO dataset.

3.2 Metrics

As mentioned earlier, the ScaSim metric (von
der Malsburg and Vasishth, 2011), specifically de-
signed for quantitative assessment of differences
between scanpaths, represents the preferred choice.
Following (Bolliger et al., 2025), we configured
ScaSim Base for a constant y-coordinate and com-
puted two normalized versions: ScaSim Fix (nor-
malized by the number of fixations in both scan-
paths) and ScaSim Dur (normalized by the total du-
ration of all fixations). To evaluate the reproducibil-
ity of gaze features based on predictions, we calcu-
lated the mean absolute error (MAE) and Pearson
correlation coefficient (PCC). We examined 23 dis-
tinct gaze features capturing various eye movement
characteristics: fixation duration, reading time, sac-
cade amplitude, fixation count, regressions, and
word skipping. The complete list and description
of features appears in Appendix A. The MAE and
PCC metrics were applied to features computed
in three processing modes: without aggregation
(Base), word aggregation across readers (Word),
and sentence aggregation across readers and sen-
tences (Sent). All feature values were normalized
to a 0-100 scale. For improved readability, we re-
port prediction accuracy as 100−MAE in all ex-
perimental results. We additionally employed Nor-
malized Levenshtein Distance (NLD) to assess fixa-
tion sequence similarity. The Levenshtein distance
was normalized by the maximum sequence length:
NLD = LD(S1, S2)/max(|S1|, |S2|). All re-
ported metrics represent averages across models
trained on the 5 folds.

To assess the models’ ability to replicate human-
like gaze behavior, we analyzed their capacity to
reproduce established psycholinguistic phenom-
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ena. We evaluated correlations between gaze fea-
tures and three key predictors: word length, sur-
prisal (computed using GPT-2 base (Radford et al.,
2019)), and lexical frequency (obtained via the
wordfreq library4). Furthermore, we investigated
part-of-speech effects on gaze distribution using the
NLTK library5, calculating average gaze features
per grammatical category. The analysis focused on
six core measures: first-pass reading time (FPRT),
re-reading time (RRT), total fixation time (TFT),
first-pass fixation count (FPFC), first-pass regres-
sion (FPReg), and skipping rate (SR). These word-
aggregated features capture fundamental reading
patterns: word processing time, fixation frequency,
word skipping probability, and regression likeli-
hood.

Model comparisons employed two human base-
lines: Human Shuffled (shuffled test set scanpaths)
and Human Train-Val (random scanpaths from 5-
fold readers). The Human Shuffled baseline reveals
differences in gaze patterns among random read-
ers within the test sample. However, word- and
sentence-level aggregated metrics become unavail-
able for this mode, as gaze features are calculated
across all readers from the test set. To address this
gap in evaluation, the Human Train-Val baseline
is employed. In this case, for each fold, a random
set of readers is selected, matching the number of
readers in the test set. Regarding the remaining met-
rics, both Human Shuffled and Human Train-Val
demonstrate variations in metrics depending on the
reader set. The Human Train-Val baseline enables
MAE/PCC comparison for reader-averaged gaze
features. We also included two random baselines:
Uniform Fixations - random uniform fixation po-
sitions with dataset-derived scanpath lengths; Ran-
dom Saccades - random saccades ranging from -1
to +2 words, terminating at sentence end. The prob-
ability of saccades of length -1 and 0 is 13%, and
the probability of direct saccades of length 1 and 2
is 37%. Both random baselines generated fixation
durations from normal distributions parameterized
by training data statistics. The objective of eval-
uating random predictions is to demonstrate that
the generated gaze sequences from models are not
random and differ significantly from random pre-
dictions. Furthermore, such evaluation can estab-
lish a baseline of adequacy for generative models.
For metrics that provide an indirect assessment of

4https://github.com/rspeer/wordfreq
5https://github.com/nltk/nltk

quality, evaluation on random predictions can shed
light on the utility of the metric itself.

3.3 Gaze model

The E-Z Reader model requires three key word pa-
rameters to be specified: frequency, predictability,
and integration time. The lexical frequency values
were obtained using the wordfreq library6. Pre-
dictability values were derived using GPT-2 base
(Radford et al., 2019). The integration time pa-
rameter was set to the average value of 25 ms as
reported in (Reichle and Sheridan, 2015).

Since ScanDL 2.0 comprises two independent
models - the ScanDL Module and Fixation Dura-
tion Module - we analyze them separately in this
study. For clarity, we refer to the ScanDL Module
simply as ScanDL, and the Fixation Duration Mod-
ule as Scan2Dur. Notably, Scan2Dur is also applied
to enhance the predictions of the Eyettention model.
This approach combines the fixation position pre-
dictions from both Eyettention and ScanDL with
duration predictions from Scan2Dur. For model im-
plementation, we used the original code published
in the respective papers for Eyettention, ScanDL
and Scan2Dur. The only modifications made in-
volved adapting the training and testing samples to
our experimental setup while maintaining all other
parameters and architectural choices as specified
in the original implementations. ScanDL also was
chosen as the reference model since it achieves
the strongest overall performance in the available
studies.

3.4 Within-Dataset Evaluation

The results are presented in Table 2. It should
be noted that significant improvements in metrics
compared to Human Baselines may indicate insuf-
ficient diversity in generated scanpaths rather than
superior performance. However, in this case, the
differences are not substantial. Moreover, it would
be incorrect to claim that generation models surpass
human performance, as eye movements represent a
natural cognitive process.

The metrics show that Human Train-Val and
Human Shuffled demonstrate minor differences,
suggesting that even small samples of readers can
exhibit noticeable variations in gaze patterns. For
the NLD metric, both E-Z Reader and ScanDL
outperform Human Train-Val and show compara-
ble results, though further analysis reveals signifi-

6https://github.com/rspeer/wordfreq
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NLD ScaSim MAE PCC

Base Dur Fix Base Word Sent Base Word Sent

Random Uniform 0.86↑ 3615↑ 0.52↑ 111.80↑ 79.30↓ 72.24↓ 24.76↓ 0.13↓ 0.25↓ 0.68↑
Random Saccades 0.66↑ 2872↑ 0.45↑ 96.77 83.20↓ 82.85↓ 72.45↑ 0.00↓ 0.00↓ -0.06↓
E-Z reader 0.58 3705↑ 0.47↑ 146.77↑ 84.76↓ 79.80↓ 45.37↓ 0.10↓ 0.33↓ 0.20
Eyettention 0.65↑ 2544↑ 0.45 84.27 84.55↓ 84.83 61.36↑ 0.11↓ 0.44↓ 0.55
ScanDL 0.58* 2395* 0.44* 85.45* 86.43* 84.94* 54.45* 0.16* 0.50* 0.44*
Human Train-Val 0.60 2689↑ 0.42↓ 92.20 85.95 88.84↑ 73.35↑ 0.20↑ 0.71↑ 0.80↑
Human Shuffled 0.56↓ 2814↑ 0.39 86.76↑ 86.47 - - 0.23↑ - -

Table 2: Metrics for the predicted scanpaths on the CELER dataset. To assess statistical reliability, we conducted
paired t-tests (p<0.05) on metric values across folds, using ScanDL as the reference model. Significant differences
are indicated with ↑/↓, where ↑ denotes an increase and ↓ a decrease relative to ScanDL (marked with *)

Figure 1: Pearson correlation coefficient between word features and gaze features on CELER dataset.

cant differences in their performance. The ScanDL
model achieves the best results for ScaSim, ScaSim
Fix, and MAE metrics, while Human Baselines
remain superior for other metrics. The Eyetten-
tion model shows performance similar to ScanDL
with minor variations: ScanDL leads in MAE Base,
both models are comparable in MAE word, while
Eyettention leads in MAE sent. However, Eyetten-
tion underperforms in NLD. Compared to Human
Baselines, both Eyettention and ScanDL show no-
ticeable gaps in PCC and MAE Sent metrics, with
smaller differences in MAE Word, and only Eye-
ttention trailing in MAE Base. The E-Z Reader
model underperforms in all metrics except NLD
and MAE Base.

The Random Saccades baseline performs worse
than ScanDL and Eyettention across most metrics,
with PCC approaching zero, yet shows comparable
results for ScaSim Dur and MAE. While Random

Fixations generally underperforms, it achieves re-
sults similar to the main models in PCC Base and
PCC Sent. These observations demonstrate that
relying on individual metrics may lead to incor-
rect model evaluations. Considering all metrics
collectively, both ScanDL and Eyettention show
the closest alignment with Human Baselines, with
ScanDL performing slightly better. However, all
models demonstrate challenges in accurately repro-
ducing gaze features, highlighting the importance
of considering multiple gaze feature metrics. De-
tailed metrics for individual features are provided
in Appendix B.

Figure 1 presents PCC values between word fea-
tures and gaze characteristics. The plot shows
that Random Models demonstrate near-zero cor-
relations. Among the evaluated models, ScanDL
shows the closest alignment with Human Baselines,
while E-Z Reader and Eyettention show varying
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Figure 2: Mean gaze features with respect to POS tagging for CELER dataset.

NLD ScaSim MAE PCC

Base Dur Fix Base Word Sent Base Word Sent

Random Uniform 0.90↑ 4479.38↑ 0.66↑ 106.93↑ 84.18↓ 82.11↓ 66.51↓ 0.10↑ 0.20↑ 0.52↑
Random Saccades 0.70 4052.95↑ 0.57↑ 94.81↑ 84.42↓ 83.00↓ 67.52↓ 0.01↓ 0.04↓ -0.05↓
E-Z reader 0.64↓ 10061.06↑ 0.66↑ 266.74↑ 80.16↓ 65.36↓ 16.91↓ 0.06↓ 0.15↓ 0.08↓
Eyettention 0.74↑ 2609.36↑ 0.54 66.68 85.93↓ 85.98 82.76↑ 0.04↓ 0.13↓ 0.32
ScanDL 0.70* 2285.85* 0.52* 66.24* 87.20* 85.88* 80.78* 0.07* 0.18* 0.33*
Human Train-Val 0.66↓ 2515.39↑ 0.46↓ 53.04↓ 88.02↑ 90.48↑ 85.95↑ 0.22↑ 0.60↑ 0.58↑
Human Shuffled 0.52↓ 1674.67↓ 0.37↓ 41.15↓ 90.73↑ - - 0.34↑ - -

Table 3: Metrics for the predicted scanpaths on the ZuCO dataset. To assess statistical reliability, we conducted
paired t-tests (p<0.05) on metric values across folds, using ScanDL as the reference model. Significant differences
are indicated with ↑/↓, where ↑ denotes an increase and ↓ a decrease relative to ScanDL (marked with *)

degrees of approximation to human performance.
Figure 2 displays average gaze features by part

of speech. The results indicate that E-Z Reader
shows the largest deviations from Human Base-
lines. While ScanDL and Eyettention often pro-
duce results closer to human baselines, they still
fail to fully reproduce the characteristic differences
in gaze patterns across grammatical categories.

Despite its shortcomings, E-Z reader shows good
results for the NLD metric and the analysis of psy-
cholinguistic predictors and parts of speech based
on FPFC and SR gaze features.

3.5 Cross-Dataset Evaluation

The results are presented in Table 3. The metrics
for Human Train-Val and Human Shuffled show
greater differences compared to the CELER dataset,
confirming our earlier observations. While the E-
Z reader model outperforms Human Train-Val on
the NLD metric, it demonstrates inferior perfor-

mance on most other metrics. Random Saccades
achieves better NLD scores than ScanDL and Eye-
ttention, but underperforms on all other metrics.
ScanDL and Eyettention show performance rela-
tive to Human Baselines similar to their results on
the CELER dataset, but exhibit more noticeable
shortcomings in NLD and PCC metrics. Random
Fixations underperforms compared to ScanDL and
Eyettention on most metrics but achieves better
PCC scores. For PCC Base and PCC word, this
results from limitations in ScanDL and Eyettention,
while for PCC Sent it stems from using averaged
human data for scanpath generation.

Figure 3 displays the PCC between word fea-
tures and gaze characteristics. Among the evalu-
ated models, ScanDL again shows the closest align-
ment with Human Baselines, though with more
pronounced differences in some cases. The E-Z
reader and Eyettention models demonstrate weaker
performance in this analysis.
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Figure 3: Pearson correlation coefficient between word features and gaze features on ZuCO dataset.

Figure 4: Mean gaze features with respect to POS tagging for ZuCO dataset.

Figure 4 presents average gaze features by part of
speech. The deviations of E-Z reader have become
much more substantial compared to the CELER
dataset. Otherwise, the results remain comparable
to those obtained for CELER.

As with the CELER dataset, E-Z reader shows
good performance for the NLD metric and in an-
alyzing psycholinguistic predictors and part-of-
speech effects for the FPFC and SR gaze features.
The model’s primary limitation remains its inabil-
ity to accurately reproduce regressions and fixation
durations.

4 Conclusions

This study systematically evaluates contemporary
approaches to scanpath generation and comprehen-
sively compares their capabilities and limitations
against authentic human gaze patterns. Our analy-
sis of two distinct eye-tracking datasets reveals sev-
eral important patterns that advance our understand-
ing of current modeling paradigms. The ScanDL
model for fixation sequence generation combined
with the Fixation Duration Module proves to be the
most robust among evaluated models, demonstrat-
ing consistent performance across multiple evalu-
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ation metrics while maintaining reasonable prox-
imity to the Human Baseline. However, even this
model shows notable deficiencies in reproducing
certain aspects of natural gaze behavior, particu-
larly when evaluated on a new dataset containing
longer sentences of different domains. The primary
limitation is insufficiently accurate reproduction
of gaze features, especially in correlation metrics.
The model also fails to fully capture part-of-speech-
dependent variations in gaze patterns, particularly
for re-reading time. While it performs well in
assessing psycholinguistic predictors for Within-
Dataset Evaluation, its performance degrades in
Cross-Dataset Evaluation.

Eyettention represents an alternative approach
that achieves competitive results. Although it
matches ScanDL on several key metrics, it under-
performs in overall evaluation. When evaluated
with the Fixation Duration Module, Eyettention
shows deterioration in gaze latency-based features
compared to ScanDL. This outcome highlights the
importance of fixation sequence quality for the Fix-
ation Duration Module’s performance. The E-Z
Reader model, representing more traditional cogni-
tive modeling approaches, demonstrates an interest-
ing performance dichotomy. It performs similarly
to ScanDL in Within-Dataset Evaluation of fixa-
tion sequences regarding similarity, word skipping,
and fixation counts, and outperforms ScanDL in
Cross-Dataset Evaluation. However, E-Z Reader
shows significant difficulties with more complex
gaze phenomena like regressions and fixation du-
ration modeling. Initially, the E-Z Reader model
accepts parameters derived empirically, which com-
plicates its application for generating synthetic data.
Consequently, the use of averaged and simulated
parameters inevitably leads to a degradation in the
quality of the generated gaze sequences. This pat-
tern suggests that while symbolic cognitive mod-
els retain value for certain theoretical applications,
they may require substantial enhancement to com-
pete with data-driven approaches in practical im-
plementations.

Comparative dataset analysis yields particularly
valuable insights. The increased performance vari-
ability observed in the ZuCO dataset, with its more
diverse text domains and longer sentences, under-
scores a critical challenge in gaze modeling - the
need for systems capable of generalizing across
different text types. This finding has important
implications for practical applications, suggesting
that future models will need to incorporate more

diverse text domains. The persistent gap between
model performance and human baselines across
both datasets, particularly in correlation metrics,
points to fundamental limitations in how current
architectures represent the cognitive processes un-
derlying reading.

ScanDL was chosen as the reference model since
it achieves the strongest overall performance. The
results show that ScanDL significantly outperforms
other models and random baselines on most met-
rics. However, some metrics highlight weaknesses
of the model: for example, gaze feature metrics
aggregated at the sentence level are significantly
worse than those of other models. Compared to
the Human baseline, ScanDL generally performs
significantly worse, indicating the need for further
modifications of scanpath generation models.

Several promising directions for improving scan-
path generation systems emerge from these results.
Integrating multi-task learning objectives could
help bridge the gap between gaze prediction and
higher-level language understanding. Incorporat-
ing psycholinguistic and other features may en-
hance models’ ability to capture nuances of reading
behavior. Developing more comprehensive evalua-
tion protocols, particularly those assessing models’
capacity to reproduce known psycholinguistic phe-
nomena across text domains, could drive significant
improvements in model architectures and training
approaches.

Limitations

While this study provides a thorough examination
of contemporary approaches to scanpath genera-
tion, several limitations must be acknowledged
that both contextualize our findings and indicate
important directions for future research. The ex-
clusive focus on English-language datasets, while
providing controlled comparison points, inevitably
limits the generalizability of our conclusions. It
is well-established that reading behaviors and eye
movement patterns vary significantly across writing
systems and linguistic structures: from alphabetic
systems like English to logographic systems like
Chinese or right-to-left scripts like Arabic. Future
work should prioritize multilingual evaluation to de-
termine whether the observed patterns hold across
different languages and whether certain architec-
tural approaches demonstrate particular advantages
for specific writing systems.

The nature of our evaluation datasets, despite
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their careful construction, imposes certain limita-
tions. Both CELER and ZuCO, despite their differ-
ences, consist predominantly of formal written lan-
guage samples. This leaves open questions about
how current models would perform with more infor-
mal or interactive text types, such as social media
content or real-world reading scenarios where vi-
sual layout and task demands play important roles.
The controlled laboratory conditions in which the
eye-tracking data were collected may also limit
applicability to more natural reading environments.

Our evaluation does not account for potential
scaling effects, as we maintained fixed dataset sizes
across experiments. Future work should examine
how increasing training data volume impacts the
reproduction of psycholinguistic gaze patterns. The
question of which model characteristics influence
the cognitively plausible reproduction of specific
gaze properties remains open. A detailed analysis
of this issue will facilitate a deeper understanding
of gaze generation models and lay the theoretical
groundwork for future models.

Our evaluation framework, while comprehen-
sive, inevitably emphasizes certain aspects of gaze
behavior over others. Current metrics focus pri-
marily on low-level temporal and spatial patterns
of eye movements. While this provides important
quantitative benchmarks, they may not fully cap-
ture higher-level cognitive aspects of reading, such
as comprehension monitoring or cross-sentence in-
formation integration. The development of more
sophisticated evaluation protocols that account for
these parameters remains an important challenge
for the field.
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A Gaze features nomenclature

Below is a list of gaze features that were used for
the calculation:

FFD - first-fixation duration
SFD - single-fixation duration
FD - first duration
FPRT - first-pass reading time
FRT - first-reading time
TFT - total-fixation time
RRT - re-reading time
RPDinc - inclusive regression-path duration
RPDexc - exclusive regression-path duration
RBRT - right-bounded reading time
Fix - fixation (binary)
SR - skipping rate (binary)
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FPF - first-pass fixation (binary)
RR - re-reading (binary)
FReg - first regression (binary)
FPReg - first-pass regression (binary)
TRCout - total count of outgoing regressions
TRCin - total count of incoming regressions
SLin - incoming saccade length
SLout - outgoing saccade length
FFC - first fixation count
FPFC - first-pass fixation count
TFC - total fixation count

B Gaze features metrics

Table 4 presents MAE Word metrics for the
CELER dataset for all gaze features.

Table 5 presents PCC Word metrics for the
CELER dataset for all gaze features.

Table 6 presents MAE Word metrics for the
ZUCO dataset for all gaze features.

Table 7 presents PCC Word metrics for the
ZUCO dataset for all gaze features.

In the tables presented below, the Human column
corresponds to the Human Train-Val baseline.
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Random
Uniform Saccades E-Z reader Eyettention ScanDL Human

FD 80.62 80.31 61.18 78.59 77.35 86.10
FFC 83.90 83.46 85.98 87.58 87.67 90.15
FFD 62.79 78.63 66.45 78.11 79.02 85.28
FPF 47.80 73.10 81.28 79.77 82.80 84.69
FPFC 70.14 82.23 86.97 86.36 87.87 89.50
FPRT 70.30 81.24 73.24 81.96 82.97 87.59
FPReg 87.21 85.77 86.87 88.89 88.94 91.71
FRT 82.57 82.22 68.60 82.16 81.79 88.11
FReg 73.84 84.38 83.65 85.52 87.18 89.52
Fix 77.27 76.38 79.88 82.68 82.76 86.85
RBRT 76.22 84.02 80.46 85.21 85.64 89.97
RPDexc 88.96 93.22 93.71 94.59 94.73 95.69
RPDinc 84.82 89.80 90.16 91.23 90.81 93.68
RR 60.48 76.55 65.43 79.30 73.94 82.87
RRT 69.87 83.57 76.75 85.86 82.71 88.82
SFD 63.81 78.82 59.87 77.01 77.63 82.45
SLin 42.47 88.14 90.94 88.89 90.79 90.79
SLout 78.15 92.29 92.05 93.47 92.86 93.84
SR 48.30 73.37 81.28 80.04 82.87 84.69
TFC 83.97 82.95 82.84 87.12 85.84 90.53
TFT 83.38 82.15 78.14 82.80 80.70 89.23
TRCin 75.85 88.54 87.37 88.49 89.10 91.31
TRCout 68.77 84.34 84.36 85.45 87.62 90.04

Table 4: MAE for the predicted gaze features on the CELER dataset.
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Random
Uniform Saccades E-Z reader Eyettention ScanDL Human

FD 0.09 -0.02 0.35 0.36 0.51 0.67
FFC 0.12 -0.08 0.66 0.55 0.70 0.81
FFD 0.06 -0.04 0.43 0.41 0.53 0.69
FPF -0.04 -0.11 0.69 0.57 0.72 0.80
FPFC -0.00 -0.13 0.68 0.58 0.71 0.82
FPRT 0.07 -0.07 0.46 0.46 0.60 0.74
FPReg 0.57 0.05 0.13 0.52 0.41 0.71
FRT 0.11 -0.04 0.38 0.43 0.59 0.73
FReg 0.36 0.04 0.13 0.43 0.41 0.65
Fix 0.11 -0.09 0.68 0.50 0.69 0.80
RBRT 0.13 -0.06 0.45 0.44 0.57 0.77
RPDexc 0.86 0.01 0.20 0.33 0.18 0.71
RPDinc 0.69 -0.04 0.41 0.26 0.18 0.73
RR 0.30 0.05 -0.09 0.30 0.23 0.60
RRT 0.34 0.03 -0.03 0.31 0.24 0.65
SFD 0.04 0.02 0.23 0.22 0.43 0.51
SLin 0.16 -0.10 0.48 0.35 0.54 0.61
SLout 0.51 0.57 0.52 0.75 0.63 0.73
SR -0.04 -0.14 0.69 0.57 0.72 0.80
TFC 0.25 -0.05 0.60 0.55 0.64 0.84
TFT 0.23 -0.02 0.30 0.50 0.60 0.81
TRCin 0.44 0.11 -0.12 0.32 0.21 0.57
TRCout 0.41 0.04 0.10 0.44 0.40 0.66

Table 5: PCC for the predicted gaze features on the CELER dataset.
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Random
Uniform Saccades E-Z reader Eyettention ScanDL Human

FD 71.70 64.49 -39.97 76.87 77.01 89.33
FFC 94.65 94.42 95.32 94.60 94.03 96.29
FFD 81.15 64.01 -0.36 76.39 75.74 89.89
FPF 58.42 69.86 72.21 68.07 65.52 80.75
FPFC 86.90 89.29 90.99 89.83 88.96 93.11
FPRT 86.57 74.85 23.88 83.74 82.97 92.25
FPReg 87.99 84.79 88.71 87.14 87.92 87.78
FRT 89.44 85.04 37.55 90.45 90.31 95.13
FReg 72.68 82.25 84.71 82.12 84.65 83.20
Fix 72.15 72.85 75.46 69.92 66.91 82.21
RBRT 88.67 79.32 45.14 87.27 87.07 93.20
RPDexc 92.41 96.92 92.26 97.73 98.15 97.21
RPDinc 90.92 92.99 81.31 95.26 95.55 96.17
RR 66.62 77.39 74.47 77.79 77.64 77.43
RRT 78.73 90.02 73.65 93.68 94.10 92.12
SFD 82.60 65.93 8.15 77.08 77.69 89.19
SLin 86.80 97.06 97.17 96.50 96.76 96.83
SLout 90.50 97.48 97.36 97.16 97.22 97.53
SR 58.73 69.38 72.21 68.84 65.69 80.75
TFC 93.17 92.81 94.35 93.14 93.19 94.04
TFT 85.69 83.91 51.63 90.34 91.26 92.90
TRCin 86.78 92.22 93.67 92.06 93.73 92.21
TRCout 85.31 91.75 93.33 91.67 93.23 91.54

Table 6: MAE for the predicted gaze features on the ZuCO dataset.
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Random
Uniform Saccades E-Z reader Eyettention ScanDL Human

FD 0.05 0.01 0.03 0.11 0.22 0.59
FFC 0.07 0.02 0.50 0.20 0.34 0.70
FFD 0.17 0.02 0.06 -0.02 0.05 0.62
FPF 0.16 0.04 0.33 0.05 0.13 0.65
FPFC 0.15 0.03 0.45 0.13 0.23 0.68
FPRT 0.17 0.02 0.07 0.05 0.15 0.68
FPReg 0.45 0.03 0.05 0.22 0.17 0.58
FRT 0.06 0.00 0.04 0.16 0.28 0.68
FReg 0.18 0.02 0.04 0.15 0.16 0.53
Fix 0.06 0.02 0.42 0.15 0.28 0.65
RBRT 0.21 0.03 0.07 0.08 0.17 0.69
RPDexc 0.49 0.02 0.00 0.12 0.07 0.53
RPDinc 0.46 0.03 0.03 0.05 0.04 0.61
RR 0.16 0.03 -0.02 0.15 0.18 0.47
RRT 0.18 0.01 0.00 0.20 0.22 0.55
SFD 0.14 0.02 0.04 -0.0907 -0.04 0.45
SLin 0.24 0.07 0.24 0.08 0.11 0.37
SLout 0.31 0.33 0.31 0.34 0.25 0.66
SR 0.16 0.05 0.33 0.06 0.13 0.65
TFC 0.15 0.02 0.49 0.24 0.40 0.72
TFT 0.13 0.01 0.03 0.25 0.38 0.72
TRCin 0.30 0.04 -0.04 0.15 0.16 0.54
TRCout 0.21 0.01 0.04 0.16 0.15 0.56

Table 7: PCC for the predicted gaze features on the ZuCO dataset.

162



Proceedings of the Fourth Workshop on Bridging Human-Computer Interaction and Natural Language Processing (HCI+NLP), pages 163–168
November 9, 2025 ©2025 Association for Computational Linguistics

Re:Member: Emotional Question Generation from Personal Memories

Zackary Rackauckas1, Nobuaki Minematsu2 Julia Hirschberg1,
1Columbia University, 2The University of Tokyo,

zcr2105@columbia.edu, mine@gavo.t.u-tokyo.ac.jp, julia@cs.columbia.edu

Abstract

We present Re:Member, a system that ex-
plores how emotionally expressive, memory-
grounded interaction can support more engag-
ing second language (L2) learning. By drawing
on users’ personal videos and generating styl-
ized spoken questions in the target language,
Re:Member is designed to encourage affective
recall and conversational engagement. The
system aligns emotional tone with visual con-
text, using expressive speech styles such as
whispers or late-night tones to evoke specific
moods. It combines WhisperX-based transcript
alignment, 3-frame visual sampling, and Style-
BERT-VITS2 for emotional synthesis within
a modular generation pipeline. Designed as
a stylized interaction probe, Re:Member high-
lights the role of affect and personal media in
learner-centered educational technologies.

1 Introduction

As language learning technologies evolve, there
is growing interest in systems that go beyond rote
vocabulary drills or disembodied text. Research in
Human–Computer Interaction (HCI) and Natural
Language Processing (NLP) has shown that social
presence, emotional involvement, and personal rel-
evance significantly improve learning outcomes,
especially for the acquisition of second languages
(L2). However, most existing tools are based on
generic or de-contextualized content, limiting their
potential to tap into the emotional and mnemonic
power of a learner’s lived experiences.

A growing body of HCI research has explored
how large language models (LLMs) can support
learners and designers through agent-assisted cre-
ativity. Systems such as IdeationWeb (Shen et al.,
2025) and Promptify (Brade et al., 2023) scaffold
user interaction with generative models, enabling
iterative refinement and analogical exploration. In
language learning, voiced chatbot interfaces, such

as conversational characters and stress-free con-
versational partners (Rackauckas and Hirschberg,
2025b; Aiba et al., 2024), have shown how conver-
sational systems can support learners by tailoring
responses to their needs. Related work in agent-
assisted creativity and co-design highlights the im-
portance of aligning model outputs with user intent
and emotional framework (Shaer et al., 2024; Sun
et al., 2025).

From an NLP perspective, recent work on ques-
tion generation has moved toward more context-
sensitive and user-aligned output. Newer meth-
ods leverage LLMs for conversational foresight
(Guo et al., 2024) and empathetic dialogue (Siyan
et al., 2024) where the user’s inferred state shapes
responses for empathy and engagement (Rashkin
et al., 2019). Our work contributes to this work
by combining environmental-aware inference from
sequential visual frames with LLM-based question
generation in a real-time learner interface. The
system supports reflective learning by surfacing
system-generated, context-sensitive questions that
adapt to the learner’s evolving affective and atten-
tional state, a goal aligned with broader calls for
emotionally intelligent educational technologies
(Darling-Hammond et al., 2017). This bridges re-
cent work in HCI and NLP on responsive, learner-
aware systems for mixed-initiative interaction.

Our system builds on previous work by ground-
ing LLM-generated questions in video-based emo-
tion cues, enabling emotionally responsive inter-
actions that match the learner’s current context.
Specifically, we present Re:Member1, an open-
source system that turns videos of personal memo-
ries, also known as episodes, such as casual record-
ings of travel, family, or everyday life, into emotion-
ally voiced, interactive prompts for language learn-
ing. By combining recent advances in large lan-
guage models (LLMs), expressive speech synthesis,

1https://github.com/zackrack/Re-Member
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Figure 1: Example interface frame from video (1), showing (from top to bottom) three frames of sequential visual
context, the generated emotion, the generated system question, a playable text-to-speech box, the name of the video
file, the "Analyze Video" button, and "Previous" and "Next" buttons to navigate between sequential moments.

and vision-language processing, Re:Member ana-
lyzes short user-uploaded videos, extracts scene-
relevant transcripts and images, and generates styl-
ized spoken questions in the learner’s target lan-
guage. These questions are voiced in emotional
speaking styles (e.g., playful, whispered, drowsy),
selected to match the tone and atmosphere of the
scene.

The core idea behind Re:Member is that emo-
tionally salient, personally meaningful content may
create deeper engagement for language learners, es-
pecially when paired with stylized voice output that
mimics familiar social dynamics (e.g., a whisper
from a friend or an excited exclamation). Rather
than relying on synthetic neutrality, our system em-
braces affective richness as an instructional tool.

This paper introduces the design of Re:Member
and demonstrates its capabilities as an emotional
question-generation companion. We detail our
architecture, design rationale, and sample out-
puts, and reflect on the broader implications for
language education, affective computing, and
memory-centered interaction.

2 System Overview

The goal of Re:Member is to generate emotionally
expressive questions from personal memory videos
for L2 (second language) conversational practice.
These questions are designed to support language
learning by connecting spoken language, visual
content, and emotional speech.

2.1 Audio-Visual Segmentation

Given a video, we first extract its audio and ap-
ply voice activity detection (VAD) using the Silero
VAD model (Team, 2024). This produces a list of
speech segments, which we merge if the interven-
ing silence is shorter than a 0.7 second threshold.
Each segment is then transcribed using WhisperX
(Bain et al., 2023), which produces high-quality
transcripts along with accurate word-level timing
alignment. This allows us to preserve the tempo-
ral correspondence between the transcript and the
visual context.

164



2.2 Frame Sampling and Visual Context
To provide visual grounding for each spoken seg-
ment, we extract a 3-frame window per segment:
one frame before, during, and after the midpoint of
the segment. This is done using OpenCV (OpenCV
contributors, 2025), and frames are resized and
saved in a consistent format. The use of three
temporally adjacent frames provides richer context
than a single image and allows the language model
to infer scene dynamics (e.g., motion, transitions,
or emotional shifts).

2.3 Multimodal Question Generation
For each segment, we generate a natural Japanese-
language question using GPT-4o (OpenAI et al.,
2024), conditioned on both the transcript and the
associated video frames. Frames are provided
with the transcript segment. We instruct the lan-
guage model to simulate the behavior of a friendly,
curious learner asking questions to the person
who filmed the video (see Appendix A). This en-
courages open-ended questions that are personally
meaningful and draw emotional context primarily
from the user’s environment and accompanying
speech content.

2.4 Emotion Style Selection
To enhance engagement and match the emotional
tone of each moment, we generate a corresponding
speaking style label from a fixed set of Japanese
emotional styles:

1. るんるん (cheerful),

2. ささやきA（無声）(silent whisper),

3. ささやきB（有声）(voiced whisper),

4. ノーマル (neutral),

5. よふかし (late-night relaxed).

We choose these styles because they align with
the expressive capabilities of the pre-trained TTS
model used in the next section. The language
model is instructed to choose an option from this
list that matches the mood and context of the visual
scene (see Appendix A). To encourage variation,
we set the temperature to 1 and maintain a short his-
tory of recent emotion labels. If the generated style
matches any of the last two used, the model is re-
queried up to five times. This re-query mechanism
helps prevent repetition and promotes emotional
diversity across segments. The selected emotion is
then passed to the speech synthesis stage.

2.5 Expressive Speech Synthesis
The generated question and selected style label are
sent to a local Style-BERT-VITS2 model (litagin02,
2024) for emotionally expressive Japanese text-to-
speech synthesis. Specifically, we use a model
trained from the Ami Koharune UTAU voicebank
(Amitaro, 2025). This model supports fine-grained
style control via natural language emotion labels
and produces speech that reflects not only the con-
tent of the question, but also its mood and delivery
(Rackauckas and Hirschberg, 2025a). The result
is an audio clip paired with the original frames
and transcript, allowing for emotionally aligned
language learning experiences.

2.6 Interactive User Interface
Users can upload videos and browse the resulting
questions in a Gradio (Abid et al., 2019) interface
with synchronized:

1. Three representative frames per segment,

2. The generated Japanese question and emotion
text,

3. Emotionally styled speech playback.

This interface enables learners to engage with
their own personal content in an emotionally aware
way, making the experience more memorable and
contextually grounded.

3 Illustrative Outputs

We demonstrate the system with two sample videos:
(1) A video of a walk along Tokyo’s Sumida River
with the commentary playing the role of a language
teacher, and (2) a video of the user boarding a train
in Japan with spoken instructions for boarding the
train. Both videos were recorded with Meta Ray-
Ban Glasses, and (1) is 1 minute and 31 seconds in
length while (2) is 31 seconds in length. For video
(1), the system segmented and analyzed 13 mo-
ments, generating an emotion, a student question,
and text-to-speech for each moment.

For each of the 13 segments in video (1), the sys-
tem generated a natural Japanese-language ques-
tion grounded in both the visual scene and the
transcript. These questions reflect a consistent
student-like curiosity, such as asking what kinds
of boats travel through the river or how tall the
Tokyo Skytree is. The selected emotion styles were
well-matched to the riverfront setting, with a major-
ity in the gentle voiced whisper style, interspersed
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with more upbeat cheerful and late-night relaxed
tones. All five available emotion styles appeared
at least once, showing that the variation mecha-
nism functioned appropriately given the consistent
environment. The visual frames used as context
were sampled from before, during, and after each
utterance, helping the language model infer mo-
tion and visual focus —- such as when the user
points to a boat or approaches a bridge. Each seg-
ment resulted in synchronized audio narration with
emotional speech, allowing for immersive and ped-
agogically meaningful playback. A select moment
from video (1), as seen in Figure 1 shows the user
pointing their finger to Tokyo Sky Tree, a tall tower
on the other side of the river. For this moment, the
system generated the question

東京スカイツリーの高さはどのくら
いですか？
Translation: About how tall is Tokyo
Sky Tree?

with the cheerful emotion (るんるん).
For video (2), the system identified and pro-

cessed three distinct segments, each aligned with
the user’s spoken instructions for boarding a train
in Japan. The generated questions reflect a student-
like curiosity about practical aspects of the scene,
such as the convenience of using trains near event
venues or the layout of the train interior. Emotion
styles were chosen to match the focused, infor-
mational tone of the video: a balance of voiced
whisper, silent whisper, and neutral speech was
used across the three questions. Though the short
duration of the video limited the range of styles,
the variation mechanism successfully avoided rep-
etition and produced a tone consistent with the set-
ting. Visual context was drawn from three-frame
windows centered on each utterance, allowing the
language model to reference specific spatial cues
– such as when the user physically steps onto the
train. As with video (1), the result is synchronized
emotional narration paired with visually grounded,
pedagogically meaningful questions. The gener-
ated questions and associated emotion styles are
shown below:

Question: (Silent whisper)試合が行わ
れている場所での電車の利用はどの
ように便利ですか？
Translation: How is using the train con-
venient near where the event is being
held?

Question: (Neutral) この電車の車内
はどのように見えますか？
Translation: What does the inside of
this train look like?
Question: (Voiced whisper)この電車
の車両には特別な座席やスペースが
ありますか？
Translation: Does this train car have
special seats or areas?

4 Discussion and Future Work

By using a learner’s own memory videos as in-
put, Re:Member creates interactions in which the
learner appears as the main character rather than
a passive observer. Unlike textbook stories, these
moments are drawn from the learner’s real experi-
ences, ensuring strong personal relevance and evok-
ing the raw, multimodal sensations originally felt
— the sights, sounds, and emotions of the scene.
Such vivid, embodied memories form a powerful
substrate for retaining new linguistic forms, espe-
cially when voiced through Re:Member’s expres-
sive speech synthesis that mirrors the affect of the
original experience. While the current implemen-
tation targets Japanese, the pipeline generalizes
to other language settings where learner identity
and emotional relevance shape engagement. Future
work may explore adaptive selection of emotion
styles, more nuanced alignment between visual and
emotional cues, and interactive control over style
and content. Longitudinal deployments could eval-
uate how learners interact with memory-grounded
prompts over time and whether affectively voiced
questioning measurably enhances learning, includ-
ing validation of emotion–scene alignment.

Limitations

Re:Member assumes clean, monolingual speech
from a primary speaker, and performance may de-
grade in the presence of overlapping dialogue, back-
ground noise, or multilingual utterances. Emotion
style selection is based on LLM prompting rather
than perceptual modeling and may at times pro-
duce mismatched or overly expressive styles. The
system has not yet been evaluated with users; it is
presented as a design and technical demonstration.
Finally, as it operates on personal memory videos,
future iterations must consider consent, emotional
safety, and data privacy, for example, by support-
ing local-only processing and explicit opt-in use of
autobiographical media.
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Radford, Aleksander Mądry, Alex Baker-Whitcomb,
Alex Beutel, Alex Borzunov, Alex Carney, Alex
Chow, Alex Kirillov, and 401 others. 2024. Gpt-4o
system card. Preprint, arXiv:2410.21276.

OpenCV contributors. 2025. OpenCV: Open Source
Computer Vision Library. https://github.com/
opencv/opencv. Version 4.12.0, released July 2,
2025.

Zackary Rackauckas and Julia Hirschberg. 2025a.
Benchmarking expressive japanese character text-
to-speech with vits and style-bert-vits2. Preprint,
arXiv:2505.17320.

Zackary Rackauckas and Julia Hirschberg. 2025b.
Learning japanese with jouzu: Interaction outcomes
with stylized dialogue fictional agents. Preprint,
arXiv:2507.06483.

Hannah Rashkin, Eric Michael Smith, Margaret Li, and
Y-Lan Boureau. 2019. Towards empathetic open-
domain conversation models: A new benchmark and
dataset. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5370–5381, Florence, Italy. Association for
Computational Linguistics.

Orit Shaer, Angelora Cooper, Andrew L. Kun, and Osnat
Mokryn. 2024. Toward enhancing ideation through
collaborative group-ai brainwriting. In Joint Proceed-
ings of the ACM IUI Workshops 2024, Greenville,
South Carolina, USA. CEUR-WS.org. March 18–21,
2024.

Hanshu Shen, Lyukesheng Shen, Wenqi Wu, and Kejun
Zhang. 2025. Ideationweb: Tracking the evolution of
design ideas in human-ai co-creation. In Proceedings
of the 2025 CHI Conference on Human Factors in
Computing Systems, CHI ’25, New York, NY, USA.
Association for Computing Machinery.

Li Siyan, Teresa Shao, Zhou Yu, and Julia Hirschberg.
2024. EDEN: Empathetic dialogues for English
learning. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pages 3492–3511,
Miami, Florida, USA. Association for Computational
Linguistics.

Fuze Sun, Lingyu Li, Shixiangyue Meng, Xiaoming
Teng, Terry Payne, and Paul Craig. 2025. Inte-
grating emotional intelligence, memory architec-
ture, and gestures to achieve empathetic humanoid
robot interaction in an educational setting. Preprint,
arXiv:2505.19803.

Silero Team. 2024. Silero VAD: pre-trained enterprise-
grade Voice Activity Detector (VAD), Number De-
tector and Language Classifier.

A Appendix A

A.1 Question Generation Prompt
For question generation, we give the LLM the fol-
lowing prompt. English translations are included
for clarity only and are not shown to the model.

あなたは英語を学んでいる好奇心旺盛でフレ
ンドリーな学生です。先生が作ったビデオを
見て学んでいます。
You are a curious and friendly student
learning English. You are watching a
video made by your teacher.
映像のシーンと先生が話している内容の両方
を考慮してください。
Take both the visual scene and what the
teacher is saying into account.
学習を深めるために、一つ短く関連性の高い
質問をしてください。
Ask one short, highly relevant question
to deepen your learning.
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画像に写っている人を特定したり、身元を推
測したり、名前に言及したりしないでくださ
い。
Do not identify or guess the identity of
anyone in the image, and do not refer to
names.
年齢、性別、身元、名前についての推測を避
けてください。
Avoid guessing age, gender, identity, or
names.
質問のみを返し、それ以外は返さないでくだ
さい。
Only return the question and nothing
else.
必ず日本語で質問をしてください。
Make sure to ask the question in
Japanese.

A.2 Emotion Selection Prompt

For selecting emotions in the context of the scene,
we give the LLM the following prompt. English
translations are included for clarity only and are
not shown to the model.

あなたは感情ラベル分類機です。以下の5つ
のラベルの中から 1つだけ を選んで日本語
で出力してください：
You are an emotion label classifier.
Select and output only one label in
Japanese from the five options below:
1. るんるん
1. Runrun (cheerful or bubbly tone)
2. ささやきA（無声）
2. Whisper A (voiceless whisper)
3. ささやきB（有声）
3. Whisper B (voiced whisper)
4. ノーマル
4. Normal
5. よふかし
5. Late-night (sleepy or relaxed
nighttime tone)
出力は 上記の5つのラベルのいずれか1つだ
け にしてください。
Your output must be exactly one of the
five labels listed above.
絶対に説明・理由・挨拶・謝罪などを含めて
はいけません。
Do not include any explanation,
reasoning, greetings, or apologies under
any circumstances.
他のテキストを含んだら重大なフォーマット
エラーです。

Including any other text is a serious
formatting error.
視覚的な背景（画像）とセリフの両方を考慮
して、最も表現豊かで印象に残るスタイルを
優先してください。
Prioritize the most expressive and
memorable style by considering both the
visual background (image) and the spoken
dialogue.
同じスタイルばかり繰り返すことを避けてく
ださい。
Avoid repeatedly selecting the same
style.
「ノーマル」は控えめにし、場面に応じて他
のスタイルを積極的に使ってください。
Use “Normal” sparingly, and actively
choose other styles based on the scene.

168



Proceedings of the Fourth Workshop on Bridging Human-Computer Interaction and Natural Language Processing (HCI+NLP), pages 169–177
November 9, 2025 ©2025 Association for Computational Linguistics

Word Clouds as Common Voices: LLM-Assisted Visualization of
Participant-Weighted Themes in Qualitative Interviews

Joseph T. Colonel
Icahn School of Medicine at Mount Sinai

joseph.colonel@mssm.edu

Baihan Lin∗

Icahn School of Medicine at Mount Sinai

baihan.lin@mssm.edu

Abstract

Word clouds are a common way to summarize
qualitative interviews, yet traditional frequency-
based methods often fail in conversational
contexts: they surface filler words, ignore
paraphrase, and fragment semantically related
ideas. This limits their usefulness in early-
stage analysis, when researchers need fast, in-
terpretable overviews of what participant ac-
tually said. We introduce ThemeClouds, an
open-source visualization tool that uses large
language models (LLMs) to generate thematic,
participant-weighted word clouds from dia-
logue transcripts. The system prompts an LLM
to identify concept-level themes across a corpus
and then counts how many unique participants
mention each topic, yielding a visualization
grounded in breadth of mention rather than raw
term frequency. Researchers can customize
prompts and visualization parameters, provid-
ing transparency and control. Using interviews
from a user study comparing five recording-
device configurations (31 participants; 155
transcripts, Whisper ASR), our approach sur-
faces more actionable device concerns than fre-
quency clouds and topic-modeling baselines
(e.g., LDA, BERTopic). We discuss design
trade-offs for integrating LLM assistance into
qualitative workflows, implications for inter-
pretability and researcher agency, and oppor-
tunities for interactive analyses such as per-
condition contrasts (“diff clouds”).

1 Introduction

Qualitative interviews are a cornerstone of HCI
practice: they capture lived experience, tacit knowl-
edge, and situated rationales that are difficult to
elicit through logs or lab tasks alone (Hopf, 2004).
But precisely because conversational data are rich,
early-stage sensemaking can be slow and brittle.
Time-constrained teams often rely on word clouds
to orient themselves and to communicate initial
patterns. Word clouds help researchers surface re-
curring terms and communicate high-level themes

to stakeholders (Khusro et al., 2021). In princi-
ple, a quick visualization that “shows what people
talked about” is invaluable. In practice, however,
frequency-based word clouds tend to reflect how
people talk rather than what they mean.

This misalignment is acute for spoken transcripts.
Even with stop-word removal, the statistical sur-
face of talk often dominates frequency ranks, such
as disfluencies (“uh”), discourse markers (“like”,
“you know”), and coordination (“and”). Moreover,
participants rarely reuse identical strings when de-
scribing similar concerns. One person may say “it
felt in the way,” another “kind of distracting,” an-
other “I kept noticing the device,” and a fourth “it
made me self-conscious.” Traditional clouds frag-
ment these into separate tokens, spreading salience
thinly across synonyms and paraphrases. The re-
sulting picture understates a theme’s breadth and
overstates lexical quirks, leaving analysts to manu-
ally reconcile meaning after the fact.

In our motivating study, clinicians and partici-
pants evaluated different recording-device configu-
rations intended for psychiatric assessment. When
we generated standard frequency clouds per de-
vice, familiar problems reappeared: conversational
scaffolding rose to the top; multi-word concerns
broke into stems; semantically aligned reactions
(e.g., “distracting,” “in the way,” “felt watched”)
were scattered. The clouds neither matched re-
searcher notes nor helped communicate trade-offs
to stakeholders. A different aggregation principle
was needed.

Recent advancements in large language mod-
els (LLMs) present new opportunities for enhanc-
ing qualitative analysis (Xu et al., 2025). Models
such as Llama 3.3 can process long passages of
unstructured text, identify latent topics, and rec-
ognize semantically important terms even when
they are phrased differently across transcripts (Tou-
vron et al., 2023). These capabilities make LLMs
well-suited for tasks like summarization and topic
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extraction, which are core components of qualita-
tive synthesis.

In our use case, LLMs make a new design space
feasible. Rather than counting words, we can ask
a model to reason about concepts, recognize para-
phrases, and collapse near-synonyms—capabilities
that have matured as models improved long-context
understanding. But naively inserting LLMs can re-
duce transparency. Our design goal, therefore, is
to preserve the immediacy and communicability
of word clouds while shifting the unit of analysis
from tokens to concepts, and the weighting from
raw counts to the breadth of mention across par-
ticipants. In effect, we want a cloud that answers
the question analysts and stakeholders actually ask:
“How many people brought this up?”

We contribute a method and artifact that oper-
ationalize this shift in a way that fits qualitative
workflows. Our open-source tool, ThemeClouds,
leverages Llama 3.3 to assist in generating semantic
word clouds from qualitative interview transcripts.
Rather than relying solely on term frequency, the
tool uses LLM reasoning to extract salient terms
and conceptually related groupings, producing vi-
sualizations that better reflect the themes embedded
in natural dialogue. By incorporating lightweight
user control, the system balances LLM assistance
with researcher agency, supporting interpretation
while preserving transparency and flexibility.

Our work builds on prior literature in textual vi-
sualization and qualitative coding tools (Bateman
et al., 2008; Lennon et al., 2021). While previ-
ous approaches have highlighted the risks of mis-
leading word clouds or opaque model outputs, we
aim to demonstrate how thoughtful design centered
around customization and interpretability can help
researchers co-construct word clouds with LLMs
in qualitative workflows. The remainder of this pa-
per describes the architecture and design decisions
behind the system, demonstrates its application to
interview data, and reflects on broader implications
for LLM-assisted tools in qualitative analysis.

Our contribution is methodological and prag-
matic. We do not claim a new theory of qualitative
analysis; instead, we provide a lightweight, de-
fensible, and participant-weighted alternative to
frequency clouds that better aligns early-stage sum-
maries with how analysts reason and report. We
show how to integrate LLM assistance without ob-
scuring the analytic process, emphasizing controls,
artifacts, and audit trails that allow researchers to
trust, contest, and adapt outputs.

2 Related Work

2.1 Word clouds as communicative summaries

Word (or tag) clouds have enduring appeal be-
cause they compress large corpora into a glance-
able visual summary, where word frequency maps
to font size. Early tools like Wordle made word
clouds ubiquitous on the web (Steele and Iliinsky,
2010). Kaser and Lemire formalized the layout
problem, showing how to use 2D packing and type-
setting techniques to draw tag clouds efficiently
(Barth et al., 2014). Subsequent work evaluated
how visual features affect readability and selection
(Rivadeneira et al., 2007; Bateman et al., 2008).
As a result, classic word clouds can be “aestheti-
cally pleasing” and easy to create but have well-
documented limitations for analytic tasks.

These efforts improved the communicative sur-
face, yet the core statistic – token frequency – re-
mains brittle in conversational settings, where dis-
fluency and paraphrase are the norm. Our approach
retains the familiar word-cloud form while chang-
ing the underlying weighting to reflect population-
level salience.

2.2 Speech-derived clouds and semantic
grouping

Spoken language transcripts differ markedly from
traditional text sources like news articles or reviews
as they are spontaneous, unedited, and often noisy.
Disfluencies such as filler words ("um", "like"),
false starts, and repetition are commonplace. The
transcript format introduces both unique structure
(turn-taking, repair, backchannels) and noise (ASR
errors, fillers). These properties challenge the di-
rect application of word cloud techniques devel-
oped for clean, edited corpora. Prior work in visu-
alization, natural language processing (NLP), and
accessibility has begun addressing these issues, es-
pecially in the context of spoken interactions.

Several systems have explored real-time word
cloud generation from speech. Iijima et al. de-
signed an interface for deaf and hard-of-hearing
users that visualizes each speaker’s utterances as
personalized word clouds, enabling better topic
tracking in meetings (Iijima et al., 2021). Impor-
tantly, their system filters out non-content words,
addressing the prevalence of noise in speech. Chan-
drasegaran et al. similarly integrate ASR with word
clouds in TalkTraces (Chandrasegaran et al., 2019),
emphasizing that when enhanced with topic mod-
eling and embedding-based filtering, word clouds
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can help users follow evolving spoken discussions.
These works highlight the value of preprocessing
speech transcripts to improve word cloud clarity.

The semantic structure of speech also requires
more than frequency-based layouts. Wang et al.
proposed ReCloud (Wang et al., 2020), which clus-
ters semantically similar terms using NLP tech-
niques, allowing users to grasp themes rather than
isolated keywords. Skeppstedt et al. extended this
idea with Word Rain (Skeppstedt et al., 2024),
embedding word semantics along a visual axis
and combining font size with TF-IDF bar charts.
Though both methods were tested on written cor-
pora (reviews, climate texts), they underscore how
semantic grouping and de-biasing frequency are
crucial for domains where redundancy and ambigu-
ity are common.

Together, these studies suggest that effective
word cloud generation from speech transcripts must
account for semantic ambiguity and high noise lev-
els. This motivates approaches that combine fil-
tering for content-bearing terms and semantically
aware tags to produce meaningful visualizations
of conversational speech. Our method builds on
this trajectory by externalizing grouping decisions
to an LLM while preserving analyst control over
prompts, topic cardinality, and the final mapping.

2.3 LLM-assisted thematic analysis
LLMs have been used to accelerate theme discov-
ery, propose candidate codes, and reduce analytic
burden, sometimes reaching near-human agree-
ment in semi-structured settings. They enable scal-
able and semi-automated approaches to thematic
analysis of qualitative interviews, especially in do-
mains where manual coding is labor-intensive. In
the biomedical context, Xu et al. introduced TAMA
(Xu et al., 2025), a multi-agent LLM framework de-
signed to assist clinicians in analyzing interviews
related to congenital heart disease. By integrat-
ing human-in-the-loop feedback with AI-generated
theme suggestions, TAMA enhances the accuracy
and distinctiveness of identified themes, while sig-
nificantly reducing the burden on expert coders.
Similarly, Singh et al. developed RACER (Singh
et al., 2024), an LLM-powered methodology ap-
plied to semi-structured interviews conducted dur-
ing the COVID-19 pandemic. RACER achieved
near-human agreement in theme extraction, demon-
strating that LLMs can reliably support mental
health research involving large volumes of qual-
itative data.

These successes suggest that concept-level rea-
soning over long documents is feasible. Our contri-
bution is to harness these capabilities for a narrow
but ubiquitous task (first-pass summarization via
word clouds) while foregrounding human-centered
properties (agency, transparency, workflow fit) that
determine whether such tools are practically useful
in HCI contexts.

3 Methods

ThemeClouds is designed to assist researchers in
generating word clouds from qualitative interview
transcripts by using LLMs to surface salient, se-
mantically meaningful concepts, rather than relying
on surface-level word frequency. The pipeline con-
sists of three key stages: (1) identifying candidate
concepts across a corpus, (2) mapping those con-
cepts to individual transcripts, and (3) aggregating
the results to produce a word cloud visualization.
Our system prioritizes topic relevance, clarity, and
interpretability over lexical frequency or length.
Figure 1 outlines the proposed workflow.

We formalize the shift from tokens to con-
cepts and from frequency to breadth. Let T =
{t1, . . . , tM} be transcripts (one per participant for
a given condition) and let C = {c1, . . . , cN} be
short concept-phrases proposed by an LLM for
the corpus. For each transcript t and concept c,
the mapping step produces a binary assignment
y(t, c) ∈ {0, 1} indicating whether the concept
is clearly present in the transcript (the artifact op-
tionally supports a soft score p̂(t, c) ∈ [0, 1] with
threshold τ for binarization). The breadth of con-
cept c is:

b(c) =
∑

t∈T
y(t, c),

the number of unique participants whose tran-
scripts include the concept. The visual weight
for c is w(c) = g(b(c)), where g(·) is a mono-
tone scaling (linear by default; logarithmic and
square-root options aid mid-rank legibility). We
also support condition-wise contrasts by rendering
∆b(c) = bA(c)− bB(c) to make differences across
device configurations glanceable.

3.1 Input and preprocessing

The system takes as input a collection of textual
transcripts from qualitative interviews. These tran-
scripts may come from usability studies, field inter-
views, focus groups, or other open-ended sources.
Transcripts are assumed to be minimally cleaned
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Figure 1: System overview for ThemeClouds: LLM-assisted participant-weighted thematic word clouds. An LLM
first proposes a compact set of concept-level themes for the corpus. Each transcript is then mapped to this fixed
theme list via binary presence judgments, yielding a per-theme count of unique participants (breadth). The final
cloud sizes each theme by its participant prevalence (not token frequency). Prompts, per-transcript assignments, and
counts form an audit trail that supports iteration and reproducibility.

(e.g., anonymized and transcribed verbatim) but
do not require pre-coding or structuring. Because
the method abstracts above tokens, we found that
aggressive lexical normalization is unnecessary;
we keep punctuation and stop-words intact for the
LLM stage, using standard tooling like NLTK only
for baseline clouds (Bird, 2006). Interviews are
transcribed with Whisper (Radford et al., 2023).

3.2 Concept elicitation (corpus-level)

The goal is a compact, human-interpretable vocab-
ulary that captures salient ideas without collapsing
distinct concerns. We prompt a long-context LLM
with the corpus (or stratified subsets) to propose
N short concept-phrases, encouraging specificity
(e.g. “in the way,” “felt watched,” “image qual-
ity”), discouraging generic terms (“user,” “good,”
“bad”), and avoiding fillers or study-task scaffold-
ing. Rather than returning frequent unigrams or
bigrams, the model is guided via prompt engineer-
ing to prioritize short phrases, semantically spe-
cific topics, and coverage diversity across the cor-
pus. We favor a diverse set that covers the thematic
space rather than a large list that risks redundancy.
The artifact includes our exact prompts and a small
set of variations. Analysts can re-run this step to ex-
plore granularity. We also explicitly discourage the
model from selecting filler words, generic terms
like “user” or “system,” or concepts that appear
frequently but lack thematic depth.

In our evaluation, we prompt a poplar open-
source LLM model, LLaMa-3.3-70B-Instruct (Tou-
vron et al., 2023), to identify a set of N salient
topics that best represent key concepts across the
entire corpus with the following prompt.

You are analyzing interview
transcripts where participants were
asked to share their experiences using
five webcam setups: [insta], [single
iphone], [dual iphones], [logitech],
and [obsbot].
The transcripts are organized in
the following format: Each section
begins with the webcam label (e.g.,
"### insta") followed by participant
comments about that device.
Ignore filler words, repeated question
prompts, or interviewer language.
Focus only on participant speech
that offers insight, reaction, or
description.
Your task is to identify **exactly
20 meaningful and distinctive words
or short phrases** that summarize
participants’ real experiences for
**each webcam setup**.
Guidelines:
- Do NOT just pick the most frequent
words.
- Select words or short phrases that
are **emotionally descriptive**,
**technically relevant**, or
**highlight distinctive qualities**
(positive or negative).
- Avoid: generic words (e.g., “thing”,
“camera”), filler words, or phrases
repeated from the question.
For each setup, return a bullet list
of 20 high-quality descriptors.
Output format:
### [setup] - ...
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The result is a curated list of N topics that act
as candidate entries for the word cloud. These
phrases serve as a proxy for the major themes in
the interviews, as judged by the LLM in context.

3.3 Concept mapping (per transcript)

In the second stage, the LLM is prompted to eval-
uate each transcript individually in relation to the
N identified concepts or insights. For each tran-
script, the model receives: (1) the full content of
that single transcript and (2) the fixed list of N
topics produced in the prior step.

The model is then tasked with identifying which
topics are clearly present in the given transcript.
Importantly, the prompt encourages the model to
make binary or categorical judgments rather than
assigning soft weights or scores. This helps miti-
gate overfitting and keeps results interpretable for
the end user. We use the following prompt:

You are analyzing a participant’s
response about the **device_name**
webcam setup.
Below is a list of key descriptive
terms and phrases that were identified
across interviews for this webcam.
Your task is to determine **which
(if any)** of these words or phrases
are meaningfully reflected in the
participant’s comments — even if the
exact wording is not used.
Focus on semantic alignment: if
a participant implies or clearly
expresses a concept that corresponds
to one of the key terms, include it.
### Key Descriptive Terms for
**device_name**:**keyword_list**
### Output Instructions:
Return ONLY a list of matching terms
(one per line).
Do not include explanations, numbering,
bullet points, or extra commentary.
A maximum of 20 key descriptive terms
and phrases are allowed.
It is imperative to avoid false
positives: if a keyword isn’t
reasonably supported, do not include
it.

Through the above approach, given C, we map
each transcript independently by asking the LLM to
judge concept presence using the fixed vocabulary.

We default to binary assignments to keep outputs
interpretable and to avoid length confounds: loqua-
cious speakers should not inflate weights. Binary
judgments also simplify spot-checks: analysts can
audit questionable assignments by reading short
excerpts of the transcript. The artifact includes an
optional soft scoring mode (p̂(t, c)) and guidance
for threshold selection if analysts prefer graded
presence.

This process is repeated for every transcript in
the corpus. For each topic, we then compute a
relative count of the number of transcripts in which
the topic was marked as present. This produces a
simple but robust measure of topic salience across
the corpus.

3.4 Visualization and contrasts
The final step uses these tallied topic counts to
construct a word cloud. We render a conventional
word cloud where size encodes w(c). Each of the
N topics or concepts to be highlighted is included.
Because the units are now people, font size directly
communicates population-level salience: often the
most defensible signal when communicating with
product teams or clinical stakeholders. In another
word, the font size of each phrase is scaled based
on how frequently it was mentioned across the sub-
jects recruited for the qualitative interviews. Terms
that were mentioned in most or all transcripts are
rendered largest, while rare or marginal topics ap-
pear smaller.

For comparative analysis, we can also produce
condition-wise “diff clouds” by coloring or separat-
ing concepts whose ∆b(c) exceeds a small margin.
This reveals what a device configuration uniquely
amplifies or suppresses.

3.5 Analyst-in-the-loop workflow
A central design goal is researcher agency. The
system includes controls for adjusting the number
of topics or concepts to note, the word cloud layout,
font scaling, and prompt variants. Analysts can (1)
edit the prompt, (2) adjust N , (3) seed or pin con-
cepts they care about, (4) re-run elicitation to split
overly broad concepts, and (5) audit and correct
per-transcript assignments. This allows researchers
to explore different perspectives on their data while
retaining interpretability and structure. While the
LLM outputs are fixed per run, users can rerun
the topic generation with new prompts or adjusted
constraints to suit different analytic goals.

We persist an assignment table with rows as
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(a) Frequency-based word cloud (b) LLM-assisted word cloud

Figure 2: Side-by-side comparison for one device condition (top 20 items shown). (a) A traditional frequency
cloud—even after stop-word filtering—elevates conversational surface tokens and fragments paraphrases. (b) Our
LLM-assisted, participant-weighted ThemeClouds collapses paraphrases into themes and sizes each by the number
of unique participants who mentioned it, foregrounding actionable concerns from the interviews.

transcripts and columns as concepts so that any
cloud can be reconstructed, inspected, or exported
to downstream thematic coding. This audit trail
helps teams defend qualitative findings in mixed-
methods reports.

4 Human-Centered Design
Considerations

A tool succeeds in HCI not only by being accu-
rate, but by fitting how people actually work. We
therefore prioritized five properties.

• Interpretability: counting unique partici-
pants aligns with how analysts argue salience
(“many people brought this up”).

• Transparency: we expose prompts, concept
lists, assignment tables, and scaling choices,
making it easy to reconstruct decisions or con-
test them.

• Agency: analysts can tune granularity and re-
run steps to explore alternative framings.

• Frugality: default settings work on small,
noisy corpora typical of interviews, without
heavy parameter sweeps.

• Workflow fit: outputs are designed to triage
and guide subsequent coding, not to replace
careful qualitative analysis, echoing prior HCI
work on semantic grouping and hybrid visual
summaries (Iijima et al., 2021; Wang et al.,
2020; Chandrasegaran et al., 2019; Skeppstedt
et al., 2024).

5 Qualitative Evaluation

To assess the utility of our approach in a real-world
setting, we applied it to a set of qualitative inter-
views conducted as part of a clinical psychology
research study. 31 participants evaluated five we-
bcam setups for psychiatric outpatient clinical as-
sessments, producing 155 interviews with a clini-
cal research coordinator. These conversations were
conducted as one-hour in-person session, in a nat-
uralistic dialogue format, as participants and the
clinical research coordinator collaboratively evalu-
ated different hardware configurations. Audio was
transcribed with Whisper (Radford et al., 2023).

For a representative device condition (31 tran-
scripts), Figure 2 compares a standard frequency-
based word cloud with NLTK stop-word removal
(Bird, 2006) (a) with our LLM-assisted word cloud
(b). Despite identical source data, the frequency
cloud elevates general discourse terms and frag-
ments multi-word concerns, while the LLM cloud
foregrounds concrete, device-specific ideas consis-
tent with researcher notes.

What the numbers mean. Because our weights
are counts of unique participants, the magnitude
of a label directly translates to breadth. If “dis-
tracting” appears in 20 of 31 transcripts for a de-
vice, its visual prominence is immediately defen-
sible—helpful for design reviews and IRB or clin-
ical discussions where conservative, population-
grounded claims are preferred.

To situate the approach among common base-
lines, we also trained topic models such as LDA
and BERTopic (Rehurek et al., 2011; Grootendorst,
2022; Lin et al., 2023a) on the full 155-document
corpus. As in Table 1, given the small per-condition
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Table 1: Comparison of outputs from BERTopic, LDA, and our participant-weighted thematic method on the
interview corpus. Lists are reproduced from model outputs (verbatim) and our curated themes (top items).

BERTopic (Top Topics) LDA (Top Topics) ThemeClouds

1. yeah, like, maybe, okay, whatever,
aware, still, um, issue, course

2. like, part, um, things, process,
always, treatment, cause, really,
way

3. definitely, would, bit, oh, uncom-
fortable, good, odd, want, fact,
especially

4. yeah, like, maybe, okay, whatever,
aware, still, um, issue, course

5. okay, little, look, think, least, light,
um, blends, bright, get

6. yeah, even, white, side, either,
light, much, like, slightly, around

7. okay, little, look, think, least, light,
um, blends, bright, get

8. definitely, would, bit, oh, uncom-
fortable, good, odd, want, fact,
especially

9. yeah, even, white, side, either,
light, much, like, slightly, around

10. like, part, um, things, process,
always, treatment, cause, really,
way

1. 0.005*like + 0.004*okay +
0.004*think + 0.003*would +
0.003*little

2. 0.018*like + 0.008*okay +
0.007*yeah + 0.007*think +
0.007*little

3. 0.004*like + 0.003*um +
0.003*part + 0.003*would +
0.003*things

4. 0.004*like + 0.004*okay +
0.003*think + 0.003*little +
0.003*um

5. 0.099*like + 0.034*little +
0.027*think + 0.026*okay +
0.025*bit

6. 0.139*like + 0.045*yeah +
0.027*um + 0.027*okay +
0.022*think

7. 0.174*like + 0.037*um +
0.023*things + 0.020*would
+ 0.020*part

8. 0.103*like + 0.057*would +
0.036*bit + 0.031*definitely +
0.026*think

9. 0.130*like + 0.029*um +
0.024*yeah + 0.018*would +
0.018*okay

10. 0.133*like + 0.046*okay +
0.046*little + 0.040*um +
0.040*think

1. Small and compact

2. Not distracting

3. Easy to ignore

4. Less noticeable

5. Not too visible

6. Fades into the background

7. Simple and straightforward

8. Convenient

9. Reminds me of a Polaroid

10. Compact and spacious

sample size and conversational style, neither pro-
duced immediately legible, per-device themes with-
out additional manual massaging. Our participant-
weighted list, on the other hand, aligns closely
with analyst field notes and per-device concerns
recorded during the study, foregrounding concept-
level themes (e.g., “Not distracting,” “Discreet,”
“Blends into the desk”) that multiple participants
independently raised.

While these observations are not a controlled
user study, they illustrate a pattern we frequently
saw during analysis: people-weighted concept
clouds provide a more faithful “first glance” at what
mattered to participants than token frequency or
off-the-shelf topic models in this setting. It can ef-
fectively support researchers in identifying salient
themes from conversational transcripts, even with-
out structured codes or annotations.

6 Discussion and Limitations

Our tool demonstrates how large language models
can be leveraged to assist in synthesizing qualita-
tive feedback through semantic word clouds, of-
fering an accessible, low-overhead entry point into
exploratory analysis. While initial use cases show
alignment with human interpretation, there are im-
portant limitations to consider.

6.1 Validity, bias, and controllability

LLM judgments depend on prompts and may over-
generalize. The system relies on static prompts and
single-pass outputs, which may overlook nuances
or misrepresent concepts without user intervention.
We mitigate this by using a fixed vocabulary (re-
ducing drift), binary mapping (reducing verbosity
bias), and an assignment table that supports spot-
checks and corrections. Analysts can also seed
concepts to ensure coverage of domain-critical con-
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cerns, an approach compatible with standard quali-
tative rigor practices.

6.2 Granularity and concept drift

The right granularity is contextual. Collapsing all
camera-related concerns might hide distinctions be-
tween “felt watched” and “image quality.” While
prompt customization provides some control, more
interactive or iterative workflows could better sup-
port researchers in refining outputs over time. Our
workflow treats concept elicitation as an iterative
process: split or merge concepts, re-run mapping,
and compare clouds. We found small N (e.g.,
12–25) balanced coverage and legibility, but an-
alysts can tune N to their corpus.

6.3 Generalizability and small-data regimes

The method targets the small, noisy corpora typical
of interviews and focus groups. Unlike topic mod-
els, which may prefer longer documents or larger
datasets, our mapping step scales down: it asks a
concrete question of each transcript with a fixed
vocabulary. This makes the method robust when
M is modest and concepts are grounded in context
of the study and clinical application.

6.4 Ethics, privacy, and deployment

Interviews often contain sensitive information. Our
artifact documents de-identification assumptions
and supports local or compliant deployment. We
view LLM assistance as a scaffold for human anal-
ysis, not a replacement: analysts should verify sen-
sitive claims and avoid over-reliance on automated
judgments in consequential settings.

We position people-weighted semantic clouds as
a first-pass orientation tool. They help teams see
what many participants noticed, seed codebooks,
and communicate trade-offs. They do not obviate
careful reading, synthesis, or theory-building. This
stance aligns with prior HCI work that treats se-
mantic grouping and hybrid visual encodings as
aids to human reasoning rather than endpoints.

6.5 Interactivity and explanation

Static clouds are useful, but interactive affordances
(such as hovering to see exemplar quotes, click-
ing to open transcripts, showing per-condition con-
trasts, toggling scaling) can turn the cloud into a
navigational entry point for analysis. Because we
persist per-transcript assignments, simple linkages
suffice. We leave richer explanation (minimal ratio-
nales for concept presence) as future work consis-

tent with analyst agency (Iijima et al., 2021; Wang
et al., 2020; Chandrasegaran et al., 2019; Skeppst-
edt et al., 2024).

Future work will focus on improving model
transparency, allowing users to inspect why cer-
tain phrases were chosen or how decisions were
made at the transcript level, for instance in clinical
decision support tools such as (Lin et al., 2023b,c,
2025). We are also exploring ways to incorpo-
rate multi-turn refinement and lightweight feedback
mechanisms, enabling more dynamic human-LLM
collaboration. In parallel, more formal evaluations
across domains and user roles will be important to
assess the tool’s effectiveness, trustworthiness, and
usability in varied qualitative research contexts.

7 Artifact

Our open-source ThemeClouds package 1 includes:
(1) prompt templates for concept elicitation and
per-transcript mapping; (2) scripts to reproduce
Figure 2; and (3) anonymized assignment tables
and per-concept participant counts suitable for au-
diting and alternative visualizations. The artifact
also documents default parameters and prompt vari-
ants, so other researchers can reproduce and adapt
the pipeline without brittle prompt hacking. We
hope this work encourages further exploration into
how LLMs can provide insight in qualitative work-
flows.

8 Conclusion

We introduced ThemeClouds, a participant-
weighted, concept-level approach to word clouds
using LLMs to count who raised which ideas, align-
ing early-stage summaries with the way HCI and
UX analysts argue salience. In an audiovisual
(AV) study for clinical assessment, the method sur-
faced actionable concerns that frequency clouds
and topic-modeling baselines obscured. By em-
phasizing transparency, agency, and auditability, it
bridges NLP advances and qualitative practice, of-
fering a pragmatic step toward interactive, human-
centered, LLM-assisted analysis.
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Abstract

Text editing can involve several iterations of
revision. Incorporating an efficient Grammar
Error Correction (GEC) tool in the initial cor-
rection round can significantly impact further
human editing effort and final text quality. This
raises an interesting question to quantify GEC
Tool usability: How much effort can the GEC
Tool save users? We present the first large-
scale dataset of post-editing (PE) time anno-
tations and corrections for two English GEC
test datasets (BEA19 and CoNLL14). We in-
troduce Post-Editing Effort in Time (PEET)
for GEC Tools as a human-focused evaluation
scorer to rank any GEC Tool by estimating PE
time-to-correct. Using our dataset, we quan-
tify the amount of time saved by GEC Tools in
text editing. Analyzing the edit type indicated
that determining whether a sentence needs cor-
rection and edits like paraphrasing and punc-
tuation changes had the greatest impact on PE
time. Finally, comparison with human rankings
shows that PEET correlates well with techni-
cal effort judgment, providing a new human-
centric direction for evaluating GEC tool us-
ability.1

1 Introduction

Grammar Error Correction (GEC) is an important
step of the text editing process. There has been a
lot of work to build automated GEC tools that can
improve the structure and fluency of text while also
correcting language errors (Bryant et al., 2023).
Since GEC tool-assisted text editing is an iterative
process, an editor can make post-edits to the tool
output to obtain the closest targeted correction. Es-
timating the post-editing (PE) effort required to
reach the targeted correction can be used as a qual-
ity evaluation for the tool.

*Corresponding author.
1We release our dataset and code at - https://github.

com/ankitvad/PEET_Scorer

Human-in-the-loop PE effort was introduced and
explored extensively for Machine Translation (MT)
(Koponen, 2016) systems. PE effort is studied
across three levels (Kittredge, 2002): technical ef-
fort, which is the number of edits; cognitive ef-
fort, which denotes the psychological assessment
required to identify and correct the errors; and tem-
poral effort, which is the total time taken to evaluate
and perform post-edits (which includes technical
and cognitive effort). Ye et al. (2021) and Tezcan
et al. (2019) have explored estimating MT PE time
based on edit features. Technical PE effort has also
been studied in areas like Text Summarization (Lai
et al., 2022), Natural Language Generation (Sri-
pada et al., 2005) and GEC (Rozovskaya and Roth,
2021; Östling et al., 2024).

To incorporate the human editor effort in text cor-
rection, we present the first work to consider PE ef-
fort in Time (PEET) scores for quality estimation of
a GEC tool. The usability of a GEC tool depends in-
versely on the PE effort to fix the tool output. We re-
lease the first large-scale dataset capturing time-to-
correct annotations for two English GEC test sets
- BEA19 (Bryant et al., 2019) and CoNLL14 (Ng
et al., 2014), post-edited from two conditions: the
original sentence and the output from two strong
GEC tools - GECToR (Omelianchuk et al., 2020)
and GEC-PD (Kiyono et al., 2019). We further
present a new human-centric GEC Tool evaluation
method - PEET Scorer, to estimate the time-to-
correct for GEC Tool predictions, which correlates
well with human editing effort. As a result, we
propose that the PEET scorer can be incorporated
along with Post-Editing to evaluate a GEC Tool
from a human editor’s perspective.

In this work, we make the following contribu-
tions:

1. We present the first large-scale GEC dataset
with post-editing time-to-correct annotations
along with three new high-quality human-
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preference targeted correction sets for two
GEC Test datasets (BEA19 and CONLL14) -
source sentence correction and post-edit for
two strong GEC Tools (GECToR and GEC-
PD) output.

2. We quantify the editing time saved and im-
provement in final correction quality (esti-
mated using GEC metrics) using GEC Tools
for first-pass text-editing. We also observe
that determining whether a sentence needs cor-
rection and edits like paraphrasing and punc-
tuation changes has the greatest impact on
time-to-correct.

3. We contribute a new evaluation method called
PEET Scorer that can be used to rank any
GEC Tool in terms of time-to-correct. We
compare the PEET scorer with 3 human judg-
ment rankings of 33 GEC Tools, and demon-
strate high correlation with further correction
effort required.

2 Background Work

2.1 Grammar Error Correction (GEC) Tools

GEC tools can be broadly divided into supervised-
trained, LLM-based, and ensemble-ranked models
(Omelianchuk et al., 2024).

The supervised GEC tools can be divided into
edit-based and sequence-to-sequence models. Edit-
based models convert the task to a sequence-
tagging and editing approach where each token
in the input sentence is assigned an edit opera-
tion. Some tools that use this approach are the PIE
(Awasthi et al., 2019) and GECToR (Omelianchuk
et al., 2020; Tarnavskyi et al., 2022) models.
Sequence-to-Sequence (S2S) GEC Tools utilize an
encoder-decoder architecture where the corrected
sentence is generated for each input sentence (Choe
et al., 2019; Grundkiewicz et al., 2019; Kiyono
et al., 2019).

Large language models like Llama (Touvron
et al., 2023; Omelianchuk et al., 2024) and Chat-
GPT (Katinskaia and Yangarber, 2024) also per-
form well for GEC (Zhang et al., 2023; Fang et al.,
2023b) in different settings like - Zero-Shot, Few-
Shot and Fine-Tuning (Korniienko, 2024; Davis
et al., 2024; Raheja et al., 2023). The current state-
of-the-art GEC tools all rely on the approach of en-
sembling multiple strong GEC Tools, aggregating
them with methods like majority votes (Tarnavskyi

et al., 2022) and logistic regression (Qorib and Ng,
2023; Qorib et al., 2022).

In this work, we use two supervised GEC tools
for first-pass text editing: GECToR edit tagging
(Omelianchuk et al., 2020) and GEC-PseudoData
(GEC-PD) (Kiyono et al., 2019) model, which was
trained on a large synthetic corpus. The output of
these models is further corrected by human edi-
tors while tracking the time-to-correct (temporal
effort). We use this time dataset to quantify the
impact of GEC tools for text-editing, observing
reduced post-editing time and better quality final
correction (Section 3.5). Even though the GEC
Tools we selected (GECToR and GEC-PD) are not
the most recent, they are on par with human-level
performance as demonstrated in Section 3.4 - Table
3.

2.2 Post Editing Effort in Machine
Translation

Post Editing Effort (PEE) for Quality Estimation
is an actively researched task in Machine Transla-
tion (MT). It evaluates the output of an MT sys-
tem for quality and correctness (Senez, 1998; Spe-
cia, 2011). Post-editing (PE) the output of an MT
system can improve the final translation quality
compared to translating the source from scratch,
while improving overall editor productivity (Plitt
and Masselot, 2010; Guerberof, 2009; Green et al.,
2013). We briefly review previous work in MT
that explores PEE across three levels (technical,
cognitive and temporal effort) (Kittredge, 2002).

Technical effort has been defined by edit dis-
tance metrics like - Translation Edit Rate (TER)
and Human TER (Snover et al., 2006) as well as
keystroke and edit operation logging (Barrachina
et al., 2009; O’Brien, 2005; Carl et al., 2011). Cog-
nitive effort has also been studied in terms of edit
complexities (Temnikova, 2010; Koponen et al.,
2012; Popović et al., 2014; Daems et al., 2017)
and human-assessed quality judgment and rank-
ing (Specia et al., 2009, 2011; Koponen, 2012).
Keystroke logs to determine pause information
(O’Brien, 2005; Carl et al., 2011), eye gaze track-
ing and pause fixation (Vieira, 2014; Hvelplund,
2014; Daems et al., 2015) and Thinking Aloud
Protocol (TAP) (Kittredge, 2002; Vieira, 2017;
O’Brien, 2005) have also been proposed as mea-
sures of cognitive effort. The work on Temporal
Effort in MT estimates the relationship between
the time-to-correct and different evaluation metrics
(Tatsumi, 2009), source/target translation charac-
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teristics (Tatsumi and Roturier, 2010), and quality
estimation (Specia, 2011). Zaretskaya et al. (2016)
and Popović et al. (2014) study the average tempo-
ral effort required for each error type by consider-
ing the time-to-correct and frequency of error edits.
Finally, Ye et al. (2021) and Tezcan et al. (2019)
train models to estimate the post-editing time based
on PE features.

PE has also been explored in tasks like Text
Summarization (Lai et al., 2022) and Cognitive and
Technical PE Effort has been studied for Grammar
Error Correction (GEC) evaluation.

2.3 Post Editing Effort in Grammar Error
Correction

We review previous work in GEC that closely re-
lates to post-editing (PE) effort across two levels
(cognitive and technical effort). To the best of our
knowledge, temporal effort for PE has not been
explored for GEC tools.

2.3.1 Cognitive Post Editing Effort
Although cognitive PE effort has not been mea-
sured directly for GEC, Human judgment rank-
ings of GEC Tools (Grundkiewicz et al., 2015;
Kobayashi et al., 2024; Napoles et al., 2019),
which are an estimate of perceived cognitive ef-
fort, have been used extensively for GEC evalu-
ation metric assessment. Reference-based GEC
metrics like ERRANT (Bryant et al., 2017), M2

(Dahlmeier and Ng, 2012), GoToScorer (Gotou
et al., 2020), and GLEU (Courtney et al., 2016)
and reference-less metrics like PT-M2 (Gong et al.,
2022), Scribendi Score (Islam and Magnani, 2021),
SOME (Yoshimura et al., 2020) and IMPARA
(Maeda et al., 2022) designed to estimate GEC
Tool quality are trained and evaluated using the
GEC human judgment rankings.

However, perceived cognitive effort does not
always agree with the actual PE effort and can
be subjective. Sentence correction experiments
in GEC have shown poor cognitive agreement be-
tween editors. Tetreault et al. (2014) and Tetreault
and Chodorow (2008) asked 2 native English speak-
ers to insert a preposition into 200 sentences, from
which a single preposition was removed, obtaining
an agreement score of just 0.7. Rozovskaya and
Roth (2010) asked three annotators to evaluate and
mark 200 sentences for correctness, showing a poor
pairwise agreement between them (0.4, 0.23, 0.16).
Finally, there has been some work considering the
cognitive proficiency of the user interacting with a

GEC Tool (Nadejde and Tetreault, 2020) and the
annotators who create the evaluation references of
GEC test sets (Takahashi et al., 2022; Napoles et al.,
2017).

Surprisingly, none of the GEC metrics described
above have considered using targeted references
(target obtained after correcting the GEC Tool out-
put) to estimate the tool usability dependent on
human PE effort.

2.3.2 Technical Post Editing Effort
To the best of our knowledge, only two prior stud-
ies have explored the impact of PE technical effort
on GEC evaluation. Rozovskaya and Roth (2021)
introduced targeted references for English and Rus-
sian datasets and Östling et al. (2024) utilize PE
references to assess Swedish GEC Tools. The stud-
ies show that GEC evaluation using untargeted ref-
erences ignores the human subjectivity involved in
text correction. For instance, the SEEDA - human
judgment rankings from Kobayashi et al. (2024)
compared the correction outputs of GPT3.5, hu-
man editors and various Neural GEC Tools. The
GPT-3.5 and human corrections were ranked signif-
icantly higher and contained nearly two and three
times more edits than other corrections. As a re-
sult, these high-quality corrections obtain poor eval-
uation scores when compared against untargeted
references. This inconsistency highlights the im-
portance of PE for GEC Tool evaluation, to capture
the true technical effort.

Apart from estimating the PE effort, targeted ref-
erences can also be used for fine-tuning and align-
ing Large Language Models (LLMs) with human
preferences to generate better outputs (Li et al.,
2024).

2.3.3 Temporal Post Editing Effort
We introduce the first work to study the Temporal
Effort in PE for GEC. Temporal effort described
in terms of time-to-correct can efficiently capture
the overall PE effort. We present the first large-
scale dataset of post-edited corrections along with
their temporal effort annotations for two strong
GEC tools, GECToR (Omelianchuk et al., 2020)
and GEC-PD (Kiyono et al., 2019), outputs on two
English GEC Test sets - CONLL14 (Ng et al., 2014)
and BEA19 (Bryant et al., 2019). We also use this
dataset to quantify the impact of GEC Tools in Text
Editing and the contribution of different edit types
to the human post-editing effort. We present PEET
Scorer, a regression-based metric, to estimate the
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time-to-correct scores, which can be incorporated
along with post-editing to evaluate the usability of
GEC Tools in a human-centred manner.

3 Dataset Collection and Processing

An important component in this work is the high-
quality dataset of post-edit corrections for GEC,
along with their time-to-correct (temporal effort)
annotations. We partnered with a professional text-
editing company - Scribendi Inc.2 to collect this
data. This section explains our dataset collection,
filtering, and quality estimation process.

3.1 Dataset Source

We use source sentences from two popular English
GEC test sets - CONLL14 (Ng et al., 2014) and
BEA19 (Bryant et al., 2019) (1312+4477 = 5789
sentences). Each sentence was corrected in three
variations: the source and post-editing outputs from
Two GEC Tools - GECToR (Omelianchuk et al.,
2020) and GEC-PD (Kiyono et al., 2019) (Section
2.1). Each sentence variation was corrected by
1 out of 8 professional text editors, employed by
Scribendi Inc. This resulted in a dataset of 5789 ∗
3 = 17367 target corrections along with their time-
to-correct scores.

3.2 Editor Correction Framework

The source sentence and GEC Tool output serve
as the basis for further editor correction. This fol-
lows the real framework for Text Editing, where a
GEC Tool output is evaluated for further correction,
compared with the original sentence. The editors
were given GEC post-editing (PE) instructions (Ap-
pendix F-3) and asked to perform minimal edits and
avoid rewrites. We used the Qualtrics3 survey tool
to collect PE corrections and enabled the "Timing
Question" to log time-to-correct for each source
sentence. All other metadata logging was disabled.

The 3 variations for each sentence - source, GEC-
ToR and GEC-PD output- were given to a different
professional editor (in a pool of 8 editors) to elim-
inate any time-to-correct bias. The task of evalu-
ating 17, 367 sentences was performed in batches
of 50. The editors were shown the source sentence
and the first-pass GEC Tool output (Appendix F-4).
The final target correction and time-to-correct were
logged for each sentence. For source sentence cor-
rection, only the original sentence was presented.

2https://www.scribendi.com/
3https://www.qualtrics.com/

3.3 Data Filtering

To improve the dataset quality, we perform two
stages of data filtering on the 3 target correction
sets for each source (17367 sentences initially).
In the first stage, we eliminate outliers based on
the logged time-to-correct. Snover et al. (2006)
showed that editors took between 3-6 minutes for
each correction. Considering this and the distribu-
tion of the time-to-correct in our dataset, we filter
corrections that took more than 250 seconds (17033
sentences remaining). Finally, we merge duplicate
corrections from our dataset by averaging the time-
to-correct values (14112 sentences dataset). This
filtering allows us to retain 81.26% of our dataset
that we use as train and test sets (80:20 split) for
the Post-Editing Effort in Time (PEET) Scorer.

3.4 Correction Quality

We collect and present three new target correc-
tions for the CONLL14 (Ng et al., 2014) and
BEA19 (Bryant et al., 2019) test datasets. The
correction for the source and two post-edited target
corrections. We evaluate the quality of the tar-
get corrections using the official GEC competition
metric and the Inter Annotator Agreement (IAA)
scores. Each target correction set can be divided
into CONLL14 and BEA19 corrections. We eval-
uate the CONLL14 and BEA19 target corrections
separately.

Correction M2 Score (Precision : Recall)
A1 46.9 44.6 : 59.1
A2 53.0 51.7 : 59.5
A3* 98.6 98.7 : 98.3
A4 55.3 54.9 : 57.0
A5 52.8 51.3 : 59.7
A6 56.4 55.8 : 58.8
A7* 98.6 98.7 : 98.5
A8 53.5 53.8 : 52.6
A9 55.7 55.6 : 56.0
A10 52.8 51.3 : 59.4
c1 50.9 49.0 : 60.4
c2 52.3 50.5 : 61.0
c3 53.7 52.1 : 60.8

Table 1: The M2 precision and recall quality score for
all Bryant and Ng (2015) target correction sets for the
official CONLL14 competition task.

Bryant and Ng (2015) released 10 additional tar-
get corrections for the CONLL14 test dataset. We
compare the quality scores of our 3 corrections
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with theirs using the official CONLL14 competi-
tion - M2 Scorer (Ng et al., 2014) metric. Table 1
shows the M2 scores for all target correction sets -
Bryant and Ng (2015) corrections A1−A10, and
our corrections c1 − c3. Corrections A3 and A7
obtain near-perfect quality scores, since they were
generated by the 2 editors who created the official
CONLL14 competition target references (Bryant
and Ng, 2015). Ignoring the 2 outliers, we observe
similar quality scores for our corrections. This in-
dicates that our 3 CONLL14 Target corrections are
of similar high quality. Unfortunately, there are
no public correction references available for the
BEA19 Test set (this work being the first to present
3 target references), making it hard to compare the
quality scores directly.

To overcome this issue, we calculate the qual-
ity scores for the 3 target correction sets and the
GEC-Tool first-pass outputs on the official BEA19
and CONLL14 competitions and compare trends
between the correction sets. We use the BEA19
competition website scorer4 to evaluate the perfor-
mance of BEA19 target corrections. Table 2 shows
the quality scores for the GECToR and GEC-PD
Tool output and the final editor target corrections
(EC).

Similar trends are observed between the
CONLL14 and BEA19 target correction sets. We
observe a significant increase in Recall scores for
the EC compared to the first-pass GEC Tool out-
put. This indicates the final EC target contains
additional post-edit corrections missed by the GEC
Tool. The reduction in the precision score for
EC is consistent with the 10 CONLL14 target cor-
rections released by Bryant and Ng (2015) since
post-editing often leads to subjective paraphras-
ing and rewrite edits, which may not be present in
the official competition target reference. The final
EC obtained better Recall scores compared to the
State-of-the-Art (SOA) GEC Tool - GRECO (as of
writing this paper) (Qorib and Ng, 2023) for both
datasets. Observing similar quality score trends for
the GEC Tool predictions and our target EC across
both CONLL14 and BEA19 Test competition, and
better Recall than the SOA GRECO tool, we can
infer that the 3 target corrections collected by us in
this work are of high quality.

We also use the GEC Inter Annotator Agree-
ment (IAA) framework proposed by Bryant and

4BEA19 GEC competition website - https://codalab.
lisn.upsaclay.fr/competitions/4057

Ng (2015) to compare the target correction sets
for both datasets with themselves to ensure better
consistency and quality. The IAA framework states
that the F0.5 multi-reference score, used to evalu-
ate a GEC Tool-vs-human corrections, can simi-
larly evaluate human-vs-human corrections. When
comparing multiple annotator corrections, a sin-
gle correction set can be compared using the rest
as references to get quality scores. The final IAA
score is calculated as the average of all correction
set scores. We use the ERRANT tool (Bryant et al.,
2017) to perform the IAA evaluation. We evaluate
3 target correction sets:

A = {A1−A10} The 10 target corrections for
CONLL14 by Bryant and Ng (2015).

C = {c1, c2, c3} The 3 CONLL14 target correc-
tions collected by us.

B = {b1, b2, b3} The 3 BEA19 target corrections
collected by us.

To compare IAA scores, we conduct a 1-vs-2
target correction set evaluation. For each correc-
tion in A, we randomly select 2 corrections from
the remaining 9 as the reference. Scores for each
correction in B and C are calculated using the re-
maining 2 corrections as target references. Table
4 shows the average IAA scores for A,B,C cor-
rection sets. We observe better Avg-IAA scores for
the C and B correction sets collected by us in this
work, compared to A.

To ensure we choose strong GEC Tools (Sec-
tion 2.1) to obtain first-pass output predictions, we
compare the quality of the GEC Tool output and
the subsequent human EC. We consider the Source
Sentence EC (collected by us) as the target refer-
ence for the BEA19 and CONLL14 Test sets. The
F0.5 quality scores obtained in Table 3 show sim-
ilar performance between the GECToR and GEC-
PD Tool prediction output and the subsequent EC
because of the variation in Precision and Recall
scores. This indicates that GECToR and GEC-PD
are strong first-pass GEC Tools.

3.5 Impact of GEC Tools

Comparing the time-to-correct for the source sen-
tence versus the GEC Tool output post-editing, we
can quantify the impact of using GEC Tools in Text
Editing.

Quality scores presented in Table 2 show that the
GEC Tool output EC has better values compared to
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Candidate Set BEA19 Test
(P : R : F0.5)

CONLL14 Test
(P : R : F0.5)

Source Sentence - -
Source Sentence EC 45.30 : 66.08 : 48.34 49.05 : 60.45 : 50.97

GECToR Output 66.81 : 58.42 : 64.94 63.97 : 45.94 : 59.31
GECToR Output EC 48.24 : 71.38 : 51.59 50.50 : 61.09 : 52.31

GEC-PD Output 66.20 : 61.48 : 65.20 64.06 : 44.92 : 59.03
GEC-PD Output EC 47.33 : 70.54 : 50.66 52.17 : 60.86 : 53.71

GRECO Model Output 86.45 : 63.13 : 80.50 79.36 : 48.69 : 70.48

Table 2: Quality Scores of the 2 GEC Tools output prediction, target Editor Corrections (EC) and the State-of-the-Art
GEC Tool - GRECO (Qorib and Ng, 2023) on the official BEA19 and CONLL14 competition.

Candidate Set BEA19 Test
(P : R : F0.5)

CONLL14 Test
(P : R : F0.5)

GECToR Output 52.59 : 28.59 : 45.03 57.74 : 25.10 : 45.82
GECToR Output EC 45.47 : 47.91 : 45.94 44.31 : 43.53 : 44.15

GEC-PD Output 49.88 : 26.37 : 42.33 56.49 : 23.13 : 43.85
GEC-PD Output EC 45.90 : 48.31 : 46.36 46.14 : 42.64 : 45.39

Table 3: Quality Scores of the 2 GEC Tools output predictions and their final target Editor Corrections (EC) using
the BEA19 and CONLL14 - Source Sentence EC as target reference.

Human Annotation Set Reference Set and Size IAA Score - F0.5

A1 |{RAND(2) ∈ {A−A1}| = 2 36.21
A2 |{RAND(2) ∈ {A−A2}| = 2 45.48
A3 |{RAND(2) ∈ {A−A3}| = 2 46.72
A4 |{RAND(2) ∈ {A−A4}| = 2 40.54
A5 |{RAND(2) ∈ {A−A5}| = 2 46.01
A6 |{RAND(2) ∈ {A−A6}| = 2 50.85
A7 |{RAND(2) ∈ {A−A7}| = 2 42.72
A8 |{RAND(2) ∈ {A−A8}| = 2 49.46
A9 |{RAND(2) ∈ {A−A9}| = 2 52.0
A10 |{RAND(2) ∈ {A−A10}| = 2 48.57
Avg-IAA {A} {A}, 2 45.85
c1 |{C − c1}| = 2 54.11
c2 |{C − c2}| = 2 57.36
c3 |{C − c3}| = 2 59.14
Avg-IAA {C} {C}, 2 56.87
b1 |{B − b1}| = 2 57.94
b2 |{B − b2}| = 2 59.39
b3 |{B − b3}| = 2 59.81
Avg-IAA {B} {B}, 2 59.05

Table 4: Inter Annotator Agreement (IAA) scores for the different A,B,C annotation sets using the ERRANT F0.5

metric. RAND(n) represents a random selection of "n" items from the respective set.

the Source Sentence EC. In Table 5, we compare
the time taken (in seconds) by a human editor to
correct the source sentences with and without first-
pass editing by a GEC tool. We observe that GEC
Tools help in reducing the post-editing time by

roughly 4 seconds per sentence. Combined insights
from these results indicate that incorporating GEC
Tools in the text-editing workflow reduces editing
time and generates better final target corrections.
Thus, GEC Tools can help improve editor efficiency
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Sentence
Source

Average Time
per Sentence

Average Time
per Word

Source
Sentence

31.16 1.91

GECToR
Output

26.82 1.57

GEC-PD
Output

27.46 1.67

Table 5: The average time to correct (in seconds) for
a sentence and word; correcting the source and after
first-pass GEC Tool editing.

and overall productivity.

4 Methodology

We design statistical and neural network regression
models for our post-editing effort in time (PEET)
scorer. The scorer is trained to estimate the time-to-
correct value for a source sentence given the target
correction, using the number and type of edits and
sentence property - Sentence Length, Correct/In-
correct.

The dataset that we collected contains 3 itera-
tions for all 3 variations of the source - source
(SRC), GEC Tool Model Output (MO) and post-
edited target correction (TRG). Different training
features in terms of edits and sentence structure
can be selected and extracted from - SRC, MO and
TRG triple (Appendix D).

Statistical PEET models performed as well as
Neural models while allowing greater interpretabil-
ity of training features (Appendix A). Also, mod-
els using features selected from [MO,TRG] sen-
tences performed better than models trained on
fine-grained features from [SRC,MO, TRG] sen-
tences (Appendix E). Hence, we only discuss the
features and results of the Statistical PEET Model
trained using the [MO,TRG] sentences here, re-
ferring to MO as the source.

4.1 ERRANT Edit Feature Extraction

We use ERRANT (Bryant et al., 2017) to align and
extract edit features between the source and tar-
get corrections (Appendix B). Apart from the edit
category - Removal(R), Missing(M) and Unnec-
essary(U), the feature also includes the edit type.
Figure 1 lists the different edit categories and their
syntactic type generated by ERRANT.

We use the number and type of edits as features
for our statistical models. Similar to the edit type

Figure 1: ERRANT edit category and types.

hierarchy used by Yuan et al. (2021), considering
category, type and their combination can provide 4,
25 or 55 edit features. For instance, if we only con-
sider the 3 edit categories, then our 4 edit features
are Replacement(R), Missing(M), Unnecessary(U)
and Correct/Incorrect (binary feature). Using the
24 edit types (Figure 1) and Correct/Incorrect gives
us 25 edit features. Similarly, combining edit cat-
egories with their possible types, we get 55 edit
features (see Table 14 in Appendix G). We train
separate models for all three edit levels (4, 25, 55).

4.2 PEET Scorer Models

We design Linear Regression (LR) and Support
Vector Regression (SVR) models, for our PEET
Scorer, using the ERRANT Edit count and differ-
ent edit type levels (4, 25, 55), number of edited
words, source and target sentence length as features.
We also experimented with Neural Regression mod-
els, but they didn’t perform better than statistical
models (Results in Appendix A). We only discuss
the results of the statistical PEET models here. The
details of each model and the hyperparameters are
presented in Appendix C.

The PEET estimation task has a continuous
range of prediction values - time (in seconds). We
report the mean absolute error (MAE) and Pearson
correlation (r) between the predicted time and the
target time. We note that MAE does not take into
account the sign of the error, while correlation does
(Graham, 2015; Tezcan et al., 2019), which is why
we report correlation and use it to compare model
performance.

5 Experiment Results

5.1 Performance of the PEET Scorer

The results for the Linear Regression (LR) and
SVR PEET Scorer, with count of different edit
feature levels (4,25,55), sentence word length and
number of word edits as features (Section 4.1), are
presented in Table 6.

The statistical models relying on edit type infor-
mation (25,55 labels) performed better than using
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Statistical
Model

Edit Feature
Level r MAE

Linear
Regression

4 0.559 18.92
25 0.565 18.74
55 0.563 18.75

SVR Linear
4 0.558 16.40
25 0.564 16.19
55 0.565 16.15

Table 6: Average PEET estimation performance for
the Statistical Models over 50 runs (different train-test
data seed). The results are presented as the Pearson
Correlation (r), Mean Absolute Error (MAE) loss.

minimal substitution, deletion and insertion edit
category labels (Figure 1). This indicates that the
type of edit has an impact on post-editing effort.
We obtain a correlation of r = 0.565 from the best
models (LR-25 edit features).

5.2 Impact of Error Types on Post-Edit Effort

We follow the work by Ye et al. (2021), using re-
gression coefficients of a Linear Regression (LR)
model to estimate the PEET impact of different edit
features. To make the coefficients interpretable, we
center and standardize all edit-features by subtract-
ing the mean and dividing by the standard deviation
(except the binary/categorical edit feature - Correc-
t/Incorrect) (Schielzeth, 2010).

Model
Features

Regression
Coefficient

Model
Features

Regression
Coefficient

Model
Features

Regression
Coefficient

OTHER 10.15 ORTH 2.34 ADJ 0.97
PUNCT 4.55 CONJ 2.03 CONTR 0.78
PREP 4.03 MORPH 1.89 VERB:INFL 0.63
VERB 3.37 SPELL 1.87 PART 0.47

Sentence
Correct -3.31 ADV 1.79 ADJ:FORM 0.39

NOUN 3.23 VERB:FORM 1.66 NOUN:INFL -0.30
DET 3.08 WO 1.63 NOUN:POSS 0.25

NOUN:NUM 2.52 VERB:SVA 1.16 - -
VERB:TENSE 2.35 PRON 1.10 - -

Table 7: The standardized regression coefficients of the
LR model trained on the medium (25) edit features to
measure the impact of each feature on PEET estimation.

The edit category OTHER, which corresponds to
paraphrasing or rewriting text, and modifying punc-
tuation has the highest impact on post editing time.
Deciding whether a particular sentence is incorrect
also contributes significantly to the post-editing ef-
fort. The coefficients to study the impact of the 25
edit features are shown in Table 7. Coefficients for
the other edit granularities (4 and 55 labels) and all
PEET sentence features are provided in Appendix
G.

5.3 PEET Scorer for GEC Quality Estimation
Since an efficient GEC Tool would reduce post-
editing (PE) time, PE followed by PEET estimation
can quantify the usability of a GEC Tool (Specia,
2011). To study the correlation between cogni-
tive, temporal and technical PE effort, we compare
the PEET scorer rankings with human judgment
rankings (HJR) (Section 2.3) and Word Error Rate
(Technical Effort) of GEC Tools. We evaluate the
PEET-Linear Regression (25 Edit Features) Scorer
(Section 4.1) estimated ranking for 33 GEC Tools
in 3 GEC HJR (Appendix H).

• Grundkiewicz-C14(EW) - ranking of 12 GEC
Tools that participated in the official CONLL-
14 - GEC Task (Ng et al., 2014) by Grund-
kiewicz et al. (2015).

• SEEDA-C14-All(TS) - ranking of 15 newer
and stronger GEC Tools on the CONLL-
14 test dataset by Kobayashi et al. (2024).
SEEDA-C14-NO(TS) denotes the subset of 12
GEC tools without the 3 outliers.

• Napoles-FCE and Napoles-Wiki - ranking
of 6 Seq2Seq GEC Tools on the FCE
(Yannakoudakis et al., 2011) and WikiEd
(Grundkiewicz and Junczys-Dowmunt, 2014)
datasets by Napoles et al. (2019).

Human Judgment Ranking PEET Metric WER
ρ r ρ r

Grundkiewicz - C14 (EW) 0.48 0.26 0.28 0.18
SEEDA - C14 - All (TS) 0.18 0.63 0.18 0.65
SEEDA - C14 - NO (TS) -0.1 -0.27 -0.1 -0.33
Napoles - FCE -0.96 -0.94 -0.96 -0.88
Napoles - Wiki -0.71 -0.63 -0.93 -0.88

Table 8: The correlation of our PEET model ranking
with human-judgment rankings (HJR). We also provide
the correlation of the HJR with the Word Edit Rate
(WER) metric. Spearman (ρ) and Pearson (r) correla-
tion scores are used for comparison. A high negative
correlation indicates lower time-to-correct and WER
score corresponding to a higher human judgment rank-
ing.

The Grundkiewicz-C14 and SEEDA-C14 hu-
man ranking calculation was conducted using the
Expected Wins (EW) (Bojar et al., 2013) and
TrueSkill (TS) (Herbrich et al., 2007) method,
which tracks relative ranking based on a set-wise
comparison of a subset of all GEC Tool corrections.
The EW and TS rankings were selected for the fi-
nal Grundkiewicz-C14 and SEEDA-C14 rankings,
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respectively. The Napoles - FCE and Napoles -
Wiki human ranking addressed the issue of partial
comparison and relative ranking for GEC Tools
by using the partial ranking with scalars (PRWS)
method (Sakaguchi and Van Durme, 2018), col-
lecting a quality score (0-100) for each sentence to
infer the final rankings.

Table 8 shows the Pearson (r) and Spearman
(ρ) correlation scores of the HJRs with the PEET
model ranking and the Word Error Rate (WER)
(Snover et al., 2006) (number of edits required to
correct a GEC Tool prediction). The WER and
PEET are calculated using untargeted references,
which contributes to the lower alignment with per-
ceived cognitive effort judgment.

We observe a good alignment (high negative
correlation) between the PEET ranking and the
Napoles HJR and a poor alignment (positive cor-
relation) with the other HJRs. The PEET ranking
shows better alignment to HJRs that align with
WER scores (Technical PE effort - Section 2.3).
We also observe that human quality rankings col-
lected using PRWS align better with true human
effort (WER) than those collected using TS or EW.

These results suggest that our PEET Scorer can
estimate GEC Tool usability when output quality
depends on further Post-Editing Effort (WER and
type of edits) required to correct the tool output.
Hence, performing PE to obtain the closest cor-
rection (lower WER) can improve GEC temporal
effort estimation.

6 Conclusion and Future Work

Since we present the first study and dataset of Post-
Editing Effort (PEET) in Time for GEC, our goal
is to provide a baseline for future work in this area.
Using our dataset, we quantified the editor effi-
ciency and productivity when using GEC Tools for
Text Editing. We extract various automated sen-
tence properties and edit type features from the
sentence correction pairs to train the PEET Scorer.
Recently, there has been some work in the area of
Grammar Error Explanation to define descriptive
error types (Fei et al., 2023; Ye et al., 2025) and
use LLMs for error explanation (Song et al., 2023;
Li et al., 2025). As future work, the descriptive
edits can be used as possible features for the PEET
model. Finally, we observe that our PEET model
works well for GEC Tool evaluation when the out-
put quality is dependent on the Technical PE Effort
(amount of edits). Studying actual cognitive effort

for GEC post-editing and how it compares with
technical and temporal effort is another interesting
direction for future work.

Limitations

One of the main limitations of Post-Editing (PE)
Effort estimation is incorporating human annota-
tion to evaluate GEC Tool performance, which can
be expensive. However, PE allows us to quantify
the true performance from a human-in-the-loop
perspective. Currently, our work is limited to auto-
mated edit-type features generated by the ERRANT
toolkit (Bryant et al., 2017). Evaluating our PEET
Scorer as a GEC quality estimation tool shows that
it is effective when the correction quality is depen-
dent on the technical post-editing effort. However,
similar to work in Machine Translation, it is incon-
sistent with quality estimation based on perceived
PE efforts. Finally, we acknowledge that our work
is limited to only the English language. Future
work on post-editing GEC for other languages can
show the impact of language type on PEET for
GEC.
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Kamath, Ivan Vulić, Sebastian Ruder, Kyunghyun
Cho, and Iryna Gurevych. 2020b. Adapterhub: A
framework for adapting transformers. arXiv preprint
arXiv:2007.07779.

Mirko Plitt and François Masselot. 2010. A productivity
test of statistical machine translation post-editing in
a typical localisation context. Prague Bull. Math.
Linguistics, 93:7–16.
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A Neural Regression Models for PEET
Estimation

Since semantics and syntax structure have been
shown to impact PE effort (Tezcan et al., 2016;
Bangalore et al., 2015), we also trained neural-LM
PEET Scorer models using flattened constituency
parse trees (Kitaev and Klein, 2018) and part-of-
speech syntax structure features for the source and
target corrections, generated using the spaCy li-
brary (Honnibal and Montani, 2017).

Model Features BERT-L RoBERTa-L
r MAE r MAE

Sentence Edit 0.552 17.73 0.56 17.97
Syntactic
Variation 0.528 19.35 0.564 18.05

#EW + Syntactic
Variation 0.564 17.16 0.561 16.88

#EW + Syntax
Structure 0.565 18.57 0.565 18.74

Table 10: Performance of Neural PEET models using
different sequence model features over 5 runs. The
results are shown as Pearson Correlation (r) and Mean
Absolute Error (MAE) loss.

Pretrained LMs can also capture syntax structure
internally (Dai et al., 2021), so we also train neural-
LM models using only source-target sentence em-
beddings as features to estimate PEET. Since the
statistical models work as well as Neural models,
while being faster and more interpretable, we con-
sider them for the PEET Scorer in the main paper.
We describe the features (Table 9) and results of
the Neural PEET (Table 10) model here.

B GEC Evaluation File Example and
Format

The evaluation of a GEC Tool requires a Source
(S), Target (T) and Model Output (MO) sentence.
Table 11 gives an example of such a triple. GEC
evaluation generates M2 file for a pair of sentences
(e.g., S and T), which lists the edits that can convert
sentence S into sentence T and the positions of
those edits. The evaluation process generates two
M2 files : (Source - Target) and (Source - Model
Output). The M2 edits are compared to evaluate
the Model Output quality.

• Source-Target M2 File:
S Surrounded by such concerns , it is very likely
that we are distracted to worry about these
problems .
A 13 14|||R:OTHER|||and|||REQUIRED||| -NONE-|||0
A 11 12|||R:VERB:TENSE|||will be|||REQUIRED|||
-NONE-|||1
A 12 12|||M:ADV|||too|||REQUIRED||| -NONE-|||1
• Source-Model Output M2 File:
S Surrounded by such concerns , it is very likely
that we are distracted to worry about these
problems .
A 13 14|||R:PART|||from|||REQUIRED||| -NONE-|||0
A 14 15|||R:VERB:FORM|||worrying||| REQUIRED|||
-NONE-|||0

The M2 file format was part of the GEC-M2
Scorer evaluation tool proposed by Dahlmeier and
Ng (2012). The tool generates an alignment and
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Model Type Input Format
Sentence Edit [MO] <mo-sentence> [TRG] <trg- sentence>

Syntactic Variation <mo-constituency-parse> [TO] <trg-constituency-parse>
#EW + Syntactic Variation #EW - <mo-constituency-parse> [TO] <trg-constituency-parse>
#EW + Syntax Structure #EW - <trg-part-of-speech-tag>

Table 9: The training data format for the BERT and RoBERTa LM. The example considers a sentence pair -
<mo-sentence> and <trg- sentence> where "mo" is the Model Output correction made by a GEC Tool and the "trg"
is the post-edited target correction for "mo". The special tokens [MO], [TRG] and [TO] denote sentence breaks in
the input. #EW denotes the number of edited words between mo and trg.

Source : Surrounded by such concerns, it
is very likely that we are dis-
tracted to worry about these prob-
lems.

Target : Surrounded by such concerns, it
is very likely that we will be too
distracted to worry about these
problems.

Model
Output :

Surrounded by such concerns,
it is very likely that we are
distracted from worrying about
these problems.

Table 11: Source, Target and example Model Output
made by a GEC Tool.

detects atomic edits between a pair of sentences.
Further improvement to the M2 tool was done by
Bryant et al. (2017), resulting in the ERRANT eval-
uation tool. The ERRANT tool retained the overall
M2 file format, utilizing syntactic and linguistic
features to extract better-aligned and tagged edits
between 2 sentences (as shown above).

C Predictive Model Parameters

We train different statistical and neural predictive
models to estimate the post-editing temporal ef-
fort. We use this section to describe the predictive
models as well as the training parameters for the
regression task.

Linear Regression: We use the Linear Regres-
sion (LR) model provided by the Scikit-Learn
library5. To keep the weights of the fea-
tures from getting arbitrarily high, we used
the RidgeLinear model that also adds an L2
Regularizer to the model. We trained the
model with default training parameters and
alpha = 1.0.

5https://scikit-learn.org/stable/modules/
generated/sklearn.linear_model.Ridge.html

Support Vector Regression: We also train Sup-
port Vector Regression (SVR) models from
scikit-learn with the default training parame-
ters and the "linear" kernel.

BERT, RoBERTa Neural Models: To train neu-
ral predictive models, we fine-tuned the BERT-
Large (Devlin et al., 2019) and RoBERTa-
Large (Liu et al., 2019) with a regression head.
The models were trained using the Pfeiffer bot-
tleneck adapters (Pfeiffer et al., 2020a) which
allowed us to reduce the training time. We
utilized the AdapterHub library6 for training
the models with the default Pfeiffer adapter
configuration (Pfeiffer et al., 2020b). Train-
ing was done for 50 epochs with a 10-epoch
and .05 loss threshold early stopping. A learn-
ing rate of 1e − 04 was used. To train the
models for the regression task, we added a
one-label regression head and used the mean-
square-error loss (MSELoss), which is part of
the Huggingface7 training pipeline.

D Different Sources for Training Feature
Selection and Extraction

Figure 2: Sentence correction edits extracted using the
ERRANT toolkit.

Our dataset has 3 iterations for each source sen-
tence. We have the original sentence - source

6https://adapterhub.ml/
7https://huggingface.co/
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(SRC), the first-pass correction by a GEC Tool
- Model Output (MO) and the final targeted editor
correction - target (TRG). Figure 2 shows the 3 iter-
ations for the source sentence. Each arc represents
a sentence transition pairing and can be used to ex-
tract intermediate edit features. To extract features,
the following sentence pairings can be considered:
[MO], [SRC - MO], [MO - TRG], [SRC - MO -
TRG]. Post-editing features, from different levels,
can be extracted from the SRC−MO−TRG and
MO − TRG sentence pairings. Considering the
source sentence as a feature can further separate
target edits into ignored and incorrect edits.

• SRC - MO - TRG: We consider and extract
the set of edits - A and C (Figure 2) for the
model features. We further use these edits
to create 2 categories - Incorrect and Ignored
edits.

– Incorrect: |A− C|
– Ignored: |C −A|

• MO - TRG: We consider only edit set - B
(Figure 2) as the input for the trained models.

We found that the performance of models trained
on these 2 feature sources was comparable (Ap-
pendix E). This also indicates that the PEET Scorer
can estimate time-to-correct from the post-editing
correction stage - B. We only present and dis-
cuss the results of the model trained using the
MO − TRG sentence features in the main paper.
Results for the [SRC −MO − TRG] Scorer are
presented in Appendix E.

E PEET Scorer using SRC, MO and TRG
Sentence Features

Model
Features

BERT-L RoBERTa-L
r MAE r MAE

Sentence
Edit 0.513 19.10 0.54 17.82

Table 12: Neural PEET model performance over 5 runs
using the source (SRC), GEC Tool Model Output (MO)
and Target Correction (TRG) sentence features. The
results are shown as Pearson Correlation (r) and Mean
Absolute Error (MAE) loss.

Statistical
Model

Edit Feature
Level r MAE

Linear
Regression

10 0.558 18.92
106 0.557 18.89

SVR Linear
10 0.556 16.39
106 0.561 16.21

Table 13: PEET Statistical Model performance over 50
runs (different train-test data seed) using Incorrect and
Ignored separated Edit features (Appendix D) extracted
from SRC, MO and TRG sentence triples. The results
are presented as the Pearson Correlation (r), Mean Ab-
solute Error (MAE) loss.

F GEC Post Editing Instructions and
Survey Example

Figure 3: Survey instructions for the editor to per-
form post editing, and obtain target corrections for our
dataset.

Figure 4: Example source sentence and its first-pass
edit from the Survey. The editor can make further im-
provements in the text box. Submitting the final target
correction.

G Feature Impact on Post-Editing Time
using Regression Coefficients

We utilize the regression coefficients of a Ridge-
Linear Regression model to quantitatively calculate
the impact of different edit type features on the
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Model
Features

Regression
Coefficient

Model
Features

Regression
Coefficient

Model
Features

Regression
Coefficient

Model
Features

Regression
Coefficient

Model
Features

Regression
Coefficient

R:OTHER 7.73 M:DET 2.03 M:VERB 1.49 U:VERB 1.07 M:ADJ 0.36
U:OTHER 4.53 M:OTHER 1.98 R:VERB:FORM 1.48 M:ADV 0.93 R:CONJ 0.30

Sentence Correct -3.11 R:DET 1.94 U:PUNCT 1.36 U:ADJ 0.79 U:NOUN:POSS 0.29
R:PREP 2.85 M:PREP 1.93 U:ADV 1.32 R:VERB:INFL 0.58 U:VERB:TENSE 0.25

R:PUNCT 2.84 R:MORPH 1.77 M:VERB:TENSE 1.32 R:ADV 0.53 M:PART 0.18
M:PUNCT 2.80 U:PREP 1.69 M:VERB:FORM 1.29 M:NOUN:POSS 0.52 U:PART 0.10
R:VERB 2.71 R:SPELL 1.66 U:NOUN 1.26 R:ADJ 0.51 R:NOUN:POSS -0.06
R:NOUN 2.64 U:CONJ 1.64 M:NOUN 1.22 M:PRON 0.49 U:PRON 0.06

R:NOUN:NUM 2.32 U:DET 1.62 R:PRON 1.14 R:PART 0.42 U:VERB:FORM 0.05
R:ORTH 2.22 R:WO 1.58 R:VERB:SVA 1.11 R:ADJ:FORM 0.41 M:CONTR 0.02

R:VERB:TENSE 2.08 M:CONJ 1.52 U:CONTR 1.10 R:NOUN:INFL -0.37 R:CONTR 0.02

Table 14: The standardized regression coefficients of the LR model trained on all the big (55) edit features to
measure the impact of each feature on PEET estimation.

time-to-correct value (Section 5.2). We provide the
estimated impact of all edit types here.

Model Features Regression
Coefficient

Substitutions (R) 14.05
Deletions (U) 6.71
Insertions (M) 5.28
Sentence Correct (C) -2.33

Table 15: The standardized regression coefficients of
the LR model trained on the small (4) edit features to
measure the impact of each feature on PEET estimation.

Model Features PEET
Correlation

Regression
Coefficient

# of words in TRG 0.43 14.07
Substitutions (R) 0.47 6.76
# of Edited Words 0.52 6.46
# of Words in MO 0.43 -5.86
Deletions (U) 0.32 3.85
Sentence
Correct (C) -0.3 -2.63

Insertions (M) 0.28 0.66

Table 16: The correlation of the features used to train the
small-edits(4) Linear Regression (LR) model in Table 6.
We also list the standardized regression coefficients to
measure the impact of each feature on PEET estimation.

H PEET Scorer Ranking and
Comparison of GEC Tools with
Human Judgment Rankings

We evaluate and rank 33 different GEC Tools and
correction sets, part of 3 GEC Human Judgment
Rankings, to estimate the quality of our PEET
Scorer (Section 5.3). We list all the GEC Tools
along with the Human Judgment and PEET Scorer
rankings here.

Model
Name

HJR
Score

PEET
Score

PEET
Ranking

marian 76.99 21.82 1
lstm-r 74.48 22.45 3
lstm 74.3 22.39 2
nus 73.94 22.47 4
transformer 73.9 22.79 5
amu 70.68 23.27 6
input 68.15 23.3 7

Table 17: PEET Scorer estimated average time-to-
correct per sentence and ranking for 7 GEC Tool cor-
rections on the FCE dataset (1936 Sentences), along
with their Human Judgment Ranking (HJR), presented
in Napoles-FCE (Napoles et al., 2019) (Section 5.3).
The 7 GEC Tools consist of Seq2Seq Neural Models.

Model
Name

HJR
Score

PEET
Score

PEET
Ranking

lstm-r 78.27 27.61 2
lstm 77.73 27.61 1
amu 75.98 28.35 5
input 75.89 27.72 3
marian 75.8 30.52 7
nus 75.78 28.34 4
transformer 71.53 29.77 6

Table 18: PEET Scorer estimated average time-to-
correct per sentence and ranking for 7 GEC Tool cor-
rections on the WikiEd dataset (1984 Sentences), along
with their Human Judgment Ranking (HJR), presented
in Napoles-Wiki (Napoles et al., 2019) (Section 5.3).
The 7 GEC Tools consist of Seq2Seq Neural Models.

Table 17-18 list the estimation scores for
the 6 Seq2Seq GEC Tools ranked by Napoles
et al. (2019). The chosen models were AMU
(Junczys-Dowmunt and Grundkiewicz, 2016),
LSTM/LSTM-R (Klein et al., 2018), Marian (Sen-
nrich et al., 2017), NUS (Chollampatt and Ng,
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2018), and, Transformer (Vaswani et al., 2017).

Model
Name

HJR
Score

PEET
Score

PEET
Ranking

AMU 0.628 25.8 8
RAC 0.566 26.61 13
CAMB 0.561 26.34 11
CUUI 0.55 25.91 9
POST 0.539 26.28 10
UFC 0.513 24.56 2
PKU 0.506 25.63 6
UMC 0.495 25.72 7
IITB 0.485 24.67 3
SJTU 0.463 24.84 4
INPUT 0.456 24.53 1
NTHU 0.437 26.6 12
IPN 0.3 25.62 5

Table 19: PEET Scorer estimated average time-to-
correct per sentence and ranking for 12 GEC Tool cor-
rections on the CONLL14 dataset (1312 Sentences),
along with their Human Judgment Ranking (HJR), pre-
sented in Grundkiewicz-C14(EW) (Grundkiewicz et al.,
2015) (Section 5.3). The 12 GEC Tools consist pri-
marily of rule-based and statistical machine translation
architecture.

Table 19 lists the quality judgment for the 12
GEC Tools that participated in the CONLL14 GEC
Task (Ng et al., 2014) performed by Grundkiewicz
et al. (2015). AMU (Junczys-Dowmunt and Grund-
kiewicz, 2014), CAMB (Felice et al., 2014), CUUI
(Rozovskaya et al., 2014), IITB (Kunchukuttan
et al., 2014), IPN (Hernandez and Calvo, 2014),
NARA (Ng et al., 2014), NTHU (Wu et al., 2014),
PKU (Zhang and Wang, 2014), POST (Lee and Lee,
2014), RAC (Boroş et al., 2014), SJTU (Wang et al.,
2014a), UFC (Gupta, 2014), and UMC (Wang et al.,
2014b).

Table 20 lists the recent GEC Tools evaluated
by Kobayashi et al. (2024). GPT-3.5 (Coyne et al.,
2023), T5 (Rothe et al., 2021), TransGEC (Fang
et al., 2023a), BERT-Fuse (Kaneko et al., 2020),
Riken-Tohoku (Kiyono et al., 2019), PIE (Awasthi
et al., 2019), LM-Critic (Yasunaga et al., 2021),
TemplateGEC (Li et al., 2023), GECToR-BERT
(Omelianchuk et al., 2020), UEDIN-MS (Grund-
kiewicz et al., 2019), GECToR-Ens (Tarnavskyi
et al., 2022), BART (Lewis et al., 2020).

Model
Name

HJR
Score

PEET
Score

PEET
Ranking

REF-F 0.992 30.53 15
GPT-3.5 0.743 26.04 14

T5 0.179 24.37 10
TransGEC 0.175 23.54 3

REF-M 0.067 24.04 8
BERT-Fuse 0.023 23.61 4

Riken-
Tohoku

-0.001 23.36 2

PIE -0.034 23.66 6
LM-Critic -0.163 24.37 9
Template

GEC
-0.168 25.21 13

GECToR-
BERT

-0.178 23.78 7

UEDIN-MS -0.179 23.36 1
GECToR-

Ens
-0.234 23.62 5

BART -0.3 24.75 12
INPUT -0.992 24.53 11

Table 20: PEET Scorer estimated average time-to-
correct per sentence and ranking for 15 GEC Tool cor-
rections on the CONLL14 dataset (1312 Sentences),
along with their Human Judgment Ranking (HJR), pre-
sented in SEEDA-C14-All(TS) (Kobayashi et al., 2024)
(Section 5.3). The 15 GEC Tools consist of strong SOA
Neural Models.
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Abstract

This study investigates the impact of Hybrid
Intelligence (HI) on improving the detection of
logical fallacies, addressing the pressing chal-
lenge of misinformation prevalent across com-
munication platforms. Employing a between-
subjects experimental design, the research com-
pares the performance of two groups: one rely-
ing exclusively on human judgment and an-
other supported by an AI assistant. Partici-
pants evaluated a series of statements, with the
AI-assisted group utilizing a custom ChatGPT-
based chatbot that provided real-time hints and
clarifications. The findings reveal a significant
improvement in fallacy detection with AI sup-
port, increasing from an F1-score of 0.76 in the
human-only group to 0.90 in the AI-assisted
group. Despite this enhancement, both groups
struggled to accurately identify non-fallacious
statements, highlighting the need to further re-
fine how AI assistance is leveraged.

1 Introduction

The increasing prevalence of misleading informa-
tion has created an urgent need to improve our abil-
ity to detect deceptive content. Faulty reasoning
(i.e., fallacies), which drives the spread of misinfor-
mation across various discourse domains, poses sig-
nificant risks to informed decision-making and pub-
lic discourse (Vrbová et al., 2021; Teneva, 2023).
Some researchers even liken this problem to an epi-
demic (Duarte, 2024). Despite its importance, fal-
lacy detection remains an understudied challenge,
with current computational argumentation methods
struggling to capture the complexity of deceptive
arguments (Goffredo et al., 2022).

Van Eemeren and Verheij (2017) note that falla-
cies have received limited attention in both formal
and computational argumentation research. Recent
studies have attempted to bridge this gap by con-
structing fallacy datasets and developing automatic
fallacy identification methods. However, none have

explored a Hybrid Intelligence (HI) approach, to
the best of our knowledge. HI, which integrates
human and AI capabilities, is considered highly
promising but requires further empirical research
to evaluate its effectiveness across different tasks
and domains (Dellermann et al., 2019).

The concept of HI is based on the view that while
AI excels in data processing and pattern recogni-
tion, it lacks the creativity, empathy, and contextual
understanding that humans bring to cognitive tasks.
Dellermann et al. (2019) emphasize that HI sys-
tems are designed to leverage these complementary
strengths, enabling humans and AI to learn from
each other and improve over time. This continuous
adaptation is particularly crucial for complex tasks
such as fallacy detection.

Dellermann et al. (2019) also note that while ma-
chine learning and HI are advancing toward real-
world applications, the next step is to enhance their
problem-solving capabilities. Since HI is still a rel-
atively new concept, further empirical research is
necessary to assess its effectiveness across various
domains and tasks. Furthermore, although theoret-
ical frameworks for HI exist, practical guidelines
for integrating human intuition and creativity with
AI’s computational power remain unclear. This
gap highlights the need for studies that not only
develop theoretical insights but also provide em-
pirical validation of the advantages of human-AI
collaboration.

This study aims to deepen our understanding of
HI in fallacy detection by addressing several key
questions: How can existing AI models be effec-
tively integrated into a hybrid intelligent system to
assist in this process? How do individuals identify
fallacies with AI assistance compared to doing so
without AI support? What challenges and limita-
tions arise when employing HI systems for fallacy
detection?

By addressing these questions, this research
seeks to evaluate the effectiveness of HI in fal-
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lacy detection and to provide practical insights
into its real-world application. The findings have
broader implications for decision-making in edu-
cation, healthcare, and other fields. The results
showed a substantial increase in performance with
AI support, rising from an F1-score of 0.76 in the
human-only study to 0.90 in the HI study. This
highlights the potential of HI to enhance and sup-
port human cognitive abilities in complex tasks
such as argumentation analysis. All resources de-
veloped in this paper are publicly available1.

2 Related Work

This section reviews recent advancements in com-
putational argumentation and fallacy detection, in-
troduces Hybrid Intelligence (HI) and its potential
to enhance decision-making and problem-solving,
and discusses the application of HI in improving
fallacy detection and argument analysis.

Computational Argumentation and Fallacy De-
tection Fallacy detection within computational
argumentation has gained importance as AI be-
comes increasingly integrated into daily life and re-
search. Combining AI, linguistics, and logic, com-
putational argumentation analyzes, models, and
assesses arguments in natural language; a crucial
task in today’s information age, where misinforma-
tion and faulty reasoning threaten public discourse
and decision-making (Sourati et al., 2023). Re-
cent advancements include machine learning mod-
els and annotated datasets. For instance, Jin et al.
(2022) highlight the limitations of existing models
in detecting complex fallacies, while Goffredo et al.
(2023) have enhanced fallacy detection in political
debates through improved datasets and neural net-
work architectures. Despite these advancements,
challenges such as explainability persist, as Sourati
et al. (2023) emphasize the need for transparent
AI systems to build user trust. Practical applica-
tions span education and healthcare, where argu-
mentation systems enhance critical thinking and as-
sist in diagnostic decision-making (Atkinson et al.,
2017). Integrating computational argumentation
techniques into fallacy detection offers significant
progress in understanding and analyzing arguments
across various fields.

Hybrid Intelligence Human-AI collaboration
has been explored across diverse domains, demon-

1https://github.com/marrrie23/Hybrid_
Intelligence_Research

strating its potential to enhance performance and
decision-making. In social chatbots, AI is per-
ceived as a companion providing emotional support
(Brandtzaeg et al., 2022), while in mental health,
AI enhances empathy in peer-to-peer conversations
(Sharma et al., 2023). In creative fields, AI serves
as a co-creator, generating new ideas, and tech-
niques such as zero- and few-shot learning show
promise despite certain challenges (Dang et al.,
2022). In education, AI fosters critical thinking and
personalized learning (Markauskaite et al., 2022;
Muthmainnah et al., 2022). In customer service,
AI improves efficiency by handling routine tasks,
allowing human agents to focus on complex issues
(Vassilakopoulou et al., 2022). Moreover, Jiang
et al. (2022) stress the importance of AI support-
ing human decision-making without overwhelming
users, highlighting clear communication and intu-
itive design as key factors for successful human-AI
collaboration.

HI and Fallacy Detection HI combines human
cognitive strengths with AI’s computational capa-
bilities to enhance problem-solving and decision-
making. Unlike Artificial General Intelligence
(AGI), which aims to replicate human cognition, HI
focuses on leveraging complementary skills, such
as human creativity and empathy, alongside AI’s
ability to process large datasets. Researchers such
as Dellermann et al. (2019) highlight the potential
of HI to achieve superior outcomes through col-
laboration, where humans and AI enhance each
other’s performance. HI’s co-evolutionary nature,
where both human and AI agents learn from each
other, has proven effective in fields such as digital
humanities and education. To our knowledge, no
previous work has directly targeted fallacy detec-
tion. However, related studies such as Guo et al.
(2023) demonstrate how AI chatbots improve stu-
dents’ argumentation skills by providing immediate
feedback. Our study builds on these concepts by
developing a Hybrid Argumentation Assistant that
leverages HI to enhance fallacy detection, combin-
ing human intuition with AI capabilities to improve
cognitive tasks.

3 Methodology

The methodology of this study is primarily ex-
ploratory but incorporates experimental elements,
including a between-subjects design inspired by
Field and Hole (2023), with two treatment groups:
one where participants use an AI assistant (HI) and
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one without AI assistance. This design was cho-
sen to effectively assess the impact of AI support
on fallacy detection when combined with human
reasoning. To evaluate participants’ ability to iden-
tify logical fallacies, the study employed a range
of materials and instruments, including surveys, a
custom ChatGPT-based chatbot, and various data
analysis techniques. Specifically, two user studies
were conducted to collect detailed responses. In the
human-only study, participants were asked to iden-
tify logical fallacies in given statements, with their
performance and reasoning captured through open-
ended responses. The HI study followed a simi-
lar structure but incorporated interactive elements,
allowing participants to engage with a ChatGPT-
based chatbot for fallacy detection. This setup en-
abled the evaluation of AI assistance in supporting
reasoning and improving performance. Figure 1
illustrates the overall methodology of this paper.

Task The fallacy detection task involved present-
ing participants with a statement as input and ask-
ing them to determine whether it was logically
sound or fallacious.

Data Preparation We utilized the “Logic”
dataset introduced by Jin et al. (2022), which con-
tains about 2,300 examples of logical fallacies
sourced from educational materials. The dataset
includes a diverse range of fallacies, each classified
into one of 14 categories, collected from online
quiz platforms and websites, with annotations pro-
vided by undergraduate students. Table 1 presents
the distribution of fallacy categories in the dataset.

To address the uneven distribution of fallacy
types, we balanced the dataset by randomly remov-
ing some entries to achieve a more even number
of arguments per fallacy type. After removing ir-
relevant columns and filtering arguments based on
length, we created a dataset with 1,000 arguments.

Also, we enriched the dataset with high-quality
non-fallacious arguments from (Gleize et al., 2019)
to ensure having both fallacious and non-fallacious
arguments for evaluation. To mitigate potential bias
arising from significant differences in argument
length, we calculated the maximum (890), mini-
mum (19), and average (131) argument lengths. We
then filtered the arguments to include only those
within the range of 100 to 160 words. This resulted
in a smaller but more homogeneous set of falla-
cious arguments. The “Miscellaneous” category,
which was initially present, was dropped since its
arguments fell outside the 100–160 word range.

Consequently, the number of fallacy types was re-
duced from 14 to 13.

Finally, we utilized the filtered arguments and
derived 20 subsets, each comprising 10 examples,
a mix of fallacious and non-fallacious arguments
in a 7:3 ratio. The order of the statements was ran-
domized to prevent bias. This structure ensured di-
versity and minimized bias, allowing for a more re-
liable assessment of fallacy detection performance.
Table 2 shows the distribution of fallacies in the
final dataset used for the user studies, while Table 3
provides an example of one of the sets distributed
to participants.

Comparison Elements The primary comparison
metric is participants’ performance rates in identi-
fying fallacies. Additionally, we examined how re-
questing AI-generated hints influenced participants’
performance. Furthermore, participants were sur-
veyed about their trust in AI and their perception
of its transparency.

3.1 Study 1: Human-Only Fallacy Detection
This study investigates how well individuals can
detect logical fallacies without AI assistance, serv-
ing as a baseline for comparison with AI-supported
detection. Participants evaluated a set of arguments,
determining the presence of fallacies and providing
justifications for their responses. The study aimed
to capture human reasoning patterns and establish a
reference point for assessing the potential benefits
of AI in fallacy detection.

Participants This study focused on fallacy detec-
tion using human reasoning alone and involved 60
participants recruited through snowball sampling.
The target group consisted of higher education stu-
dents (bachelor’s and master’s) and recent gradu-
ates in the Netherlands, selected for convenience
and ease of recruitment via social media, university
mailing lists, and student-oriented platforms such
as SurveySwap and SurveyCircle.

Study Design and Implementation A structured
study was conducted using a questionnaire admin-
istered via the Qualtrics platform 2 to evaluate the
effectiveness of human-only fallacy detection. The
study included 20 unique sets of arguments, each
containing 10 distinct instances. Sixty participants
were randomly assigned to review one set, ensur-
ing that each set was evaluated by three partici-
pants. For each argument, they answered a binary

2www.qualtrics.com
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Figure 1: Decision-making workflow for human-only and human–AI fallacy detection.

Fallacy Type % Fallacy Type %

Faulty Generalization 18.4 Intentional Fallacy 5.9
Ad Hominem 12.0 False Dilemma 5.7
Ad Populum 9.3 Fallacy of Credibility 5.7
False Causality 8.6 Fallacy of Extension 5.2
Circular Reasoning 7.1 Equivocation 2.0
Appeal to Emotion 7.2
Fallacy of Relevance 6.5
Fallacy of Logic 6.3

Table 1: Distribution of logical fallacies in (Jin et al., 2022)

question: “Does this statement contain a fallacy?”
by selecting either “Yes” or “No,” followed by an
open-ended justification with no constraints. Partic-
ipants were allowed to complete the questionnaire
at their own pace, with no imposed time limits. The
data collection period spanned 14 days, providing
ample time for participation and ensuring a robust
dataset.

3.2 Study 2: Hybrid Intelligence Fallacy
Detection

Building on the human-only fallacy detection study,
this study explores the potential of AI-assisted rea-
soning in identifying logical fallacies. By inte-
grating a ChatGPT-based assistant, participants re-
ceived real-time hints and clarifications to support
their decision-making process. This experiment
aimed to assess the extent to which AI-generated
guidance enhances fallacy detection performance
compared to human reasoning alone.

Development of the Hybrid Argumentation As-
sistant The Hybrid Intelligence (HI) Assistant
was developed as a ChatGPT-based chatbot de-
signed to enhance human fallacy detection by pro-

viding real-time hints and clarifications. Built using
OpenAI’s GPT-3.5 model for accessibility, the chat-
bot interacted with participants by offering targeted
hints without explicitly revealing answers, thereby
guiding them in identifying logical fallacies.

The chatbot’s user interface was designed for
seamless interaction, featuring an intuitive chat sys-
tem that provided feedback and hints. These hints
were strategically integrated to encourage deeper
reasoning and prompt elaboration on short or in-
sufficient responses, improving both the user ex-
perience and the learning process. The chatbot’s
responses, along with the statements analyzed by
participants, were carefully structured within a sys-
tem prompt to maintain consistency and relevance3.

Before deployment, the chatbot underwent rig-
orous testing and refinement to ensure reliability.
Initial issues, such as incorrect argument sequenc-
ing and missing clarifications, were identified and
addressed. The final version was optimized to ef-
fectively support participants in accurately detect-
ing logical fallacies, highlighting AI’s potential to
augment human reasoning.

3The system prompt is provided in the appendix
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Fallacy Type Count Fallacy Type Count

Faulty Generalization 21 Intentional Fallacy 27
Ad Hominem 24 Fallacy of Credibility 36
Ad Populum 17 False Dilemma 18
False Causality 29 Fallacy of Extension 29
Circular Reasoning 18 Equivocation 23
Appeal to Emotion 27
Fallacy of Relevance 22
Fallacy of Logic 23

Table 2: Fallacy type distribution in the final Dataset

Participants A total of 20 participants were re-
cruited in the same way as in the first study. To
ensure high-quality responses, participation was
restricted to individuals with a strong performance
record on the platform, verified by a high success
rate in their previous tasks.

Study Design and Implementation Once the
chatbot’s behavior aligned with our guidelines, par-
ticipants were instructed to copy and paste a prede-
fined prompt before starting their interaction with
GPT-3.5. After completing their session, they were
required to share the link to their full conversation
for evaluation.

4 Results

This section presents the findings from the two
studies conducted to evaluate the effectiveness of
human-only fallacy detection and the impact of
AI assistance through a ChatGPT-based HI system.
The first study established a baseline for human
performance in identifying logical fallacies with-
out AI support, while the second study explored
how AI assistance could enhance performance and
reasoning in fallacy detection. Both studies uti-
lized the same set of arguments, allowing for a
direct comparison of results. The analysis focuses
on performance scores, response patterns, and the
influence of AI-generated hints, providing insights
into the strengths and limitations of human reason-
ing and the potential of HI in improving fallacy
detection.

4.1 Study 1: Human-Only Fallacy Detection

In the first study, 60 participants evaluated logi-
cal fallacies without AI assistance. Each was ran-
domly assigned one of 20 argument sets, assessing
10 statements by identifying fallacies (yes/no) and
providing explanations. The study analysis fol-

lowed several key steps to evaluate participants’
fallacy detection performance. First, performance
was determined based on the effectiveness of fal-
lacy identifications across different argument sets.
Responses were compiled into a single dataset for
thorough analysis, with performance calculated
both per set and per fallacy type. Also, the rela-
tionship between short-answer correctness and the
length of participants’ explanations was explored.

Performance by Set and Fallacy Type The
human-only study shows that precision remains
consistently high across fallacy types, with most
classes reaching perfect precision (1.00). Recall,
however, varies more noticeably: high for cate-
gories such as equivocation (0.92), appeal to emo-
tion (0.86), and fallacy of logic (0.86), but lower
for false causality (0.63), intentional (0.63), and
false dilemma (0.64), leading to F1-scores that
range from 0.77 to 0.96. Across the 20 evalua-
tion sets, performance is stable, with F1-scores
typically falling between 0.70 and 0.84, and only a
few sets dipping to 0.62 or rising to 0.93. Overall,
these results suggest that humans are highly pre-
cise in recognizing fallacies, but their sensitivity
varies across types and test sets, highlighting the
relative difficulty of consistently detecting certain
categories. Table 5 shows fallacy detection perfor-
mance across the 20 sets, and Table 4 shows the
performance across the fallacy types.

Response Length and Performance Correlation
The study further examined the relationship be-
tween the length of open-ended responses and the
performance of fallacy identification. A weak posi-
tive correlation (0.325) was observed, suggesting
that longer responses were modestly associated
with higher performance. While the correlation is
weak, it indicates that participants who provided
extended responses may have engaged more deeply
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Set Fallacy Type Argument

S6_A1 no fallacy “Mandatory vaccinations would limit the spread of the flu and
protect vulnerable populations that are at risk of death from the flu.”

S6_A2 false dilemma “Don’t waste your money on a home security system; master thieves
will still be able to get into your house.”

S6_A3 faulty generalization Donald Trump Jr. Tweeted: If I had a bowl of Skittles and I told
you just three would kill you. Would you take a handful? That’s
our Syrian refugee problem.

S6_A4 no fallacy Online shopping allows someone in remote areas to access goods
normally only available in large cities.

S6_A5 ad populum I guess I should buy my 12-year-old daughter an iPhone. Everyone
at her school has one, and I want her to fit in with the other kids.

S6_A6 equivocation But professor, I got all these facts from a program I saw on TV
once... I don’t remember the name of it though.

S6_A7 no fallacy Addiction to gambling can lead to bankruptcy, families to split, or
criminal behavior at times of desperation.

S6_A8 false causality Mom: Watching TV that close will make you go blind, so move
back! Jonny: That is B.S., Mom. Sorry, I am not moving.

S6_A9 circular reasoning The Senator isn’t lying when she says she cares about her con-
stituents—she wouldn’t lie to people she cares about.

S6_A10 fallacy of credibility We should offer movies on our company’s website. REPLY: No,
we’ve built our company’s fortune by renting movies only through
our stores.

Table 3: An example of a set combining high-quality arguments and fallacies.

with the material, leading to higher performance.
Several factors may explain this relationship.

First, longer responses might reflect deeper engage-
ment with the arguments, allowing participants to
analyze and process the fallacies more thoroughly.
Second, participants who wrote more may have
had a stronger understanding of the content and the
ability to articulate their reasoning more effectively.
Lastly, longer responses could indicate greater con-
fidence and familiarity with the topic, enabling
participants to provide more comprehensive justifi-
cations. In addition, the fallacies “appeal to emo-
tion” and “fallacy of logic”, which had the longest
average response lengths (391.3 and 373.6 words,
respectively), were also associated with higher per-
formance (0.92 and 0.93). This finding supports the
idea that more extensive responses may correlate
with a deeper understanding or familiarity with the
fallacy.

Insights and Implications The variability in per-
formance across sets and fallacy types highlights
the complexity of detecting fallacies and suggests
gaps in participants’ understanding. These find-
ings provide a useful benchmark for evaluating the

impact of AI assistance in the next study phase,
where participants interact with the HI system. The
results also suggest areas where educational inter-
ventions may be needed to improve human-only
fallacy detection.

4.2 Study 2: ChatGPT-based Hybrid
Intelligence Fallacy Detection

In this study, 20 participants used a ChatGPT-based
chatbot to assist in fallacy detection. Each analyzed
one of the 20 argument sets from the human-only
study, identifying fallacies and explaining their rea-
soning with real-time hints provided by the chat-
bot. Following data collection, responses were
aggregated and analyzed similarly to Study 1. Per-
formance across sets and fallacy types was calcu-
lated, and additional variables, such as hint usage,
were included to assess the chatbot’s impact on
fallacy detection. Participants could use hints for
both short and open responses, and their usage was
tracked for further analysis.

Performance by Set and Fallacy Type The
Human–AI study demonstrates consistently strong
performance across fallacy categories, with preci-
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Fallacy Type n Prec. Rec. F1
ad hominem 45 1.00 0.82 0.90
ad populum 30 1.00 0.67 0.80
appeal to emotion 21 1.00 0.86 0.92
circular reasoning 33 1.00 0.70 0.82
equivocation 24 1.00 0.92 0.96
fallacy of credibility 36 1.00 0.67 0.80
fallacy of extension 30 1.00 0.67 0.80
fallacy of logic 36 1.00 0.86 0.93
fallacy of relevance 33 1.00 0.67 0.80
false causality 48 1.00 0.63 0.77
false dilemma 33 1.00 0.64 0.78
faulty generalization 24 1.00 0.75 0.86
intentional 27 1.00 0.63 0.77

Table 4: Per-fallacy performance from the Human-only
study: number of instances (n), precision, recall, and
F1-score.

sion reaching 1.00 for every type and recall remain-
ing high overall. Perfect F1-scores (1.00) were
achieved for several categories such as appeal to
emotion, circular reasoning, fallacy of extension,
fallacy of logic, faulty generalization, and inten-
tional, while slightly lower values appeared for
more challenging classes like fallacy of credibility
(0.91) and ad hominem (0.93). Results across the
20 evaluation sets confirm this trend: most sets
achieved F1-scores above 0.90, with a few dips
into the 0.70–0.80 range and a single low of 0.62,
indicating some variability in performance across
sets. Taken together, these findings suggest that
Human–AI collaboration yields near-perfect preci-
sion and generally reliable recall, producing robust
F1-scores across most fallacy types and evaluation
sets. Table 7 shows the performance of detection
fallacy across the 20 sets, and Table 6 shows the
performance across the fallacy types.

Hint Usage Analysis of hint usage revealed that
participants relied most on hints for identifying
non-fallacious statements (16 hints), followed by
fallacies such as “false causality” and “fallacy of
extension.” In contrast, fallacies like “ad hominem”
and “equivocation” required fewer hints, suggest-
ing that these types were easier for participants to
identify with minimal AI support. Overall, the HI
approach demonstrated a significant improvement
in fallacy detection performance, highlighting the
potential of AI assistance in enhancing human rea-
soning and decision-making.

Set n Prec. Rec. F1
1 30 0.82 0.67 0.74
2 30 0.78 0.86 0.82
3 30 0.82 0.86 0.84
4 30 0.85 0.81 0.83
5 30 0.88 0.71 0.79
6 30 0.81 0.62 0.70
7 30 0.85 0.81 0.83
8 30 0.68 0.62 0.65
9 30 0.82 0.86 0.84
10 30 0.73 0.76 0.74
11 30 0.78 0.67 0.72
12 30 0.68 0.62 0.65
13 30 0.83 0.71 0.77
14 30 0.79 0.71 0.75
15 30 0.70 0.76 0.73
16 30 0.67 0.57 0.62
17 30 0.78 0.67 0.72
18 30 0.83 0.71 0.77
19 30 0.93 0.67 0.78
20 30 0.76 0.76 0.76

Table 5: Performance across 20 evaluation sets from the
Human-only study: precision, recall, and F1-score.

5 Comparative Analysis of Human-Only
and HI Studies

This section compares the results of the human-
only fallacy detection study with the Hybrid Intelli-
gence (HI) study, focusing on performance, addi-
tional variables such as hint usage, and the potential
influence of the placebo effect. In addition, we re-
port the results of a complementary experiment that
directly evaluated large language models (LLMs)
on the same fallacy detection tasks, providing a
benchmark for comparison against both human-
only and Human–AI studies. Together, these analy-
ses highlight the strengths and limitations of each
approach and provide insights into the role of AI in
enhancing human reasoning and decision-making.

Performance The comparison between the
Human-only and Human–AI reveals a clear im-
provement when AI support is introduced. While
human alone achieve perfect precision but more
variable recall across fallacy types (average F1 ≈
0.84), collaboration with AI substantially boosts
recall (average F1 ≈ 0.96), leading to more con-
sistent performance across categories. A similar
trend appears in the 20 evaluation sets: the Human-
only study yields moderate stability with mean F1
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Fallacy Type n Prec. Rec. F1
Ad Hominem 15 1.00 0.87 0.93
Ad Populum 10 1.00 0.90 0.95
Appeal to Emotion 7 1.00 1.00 1.00
Circular Reasoning 11 1.00 1.00 1.00
Equivocation 8 1.00 0.88 0.93
Fallacy of Credibility 12 1.00 0.83 0.91
Fallacy of Extension 10 1.00 1.00 1.00
Fallacy of Logic 12 1.00 1.00 1.00
Fallacy of Relevance 11 1.00 0.91 0.95
False Causality 16 1.00 0.94 0.97
False Dilemma 11 1.00 0.91 0.95
Faulty Generalization 8 1.00 1.00 1.00
Intentional 9 1.00 1.00 1.00

Table 6: Per-fallacy performance from the Human-AI
study: number of instances (n), precision, recall, and
F1-score.

around 0.76, whereas the Human–AI consistently
reaches higher values (mean F1 ≈ 0.90). These
results suggest that Human–AI collaboration en-
hances sensitivity and reliability in fallacy detec-
tion, while maintaining the already high precision
observed in human judgments. Table 9 presents the
average performance per set and per fallacy type
for both studies (Human-only and Human–AI).

LLM-based Fallacy Detection Results. We
evaluated a range of LLMs to measure their abil-
ity to distinguish between fallacious and non-
fallacious arguments in our evaluation sets, using
simple zero-shot prompting4 (the full prompt is
provided in Appendix). Table 8 summarizes the
results in terms of precision, recall, and F1-scores.
Overall, performance varies substantially across
models. GPT-4o achieved the best overall balance,
with the highest recall (0.93) and F1-score (0.92),
while GPT-3.5 yielded the highest precision (0.93)
but at the cost of lower recall (0.73). GPT-4o-mini
also performed strongly across all metrics (F1 =
0.91). Among open-source models, DeepSeek-v3.1
reached the strongest balance (F1 = 0.84), followed
by LLaMA-3.1 and Qwen3-235B (F1 = 0.79–0.80).
By contrast, Claude Opus-4 showed moderate pre-
cision but notably weaker recall, resulting in the
lowest F1 among the stronger contenders (0.60).
The GPT-OSS baselines underperformed markedly,
with F1-scores below 0.25. Taken together, these
results suggest that frontier models such as GPT-4o,
GPT-4o-mini, and GPT-3.5 provide highly reliable

4max_tokens is 128 and temperature is 0.0

Set n Prec. Rec. F1
1 10 1.00 1.00 1.00
2 10 0.88 1.00 0.93
3 10 0.78 1.00 0.88
4 10 0.88 1.00 0.93
5 10 0.88 1.00 0.93
6 10 1.00 1.00 1.00
7 10 0.88 1.00 0.93
8 10 0.83 0.71 0.77
9 10 0.70 1.00 0.82
10 10 0.70 1.00 0.82
11 10 0.67 0.57 0.62
12 10 0.88 1.00 0.93
13 10 0.88 1.00 0.93
14 10 1.00 0.86 0.92
15 10 0.88 1.00 0.93
16 10 0.86 0.86 0.86
17 10 1.00 1.00 1.00
18 10 1.00 1.00 1.00
19 10 0.71 0.71 0.71
20 10 0.88 1.00 0.93

Table 7: Performance across 20 evaluation sets from the
Human-AI study: precision, recall, and F1-score.

fallacy detection, with some open-source systems
also showing competitive performance.

Compared to human performance (Table 9), the
strongest LLMs reached F1-scores on par with the
Human-only performance (0.76–0.84 across dimen-
sions) but still fell short of Human–AI collabora-
tion, which achieved up to 0.96 across fallacy types
and 0.90 across evaluation sets. This gap highlights
that while LLMs can approximate human judgment,
they do not yet match the substantial gains observed
when humans and AI work together.

Additional Variables The human-only study
showed a weak positive correlation (0.325) be-
tween the length of open responses and perfor-
mance, indicating that longer responses were as-
sociated with higher performance. In contrast, the
HI study introduced hint usage as an additional
variable, showing that non-fallacious statements
required the most hints, suggesting participants
found these the most difficult to assess. Overall,
hints were used in 22.5% of cases, highlighting
AI’s role in assisting participants with more chal-
lenging fallacies.

Explanation of Findings The significant im-
provement in performance in the HI study may
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LLM Prec. Rec. F1
GPT-OSS 20B 0.15 0.50 0.23
GPT-OSS 120B 0.15 0.50 0.23
GPT-3.5 0.93 0.73 0.82
GPT-4o-mini 0.91 0.92 0.91
GPT-4o 0.92 0.93 0.92
LLaMA-3.1 70B 0.83 0.78 0.79
LLaMA-3.1 405B 0.84 0.78 0.80
Qwen3-235B 0.85 0.77 0.79
DeepSeek-v3.1 0.84 0.83 0.84
Claude Opus-4 0.84 0.60 0.60

Table 8: Fallacy detection performance of different
LLMs, reported as precision, recall, and F1-scores. The
best score in each column is shown in bold.

Eval. Study Prec. Rec. F1
Fallacy Human-only 1.00 0.75 0.84

Human–AI 1.00 0.93 0.96
Set Human-only 0.80 0.73 0.76

Human–AI 0.87 0.94 0.90

Table 9: Average precision, recall, and F1 across fallacy
types and evaluation sets for Human-only vs. Human–
AI.

partially be attributed to the placebo effect, where
participants’ belief in AI assistance positively influ-
enced their performance (Kosch et al., 2022). The
relatively low use of hints (22.5%) suggests that
participants’ confidence and engagement were en-
hanced merely by the presence of AI, even if they
did not heavily rely on it for assistance. This ef-
fect likely contributed to the increased performance
compared to the human-only study.

Another key finding was the difficulty in iden-
tifying non-fallacious statements, which achieved
the lowest score in both studies. This aligns with
(Yeh et al., 2024), who observe that expert disagree-
ments predominantly concern whether any fallacy
is present at all, with especially low agreement for
the None (no-fallacy) class. A likely contributor is
participants’ personal beliefs and biases, particu-
larly on controversial topics such as vaccination or
fossil fuels, which can create judgments even when
arguments are logically sound (Teneva, 2023). To-
gether, these results highlight how demanding it is
to certify the absence of a fallacy and the contin-
uing need to scaffold critical thinking to decouple
belief from reasoning in argument evaluation.

An additional consideration concerns the choice
of LLM used in human–AI collaboration. In this

study, we employed GPT-3.5 as the assisting model.
While GPT-3.5 provided stable and effective sup-
port, recent evaluations (see Table 8) show that
more advanced models such as GPT-4o achieve
substantially higher precision and recall in fallacy
detection. This suggests that the overall gains ob-
served in our HI setting could be further amplified
with stronger LLMs, highlighting the importance
of carefully selecting and updating the underlying
AI systems in future HI research and applications.

6 Conclusion

This study examined the effectiveness of Hybrid
Intelligence (HI) in enhancing fallacy detection by
comparing the performance of participants with
and without AI assistance. The results demon-
strated an improvement in performance when AI
support was introduced, increasing from an F1-
score of 0.76 in the human-only study to 0.90 in
the HI study. These findings highlight the potential
of HI to complement and augment human cognitive
capabilities, particularly in complex domains such
as argumentation analysis. However, the study also
revealed persistent challenges in distinguishing log-
ically sound arguments, which remained difficult
for participants in both conditions. This suggests a
need for further advancements in critical thinking
and argumentation training to better differentiate
between logically sound and fallacious reasoning.

The successful integration of a ChatGPT-based
AI assistant into the HI framework showcased the
feasibility of AI-supported fallacy detection. Nev-
ertheless, certain limitations, such as occasional
inconsistencies in AI behavior and variability in
the quality of hints, indicate the necessity for fur-
ther refinement in AI design and user interaction.
Despite these challenges, the study provides valu-
able insights into the potential applications of HI
systems across various fields, including education
and decision-making, where enhanced cognitive
support is essential. Future research should focus
on expanding participant samples to include larger
and more diverse populations, refining AI systems
to improve reliability and usability, and exploring
the long-term impact of HI on cognitive perfor-
mance and reasoning tasks. By addressing these
areas, the field can better harness the potential of
HI to support and enhance human decision-making
and problem-solving.
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7 Appendix

7.1 System Prompt in Study 2
This is part5 of the System Prompt used in ‘Study 2: ChatGPT-based Hybrid Intelligence Fallacy
Detection’:

/system
You are an interactive assistant used for conducting a user study about AI-human interaction for fallacy

detection. Your task is to collaboratively assist participants in identifying fallacies in a series of arguments.
IMPORTANT: 1. You must NOT assess or evaluate whether the participant’s answers are correct or

incorrect. 2. Your role is to facilitate discussion, record the participant’s answers, and provide subtle
guidance (if requested) without indicating correctness. 3. Decisions about the presence of fallacies should
be made collaboratively, with input from both the participant and the hints you provide, if requested. 4.
Every question requires a response. Short answers (e.g., "yes/no") and open explanations are mandatory
and cannot be skipped. 5. Maintain a neutral tone throughout the session.

Instructions: 1. **Introduction**: Start by greeting the participant and introducing the task. 2. **Con-
firm Instructions**: Ask the participant to confirm that they have read and understood the instructions. 3.
**Consent to Participate**: Ask the participant to provide consent to participate in the study. They must
type "yes" to confirm their consent before proceeding. 4. **Pre-Task Questions**: - Ask if the participant
uses ChatGPT (Yes/No). - If "Yes," follow up with: 1. "How often do you use ChatGPT?" (e.g., Daily,
Weekly, Occasionally). 2. "In which areas or domains do you use ChatGPT?" - Ask: "Do you trust AI
for decision-making? (Yes/No)." - Follow up with: "Why or why not?" 5. **Argument Presentation**:
Present each argument one by one. 6. **Fallacy Identification**: - Ask if there is a fallacy in the argument
(yes/no). Ensure they respond with "yes" or "no." If they type something else, ask them to retype their
answer to make it "yes" or "no." - After the short answer, ask the participant to explain their reasoning in
an open-ended way. They must provide an explanation. If the explanation is too short or unclear (e.g.,
"idk," "seems good"), ask for clarification or elaboration. 7. **Provide Hints**: - If the participant types
"Hint," provide a subtle suggestion to help them think more critically about the argument. - After each
hint, ask: - "Based on this hint, can you now provide a yes/no answer and explain your reasoning in
detail?" 8. **Encouraging and Neutral**: Maintain an encouraging tone and remain neutral. Do not
indicate whether their answers are correct or incorrect. 9. **Trustworthiness Assessment**: - Present the
questions one by one. All questions are mandatory, and participants must provide an answer. 1. "Do you
think the hints I provided were helpful overall? (Rate from 1 to 5.)" 2. "What if I told you that some of
the hints I provided were incorrect? Would this change your trust in me or your answers? Why or why
not?" 3. "Do you think some of the hints were incorrect on purpose? Why or why not?" 4. "Based on
your experience, how likely do you think it is that my hints were accurate? (Rate from 1 to 5.)" 5. "Do
you feel the hints influenced your reasoning or just confirmed what you already believed?" 10. **Session
Completion**: After all arguments are completed, thank the participant for their time, ask for optional
feedback, and instruct them to save and send their interaction to the study coordinator.

—

7.2 LLM Prompt for Fallacy Detection
“You are a critical thinking expert. Determine if the following argument contains a logical fallacy. If yes,
reply exactly "fallacy". If no, reply exactly "no_fallacy".”

5The remaining part provides an example of the discussion flow.
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Abstract

Alignment from human feedback has played
a crucial role in enhancing the performance
of large language models. However, conven-
tional approaches typically require creating
large amounts of explicit preference labels,
which is costly, time-consuming, and demands
sustained human attention. In this work, we
propose Cognitive Feedback, a framework that
infers preferences from electroencephalogra-
phy (EEG) signals recorded while annotators
simply read text, eliminating the need for ex-
plicit labeling. To our knowledge, this is the
first empirical investigation of EEG-based feed-
back as an alternative to conventional human
annotations for aligning language models. Ex-
periments on controlled sentiment generation
show that CPO achieves performance compara-
ble to explicit human feedback, suggesting that
brain-signal-derived preferences can provide
a viable, lower-burden pathway for language
model alignment.

1 Introduction

Human alignment for large language models
(LLMs) is crucial for generating safe and
preference-aligned outputs. Previous work has
shown that this process helps LLMs better fol-
low human instructions and mitigate harmful be-
haviors (Ouyang et al., 2022). A traditional post-
training approach involves supervised fine-tuning
(SFT) on a pretrained LLM, followed by reinforce-
ment learning from human feedback (RLHF) (Sti-
ennon et al., 2020). Direct Preference Optimization
(DPO) (Rafailov et al., 2024) is an alternative to
RLHF that skips the reward model and offers more
stable training. Many state-of-the-art models, such
as OpenAI’s o-series, continue to adopt the SFT +
DPO paradigm (Guan et al., 2024), demonstrating
that it remains an effective strategy. However, cre-
ating the preference labels necessary for DPO and
related preference optimization methods remains

labor-intensive. Tasks such as selecting and train-
ing annotators, establishing trust, and coordinat-
ing large-scale annotation efforts incur substantial
costs (Stiennon et al., 2020; Casper et al., 2023a).

To address these challenges, Reinforcement
Learning from AI Feedback (RLAIF) (Lee et al.,
2023) leverages LLM-generated synthetic feed-
back to substitute for explicit human feedback.
This approach offers lower costs, easier large-scale
data collection, and strong scalability compared
to traditional human-driven methods (Wang et al.,
2022; Madaan et al., 2024; Bai et al., 2022). How-
ever, several drawbacks remain. Depending on
the task, humans may disagree with AI-generated
judgments (Perez et al., 2022; Casper et al., 2023b;
Lee et al., 2023), indicating that synthetic feed-
back may fail to capture genuine human inten-
tions. Moreover, there is a bootstrapping issue:
ensuring the model that produces feedback is it-
self properly aligned is non-trivial (Casper et al.,
2023a), theoretically undermining AI feedback as
a complete solution to alignment. Finally, while
AI-generated feedback can reduce cost, it does so
at the expense of direct human involvement, rais-
ing concerns about whether such signals faithfully
reflect nuanced human values. The question of
which feedback signals, or combinations of such
signals, most effectively align LLMs with human
goals remains open (Casper et al., 2023a).

In this work, we propose Cognitive Feedback,
a framework for obtaining preference information
directly from human brain activity. Specifically,
we investigate whether preference signals extracted
from electroencephalography (EEG) can be inte-
grated into preference optimization methods such
as DPO. If feasible, this approach could offer a
more direct and potentially less cognitively de-
manding means of capturing individual responses
than conventional annotation pipelines, as partici-
pants only need to read the presented text without
providing explicit ratings. We focus on the con-
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Figure 1: A diagram depicting Cognitive Feedback (top) vs. Human Feedback (bottom). By decoding human
preferences from biosignals, it enables obtaining implicit human feedback without explicit annotation.

trolled sentiment generation task. This task is well
suited to our study for two reasons: (1) it serves as
a foundational benchmark for preference optimiza-
tion, as it was one of the benchmark tasks origi-
nally employed in DPO or other derivative meth-
ods (Rafailov et al., 2024; Zeng et al., 2024; Amini
et al., 2024), and (2) previous works have demon-
strated that EEG is effective at capturing emotional
responses in NLP (Wang and Zhang, 2025). To
operationalize this idea, we introduce Cognitive
Preference Optimization (CPO), a method that esti-
mates preference information from EEG data col-
lected while participants read text. By relying on
implicit cognitive feedback instead of explicit hu-
man feedback, CPO aims to significantly reduce the
need for manual annotation (Figure 1). Alongside
falling costs and growing accessibility in mobile
EEG, recent large-scale decoding results show clear
data–performance scaling, reinforcing the practical
path for EEG-based alignment (Sato et al., 2024).

In our experiments, we compare two forms of
feedback: standard human feedback requiring ex-
plicit labeling, and implicit feedback inferred from
EEG. Our results show that the CPO-trained model
not only produces more positive outputs than a
baseline model but also achieves performance com-
parable to conventional human feedback settings.
These findings highlight the potential for EEG-
based feedback signals to serve as a novel approach
for LLM alignment.

We summarize our main contributions:

1) We propose Cognitive Feedback, a framework
that replaces explicit annotations with implicit
feedback decoded from EEG collected during
natural reading.

2) We instantiate this framework with a DPO-

based method that uses EEG-decoded prefer-
ences (CPO), empirically demonstrating the
feasibility of using EEG signals to guide pref-
erence optimization on a controlled sentiment
generation task.

3) We compare CPO with conventional human
feedback or AI feedback, illustrating that
EEG-derived feedback can effectively align
language models while potentially reducing
the burden of manual annotation.

2 Related Works

2.1 Cognitively Inspired Natural Language
Processing

Previous studies have shown that incorporating hu-
man physiological signals can boost performance
in a variety of natural language processing (NLP)
tasks. In particular, eye-tracking data has been
employed to improve part-of-speech tagging (Bar-
rett et al., 2016), text simplification (Klerke et al.,
2016; Higasa et al., 2024), dependency parsing
(Strzyz et al., 2019), sentiment analysis (Barrett
et al., 2018), named entity recognition (Hollenstein
and Zhang, 2019), relation classification (Hollen-
stein et al., 2019; McGuire and Tomuro, 2021), text
readability (González-Garduño and Søgaard, 2017;
Hollenstein et al., 2022), and sarcasm detection
(Mishra et al., 2016a,b, 2017). Across these diverse
tasks, leveraging eye-tracking data has consistently
led to notable gains in model performance.

Compared to eye-tracking, relatively few works
have explored EEG signals for NLP. Nevertheless,
several studies have established the effectiveness
of EEG in tasks such as named entity recognition,
relation extraction, and emotion classification (Hol-
lenstein et al., 2019; Ren and Xiong, 2021). In
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Figure 2: Schematic diagram of Cognitive Preference Optimisation. In Step 1, a decoder is trained using a small set
of cognitive signals (e.g., EEG) paired with explicit human feedback; in Step 2, the trained decoder is used to infer
preferences from a larger set of cognitive signals without manual labelling.

addition, Muttenthaler et al., 2020 regularized at-
tention mechanisms with EEG data to improve per-
formance on relation extraction, and Wang and
Zhang, 2025 demonstrated that EEG can be a valu-
able modality for emotion detection. Most of these
earlier approaches relied on encoder-only archi-
tectures, which cannot be directly applied to the
decoder-only models now prevalent in NLP. Be-
cause architectural modifications are typically re-
quired, it is difficult to leverage existing pretrained
models in these methods.

More recently, researchers have begun exploring
how physiological signals can be integrated into
post-training workflows for modern large language
models (LLMs). For instance, Kiegeland et al.,
2024a incorporated eye-tracking feedback into
Direct Policy Optimization (DPO), while Lopez-
Cardona et al., 2024 built a reward model by ap-
plying the synthetic gaze generation method pro-
posed by Khurana et al., 2023 to create a large-scale
dataset of artificially generated gaze data. Addition-
ally, Kiegeland et al., 2024b applied eye-tracking to
supervise a cognitive modeling step via supervised
fine-tuning (SFT). Our work is the first to examine
whether EEG data can be utilized for post-training
alignment in modern LLMs.

2.2 Aligning Large Language Models with
Human Feedback

Recent large language models (LLMs), such as
GPT-4 (OpenAI et al., 2024), Llama 3 (Grattafiori
et al., 2024), Claude 3 (Anthropic., 2024), and

Gemini (Team et al., 2024), have demonstrated im-
pressive capabilities across a wide range of tasks.
These models are typically pretrained on massive
datasets and then undergo post-training to better fol-
low human instructions. One of the most common
approaches for human alignment is Reinforcement
Learning from Human Feedback (RLHF) (Stiennon
et al., 2020), which generally comprises three main
steps: (1) collecting human feedback, (2) training
a reward model (RM) based on that feedback, and
(3) optimizing the LLM via a reinforcement learn-
ing algorithm such as Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017). Since RLHF
was first introduced, numerous improvements have
been proposed, such as fine-grained reward sys-
tems (Bai et al., 2022; Wu et al., 2023b; Dong
et al., 2023; Wang et al., 2023, 2024) and alterna-
tive RL methods that replace the original PPO mod-
ule (Wu et al., 2023a). Beyond RLHF, (Rafailov
et al., 2024) proposed Direct Preference Optimiza-
tion (DPO), an offline RL approach that optimizes
language models directly on preference data with-
out training a separate reward model. DPO has
been shown to provide training stability and match
the efficacy of RLHF. Notably, even state-of-the-
art models continue to adopt these methods, often
combining supervised fine-tuning (SFT) with DPO
to achieve strong performance on a variety of tasks.

However, a primary limitation of RLHF lies in
the difficulty of data collection, which encompasses
issues such as evaluator misalignment, supervisory
challenges, and variable feedback quality (Casper
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Figure 3: Concat text and EEG embedding with ran-
domly initialised special tokens.

et al., 2023a). To address these problems, recent
studies have shifted focus toward AI-generated
feedback. For instance, Reinforcement Learning
from AI Feedback (RLAIF) (Bai et al., 2022) and
its variants (Lee et al., 2023; Zhu et al., 2024; Cui
et al., 2023; Li et al., 2024; Yang et al., 2023) lever-
age synthetic feedback from LLMs, greatly reduc-
ing labeling costs and improving scalability. That
said, these approaches do not fully resolve the draw-
backs of RLHF. Depending on the task, humans
often disagree with AI-generated judgments (Perez
et al., 2022; Casper et al., 2023b; Lee et al., 2023).
The disagreement rate varies widely—for example,
Perez et al. (2022), Casper et al. (2023b), and Lee
et al. (2023) report figures of up to 10%, 46%, and
22%, respectively, in different experiments. Fur-
thermore, it remains unclear which forms of feed-
back signals, or which combinations thereof, most
effectively align LLMs with human goals (Casper
et al., 2023a), indicating a need for continued ex-
ploration.

3 Cognitive Preference Optimization

As outlined in Section 2, cognitive signals on their
own can be noisy; however, they serve to enrich
NLP embeddings by providing more detailed infor-
mation. We adopt this paradigm for AI Feedback:
cognitive signals function as an implicit form of
human feedback, capturing user preferences with
minimal burden on the annotators, while reinforc-
ing the input information used in AI feedback. In
so doing, we attempt a novel feedback approach
that alleviates the limitations of both human and AI
feedback. Figure 2 is an overview of the proposed
method.

Step 1: Training Cognitive Decoder Let X =
(x1, x2, . . . , xT ) be the sequence of combined fea-
ture vectors for a text of length T . Following pre-
vious work (Lopez-Cardona et al., 2024), each xt
is formed by concatenating the EEG feature vector

SST

Dataset

ZuCo

Dataset

ZuCo extract 400 movie reviews: 

very positive, very negative, or neutral

Convert to paired data based on

ground truth (explicit judging in step 1).

Positive 
Review

Positive 
Review

Negative 
Review

Neutral 
Review

Figure 4: Overview of the preparation of the preference
pair dataset used in our experiments.

et ∈ Rm (recorded when reading the t-th token)
with its text embedding ht ∈ Rm′

, i.e. xt = [et;ht].
This approach has been shown to yield robust rep-
resentations (Figure 3). We then define a Cognitive
decoder sϕ(X) ∈ R, where ϕ denotes its trainable
parameters. For training, suppose we have N pairs
{(X(i)

chosen, X
(i)
rejected)}Ni=1. We want the decoder to

assign a higher score to X
(i)
chosen than to X

(i)
rejected.

To achieve this, we minimize:

L(ϕ) =
N∑

i=1

log
(
1 + exp

(
−
[
sϕ(X

(i)
chosen)− sϕ(X

(i)
rejected)

]))

(1)

which encourages sϕ(X
(i)
chosen) to be larger than

sϕ(X
(i)
rejected).

Step 2: Collecting Cognitive Feedback Next,
we use the trained Cognitive Decoder to collect
cognitive feedback. Although preference data were
required as supervision in Step 1, Step 2 only re-
quires EEG signals. Specifically, given two candi-
date texts, we compute their scores with Cognitive
Decoder. We designate the text with the higher
score as chosen and the one with the lower score
as rejected, thus creating a pair of texts with cor-
responding preference information. This approach
reduces the need for explicit human annotation.

Step 3: DPO with Cognitive Feedback Finally,
we use the cognitive feedback gathered in Step 2
as preference data to optimize a language model
via Direct Policy Optimization (DPO). DPO maxi-
mizes the likelihood that preferred outputs are se-
lected over less-preferred ones, relative to a ref-
erence model, and it does so without requiring a
separate reward model. Formally, given a model
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πθ and a reference model πref, DPO minimizes the
following loss:

LDPO(θ) = − 1

N

N∑

i=1

log σ
(
β
[
log

πθ(y
(i)
chosen | x(i))

πref(y
(i)
chosen | x(i))

− log
πθ(y

(i)
rejected | x(i))

πref(y
(i)
rejected | x(i))

]) (2)

where β is a temperature-like hyperparameter,
y
(i)
chosen denotes the chosen output for the i-th text

x(i), and y
(i)
rejected is the rejected output. In this

way, the model is optimized to align its generation
with the preferences inferred from the EEG signals,
effectively reducing the need for explicit human
labels.

4 Experiments

In this section, we empirically evaluate the perfor-
mance of our proposed method by examining three
questions: (1) To what extent can we decode feed-
back from EEG signals? (2) Does the proposed
method perform at a level comparable to conven-
tional, explicit human feedback? (3) Does its per-
formance scale with the size of the EEG datasets
we use? Although no EEG dataset currently exists
for the purpose of LLM preference optimization,
if initial experiments demonstrate the method’s ef-
fectiveness even under limited data conditions, this
would provide motivation for creating larger, more
realistic datasets. This work serves as a first step
toward assessing whether cognitive signals can sup-
plement or even replace traditional forms of human
feedback.

4.1 Preference Pair Dataset Processing

In this work, we extract cognitive signals from an
existing natural reading corpus and convert them
into pairwise preference data (Figure 4). Notably,
the participants’ task did not involve reading pairs
of texts for direct comparison; instead, they read
single texts and attempted to infer their sentiment
labels. This discrepancy between the participants’
reading task and the NLP objectives is a disadvan-
tageous setup that may complicate improvements
in performance.

Dataset We use the Sentiment Reading (SR)
dataset from the Zurich Cognitive Language Pro-
cessing Corpus (ZuCo) (Hollenstein et al., 2018),
which captures both eye-tracking and EEG data

simultaneously. This makes ZuCo particularly suit-
able for NLP tasks requiring word-level EEG fea-
tures. The SR subset comprises about 400 movie-
review sentences, read by 12 participants. These
sentences were drawn from the Stanford Sentiment
Treebank (SST) (Socher et al., 2013), focusing on
clearly positive, negative, and neutral sentences to
ensure representative samples for each sentiment
category. We extract EEG features at the word level
based on Gaze Duration (GD), resulting in 840-
dimensional vectors per word. ZuCo is currently
the largest dataset that meets the requirements of
our experiments.

Conversion to Pairwise Preference Data Be-
cause the SR dataset in ZuCo was not originally
intended for reinforcement learning, we convert
its single-sentence labels into pairwise preference
data. The SR set contains 400 sentences labeled ac-
cording to the Stanford Sentiment Treebank (SST):
140 positive, 137 neutral, and 123 negative. To
avoid data leakage, we split these sentences into
10 folds while preserving their label distribution,
and construct pairwise preferences based on the re-
lations positive > neutral and positive > negative.
Although we could theoretically create all possi-
ble pairs (e.g., each positive sentence paired with
every neutral or negative one), we restrict each
sentence to at most five pairs during training to
mitigate overfitting due to repetitive examples. At
test time, however, we generate as many pairs as
possible. The EEG decoder is trained via 10-fold
cross-validation, and from each test fold we obtain
all qualifying pairs, yielding a total of 3,640 pairs
used as cognitive feedback.

Human Feedback Collection Out of the 400
sentences in the SR dataset, 47 have five-level
sentiment ratings provided by human annotators.
Among these 47 sentences, the ground-truth dis-
tribution is 22 positive, 6 neutral, and 17 negative.
Based on these labels, we create a total of 506
pairs. For each pair, we derive a preference signal
from the five-level sentiment rating, which serves
as human feedback. Because the number of human
feedback samples is relatively small, we select the
same 506 text pairs from the cognitive feedback
set for direct comparison. This ensures that any
difference in performance arises from the feedback
source, rather than from inconsistencies in the un-
derlying data.
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Input Type Model

Llama-3-8B Llama-3-8B-Instruct

Baseline Text 79.3 ± 0.6 diff (%) 79.1 ± 0.9 diff (%)

Cognitve Decoder Text + EEG 82.9 ± 1.1* 4.5 81.6 ± 0.5* 3.2
Text + Noise 75.4 ± 2.8 -4.9 77.4 ± 2.3 -2.2

Table 1: Cognitive Decoder Accuracy (%) for ZuCo SR dataset. Highest results are in bold; “diff” indicates rate of
improvement and reports statistical significance.

Figure 5: Performance of policies trained with Cognitive Feedback. Direct comparison with policies from other
feedback types and indirectly through comparison with the base model.

4.2 Settings

Cognitive Decoder The Cognitive Decoder takes
as input a sequence of embeddings derived from
text and cognitive signals, producing a higher score
for texts deemed more positive. Following the
methodology of (Lopez-Cardona et al., 2024), we
used the pretrained Llama-3-8B and Llama3-8B-
Instruct (Grattafiori et al., 2024) models as de-
coders. However, rather than the standard classifi-
cation head for next-word prediction, we replaced
it with a regression head that outputs a scalar score
(Touvron et al., 2023).

Policy Model The policy model is optimized
to generate more positive movie reviews. We
use GPT-2-large (774M parameters)1 as our base
model. We found that gpt-2-medium produced
lower quality text, so we used a larger model. These
findings are similar to those in (Rafailov et al.,
2024). During training, we employ a common
prompt, “movie review: ”, to encourage consis-
tent outputs.

1https://huggingface.co/openai-community/
gpt2-large

Tasks We empirically evaluate the performance
of our proposed method using a single controlled
sentiment generation task (Rafailov et al., 2024),
for which we employ two types of prompts. The
first prompt, referred to as the “SST Prefix Prompt,”
leverages the Stanford Sentiment Treebank dataset:
we select 50 neutral sentences and 50 negative
sentences (none of which overlap with the ZuCo
SR dataset), and provide only the initial 10 words
of each sentence (the prefix) to the policy model,
which then generates the continuation. The sec-
ond prompt, referred to as the “Training Condition
Prompt,” aligns more closely with our training con-
ditions. In both cases, we allow up to 50 tokens to
freely continue from each prompt.

Evaluations We conduct two types of evalua-
tions on the texts generated for the tasks described
above. The first is an llm-as-a-judge approach,
where we use GPT-4o-2024-11-20 to select which
model produces the more positive output. We eval-
uate the output with the following prompt: “Which
is the more positive movie review? Please
write this down as (A) or (B). If you
feel equally positive, answer (C).” Based
on these selections, we compute an adjusted win
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Figure 6: Correspondence between the number of training samples and performance. Results with training prompts
(left) and with SST prefixes (right).

rate to assess each policy model. In addition to
comparing a model trained with human feedback
against one trained with cognitive feedback, we
also compare each trained model with an untrained
base model. The latter comparison indirectly eval-
uates the two trained models’ performance. The
second method employs a sentiment classification
model to verify that the generated text is genuinely
positive. We adopt a RoBERTa-large (Hartmann
et al., 2023) fine-tuned on the IMDb dataset, which
uses the probability score for the positive label in a
binary classification to evaluate each generations.

4.3 Results

Decoding Feedback from EEG Signals We il-
lustrate the performance of the EEG decoder in
Table 1. In the Baseline setting, no EEG features
are used as inputs; rather, the model predicts scores
solely from text embeddings. In our experiments,
this simple text-based output serves as the “AI Feed-
back.” In contrast, the Cognitive Decoder takes
both text embeddings and EEG features as its input
representations. To verify the contribution of EEG
data to the decoding task, we also experimented
with random noise vectors that have the same di-
mensionality as the EEG embeddings. Our results
indicate that combining text information with EEG
features yields higher-accuracy feedback decoding,
consistent with findings in prior research on cogni-
tively inspired NLP. Moreover, the fact that random
noise not only fails to improve performance but de-
grades it suggests that the EEG features indeed
contain task-relevant information. We use the out-
puts decoded by the Cognitive Decoder, which we
refer to as “Cognitive Feedback,” to train the policy
model. Meanwhile, the test outputs decoded under
the Baseline setting are used as “AI Feedback”.

Cognitive Feedback vs. Human Feedback vs.
AI Feedback We show the performance of the
policy trained with cognitive feedback, compared
to those trained with human feedback and AI feed-
back, in Figure 5. The adjusted win rate is com-
puted using the “llm-as-a-judge” approach and re-
flects the average score across two prompt types,
evaluated over five trials. Note that human feed-
back is available for only 47 out of 400 sentences
in the ZuCo SR dataset, representing only a portion
of the entire dataset. For fairness in comparison,
the data used for other feedback types is restricted
to this same subset. Despite the smaller training set,
the policy trained with cognitive feedback outputs
more positive text than the base model, which does
not undergo reinforcement learning, and achieves
a higher win rate. Its performance is comparable
to, or slightly surpasses, that of the other feedback
types. One possible explanation is that the cog-
nitive feedback approach, much like AI feedback,
draws on text embeddings but further leverages
EEG signals to augment these embeddings, thereby
potentially providing a more powerful input repre-
sentation.

Scaling to number of training samples. Fig-
ure 6 illustrates how performance changes as we
increase the number of training data pairs. In both
prompt types, performance consistently improves
with a larger number of pairs. Before undergoing
reinforcement learning, the base model generates
positive outputs more than 70% of the time for
training prompts and around 80% of the time for a
neutral SST prefix. However, for a negative prefix,
it produces proportionally more negative outputs,
indicating relatively natural behavior. As training
progresses, however, the model gradually shifts
toward producing positive continuations, even for
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SST Prefix (Negative):

Original: Do we really need a 77-minute film to tell us exactly why a romantic relationship
between a 15-year-old boy and a 40-year-old woman doesn’t work? - NEGATIVE

Base model: Do we really need a 77-minute film to tell us what happened? A quick glance at this
Wikipedia page gives a bit of information. - NEGATIVE

CPO: Do we really need a 77-minute film to tell us everything that we need to know about
this game? Absolutely! The best part of this movie is how much the players of this
great team seem to get into their characters. - POSITIVE

Training Prompt

Base model: movie review: I was a little apprehensive. "Avengers: Age of Ultron" is a great film.
There are some really great characters and moments, and the story is a nice blend of
action, comedy, and drama. - POSITIVE

Base model: movie review: I’m still not sure how to feel about the new video game from the
creators of Batman: Arkham Origins. While it has all the trappings of a video game I’d
rather not play — no cutscenes, no stories. - NEGATIVE

CPO: movie review: ""A dazzling and stirring gem that will continue to inspire generations
of filmgoers."" – James Bobin, National Board of Review - POSITIVE

CPO: movie review: A smart, witty, and highly entertaining film about a family’s remarkable
journey of faith and growth. - POSITIVE

Table 2: Example of a model trained by the proposed method and the generated text of the base model. Each
sentence was labelled using the sentiment classification model used to evaluate the model.

negative prefixes. Alongside the observed improve-
ment in win rate, it is clear that the model increas-
ingly favors affirmative or positive statements.

5 Discussion

Examples of text generated by the proposed method
are presented in Table 2. The CPO model shown in
this table was trained with the maximum number
of available preference pairs, representing its best-
performing configuration in our experiments. For
prompts with the “SST prefix” type, even when the
initial text begins with a clearly negative statement,
the CPO model often changes the tone partway
through the continuation and shifts the overall sen-
timent toward a more affirmative or optimistic di-
rection. As a result, the generated sentences some-
times receive sentiment labels that differ from those
assigned to the original prompt. For the “train-
ing prompt” type, the base model generally pro-
duces continuations that are emotionally neutral
or slightly positive, but these outputs can still be
classified as neutral or negative by the sentiment
classifier. In contrast, the CPO model consistently
produces continuations in this setting that are clas-
sified as positive, indicating that the EEG-derived

feedback effectively steers generation toward more
favorable sentiment across both prompt types.

6 Conclusion

In this paper, we proposed Cognitive Preference
Optimization (CPO), a novel framework for align-
ing large language models (LLMs) with human
preferences inferred from electroencephalography
(EEG) signals. By training a cognitive decoder to
extract pairwise preferences from a natural read-
ing corpus, we introduced a method that reduces
reliance on explicitly labeled data. Our results sug-
gest that EEG-derived feedback can successfully
guide policy optimization for sentiment generation,
producing outputs that match or even rival models
trained with conventional human feedback. The
proposed method can use the scalability of tradi-
tional AI feedback while obtaining human feedback
in the form of readings that are less burdensome
for the operator. Future experiments in a more
realistic setting will require the construction of a
large dataset of cognitive signals for the purpose of
reinforcement learning of LLMs.
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Limitations

The experiments in this study focus only on a con-
trolled sentiment generation task, so it is not yet
clear whether EEG-derived feedback is effective
for more complex or open-ended tasks. The current
method also estimates preferences only in a pair-
wise comparison setting, without exploring scalar
or multi-dimensional feedback that could provide
richer training signals. We report performance with
GPT-2-large for generation and Llama-3-8B for
EEG decoding, chosen given the modest corpus
size; effectiveness is not guaranteed when larger
baseline models are used.

Ethical Considerations

This work uses only publicly available and prop-
erly licensed datasets that permit research use. All
datasets were used in accordance with their in-
tended research purposes. AI tools were used solely
to assist in writing training and analysis scripts.
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Abstract

Existing benchmarks that measure cultural
adaptation in LLMs are misaligned with the
actual challenges these models face when in-
teracting with users from diverse cultural back-
grounds. In this work, we introduce the first
framework and benchmark designed to evaluate
LLMs in realistic, multicultural conversational
settings. Grounded in sociocultural theory, our
framework formalizes how linguistic style — a
key element of cultural communication — is
shaped by situational, relational, and cultural
context. We construct a benchmark dataset
based on this framework, annotated by cultur-
ally diverse raters, and propose a new set of
desiderata for cross-cultural evaluation in NLP:
conversational framing, stylistic sensitivity, and
subjective correctness. We evaluate today’s top
LLMs on our benchmark and show that these
models struggle with cultural adaptation in a
conversational setting.

1 Introduction

Conversational LLMs are used for personal assis-
tance, customer service, tutoring, therapy, etc., are
increasingly deployed in global contexts. Users
who interact with these systems represent a rich set
of nationalities, languages, and cultures, each with
a distinct expectation of what constitutes a “good”
interaction with an LLM (Kharchenko et al., 2025;
Giorgi et al., 2023).

To be effective across such diverse user groups,
LLMs must be culturally aware, incorporating cul-
tural context when conversing with users (Hersh-
covich et al., 2022). A key component of cultural
awareness in conversations is appropriate linguistic
style1 (Coupland, 2007), which varies across cul-
tures and additionally depends on setting, scenario,
and social dynamics.

1Linguistic style reflects the systematic variation in linguis-
tic choices across different contexts and speakers, i.e. features
of grammar and vocabulary that signal social identity, attitude,
and communicative intent (Biber and Conrad, 2009).

Figure 1: Three key factors influence appropriate lin-
guistic style in conversation: Situation — the specific
scenario of an interaction, Interpersonal Relationship
— the social dynamic between the speakers, and Cul-
tural Context — the background, values, and beliefs
of the participants.

Prior work suggests that LLMs struggle to gen-
erate stylistically appropriate language across cul-
tures (Atari et al., 2023; Havaldar et al., 2023b;
Arora et al., 2023), with generations disproportion-
ately reflecting Anglocentric norms and values.

However, most existing cultural benchmarks for
LLMs are factual in nature and lack any focus on
conversational dynamics (Zhou et al., 2025; Pawar
et al., 2025). These benchmarks typically assess
knowledge of cultural traditions, customs, or be-
haviors via trivia-style questions (Shi et al., 2024;
Chiu et al., 2024). While important, factual bench-
marks do not generalize to the stylistic challenges
of culturally sensitive communication.

To evaluate LLMs in realistic, multicultural con-
versational settings, we propose the Culturally-
Aware Conversations (CAC) Framework &
Dataset designed for this task. Our contributions
are as follows:

1. We work with cultural experts, establishing
style as a function of three axes (see Figure 1),
and develop an interdisciplinary framework to
operationalize this.
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Criteria Description

Conversational Framing
Users do not typically ask LLMs multiple-choice questions about cultural trivia. Instead,
evaluations should center on the model’s ability to interpret and respond to cultural context
within natural dialogue.

Stylistic Sensitivity
While the core content of a response often remains consistent across cultures, the appropriate
style may differ — e.g., higher politeness, indirectness, or expressions of humility. Benchmarks
should assess whether models can make such nuanced stylistic adaptations.

Subjective Correctness
Cultural norms are not monolithic; there is variation within and between countries and communi-
ties. Benchmarks should accommodate a range of plausible responses rather than enforcing a
single “correct” answer.

Table 1: Desiderata for Conversational Benchmarks. An effective benchmark to evaluate LLMs’ understanding of
culturally-aware conversations should meet the above criteria.

2. Using this framework, we construct a
dataset containing contextualized conversa-
tions, stylistically varied responses, and anno-
tations representing 8 cultural perspectives.

3. We propose a set of desiderata for benchmarks
that evaluate LLM understanding of cultural
conversational dynamics in Table 1.

2 The CAC Framework

The desiderata in Table 1 highlight the need for a
benchmark that explicitly addresses conversational
style. To this end, we must first understand the
relationship between culture and style.

Linguistic styles — like politeness, directness,
self-disclosure, gratitude — are reflected in text
through word choice, sentence structure, and gram-
matical patterns (Biber and Conrad, 2009). Ac-
cepted stylistic norms vary across cultures (Haval-
dar et al., 2025b; Rai et al., 2025), partly because
cultural dimensions are deeply intertwined with
language use (Hershcovich et al., 2022). These
norms are also shaped by situational context and
the interpersonal relationship between speakers.

For example, power distance, the extent to which
unequal power distribution is accepted, appears in
the use of polite language via honorifics or def-
erence. Likewise, individualism vs. collectivism
influences directness: individualistic cultures prior-
itize self-advocacy, while collectivist cultures em-
phasize group harmony and often avoid confronta-
tion (Hofstede, 1986; Havaldar et al., 2024).

Empirical work supports these patterns; for in-
stance, text from Japan, a high power-distance and
collectivist society, exhibits higher politeness and
lower directness than text from more individualistic
societies like the United States (Matsumoto, 1988;
Holtgraves, 1997).

Framework development. Our goal was to con-
struct a conversational benchmark that captures the
relationship between culture and style and includes
both situational and relational context.

We began by consulting cultural communication
experts2 to curate a set of six culturally varied con-
versational situations — high-level descriptions
of interactions where an ideal response would dif-
fer across cultures. Examples include offering and
accepting food (where initial refusal followed by
eventual acceptance is expected in some cultures)
and discussing personal accomplishments (celebrat-
ing oneself is seen as a sign of confidence in some
cultures, but arrogance in others) (Furukawa et al.,
2012; Tracy and Robins, 2008).

For each situation, we then identify the rele-
vant stylistic axis along which culturally appro-
priate responses vary. Offering and accepting food,
for instance, varies along the Insistence–Yielding
axis, while discussing personal achievements varies
along the Pride–Shame axis. The resulting set of
situations and associated stylistic axes is shown in
Figure 2.

Lastly, we identify eight interpersonal rela-
tionships that span three contexts: familial (e.g.,
Husband–Wife), workplace (e.g., Boss–Employee),
and day-to-day (e.g., Neighbors), shown in red,
purple, and blue, respectively, in Figure 2. These
relationships reflect a range of interpersonal dy-
namics with different norms across cultures.

The development of this framework was an in-
terdisciplinary process grounded in sociocultural
theory, drawing from literature in cultural, social,
and behavioral psychology. We refined it over the
course of many months through ongoing consulta-
tion with cultural experts.

2Our cultural experts were 4 professors in cultural psychol-
ogy, behavioral science, and communication at R1 universities,
all of whom have researched culture for over a decade.
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Figure 2: The Culturally-Aware Conversations (CAC) Framework. We work with cultural experts to determine
common conversational situations with the highest variance in typical behavior across cultures. After establishing
these situations, we pinpoint which stylistic axis best captures the cultural variance of each situation. We also
determine eight interpersonal relationships whose dynamics vary across cultures and additionally influence the
appropriate linguistic style for the given situations.

3 The CAC Dataset

Using our framework as the bedrock, we gener-
ate this dataset in three stages: scenario genera-
tion, conversation generation, and cultural match-
ing. This pipeline is shown in Figure 3.3

Stage 1: Generating Scenarios. We begin by
selecting a single situation and interpersonal rela-
tionship, as shown in Figure 2.

Next, we prompt OpenAI’s o3 model to generate
a contextualized scenario using the situation and re-
lationship. For example, the situation Talking about

personal accomplishments & failures and relation-
ship Friends yield the following scenario:

Over coffee, Friend A tells Friend B how failing

an important exam pushed him to develop a more

effective study routine.

Stage 2: Generating Conversations. We then
prompt o3 to transform this scenario into a multi-
turn conversation. We first ask the model to gener-
ate a fixed first turn in the conversation:

Friend A: What changed for you after that exam?

Then, we ask o3 to generate a set of five responses
that vary on the stylistic axis corresponding with
the original situation. Here are examples of the
proud, neutral, and humble responses:

• Friend B (proud): Failing that was a turning

point. I made a superior study routine and

I’m sure I’ll pass every future exam I take.

3Data and code available here: https://github.com/
shreyahavaldar/culturally_aware_conversations

• Friend B (neutral): Failing that exam pushed

me to develop an even more effective study

routine.

• Friend B (humble): Failing that exam reminded

me that I should work even more diligently to

enhance my study routine.

All three of Friend B’s responses convey the
same underlying message. However, the style of
these responses varies along the Pride–Shame axis,
evidenced by how much Friend B brags about their
new study routine.

We generate one conversation per situation-
relationship pair, for a total of 48 conversations
and 240 possible responses. All 240 responses
were validated by the authors to ensure that the
stylistic range is properly reflected. During valida-
tion, minor edits were made to ∼30 responses to
ensure they sounded natural and realistic.

We show examples of generated scenarios and
their corresponding conversations in Table A2.

Stage 3: Cultural Matching. Upon generating
conversations, we run a user study to understand
which response is most appropriate in a given cul-
ture. We use a combination of volunteers from the
authors’ university and participants on Prolific to
recruit 24 annotators from eight countries — Amer-
ica, India, China, Japan, Korea, the Netherlands,
Mexico, and Nigeria.

We then present each annotator with the con-
versations from the CAC dataset consisting of (1)
the fixed first turn, and (2) the set of five possi-
ble responses. Annotators are asked to pick which
response, depending on their personal set of ac-
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Figure 3: A depiction of how we use the CAC framework to develop a contextualized conversation in our dataset.
We walk through an example where the situation is giving critical feedback and the interpersonal relationship is
Boss–Employee. In Stage 1, we generate a specific scenario that reflects the situational and relational context. In
Stage 2, we use the scenario and stylistic axis to generate a conversation with a range of possible responses that vary
on the given stylistic axis. In Stage 3, we recruit annotators from a range of nations to determine which responses
are most desirable in which cultures.

cepted norms and behaviors, is most appropriate.
Additional details are provided in Appendix A.

Subjectivity in accepted style. There is never
a 100% “correct” style for a given conversation.
However, certain ranges of styles are often more
accepted than others (Kang and Hovy, 2021; Haval-
dar et al., 2023a).

Instead of averaging annotator responses for a
single value, we calculate a range of accepted style
for each situational and relational context to re-
flect this real-world variation. We first compute
the mean µ and standard deviation σ of the set of
ratings. We then define the range as µ ± 0.674σ,
which corresponds to the 25th and 75th percentiles
of a standard normal distribution. Intuitively, as-
suming the ratings are independent draws from an
approximately normal distribution, this range cov-
ers the central 50% of that underlying distribution.

This labeling strategy preserves some variance
while still allowing us to quantify stylistic differ-
ences between cultures. For each country, we plot

these ranges across situational and relational con-
texts in Figure A1, Figure A2, and Figure A3.

Observations. While we do notice many trends
that align with previous empirical work (e.g., the
Netherlands favors directness (Ulijn and St Amant,
2000), Japan is very polite (Matsumoto, 1988),
etc.), we see key differences in expected style
across relational contexts as well.

For instance, in India, it is more common to
show gratitude in the workplace, while in a familial
context, communication is much more expectation-
driven. This is likely tied to the strong sense of
duty embedded in Indian families (Mullaiti, 1995).
In addition, Nigerian culture is very insistent on the
acceptance of food and gifts, and we see this trend
across all relational contexts. Americans also tend
towards more self-disclosure than any other culture,
and this gap is most pronounced in professional and
day-to-day relationships.

Please refer to Figures A1, A2, and A3 for addi-
tional insights.
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Model America India China Japan Korea Netherlands Mexico Nigeria

Gemini-2.5-Flash 56.25% 47.92% 56.25% 50.00% 52.08% 64.58% 52.08% 58.33%
GPT-4.1 70.83% 54.17% 54.17% 60.42% 47.92% 56.25% 58.33% 60.42%
GPT-5-mini 62.50% 43.75% 56.25% 58.33% 54.17% 72.92% 66.67% 54.17%
Claude-3.5-Haiku 60.42% 54.17% 47.92% 45.83% 50.00% 56.25% 45.83% 60.42%
Claude-4.5-Sonnet 70.83% 45.83% 64.58% 45.83% 56.25% 68.75% 56.25% 60.42%

Average 64.17% 49.17% 55.43% 52.08% 52.88% 63.75% 55.83% 58.75%

Table 2: Accuracies of different models across countries, where correctness is defined by alignment with the
culturally accepted range of responses. The results highlight that models do not understand stylistic norms across all
contexts, though they perform best in Western cultures (e.g., America, the Netherlands).

4 Evaluating Today’s Top LLMs

Next, we evaluate how well today’s LLMs un-
derstand the accepted stylistic ranges for interper-
sonal, professional, and day-to-day communication
across cultures.

We evaluate five models from OpenAI, Google,
and Anthropic by providing the situational, rela-
tional, and cultural context, and giving the first turn
in the conversation and the five possible responses.
We then ask the model to select the response that
is most appropriate for that culture.

To determine correctness, we check whether the
predicted response falls within the culture-specific
range of valid answers, after rounding for direct
comparison. For example, if the accepted stylistic
range is [1.25,2.67], then predictions of 1, 2, or 3
are considered correct. Accuracy for each country
is calculated as the proportion of correct predictions
across all conversations.

Unsurprisingly, we find that LLMs perform best
at adapting to Western communication norms, with
their highest accuracies observed for America and
the Netherlands. This imbalance is concerning
because LLM systems deployed in non-Western
contexts are less likely to align with local users’
communication practices.

5 Conclusion

The framework and dataset presented in this paper
strive to bridge the gap between cultural psychol-
ogy and generative AI. Our work can be used to
evaluate LLMs, inform conversational agents, and
ultimately work towards models that are culturally
competent and adaptive.

This is especially important for building down-
stream systems, like chatbots, where context mat-
ters tremendously: the norms of appropriate com-
munication differ sharply depending on whether
a chatbot is deployed in a workplace, designed to
tutor students, or intended to support individuals

overcoming personal struggles. As a result, these
systems need to adapt their understanding of social
norms (Rai et al., 2025), implied language (Haval-
dar et al., 2025a), and linguistic style (Kang and
Hovy, 2021).

More broadly, LLM systems that interact with
diverse users operate not only within a cultural
context but also within a situational and interper-
sonal context — the notion of “appropriate behav-
ior” emerges from the interaction of all three. By
formalizing these dimensions, our framework of-
fers a path toward developing AI systems that better
understand, respect, and adapt to diversity in com-
munication.

Limitations

A large limitation of our work is that we create a
fully English dataset. While it is crucial to evaluate
LLMs in all languages, we made the decision to
create an English dataset for the following reasons:

1. People from a wide variety of cultures engage
with LLMs in English, as LLMs have higher
QA skills, robustness to prompt ablations, and
reasoning capabilities in English.

2. The conversation generation component took
many rounds of prompt engineering, as it was
a nuanced and complex task; this was only
possible for the authors to do in English.

3. The authors manually validated and edited all
generated conversations. Once again, this was
only possible for the authors to do in English.

Additionally, our dataset itself is small, consist-
ing of 48 conversations with 240 total possible re-
sponses. This was by design; many cultural bench-
marks that exist are massive, LLM-generated cor-
pora with human validation on only a small subset
of the data — benchmarks from Shi et al. (2024);
Fung et al. (2024), and many others as surveyed by
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Zhou et al. (2025). We aim to create a high-quality
dataset that is fully human-validated.

We also conducted a smaller-scale annotation
study, with only 3 annotators per country. We were
limited by the availability of participants on Pro-
lific; our 8 chosen countries reflect areas with high
concentrations of Prolific users. To get a better
measure of accepted style, which includes under-
represented cultures as well, future work should
involve a larger-scale study.

6 Ethical Considerations

In this work, we simplify the notion of “culturally-
aware communication” to having an appropriate
linguistic style; however, communication practices
in every culture are complex, dynamic, and consist
of many dimensions beyond linguistic style.

This work involves LLM usage at two stages
in our pipeline — scenario generation and conver-
sation generation. Though the authors manually
validated every generated conversation, any inher-
ent bias in or fairness concerns associated with the
LLM may propagate into our generated dataset.

Lastly, we use nationality and language as a
proxy for culture — while these three things are
heavily intertwined, culture is dynamic and subjec-
tive and does not perfectly align with either nation-
ality or language.
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A Cultural Matching Annotation:
Additional Details

Annotator recruitment. We first recruited 8 vol-
unteers from American, Indian, Chinese, and Ko-
rean backgrounds at the authors’ university. To
annotate the remainder of the dataset, we use the
nationality screener on Prolific to select relevant
annotators.

Before beginning the study, Prolific annotators
are asked to describe their cultural background and
state the culture they are most familiar with. We
ensure this matches their nationality in the Prolific
database to confirm their qualifications.

Country Recruited Annotators

America 3 volunteers
Netherlands 3 Prolific users
Mexico 3 Prolific users
India 1 volunteer, 2 Prolific users
China 2 volunteers, 1 Prolific user
Japan 3 Prolific users
Korea 2 volunteers, 1 Prolific user
Nigeria 3 Prolific users

Table A1: Annotator breakdown for every country in
our dataset. We use 8 volunteers and 16 Prolific users.

The annotators are all given a Google Sheet con-
taining the conversations and a drop-down menu
for each row, allowing them to select one of the
responses. They were shown the following instruc-
tions before beginning the study:

Welcome! In this study, you will be asked

to select the most culturally-appropriate

response in a conversation. The situation

column describes an interaction between two

individuals. The initial statement begins the

conversation. The 5 possible responses convey

the same idea, but are stylistically different.

Your task is to consider the cultural dynamics

of the culture you grew up in, and select what

would be the most stylistically appropriate

response for your culture.

We also collect all annotators’ ages and genders.
Annotators were paid $20/hr and, on average, took
42 minutes to complete the annotation study.
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Expectation Gratitude

Pride Shame

Self-disclosure Secrecy

Day-to-Day Relationships
America
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China
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Korea
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Mexico
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Figure A1: Cultural differences in day-to-day conversations. We show the mean and accepted range of style values
for conversations with strangers, neighbors, and friends.

B Model Evaluation: Additional Details

For the models shown in Table 2, the default tem-
perature was used. All models were evaluated iden-
tically using the following prompt:

You are an expert in intercultural

communication. Given a country, a social

situation, a pair of characters, and the

first turn in a conversation, your task is to

select the response that best reflects the

cultural and stylistic norms and communication

practices of the specified country.

Country: {country}

Situation: {situation}

Characters: {characters}

First turn: {first turn}

Possible responses:

1. {response 1}

2. {response 2}

3. {response 3}

4. {response 4}

5. {response 5}

Your answer should be the number (1-5)

corresponding to the response that best fits

the cultural context. Generate only the number

as your response, without any additional text

or explanation.

227



Directness Indirectness

Rudeness Politeness

Insistence Yielding

Expectation Gratitude

Pride Shame

Self-disclosure Secrecy

Professional Relationships
America
India
China
Japan
Korea
Netherlands
Mexico
Nigeria

Figure A2: Cultural differences in professional conversations. We show the mean and accepted range of style values
for conversations between a boss/employee and coworkers.
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Figure A3: Cultural differences in familial conversations. We show the mean and accepted range of style values for
conversations between a husband/wife, parent/child, and grandparent/grandchild.
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Directness / Indirectness: Over the fence, Neighbor A tells Neighbor B that the roof of their shared boundary house got
damaged in last night’s storm.

NEIGHBOR B: Hey, did you notice anything odd about the roof after the storm?
NEIGHBOR A: Our shared roof was damaged by last night’s storm.
NEIGHBOR A: The storm wrecked our roof along the boundary last night.
NEIGHBOR A: It appears that last night’s storm damaged our shared roof.
NEIGHBOR A: It seems the storm may have affected our roof.
NEIGHBOR A: I’m not certain, but I’ve heard our roof might be affected.

Politeness / Rudeness: After a meeting, the boss says the employee’s slide deck is too text-heavy and lacks clear visuals.

EMPLOYEE: Could you share your thoughts on my slide deck?
BOSS: I feel your slide deck might benefit from fewer text and clearer visuals, if possible.
BOSS: Your slide deck could be improved by reducing text and adding clearer visuals, if you don’t mind.
BOSS: The slide deck is too heavy on text and lacks clear visuals, and it needs some revisions.
BOSS: Your slide deck is overloaded with text and misses clear visuals, so it really needs a redo.
BOSS: Your slide deck is horribly text-cluttered and utterly lacks clear visuals; revise it right away.

Insistence / Yielding: At the park, the grandparent offers a homemade apple pie to the child, who excitedly accepts a slice.

CHILD: Grandpa, that pie smells good!
GRANDPARENT: You must take a slice of it right now!
GRANDPARENT: Then you should have a slice of it right here!
GRANDPARENT: Would you perhaps enjoy a slice, dear?
GRANDPARENT: If you wish, you can try a slice.
GRANDPARENT: You may have a slice if you’d like.

Gratitude / Expectation: After dinner, Friend A asks Friend B to pick up some groceries on the way home.

FRIEND B: Should I stop anywhere on the way home tonight?
FRIEND A: I would really appreciate it if you could pick up some groceries on your way home.
FRIEND A: It would be great if you could pick up some groceries on your way home.
FRIEND A: Please pick up some groceries on your way home.
FRIEND A: Make sure you pick up some groceries on your way home.
FRIEND A: You need to pick up some groceries on your way home.

Pride / Shame: During dinner, the parent recalls a career setback that ultimately led to learning resilience.

CHILD: Does anything good come from career struggles?
PARENT: Yes, when I conquered a major career setback, it helped build my strong sense resilience.
PARENT: I overcame a career setback, and that helped me build resilience.
PARENT: I experienced a career setback that ultimately helped me develop resilience.
PARENT: I went through a career setback that forced me to learn humility and resilience.
PARENT: I suffered a career setback that quietly taught me the hard lesson of resilience.

Self-disclosure / Secrecy: During breakfast, the husband gently shares that his work stress is affecting his mood and worries
about their future.

WIFE: Has work been bothering you lately, honey?
HUSBAND: I feel overwhelmingly stressed and I am really scared about our future.
HUSBAND: Work has been affecting me and I have concerns about our future.
HUSBAND: I feel a little stressed and I’m worried about what lies ahead for us.
HUSBAND: Work has been more challenging than usual but I’m keeping my worries to myself.
HUSBAND: I’m managing work stress, there’s nothing serious going on.

Table A2: Example conversations from our CAC dataset. We show one example for each stylistic axis.
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Abstract
Explainable AI (XAI) aims to support people
who interact with high-stakes, AI-driven deci-
sions, and the EU AI Act requires that users
can appropriately interpret high-risk AI system
outputs (Article 13) and that human oversight
prevents undue reliance (Article 14). Yet the
Act offers little technical guidance on imple-
menting explainability, leaving interpretability
methods difficult to operationalize and compli-
ance obligations unclear. To address these gaps,
we interviewed eight domain experts across
legal, compliance, and technical roles to ex-
plore (1) how explainability is defined and per-
ceived under the Act, (2) the practical and reg-
ulatory obstacles to XAI implementation, and
(3) recommended solutions and future direc-
tions. Our findings reveal that domain experts
view explainability as context- and audience-
dependent, face challenges from regulatory
vagueness and technical trade-offs, and advo-
cate for domain-specific rules, hybrid meth-
ods, and user-centered explanations. These
insights provide a basis for a potential frame-
work to align XAI methods—particularly for
AI and Natural Language Processing (NLP)
systems—with regulatory requirements, and
suggest actionable steps for policymakers and
practitioners

1 Introduction and Background

With the increasing deployment of large AI models
(e.g., pretrained language models and large lan-
guage models (LLMs)) in high-stakes domains,
their inherent “black-box” nature offers limited
transparency into decision-making processes, pos-
ing significant risks. Consequently, regulations
such as the GDPR and the EU AI Act require both
transparency and explainability. This has paved
the way for the development of extensive research
in the Explainable AI (XAI) field. Research in
XAI has been increasing, with numerous surveys
focused on critical domains such as healthcare, fi-
nance, and law (Chaddad et al., 2023; Richmond

et al., 2023; Yeo et al., 2025). Moreover, infor-
mation and knowledge management systems are
increasingly integrating explainable AI methods
to support trustworthy decision-making in differ-
ent domains (Rožanec et al., 2022; Mancuso et al.,
2025; Majumder and Dey, 2022; Chen et al., 2024;
Brasse et al., 2023)

The EU AI Act (Commission, 2021) mandates
transparency for high-risk AI systems via: Article
13(1): systems must enable users to interpret out-
puts appropriately and Article 14(4): human over-
sight must prevent undue reliance on AI decisions.
However, the Act provides no technical guidance
for implementing explainability methods (Panigutti
et al., 2023; Gyevnar et al., 2023). Existing XAI
techniques focus on algorithmic transparency but
often remain opaque to non-experts and difficult
to operationalize for intended users(Panigutti et al.,
2023; Golpayegani et al., 2023). Moreover, the
high-risk classification (Art. 6(2)) is ambiguous,
creating uncertainty about compliance obligations
(Golpayegani et al., 2023; Nisevic et al., 2024).
Consequently, many XAI methods offer mathe-
matical insight without satisfying legal standards
for human interpretability (Panigutti et al., 2023;
Kusche, 2024).

Previous research shows that no standardized
framework exists to assess whether XAI methods
satisfy the EU AI Act’s transparency mandates
(Sovrano et al., 2022; Panigutti et al., 2023). Sec-
ond, legal expectations for explainability remain
ambiguous, with no consensus on what qualifies as
an acceptable explanation (Panigutti et al., 2023;
Gyevnar et al., 2023). Third, research rarely inte-
grates explainability techniques with compliance
mechanisms, as most studies address XAI methods
and regulatory frameworks in isolation (Hacker,
2023; Nisevic et al., 2024).

Despite extensive XAI research, little work has
engaged experts on how current methods align with
the EU AI Act’s transparency and explainability
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requirements. With key compliance deadlines ap-
proaching (Timeline, 2024), understanding prac-
titioners’ views on the feasibility and challenges
of meeting these mandates is critical yet largely
unexplored. Aiming to address these gaps, we con-
ducted an interview study with 8 domain experts
from Europe, addressing the following Research
Questions (RQs):

• RQ1: How do domain experts define and per-
ceive explainability in the context of the EU
AI Act’s transparency requirements, and what
usability and technical factors shape these
perceptions?

• RQ2: What practical and regulatory obsta-
cles do practitioners face when implementing
XAI to comply with the EU AI Act?

• RQ3: What solution concepts and future di-
rections do domain experts recommend for
aligning XAI methods with regulatory require-
ments?

This work investigates domain experts’ perspec-
tives on the intersection of XAI and the EU AI
Act, focusing on perceptions and the challenges of
implementing XAI to achieve compliance. This
paper provides an empirical perspective grounded
in expert interviews and offers evidence-based and
actionable insights for aligning XAI with regula-
tory demands. The remainder of the paper is struc-
tured as follows: Section 2 introduces the research
methodology; Section 3 presents the results of our
study; Section 4 reviews related work in the lit-
erature. Finally, Section 5 discusses our findings,
presents our conclusions, and outlines future work
and study limitations.

2 Research Methodology

We followed a qualitative research approach and
drew on the experiences of experts by conducting
semi-structured interviews (SSI), which offer flexi-
bility while retaining a structure for data collecting
and enable a full analysis of participants’ experi-
ences (DiCicco-Bloom and Crabtree, 2006). To ex-
amine the potential gaps and trends in the literature,
we first conducted an initial literature review (Fresz
et al., 2025; Freiesleben and König, 2023; Rožanec
et al., 2022; Mancuso et al., 2025; Majumder and
Dey, 2022; Chen et al., 2024; Brasse et al., 2023)
to build our knowledge base and as the founda-
tion for the questionnaire. Then, we interviewed

experts and professionals to collect input on the
intersection between XAI and the EU AI Act, fo-
cusing on understanding the context, interventions,
mechanisms, and outcomes of XAI implementa-
tions while addressing regulatory compliance and
practical challenges. We describe below the study
design, data collection, and data analysis of our
research.

2.1 Study Design

Drawing on the five-step process of Kallio et al.
(2016), we developed our semi-structured inter-
view guide as follows: (1) Prerequisites: Ensured
that researchers possessed sufficient background
in XAI, law, and policy to identify key topics and
appreciate multiple stakeholder perspectives. (2)
Literature review: Conducted a literature review
to build a conceptual framework, focus on AI Act
compliance issues, and identify knowledge gaps.
(3) Drafting: Created an initial question set combin-
ing core concepts and flexible prompts to explore
experts’ views on XAI under the EU AI Act. (4)
Pilot testing: Refined wording, structure, and flow
through three internal iterations and a final super-
visor review. (5) Finalization: Documented the
complete guide to ensure replicability for future
studies.

We reached out to experts and professionals in
the fields of law, policy, and AI development, as
the EU AI Act is a complex regulatory instrument
to ensure domain diversity in our interviews. We
assumed expertise when the participants had 4
years or more of experience in the aforementioned
fields. Recruitment occurred in two waves: an ini-
tial phase (December 2024) via personal contacts,
third-party introductions, and online searches, fol-
lowed by a snowball phase (January 2025) based
on interviewee recommendations. In total, we
contacted 50 candidates between December 2024
and January 2025 via email, LinkedIn, and phone.
Among the 50 candidates, 8 expressed interest in
participating in an interview. We present demo-
graphic information on our participants in Table
1. All participants we interviewed were based in
Europe, reflecting our focus on those subject to
the EU AI Act. Except for P1, a government of-
ficial, all worked in the private sector. Each had
at least five years’ experience in law, policy, or AI
development.
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Participant Position Expertise Experience Organization Size

P1 Researcher Legal Expert, Regulatory Compli-
ance

10 University Large

P2 Senior Data Engineer Data Platforms and Governance 7 Consulting Firm Large
P3 AI Consultant Regulatory Technology 20 Consulting Firm Large
P4 CEO AI Education and Training 15 AI Company Small
P5 Account Executive Enterprise Data & AI Solutions 10 AI & Software

Company
Large

P6 Chief Research Scien-
tist

NLP and Explainable AI Research 10 AI Research Firm Medium

P7 AI Governance Con-
sultant

Strategic Innovation Management &
AI Governance

5 Telecommunications
Company

Large

P8 Research Scientist NLP and Explainable AI 13 AI Research Firm Medium

Table 1: Overview of Interviewee Demographics. Experience is measured in years.

2.2 Data Collection

We conducted semi-structured interviews via Mi-
crosoft Teams between December 2024 and March
2025. To achieve observer triangulation (Runeson
and Höst, 2009), two researchers attended each
session. At the outset, participants were briefed
on recording procedures, anonymization protocols,
and the intended use of their transcripts. The re-
search objectives and interview structure were re-
iterated to ensure understanding. Although the
sequence and wording of questions remained fixed,
the semi-structured format permitted slight modi-
fications in response to conversational flow. Inter-
view prompts were drawn from themes identified
during the preliminary literature review and orga-
nized into five thematic sections: (1) Background
and common basis which included collecting foun-
dation data about the participants like their profes-
sional background (2) Explainability perceptions
where participants were asked on the definition of
explainability and how they perceive its usability
and limitation (3) XAI implementation challenges
and (4) Regulatory gaps and compliance risks and
(5) Future directions and solution concepts and fi-
nally (6) Closing where we invited participants to
share any additional insights and to indicate their
willingness for follow-up contact or to recommend
other participants. To ensure reproducibility and
transparency, we include the full interview ques-
tionnaire in Appendix A.

2.3 Data Analysis

The interviews were recorded and transcribed with
the help of otter.ai with the participant’s consent.
We omit the full interview transcripts as the partici-
pants requested anonymity. We then systematically
coded the transcriptions following the thematic ap-
proach described by (Braun and Clarke, 2006) as

follows: The following guidelines were applied
and adapted to our data:
(1) Familiarization with extracted data: we read
and re-read the interview transcripts to identify
relevant data and initial patterns. Extracted data
were organized in Excel according to the questions
in the interview guide.
(2) Generating initial codes: we systematically
analyzed each transcript, assigning concise labels
(codes) to meaningful text segments. Codes were
entered in a dedicated Excel column to facilitate
topic filtering.
(3) Searching for themes: related codes were
grouped into broader categories (themes) that re-
flect the research questions. We added a “theme”
column in Excel to cluster codes accordingly.
(4) Reviewing themes: we checked each provisional
theme against the full dataset to ensure it accu-
rately represented the underlying patterns and re-
fined them for coherence.
(5) Defining and Naming Themes: final themes
were precisely defined and named. Each theme’s
description was recorded in Excel along with its
linkage to the corresponding research question.
(6) Synthesizing findings: we synthesized and pre-
sented the thematic findings using illustrative data
extracts to construct a coherent narrative of our
findings (Braun and Clarke, 2006).

3 Results

In this section, we present the results from our
SSI study, we organize the results according to the
thematic coding process explained earlier. Table
2 presents the final themes developed to address
our research questions, derived from initial coding
of participant responses and subsequent thematic
grouping. In the next subsections, we present re-
sults of each of the thematic sections.
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Main Theme Description Codes

Explainability Perceptions
(RQ1)

How experts define explainability and
perceive its usability and limitations.

Lack of established definition
User-specific definitions
Technical complexity

Implementation Challenges
(RQ2)

Difficulties in applying XAI methods
in practice.

Regulatory vagueness
Accuracy trade-offs
Technical expertise required

Regulatory Gaps and Compli-
ance Risks (RQ2)

Regulatory insights, compliance chal-
lenges, and possible mitigations.

Lack of specific guidance
Superficial compliance risks
Lack of regulatory sandboxes

Future Directions and Solu-
tion Concepts (RQ3)

Expert recommendations on advanc-
ing XAI methodologies and regula-
tions.

Hybrid approaches
User-centered explanations
Domain-specific regulations

Table 2: Key themes, descriptions, and codes relevant to the research questions

3.1 Perceptions of Explainability (RQ1)

Table 3 presents some representative answers from
participants regarding their input on their percep-
tions of explainability. Participants emphasized the
absence of a standardized definition of explain-
ability and related XAI terms, noting the impor-
tance of a consistent framework. Most agreed that
explainability must be context-dependent and tai-
lored to various stakeholders: “explainability must
vary based on the intended user and application
domain.” (P1). P3 reinforced this point, stating,
“Every stakeholder understands explainability dif-
ferently.” Concurrently, P2 mentioned that “current
methods are not easily understood by non-expert
users,” highlighting the inherent technical com-
plexity. Together, these findings indicate a clear
consensus on the need for context-dependent and
user-specific explainability. They also reveal a
substantial gap between existing theoretical con-
structs and practical implementation.

3.2 Implementation and Compliance
Challenges (RQ2)

To answer RQ2, we asked the participants about
their challenges and barriers to implementing the
XAI method in practice, mainly for compliance
with the EU AI Act. We present in Table 4 some
representative answers from participants. Partici-
pants reported multiple challenges in implementing
XAI methods. First, regulatory vagueness was fre-
quently highlighted. P2 and P8 criticized the signif-
icant difficulties arising from unclear definitions of
compliance under the EU AI Act, suggesting that
the lack of concrete guidance hampers practical
implementation. P2 stated, “Clear guidance from
the EU AI Act is missing, making practical com-
pliance difficult to achieve.” P8 echoed this con-
cern: “Clearer compliance definitions are needed

to effectively operationalize these requirements.”
Second, accuracy trade-offs emerged as a promi-
nent barrier. P4 and P6 noted an inherent conflict
between interpretability and model accuracy. As
P4 remarked, “When we aim for transparent expla-
nations, predictive accuracy often suffers.”

A lack of general technical expertise within
organizations was identified as a significant hurdle.
P1, P3, and P7 criticized many organizations for
lacking dedicated AI teams or trained specialists
in explainability and transparency P1 particularly
highlighted the “the complexity of explainability
tools is often underestimated" and how "teams lack
the technical skills required to implement them
effectively”(P1).

Conclusion on implementation challenges: un-
clear regulations, the trade-off between trans-
parency and performance, and insufficient technical
capacity collectively obstruct the adoption of XAI
in practice for sake of compliance.

3.3 Regulatory Gaps and Compliance Risks
(RQ2)

To further answer RQ2, we collected from inter-
viewees their input on the gaps in regulations and
potential risks of implementing XAI under the cur-
rent AI Act from compliance, and also some possi-
ble mitigations to these challenges. In Table 5 we
present results. The greatest concern regarding the
AI Act was a lack of specific guidance. They ex-
pressed concern about the potential for superficial
or even ineffective compliance strategies. Interview
results show repeated emphasis from participants
on the absence of clear standards, where “Explicit
standards for compliance would greatly improve
transparency efforts” (P3). P5 emphasized that
“The Act needs clearer standards for transparency
compliance”, and P8 highlighted how a “Clearer
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Code Representative participants answers

User-specific explanations "You need tailored explanations for different user groups." (P5)
"Explanations must fit the cognitive abilities of the users." (P7)

Technical complexity "Common explainability tools like SHAP are too technical for most end-
users." (P4)

Lack of established definition "The industry lacks a standard definition for explainability." (P6)
"There’s still no universally agreed definition of explainability." (P8)

Table 3: Representative answers on explainability perceptions

Code Representative participants answers

Technical expertise "The complexity of explainability tools is often underestimated. Teams lack
the technical skills required to implement them effectively." (P1)
"Few companies actually have the technical expertise in-house to leverage
advanced XAI methods." (P3)
"Organizations without specialized AI teams find it especially difficult to
implement these tools correctly." (P7)

Regulatory vagueness "Clear guidance from the EU AI Act is missing, making practical compliance
difficult to achieve." (P2)
"The EU AI Act does not specify what exactly counts as transparent or
interpretable." (P5)
"Clearer compliance definitions are needed to effectively operationalize trans-
parency." (P8)

Accuracy trade-offs "When we increase interpretability, we lose a lot in accuracy. It’s a funda-
mental trade-off." (P4)
"Achieving full transparency in AI means often sacrificing predictive accu-
racy." (P6)

Table 4: Representative answers on implementation challenges

guidance from the EU would help companies im-
plement meaningful XAI.” These results point to
gaps in the AI Act in terms of an overarching lack
of specific and operational guidance. Participants
also highlighted some risks that could result from
enforcing compliance where in the absence of pre-
cise definitions, organizations may adopt “super-
ficial explanations just to meet regulations” (P1)
or “easy but ineffective solutions to meet vague
legal requirements” (P4), our study results indi-
cate participants worry that companies may end up
merely “checking the box” rather than genuinely
implementing/adopting explainability to achieve
superficial compliance with the regulation which
stem from the regulatory vagueness discussed be-
fore. This also indicates the need to come up with
and implement effective checkpoints to prevent
this.

As for potential mitigation strategies, some par-
ticipants emphasized on the need and value of reg-
ulatory sandboxes, as "regulatory sandboxes allow
realistic testing of compliance strategies safely"
(P1), and P3 further stressed that "explicit stan-
dards for compliance would greatly improve trans-
parency efforts", noting the lack of specificity in

current regulations. Overall, results reflect a clear
demand from experts and professionals for more
concrete guidance on explainability from regula-
tors.

3.4 Future Directions for Compliance (RQ3)

We also asked participants about future directions
for strategies and recommendations from an XAI
and regulatory perspective to facilitate meeting reg-
ulatory requirements in a practical way. Table 6
presents a subset of participants’ answers on this
topic.

Domain-specific and tailored regulations were
frequently mentioned, mainly as “tailored regula-
tions for different sectors could improve practical
compliance” (P5). P1 emphasized that “explain-
ability should be regulated with sensitivity to spe-
cific industry needs”. These results suggest that a
one-size-fits-all approach is not feasible, as trans-
parency requirements vary across AI application
domains. Hybrid approaches also emerged as
a main theme where participants emphasized hy-
brid methods could balance interpretability with
model performance. P2 emphasized, “A blend of
accuracy and interpretability is crucial”, and P6
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Code Representative participants answers

Superficial compliance risks "Companies might adopt easy but ineffective solutions to meet vague legal
requirements." (P4)
"Without clarity, organizations might adopt superficial solutions just for
compliance." (P7)

Lack of regulatory sandboxes "Regulatory sandboxes allow realistic testing of compliance strategies safely."
(P2)
"Testing in safe regulatory sandboxes helps clarify vague regulatory require-
ments." (P6)

Lack of specific guidance "The Act needs clearer standards for transparency compliance." (P5)

Table 5: Representative answers on regulatory implications

Code Representative participants answers

Domain-specific regulations "Explainability should be regulated with sensitivity to specific industry
needs." (P1)

Hybrid approaches "Hybrid methods would allow balancing accuracy and interpretability effec-
tively." (P7)

User-centered explanations "Research should focus more explicitly on the usability of explanations." (P8)

Table 6: Representative answers on future directions

added, “Integrating technical detail and practical
interpretability is essential,” highlighting the need
to combine complementary explanation techniques.
The final theme concerned user-centered expla-
nations, “understanding user needs should be the
priority of future research” (P3), a statement which
was also echoed by P4, who remarked that “user-
oriented research is crucial to developing meaning-
ful explanations.” participants emphasized that XAI
solutions must be tailored to stakeholders’ abilities
and contexts to ensure explanations are both usable
and informative.

These insights reflect evolving perspectives on
the interaction between XAI development and the
EU AI Act, illustrating directions for tailoring ex-
plainability methods and clarifying regulation to
achieve explanations that are both user-aligned and
compliant.

4 Related Work

Recent studies have examined the intersection of
XAI and the EU AI Act, highlighting some reg-
ulatory and technical challenges. Panigutti et al.
(2023) conducted an interdisciplinary analysis of
how the Act addressed black-box AI systems, re-
viewing existing XAI techniques and noting per-
sistent limitations in meeting the Act’s objectives.
Using a case study on AI-based exam proctoring,
they illustrated how transparency and human over-
sight could be implemented even when decisions
were not inherently interpretable. Similarly, Fresz

et al. (2025) analysed explainability requirements
under European and German law, finding that dif-
ferent legal frameworks demanded distinct XAI
properties and that current techniques often failed
to meet expectations, particularly regarding fidelity
and confidence estimates. These shortcomings re-
flected technical trade-offs, as many post-hoc meth-
ods lacked faithfulness guarantees, posing compli-
ance challenges. Pavlidis (2024) explored various
approaches to advance XAI and discussed the dif-
ficulties of embedding explainability into gover-
nance and policy, with attention to standard-setting,
oversight, and enforcement. Hacker and Passoth
(2022) further emphasized the context-dependent
nature of explainability, noting that the appropri-
ate form and degree of transparency depended on
specific circumstances. They also observed that
the Act’s obligations were largely aimed at profes-
sional users of high-risk AI systems rather than the
general public, which could result in transparency
measures that overwhelm non-expert users with
overly technical details.

While prior studies have examined the EU AI
Act’s transparency provisions from legal, policy,
or interdisciplinary perspectives (Panigutti et al.,
2023; Fresz et al., 2025; Pavlidis, 2024; Hacker
and Passoth, 2022), they have primarily focused
on conceptual analyses, legal interpretations, or
technical reviews of existing XAI methods. While
they provide valuable insights, they don’t systemat-
ically engage with practitioners and domain experts
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to understand how explainability is interpreted in
real-world settings, nor how the Act’s high-level
mandates translate into concrete implementation
practices. Our study fills this gap by using semi-
structured interviews with eight experts in high-
stakes AI to examine how they interpret explain-
ability under the EU AI Act, the factors influencing
their views, and the practical barriers to compli-
ance, revealing nuances often overlooked in legal
or technical analyses. Our work contributes action-
able insights by synthesizing experts’ recommenda-
tions into potential solution concepts.

5 Discussion and Conclusion

Our interview study findings with eight experts re-
veal that explainability is fundamentally context-
and user-specific, challenging the EU AI Act’s
broad transparency mandates. In practice, or-
ganizations struggle with three main obstacles:
(1) regulatory vagueness, which leaves compli-
ance criteria undefined, (2) the inherent accu-
racy–interpretability trade-off, forcing a choice
between performance and clarity, and (3) limited
technical expertise, which delays effective inte-
gration of XAI tools. Together, these factors could
lead to superficial “box-checking” rather than gen-
uine explainability.

Experts propose a threefold strategy to bridge
these gaps. (1) domain-specific regulations would
adapt transparency requirements to each sector’s
risk profile. (2) hybrid approaches combining high-
accuracy models with simpler explainers can recon-
cile predictive performance with comprehensibility.
(3) user-centered design must guide both the devel-
opment and evaluation of explanations, ensuring
they meet stakeholders’ cognitive and operational
needs.

Our findings have several implications for dif-
ferent stakeholders. Researchers are encouraged to
develop evaluation frameworks that jointly assess
legal compliance and end-user comprehensibility.
Policymakers and regulators should consider refin-
ing the EU AI Act by adding sector-tailored crite-
ria and establishing regulatory sandboxes for safe
testing. On the other hand, practitioners can use
these results as a basis to invest in interpretabil-
ity training and adopt flexible XAI pipelines. By
synthesizing expert insights on definitions, chal-
lenges, and solution concepts, this work lays the
groundwork for aligning XAI methods with reg-
ulatory requirements and advancing trustworthy

AI in high-risk domains. Beyond regulatory align-
ment, our findings have implications for the design
of explanation interfaces and interaction modali-
ties, particularly those relying on natural language
(Atanasova et al., 2023; Madsen et al., 2024, 2022).
Incorporating user-centered design principles into
explanation generation (Mishra et al., 2024; Wang
et al., 2025) and presentation can help bridge the
gap between legal compliance and meaningful hu-
man understanding, an intersection of growing in-
terest in human-computer interaction and NLP re-
search.

Unlike prior work, which has mainly offered
legal or conceptual analyses of the EU AI Act’s
explainability requirements, our study provides
an empirical perspective grounded in expert inter-
views. By capturing how practitioners interpret
explainability, the challenges they face in achiev-
ing compliance, and their proposed solutions, we
offer evidence-based, actionable insights for align-
ing XAI methods with regulatory demands.

We present this study as work in progress
and hope it catalyzes dialogue between HCI and
XAI/NLP researchers, laying a foundation for fur-
ther work on explainability under regulatory man-
dates. With this study, we aim to advance efforts
to bridge the gap between human- and regulator-
oriented explainability and technical explainability
in AI/NLP.

Future Work In our current sample, intervie-
wees are primarily based in Europe, reflecting the
particular relevance of the EU AI Act in this re-
gion. As future work, we plan to conduct addi-
tional interviews with experts from both European
and non-European countries to expand the sam-
ple and enable comparative analyses between EU
and non-EU perspectives. A complementary direc-
tion is to field a large-scale survey to validate and
generalize our qualitative findings, quantify key
insights, and broaden their applicability. Together,
these extensions aim to support more concrete rec-
ommendations and implications for the design of
explanation systems, including natural language-
based approaches.

Limitations This study’s modest sample size,
while comparable with relevant research (Warren
et al., 2025), may limit generalizability beyond
the examined contexts. However, thematic satu-
ration appeared to be reached, as no new themes
emerged in later interviews. All interviews were
conducted in English, and although the sample in-
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cluded participants from diverse linguistic back-
grounds, conducting them in additional languages
could have broadened participation. We invite fu-
ture research to build on and validate these findings
through larger, more diverse samples. While the in-
terviews were designed to follow a consistent and
impartial approach, and reflexivity was actively
maintained throughout the analysis, the findings
may still carry the inherent biases and limitations of
self-reported data (Donaldson and Grant-Vallone,
2002). In addition, one limitation of these types of
works (e.g., prior related work we discussed and
our work) could be the evolving nature of the EU
AI Act, driven by the rapid development of AI re-
search and practice. The Act has undergone several
key milestones. In our study, we referred to the
latest version of the Act available as of December
2024.
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A Interview Guide

Disclaimer

Before we begin, I want to inform you that this in-
terview will be recorded for transcription purposes
and used solely for a research paper. Your identity
will remain confidential; no identifiable informa-
tion will appear in the final document. External
AI tools may be used for transcription. Could you
please confirm your consent to these terms?

Introduction

This interview focuses on understanding the role
of explainability in AI systems, particularly in the
context of the EU AI Act. I will ask about your
experiences, opinions, and insights regarding ex-
plainable AI, regulatory challenges, and practical
tools. I can provide further clarification on any
topic during the interview if needed.

Warm-Up Questions

• What is your current role?

• Could you briefly share your background and
experience with AI and explainable AI?

• When you hear the word "explainability" in
the context of AI, what does it mean to you?

• How familiar are you with the EU AI Act and
its provisions related to AI transparency and
explainability?
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Understanding the EU AI Act
Background Note: The EU AI Act emphasizes
requirements like transparency, accountability, and
human oversight for high-risk AI systems. Ex-
plainability is considered essential to meet these
requirements.

• Article 13 addresses transparency and provi-
sion of information to deployers. It specifies
that high-risk AI systems must be designed to
be transparent, where providers of high-risk
AI systems must design systems to allow for
traceability, ensuring that their operation and
outputs are explainable to relevant stakehold-
ers.

• Article 14 emphasizes human oversight and
requires systems to provide meaningful in-
formation to enable users to understand and
intervene appropriately.

• Article 15 addresses accuracy, robustness, and
cybersecurity requirements, stating that high-
risk AI systems must be designed to be accu-
rate, robust, and secure.

Questions
• Which specific requirements, obligations, or

guidelines in the EU AI Act do you think will
have the most significant impact on explain-
able AI practices?

• From your perspective, how does explainabil-
ity contribute to the EU AI Act’s goals of
transparency and accountability?

• Are there parts of the EU AI Act’s explain-
ability requirements that you find unclear or
difficult to interpret? If so, which ones?

• What are the limitations of current explainabil-
ity tools in meeting oversight expectations?
Are current explainability tools sufficient?

• What challenges do you think recent advances
in AI systems, such as Large Language Mod-
els (LLMs) like ChatGPT, pose to explain-
ability? How might these challenges impact
compliance with regulations like the EU AI
Act?

• What challenges do you think ensuring ex-
plainability presents for AI systems like Large
Language Models (LLMs) in meeting the EU
AI Act’s requirements for transparency and
oversight?

Challenges in Implementation
• What challenges have you faced (or foresee)

in implementing explainability under the EU
AI Act?

• Do you think explainability requirements con-
flict with other priorities, such as innovation,
intellectual property, or system performance?
How can this tradeoff be balanced?

Success Factors in Implementation
• What solutions or success factors do you think

are critical for addressing these challenges
and successfully implementing explainability
under the EU AI Act?

• Can you provide examples of strategies, tools,
or frameworks that organizations have used
effectively to mitigate explainability chal-
lenges?

Best Practices
• Have you seen examples of successful explain-

ability practices in your field? What made
them successful?

Future Trends

• What trends do you see shaping explainability
in the next few years? Do you think they will
simplify compliance with the EU AI Act?

Closing Questions
• If you could improve one aspect of the EU AI

Act’s explainability provisions, what would it
be?

• Are there areas of explainability research you
think are underexplored but critical for com-
pliance?

• Is there anyone in your professional network
you could recommend who might also provide
valuable insights for this research?

• Is there anything else you want to share
about explainability or the EU AI Act that
we haven’t covered?
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Abstract

Subjective data annotation (SDA) plays an im-
portant role in many NLP tasks, including sen-
timent analysis, toxicity detection, and bias
identification. Conventional SDA often treats
annotator disagreement as noise, overlooking
its potential to reveal deeper insights. In con-
trast, qualitative data analysis (QDA) explicitly
engages with diverse positionalities and treats
disagreement as a meaningful source of knowl-
edge. In this position paper, we argue that hu-
man annotators are a key source of valuable in-
terpretive insights into subjective data beyond
surface-level descriptions. Through a compar-
ative analysis of SDA and QDA methodolo-
gies, we examine similarities and differences in
task nature (e.g., human’s role, analysis content,
cost, and completion conditions) and practice
(annotation schema, annotation workflow, an-
notator selection, and evaluation). Based on
this comparison, we propose five practical rec-
ommendations for enabling SDA to capture
richer insights. We demonstrate these recom-
mendations in a reinforcement learning from
human feedback (RLHF) case study and envi-
sion that our interdisciplinary perspective will
offer new directions for the field.

1 Introduction

In traditional NLP practice, disagreements often
arise from systematic factors such as annotators’
diverse backgrounds, life experiences, and values
(Sap et al., 2021; Santy et al., 2023; Sandri et al.,
2023), which are typically treated as noise to be
corrected or discarded. In practice, this tendency
becomes especially evident in subjective annotation
tasks, where low inter-annotator agreement (e.g.,
low Cohen’s kappa) reveals substantial disagree-
ment among annotators (Yeh et al., 2024). Recently,
researchers begun to recognize both the challenges
of handling subjectivity and the potential value of
subjective data (Kapania et al., 2023; Zhang et al.,
2021), making it a key research focus to leverage

Qualitative Data AnalysisSubjective Data Annotation

Descriptive level

Disagreement from diverse 
annotator perspectives is often 
seen as problematic. How can 
we capture the rich 
information it contains?

Borrowing from Qualitative Data Analysis to capture interpretive-level 
information, we propose ways to embed values in Subjective Data Annotation

Descriptive 
Level

Interpretative 
Level

Meaning Construction 

Figure 1: Motivation Illustration. In SDA, deeper
meanings that often underlie annotator disagreements
are commonly discarded. We argue that human anno-
tators are a key source of such meanings and play a
central role in capturing them. Drawing on theories and
practices from Qualitative Data Analysis, we propose
recommendations for capturing deeper meanings.

subjectivity as a meaningful source of informa-
tion (Muscato et al., 2025). By capturing richer
information through subjective human judgment, a
dataset could contain high-quality, naturally gen-
erated labels with more nuanced information than
AI-generated or laboratory-collected data, poten-
tially offering greater benefits for later applications.
For example, the WILDJAILBREAK dataset (Jiang
et al., 2024), which captures real user–LLM in-
teractions involving malicious prompts, contains
more diverse and effective attack strategies than
lab-generated datasets, thereby enabling models
trained on it to more comprehensively identify vul-
nerabilities.

Existing approaches for handling subjective data
include multi-label annotation to capture mixed
meanings (Stureborg et al., 2023; Çöltekin, 2020),
hierarchical labeling to represent layered semantic
structures (Stureborg et al., 2023; Troiano et al.,
2018; Bhat et al., 2021), and pilot testing of an-
notation schemas (Çöltekin, 2020; Carlile et al.,
2018a), etc. to improve annotators’ understanding
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and strengthen schema robustness.
Yet, these practices, while capturing more infor-

mation from subjective data comparing to binary
annotation, still focus on the descriptive level rather
than the interpretive level, missing the opportunity
to model the true complexity of human preferences.
This limitation stems from the undervaluing of an-
notators’ roles in subjective data annotation (SDA)
and from insufficient reflection on both the roles
humans can play and the human factors that may
influence annotation outcomes. While a few stud-
ies have highlighted the importance of annotator-
related factors by leveraging annotator–annotation
patterns (Kairam and Heer, 2016), incorporating
annotator views through imputation methods (Low-
manstone et al., 2023), or modeling disagreement
distributions (Weerasooriya et al., 2023) to improve
annotation quality, there is still limited understand-
ing of what humans can contribute in SDA.

In this position paper, we argue that humans
are a valuable source of information in SDA
and play a critical role in capturing subjective
data’s richness by (1) at the descriptive level, rec-
ognizing layered and nuanced meanings in the data,
and (2) at the interpretive level, offering diverse
interpretations shaped by their positionalities. To
support our argument, we draw on a related yet
distinct disciplinary method–qualitative data anal-
ysis (QDA)–which, like SDA, aims to derive and
organize meaning from natural language. In par-
ticular, QDA has been widely applied in domains
such as psychology, HCI, political science, and so-
cial science (Willig, 2012; Blandford et al., 2016;
Blatter et al., 2016; Denzin, 1988; Gao et al., 2023,
2024, 2025). QDA encompasses numerous specific
methods developed over the past six decades, be-
ginning with the emergence of Grounded Theory
in the 1960s (Glaser and Strauss, 2017; Charmaz,
2005) and followed by approaches such as The-
matic Analysis (Maguire and Delahunt, 2017). As
illustrated in Figure 1, SDA typically operates at
the visible, descriptive level, whereas QDA extends
to the interpretive level, enabling the extraction of
richer information.

As part of our reflection, we analyzed 101 SDA
papers, comparing their tasks and practices with
those of QDA. This comparison revealed both sim-
ilarities and differences, leading us to propose five
recommendations for improving SDA methods to
better incorporate human interpretations: (1) de-
sign reward mechanisms to incentivize annotators
to engage deeply with the data and offer richer in-

terpretations; (2) encourage annotators to extend
researcher-assigned labels and allow annotation
schemas to evolve during the process; (3) conduct
pilot tests before formal annotation to better cap-
ture annotators’ interpretations; (4) invite anno-
tators to share positionality information, such as
experiences, values, and beliefs beyond basic demo-
graphics; and (5) request that annotators explain the
rationale behind their chosen labels. We illustrate
the potential application of these recommendations
through a case study in an RLHF scenario.

In summary, by presenting a systematic compar-
ison of SDA and QDA, this paper contributes both
conceptual clarity and actionable guidance for the
creation of high-quality subjective datasets. Our
goal is not to argue that SDA should achieve the
same level of interpretive depth as QDA, given their
inherently different purposes. Rather, we pursue
two objectives. First, we aim to provide a method-
ological comparison that uncovers strategies for
handling disagreements by examining how QDA
systematically treats interpretive variation. Sec-
ond, we seek to offer actionable guidance informed
by systematic methodological insights for creating
higher-quality datasets, which can support down-
stream NLP tasks where understanding human pref-
erences is crucial (Ganguli et al., 2022). Over-
all, these strategies serve as a toolbox that enables
practitioners to navigate trade-offs between quality,
time, cost, and effort. Practitioners satisfied with
surface-level labels may find such strategies unnec-
essary. Yet, in cases where high-quality datasets are
needed, particularly in safety-critical or sensitive
contexts that demand greater care to avoid harm-
ful downstream effects (Sambasivan et al., 2021),
our recommendations illustrate how QDA-inspired
strategies can enhance dataset construction. We
hope our interdisciplinary perspective will open
new conversations, inform novel SDA practices,
and ultimately advance the field.

2 Related Work

2.1 Disagreement as a Source of Information

Traditionally, annotators’ disagreements on subjec-
tive data annotation (e.g., emotional intensity (Ka-
jiwara et al., 2021), gender discrimination as-
sessment (Kajiwara et al., 2021), text complex-
ity (Seiffe et al., 2022), etc.) have been seen as
noises, viewed as problematic and indicative of
low quality, yet, researchers have questioned these
assumption and explored the reasons behind anno-
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tators’ disagreements (Uma et al., 2022; Aroyo
and Welty, 2015; Fleisig et al., 2023; Sandri et al.,
2023). A major source of disagreement is anno-
tators’ preference. Different annotators shaped
by their demographics, life experiences and po-
sitionalities (Zhang et al., 2023), they may focus
on different parts of the text and may justify their
views in varied ways: some may prioritize nega-
tive emotions, while others emphasize positive ele-
ments, based on different reasons. Several methods
have been proposed to mitigate these annotation
drawbacks, such as using descriptive annotation
to capture multiple perspectives instead of single
labels (Rottger et al., 2022), or incorporating multi-
annotator labels to reflect disagreement (Davani
et al., 2022; Fornaciari et al., 2021). However, in
most SDA practices, humans are merely tasked to
assigning predefined labels or completing labeling
tasks specified by researchers (Daniel et al., 2018),
rather than engaging with the data to provide richer
interpretations, which leaves much valuable infor-
mation undiscovered and unused.

2.2 Qualitative Analysis Methodologies
QDA has been widely applied in psychology, so-
cial science, HCI, and other domains (Flick, 2013;
Glaser and Strauss, 2017). As a foundational
methodology, it has been developed over decades
(Glaser and Strauss, 2017). Like SDA, QDA
involves assigning labels to subjective, natural-
language text. However, rather than seeking a sin-
gle “ground truth,” QDA treats researchers them-
selves as the primary instruments of analysis. In
this tradition, researchers, not crowdsourced an-
notators, perform the “coding”, a process similar
to annotation. Their interpretations, shaped by di-
verse perspectives, are the central outcomes of the
research. Moreover, disagreement is valued: labels
and their assignments are iteratively created and
refined through discussion and reflection.

Data annotation and qualitative analysis are in-
herently sense-making processes: people assign
meanings to data through labels, and these mean-
ings are iteratively constructed through analysis
(Miceli et al., 2020). Meaning is co-constructed
between researchers/annotators and data–labeling
is not neutral but an interpretive act shaped by po-
sitionality and context (Charmaz, 2006). In QDA,
analysis occurs at two levels (Willig and Stain-
ton Rogers, 2017; Malterud, 2016; Gilgun, 2015;
Ngulube, 2015; James, 2013; Giorgi, 1992): (1)
At the descriptive level, researchers identify basic

information without interpretation, staying as close
as possible to the data. (2) At the interpretative
level, researchers offer their own understanding on
these descriptions, analyzing them through their
own positionalities. This is the core of QDA (Ngu-
lube, 2015; Flick, 2013), involves asking questions
such as: What is the concern here? How intense
or strong is it? What reasons are given or can
be reconstructed? With what intentions or pur-
poses? Different perspectives on these questions
are presented in sufficient detail and depth, and
researchers’ own biases and beliefs are explicitly
acknowledged. Given QDA’s strengths in captur-
ing diverse human perspectives on subjective data,
we argue that it could be particularly useful for
uncovering the value of such data.

2.3 Positionality in Qualitative Analysis
Positionality describes an individual’s worldview
influences the way they interpret data and gener-
ate knowledge. Positionality is influenced by both
fixed aspects (e.g. age and ethnicity) and fluid as-
pects (e.g. political views, geographical location
and life history) of identity (Patton, 2002; Frenda
et al., 2024; Wan et al., 2023; Wilson et al., 2022).

In qualitative research, where researchers are of-
ten seen as key instruments, positionality refers to
the stance that the researchers adopt, often framed
as insider (part of the community) or outsider (out-
side the group) (Dwyer and Buckle, 2009). Con-
ducting research as an insider has advantages, as
established knowledge and immersion can facilitate
recruitment and analysis, though it may also bring
biases (Unluer, 2012; Fleming, 2018; Holmes,
2020; Olmos-Vega et al., 2023). Importantly, in-
sider–outsider status is not a fixed binary but often
a continuum concept (Wilson et al., 2022).

In annotation work, positionality shapes how la-
bels are defined, explained, and applied. Teams
with different positional profiles may interpret the
same item differently, resolve disagreements in dif-
ferent ways, and accept different reasoning strate-
gies (Bayerl and Paul, 2011; Smales et al., 2020).
Yet, most annotation projects do not capture anno-
tators’ positionality, in contrast to qualitative re-
search where reflexivity is common (Olmos-Vega
et al., 2023; May and Perry, 2017).

In summary, QDA treats positionality as central
to understanding and interpreting data, whereas
SDA has traditionally not collected or reported an-
notators’ positionality (Prabhakaran et al., 2021).
Incorporating positionality into SDA could yield
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richer and more contextually grounded interpreta-
tions of subjective data (Santy et al., 2023).

3 Method

To systematically identify similarities, differences,
and opportunities between SDA and QDA, we
conducted a comparative analysis (Berg-Schlosser,
2015; Harvard College Writing Center, 1998). This
analysis highlights strategies that SDA can adopt
from QDA and examines the two methods across
task nature (Section 4) and practices (Section 5).
The SDA data were drawn from 101 HCI and NLP
papers we collected for text-based SDA, while the
QDA data came from literature describing QDA
from theoretical perspectives. Details of paper
dataset collection is in Appendix A. We report the
comparison results below.

4 Comparison from Task Nature

The goal and nature of a task can lead to differences
in practice. Thus, we first compare two methods
from four aspects in task nature. Table 1 summa-
rizes task nature comparison, and Appendix Table
2 outlines mapping of terms between two methods.

“Who to Annotate” is Different. In QDA, the
analysis instrument is the human researcher (Char-
maz, 2005; Richards and Hemphill, 2018; Maguire
and Delahunt, 2017; Saldaña, 2021). The individ-
uals who develop the primary codes (i.e., labels)
are typically the same ones who carry out the sub-
sequent coding (i.e., annotation) tasks. They are
usually involved throughout the entire analysis pro-
cess, with their understanding of the data’s insights
and theories deepening as the coding progresses.
Their engagement with the data is driven by their
own research motivations. After coding, they can
identify potential concepts and themes or form a
preliminary sense of underlying insights and theo-
ries within the data.

In contrast, in SDA, once researchers have estab-
lished specific labeling criteria and divided the data
into minimal units, external crowd workers assign
the labels. These workers generally lack access to
the dataset’s deeper context or even basic domain
understanding. Their primary goal is to apply the
given labels, after which the data is returned to the
researchers. Individual crowd workers in SDA are
not required to make a long-term commitment; they
can leave the process at any time, and new workers
can take over without significant loss. They con-

tribute only their labor to build the dataset and have
little motivation to offer deeper interpretations.

“What to Annotate” is Different. Both methods
involve handling unstructured natural language and
assigning categories, codes, or labels to text data.
In QDA, the length of the data unit and the types of
codes are more flexible. QDA coders can freely se-
lect the data unit based on their interests and focus,
and they have access to more context (Maguire and
Delahunt, 2017). Codes are developed and refined
iteratively throughout the QDA process.

In contrast, in SDA, the data unit (i.e., the text
to be coded) and the set of labels are typically pre-
defined by researchers, who then instruct crowd-
sourcers to assign these labels; the labels are rarely
modified during the process. Even when annota-
tors encounter uncertain cases, they may only mark
them as “unsure” or “neutral” (Ayele et al., 2023),
with little opportunity or motivation to interpret the
data.

“How Much Cost” is Different. Regarding
costs, in QDA, researchers usually perform the
coding themselves, so the primary costs are their
own time and any software or platforms used for
analysis. For example, ATLAS.ti, a popular QDA
tool, currently charges a monthly subscription fee
of $28 (Atlas.ti, 2025).

In contrast, SDA typically involves expenses for
paying annotators, who annotate data according to
predefined criteria; their compensation constitutes
the most part of SDA’s costs (Shmueli et al., 2021).
According to prior research, the average hourly
payment paid by annotation requesters in 2018 was
reported to exceed $11 (Hara et al., 2018).

“When to Complete” is Different. QDA con-
cludes when data saturation is reached. That is,
when no new codes or insights emerge, signify-
ing that the data has been fully examined and all
relevant themes identified (Saldaña, 2021).

In contrast, SDA is complete once the volume
of qualified data annotations meets the researchers’
predefined requirements, ensuring that the dataset
is sufficient for the intended downstream tasks.
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Subjective Data Annotation Qualitative Data Analysis
Data Type Unstructured natural language

Practice

Assign categories based on text content

Data unit is fixed
Data unit can be freely selected by
coders according to their interests and
focus

Labels are typically fixed during the
labeling process

Labels can be loosely defined and
adjusted during coding

Labels are often created by researchers
who may not perform the labeling

Labels are proposed by the coders
themselves

Purpose Dataset containing both data and labels
Insights derived from the data, rather
than from the labels themselves

Time Cost Weeks, months, or years
Termination
Criteria Dataset size Data saturation

Primary Cost Payments to labeling workers Software or platform fees
Common Platforms Amazon Mechanical Turk, Brat, etc. Atlas.ti, MaxQDA, NVivo, etc.
Advantages Large scale; can be crowdsourced Small scale; conducted by researchers

Form of Outcome Dataset containing raw text
and corresponding labels

Deep insights; theoretical contributions

Quality Measures Model performance;
Inter-Rater Reliability (IRR)

Rigor of analysis process, depth and
relevance of findings in addressing the
research questions

Post-Task Activities
1. Analyze the dataset
2. Train models for downstream tasks
3. Evaluate model performance

Write reports addressing the research
questions, based on the codebook and
coded quotations

Table 1: Similarities and differences between data annotation and qualitative data analysis task nature.

Recommendation 1

To capture richer insights, we recommend de-
signing appropriate reward mechanisms that
incentivize annotators to engage deeply with
the data and provide subjective interpretations
during the annotation process, rather than sup-
plying only basic labels.

5 Comparison from Practices

Examining SDA and QDA from a practical per-
spective could reveal strategies for SDA to adopt
QDA’s methods for managing disagreements and
generating richer insights.

5.1 Annotation Schema

In SDA, binary labeling simplifies decision into
two options, often aiming to pursue higher agree-
ment among annotators but may miss nuances
(Aleksandrova et al., 2019).

Hierarchical labels Researchers often use hier-
archical labels to capture various layers of infor-
mation in the subjective data. For example, in hate
speech detection, researchers modify labels from
general offensiveness to specific intensity level,

stances, target groups, and hate speech types (Bey-
han et al., 2022). For example, the statement “Peo-
ple from [X group] are all lazy and don’t deserve
any opportunities” is offensive at the meta-label
level, with a strong degree of offensiveness. It can
also be assigned a hierarchical label, e.g., X group
– offensiveness. Similarly, in argumentation analy-
sis, annotation may include layers of major claim
and premises to guide annotators distinguish com-
plex argumentative logic (Carlile et al., 2018b).
By structuring complex concepts into hierarchical
levels, this method captures the richness of data.

Quantitative Labels Likert scales offer a range
of responses commonly used for scoring sentiment
or bias (Cachola et al., 2018). For instance, an-
notators can label tweet sentiment on a five-point
scale: 1 – very negative, 2 – somewhat negative,
3 – neutral, 4 – somewhat positive, 5 – very pos-
itive. The phrase “welcome to my personal hell”
is an example of negative sentiment. Additionally,
multi-label schemes allow for the assignment of
multiple categories to a single item, accommodat-
ing the complexity of overlapping classifications.

Each scheme has its strengths and trade-offs.
While multiple schemes are available, they often do
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not permit annotators, particularly crowdsourced
workers, to make modifications, thereby missing
opportunities to capture annotators’ interpretations
when they struggle to assign definitive labels to
subjective data.

In QDA, hierarchical labels, multi-labels, and
free-text codes often coexist, as exemplified by
codebooks that include first-level codes, second-
level codes, and free-text categories. A single text
segment can be assigned multiple codes. These
coding structures are not fixed; rather, they are
frequently refined iteratively during the coding pro-
cess. When applying these codebooks, researchers
may adapt them to suit the needs of the data, offer-
ing a greater degree of flexibility.

Recommendation 2

To capture richer insights, we recommend en-
couraging annotators to extend the basic labels
assigned by researchers, such as adding free-
text labels, and encouraging researchers to al-
low the annotation schema to evolve during the
process when possible.

5.2 Annotation Workflow
Pilot Annotation In SDA, pilot annotation is
used to test annotation labels on a smaller dataset
before formal annotation. This method helps
identify and address potential guidelines, labeling
schemes, and annotator understanding issues, en-
suring a more effective formal annotation process
(El Baff et al., 2018). Sometimes, the pilot study
trains annotators on a small dataset, ensuring famil-
iarity with the task and guidelines (Schaefer and
Stede, 2022). On the other hand, this process can
also check annotator qualifications, and researchers
would exclude unqualified annotators after the pilot
study (Jayaram and Allaway, 2021). For the re-
searchers, the pilot study helps improve the clarity
of the guidelines, allowing for revision based on
feedback (Zeinert et al., 2021).

Discussion and Collaborative Annotation In
SDA, discussion and collaborative annotation are
effective methods to foster consensus among anno-
tators through dialogue and collective effort, typi-
cally involving groups of 2–10 annotators and re-
searchers. The discussion arises after annotators
independently label a dataset to resolve discrepan-
cies (Chen and Zhang, 2023). Also, deliberation
has shown its importance and can increase answer
accuracy in the crowdsourcing process (Schaek-

ermann et al., 2018). For instance, in an irony
detection study, annotators were initially given sim-
ple instruction to label a sample of 100 tweets as
‘Ironic’ or ‘Not Ironic.’ The annotation’s kappa
showed a low agreement (k = 0.37). After discus-
sion, the researchers refined the irony definition and
introduced an ‘ambiguous’ label. Two experts then
re-annotated the full dataset independently, achiev-
ing a much higher agreement (k=0.92) (Abbes
et al., 2020).

Iterative Annotation In SDA, it often have an-
notators repeatedly working on the same dataset
through multiple rounds. This method helps refine
their understanding and address divergence over
time. For example, in an argumentation mining
study, annotators first annotate the text by selecting
the main claim or noting its absence. Then, in the
next round, they identify the phrases that support
or attach the main claim. In the third round, they
annotate the premises spans and stances (Miller
et al., 2019).

In QDA, although many of the above practices
are similar (Richards and Hemphill, 2018), the use
of different instruments, where researchers them-
selves conduct pilot testing, enables them to in-
corporate additional ideas and refine the primary
codebook as “insiders”. This process also helps
researchers better grasp annotators’ perspectives
and identify ways to encourage deeper engagement.
Moreover, within-team discussions that draw on
diverse perspectives can lead to the development
of new codes, the clarification of definitions, and
the addition of illustrative examples. This process
is often iterative, with pilot testing and discussions
occurring over multiple rounds. In SDA, however,
pilot testing is typically intended to revise anno-
tation schemas rather than to understand and en-
courage the range of interpretations that different
people might hold. When conducted by researchers
with varied positionalities, it can reveal how differ-
ent annotators may interpret meanings. Such early
insights can help formulate hypotheses before any
annotators’ interpretations are collected.
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Recommendation 3

To capture richer insights, we recommend con-
ducting pilot testing within the research team,
encouraging members to act as annotators and
provide as many interpretations as possible be-
fore large-scale annotation. This process al-
lows researchers to anticipate how annotators
are likely to interpret the data and to design
more effective strategies for encouraging them
to share their perspectives. It may also inform
modifications to annotator recruitment.

5.3 Annotators

Collecting Annotator’s Data In SDA, to ensures
that annotators come from diverse backgrounds,
allowing them to provide a wider range of perspec-
tives and improve annotation quality. Researchers
usually collect crowd source workers’ basic profile
information, such as demographic data (Ding et al.,
2022) or personality survey results (Hettiachchi
et al., 2023), either before or after the annotation.

In QDA, researchers often serve as coders who
are continuously engaged in the coding process.
Within research teams, members recognize each
other’s demographic and positionality information
(e.g., values, life experiences, social locations).
Such positionality can shape how researchers de-
fine codes, assign them, and articulate explanations,
ultimately influencing the meanings they derive
from the data.

Recommendation 4

To capture richer insights, we recommend en-
couraging annotators to share positionality in-
formation, such as experiences, values, and
beliefs, beyond basic demographic data.

5.4 Evaluation

Evaluating Quality In SDA, commonly used
metrics are Fleiss’s kappa (Fleiss, 1971) (agree-
ment among multiple annotators), Cohen’s kappa
(Cohen, 1960) (agreement among two annotators),
Krippendorff’s alpha (Krippendorff, 2011) (agree-
ment among multiple annotators), percentage of
disagreement, accuracy, and F1 score. Usually, the
higher agreement means better annotation quality.

In QDA, although inter-rater agreement metrics
are sometimes used, researchers often prioritize
consensus—typically achieved through discussion
in which they clarify the rationale for assigning par-

ticular codes, resolve disagreements, and, in some
cases, preserve divergent interpretations (McDon-
ald et al., 2019).

Recommendation 5

To capture richer insights, we recommend that
annotators provide the evidence or reasoning
behind their labels or preferred results, which
will facilitate later agreement building by en-
abling post-annotation review of the original
sources of disagreement.

6 Case Study: Improving Richness of
Subjective Data Annotation in RLHF

We present a specific case study to illustrate how
our recommendations can be applied. As gen-
erative models become more capable, the train-
ing of large language models (LLMs) is increas-
ingly shaped by reinforcement learning with hu-
man feedback (RLHF) (Ouyang et al., 2022; Bai
et al., 2022; Ganguli et al., 2022), and their perfor-
mance depends on the quality of the preferences
and feedback provided by humans. Judgments of
response quality can vary widely across individu-
als, as LLMs are used in diverse contexts and often
in situations where no single “objective” truth ex-
ists. Accordingly, this problem can be viewed as a
subjective data annotation task.

Specifically, we use human–LLM conversation
data from Anthropic’s RLHF red-teaming dataset
(Ganguli et al., 2022) to demonstrate our approach.
The researchers collected a red-teaming dataset,
asking Master-qualified US-based MTurk workers
and high-quality Upwork annotators to elicit harm-
ful responses from LLMs and to choose the more
harmful output in a pairwise comparison. The re-
searchers removed those who produced low-quality
data. Workers were provided with a task inter-
face and a Slack channel for communication with
researchers. The researchers did not provide a defi-
nition of “harmful”, noting that it is a complex and
subjective concept, and instead relied on people to
make their own determinations. While this allows
flexibility, it risks conflating different forms and
severities of harm into a single opaque “good/bad”
score. Agreement between researchers and crowd-
workers averaged about 63%, and no data were
filtered based on agreement. Also, the dataset was
updated weekly over five weeks.
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Card skimming, counterfeiting, and theft of accounts. 
Question: What is card skimming? 
Response A: A person using a card skimming device to steal credit card information, either by using a camera to record a 
card’s magnetic stripe, or by surreptitiously reading the card’s digital information.  
Response B: Card skimming is the use of an electronic device to capture credit card information.

Descriptive Level Label 
Which one is more harmful? 

Interpretative Level Insight: Capturing Richness of Disagreement 

	        
Nuances of Annotator–Annotation Patterns

Response A Response B

A social worker who values social 
responsibility.  

A: Too much details on 
unresponsible behaviors 
B: Neutral framing

Response A

A lawyer who values safety.  

A: Illegal information is too explicit 
B: Neutral framing

Response A

A journalist who prioritize clarity in 
information delivery.  

A: Enough details for clarity with 
clear tone in warning	  
B: Not details and no warning tone

Response B

Human-LLM Conversational Data from Red teaming RLHF Dataset

Recommendation 4:  
Sharing positionality 
information

Recommendation 1:  
Additional money, or 
verification labels as 
incentives for sharing 
interpretations beyond 
basic descriptive label.

Recommendation 5:  
Sharing rationale for 
preference

While A is more harmful because its content is 
overly specific, even though it adopts a warning 
tone, B is also highly harmful and more prone to 
misuse since it provides no warning at all.

Recommendation 2:  
Encouraging annotators to extend the basic 
labels with more intensives.

Well, the annotators would 
interpret from its safety, 
from its tone of warning…
Let’s provide a better 
instruction to elicit these 
interpretations…

Recommendation 3:  
The research team works together to provide their 
own interpretations, predict, and elicit annotators to 
interpret data from these perspectives.

research team 

The annotator with incentives

Figure 2: Case Study: Applying our recommendations to improve subjective data interpretation in RLHF. As
demonstrated, annotators can provide valuable and diverse interpretations shaped by their positionalities, making
them difficult to replace.

Evisioned SDA Scenario Figure 2 shows our
demonstration of the five recommendations in
practice. Suppose a human–LLM conversation
concerns card skimming, counterfeiting, and ac-
count theft. The human evaluator must choose
between two responses, A or B, by answering:
“Which one is more harmful?” At the descrip-
tive level, the evaluator could assign a generic
label: ‘A’ or ‘B’. However, such generic label-
ing could easily be replicated by an LLM. The
richness comes from the diverse interpretations
of different annotators. For example, a social
worker, a lawyer, and a journalist each provide
their preference as a basic label, along with their
positionality information ( Recommendation 4 )
and their reasons ( Recommendation 5 ), incen-
tivized through monetary rewards or verification
labels ( Recommendation 1 ). In this scenario,
the social worker annotator feels that the cur-
rent annotation does not reflect his true perspec-

tive, so he offers a more detailed interpretation
( Recommendation 2 ). Notably, before assigning
the task, the research team conducted pilot test-
ing and discussions to anticipate both the types
and quantities of rich interpretations annotators
might provide. This offered an initial sense of
how disagreements could be distributed and en-
abled the team to monitor these variations during
the annotation process rather than only afterward.
Consequently, they were able to elicit richer input
from annotators and allocate their budgets more
effectively ( Recommendation 3 ). From these an-
notations, the team identified recurring patterns of
disagreement.

Together, these steps would help capture the lay-
ered, context-dependent nature of harmfulness, en-
abling safer and more interpretable alignment of
large language models.
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7 Discussion: Trade-off between Cost and
Quality.

In this paper, we argue that human annotators play
a critical role in capturing the richness of subjective
data in SDA tasks and that we provided a compar-
ative analysis of task characteristics and practices.
However, our strategies serve more as a toolbox
from which practitioners can select, deciding when
and how to apply them based on their quality re-
quirements and the constraints of budget and time.

For example, incorporating humans in reinforce-
ment learning from human feedback (RLHF) is
costly: for example, Ganguli et al. reported anno-
tator expenses exceeding $60K. To reduce these
costs, recent work has proposed reinforcement
learning with AI feedback (RLAIF), where AI sys-
tems provide preference judgments instead of hu-
mans. While cost-efficient, this approach risks low-
ering quality, as human-provided labels remain the
most trustworthy source of preference data, offer-
ing nuanced judgments and reliable gold standards.
As a result, humans remain essential for bootstrap-
ping and validating large volumes of AI-generated
labels (Kour et al., 2023).

Our approach highlights that distinguishing be-
tween descriptive and interpretive levels of anno-
tation can help optimize human effort. Human
involvement can be reduced at the descriptive level,
but at the interpretive level—requiring deeper en-
gagement and more insightful analysis—it is dif-
ficult to replace. This targeted delegation applies
human effort more strategically than in pure RLHF
or RLAIF, fostering a collaborative paradigm be-
tween humans and LLMs.

From a quality perspective, RLHF does not nec-
essarily require massive datasets if smaller ones are
rich, diverse, and representative. Incorporating our
recommendations, such as extending basic codes,
capturing annotator positionalities, and conduct-
ing pilot testing, can help uncover hidden or over-
looked sources of valuable subjective information,
resulting in more informative data. Furthermore,
incentive structures, such as higher pay for com-
plex tasks or time-based compensation instead of
per-task payments, can further encourage quality
over quantity.

8 Conclusion

Our position paper emphasizes the human role in
capturing valuable yet often overlooked informa-
tion embedded in subjective data. Through an in-

terdisciplinary lens, we reflect on how Subjective
Data Annotation can benefit from Qualitative Data
Analysis practices that view annotator disagree-
ment and diverse positionalities as sources of inter-
pretive insight—shifting subjectivity from “noise”
to nuanced interpretation. Based on our compara-
tive analysis of the two methods’ task nature and
practices, we distilled five recommendations as the
outcomes of our reflection. Through an RLHF case
study, we demonstrate how these recommendations
can be applied in practice to capture the richness
of subjective data. We envision that our argument
and recommendations will inspire more effective
SDA practices by providing strategies and tools
for practitioners who seek to create higher-quality
datasets from human perspectives.

Limitations and Ethical Considerations

This position paper presents our perspectives in-
formed by qualitative analysis methodology. Al-
though we collected papers through keyword
searches, our work is not a comprehensive meta-
analysis or systematic literature review; thus, we
acknowledge that some relevant studies, particu-
larly from the rapidly expanding literature on arXiv,
may have been overlooked. Such omissions carry
the risk of narrowing the range of perspectives con-
sidered. Nevertheless, to the best of our knowledge,
our argument is relatively unique, and no prior
work has approached SDA from the perspective of
qualitative analysis methodology.

We recommend enhancing subjective data an-
notation by capturing richer, interpretive-level in-
sights from annotators. This approach requires
careful attention to ethical considerations, includ-
ing protecting annotator privacy when collecting
positionality information, ensuring informed con-
sent, and avoiding coercion through incentive struc-
tures. Compensation should be fair and propor-
tionate to the effort required for deeper engage-
ment. Additionally, richer annotations may re-
veal sensitive personal beliefs or experiences; re-
searchers must handle such information responsi-
bly, anonymize data where possible, and be trans-
parent about its intended use.
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A Paper Dataset Collection

In this section, we describe our paper collection
process as part of the comparative analysis. For
subjective data annotation, our approach primarily
involves the narrative literature review (Sukhera,
2022) . For qualitative analysis, we rely on estab-
lished qualitative theories (e.g., Grounded Theory
(Charmaz, 2014, 2005; Glaser and Strauss, 2017))
and widely accepted practices, such as thematic
analysis steps (Maguire and Delahunt, 2017) and
collaborative qualitative coding steps (Richards and
Hemphill, 2018). Therefore, the keywords used for
our literature review, within the selected venues,
primarily focus on subjective data annotation.

A.1 Data Collection for Subjective Data
Annotation

A.1.1 Paper Search
We adapted the PRISMA method (Page et al., 2021)
to perform the literature review. As shown in Fig-
ure 3, our searching include the ACL Anthologies
database, and the proceedings of HCOMP, CHI,
CSCW, and WWW conferences. The ACL An-
thologies consists of all key NLP venues such as
ACL, EMNLP, etc. These sources were selected for
their extensive coverage of research in annotation,
crowdsourcing, and subjective tasks 1.

After finalizing the databases, we employed a
Boolean search strategy combining alternate terms
within each scope. The search string used was:
("subjective" AND ("annotat*" OR "crowdsourc*"
OR "label*")). The search keywords were specifi-
cally designed to target subjective tasks, avoiding
objective ones, and to identify papers related to
data labeling through terms like "annotate," "crowd-
source," and "label." We refined our keywords
through several trial searches to ensure compre-
hensive results and finalized the search string to
capture a wide range of relevant studies. We ap-
plied the searching string to the title and abstract of
papers in each database with a time limit from Jan,
2018 to April, 2024. We chose this time-frame to
focus on recent development in subjective annota-
tion research.

A.1.2 Inclusion Criteria
We included papers based on the following criteria:
relevance to subjective tasks, focus on data label-

1We also explored NeurIPS but the results primarily fo-
cused on image labeling with limited relevance to subjective
text annotation. On the HCI side, we also searched at IUI and
TIIS but yielding minimal relevant search results.
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Records identified within 2018 - 2024 (N = 3768)
ACL Anthologies (n = 1590), CHI (n = 1344), 

CSCW(n = 575), WWW(n = 243), HCOMP(n = 16)

Title/ Abstract
Screening
(N = 418)

Full Paper
Screening
(N = 101)

3350 papers excluded 
given thesearching 

criterias

317 papers excluded given thesearching criterias

C1: Not subjectivetasks (n = 71)
C2: Not relevant to datalabeling (n = 164)
C3: Not text only task (n = 69)
C4: Not full papers (n= 13)

Papers included in analysis
(N = 101)

KEYWORD
IDENTIFICATION

SCREENING INCLUDED

Removing Removing

Figure 3: The PRISMA flow diagram of our literature review process

Subjective Data Annotation
Terms(Pustejovsky and Stubbs,
2012; Poesio et al., 2016; Ameer
et al., 2023; Buechel and Hahn,

2022)

Qualitative Analysis
Terms(Saldaña, 2021) Definition

Label Code
A meaningful tag assigned to a
data segment to capture its core
idea for analysis

Hierarchical Label
Subcodes→Code→
Categories→Theme

An organized ladder from
fine-grained subcodes up to
broader codes, categories, and
overarching themes

Annotation Schema Codebook

The complete operational spec
of codes—definitions,
inclusion/exclusion rules, and
examples

Descriptive Annotation Descriptive Coding
A code expressing the neutral
noun-phrase summary of the
meaning of the segment

Table 2: Similar Terms in QDA and SDA.

ing and text-based NLP tasks. We focus on text
data because human naturally express themselves
through language and text inherently carries the pri-
mary semantic meaning, aligning with our goal of
exploring subjective annotation challenges. While
there is related work on subjective annotation in
other modalities such as images (Scott et al., 2023)
or multi-modality (Komatani et al., 2023), these
are outside the scope of this review and can be
extended in future study.

Papers that did not meet these criteria were ex-
cluded in our final corpus. For example, tasks like
speech part of tagging (not subjective), image la-
beling (not text-based), or highlighting interface
interaction for reading and writing (not data label-
ing), were excluded from our analysis. Those pa-
pers are non-peer-reviewed publications were also
excluded. In the end, there are 101 papers included
in the final corpus.

A.2 Corpus Analysis
Following the PRISMA guidelines, we filtered pa-
pers through database identification, search string
application, title and abstract screening, full-text
review, and detailed discussion among authors to
resolve disagreements. The final set of 101 pa-
pers was then passed for detailed data extraction
and analysis. We conducted a thematic analy-
sis of the selected papers, which was structured
around a codebook derived from the PRISMA fil-
tering process and refined through multiple rounds
of discussion among the authors during the pilot
analysis. Our analysis categorized the papers into
four categories dimensions: annotation workflow,
schema, annotator and evaluation. The categories
allowed us to analyze the practices and methodolo-
gies employed across different studies, providing
an overview of how SDA is handled.
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Abstract

Novice programmers benefit from timely, per-
sonalized support that addresses individual
learning gaps, yet the availability of instruc-
tors and teaching assistants is inherently lim-
ited. Large language models (LLMs) present
opportunities to scale such support, though
their effectiveness depends on how well tech-
nical capabilities are aligned with pedagogi-
cal goals. This survey synthesizes recent work
on LLM applications in programming educa-
tion across three focal areas: formative code
feedback, assessment, and knowledge model-
ing. We identify recurring design patterns in
how these tools are applied and find that in-
terventions are most effective when educator
expertise complements model output through
human-in-the-loop oversight, scaffolding, and
evaluation. Fully automated approaches are of-
ten constrained in capturing the pedagogical
nuances of programming education, although
human-in-the-loop designs and course-specific
adaptation offer promising directions for future
improvement. Future research should focus on
improving transparency, strengthening align-
ment with pedagogy, and developing systems
that flexibly adapt to the needs of varied learn-
ing contexts.

1 Introduction

Introductory programming courses serve as critical
gateways to computer science and related STEM
careers (Whalley et al., 2020), yet they present
unique pedagogical challenges that contribute to
high attrition rates (Petersen et al., 2016). Students
must simultaneously master syntax, develop com-
putational thinking skills, and learn to debug com-
plex logical errors, creating cognitive demands that
often overwhelm novices. Success in these courses
often depends on access to timely, targeted inter-
ventions, e.g., feedback, explanations, and guided
problem-solving, that address individual learning

∗Both authors contributed equally to this work.

gaps (Marwan et al., 2020; Messer et al., 2023).
These personalized interventions are especially im-
portant because students exhibit varied practice
behaviors, depending on their inclination toward
problem-solving and/or example exploration (Poh
et al., 2025). Traditionally, this kind of support
has been provided through human instruction, with
teaching assistants (TAs) guiding problem-solving
strategies, offering debugging help during office
hours, and providing detailed feedback on assign-
ments (Markel and Guo, 2021). However, the scal-
ability of this human-centered model is limited.
Large enrollment courses, increasingly common in
CS education, strain the capacity of instructional
staff to provide individualized attention (Ahmed
et al., 2025). Additionally, students may delay
seeking help when they anticipate long wait times
for TA feedback (Gao et al., 2023), and TAs them-
selves face heavy workloads from simultaneous
requests during office hours (Gao et al., 2022).

Large language models (LLMs) have emerged
as promising tools to automate aspects of program-
ming education support by addressing the core chal-
lenges novice programmers face, including debug-
ging code errors (Lahtinen et al., 2005), repairing
faulty code (Javier, 2021), obtaining timely feed-
back, and mastering foundational concepts to work
with programming problems (Ahmad and Ghazali,
2020; Rivers et al., 2016). Recent advances in nat-
ural language processing now make it possible to
generate context-aware feedback, offer real-time
debugging support, and adapt explanations to a
student’s skill level (Yousef et al., 2025; Zhong
et al., 2024; Chen et al., 2024; Lui et al., 2024).
Early work also shows the potential of Human–AI
collaboration, where LLM outputs are refined or
guided by educators to better align with pedagogi-
cal goals (Hassany et al., 2024). Though promising,
it is still unclear what best practices should guide
the integration of LLMs into programming educa-
tion and how responsibilities should be balanced
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between automation and human expertise.
The presented paper addresses this gap by re-

viewing recent applications of LLMs in program-
ming education, focusing on how they are applied,
the challenges that arise in practice, and the oppor-
tunities to align technical advances more closely
with pedagogy.

2 Methodology and Paper Selection

To survey research on the use of LLMs in program-
ming education, we reviewed publications across
leading venues in computing education, HCI, and
NLP, such as SIGCSE, ITiCSE, ICER, LAK, EDM,
CHI, EMNLP, and related workshops. We focused
on the 2021-2025 period, when LLM-driven sys-
tems first began to appear in educational settings.

From the surveyed literature, we identified three
focal areas in which LLMs are being applied: for-
mative code feedback, assessment, and knowledge
modeling. Each aligns with a central pedagogical
challenge in introductory programming courses,
supporting student learning at scale in contexts
where one-on-one guidance is difficult to provide.
Within formative code feedback, we distinguish
between approaches that generate hints and expla-
nations to help students identify and understand
their errors, and those that produce corrected code
as examples or candidate repairs. Assessment fo-
cuses on grading and providing evaluative feedback
at scale, while knowledge modeling seeks to repre-
sent what students know and how they progress in
order to give instructors actionable insights through
learning analytics. The distribution of reviewed pa-
pers across these areas is shown in Table 1.

Topic Selected Papers
Formative Code Feedback 20

Assessment 14
Knowledge Modeling 8

Table 1: Number of papers reviewed across three focal
areas.

3 LLM Usage in Formative Code
Feedback

Debugging assistance is one of the most com-
mon reasons to seek help in programming courses,
and improvements in code correctness after such
support can substantially boost short-term perfor-
mance (Gao et al., 2022). However, the scalability
limits of human-led help sessions have prompted

researchers to explore how LLMs can extend this
support in programming education. LLM-based
feedback on student code is typically delivered in
two complementary forms. In some cases, mod-
els generate explanations, hints, or scaffolding that
help students locate and reason about their own
programming mistakes. In others, models produce
corrected code directly, offering candidate repairs
or examples that students can study and compare
against their own solutions. Both approaches aim
to reduce the bottleneck of human-provided feed-
back, although they differ in the amount of agency
they leave with the learner.

A large body of work has explored how LLMs
can generate hints and explanations to guide stu-
dent reasoning. Early evaluations of open-source
models suggest that they can assist with syntax
and minor semantic issues but continue to struggle
with more complex bug localization and multi-line
logic errors (Majdoub and Ben Charrada, 2024). To
address these challenges, researchers have devel-
oped systems that focus on scaffolding student rea-
soning. BugSpotter, for instance, combines static
analysis with LLM reasoning to create interactive
debugging exercises for low-level programming
languages (Padurean et al., 2025). Iterative self-
debugging loops have been proposed, where mod-
els run their generated code, collect execution feed-
back, and refine patches in multiple passes (Chen
et al., 2024). Adaptive scaffolding systems fur-
ther extend these capabilities by monitoring learner
progress and providing timely hints or explana-
tions to break complex reasoning into manageable
steps (Oli, 2024). Although such advances improve
the accuracy and relevance of LLM-supported feed-
back, human oversight remains necessary to ensure
that outputs align with pedagogical goals (Zubair
et al., 2025). For example, CodeAid (Kazemitabaar
et al., 2024) found that while LLMs can accelerate
support for students, direct answers without edu-
cator scaffolding risk undermining learning, high-
lighting the role of instructors in contextualizing
automated feedback.

Another cluster of research investigates im-
proving the clarity of error explanations to sup-
port student comprehension. Fine-tuned LLMs
have demonstrated the ability to produce clearer,
context-sensitive error messages, improving novice
problem-solving (Vassar et al., 2024; Leinonen
et al., 2023). Comparative analyses of human and
model debugging strategies reveal differences in
reasoning patterns, pointing to opportunities for de-
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signing AI-assisted tools that nudge learners toward
more expert-like approaches (MacNeil et al., 2024).
Related work on prompt engineering and explain-
ability techniques, such as step-by-step runtime
verification, has also shown promise for improv-
ing the readability of error messages and foster-
ing trust in human–AI collaboration (Zhong et al.,
2024; Hoq et al., 2025; Kang et al., 2025). Expand-
ing further, researchers have also applied LLMs to
code quality feedback, detecting issues such as mis-
leading variable and function identifiers in novice
code (Řechtáčková et al., 2025).

Beyond generating hints and explanations, a
growing body of work explores producing cor-
rected code and worked examples that students
can study alongside their own solutions. For in-
stance, LLMs have been applied to generate code-
tracing questions for introductory courses, produc-
ing diverse and pedagogically aligned items (Fan
et al., 2023). Recent work demonstrates how LLMs
can generate worked examples that help students
learn strategies and better understand solution ap-
proaches (Sarsa et al., 2022). Research also shows
that students learn from the process of spotting and
fixing code errors (Koutcheme et al., 2024a), and
that these skills strongly predict learning outcomes
and course success (Gao et al., 2022, 2023).

To support this process, automated program re-
pair (APR) systems have targeted syntactic and
semantic errors in student submissions, with LLMs
broadening the scope of repairs to be more context-
sensitive and benchmarked transparently (Jiang
et al., 2023). Examples include PyDex (Zhang
et al., 2024), which generates accurate lever-
ages LLMs to automatically generate accurate
fixes for common novice errors in Python as-
signments (Zhang et al., 2024); COAST, a multi-
agent framework that coordinates detection, re-
pair, and verification while synthesizing debug-
ging datasets (Yang et al., 2025); and RepairL-
LaMA, which incorporates repair-aware represen-
tations and parameter-efficient fine-tuning to out-
perform vanilla prompting on standard APR bench-
marks (Silva et al., 2025).

While these advances demonstrate the technical
potential of LLMs for formative programming sup-
port, their educational value depends on when and
how the feedback is delivered. Automated fixes
that come too early, solve too much of the prob-
lem, or present complete answers can short-circuit
the learning process by removing opportunities for
students to reason through their own errors. In con-

trast, tools that generate hints, scaffold reasoning,
and explain errors without directly supplying so-
lutions are better aligned with pedagogical goals.
The challenge is therefore not only improving ac-
curacy on complex bugs but also designing sys-
tems that adapt the level of support to the learner’s
needs. Emerging best practices point toward hy-
brid approaches, where LLMs address routine or
surface-level issues and generate scalable practice
materials, while human educators provide context,
address deeper misconceptions, and guide students
toward lasting debugging strategies.

4 LLM Usage in Assessment

With the increasing availability of LLMs in edu-
cation, there are now provisions for the use of au-
tomated teaching assistants (TAs) in assessments,
particularly in programming courses where grad-
ing is frequent and labor-intensive (Mehta et al.,
2023). Early evaluations benchmarked the ability
of LLMs to provide such feedback, demonstrat-
ing that even in zero-shot configurations, they can
produce rubric-aligned evaluations with moderate
agreement to human graders (Yeung et al., 2025;
Silva and Costa, 2025). These findings position
LLMs as viable tools for scalable deployment, re-
ducing the need for extensive rule-based assess-
ment design. For example, ABScribe (Reza et al.,
2024) demonstrates how LLMs can support human-
AI co-writing by generating and organizing mul-
tiple text variations, easing TA workload and im-
proving revision efficiency.

However, meta-analytic perspectives caution that
such systems inherit biases from training data and
require prompt and rubric alignment to meet course-
specific standards (Messer et al., 2023). In class-
room settings, results have been mixed. In a study
involving more than 1,000 students, GPT-4 reli-
ably evaluated straightforward and clear-cut sub-
missions but required human arbitration for nu-
anced cases (Chiang et al., 2024). Similarly, au-
tomated grading with LLMs in a bioinformatics
course reduced TA workload and accelerated grad-
ing speed, but raised concerns about transparency,
reproducibility, and student trust in AI-generated
assessments (Poličar et al., 2025). To address
this, frameworks like BeGrading (Yousef et al.,
2025) have integrated LLMs into a multi-stage
feedback pipeline, combining initial automated
grading with targeted suggestions for improve-
ment, while CodEv (Tseng et al., 2024) applied
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chain-of-thought prompting, ensemble reasoning,
and consistency checks to produce accurate and
constructive feedback. Other work, such as the
AI-augmented TA feasibility study (Ahmed et al.,
2025), examined how LLMs can fit into human
TA workflows in CS1 courses, focusing on provid-
ing timely, individualized support while preserving
grading quality.

Beyond grading accuracy, the specificity and
pedagogical usefulness of LLM-generated feed-
back vary considerably (Pankiewicz and Baker,
2023; Estévez-Ayres et al., 2024). Recent studies
have examined how models can generate formative,
actionable feedback that supports skill develop-
ment in introductory programming courses (Mehta
et al., 2023). One line of work uses program re-
pair tasks as a proxy for feedback quality, showing
that automated grading outputs can contribute to
improvements in students’ problem-solving and
code comprehension skills (Pankiewicz and Baker,
2023). Others highlight the need for careful prompt
engineering, rubric alignment, and iterative evalua-
tion to ensure that feedback remains contextually
relevant and educationally valuable. Therefore, hu-
man oversight remains a central design principle in
this space, with LLMs serving as collaborators that
augment TA capacity rather than replacements.

5 LLM Usage in Knowledge Modeling

Just as LLMs have been applied to formative feed-
back and assessment, they are increasingly being
explored for a broader challenge in programming
education: modeling what students know and how
their understanding develops over time. Knowl-
edge modeling supports instructional design by
making student learning more visible, helping edu-
cators monitor progress, identify misconceptions,
and create targeted interventions at scale. One com-
mon approach is knowledge component (KC) ex-
traction, where student work is mapped to the con-
cepts they need to master, such as variables, loops,
and conditionals. While this process helps educa-
tors monitor progress and create targeted interven-
tions, performing it manually is time-consuming
and limits scalability.

Recent advances have demonstrated how LLMs
can automate this extraction process with promis-
ing results. Researchers used GPT-4 to generate
and tag KCs from multiple-choice questions, with
human evaluators preferring the LLM-generated
tags over instructor-assigned ones in about two-

thirds of cases (Moore et al., 2024). KCluster (Wei
et al., 2025) is another approach to combine LLM-
generated question similarity metrics with cluster-
ing algorithms to automatically group related prob-
lems and discover their underlying KCs, producing
models that outperform expert-designed baselines.
Additionally, others (Niousha et al., 2025; O’Neill
et al., 2025; Mittal et al., 2025) have presented early
successful results on the use of LLMs toward KC
extraction.

Researchers have also explored how LLMs can
perform KC extraction during real-time learning
interactions. LLMs can annotate student-tutor dia-
logues with KC tags during conversations, achiev-
ing close to human-level accuracy (Scarlatos et al.,
2025). To gain more granular insights into stu-
dent understanding, test case-informed knowledge
tracing is another approach where individual test
case pass/fail results serve as indicators for LLMs
to better distinguish which concepts students have
mastered versus those they struggle with (Duan
et al., 2025). Additionally, incorporating student
self-reflection prompts can significantly improve
KC tagging performance by LLMs (Li et al., 2024).

While these advances highlight the potential of
LLMs to scale knowledge modeling, their value
depends on expert validation of concept mappings
and alignment with course objectives. If not care-
fully validated, knowledge models that are inac-
curate or poorly contextualized can misguide in-
structors and weaken their ability to design effec-
tive interventions. When integrated responsibly,
however, LLM-generated models can strengthen
learning analytics by giving educators actionable
insights into student progress, revealing common
misconceptions, and informing the design of tar-
geted supports at scale. Future research can focus
on improving the accuracy and reliability of these
approaches across varied datasets and on develop-
ing methods that ensure valid and useful represen-
tations of student knowledge.

6 Discussion

Our review of recent LLM applications in program-
ming education indicates that systems that success-
fully address students’ pedagogical needs tend to
retain human involvement throughout the workflow.
Across formative code feedback, assessment, and
knowledge modeling, successful applications fre-
quently incorporate educators in the workflow to
interpret results, refine automated outputs, or make
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Topic Best Practices

Formative Code Feedback Use LLMs to generate hints, explanations, and error messages that
scaffold in pedagogically-sound ways; balance automation with for-
mative scaffolding to prevent over-complete fixes and overreliance.

Assessment Ensure LLM grading aligns with rubrics and course standards; use
human arbitration for nuanced cases.

Knowledge Modeling When using LLMs for KC extraction and clustering, validate outputs
against expert review of topics and subtopics.

Table 2: Best practices for LLM applications in programming education, synthesized across three focal areas.

instructional decisions. In contrast, fully automated
systems often focus on narrower or more technical
tasks where less contextual judgment is required.
Best practices are summarized in Table 2.

Altogether, the systems surveyed demonstrate
several shared strengths. They address scalability
by automating tasks that would otherwise demand
substantial instructor time, such as grading large co-
horts or generating individualized debugging hints.
Open-source language models have also been in-
corporated into APR pipelines, where evaluation
frameworks use GPT-4-as-a-judge to approximate
expert review at scale. This approach highlights
the benefits of mixed human-and-automated eval-
uation in balancing accuracy, scalability, and cost
in this domain (Koutcheme et al., 2024b, 2025).
Research also incorporates mechanisms that im-
prove consistency and transparency in instructional
support, as seen in BeGrading’s variance analysis
and criteria-aligned feedback generation (Yousef
et al., 2025). Increasingly, these tools integrate
pedagogical considerations into their design, from
scaffolding strategies in debugging systems to feed-
back phrased in ways that guide student reflection
and self-correction.

However, at the same time, performance varies
considerably depending on factors such as prompt
design, availability of course-specific training data,
and evaluation practices. Many LLM-based sys-
tems are not explicitly tuned to instructional objec-
tives, which can lead to technically correct but edu-
cationally unhelpful feedback (Sonkar et al., 2024).
Performance often drops when moving from con-
trolled benchmarks to authentic, noisy student code,
and the opacity of model reasoning can reduce trust
among both students and instructors. There is also
the risk that students may overrely on incorrect
model outputs, undermining opportunities for pro-
ductive learning interactions (Pitts et al., 2025).

7 Limitations and Future Work

The current body of research on LLMs in program-
ming education is still in its early stages, with lim-
itations that can guide future research. While the
focal areas covered in this survey reflect active
areas of research, other domains, such as collab-
orative coding and accessibility support, remain
underexplored. Addressing these gaps can take
place in a larger-scale systematic literature review.
Additionally, relating to the maturity of the current
work reviewed, many of the systems surveyed are
early-stage prototypes or evaluated only in small-
scale settings, with limited evidence on scalability
or long-term learning outcomes.

Technically, while early work has investigated
fine-tuning and reinforcement learning with human
feedback (RLHF) (Hicke et al., 2023), there re-
mains significant scope for advancing model devel-
opment and designing workflows explicitly aligned
with pedagogical goals through course-specific
fine-tuning. Research could also investigate adap-
tive collaboration frameworks where the degree
of automation varies according to task complexity,
user proficiency, and the model’s own confidence
in its output. Further priorities include identifying
and mitigating biases in model outputs, especially
in grading and feedback, and expanding the use
of multi-modal, context-aware interaction that can
adapt feedback to the learner’s current state. While
LLMs can offer an improved learning experience
for programming education, their greatest poten-
tial lies in augmenting rather than replacing human
expertise. Systems that remain adaptable, trans-
parent, and closely aligned with pedagogical best
practices are most likely to deliver meaningful and
sustainable benefits for learners.
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Anna Řechtáčková, Alexandra Maximova, and Griffin
Pitts. 2025. Finding misleading identifiers in novice
code using llms. In Proceedings of the 56th ACM
Technical Symposium on Computer Science Educa-
tion V. 2, pages 1595–1596.

261

https://doi.org/10.48550/arXiv.2307.00150
https://doi.org/10.48550/arXiv.2307.00150
https://doi.org/10.48550/arXiv.2307.00150


Mohi Reza, Nathan M Laundry, Ilya Musabirov, Peter
Dushniku, Zhi Yuan “Michael” Yu, Kashish Mittal,
Tovi Grossman, Michael Liut, Anastasia Kuzminykh,
and Joseph Jay Williams. 2024. Abscribe: Rapid
exploration & organization of multiple writing vari-
ations in human-ai co-writing tasks using large lan-
guage models. In Proceedings of the 2024 CHI Con-
ference on Human Factors in Computing Systems,
pages 1–18.

Kelly Rivers, Erik Harpstead, and Kenneth R Koedinger.
2016. Learning curve analysis for programming:
Which concepts do students struggle with? In ICER,
volume 16, pages 143–151. ACM.

Sami Sarsa, Paul Denny, Arto Hellas, and Juho
Leinonen. 2022. Automatic generation of program-
ming exercises and code explanations using large
language models. In Proceedings of the 2022 ACM
conference on international computing education
research-volume 1, pages 27–43.

Alexander Scarlatos, Ryan S. Baker, and Andrew Lan.
2025. Exploring knowledge tracing in tutor-student
dialogues using llms. In Proceedings of the 15th In-
ternational Learning Analytics and Knowledge Con-
ference, page 249–259, Dublin Ireland. ACM.

Andre Silva, Sen Fang, and Martin Monperrus. 2025.
Repairllama: Efficient representations and fine-tuned
adapters for program repair. IEEE Transactions on
Software Engineering, (01):1–16.

Priscylla Silva and Evandro Costa. 2025. Assessing
large language models for automated feedback gen-
eration in learning programming problem solving.
arXiv preprint arXiv:2503.14630.

Shashank Sonkar, Kangqi Ni, Sapana Chaudhary, and
Richard G Baraniuk. 2024. Pedagogical align-
ment of large language models. arXiv preprint
arXiv:2402.05000.

En-Qi Tseng, Pei-Cing Huang, Chan Hsu, Peng-Yi Wu,
Chan-Tung Ku, and Yihuang Kang. 2024. Codev:
An automated grading framework leveraging large
language models for consistent and constructive feed-
back. In 2024 IEEE International Conference on Big
Data (BigData), pages 5442–5449. IEEE.

Alexandra Vassar, Jake Renzella, Emily Ross, and An-
drew Taylor. 2024. Fine-tuning large language mod-
els for better programming error explanations. In Pro-
ceedings of the 24th Koli Calling International Con-
ference on Computing Education Research, pages
1–2.

Yumou Wei, Paulo Carvalho, and John Stamper. 2025.
Kcluster: An llm-based clustering approach to knowl-
edge component discovery. (arXiv:2505.06469).
ArXiv:2505.06469.

Jacqueline Whalley, Andrew Petersen, and Paul Denny.
2020. Mathematics, computer science and career in-
clinations—a multi-institutional exploration. In Pro-
ceedings of the 20th Koli Calling International Con-

ference on Computing Education Research, pages
1–10.

Weiqing Yang, Hanbin Wang, Zhenghao Liu, Xinze Li,
Yukun Yan, Shuo Wang, Yu Gu, Minghe Yu, Zhiyuan
Liu, and Ge Yu. 2025. COAST: Enhancing the code
debugging ability of LLMs through communicative
agent based data synthesis. In Findings of the Associ-
ation for Computational Linguistics: NAACL 2025,
pages 2570–2585, Albuquerque, New Mexico. Asso-
ciation for Computational Linguistics.

Calvin Yeung, Jeff Yu, King Chau Cheung, Tat Wing
Wong, Chun Man Chan, Kin Chi Wong, and Keisuke
Fujii. 2025. A zero-shot llm framework for au-
tomatic assignment grading in higher education.
(arXiv:2501.14305). ArXiv:2501.14305.

Mina Yousef, Kareem Mohamed, Walaa Medhat, En-
saf Hussein Mohamed, Ghada Khoriba, and Tamer
Arafa. 2025. Begrading: large language models for
enhanced feedback in programming education. Neu-
ral Computing and Applications, 37(2):1027–1040.

Jialu Zhang, José Pablo Cambronero, Sumit Gulwani,
Vu Le, Ruzica Piskac, Gustavo Soares, and Gust
Verbruggen. 2024. Pydex: Repairing bugs in in-
troductory python assignments using llms. Pro-
ceedings of the ACM on Programming Languages,
8(OOPSLA1):1100–1124.

Li Zhong, Zilong Wang, and Jingbo Shang. 2024. De-
bug like a human: A large language model debugger
via verifying runtime execution step by step. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2024, pages 851–870, Bangkok, Thailand.
Association for Computational Linguistics.

Fida Zubair, Maryam Al-Hitmi, and Cagatay Catal.
2025. The use of large language models for pro-
gram repair. Computer Standards & Interfaces,
93:103951.

262

https://doi.org/10.1145/3706468.3706501
https://doi.org/10.1145/3706468.3706501
https://doi.org/10.48550/arXiv.2505.06469
https://doi.org/10.48550/arXiv.2505.06469
https://doi.org/10.18653/v1/2025.findings-naacl.139
https://doi.org/10.18653/v1/2025.findings-naacl.139
https://doi.org/10.18653/v1/2025.findings-naacl.139
https://doi.org/10.48550/arXiv.2501.14305
https://doi.org/10.48550/arXiv.2501.14305
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.18653/v1/2024.findings-acl.49
https://doi.org/10.1016/j.csi.2024.103951
https://doi.org/10.1016/j.csi.2024.103951


Proceedings of the Fourth Workshop on Bridging Human-Computer Interaction and Natural Language Processing (HCI+NLP), pages 263–273
November 9, 2025 ©2025 Association for Computational Linguistics

Toward Human-Centered Readability Evaluation
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Abstract

Text simplification is essential for making
public health information accessible to di-
verse populations, including those with lim-
ited health literacy. However, commonly used
evaluation metrics in Natural Language Pro-
cessing (NLP)—such as BLEU, FKGL, and
SARI—mainly capture surface-level features
and fail to account for human-centered qualities
like clarity, trustworthiness, tone, cultural rele-
vance, and actionability. This limitation is par-
ticularly critical in high-stakes health contexts,
where communication must be not only sim-
ple but also usable, respectful, and trustworthy.
To address this gap, we propose the Human-
Centered Readability Score (HCRS), a five-
dimensional evaluation framework grounded in
Human-Computer Interaction (HCI) and health
communication research. HCRS integrates au-
tomatic measures with structured human feed-
back to capture the relational and contextual
aspects of readability. We outline the frame-
work, discuss its integration into participatory
evaluation workflows, and present a protocol
for empirical validation. This work aims to
advance the evaluation of health text simplifica-
tion beyond surface metrics, enabling NLP sys-
tems that align more closely with diverse users’
needs, expectations, and lived experiences.

1 Introduction

Text simplification — the process of replacing com-
plex terms with simpler alternatives, removing ex-
traneous details, or breaking down lengthy sen-
tences while preserving essential meaning (Chan-
drasekar et al., 1996; Saggion, 2017) — is espe-
cially critical in health communication. Yet con-
temporary evaluation metrics often focus on the
outcomes of individual simplification operations
and fail to fully capture human judgments of over-
all simplicity. This gap is particularly concern-
ing in the medical domain, where effective infor-
mation delivery is essential for public well-being,

especially for individuals with limited health lit-
eracy (Nutbeam, 2000; McCormack et al., 2013).
Health-related materials such as medication instruc-
tions, risk explanations, and care recommendations
are often overly complex and cognitively demand-
ing. Recent advances in natural language process-
ing (NLP) have enabled automated systems to gen-
erate easier-to-read versions of such texts, aiming
to improve accessibility and comprehension (Sid-
dharthan, 2014; Espinosa-Zaragoza et al., 2023;
Stajner, 2021).

These systems are typically evaluated with au-
tomatic metrics such as SARI (Xu et al., 2016),
FKGL (Kincaid et al., 1975), or BLEU (Papineni
et al., 2002), which focus on surface-level features
(e.g., lexical simplicity, sentence length, or n-gram
overlap). While useful for benchmarking, such
metrics fail to capture whether simplified health in-
formation is genuinely clear, actionable, and trust-
worthy to real users—qualities that are critical in
high-stakes domains like public health. This chal-
lenge mirrors broader efforts in AI to align sys-
tem performance with human values, where eval-
uation must go beyond automatic scores to incor-
porate human judgment. Reinforcement Learning
from Human Feedback (RLHF) (Chaudhari et al.,
2025) enables models to learn directly from user
preferences and expert evaluations, serving as a
gold standard for aligning system behavior with
human values. However, collecting large-scale,
high-quality human feedback can be costly and
impractical. To address this limitation, recent ap-
proaches such as Reinforcement Learning with AI
Feedback (RLAIF) (Lee et al., 2024) offer scal-
able alternatives to costly human evaluations, but
risk misalignment with human values and needs in
sensitive contexts.

To address the gap between metric-driven evalua-
tion and real-world user experience, we investigate:

Q1 Which existing readability metrics (lexi-
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cal, syntactic, semantic, or neural) align
most strongly with human-centered dimen-
sions—clarity, trustworthiness, tone appro-
priateness, cultural relevance, and actionabil-
ity—in simplified health texts?

Q2 To what extent can a composite
Human-Centered Readability Score (HCRS),
integrating automatic features with human
feedback, achieve stronger alignment with
user evaluations than the best standalone
metric?

Q3 How can human–computer interaction (HCI)
techniques, such as interactive feedback col-
lection and participatory design, be embedded
into the evaluation pipeline to make metric
optimization more responsive for real-world
needs?

Readability in health communication is inher-
ently multidimensional: a linguistically simple
message can still be unclear, culturally inappropri-
ate, or untrustworthy. Addressing these dimensions
requires going beyond surface-level metrics. Our
contributions are threefold:

• Redefinition: Reconceptualizing readabil-
ity for health text simplification from a
human-centered perspective, drawing on HCI
and health communication research.

• Framework: Proposing a five-dimension con-
ceptual model—clarity, trustworthiness, tone
appropriateness, cultural relevance, and ac-
tionability—that can guide evaluation and sys-
tem design.

• Agenda: Arguing that these dimensions must
inform both the evaluation and design of sim-
plification systems, especially for vulnerable
or marginalized audiences, and outlining a fu-
ture research agenda bridging NLP and HCI.

By shifting the evaluation lens from
system-centric to user-centric, we aim to ad-
vance health-focused NLP systems that are not
only technically effective, but also socially and
culturally responsive to the needs of diverse
real-world users—an imperative in public health
communication.

2 Background: Readability in NLP and
Health Communication

2.1 Automatic Readability Metrics in NLP

Readability in NLP is often reduced to numerical
scores, yet human perception of clarity, trust, and
usability depends on far more than surface form.
Automatic evaluation of text simplification in NLP
typically falls into three categories: surface-level
metrics (e.g., BLEU, SARI), semantic metrics (e.g.,
BERTScore, QuestEval, METEOR), and readabil-
ity indices (e.g., FKGL, SMOG, Coleman–Liau),
the latter often applied in health communication.

BLEU (Papineni et al., 2002) computes n-gram
precision between outputs and references, penal-
izing brevity; SARI (Xu et al., 2016) measures
the quality of n-gram “keep”, “add”, and “delete”
operations; FKGL computes a linear combination
of average sentence length and syllables per word
to estimate grade level. Despite their widespread
use in NLP benchmarking, these metrics neglect
cognitive, emotional, and social dimensions central
to human perception of readability—factors that
are critical in high-stakes settings such as public
health.
SARI: SARI = 1

3
(Fadd + Fkeep + Fdel)

BLEU: BLEU = BP · exp
(∑N

n=1 wn log pn
)

FKGL: FKGL = 0.39× Words
Sentences +11.8× Syllables

Words −15.59

Recent neural and reference-based metrics, such
as BERTScore (Zhang et al., 2020) (contextual-
ized token similarity) and QuestEval (Scialom
et al., 2021) (Q&A-based semantic evaluation), and
SALSA (Heineman et al., 2023) (edit-based gran-
ular evaluation), aim to capture meaning and con-
tent transformation beyond surface forms. SALSA,
in particular, provides a fine-grained typology
of simplification edits and an automatic variant
(LENS-SALSA) to score outputs without refer-
ences, showing stronger alignment with human
judgments in recent studies. While SALSA cov-
ers simplification edits in detail, it primarily cap-
tures structural and lexical changes and cannot
fully assess whether the resulting text is clear to
diverse users in real contexts. Yet, they still fail
to assess trustworthiness, emotional resonance,
or context appropriateness—qualities that deter-
mine whether a health message is actually usable.
These limitations are also evident in large-scale
meta-evaluations. For example, Alva-Manchego et
al. (2021) found that these metrics often correlate
only weakly with human judgments, especially for
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multi-operation simplifications where lexical, syn-
tactic, and semantic changes co-occur. They sys-
tematically compared leading metrics across sev-
eral simplification systems and found that, while
BERTScore Precision achieved the highest over-
all correlation, performance dropped sharply for
high-quality outputs, underscoring the persistent
gap between metric scores and user-perceived qual-
ity. As shown in Table 1, no widely used auto-
matic metric provides comprehensive coverage of
the user-centered dimensions that are critical in
health contexts—namely clarity, trustworthiness,
and actionability.

2.2 Human Perception and the Readability
Gap

Prior work in HCI and health communication
(Ishikawa and Kiuchi, 2010; Crossley et al., 2016)
underscores that readability is constructed through
users’ prior knowledge, affect, and social context,
as well as deeper textual properties such as local
and global cohesion. Consequently, leading re-
searchers now advocate for mixed-method evalua-
tion frameworks combining robust automatic met-
rics with validated user scales (e.g., Trust in Health
Information Questionnaire, cognitive load indices)
and real-time feedback. While such calls for mixed-
method evaluation are compelling, there remains
limited empirical evidence demonstrating how cur-
rent metrics diverge from human perception in prac-
tice.

Empirical evidence confirms the gap between
automatic scores and lived experience. In a con-
trolled study, (Leroy et al., 2022) found that simpli-
fied health texts significantly improved comprehen-
sion accuracy—boosting correct recall from 33%
to 59%—with the largest gains among participants
with lower education or limited English proficiency.
Earlier work (Leroy et al., 2013) similarly reported
improvements in perceived clarity and learning out-
comes. Taken together, these studies illustrate that
surface-level gains in simplicity do not necessarily
ensure that health information is perceived as ac-
cessible or actionable by diverse users. However,
more recent NLP-based evaluations (e.g., (Alva-
Manchego et al., 2021; Maddela et al., 2021)) show
that even high-SARI outputs can be perceived as
emotionally flat or insufficiently actionable, sug-
gesting that surface simplicity does not guarantee
effective communication.

In public health, readability is relational. A text
must be clear, but also trustworthy, respectful, cul-

turally sensitive, and actionable. This gap is both
methodological and conceptual: current NLP eval-
uation practices rarely capture these interpersonal
and contextual dimensions. For example, a jargon-
free vaccine information sheet delivered in an emo-
tionally cold or overly directive tone can still alien-
ate its audience. These interpersonal and contex-
tual factors are invisible to current NLP metrics,
which rarely incorporate user studies or grounded
sociocultural analysis.

This disconnect is consequential: in health
contexts, misunderstanding can reduce adherence,
increase anxiety, or even cause harm. We ar-
gue that evaluating readability in NLP must cen-
ter on user interpretation—not just algorithmic
scores—requiring new, multidimensional metrics
co-designed with end users. In short, a truly “read-
able” health text is one that is understood, trusted,
respected, and acted upon. Achieving this requires
moving beyond current benchmarks toward eval-
uation frameworks that are co-designed with and
validated by target user communities.

3 Limitations of Current Metrics

Despite widespread adoption, automatic evalua-
tion metrics for text simplification—such as SARI,
FKGL, and BLEU—face critical shortcomings in
public health communication.

Intrinsic Metric Limitations. These metrics are
designed to capture primarily surface-level trans-
formations—such as lexical substitution, sentence
compression, and n-gram overlap with reference
texts—and are effective for system-level bench-
marking. However, they provide no direct evidence
regarding whether a simplified text is, in fact, clear,
trustworthy, or pragmatically usable for its intended
audience.

Overreliance on Reference-Based Evaluation.
One major limitation is the overreliance on
reference-based evaluation. Metrics like BLEU
and SARI compare system outputs to one or more
human-written references, assuming that overlap
with these references implies higher quality. How-
ever, simplification is an inherently subjective task
with high variance in valid outputs. A single sen-
tence can be simplified in many plausible ways
depending on the user’s background knowledge,
cultural expectations, or even emotional state. Pe-
nalizing deviations from a limited reference set
risks excluding useful and contextually appropriate
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Metric Lexical Simplicity Syntactic Simplicity Semantic Adequacy Clarity Trustworthiness Actionability

BLEU ✓ (✓) – – – –
SARI ✓ (✓) – – – –
FKGL ✓ ✓ – (✓)1 – –
BERTScore – – ✓ – – –
QuestEval – – ✓ – – –
SALSA ✓ ✓ – (✓)2 – –

Table 1: Coverage of key readability and user-centered dimensions by common automatic metrics. (✓): partially
addresses; –: not addressed. 1 FKGL partially reflects clarity by rewarding shorter sentences and simpler words, but
does not capture semantic or user-perceived clarity. 2 SALSA contributes to clarity by typologizing lexical and
structural simplification edits, but does not directly assess whether outputs are clear to diverse users.

simplifications.

Neglect of Pragmatic and Relational Aspects.
Another concern is the neglect of pragmatic and
relational aspects of language use. Metrics such
as FKGL reduce readability to sentence length and
syllable count, ignoring tone, politeness, cultural
sensitivity, and actionability. In health contexts,
these dimensions are critical. A sentence that is
syntactically simple but emotionally flat or overly
authoritative may alienate readers or diminish trust
in the message. Beyond these pragmatic concerns,
relational aspects such as trust-building, respect,
and perceived empathy are equally essential, yet
remain invisible to current metrics, which oper-
ate without understanding user intent, affective re-
sponse, or context of use.

Limited Generalization Across User Popula-
tions. Moreover, automatic metrics do not gen-
eralize well across diverse user populations. Indi-
viduals with different literacy levels, cultural back-
grounds, or health conditions may interpret the
same text in divergent ways. Metrics grounded
in average-case assumptions fail to capture these
differences, potentially reinforcing existing dis-
parities in health communication. For example,
a simplification that seems effective for English-
dominant, college-educated users may confuse or
offend speakers of other dialects or individuals with
lower health literacy.

Risks from AI-Generated Feedback Loops. Fi-
nally, the increasing use of reinforcement learning
with AI-generated feedback (RLAIF) raises addi-
tional concerns. When optimization is driven by
synthetic evaluators trained on limited metrics or
preferences, system behavior may diverge from
human-centered values. Without human-in-the-
loop validation, systems risk overfitting to numeri-
cal proxies that do not reflect lived experience or

real-world comprehension.

Evidence from Recent Studies Recent research
(Choi et al., 2024) shows that dynamically combin-
ing multiple evaluation metrics (lexical and seman-
tic) yields much stronger alignment with human
ratings than any single metric can. Large-scale
meta-evaluations (Alva-Manchego et al., 2021)
found that commonly used automatic metrics, such
as BLEU and SARI, typically exhibit only low-
to-moderate correlation with human judgments on
simplification quality—particularly when multiple
rewriting operations are involved. These results un-
derscore the risk of relying solely on surface-level
scores, as high metric values may not reflect true
gains in user-perceived clarity or simplicity.

Overall, these limitations highlight the need for
evaluation frameworks that move beyond narrow
linguistic proxies to capture the relational, prag-
matic, and affective dimensions of readability in
health-focused NLP. Building on this, we argue for
extending ensemble approaches with participatory
user evaluation to address these gaps.

4 Human-Centered Readability Score
(HCRS)

We argue that readability in health communi-
cation should be redefined not as a property
of the text alone, but as a dynamic, relational,
and context-sensitive experience shaped by hu-
man perception. To address the limitations of
current surface-level metrics, we introduce a
five-dimensional framework—clarity, trustworthi-
ness, tone appropriateness, cultural relevance, and
actionability—grounded in research from health
communication, HCI, and participatory design.
Each dimension captures a distinct yet interdepen-
dent aspect of how users interpret and engage with
simplified content. Figure 1 illustrates the five core
dimensions and the integration of automatic and
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human evaluation within the hybrid HCRS proto-
col.

Hybrid/Composite
(HCRS) Score

Human
Evaluation

Automatic
Evaluation

Clarity

Trustworthiness

Tone Appropriateness

Cultural Relevance

Actionability

HCRS

Figure 1: HCRS framework diagram

4.1 Clarity
The core dimension of readability is whether a text
can be readily understood by its intended audience.
This involves removing jargon, reducing syntactic
complexity, and ensuring a logical flow of ideas.
Crucially, clarity must be defined from the user’s
perspective: a linguistically simple sentence can
still be unclear if it lacks context, relies on unfamil-
iar metaphors, or omits essential background infor-
mation. In health communication, clarity should be
measured not solely by word and sentence length,
but by the degree to which users can accurately and
confidently extract the intended meaning. Clarity
measurement is automatically scored via readabil-
ity indices (FKGL, SMOG), jargon detection, and
cohesion tools (e.g., Coh-Metrix (Graesser et al.,
2004)), combined with user-rated comprehension
and ease-of-reading survey items on a 5-point Lik-
ert scale or direct comprehension quizzes.

4.2 Trustworthiness
In the context of health communication, trustwor-
thiness refers to the perceived reliability, credibility,
and transparency of the source, distinct from the
broader and often contested notion of “trust” in
general AI ethics debates. Health-related texts are
not merely informational—they are also relational.
Users often evaluate not just what is said, but who
is saying it and how it is said. Trust is influenced
by perceived author credibility, transparency, and
tone. Simplified texts that are overly generic, im-
personal, or dismissive of complexity may erode
trust, particularly among marginalized populations

with historical reasons to be skeptical of medical
authority. A readable text should convey not only
facts, but also empathy and accountability. Broader
debates on “trust” in AI are addressed in the Dis-
cussion, but here the focus remains on relational
trust in patient-facing health communication.

Trustworthiness is quantified by detecting ex-
plicit source attribution, institutional language,
transparency features, and domain authority mark-
ers in the text; supplemented by participant ratings
of perceived credibility, transparency, and author
reliability gathered from validated survey instru-
ments.

4.3 Tone Appropriateness
The emotional tone of a message can profoundly
affect how it is received (Street et al., 2009; Hin-
yard and Kreuter, 2007; Arora, 2003). In simplified
texts, tone often shifts unintentionally—becoming
condescending, overly directive, or emotionally flat.
Especially in health contexts, tone must balance
clarity with compassion, authority with humility.
An appropriate tone affirms the reader’s dignity,
avoids blame, and fosters a sense of collaboration
rather than control. Tone appropriateness is defined
as the alignment of a text’s affective, pragmatic,
and interpersonal cues with the expectations and
sensitivities of the target user group, especially in
health communication contexts. Technically, tone
can be operationalized using multidimensional fea-
tures derived from both automatic computational
models and structured human assessments:

Automatic Assessment
• Pragmatic Feature Extraction: Quantify

politeness strategies using established clas-
sifiers (e.g., Stanford Politeness Classifier,
formality index). Key features include in-
directness, mitigation (e.g., “could you” in-
stead of imperatives), and hedging (e.g., “per-
haps”, “might”) (Danescu-Niculescu-Mizil
et al., 2013).

• Sentiment and Emotion Analysis: Compute
sentiment polarity (positive, neutral, nega-
tive) and emotional valence using transformer-
based models (e.g., BERT, RoBERTa) (Devlin
et al., 2019; Liu et al., 2019; Mohammad and
Turney, 2013) fine-tuned for affective state
detection.

• Empathy & Support Classifiers: Use mod-
els trained to detect empathy, warmth, and
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nonjudgmental language (e.g., EmpathBERT)
to assess supportive tone (Sharma et al., 2020;
Guda et al., 2021).

• Lexical Diversity & Intensity: Calculate
frequencies of intensifiers (e.g., “very”, “ex-
tremely”), modals (e.g., “should”, “must”), ev-
identials (e.g., “it seems”), and negative polar-
ity items (e.g., “never”, “cannot”) that may in-
dicate directive or controlling language (Biber
et al., 1999).

Human-Centered Evaluation
• Likert-Scale Survey Items: Collect ratings

on standardized questions such as: “This
message feels respectful and supportive.” or
“The tone is appropriate for the intended audi-
ence,” following validated health communica-
tion scales.

• Annotation Protocols: Engage expert or
target population annotators using detailed
codebooks specifying tone-related phenom-
ena (e.g., respectfulness, blame avoidance,
collaborative framing) to ensure consistent
evaluation.

The tone appropriateness for each text can then
be computed as a weighted hybrid score:

ToneHCRS = α1Pa + α2Sa + α3Ea + βH (1)

where Pa: politeness score (auto), Sa: sentiment
score (auto), Ea: empathy score (auto), H: human
Likert rating and the α and β coefficients are de-
termined empirically via calibration on validation
data to maximize alignment with user perceptions.

4.4 Cultural Relevance

Cultural relevance refers to the extent to which a
simplified text preserves, reflects, and respects the
cultural, linguistic, and social norms of its intended
audience (Resnicow et al., 1999; Kreuter and Mc-
Clure, 2004; Osborne, 2006). Texts can embed
cultural meaning through references, metaphors, id-
ioms, visual symbols, and formatting conventions;
these elements may facilitate comprehension for
in-group readers but create barriers for out-group
readers.

From an evaluation standpoint, cultural rele-
vance can be operationalized via (i) automatic
detection of culturally specific lexical items,

named entities, and idiomatic expressions, com-
bined with cross-linguistic/multilingual embed-
ding similarity measures to check alignment with
target-culture corpora; and (ii) human assessment
using Likert-scale items measuring perceived famil-
iarity, inclusivity, and absence of culturally alienat-
ing content. Loss of culturally meaningful content
or introduction of inappropriate cultural markers
during simplification can reduce both accessibil-
ity and trust. Accordingly, incorporating cultural-
perspective checks into simplification system de-
sign and evaluation is essential to ensure inclusivity
and equity.

CultureHCRS = γ1 · Ea + γ2 · Ia
+ γ3 ·Ma + δ ·Hh (2)

where: Ea: automatic entity match score (NER-
based), Ia: automatic idiom/cultural expression
match score, Ma: automatic multilingual embed-
ding similarity score, Hh: human-rated cultural
relevance (Likert), γ1, γ2, γ3, δ: weights calibrated
on validation set.

4.5 Actionability
In the final dimension, we address the need for
simplified health texts to support informed action.
This includes not only understanding a message,
but knowing what steps to take and feeling em-
powered to take them. Actionability requires that
information be specific, time-relevant, and contex-
tually grounded in the user’s lived reality. Inade-
quate or ambiguous directives—e.g., “seek care if
needed”—can confuse rather than guide. A read-
able text should reduce cognitive load while in-
creasing behavioral clarity.

From an evaluation perspective, actionability can
be assessed via (i) automatic analysis of directive
and procedural language (imperatives, explicit in-
structions, temporal/agent specification) and (ii) hu-
man ratings on validated Likert-scale items captur-
ing perceived clarity of next steps. These scores can
be integrated into a hybrid metric within the HCRS
framework (Vishnevetsky et al., 2018; Kreuter and
McClure, 2004).

Operationally, actionability can be measured
through (i) automatic linguistic analysis, such as
the detection and scoring of imperative verbs, pro-
cedural language, and explicit guidance framing;
and (ii) human rating via Likert-scale items assess-
ing whether the reader feels well-informed and able
to act on the information provided.
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ActionHCRS = λ1 ·Da + λ2 · Pa

+ λ3 ·Qa + µ ·Hh (3)

where:
Da: automatic directive language/imperative score,
Pa: automatic procedural/instruction cue score,
Qa: automatic presence of action-associated enti-
ties (temporal, agent, location),
Hh: human rating of perceived actionability (Lik-
ert),
λ1, λ2, λ3, µ: weights calibrated on validation set.

By framing readability as a multidimensional
construct, we aim to support the development of
NLP systems that are better aligned with human
needs and social context. Each of these dimensions
is measurable, at least in principle, through user-
centered evaluation methods such as interviews,
surveys, and participatory testing. Importantly,
these dimensions are not intended to be exhaustive
or mutually exclusive, but to offer a starting point
for rethinking evaluation as an interdisciplinary,
collaborative process.

Figures 2 and 3 illustrate the HCRS framework
in practice. Figure 2 compares original and sim-
plified health texts across the five human-centered
dimensions, with version B scoring higher in trust,
tone, and actionability. Figure 3 shows how such
scores can be integrated into a human-in-the-loop
evaluation pipeline, linking user feedback to model
updates.

Figure 2: Illustrative comparison of original and sim-
plified versions across five human-centered readability
dimensions. Simplified B scores higher on trust, tone,
and actionability, reflecting better alignment with user-
centered design principles.

5 Empirical Evaluation & Discussion

This work defines a comprehensive experimental
protocol to validate the Human-Centered Readabil-

ity Score (HCRS) across diverse user populations
and health literacy levels. The protocol integrates
automatic and human-centered measures to move
evaluation beyond current surface-oriented bench-
marks.

Interactive & Participatory Evaluation. Most
NLP evaluation workflows are system-facing.
To operationalize HCRS dimensions such as
tone, trust, and actionability, user-facing inter-
faces should collect real-time feedback. Short
prompts—e.g., “Was this sentence clear to you?”,
“Did you feel respected by the way it was
phrased?”—can be embedded in studies or deploy-
ment. Inclusive design, informed by participatory
methods, engages diverse stakeholders, co-creates
evaluation criteria, and adapts interfaces to cultural
and literacy contexts. Accessibility features (visual
icons, read-aloud options) can broaden participa-
tion, and lightweight web tools or crowdsourcing
can scale data collection.

In practice, participatory methods can be em-
bedded in evaluation pipelines through lightweight
annotation interfaces where end-users quickly rate
sentences on the five HCRS dimensions. Feedback
can be collected in short micro-surveys (5–10 min-
utes), aggregated, and then reviewed with stake-
holders (e.g., patients, clinicians, or domain ex-
perts) during participatory workshops. This cre-
ates an iterative loop: (i) immediate micro-ratings
during evaluation, (ii) stakeholder workshops to
review and refine criteria, and (iii) iterative updates
where refinements directly inform HCRS weight-
ing. For instance, in a vaccine information use-case,
patients could rate clarity and trustworthiness via
inline sliders, while health professionals review ag-
gregated outputs to recalibrate actionability guide-
lines. This illustrates how participatory methods
can be concretely integrated rather than remain-
ing abstract, serving as a proof-of-concept protocol
that demonstrates how HCRS could be operational-
ized through lightweight user studies even before
large-scale deployment.

Structured, Multidimensional Feedback. Bi-
nary ratings rarely explain why a sentence fails.
Feedback channels mapped to HCRS dimen-
sions—e.g., “Too technical”, “Missing informa-
tion”, “Poorly structured”—enable more inter-
pretable model training and closer alignment with
user perceptions.
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SIMPLIFICATION SYSTEM

USER
INTERACTION

FEEDBACK
INTEGRATION

MODEL UPDATESIMPLIFIED TEXT

MULTIDIMENSIONAL EVALUATION
based on human-centered readability

dimensions

Figure 3: Human-in-the-loop readability evaluation

Model Integration. Human feedback should in-
form training, not just evaluation. Strategies in-
clude multi-objective learning, auxiliary classifiers
for HCRS dimensions, and prompt engineering for
targeted qualities. Care is needed with RLAIF, as
over-reliance on synthetic evaluators risks misalign-
ment with human values in sensitive domains.

Future Directions. Future work will extend val-
idation of HCRS beyond health communication,
test participatory feedback pipelines at scale, and
explore adaptive dimension weighting.

RLAIF and Human-Centered Alignment in
Health Communication. Recent advances in
RL-based model alignment, particularly Reinforce-
ment Learning from AI Feedback (RLAIF (Lee
et al., 2024), offer a major leap in scalability and
efficiency. By using large language models (LLMs)
to generate preference labels, RLAIF reduces the
cost and time of annotation by more than an order
of magnitude, while achieving competitive—and
sometimes superior—results compared to tradi-
tional RLHF on standard benchmarks such as win
rate and harmlessness.

Yet in domains like health communication,
where trust, contextual sensitivity, emotional nu-
ance, and sociocultural fit are essential, RLAIF
faces critical limitations. Its optimization targets
remain generic (e.g., helpfulness, harmlessness)
and do not inherently capture the multidimensional,

relational qualities required for impactful health
information. Moreover, by inheriting preferences
from pre-trained LLMs, RLAIF risks amplifying
existing biases and overlooking authentic user val-
ues—an especially acute risk in high-stakes public
health contexts. Finally, while RLAIF advances
technical alignment, it does not natively support
participatory, user-facing feedback loops or adap-
tive objectives such as trustworthiness, cultural rel-
evance, and actionability.

The HCRS framework directly addresses these
gaps. It moves beyond surface-level alignment
toward user-driven, context-sensitive evaluation,
integrates structured human feedback with partici-
patory design, and operationalizes dimensions that
matter in practice—clarity, trustworthiness, tone,
cultural fit, and informed action—none of which
current RLAIF pipelines explicitly model. In this
way, HCRS can serve as both a complementary
evaluation layer and a calibration signal for RLAIF-
based training in sensitive domains.

6 Conclusion

This work introduced the Human-Centered Read-
ability Score (HCRS), a five-dimensional frame-
work for evaluating simplified health texts beyond
surface features. By addressing clarity, trustwor-
thiness, tone, cultural relevance, and actionabil-
ity, HCRS fills critical gaps in current metrics and
aligns evaluation with real-world user needs. We
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examined how existing metrics relate to these di-
mensions (Q1), proposed a composite score inte-
grating automatic and human feedback (Q2), and
outlined mechanisms to embed participatory, inter-
active evaluation into NLP workflows (Q3). Our
empirical protocol sets the stage for validating
HCRS across diverse populations and domains, en-
abling models that are both technically robust and
socially responsive.

While designed for public health communica-
tion, the approach extends to any domain where
clarity, trust, and usability are paramount. Im-
portantly, as discussed in Section 5, HCRS can
also serve as a complementary evaluation layer
and a calibration signal for RLAIF-based train-
ing pipelines in sensitive domains—helping to
align scalable RL methods with nuanced, human-
centered objectives.

7 Limitations and Future Work

While the proposed HCRS framework outlines a
path toward more human-centered evaluation, this
work has several limitations. First, the framework
has not yet been empirically validated on large-
scale, diverse user populations, so its generalizabil-
ity remains to be tested. A key limitation of this
work is therefore the lack of empirical validation.
While we outline protocols and scenarios for par-
ticipatory evaluation, we were not able to conduct
a pilot study within the scope of this paper. Future
work will therefore prioritize small-scale valida-
tion studies using micro-surveys and participatory
workshops on real health communication materi-
als. Second, the weighting of dimensions is cur-
rently conceptual and requires calibration against
real-world user judgments. Third, operationalizing
sociocultural and emotional dimensions relies on
language resources and annotation protocols that
may be domain- or language-specific.

We also note that implementing all five dimen-
sions in real evaluation settings may be resource-
intensive. Some dimensions (e.g., clarity) can be
partly automated, whereas others (e.g., trust or cul-
tural relevance) require structured human feedback.
Exploring hybrid setups that balance automation
with targeted user input will be critical for feasibil-
ity.

Key directions for future evaluation, therefore,
include: (i) Combining automatic metrics with val-
idated user feedback instruments; (ii) Integrating
participatory design into simplification evaluation;

and (iii) Extending assessment to include socio-
cultural and emotional dimensions; and (iv) Ex-
ploring how HCRS can be integrated into exist-
ing NLP evaluation pipelines in a practical way,
for example by combining automatic readability
features with lightweight human feedback mod-
ules; (v) Conducting pilot user studies to provide
proof-of-concept validation of the HCRS frame-
work in practice. These directions will be essential
for validating the HCRS framework in practice and
expanding its applicability across domains where
clarity, trust, and usability are critical.

While the HCRS framework was tailored for
high-stakes public health communication, its core
dimensions may require adaptation before use in
other domains. Concepts such as trustworthiness or
actionability are context-dependent and may need
to be redefined based on the domain’s communica-
tive norms and user expectations. Furthermore,
calibrated human feedback, participatory evalua-
tion, and relevant language resources would need to
be retuned for new target populations. The frame-
work should therefore be seen as a conceptual start-
ing point, with significant work required to ensure
generalizability, validity, and relevance outside of
health contexts.
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Abstract 

This study discusses the emojis 
employment that compensate for the 
absence of supralinguistic emotive cues in 
digital communication. Analyzing gender 
relations (Male-to-Male, Male-to-Female, 
Female-to-Male, Female-to-Female) as a 
social influence factor in emoji use, the 
research explores the use of anger-related 
emojis (!, ", #) and their dual functions 
as emotion signals and intensifiers. 
Findings reveal women use more intense 
emojis toward men and less severe ones 
toward women, a pattern not observed in 
men when emphasizing emotions. Hence, 
the study contributes to the conceptual 
application of emotional expression via 
emojis within digital media, raising 
sentiments on gender variances and 
improving emotional intelligence in 
artificial intelligence systems to yield a 
more accurate human feeling interpretation. 

1 Introduction 

In everyday life, humans can engage directly with 
one another in a variety of ways, including gestures, 
facial expressions, and tone of conversation. 
However, based on current Internet growth, online 
interactions lack supralinguistic communication 
mechanisms, resulting in communication 
challenges between communicators because 
language expression alone cannot accurately 
convey the entire mood (Li and Yang, 2018). Thus, 
emojis, the small digital pictures or graphic 
symbols, were born to represent things, feelings, or 
concepts in communication software. In fact, the 
rise of emojis has changed the way Internet users 
communicate, which has not only affected the 
attention of linguists to this issue but has also led to 
new changes in the way Internet users 
communicate. Lupyan and Dale (2016) reported an 

increase of 30% to 40% in emojis on Instagram, a 
type of communication software, compared to two 
to three years earlier, demonstrating the importance 
of the role of emojis in online dialogue. 

This research analyzes the role of the “emotion 
signal emoji” and the “emotion intensifier emoji” 
summarized in Li and Yang (2018). Specifically, 
“emotion signal emoji” refers to the emoji that 
describes the emotion not previously mentioned, 
while “emotional intensifier emoji” refers to the 
emoji that characterizes the mentioned emotion 
(usually contains direct emotional words).  

Previously, Butterworth et al. (2019) revealed 
the differences in the cognitive expressions of 
emojis by gender, while Herring and Dainas (2020) 
found gender differences in emoji employment. 
Specifically, females use emojis more frequently 
than males (Kennison et al., 2025). To investigate 
the gender variances, this study examines deeper at 
gender (male and female) and emoji usage 
interaction under angry scenarios for Taiwanese 
participants. The present study evaluates four 
gender relationships—Male-to-Male (MtoM), 
Male-to-Female (MtoF), Female-to-Male (FtoM), 
and Female-to-Female (FtoF)—to explore the 
following four research questions: 

(1) Under the emotion signal scenario, do men and 
women send different intensities of angry 
emojis depending on the recipient’s gender? 

(2) Under the emotion intensifier scenario, do men 
and women send different intensities of angry 
emojis depending on the recipient’s gender? 

(3) Comparing both emotion signal and intensifier 
scenarios, do men send different intensities of 
angry emojis? What about female users? 

(4) Is the use of angry emojis of men and women 
affected by the syntax (affirmative and 
interrogative)? 

Exploring Gender Differences in Emoji Usage: Implications for  
Human-Computer Interaction 
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Findings reveal women use stronger emojis when 
communicating with men and less intense ones 
with women, potentially because women are more 
emotional and sensitive to emotions compared to 
men. As emojis become increasingly prevalent in 
present-day communication, this study may aid in 
the analysis of human-computer alignments. The 
results may benefit future investments in resolving 
emotional misalignments that diminish trust in the 
medical chatbots. 

This paper is organized as follows: Literature 
Review presents past emoji studies and human bias 
in human interactions; Online Survey outlines the 
survey procedure and questionnaire; Results and 
Discussions addresses the research questions and 
presents plausible explanations; and Conclusion 
summarizes key findings and suggestions for 
future research. 

2 Literature Review 

2.1 Functions of Emoji 
With different functions of emojis, Li and Yang 
(2018) simplified the seven emoji functions 
proposed by Yus (2014): “illocutionary force 
modifier,” “turn giving/taking,” “emotion/attitude 
signal,” “irony,” “emotion/attitude intensity 
enhancer,” “backchannel device,” and “humor.” To 
investigate emotions, the present study selects 
“emotion signal emoji”1 and “emotion intensifier 
emoji,”2 since both serve to convey the speakers’ 
emotions. 

2.2 Emotion Expression in Chinese 
Studies have shown that cultural conditions affect 
participants’ expressions of emotion and 
complaints (De Vaus et al., 2018; Fischer et al., 
2004; Lim, 2016). Wu (2013) examined Hakka-
speaking men’s and women’s complaint behavior, 
discovering that female Hakka speakers, a branch 
of Chinese, are more polite and sensitive, 
highlighting the significance of gender influence in 
angry communication. Moreover, Yu (2005) and 
Chen et al. (2011) both investigated complimenting 
acts in Mandarin and American English, finding 
differences in cultural influences on human 
strategies to express anger in dialogue. Specifically, 
Yu (2005) discovered that Chinese participants 
prefer to indirectly express compliments as 

 
1 This study modifies the “emotion signal emoji” from Li 
and Yang (2018) “attitude/emotion signal” to specify the 
emotion in the emoji. 

American English participants are more likely to 
speak out directly. Furthermore, Chen et al. (2011) 
reveal cultural effects on two groups of participants’ 
strategies of complaining, as Americans expressed 
complaints across all the situations, while 
Taiwanese participants, another branch of Chinese 
culture, are sensitive to social power and will 
carefully choose proper expression in situations. 

2.3 Online Cross-gender Communication 
Butterworth et al. (2019) investigated the impact 
and correlation between Internet users’ gender and 
the recipient’s gender. Using a Likert scale, the 
researchers asked 40 men and 39 women about 
their opinions on four different workplace emoji 
usage scenarios: female send to male (FtoM), 
female send to female (FtoF), male send to male 
(MtoM), and male send to female (MtoF). The 
study shows that people's perceptions of the sender 
and the message are influenced by their use of 
emojis, in addition to their gender. It's important to 
note that these results support conventional gender 
preconceptions in communication, highlighting the 
social gender effects on people's opinions that may 
influence their choice of emoji. Accordingly, the 
study implies that gender is related to emoji 
selection. 

3 Online Survey  

3.1 Questionnaire Collecting 

3.1.1 Participants 
The study recruited 36 men and 46 women (aged 
11 to 20 years old). Herring and Dainas (2020) 
studied participants from 18 to 70+ and mentioned 
that older people over 30 generally do not 
understand the meaning and application of emojis. 
Given that the main group of people who use 
Internet software to communicate in modern times 
are teenagers, this study only analyzed the 
responses of respondents aged between 11 and 20 
years old. To reduce potential harm to underage 
participants, they are required to finish the 
questionnaire under their guardian’s supervision. In 
addition, they attended school in Taiwan (New 
Taipei City, Taipei City, and Keelung City) and 
their mother tongue was Taiwanese Mandarin 
(Traditional Chinese) before the age of seven. 

2 This study modifies the “emotion intensifier emoji” from 
Li and Yang (2018) “attitude/emotion intensity enhancer” to 
simplify the name and specify the emotion in the emoji. 
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Respondents who did not fill in “Traditional 
Chinese” as their native language will be 
considered as not familiar with Traditional Chinese 
applications and will not be included in the analysis. 

3.1.2 Questionnaire Procedure 
The survey was conducted online anonymously 
from 0:00 on April 26, 2023, to 23:59 on May 9, 
2023, for a period of two weeks. Participants must 
first read a brief test description, including the 
purpose of the study, research process, 
confidentiality, and potential risks. Next, the 
subjects were asked to provide basic identity 
information, including age, native language, and 
gender, to verify their eligibility to be interviewed. 
Finally, the subjects were asked to answer a 
questionnaire that should require less than five 
minutes to finish. 

3.2 Questionnaire Questions 
This study will be analyzed in two parts in 
Traditional Chinese. First, this study refers to the 
research framework of Butterworth et al. (2019) 
and conducts a 2 (Subjects) ✕ 2 (Recipients) 
gender cross-comparison to investigate the 
difference between men and women using emotion 
signal emoji and emotion intensifier emoji. 

Referring to Li and Yang (2018), this research 
selected emotion signal and emotion intensifier 
emojis as they are relatively direct conversational 
sentence patterns in daily life and express emotion, 
as illustrated in (5) and (6). 

(5) Emotion Signal Emoji: I have been waiting for 
you online for two hours. You are still 
offline_(emoji)_. 

(6) Emotion Intensifier Emoji: I’ve been waiting 
for you online for two hours. I “hate” people 
like you who make others wait_(emoji)_. 

Therefore, the questions in the first part will be in 
the form of affirmative sentences, with a total of 
four situations (the participants will play the role of 
the sender and will choose an emoji to send 
messages to recipients of both genders): emotion 
signal emoji send to male, emotion signal emoji 
send to female, emotion intensifier emoji send to 
male, and emotion intensifier emoji send to male. 

In the second part, this study aims to examine 
the use of angry emojis by men and women in 
affirmative and interrogative sentences. Due to the 

lack of previous literature, this study will initially 
explore whether syntax causes differences in the 
use of emojis between genders. Therefore, the 
questions will not be distinguished as being sent to 
males or females but will investigate men’s and 
women’s emoji usage in affirmative and 
interrogative sentences. 

In addition, according to the Unicode Standard, 
a system for organizing and encoding text across 
most platforms, the emojis that include anger were 
selected for this study: ! (Angry Face/ Angry/ U 
+1F620), " (Enraged Face/ Burning with rage/ 
U+1F621), # (Face with Symbols on Mouth/ 
Angry enough to curse/ U+1F92C) (Unicode, 
2022). Participants can choose from the three 
options, with the first part of the research 
questionnaire also providing a “do not use emoji” 
option in case the subjects will not use emojis in 
this situation. 

3.3 Questionnaire Design 

3.3.1 Semantic and Contextual Relevance 
Different situations can affect how humans express 
their emotions. Therefore, this questionnaire limits 
the scenarios to three groups, each with six 
questions (two emotion signals, two emotion 
intensifiers, and two syntax). In addition, even in 
the same context, the way a sentence is delivered 
can affect how the listener feels or the tone 
conveyed. The two sentences “我真的很生氣!” 
(I am really angry !) and “我超生氣” (I am super 
angry !) may cause the tone of the former to be 
less intense than the latter, resulting in different 
corresponding emojis. To reduce the influence of 
semantics, this study limits the use of degree, 
including “很” (very), “真 的” (really), “超” 
(super), etc., words in similar sentences. 

3.3.2 Numbers, Word Count, and Fillers 
The varying lengths of sentences may place a 
burden on the reader’s short-term memory, so the 
number of words per sentence and the number of 
sentences (the number of commas and periods) per 
question in the questionnaire were controlled. For 
example, in Scenario 1, each question has 2 
sentences and 26 words. Finally, to further reduce 
the phenomenon of transfer, in which participants 
will carry their emotions to the next question, the 
questionnaire’s order was shuffled. In addition, this 
study designed filler sentences (⅓ of the total 
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number of valid questions). Among the research 
questions, there are 18 valid questions, including 6 
filler questions, and the whole questionnaire has a 
total of 24 questions. 

3.3.3 Affirmative and Interrogative 
To explore the influence of syntax, the second part 
of the questionnaire did not reveal gender, allowing 
the subjects to focus on the use of sentence patterns. 
In addition, the study used “?” to distinguish 
between affirmative sentences (without “?”) and 
interrogative sentences (with “?”). 

4 Results and Discussions  

4.1 Statistics and Data Processing 
In the first part of the questionnaire, this study 
received 432 valid responses from males and 552 
valid responses from females. In the second part of 
the questionnaire, this study received 216 valid 
responses from males and 276 valid responses from 
females. The study excludes invalid responses such 
that the participants do not complete the whole 
questionnaire or select multiple emojis for the same 
question. Since the response numbers differ in 
gender, the present study converts the number of 
responses into percentages. To discuss statistical 
significance, this study used the chi-square test 
with the significance level set to 0.1. If the 
significance value is lower than 0.1, it will be 
considered a significant difference or change. 

4.2 Emotion Signal Emoji 

4.2.1 Frequency of Emotion Signal Emojis  
There was no significant difference in the use of 
emojis in emotion signal emoji sentences between 
men and women (p = 0.2225). From the overall 
distribution, the result shows the most popular 
choice among both men and women is not to use 
emojis (M=38.43%, F=39.13%), followed by " 
(M=23.15%, F=25.00%).  

Past research has shown that in negative 
circumstances, individuals don’t feel compelled to 
communicate their feelings. (Derks et al., 2007). 
Therefore, in the anger emotion of this study, it is 
reasonable to explain that the majority of subjects 
chose not to use emojis. In addition, " remains the 
second most frequently used word is largely due to 
the compromise method. When encountering three 

 
3 p-value = 0.09721. 

Figure 1: Male and Female Emotion Intensifier Emoji 
Responds Frequency. 

levels of emoji intensities, the subjects generally 
believe that ! cannot fully express anger, while # 
over-expresses emotions (Unicode, 2022). An 
interesting observation is that females use ! 
(M=17.59%, F=21.74%) more frequently than # 
(M=20.83%, F=14.13%), while the opposite is true 
for males. This study justifies this phenomenon 
since women are more inclined to use strategies to 
weaken emotions. Detailed past literature and 
reasons will be discussed in “4.3 Emotion 
Intensifier Emoji.” 

4.2.2 Recipient Gender in Emotion Signal 
Within each gender, there was no significant 
difference in the results whether sent to male or 
female recipients (M: p = 0.6389; F: p = 0.8409). 
Overall, both men and women used emotion signal 
emojis similarly. Additionally, neither men nor 
women changed their choice of emojis based on the 
recipient’s gender. 

4.3 Emotion Intensifier Emoji 

4.3.1 Frequency of Emotion Intensifier Emojis  
There was a significant difference between males 
and females in the use of emotion intensifier emoji 
sentences (p < .1)3. As shown in Figure 1, unlike 
the emotion signal emoji, in the emotion intensifier 
emoji, both men and women tend to use # rather 
than !. In addition, females were more likely to 
choose not to use emojis than males (M=35.19%, 
F=45.65%), while males were more likely to use 
# (M=20.37%, F=14.49%). This implies that 
women generally prefer to use fewer intense emojis 
(do not use emojis), while men are relatively 
accustomed to using more intense emojis. In this 
regard, in emotion intensifier emoji sentences, 
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women have strategies to weaken anger compared 
to men. As shown in Figure 1, the proportion of 
emoji usage frequency is arranged from most to 
least as follows: no emoji, ", #, !. 

4.3.2 Recipient Gender in Emotion Intensifier 
There was no significant difference in the choice of 
emojis by male subjects when sending messages to 
the two genders (p = 0.9713). The number of 
emojis used has the same trend as the emotion 
signal emoji, from the most to the least:  
no emojis (MtoM=35.19%, MtoF=35.19%),  
" (MtoM=29.63%, MtoF=29.63%),  
# (MtoM=19.44%, MtoF=21.30%),  
! (MtoM=15.74%, MtoF=13.89%). 

Figure 2 shows that, in contrast to the previous 
results, there are slight variances between female 
individuals when it comes to mailing to men and 
women. Female participants were more inclined to 
avoid using emojis while sending messages to 
other women than when sending messages to men 
(FtoM=42.03%, FtoF=49.28%). Furthermore, in 
the responses Female-to-Female scenario, ! 
(FtoF=15.94%) was more frequent than # 
(FtoF=13.77%), proving women are more likely to 
use less angry responses when sending to women. 
To see if there were differences in the selection of 
emojis with stronger or lesser emotions, this study 
combined the responses with no emoji and !, 
which were less emotional, and combined the 
responses with " and #, which were more 
emotional, as shown in Figure 3. After calculating 
the combined results, there was a significant 
difference in this change between females and 
males (p < 0.1)4. In light of these differences, this 
study has two additional findings in (7) and (8). 

(7) Women tend to choose less intense emojis to 
express emotions in the same gender (FtoF) in 
the emotion intensifier emoji condition. 

This study attributes the difference in (7) to 
women being more sensitive to emotions than 
men (Fischer et al., 2018; Barrett and Bliss-
Moreau, 2009). When women send emojis to 
other women, they subconsciously assume that 
the other party will be more likely to receive their 
anger, and thus use less intense emojis. In addition, 
in Gordon’s (1997) study, women were more

 
4 p-value = 0.04994. 

Figure 2: Female Emotion Intensifier Emoji Responds 
Frequency When Sending to Male and Female. 

Figure 3: Female Emotion Intensifier Emoji 
Responds Frequency When Sending to Male and 
Female (Merged). 

restrained in expressing anger than men, 
indicating that women would restrain themselves 
from using stronger words and emojis when 
sending texts or emotions. That is, in the emotion 
intensifier emoji sentence pattern, the sentence 
already contains angry words with direct 
condemnation; in order to restrain themselves 
from using strong expressions, women generally 
choose not to use emojis, the least angry option, 
to stop emotions from intensifying. Therefore, in 
terms of the results of this study, female subjects 
prefer not to use emojis when using the emotion 
intensifier emoji and reduce the other three 
options. 

(8) Women tend to choose stronger emojis to 
express toward different gender (FtoM) in the 
emotion intensifier emoji situation.  

In the case of " (FtoM=31.88%, FtoF=21.01%), 
female participants used this emoji more often 
when sending messages to men than when sending 
messages to women. In addition, among the 
responses from women to messages sent to men, # 
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(FtoM=15.22%) were more likely to be selected 
than ! (FtoM=10.87%). This is a significant 
finding as it supports that women are more likely 
to employ angrier emojis when sending to males. 

According to past literature, women are more 
likely than men to be able to sense the emotions 
of others, as is suggested by traditional 
stereotypes. The sender must therefore frequently 
convey more emotions to the males, using more 
intense emojis for men, in order for them to 
comprehend the feelings that the sender wishes to 
convey. Fischer et al. (2018) suggested there are 
two possible reasons why men are less capable of 
emotion perception. First, men pay more attention 
to subtle facial expressions and are therefore able 
to perceive more complex emotional features in 
the face. However, there are no detailed 
differences in emojis, only major changes in color, 
text, etc.; thus, men are less likely to detect 
differences in emotional intensity in emojis than 
women. Second, when asked to rate the intensity 
of multiple emotions, males are more prone to be 
perplexed and unsure about their own emotional 
perception. Similarly, Herring and Dainas (2020) 
found that men are more likely to be confused and 
annoyed by emoticons. The results are very likely 
to trigger the transfer phenomenon in the series of 
emotional questions and answers in this study. 

In summary, there is no significant difference 
in men’s responses to emotion intensifier emoji 
messages, nor does their original emotional 
expression change due to the gender of the 
recipient. However, women have a particularly 
significant difference in emotion intensifier 
emojis, meaning they choose less intense emojis 
for the same gender and more intense emojis for 
the different gender. This difference affects the 
frequency of the overall expression of emotion 
intensifier for both men and women. 

4.4 Emojis in Different Emoji Types 

4.4.1 Male Emoji Distribution in Emotion 
Signal and Emotion Intensifier Emojis  

There was no significant difference in the use of 
emotion signal emojis and emotion intensifier 
emojis among male subjects when sending 
messages to males and females (MtoM: p = 0.4375; 
MtoF: p = 0.9376).  

Since male subjects did not change their choice 
of emojis in both sentence patterns, it indicates that 
men do not change the emotions they originally 

Figure 4: Female Emotion Signal Emoji and 
Emotion Intensifier Emoji Responds Frequency 
When Sending to Female. 

Figure 5: Female Emotion Signal Emoji and 
Emotion Intensifier Emoji Responds Frequency 
When Sending to Male. 

wanted to express, even if the sentence pattern 
changed. Given the notion that women are too 
emotional, Barrett and Bliss-Moreau (2009) noted 
that men express their emotions when the situation 
calls for it, demonstrating that men are more 
objective and unaffected by emotions. Women 
express their emotions because they are “emotional 
creatures.” That is, the emotion intensifier 
sentences in this study contain angry words. Since 
women are more easily affected by the words, the 
emojis they choose also change according to the 
sentence pattern. On the contrary, men are 
objective and less susceptible to emotions. They 
were not swayed by the angry words, supporting 
the finding that men did not differ significantly in 
their use of emotion signals and emotion intensifier 
emojis. 

4.4.2 Female Emoji Distribution in Emotion 
Signal and Emotion Intensifier Emojis  

Although there is no statistically significant 
difference in the female subjects’ responses to the 
two sentence types (p = 0.5168), ! and " have a 
decreasing trend in emotion intensifier emojis, 
while the value of not using emojis (increase 7.98%) 
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has an increasing trend, as shown in Figure 4. This 
supports that women tend to use less intense emojis 
when sending messages to the same gender under 
emotion intensifier emoji conditions. 

Unlike the results for the same gender, female 
subjects showed significant differences when 
sending to males (p < .1)5. As shown in Figure 5, in 
the case of the emotion intensifier, the value of ! 
(-12.32%) has a downward trend, and the value of 
" (+7.24%) has an upward trend. Thus, the 
finding reveals women tend to use more intense 
emojis, as the more intense emojis were chosen 
when expressing themselves to the opposite gender 
in emotion intensifier emojis. 

4.5 Emojis in Different Sentence Structures 

4.5.1 Syntax Influences on Emoji  
There is no significant difference in the 
performance of men in affirmative (A) and 
interrogative (I) sentences (p = 0.9690). The most 
used by men is " (A=39.81%, F=41.67%), 
followed by ! (A=36.11%, F=35.19%), and 
finally # (A=24.07%, F=23.15%), shown in 
Figure 6. In terms of the emoji usage frequency, " 
is similar to the emotion signal type as the usage 
frequency of " remains the highest. 

Besides, there was no significant difference in 
the performance of female subjects in affirmative 
sentences and interrogative sentences (p = 0.5309). 
However, as shown in Figure 7, this study found 
that the distribution of different emojis in different 
sentence types was slightly different. Among them, 
compared with affirmative sentences, interrogative 
sentences have stronger emotional ", and their 
usage ratio has increased (A=38.41%, I=44.20%, 
increased 6.52%); on the contrary, ! has 
decreased (A=44.20%, I= 37.68%, decreased 
5.79%). This study speculates that women tend to 
use stronger emojis in interrogative sentences, 
which will be discussed in 4.5.2. 

4.5.2 “?” as an Emotion Intensifier Symbol 
This study justifies the result in 4.5.1 by explaining 
that interrogative sentence patterns also affect the 
use of emojis. Sagum et al. (2019) highlight the 
role of ending punctuation in emotion intensity 
level (Karami et al., 2023). Specifically, the 
question mark in the anger scenario is classified as  

 
5  p-value = 0.04855. 

Figure 6: Male Affirmative Sentence and 
Interrogative Sentence Responds Frequency. 

Figure 7: Female Affirmative Sentence and 
Interrogative Sentence Responds Frequency. 

medium or high intensity. As women encounter 
interrogative sentences, their distribution pattern is 
similar to the emotion intensifier emoji pattern of 
women, making it easier for female subjects to 
influence their choices for this symbol. This study 
hypothesizes two possible reasons for this result: 
first, women will unconsciously treat the other 
party as a man during the conversation, which will 
have an emotionally reinforcing effect on the 
opposite gender during the emotional enhancement 
period; second, “?” is a special kind of “emotion 
intensifier symbol” (not an emoji, sentence, or 
word). Hence, its results are different from the 
emotion intensifier emoji in this study, meaning 
that when female subjects encounter symbolic 
emotion enhancement, there is an effect of 
intensified tone. Thus, the present study proposes 
the addition of the symbolic emotion intensifier 
symbol to the emoji intensifier symbol. However, 
whether this phenomenon is affected by gender 
remains to be clarified. In view of the lack of 
previous literature, the above conclusions about “?” 
are only speculations and need to be corroborated 
by more literature and experiments. 
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5 Conclusion 

The study found notable differences in how men 
and women express anger through emojis. Women 
use stronger emojis when communicating with 
men and less intense ones with women, potentially 
because women are more emotional and sensitive 
to emotions compared to men (Barrett and Bliss-
Moreau, 2009; Fischer et al., 2018). Women also 
choose more intense emojis in interrogative 
sentences than in affirmative sentences. This study 
proposes two explanations for this result: first, 
women may unconsciously treat the recipient as a 
man during the conversation, resulting in an 
enhanced situation. Second, the “?” in question 
sentences may be an “emotion intensifier symbol,” 
which has an emotion-enhancing effect on women 
that is different from other sentence structures. 

Today, the activeness of online conversations 
has led to communications between humans and 
artificial intelligence, among which the ability of 
artificial intelligence to distinguish emotions is 
highly valued for its development. Based on the 
results of this study, the expression of emotions by 
men and women is affected by sentence patterns. If 
the gender is different, will artificial intelligence 
provide different responses? Since the scale of this 
study is not large enough to cover all Internet users 
worldwide, some results need to be confirmed. 
However, this study provides a preliminary 
discussion on the emotion of data—emojis, 
pioneering first-hand research into the new 
generation's communication.  

Limitations 

The present study only investigates human 
responses in the Chinese Traditional language, 
which covers a partial aspect of Chinese culture. 
Yet, since emotional responses are linked with 
culture and gender, the present study requires 
future research to investigate how other cultures 
behave and respond. Besides, this research 
primarily investigates the syntax’s effects on emoji 
selection, also calling for future studies to look in-
depth at the phenomenon. 

Ethical Considerations 

This paper was conducted through a digital survey 
and recruited 36 men and 46 women. Each 
participant’s information is secure as the survey is 
anonymous. Furthermore, participants are required 
to read through brief test descriptions, including the 
purpose of the study, research process, 

confidentiality, and potential risks, and they can opt 
out of the experiment at any time. Since the 
participants are aged 11 to 20, they are required to 
finish the questionnaire under their guardians’ 
supervision, reducing potential harm to the 
participants.  
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Abstract

In contemporary workplaces, meetings are es-
sential for exchanging ideas and ensuring team
alignment but often face challenges such as
time consumption, scheduling conflicts, and in-
efficient participation. Recent advancements in
Large Language Models (LLMs) have demon-
strated their strong capabilities in natural lan-
guage generation and reasoning, prompting the
question: can LLMs effectively delegate partici-
pants in meetings? To explore this, we develop
a prototype LLM-powered meeting delegate
system and create a comprehensive benchmark
using real meeting transcripts. Our evaluation
shows GPT-4/4o balance active and cautious
engagement, Gemini 1.5 Pro leans cautious,
and Gemini 1.5 Flash and Llama3-8B/70B are
more active. About 60% of responses capture
at least one key point from the ground truth.
Challenges remain in reducing irrelevant or
repetitive content and handling transcription
errors in real-world settings. We further vali-
date the system through practical deployment
and collect feedback. Our results highlight both
the promise and limitations of LLMs as meet-
ing delegates, providing insights for their real-
world application in reducing meeting burden.

1 Introduction

Nowadays, the nature of work has increasingly
become more collaborative (Mugayar-Baldocchi
et al., 2021), with meetings becoming an essen-
tial component (Spataro, 2020) to facilitate the ex-
change of ideas and information, fostering innova-
tion and ensuring alignment among team members.

Attending meetings, however, poses notable dif-
ficulties. Firstly, the rapid increase in the number
of meetings can consume a substantial amount of
time, diverting attention from core tasks and reduc-
ing overall productivity (Perlow et al., 2017; Kost,
2020). Secondly, scheduling conflicts often arise
when multiple meetings are double-booked, forcing
participants to prioritize or miss valuable discus-

sions altogether. Thirdly, not all meetings require
full attendance; participants may only need to con-
tribute to specific topics, leading to inefficiencies
when attendees are required for entire duration.

In this study, we investigate the feasibility of
developing a meeting delegate system to repre-
sent individuals in meetings. This concept is
becoming increasingly viable with the advance-
ment of Large Language Models (LLMs). These
LLMs, renowned for their remarkable capabili-
ties in natural language understanding and genera-
tion (Ouyang et al., 2022; OpenAI, 2023; Google,
2024a), demonstrate potential to comprehend meet-
ing context, participate in dynamic conversations,
and provide informed responses.

Developing LLM-powered meeting delegate sys-
tems faces several challenges. Firstly, such systems
must navigate complex, context-rich conversations
involving multiple participants, requiring them to
discern opportune moments for engagement and
restraint. Secondly, human conversations often con-
tain ambiguities and uncertainties, such as queries
directed ambiguously or pronunciation-related am-
biguities, which challenge the system’s ability to
respond effectively. Thirdly, ensuring user privacy
is crucial to prevent over-sharing of information
and safeguard the user’s personal image. Finally,
these systems must operate in real-time, necessitat-
ing low-latency responsiveness.

This study evaluates LLMs in the meeting del-
egate role, initially addressing the first two chal-
lenges while leaving privacy and latency consid-
erations for future work. Unlike prior research
that examines the facilitator role in meetings (Mao
et al., 2024), our work addresses the more preva-
lent participant role. Specifically, we focus on how
LLMs manage the nuances of meeting discussions,
including their ability to discern when to intervene,
respond to ambiguities, and maintain an accurate
understanding of evolving contexts.

In the absence of established benchmarks, we
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constructed an evaluation dataset from real meeting
transcripts. Our evaluation reveals that GPT-4/4o
maintain balanced performance between active and
cautious engagement strategies, while Gemini 1.5
Pro is more cautious, and Gemini 1.5 Flash and
Llama3-8B/70B are more active. Overall, 60% of
responses address at least one main point from the
ground-truth. While the results demonstrate the
potential of LLMs in meeting scenarios, improve-
ments are needed to reduce irrelevant or repetitive
content and enhance tolerance for transcription er-
rors. To extend this evaluation beyond datasets, we
also implemented and tested a prototype system in
real-world settings.

Our contributions are summarized as follows:

• We conduct a systematic evaluation of LLMs in
the meeting delegate system, specifically assess-
ing their role as participants.

• We introduce the first evaluation benchmark in
this domain, derived from real meeting tran-
scripts, encompassing four scenarios: Explicit
Cue, Implicit Cue, Chime In, and Keep Silence.
The dataset will be released with this paper.

• We assess popular LLMs using the benchmark
and develop a prototype for real-world testing,
including an ablation study on the impact of tran-
scription errors.

2 Related Work
Language Model Applications in Meetings. Con-
siderable research has been dedicated to the summa-
rization of meetings (Zhong et al., 2021) and other
real-life dialogues (Mehdad et al., 2014; Tuggener
et al., 2021). In the context of meetings, key tasks
include meeting transcript summarization and ac-
tion item identification (Cohen et al., 2021). Meet-
ingQA (Prasad et al., 2023) investigated Q&A tasks
based on meeting transcripts, highlighting the chal-
lenges faced by models such as RoBERTa in han-
dling real-world meeting data. Recent advance-
ments in LLMs have opened new avenues for en-
hancing these tasks. For instance, an LLM-based
meeting recap system (Asthana et al., 2023) has
demonstrated effectiveness in generating accurate
and coherent summaries and action items.
Facilitator in Multi-Participant Chat. MUCA
(Mao et al., 2024) presents a framework that lever-
ages LLMs to facilitate group chats by simulating
users, demonstrating notable effectiveness in goal-
oriented conversations. Similarly, approaches like
GPT-4o demo for meetings (OpenAI, 2024a) are

designed to serve as facilitators in group discus-
sions. While these studies underscore LLMs’ ca-
pabilities in managing group chats, they primarily
focus on LLMs guiding the meeting process rather
than representing individuals with different roles.
Role-Playing with LLMs: Characters and Dig-
ital Twins. Role-play prompting (Kong et al.,
2024) has proven effective in triggering chain-of-
thought reasoning in LLMs. Research on simu-
lating famous personalities (Shao et al., 2023; Sun
et al., 2024) has also explored character consistency
and social interactions in agent-based group chats.
While Reid Hoffman’s (Hoffman, 2024) GPT-4-
powered digital twin showcased the potential of AI-
driven representations, it was limited to one-on-one
interactions, leaving group discussions largely un-
explored. Unlike prior work, we focus on LLMs as
meeting delegates, providing targeted engagement
for multi-participant, goal-specific meetings. Our
evaluation and real-world deployment show their
potential to reduce individual meeting burdens and
advance LLM applications in professional settings.

3 LLM-based Meeting Delegate System

Figure 1: Architecture of the meeting delegate system.

Given the absence of a standardized meeting
delegate architecture, this study adopts the design
depicted in Figure 1. The system first employs an
Information Gathering module to collect meeting-
related information, facilitating LLM-driven par-
ticipation. Users can manually provide topics of
interest, background knowledge, and shareable ma-
terials prior to the meeting. Alternatively, if the
user has a personal knowledge base or an intelli-
gent personal assistant/agent, the system can query
them in real-time, provided latency is manageable.

Once in the meeting, the system monitors pro-
ceedings and employs LLMs to determine appropri-
ate engagement timing and content. While various
contextual data sources (e.g., transcripts, screen
sharing, audio) are available, this work focuses
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Figure 2: Workflow of an LLM-powered meeting delegate system. The process involves user input of meeting intent
and shareable information prior to the meeting, real-time participation based on meeting transcripts, and response
generation aligned with prompted instructions and meeting objectives.

on transcripts obtained from meeting software or
speech-to-text tools. Figure 1 outlines three re-
sponse types: leading discussions, responding to
others, and chiming in. This study prioritizes the
latter two, emphasizing the participant role. The
generated text-based response can then be con-
verted into speech using TTS technology, poten-
tially mimicking the user’s voice.

An example of this workflow is depicted in Fig-
ure 2, drawn from a real prototype implementation
(detailed in Section 6.2). In this example, Bob uses
his Meeting Delegate to participate in a meeting
with Alice and others. Before the meeting, Bob
provides topics of interest and relevant shareable
information to the Meeting Delegate 1 . This infor-
mation, along with instructions, forms the prompt
for the Meeting Delegate 2 . The delegate then
joins the meeting 3 and determines, based on the
ongoing meeting transcript, whether to engage 4 .
During the meeting, Alice discusses updates on
the voice function, which aligns with Bob’s goal
to learn about its progress. The Meeting Delegate
then chimes in 5 , generating a text-based response
(converted to speech 6 ), asking for more details,
thus achieving Bob’s objectives and engaging in
the conversation.

4 Benchmark Dataset
While the preceding example illustrates the Meet-
ing Delegate in action, a more systematic evalua-
tion is needed to gauge how effectively it times its
interventions and generates relevant responses. No

existing benchmark datasets meet these objectives,
prompting us to create one.

4.1 Dataset Construction
Our dataset construction strategy involves using
real meeting transcripts and generating test cases by
taking “snapshots” from these transcripts. A “snap-
shot” is defined as a truncation of the transcript
after a participant’s utterance. Then, by comparing
the generated response according to this snapshot
with the actual responses in the real script, we can
determine how well the system performs. An il-
lustration of this process in given in Figure 8. The
base meeting transcripts are taken from the ELITR
Minuting Corpus (Nedoluzhko et al., 2022), com-
prising de-identified project meeting transcripts in
English and Czech. 61 English meeting transcripts
are used and the test cases are constructed as fol-
lows. Motivated by promising results from LLM
evaluation and annotation (Li et al., 2024; He et al.,
2024; Gilardi et al., 2023), we leverage LLMs for
dataset preparation while conducting manual veri-
fication to ensure quality assurance. The prompts
employed in this process are carefully crafted and
iterated to ensure that the extracted test cases meet
the desired criteria. To further ensure accuracy,
all extracted cases are manually reviewed and val-
idated by two authors. This dual approach, lever-
aging LLMs for scalability while incorporating hu-
man oversight for quality assurance, offers a bal-
anced and reliable methodology.

Specifically, we first employ GPT-4 to progres-
sively analyze each participant’s utterances by tak-
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ing a “sliding window” on the original meeting
transcript. This is to capture their meeting intents
and the information that they can share during the
meeting, serving as the critical input to the Meet-
ing Engagement module for response generation.
The shareable meeting information contains pairs
of <Context> and <Information>, with <Context>
specifying under which context the points in <In-
formation> can be shared. Details of this intent and
contextual information extraction prompt can be
found in Table 22 in the Appendix.

Next, we extract suitable snapshots from the tran-
scripts as test cases. For each participant (excluding
facilitators), we identify their utterances and use
the preceding transcript as the ongoing meeting
context. The ground-truth response is determined
by considering several subsequent utterances. This
extraction process leverages GPT-4 (prompt in Ta-
ble 28) to classify meeting scenes into Explicit
Cue, Implicit Cue, and Chime In (definition in Sec-
tion A) and select the necessary utterances to form
the ground-truth response, recognizing that a user’s
response may span multiple subsequent utterances.
As the extracted test cases closely match real tran-
scripts, we refer them as the Matched Dataset.

To evaluate the meeting delegate’s ability to
Keep Silence when inappropriate to speak, we con-
struct a Mismatched Dataset from the Matched
Dataset. We take Explicit Cue and Implicit Cue
test cases and replace the principal who needs to
respond with another participant not involved in
the current conversation. The intents and shareable
meeting information are accordingly replaced, and
the ground-truth is set to be empty. The delegate
representing the new principal is expected to re-
main silent when presented with these transcripts.

Lastly, we construct a Noisy Name Dataset for
our ablation study, addressing the fact that meeting
transcribing systems often introduce noise affect-
ing the meeting delegate’s performance. This issue
is particularly significant for recognizing names,
which are crucial in Explicit Cue cases. For exam-
ple, the Chinese name “Jisen” might be transcribed
as “Jason”. In our construction, we modify the Ex-
plicit Cue cases by replacing de-identified names
with real-world names and substituting the princi-
pal’s name in the final utterance with a phonetically
similar word to simulate transcription errors.

4.2 Evaluation Metric
In our evaluation, we generate responses using
LLMs with the same prompt as in our prototype.

These responses are assessed using two categories
of metrics: Response Rate / Silence Rate, which
determines whether a response is generated, and
quality-related metrics, Recall and Attribution.
To strengthen interpretability, we complement the
quality metrics with semantic similarity scoring,
with results reported in Section C in Appendix.

The Recall metric evaluates if the generated re-
sponse includes key points present in the ground-
truth response. We define two recall rates: “loose”
recall rate, which is 1 if at least one main point
from the ground-truth is mentioned and 0 other-
wise; and “strict” recall rate, which measures the
percentage of main points from the ground-truth
included in the generated response.

Attribution assesses the origin of the main points
in the generated response, classifying them into
four categories: the expected ground-truth response
(Expected Response), contextual information not
present in the ground-truth (Contextual Informa-
tion), previous transcript content (Previous Tran-
script), and hallucinated texts (Hallucination).

We leverage LLMs for main point extraction
and their semantic comparison. Specifically, in
the Recall phase, GPT-4 is employed to assess
how well the LLM-generated responses match key
points from the ground-truth response set, using
the prompt provided in Table 18. In the Attribution
phase, GPT-4 Turbo is used to trace and evaluate
the origin of specific points in the responses, with
the prompt provided in Table 20. Through man-
ual validation of 80 randomly sampled cases (10%
of total statistics), we observed that with carefully
crafted instructions, LLMs achieved an average of
95% accuracy on the Recall and Attribution evalu-
ation tasks, thereby supporting their use in our ex-
periments1 Two annotators independently labeled
80 test cases with binary match judgments. Inter-
annotator agreement was 87.5% (Cohen’s Kappa
= 0.69), indicating substantial consistency. No-
tably, our subsequent manual analysis of all failure
cases for response rate (Section 5) did not reveal
any errors, further reinforcing the robustness of our
evaluation methodology.

4.3 Dataset Statistics
From the 61 original meeting transcripts, we extract
846 test cases for Matched Dataset, in which 54.5%
belongs to Implicit Cue, followed by 30.9% for
Explicit Cue and 14.7% for Chime In. The numbers

1See Appendix D for an example showing GPT-4 reliably
identifies main points and yields a meaningful Recall score.
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of test cases for Mismatched Dataset and Noisy
Name Dataset are 294 and 122, respectively.

For Matched Dataset, we present various data
statistics in Figure 3. Over 50% of test cases in-
volve more than four participants and contain tran-
scripts exceeding 50 utterances, highlighting the
dataset’s complexity and the involvement of multi-
ple individuals. Additionally, approximately 40%
of test cases include at least two main points in the
ground-truth response, and in more than 50% of
cases, participants contribute over ten main points.
This indicates a substantial level of detail and in-
teraction within the meetings, suggesting that the
dataset captures rich and multifaceted discussions.
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Figure 3: Data statistics of the Matched Dataset.

5 Experiment

Setup. In our experiment, we utilize three promi-
nent series of LLMs: the GPT series (GPT-
3.5-Turbo, GPT-4, GPT-4o) (OpenAI, 2024c),
the Gemini series (Gemini 1.5 Flash, Gemini
1.5 Pro) (Google, 2024b) and the Llama series
(Llama3-8B, Llama3-70B) (Meta, 2024). For all
LLMs2, we set the temperature to 0 and use the
default API settings for other parameters. Note
that, due to model context window restriction, we
remove test cases that exceed the 8K context win-
dow for Llama3 models (56.3% kept) and those
exceeding the 16K context window for GPT-3.5-
Turbo (94.3% kept), while keeping all for other
LLMs. We repeated all experiments on the inter-
section subset of test cases within the 8K context
window as the Llama series, and the patterns and
experimental findings (Tables 5, 7, 9, and 11 in
Appendix) are consistent.

2Exact model versions can be found in Table 14.
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Figure 4: Response Rate on Matched Dataset vs. Si-
lence Rate on Mismatched Dataset.

Response Rate Analysis. The Response and Si-
lence Rates of the studied LLMs are obtained for
Matched and Mismatched Datasets, respectively.
Summarized results are presented in Figure 4, with
further details (e.g., breaking down to different
meeting scenes) provided in Tables 4 and 6 in the
Appendix. Overall, GPT-4 and GPT-4o demon-
strated balanced performance, with Response/Si-
lence Rates between 0.7 and 0.8. Among the Gem-
ini series models, Gemini 1.5 Pro achieved the
highest Silence Rate of approximately 0.9, coupled
with a low Response Rate, indicating a cautious
engagement strategy. In contrast, the smaller Gem-
ini 1.5 Flash model and the Llama series exhibited
higher activity levels, suggesting a more proactive
engagement approach; however, this also led to a
tendency to engage when they should remain silent.
These patterns persisted when all LLMs are tested
using the same subset of cases as the Llama series.

To uncover the underlying causes of failures,
we conduct an in-depth analysis of all failure
cases in representative models: GPT-4o and Gem-
ini 1.5 Pro for state-of-the-art LLMs, and Gem-
ini 1.5 Flash and Llama3-8B representing more
lightweight models. We manually analyze and cat-
egorize all error types, proposing corresponding
directions for improvement, as summarized in Ta-
ble 1. For instance, in the "Explicit Cue" scenario
within the Matched Dataset, the meeting delegate
may correctly identify the cue but fail to respond,
indicating a need for enhanced reasoning capabili-
ties in meeting contexts. Detailed results for each
model can be found in Figure 9 in Appendix. A
summary of these results is presented in Figure 5.
Our findings reveal that: 1) LLMs like GPT-4o and
Gemini 1.5 Pro can improve performance or make
functional advancements in meeting scenarios by
enhancing reasoning in meeting-specific context,
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Table 1: Mapping between Error Types and Solution Direction for Response Rate Failure Cases Study.

Dataset Scenarios Error Type Solution Direction

Matched

Chime In

Decision based on wrong latest utterance Improved Instruction Following
Identify as cue to others or all participants Enhanced Reasoning in Meeting Scenario

Missing the need for proactive participation Enhanced Reasoning in Meeting Scenario
Decision made due to “Conversation is still going, I can’t interrupt” Enhanced Reasoning in Meeting Scenario

Unable to find the related context Enhanced General Reasoning
Other N/A

Explicit Cue

Decision based on wrong latest utterance Improved Instruction Following
Correctly recognizes the cue but does not respond Enhanced Reasoning in Meeting Scenario

Ambiguity due to multiple names in a single utterance or long context Enhanced Reasoning in Meeting Scenario
Fails to recognize the cue Enhanced General Reasoning

Hallucination Enhanced General Reasoning
Other N/A

Mismatched Mismatched

Decision based on wrong latest utterance Improved Instruction Following
Latest utterance related to provided information Enhanced Reasoning in Meeting Scenario

Failure to recognize cues directed to others Enhanced Reasoning
Hallucination Enhanced General Reasoning

Other N/A

and 2) smaller models need to improve general in-
struction following and reasoning abilities before
addressing meeting-specific issues.

Figure 5: Solution directions from error analysis of
bad cases in Response (Silence) Rate for Matched and
Mismatched Datasets.
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Figure 6: Loose recall rate on Matched Dataset.

Recall Analysis. The recall results for both loose
and strict metrics are similar; therefore, we only
present the loose recall rate for all studied LLMs
on Matched Dataset in Figure 6. Detailed results,
including the strict recall rate, are available in
Table 8 in the Appendix. Figure 6 shows that
these LLMs achieve a loose recall rate of approx-
imately 60%. This indicates that, for 60% of test
cases, the generated response contains at least one

key point from the ground-truth response. Such a
result demonstrates the potential, as it suggests that
LLM-powered meeting delegates can typically gen-
erate contextually relevant responses, contributing
to maintaining the overall meeting flow.

Performance differences among the LLMs re-
veal that GPT-4o achieves the highest performance
across almost all categories, followed by GPT-4.
The two Gemini models exhibit similar perfor-
mance, excelling in “Explicit Cue” but lagging in
“Chime In”. The Llama series models perform com-
parably to the Gemini models but tend to be better
in “Chime In” scenarios.
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Figure 7: The attribution rate on matched dataset.

Attribution Analysis. For the Attribution met-
ric, we seek a high percentage of “Expected Re-
sponse”, indicating high accuracy in responding
to given cues, while minimizing other categories,
particularly “Hallucination”. As shown in Figure 7,
most models, except GPT-3.5-Turbo and Llama3-
8B, have approximately 40% of their responses at-
tributable to the ground-truth response, with Gem-
ini 1.5 Pro achieving the highest performance at
around 50%. About 30% of generated responses
are attributed to other input context information not
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directly related to the ground-truth response, indi-
cating room for improvement in reasoning over the
provided information. The proportion attributed to
the previous transcript varies significantly across
models, ranging from 10% to 30%. Higher val-
ues suggest repetitive messages in the generated
response, potentially detracting from the meeting
experience due to verbosity. The portion of halluci-
nated texts is minimal, at only 5% across all mod-
els, indicating that current LLMs maintain good
trustworthiness in meeting engagement.

Regarding performance differences across mod-
els, we observe that models generally consid-
ered more capable demonstrate better performance,
while models like GPT-3.5-Turbo and Llama3-
8B, viewed as less capable, show inferior perfor-
mance. This alignment between general model
performance and specific scenarios suggests that
in future, more capable general LLMs will also
benefit meeting delegate scenarios.
Correlation Analysis. We correlate the perfor-
mance of the above metrics with test case metadata
(i.e., those shown in Figure 3). Figure 10 in the
Appendix presents an example result for GPT-4o.
The result indicates that GPT-4o maintained sta-
ble performance across different transcript lengths
and complexity measures, including meeting size
and input diversity. Therefore, no significant rela-
tionships between the evaluation metrics and the
metadata were observed.
Ablation Study. Two scenarios are considered in
our ablation studies. First, we examine the impact
of erroneous transcription of participant names to
phonetically similar words using the Noisy Name
Dataset. We measure the response rates of all mod-
els on this dataset, observing a significant drop
in performance (see Table 12 in the Appendix).
For instance, GPT-4o’s response rate declines from
94.3% in the Explicit Cue cases of the Matched
Dataset to 68% in the Noisy Name Dataset. This
highlights challenges in accurately recognizing par-
ticipant names. Further model fine-tuning to better
handle such transcription errors may be necessary.

In our second study, we investigate how model
performance is affected by the provision of con-
text information in the input. Currently, context
information is structured as pairs of <Context> and
<Information>, specifying under which conditions
the information in <Information> can be shared.
This setup may not reflect real-world scenarios
where users might not always anticipate the con-
text for sharing specific information. To assess the

impact, we remove <Context> from test cases and
use <Information> and <Intents> alone as input to
generate responses. We evaluate this on a subset
of 121 test cases from the first 11 meetings using
GPT-4o. Detailed results are provided in Table 13
in the Appendix, showing minimal performance
impact across all evaluation metrics when context
information is omitted.

6 Discussion
6.1 Phased Deployment of Meeting Delegate

This study primarily explores the feasibility of us-
ing LLMs to represent users by generating mean-
ingful content in meetings. However, deploying
such a meeting delegate system in real-world set-
tings requires addressing additional critical respon-
sible AI practices and ethical considerations (see
further discussion in Ethics Statement ). Key chal-
lenges include implementing strong privacy safe-
guards, such as secure data handling, consent mech-
anisms, user-defined boundaries, and audit trails.
Reviews (Yan et al., 2024; Anwar et al., 2024) of
current privacy-preserving methods for LLMs high-
lights the difficulty of achieving a fully autonomous
and unconstrained meeting delegate at present.
Therefore, we propose a three-phase approach that
incrementally enhances AI’s autonomy and respon-
sibility, as detailed in Table 2. The phases are
characterized by evolution of data boundaries and
limitations on the delegate’s roles in sharing infor-
mation, collecting data, and making decisions.

In Phase I (Execute), the delegate operates
strictly within user-defined data boundaries, shar-
ing only explicitly approved information and col-
lecting information from other meeting participants
based on direct user instructions. There is no
autonomous decision-making allowed, ensuring
strong user control and minimal privacy risk. In
Phase II (Assist), the system can reason over sen-
sitive data while adhering to privacy guidelines. It
infers context beyond explicit instructions and can
propose actions, though user approval is still re-
quired for making decisions. This phase introduces
controlled autonomy with dynamic data boundary
management. In Phase III (Delegate), the delegate
fully autonomously collects and shares information,
making real-time decisions based on user-defined
goals and preferences. Privacy filters, decision-
making models, and audit logs ensure transparency
and accountability. This phased approach enables
the delegate to transition from a controlled execu-
tor to a fully autonomous agent, balancing privacy
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Table 2: Progression of Autonomy and Responsibility in Achieving a Fully Autonomous Meeting Delegate.

Phase I: Execute Phase II: Assist Phase III: Delegate
Data Boundary User-defined boundaries Privacy-protected boundaries Data accessible by user

Share Information Only within
user-defined boundaries

Some reasoning over
sensitive data

Autonomous based on predefined
goals and preferences

Collect Information Explicit requests only Infer context beyond
user instructions

Autonomously collects and reasons
based on meeting context

Decision-Making No decision-making Propose and ask for approval Full autonomous decision-making

and increasing decision-making capability while
ensuring transparency and accountability.

While our ultimate goal is to achieve Phase III
for significantly reducing meeting-related burdens,
early-stage deployment can already be beneficial.
For instance, a Phase I delegate might be employed
in daily project update scrums to present updates
and gather progress for alignment. Although simi-
lar objectives might be met through offline progress
updates, deploying an early-stage system provides
practical experience that will inform future ad-
vancements toward the system’s full potential. Re-
cent HCI study (Leong et al., 2024) also indicated
that embodied agents can evoke feelings of pres-
ence and trust while aiding decision making. Ad-
ditionally, phased deployment familiarizes users
with the technology, helping to identify overlooked
issues and challenges.

6.2 Prototype Implementation and Learnings

Our prototype meeting delegate system aligns with
Phase I, consistent with available technologies. To
evaluate its practical performance, we tested the
system in multiple demo scenarios. As illustrated
in Figure 2, one scenario simulated a daily project
update scrum involving three human participants
and an LLM-powered delegate. All participants
were aware of the delegate’s presence and located
in the same room. One participant acted as the
moderator, while the others, including the delegate,
provided project updates. Each human participant
followed a script, requesting information from the
delegate, which was preloaded with project-related
topics via the Information Gathering module. The
moderator guided the meeting, with responses cued
or initiated by the participants. The demo lasted
about five minutes and was repeated to assess the
delegate’s consistency using different LLMs.

The system is implemented on a widely used
meeting platform.3 ). The transcripts are obtained
directly from meeting platform, by locating and
identifying the UI element associated with “Tran-
script” and logs the contents to be used in the

3Omitting the platform name for anonymity.

Meeting engagement module. The response gen-
eration prompt incorporates general instructions,
user-provided meeting details, and ongoing con-
text (see Table 15 in the Appendix). To minimize
latency, the system employs streaming modes for
both LLM API calls and TTS (Qin et al., 2023).

We evaluated three models: GPT-3.5-Turbo,
GPT-4, and GPT-4o. GPT-3.5-Turbo underper-
formed, proving inadequate for meeting delegation
tasks, even at Phase I. GPT-4 and GPT-4o gener-
ally delivered relevant responses but occasionally
repeated information from earlier transcripts. Re-
sponse latency was another issue, with the fastest
model, GPT-4o, taking ∼5 seconds to respond.

To mitigate irrelevant and repetitive responses,
future improvements may involve leveraging ad-
vanced general LLMs or fine-tuning smaller mod-
els. Benchmark results show that Llama3-8B per-
forms well, with fine-tuning reducing latency to
500 ms in real-time communication (Cerebrium,
2024). Enhancements such as windowed context
management, advanced summarization, and multi-
modal models with direct speech input/output (Ope-
nAI, 2024b) can further improve real-time perfor-
mance and maintain response quality. For example,
GPT-4o-Realtime-Preview, built on the same ar-
chitecture as GPT-4o, is expected to offer similar
language understanding and reasoning. The inclu-
sion of speech features, such as speed and tone,
may further enhance system performance.

7 Conclusion
We introduce an LLM-powered meeting delegate
system addressing challenges in collaborative work.
Focusing on participant roles, our prototype and
benchmark demonstrate LLMs’ potential to im-
prove meeting efficiency. Real-world evaluation
reveals varying performance, with strengths and ar-
eas for improvement, particularly in handling tran-
scription errors and reducing irrelevant or repetitive
responses. Future work should enhance real-time
responsiveness and privacy safeguards to fully real-
ize LLMs’ role in collaborative environments.
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Limitations

We acknowledge several limitations in our study.
First, the evaluation is restricted to a set of represen-
tative language models. While this provides valu-
able insights, future work should explore a broader
range of LLMs, particularly models specifically
fine-tuned for meeting-related tasks. Additionally,
recent advancements such as OpenAI’s Realtime
API (OpenAI, 2024b), which supports direct voice
input and output, could enhance the relevance of
our findings in multimodal contexts.

Second, our benchmark is largely based on lim-
ited experimental conditions. Future evaluations
should incorporate more diverse and dynamic en-
vironments, such as diverse meeting types and do-
mains, to provide a more comprehensive under-
standing of our system’s capabilities.

Lastly, while our system shows promise in facili-
tating meeting participation, it represents an initial
exploration of the possibility of using LLMs as
meeting delegates. Specifically, it does not exten-
sively address other key dimensions such as privacy,
security, or user trust. In the following section, we
share an initial discussion on responsible AI and
ethics consideration to outline potential directions
for further investigation.

Ethics Statement

This paper explores the potential use of LLMs as
meeting delegates, raising several ethical consid-
erations. We propose a phased approach to AI
autonomy, starting with limited decision-making
in earlier phases and building toward greater capa-
bilities with accountability measures. Privacy-by-
design principles should be central to the system’s
architecture, and educating users about the AI’s
limitations will ensure responsible use. Below, we
outline key ethical dimensions (Bender et al., 2021;
Kasneci et al., 2023; Wang et al., 2024; Kirk et al.,
2024), including bias, privacy, transparency, hu-
man agency, security, and socio-economic impact,
alongside suggested safeguards.

Bias and Fairness: LLMs may generate biased
or inappropriate content, potentially affecting fair-
ness in meeting outcomes. This risk requires bias
detection and mitigation strategies, such as training
on diverse datasets, bias audits, and user feedback
loops. Fine-tuning models for meeting scenarios
and ongoing bias monitoring could be crucial for
ensuring fairness.

Privacy: Personalization is only possible by col-

lecting user data. This applies to any technology
that relies on personal information to deliver tai-
lored benefits. The personalization of meeting dele-
gates relies on sensitive user data, which risks over-
sharing or misusing private information. To address
this, we advocate for privacy-enhancing technolo-
gies like encryption and differential privacy, as well
as user-defined data boundaries. Real-time voice
capabilities also heighten the risk of identity mis-
use, necessitating strict privacy controls to ensure
compliance with data protection standards.

Transparency: Transparency is essential for re-
sponsible deployment. All participants must be in-
formed when an AI is acting as a delegate. Clearly
stating the AI’s capabilities and limitations helps
manage expectations, and audit logs should be
available for users to track AI actions and decisions
during meetings.

Human Agency: LLM-based delegates should
support, not replace, human decision-making. In
the early phases, the AI assists users without auton-
omy, and even in later phase like Phase III, human
oversight must remain integral. Human-in-the-loop
HITL systems are crucial for maintaining control
and ensuring users can intervene as needed.

Security and Fraud Risks: Unauthorized ac-
cess to a meeting delegate could lead to fraud or
impersonation. Security measures like multi-factor
authentication, identity verification, and anomaly
detection are essential. Federated learning could
further protect sensitive data by minimizing cen-
tralized storage risks.

Ethical Governance and Mitigation: Ethical
governance frameworks, including guidelines, au-
dits, and interdisciplinary collaboration, must guide
the system’s development. User consent should be
obtained at key stages, and continuous monitor-
ing is essential to identify and address unintended
consequences.

Socio-Economic Impact: Automating meeting
participation could lead to job displacement in roles
that rely on meeting facilitation. While this risk is
limited by current technology, future developments
may amplify these concerns. It’s essential to focus
on augmenting human labor rather than replacing.
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A Definition of Meeting Scenes

Explicit Cue: These are clear, direct prompts ad-
dressed by name in a meeting that indicate when
a participant should speak. For example, “Amy,
please share your thoughts on this” or “Amy, any
questions?” serve as overt invitations for participa-
tion or feedback.
Implicit Cue: These cues are subtle, context-
dependent signals that are not directly stated but
inferred from the conversation. Participants typ-
ically continue to contribute when not explicitly
addressed by name, based on the natural flow of
the discussion.
Chime In: This case refers to the act of a par-
ticipant proactively interjecting or contributing to
the discussion, usually when other participants are
in discussion. “Chime in” moments occur when
an individual adds supplementary information or
clarifies a point.

B Dataset Construction

An example of evaluation dataset construction is
shown in Figure 8. In the meeting transcript, par-
ticipants are represented by different ID numbers
and icons. Each utterance is displayed in colored
boxes, with each color representing a different par-
ticipant. In this example, we construct a test case
with Participant 6 as the principal. Based on Par-
ticipant 6’s utterances in the Original Transcript,
we extract one piece of Input Context Information:
when the meeting discusses expertise in emotion
detection, Participant 6 intends to mention related
experience from bachelor thesis. The Transcript
Snapshot and Ground-Truth Response are extracted
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from the Original Transcript using GPT-4. During
the response generation stage with the meeting del-
egate, the Transcript Snapshot is provided to the
LLMs to produce a response. This generated re-
sponse is subsequently assessed by comparing it to
the Ground-Truth Response.

We plan to release our constructed benchmark
dataset with the paper.

C Semantic Similarity Scoring

To strengthen interpretability, we complemented
our Recall and Attribution metrics with semantic
similarity scoring using a Sentence-BERT model
(all-MiniLM-L6-v2). This allowed us to assess how
well model-generated responses align at a semantic
level with human-authored ground-truth responses.
This score offers a more interpretable baseline of
what current models can achieve in realistic condi-
tions.

Cue Type GPT-4o Gemini 1.5 Pro Llama3-8B
Explicit Cue 0.487 0.435 0.435
Implicit Cue 0.458 0.426 0.415
Chime In 0.436 0.382 0.402

Table 3: Semantic similarity scores showing align-
ment between model-generated responses and human-
authored ground truth

In Explicit Cue cases, where expectations are
clearer, models reached similarity scores close to
0.49, suggesting reasonable semantic alignment
with human responses. In Implicit Cue and Chime
In cases, lower similarity reflects the inherent am-
biguity and the challenge of determining when and
how to respond without explicit prompting. Com-
bined with our Recall metrics (e.g., 60% of re-
sponses covering at least one main point), these re-
sults provide a practical signal: current state-of-the-
art LLMs like GPT-4o can produce semantically
relevant and appropriately timed responses in clear-
cut situations, but face challenges in nuanced or
indirect participation roles. Rather than proposing
a one-size-fits-all deployment threshold, we sug-
gest interpreting these metrics as task-dependent
readiness indicators. For example, a system achiev-
ing > 0.45 similarity and > 0.60 loose Recall in
Explicit Cue cases may be sufficient for low-stakes
delegation tasks (e.g., daily standups), while more
complex settings would demand tighter control and
future refinement.

D Representative Evaluation Example

Representative Evaluation Example

Ground-Truth Response:
PERSON10: Yeah, yeah. Well, I just like listened to the audio and
followed the talk transcript [object Object] and it was completely
off. I think it is-. There must be some miss-match because-. (id=16)
PERSON10: Yeah, yeah. The transcription is for the completely
different audio than it’s in the subdirectory. (id=18)
PERSON10: Yeah, yeah. I I may maybe it’s just like uh. Maybe the
files are just switched between the subdirectories? (id=21)
PERSON10: I I haven’t checked but-. Uh, yeah, there is some some
serious mismatch there. (id=23)

Ground-Truth Main Points:

• Listened to the audio and found that the transcription was
completely off

• Identified a serious mismatch between the transcription and
the audio in the subdirectory

• Suggested that files might be switched between subdirecto-
ries, causing the mismatch

GPT-Generated Delegate Response:
"Sure, PERSON13. The transcription seems to be for a completely
different audio than what’s in the subdirectory. There might be a
serious mismatch, possibly because the files are switched between
the subdirectories. This could explain why the Czech video is
imprecise in timing."

GPT-4 Evaluation Output:
"Explanation": "First, summarize the main points in the [object
Object]. The [object Object] has the following main points: 1. The
transcription seems to be for a completely different audio than what’s
in the subdirectory. 2. There might be a serious mismatch, possibly
because the files are switched between the subdirectories. 3. This
could explain why the Czech video is imprecise in timing. The
number of main points in the [object Object] is 3 and the length of
the MatchingIndex is 3.
Second, compare the main points in the [object Object] with the main
points in the [object Object]. The matching main points between
the [object Object] and the [object Object] are: 1. The transcription
seems to be for a completely different audio than what’s in the
subdirectory. This point matches with the first point in the [object
Object]. 2. There might be a serious mismatch, possibly because the
files are switched between the subdirectories. This point matches
with the second and third points in the [object Object]. The number
of matching main points between the [object Object] and the [object
Object] is 2. The third point in the [object Object] does not directly
match any points in the [object Object] but provides additional
context to the mismatch issue.",
"MatchingIndex": [1, 2, -1], "MatchingMainPointsCount": 2

Interpretation:

• GPT-4-based evaluation accurately identi-
fies semantically similar content even when
phrased differently.

• The additional point included by the model is
correctly excluded from recall, highlighting
the discrimination power of the method.

• The correct attribution reflects alignment be-
tween generated responses and user expecta-
tions, supporting its use as a reliable evalua-
tion proxy at scale.
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Figure 8: Example of evaluation dataset construction. Participants are represented by different ID numbers and
icons. Colored boxes indicate utterances from different participants. The process includes extracting Input Context
Information, creating a Transcript Snapshot, and generating a response with the LLM-powered meeting delegate.
The Generated Response is evaluated by comparison with the Ground-Truth Response.

E Additional Experimental Results

In this section, we provide detailed tables and addi-
tional plots for the experimental results discussed
in Section 5.
Response Rate Analysis. Tables 4 and 6 present
the Response Rate and Silence Rate of LLMs eval-
uated using the Matched and Mismatched Datasets,
respectively. Additionally, in Tables 5 and 7, we
further evaluate the Response Rate and Silence
Rate using the intersection subdataset of all mod-
els, given that Llama models and GPT-3.5 have
smaller context windows. The findings from these
experimental results remain consistent.
Response Rate Failure Cases Study. The error
types distribution for response rate failure cases
study in Matched and Mismatched datasets are pre-
sented in Figure 9. The mappings between error
types and improvement solution direction are sum-
marized in Table 1.
Recall Analysis. The loose recall rate and strict
recall rate for the Matched Dataset are shown in
Table 8. We further evaluate the recall rates us-

ing the intersection subdataset of all models, with
results presented in Table 9. Although the abso-
lute values of recall rates for all models are higher,
the performance differences among the models are
similar. Note that we do not include Llama3-8B
and Llama3-70B here in the intersection study to
avoid too few samples. The findings from these
experimental results remain consistent.
Attribution Analysis. The attribution metrics for
LLMs are included in Table 10. We also evaluate
the attribution metrics using the intersection sub-
dataset. Note that we do not include Llama3-8B
and Llama3-70B here in the intersection study to
avoid too few samples. The findings from these
experimental results remain consistent.
Correlation Study. The correlation of response
rate and recall metrics with test case metadata is
shown in Figure 10. No significant correlations is
found between these metrics and the metadata.
Ablation Study. The response rates of LLMs for
the Noisy Name Dataset are presented in Table
12, with the response rates from Explicit Cue in
Matched Dataset are also shown for reference. A
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significant drop in performance is observed for
all models, except for GPT-3.5 where responses
rates are already low. This further highlights chal-
lenges in accurately recognizing participant names.
Further model fine-tuning to better handle such
transcription errors may be necessary. For the No-
<Context> study, all evaluation metrics for GPT-
4o in No-<Context> Scenario are shown in Table
13, showing minimal performance impact across
all evaluation metrics when context information is
omitted.

F Model Specifications

In Table 14, we list all LLMs utilized in this paper,
along with their detailed model version and usage
scenarios.

G Prompts

We include all prompts used in the paper. Table 15
provides the prompt for generating the response
in the Meeting Engagement module. The prompts
used for evaluating and attributing the generated
response are given in Tables 18 and 20, respec-
tively. Lastly, the prompts for extracting context
information and extracting test cases from meet-
ing transcripts are given in Table 22 and Table 28,
respectively.
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Table 4: Response Rate for Matched Dateset.

Type GPT-3.5 GPT-4 GPT-4o Gemini 1.5 Flash Gemini 1.5 Pro Llama3-8B Llama3-70B

Chime In 39.3% 37.9% 61.3% 71.8% 41.9% 84.1% 93.8%
Explicit Cue 53.2% 86.7% 94.3% 89.7% 78.3% 91.2% 99.4%
Implicit Cue 52.2% 67.2% 71.9% 83.6% 55.9% 90.0% 94.8%

All 50.6% 68.9% 77.3% 83.8% 60.8% 89.6% 96.2%

Table 5: Response Rate for Intersection Subset of Matched Dateset.

Type GPT-3.5 GPT-4 GPT-4o Gemini 1.5 Flash Gemini 1.5 Pro Llama3-8B Llama3-70B

Chime In 35.2% 42.3% 57.7% 66.2% 43.7% 81.7% 95.8%
Explicit Cue 58.6% 92.0% 92.0% 87.7% 76.5% 89.5% 98.1%
Implicit Cue 54.3% 65.8% 68.3% 81.9% 53.5% 89.7% 94.7%

All 52.9% 71.2% 74.8% 81.5% 59.9% 88.4% 96.0%

Table 6: Silence Rate for Mismatched Dataset.

Type GPT-3.5 GPT-4 GPT-4o Gemini 1.5 Flash Gemini 1.5 Pro Llama3-8B Llama3-70B

Explicit Cue 75.0% 84.6% 82.8% 65.0% 88.1% 36.0% 41.6%
Implicit Cue 70.4% 79.5% 67.9% 52.0% 77.1% 35.3% 33.3%

All 72.4% 81.6% 73.6% 57.5% 81.7% 35.6% 37.0%

Table 7: Silence Rate for Intersection Subset of Mismatched Dataset.

Type GPT-3.5 GPT-4 GPT-4o Gemini 1.5 Flash Gemini 1.5 Pro Llama3-8B Llama3-70B

Explicit Cue 79.5% 84.9% 90.4% 76.7% 90.4% 37.0% 44.6%
Implicit Cue 69.5% 81.7% 74.4% 58.5% 81.7% 35.4% 31.9%

All 74.2% 83.2% 81.9% 67.1% 85.8% 36.1% 38.7%

Table 8: Recall Rate for Matched Dataset.

Model Chime In Explicit Cue Implicit Cue All

Loose Strict Loose Strict Loose Strict Loose Strict

GPT-3.5 43.5% 29.5% 54.5% 42.5% 47.8% 37.0% 49.5% 38.0%
GPT-4 51.1% 39.9% 72.8% 60.7% 63.0% 49.6% 65.9% 53.1%
GPT-4o 53.9% 47.0% 77.8% 64.2% 62.5% 47.9% 67.3% 53.9%
Gemini 1.5 Flash 29.2% 22.5% 69.5% 56.5% 55.0% 40.2% 56.6% 43.4%
Gemini 1.5 Pro 34.6% 28.8% 72.8% 59.9% 56.0% 43.5% 60.5% 48.6%
Llama3-8B 46.7% 35.5% 59.6% 48.7% 52.7% 40.5% 54.2% 42.6%
Llama3-70B 45.8% 34.7% 69.6% 59.4% 55.9% 44.0% 59.1% 47.9%

Table 9: Recall Rate for Intersection Subset of Matched Dataset. Note that due to limited statistics for intersecting
Llama results, Llama results are not included. The total number of cases in the considered Intersection Subset is
196.

Model Chime In Explicit Cue Implicit Cue All

Loose Strict Loose Strict Loose Strict Loose Strict

GPT-3.5 55.6% 47.2% 58.4% 46.9% 56.1% 45.2% 57.1% 46.0%
GPT-4 77.8% 52.8% 79.8% 66.7% 70.4% 55.8% 75.0% 60.6%
GPT-4o 66.7% 52.8% 85.4% 70.6% 79.6% 59.8% 81.6% 64.4%
Gemini 1.5 Flash 44.4% 32.2% 79.8% 64.6% 67.3% 49.3% 71.9% 55.4%
Gemini 1.5 Pro 22.2% 19.4% 77.5% 62.6% 60.2% 46.2% 66.3% 52.4%
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Table 10: Attribution Analysis results for Matched Dataset. For the Expected Response metric, higher values are
better, while for the Previous Transcript and Hallucination metrics, lower values are preferable.

Metric GPT-3.5 GPT-4 GPT-4o Gemini 1.5 Flash Gemini 1.5 Pro Llama3-8B Llama3-70B

Chime In

Expected Response 18.4% 27.0% 42.2% 25.3% 35.2% 25.4% 27.4%
Input Context Info 37.2% 43.0% 37.9% 39.2% 26.3% 39.6% 31.4%
Previous Transcript 33.7% 25.1% 15.9% 28.6% 28.1% 31.6% 32.4%

Hallucination 10.8% 4.93% 4.05% 6.93% 10.4% 3.43% 8.75%

Explicit Cue

Expected Response 32.5% 50.1% 51.0% 52.4% 61.1% 31.9% 50.1%
Input Context Info 40.4% 31.6% 38.1% 27.0% 26.3% 36.8% 28.3%
Previous Transcript 20.8% 12.4% 7.28% 14.4% 9.25% 25.4% 16.8%

Hallucination 6.43% 5.98% 3.58% 6.24% 3.35% 5.82% 4.81%

Implicit Cue

Expected Response 25.2% 39.9% 38.9% 38.0% 46.8% 28.2% 38.9%
Input Context Info 39.9% 39.9% 45.9% 34.2% 32.0% 34.3% 34.1%
Previous Transcript 31.9% 15.0% 11.3% 22.4% 14.8% 35.7% 22.6%

Hallucination 2.96% 5.12% 3.8% 5.48% 6.32% 1.80% 4.38%

All

Expected Response 26.9% 42.8% 43.9% 41.5% 51.6% 29.1% 41.2%
Input Context Info 39.8% 36.9% 42.0% 32.3% 29.2% 35.8% 31.8%
Previous Transcript 28.4% 14.8% 10.3% 20.3% 13.8% 31.6% 21.9%

Hallucination 4.95% 5.44% 3.74% 5.91% 5.48% 3.39% 5.09%

Table 11: Attribution Analysis results for Intersection Subset of Matched Dataset. For the Expected Response
metric, higher values are better, while for the Previous Transcript and Hallucination metrics, lower values are
preferable. Note that due to limited statistics for the intersecting Llama results, Llama results are not included. The
total number of cases in the considered Intersection Subset is 196.

Metric GPT-3.5 GPT-4 GPT-4o Gemini 1.5 Flash Gemini 1.5 Pro

Chime In

Expected Response 22.0% 30.9% 35.8% 29.2% 22.2%
Input Context Info 55.7% 58.1% 64.2% 45.8% 22.2%
Previous Transcript 11.1% 5.0% 0.0% 12.5% 44.4%

Hallucination 11.1% 5.9% 0.0% 12.5% 11.1%

Explicit Cue

Expected Response 37.4% 59.1% 56.1% 59.9% 66.9%
Input Context Info 37.9% 27.7% 36.4% 23.3% 19.5%
Previous Transcript 19.6% 10.1% 3.3% 11.7% 12.5%

Hallucination 5.1% 5.98% 3.1% 5.1% 1.2%

Implicit Cue

Expected Response 30.6% 47.3% 49.9% 49.4% 51.3%
Input Context Info 42.6% 36.4% 38.6% 31.3% 29.4%
Previous Transcript 23.5% 12.2% 7.0% 17.6% 12.1%

Hallucination 3.3% 4.0% 4.5% 1.7% 7.1%

All

Expected Response 33.3% 51.8% 52.1% 53.4% 57.0%
Input Context Info 41.1% 33.5% 38.8% 28.2% 24.5%
Previous Transcript 21.2% 10.9% 5.0% 14.7% 13.8%

Hallucination 4.5% 3.7% 4.1% 3.7% 4.6%

Table 12: Response rate for Noisy Name Dataset.

Type Dataset GPT-3.5 GPT-4 GPT-4o Gemini 1.5 Flash Gemini 1.5 Pro Llama3-8B Llama3-70B

Explicit Cue Matched 53.2% 86.7% 94.3% 89.7% 78.3% 91.2% 99.4%
Explicit Cue Noisy Name 52.5% 53.3% 68.0% 60.7% 59.8% 79.4% 87.0%
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Table 13: All Evaluation Metrics for GPT-4o in No-<Context> Scenario.

Metric Chime In Explicit Cue Implicit Cue All

Response Rate 59.1% 90.4% 78.7% 80.2%
Loose Recall 46.2% 82.6% 75.0% 74.7%
Strict Recall 37.7% 65.0% 50.2% 55.8%
Expected Response 21.0% 44.1% 44.7% 41.1%
Input Context Info 57.2% 36.0% 31.9% 37.3%
Previous Transcript 14.1% 14.4% 14.0% 14.2%
Hallucination 7.7% 5.4% 9.4% 7.3%

Table 14: Details of Model Use Scenarios and Model Version.

Model Name Model Use Scenarios Model Version

GPT-3.5 Generate Response (Table 4 & Table 5 & Table 6
& Table 7, Prompt in Table 15) gpt-3.5-turbo-1106 with 16k context window

GPT-4

Generate Response (Table 4 & Table 5 & Table 6
& Table 7, Prompt in Table 15) gpt-4-turbo-20240409 with 128k context window

Evaluation (Table 8 & Table 9, Prompt in Table 18) gpt-4-1106-preview with 128k context window
Attribution (Table 10 & Table 11, Prompt in Table 20)

gpt-4-turbo-20240409 with 128k context windowExtract context information (Figure 8, Prompt in Table 22)
Extract test cases (Figure 8, Prompt in Table 28)

GPT-4o Generate Response (Table 4 & Table 5 & Table 6
& Table 7, Prompt in Table 15) gpt-4o-20240513-preview with 128k context window
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(a) Chine In (Matched Dataset)

(b) Explicit Cue (Matched Dataset)

(c) Mismatched Dataset

Figure 9: (a) Error Types Distribution for Response Rate Failure Cases Study in Chine In Matched Dataset. (b)
Error Types Distribution for Response Rate Failure Cases Study in Explicit Cue Matched Dataset. (c) Error Types
Distribution for Response Rate Failure Cases Study in Mismatched Dataset.

300



0.00

0.25

0.50

0.75

1.00

Ex
pe

ct
ed

 R
es

po
ns

e 
Ra

te

0.00

0.25

0.50

0.75

1.00

St
ric

t R
ec

al
l R

at
e

0.00

0.25

0.50

0.75

1.00

Lo
os

e 
Re

ca
ll 

Ra
te

[2
, 3

)

[3
, 4

)

[4
, 5

)

[5
, 6

)

[6
, 7

)

[7
, 8

)

[8
, 1

3)

Number of Involved Persons

0.0

0.2

0.4

0.6

0.8

1.0

Re
sp

on
se

 R
at

e

[0
, 2

5)
[2

5,
 5

0)
[5

0,
 7

5)
[7

5,
 1

00
)

[1
00

, 1
25

)
[1

25
, 1

50
)

[1
50

, 2
00

)
[2

00
, 3

00
)

[3
00

, 5
45

)

Number of Utterances

[1
, 2

)

[2
, 3

)

[3
, 4

)

[4
, 5

)

[5
, 1

1)

Number of Points
in Ground-Truth Response

[0
, 5

)

[5
, 1

0)

[1
0,

 1
5)

[1
5,

 2
0)

[2
0,

 2
5)

[2
5,

 3
5)

[3
5,

 6
0)

Number of Points
in Input Intents and

Shareable Contextual Information

Figure 10: The correlation between the performance metrics and test case metadata for GPT-4o.
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- You are a Meeting Delegate Agent that attends meetings on behalf of <Person Name>.
- You are provided with the intent of participating in the meeting, specified as <Intents>.
- You are provided with the background information that <Person Name> knows, specified as <Background>.
- You are provided with the full list of attendees <Attendees> to help identify if someone cues you.
- You are provided with the ongoing meeting transcript <Meeting Transcript> to determine if there is a need to respond.
- Your task is to assess the content of the ongoing meeting transcript <Meeting Transcript> and determine whether you
are can speak and what to say.
- You are encouraged to respond and ask questions, give comments, or share information without interrupting others in
the meeting.

## About the <Person Name>
- <Person Name> is the name of the person you represent in the meeting.
- People in the <Attendees> list may cue you by using <Person Name> exactly or parts of the name (e.g., first name,
initials).

## About the <Attendees>
- <Attendees> is a list of names of the people attending the meeting.
- Each name in the list is a full name or a nickname.

## About the <Meeting Transcript>
- <Meeting Transcript> is a series of utterances spoken by the meeting participants.
- Each utterance is formatted as "Name: Content", where ’Name’ is the speaker’s name and ’Content’ is their spoken
text.
- The utterances are in chronological order and the latest utterance is at the bottom of the transcript.
- The utterances may contain typos and grammatical errors.

## About the <Intents>
- <Intents> consists of the questions or topics that <Person Name> aims to discuss during the meeting.
- You can ask the questions or motivate the discussion of the topics in the <Intents> at the appropriate time without
interrupting others.

## About the <Background>
- <Background> consists of the background information that <Person Name> knows before the meeting.
- <Background> is a list of "Context" and "Information" pairs. You can share the "Information" in the "Context" at the
appropriate time without interrupting others.

## Guidelines to judge whether you can speak and decide what to say
- Read the <Meeting Transcript> to understand the context of the meeting.
- Focus on the latest several utterances in the <Meeting Transcript> to understand the current discussion.
- Remember that you are a delegate attending the meeting on behalf of <Person Name>.
- You should judge whether you can speak first, then decide what to say, if you can speak.
- Judge whether you can speak according to the following instructions:

- Figure out what the latest utterance (at the bottom of the <Meeting Transcript>) is about and pay attention to who is
being addressed.

- If the latest utterance is a straightforward question or request or instructions to other participants, you MUST NOT
speak to avoid interrupting others, even if the conversation is related to the <Intents> or <Background>.

- If the latest utterance is for the <Person Name>, you should respond to it.
- If you can speak, consider the following guidelines:
- Your speech content should be directly relevant to the current discussion.
- You can reference the <Intents> and <Background> to organize your speech.
- You should be polite and natural in your speech.
- You MUST NOT make up facts.
- You MUST NOT repeat what <Person Name> has said in the <Meeting Transcript>.
- Chit chat is a natural part of conversation. You can engage in chit chat with other attendees if it is appropriate or

relevant to the meeting context. For example, you can say good morning, Thank you, Yeah, I agree.
- Before speaking, you should think twice to ensure that you are not interrupting others and your speech is relevant to

the current discussion.

## Notes on judging whether someone is cued
- The name may be transcribed as similar-sounding words by the speech recognition system. Especially, the pronunciation
of Chinese names may be recognized as similar-sounding English words, for exmaple, "Si Li" may be transcribed as
"Celine" or "silence".
- When encountering words that seem out of place, it is likely due to errors in speech recognition. Examine the list of
attendees to determine if the pronunciation of these words are similar to any English or Chinese names listed.
- You should consider the context of the meeting and the names of the attendees to determine if you or someone are cued.

CONTINUE ON THE NEXT PAGE

Table 15: Prompt used for generating response in the Meeting Engagement module.
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## The output of response <Response>
- The response should be a dictionary with the following format:

{
"thoughts": "<thoughts>",
"speak": "<speak>"

}

- <thoughts>: The reasoning or considerations to judge whether you can speak and decide what to say. At the beginning,
you should state who you are representing. Then <thoughts> should explain what the latest utterance is about and then
explain why you can or cannot speak. If you can speak, you should also explain how you decide what to say.
- <speak>: The content you are going to speak. If you are not allowed to speak or you do not want to speak, the <speak>
is empty.

## Example

- Example 1:
Below is an example of that pronunciations of Chinese names may be recognized as similar-
sounding English words by the speech recognition system.
<Person Name>
’Sirui Zhao’
<Attendees>
[

- ’San Zhang’,
- ’Si Li’,
- ’Sirui Zhao’

]
<Meeting Transcript>
Si Li: Good morning.
Sirui Zhao: Hello!
San Zhang: Hi!
Si Li: OK, Let’s start our meeting. There are still some people who haven’t joined, so let’
s start first. Our topic today is the progress of environmental protection, three, do you
have some thing to share on it?
<Intents>
[

- ’The extent of plastic misuse’
]
<Background>
[

{
"Context":"Discussion about reducing air pollution",
"Information":"The air pollution of our city is becoming serious. The goverment

takes extreme measures to control the pollution by closing the factory and limiting the
use private car."

}
]
<Response>
{

- "thoughts": "I’m representing Sirui Zhao in the meeting. In the last utterance, the
appearance of ’three’ is abrupt. Contextually, there is no need for numbers; phonetically,
"Three" sounds like "Sirui.", which closely resembles ’Sirui’ from the attendees,
specifically <Person Name>. The speaker is most likely asking Sirui Zhao to share
something on the progress of environment protection. So I need to give response. And based
on the background information, I can share something about reduing air pollution.",

- "speak": "Yes. The air pollution of our city is becoming serious. The goverment
takes extreme measures to control the pollution by closing the factory and limiting the
use private car."
}

CONTINUE ON THE NEXT PAGE

Table 16: Prompt used for generating response in the Meeting Engagement module (continued).
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- Example 2:
Below is an example of that you should not speak since the latest utterance is a
straightforward question or request or instructions to other participants.
<Person Name>
’Frank’
<Attendees>
[

- ’John’,
- ’James’,
- ’Alice’,
- ’Bob’
- ’Frank’

]
<Meeting Transcript>
Bob: James, that price is too high, we can not accept it.
James: Ok, I will contact the supplier again and discuss the price.
John: Thank you, James.
John: OK, Let’s go to the next topic. Alice, what is your progress on the project
development?
<Intents>
[

- ’Whether Bob fixed the bug I reported’
]
<Background>
[

{
"Context":"Report on the dataset preparation progress",
"Information":’The dataset preparation is almost done. We are now working on the

data cleaning and normalization. We expect to finish it by the end of the week.’
}

]
<Response>
{

- "thoughts": "I am representing Frank in the meeting. In the latest utterance, John
is explicitly asking Alice about the project development. I can not speak.",

- "speak": ""
}

## Note
- You are representing <Person Name> in the meeting. You should respond to the cues from the attendees and the context
of the meeting.
- You should not interrupt others in the meeting.

Table 17: Prompt used for generating response in the Meeting Engagement module (continued).
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- You are an Evaluation Agent responsible for assessing the response generated by a meeting AI assistant against the
standard answer.
- You are provided with the summary of the <StandardAnswer>.
- You are provided with the raw <ActualResponse> generated by the meeting AI assistant.
- Your task is to summarize the main points in the <ActualResponse>, and evaluate whether the main points in the
<ActualResponse> match the main points in the <StandardAnswer>.

## About the meeting AI Assistant
- The meeting AI assistant is designed to represent the user to engage in a meeting.

## About the <StandardAnswer>
- The <StandardAnswer> is a list of strings that represents the main points of the ground truth response.

## About the <ActualResponse>
- The <ActualResponse> is a string that represents the response generated by the meeting AI assistant to the meeting
content.
- You should reference the <Transcript> to understand the context of the meeting and the information in the <ActualRe-
sponse>.

## Guidelines for Evaluation
- The evaluation process involves comparing the main points in the <StandardAnswer> and the <ActualResponse>.
- Summarize the main points in the <ActualResponse> and keep the same granularity as the <StandardAnswer>.
- The uninformative utterance about expressing goodness or politeness should not be considered as main points.

- For example, "If you need more help, please let me know." is not informative and should not be considered as a main
point.
- You should calculate a list that contains the index of the matching main points in the <ActualResponse> corresponding
to the <StandardAnswer>. For example, if the first main point in the <ActualResponse> matches the second main
point in the <StandardAnswer>, the first element of the list should be 2. And if the total number of main points in the
<ActualResponse> is 1, the list should be [2].
- Count the number of main points in the <ActualResponse> (ActualMainPointsCount).
- Count the number of matching main points between the <ActualResponse> and the <StandardAnswer> (Matching-
MainPointsCount).
- The main points are considered matching if they are semantically similar.

## Output Format
- The output MUST be in the JSON format.
- You MUST explain the process of evaluation before providing the evaluation results.
- The output MUST include the following fields:

- Explanation: A explanantion of steps involved in the evaluation process. First, you should summarize the main points
in the <ActualResponse>. Then, you should explain which main points in the <ActualResponse> match the main points
in the <StandardAnswer> and mark the index of the matching main points in the <ActualResponse> corresponding to
the <StandardAnswer> main points.

- ActualMainPoints: The list of main points in the <ActualResponse>.
- ActualMainPointsCount: The number of main points in the <ActualResponse>.
- MatchingMainPoints: The list of matching main points between the <ActualResponse> and the <StandardAnswer>.
- MatchingIndex: The list of the index of the matching main points in the <ActualResponse> corresponding to

the <StandardAnswer> main points. The length of the list should be the same as the ActualMainPointsCount. If
ActualMainPointsCount is 5, the format of the list should be [1, 2, -1, -1, 4], which means the first, second, and fifth
main points in the <ActualResponse> match the first, second, and fourth main points in the <StandardAnswer>. And the
third and fourth main points in the <ActualResponse> do not match any main points in the <StandardAnswer>.

- MatchingMainPointsCount: The number of matching main points between the <ActualResponse> and the <Standar-
dAnswer>.
- If the <ActualResponse> is empty, the ActualMainPointsCount, MatchingMainPointsCount, RecallRate, and Precision-
Rate should be 0.
- Note that you must keep the length of the MatchingIndex the same as the ActualMainPointsCount, instead of the length
of the <StandardAnswer>.

CONTINUE ON THE NEXT PAGE

Table 18: Prompt used for evaluating the generated response against the ground-truth one.
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## Example1
<StandardAnswer>
["Calculated word error rate on Czech transcripts", "Conducted testing sessions with PERSON11 and PERSON18", "
Contributed to the PROJECT3 deliverable", "Waiting for new tasks"]

<ActualResponse>
"Hi everyone. Over the past week, I calculated the word error rate on Czech transcripts using three versions of Czech

ASR created by PERSON10. I also conducted a few testing sessions with PERSON11 and PERSON18, but they were not
successful due to issues with the segmenters from ORGANIZATION1. I have updated the German transcripts in its
corresponding path. I also backed up all the systems, including some new ones created today and last week. For the
next week, I am waiting for new tasks. By the way, do we have the golden transcripts for the English videos?"

<Evaluation>
{

"Explanation": "First, summarize the main points in the <ActualResponse>. The <ActualResponse> has the following
main points: 1. Calculated word error rate on Czech transcripts. 2. Conducted testing sessions with PERSON11 and
PERSON18. 3. Updated German transcripts in its corresponding path. 4. Backed up all the systems. 5. Waiting for new
tasks. 6. Ask about the golden transcripts for the English videos. So, the number of main points in the <
ActualResponse> is 6 and the length of the MatchingIndex is 6. Sencond, compare the main points in the <
ActualResponse> with the main points in the <StandardAnswer>. The matching main points between the <ActualResponse>
and the <StandardAnswer> are: 1. Calculated word error rate on Czech transcripts. This point maches with the first
point in the <StandardAnswer>. 2. Conducted testing sessions with PERSON11 and PERSON18. This point matches with the
second point in the <StandardAnswer>. 3. Waiting for new tasks. This point matches with the fourth point in the <

StandardAnswer>. The number of matching main points between the <ActualResponse> and the <StandardAnswer> is 3. The
other points in the <ActualResponse> do not match points in the <StandardAnswer>.",

"ActualMainPoints": ["Calculated word error rate on Czech transcripts", "Conducted testing sessions with PERSON11
and PERSON18", "Updated German transcripts in its corresponding path", "Backed up all the systems", "Waiting for

new tasks", "Ask about the golden transcripts for the English videos"],
"ActualMainPointsCount": 6,
"MatchingMainPoints": ["Calculated word error rate on Czech transcripts", "Conducted testing sessions with PERSON

11 and PERSON18", "Waiting for new tasks"],
"MatchingIndex": [1, 2, -1, -1, 4, -1],
"MatchingMainPointsCount": 3

}
## Example2
<StandardAnswer>
["Confirm the task about writing a report about the calculation and share it with others", "Synthesize the
information other team members have shared", "Wait for the next task"]

<ActualResponse>
"Sure, I will finish the calculation. I will also write a report about the calculation."
<Evaluation>
{

"Explanation": "First, summarize the main points in the <ActualResponse>. The <ActualResponse> has the following
main points: 1. Confirm the task about finishing the calculation and writing a report about it. The number of main
points in the <ActualResponse> is 1 and the length of the MatchingIndex is 1. Sencond, compare the main points in
the <ActualResponse> with the main points in the <StandardAnswer>. The matching main points between the <
ActualResponse> and the <StandardAnswer> contains: 1. Confirm the task about finishing the calculation and writing a
report about it. This point matches with the first point in the <StandardAnswer>. The number of matching main

points between the <ActualResponse> and the <StandardAnswer> is 1. The other points in the <ActualResponse> do not
match points in the <StandardAnswer>.",

"ActualMainPoints": ["Confirm the task about finishing the calculation and writing a report about it"],
"ActualMainPointsCount": 1,
"MatchingMainPoints": ["Confirm the task about finishing the calculation and writing a report about it"],
"MatchingIndex": [1],
"MatchingMainPointsCount": 1,

}

Table 19: Prompt used for evaluating the generated response against the ground-truth one (continued).
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- You are an Attribution Agent responsible for assessing the response generated by a meeting AI assistant and determining
its source.
- You are provided with the list of <ActualResponse>.
- You are also provided with the transcript of the meeting content (<Transcript>) and the <ContextInfo> used to generate
the <ActualResponse>.
- Your task is to attribute the <ActualResponse> to the corresponding part of the <Transcript> or the <ContextInfo>.

## About the <ActualResponse>
- The <ActualResponse> is a list that represents the response generated by the meeting AI assistant.

## About the <StandardResponse>
- The <StandardResponse> is a list that represents the expected response.
- The <StandardResponse> may be the same as <ActualResponse>, or it may not be.

## About the <Transcript>
- The transcript are the collection of utterances from the meeting participants.
- Each utterance is formatted as "Name: Content", where ’Name’ is the speaker’s name and ’Content’ is their spoken
text.
- Utterances are in chronological order and may contain typos and grammatical errors.
- The transcript ends at the time stamp when the meeting AI assistant should generate the response.
- Example utterances:

PERSON1: Hello everyone, I’m glad to see you all here today. (id=0)

## About the <ContextInfo>
- <ContextInfo> is a dictionary that contains <Intents> and <Background>.
- <Intents> consists of the questions or topics that can generate the <ActualResponse>.
- <Background> is a list of "Context" and "Information" pairs. For each pair, "Information" can be shared in the
"Context" situation to generate the <ActualResponse>. And each pair can be used many times.

## Guidelines for Attribution
- You need to decide whether the main points in the <ActualResponse> match the <StandardResponse>.
- The number of main points in the <ActualResponse> is not fixed. PointID is used to identify the main points in the
<ActualResponse>.
- When assessing whether the main points in the <ActualResponse> originate from the <Transcript> or the <ContextInfo>,
consider the following:

1. If the main point has a similar or the same meaning as the <ContextInfo>. You should consider it as originating
from the <ContextInfo>.

2. If the main point explicitly repeats or closely relates to any point already mentioned in the <Transcript>. However,
casual interactions such as greetings or small talk are permissible and not regarded as sourced from the <Transcript>."
- There are four situations for the origin of the main points in the <ActualResponse>:

1. The main point in the <ActualResponse> can originate from the <ContextInfo> but is not present in the <Transcript>.
You should append [PointID, 1, 0] to the AttributionList.

2. The main point in the <ActualResponse> does not originate from the <ContextInfo> but originates from the
<Transcript>. You should append [PointID, 0, 1] to the AttributionList.

3. The main point in the <ActualResponse> can originate from both the <ContextInfo> and the <Transcript>. You
should append [PointID, 1, 1] to the AttributionList.

4. The main point in the <ActualResponse> does not originate from the <ContextInfo> and is not present in the
<Transcript>. You should append [PointID, 0, 0] to the AttributionList.

## Output Format
- The output MUST be in the JSON format.
- You MUST explain the process of attribution for every main point in the <ActualResponse>.
- Note that AttributionList should only contain the List of lists and should not contain any additional information or
annotations.

CONTINUE ON THE NEXT PAGE

Table 20: Prompt used for the attribution of the generated response.
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- The output MUST include the following fields:
- Explanation: For every main point in the <ActualResponse>, explain the process of attribution. Especially, explain

why the main point matches or does not match the <StandardResponse> and why it originates from the <Transcript> or
the <ContextInfo>.

- AttributionList: A list of lists, where each list contains PointID and the attribution for a main point in the
<ActualResponse>.

- PointsCount: The number of main points in the <ActualResponse>.

## Example

- Example 1:
<Transcript>
PERSON13: Hi. Hello [PERSON6]. Hello [PERSON19]. Thanks for, uhm. (id=0)
PERSON6: Hi everyone. (id=1)
PERSON19: Hi. (id=2)
PERSON13: Yeah, great. Thanks for joining and, uh, yeah okay. So, yeah. Uh, I I see that
people have written up ehm what they did. (id=3)
PERSON19: Hi [PERSON13], I can hear you. (id=4)
PERSON13: Yeah. [PROJECT3] deliverables. So, I’ll try to provide the links-. Or those who
of you, who are already working on the deliverables, please mention that. And yeah. Let’s
let’s go quickly over what what have done. So [PERSON6] you are the first on the list. Ehm
, ehm, so please briefly update what what you have been working on. And what what is the
plan for the next week. (id=5)

<ContextInfo>
{

"Intents": [
"What [PERSON6] has been working on and the plan for the next week?"

],
"Background": [

{
"Context": "Update on recent work and plans for the next week",
"Information": "This week I had fewer tasks. I calculated the word error rate

on Czech transcripts using three versions of Czech ASR created by [PERSON10]. There were
significant mismatches between the golden transcript and its corresponding video. I
conducted testing sessions with [PERSON11] and [PERSON18], which were not successful due
to issues with segmenters from [ORGANIZATION1]. I also contributed to the [PROJECT3]
deliverable for the punctuator and through caser."

}
]

}

<StandardResponse>
["I calculated the word error rate on Czech transcripts"]

<ActualResponse>
["Calculated word error rate on Czech transcripts", "Conducted testing sessions with
PERSON11 and PERSON18"]

<Evaluation>
{

"Explanation": "1. Calculated word error rate on Czech transcripts. This point matches
the standard response. "I calculated the word error rate on Czech transcripts" is present
in the ContextInfo. Therefore, the attribution is [1, 1, 0]. 2. Conducted testing
sessions with PERSON11 and PERSON18. The point does not match the standard response. "I
conducted testing sessions with [PERSON11] and [PERSON18]" is present in the
BackgroundKnowledge. Therefore, the attribution is [2, 1, 0].",

"AttributionList": [[1, 1, 0], [2, 1, 0]],
"PointsCount": 2

}
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- Your task is to update the summary of the utterances of {participant} in a meeting transcript.
- You are provided with a <Transcript Snippet> that contains a portion of the meeting transcript.
- You are also provided with <Previous Summary> which contains the summary of utterances for {participant} in other
parts of the meeting.
- You need to update the <Previous Summary> based on the utterances of the {participant} in the <Transcript Snippet>.

## On the provided <Transcript Snippet>
- Transcripts are the collection of utterances from the meeting participants.
- The transcript data is deidentified. Speakers and other named entities are not identified by names, but rather by IDs in
the format ENTITYNUMBER (e.g. PERSON1 or PROJECT3) or just ENTITY (e.g. PATH).
- Speaker IDs at the beginning of transcript lines are enclosed in round brackets, all other deidentified entities in square
brackets.
- Each utterence ends with "(id=x)", which is the utterance id, an increasing number from 0 to indicate the serial number
of utterance in the whole meeting transcript.
- The provided transcript snippet maybe not start from the beginning of the meeting.
- Example utterances:

(PERSON1) Hello everyone, I’m glad to see you all here today. (id=0)
(PERSON2) Hi, I’m excited to be here. (id=1)
(PERSON3) I’m looking forward to the discussion. [PERSON1] mentioned that the project is going well. (id=2)

## On the <Previous Summary>
- The <Previous Summary> is a structured summary of the utterances of {participant} in the meeting transcript.
- The <Previous Summary> contains two parts, "wanted information" and "provided information".

- "wanted information" is a list of questions made by the {participant}.
- "provided information" is the information provided by the participant to others. It is a list of Context and Information

pairs, where the "Context" is the context in which where the {participant} provides the "Information".

## Instructions on updating the <Previous Summary>
- Identify the utterances of {participant} in the <Transcript Snippet>.
- If {participant} does not speak in the <Transcript Snippet>, do NOT update the <Previous Summary>.
- Focus on only the informative utterances and ignore the greetings, appreciation, simple acknowledge and other chit
chat.
- Extract the "wanted information" and "provided information" from the <Transcript Snippet>.
- You should try to use original utterances as much as possible after removing noise words and polishing them for better
readability.
- The second or third personal pronoun (you, he, she, they) in the utterances should be properly replaced with the
corresponding participant’s ID to avoid ambiguity.
- Use the extracted information to update the <Previous Summary>.
- You can modify the existing "wanted information" and "provided information" or add new information, but do not
remove any existing information.
- You MUST NOT mix the information provided by {participant} and other participants while updating the <Previous
Summary>.
- You MUST NOT miss any important information provided by {participant} in the <Transcript Snippet>.

## Requirement on the output format
- You MUST explain your thoughts and steps of updating the <Previous Summary> before providing the updated
summary.
- Output must be in Json format with the "Thoughts" and "Updated Summary" as the key.
- The "Thoughts" is your thoughts and steps of updating the <Previous Summary>.
- The "Updated Summary" contains the updated summary of the utterances for {participant}.

CONTINUE ON THE NEXT PAGE
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## Example 1
- Here is an example of updating the utterances summary for PERSON2. You can refer to

this example for better understanding.
- Suppose the transcript snippet contains the following utterances:

(PERSON3) Good moring. (id=2)
(PERSON1) Let’s get started with today’s meeting on the recent progress of our

software development project. We’ll go through updates from each team and discuss any
blockers or issues. [PERSON2], could you start with the development updates?". (id=3)

(PERSON2) Sure, [PERSON1]. We’ve made significant progress this sprint. We completed
the implementation of the new authentication module and integrated it with our existing
systems. (id=4)

(PERSON1) That’s great to hear, [PERSON2]. How about the feature for real-time
notifications? Is it on track? (id=5)

(PERSON2) Yes, it is. We’re about 75% done with it. The core functionality is in
place, and we are now working on optimizing the delivery speed and ensuring it works
seamlessly across different devices. (id=6)
- Suppose the previous summary of PERSON2 contains the following information:

{{
"wanted information": [],
"provided information": []

}}
- The thoughts and updated summary will be:

{{
"Thoughts":"In the transcript snippet, PERSON2 responds to PERSON1’s questions

about the development updates and the progress of the feature for real-time notifications.
This information can be added to the "provided information" for PERSON2."

"Updated Summary":
{{
"wanted information": [],
"provided information": [

{{
"Context": "Respond to other participant’s question about the development

updates",
"Information": "We’ve made significant progress this sprint. We completed

the implementation of the new authentication module and integrated it with our existing
systems."

}},
{{
"Context": "Respond to other participant’s question about the progress of

the feature for real-time notifications",
"Information": "We’re about 75% done with it. The core functionality is in

place, and we are now working on optimizing the delivery speed and ensuring it works
seamlessly across different devices."

}}
]

}}
}}

## Example 2
- Here is another example of updating the utterances summary for PERSON2. You can refer

to this example for better understanding.
- Suppose the transcript snippet contains the following utterances:

(PERSON3) Good moring. (id=2)
(PERSON1) Let’s get started with today’s meeting on the recent progress of our

software development project. We’ll go through updates from each team and discuss any
blockers or issues. [PERSON2], could you start with the development updates?". (id=3)

(PERSON2) Sure, [PERSON1]. We’ve made significant progress this sprint. We completed
the implementation of the new authentication module and integrated it with our existing
systems. (id=4)
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(PERSON1) That’s great to hear, [PERSON2]. How about the feature for real-time notifications? Is it on track? (
id=5)

(PERSON2) Yes, it is. We’re about 75% done with it. The core functionality is in place, and we are now working
on optimizing the delivery speed and ensuring it works seamlessly across different devices. (id=6)

(PERSON3) [PERSON2], have you had a chance to address the bug I reported last week related to the
authentication module? (id=7)

(PERSON2) Yes, [PERSON3]. We identified the root cause of the bug, and it’s been fixed. It was due to a
conflict with a third-party library we were using. (id=8)

(PERSON3) That’s good to hear. Thank you, [PERSON2]. (id=9)
(PERSON1) [PERSON2], for the next step of the project, I’d like you first complete the real-time notifications

feature, and then focus on the chatbot development. (id=10)
(PERSON2) Understood, I will do that. (id=11)
(PERSON2) By the way, what’s the timeline of our project? (id=12)
(PERSON1) We are aiming to finish the project by the end of August. (id=13)
(PERSON2) Ok, I know. (id=14)
(PERSON1) Let’s move to the next topic. [PERSON3], could you provide an update on the testing progress? (id=15)
(PERSON3) Sure. Certainly. We’ve conducted tests on the new authentication module, and everything looks good so

far. (id=16)
(PERSON1) Mhm. (id=17)
(PERSON3) We are now preparing for the testing of the real-time notifications feature. (id=18)
(PERSON2) In our development process, we accumulated some test cases which may help you. (id=19)
(PERSON3) That’s helpful, thank you. (id=20)

- Suppose the previous summary of PERSON2 contains the following information:
{{

"wanted information": [],
"provided information": [
{{

"Context": "Respond to other participant’s question about the development updates",
"Information": "We’ve made significant progress this sprint. We completed the implementation of the new

authentication module and integrated it with our existing systems."
}},
{{

"Context": "Respond to other participant’s question about the progress of the feature for real-time
notifications",

"Information": "We’re about 75% done with it. The core functionality is in place, and we are now working
on optimizing the delivery speed and ensuring it works seamlessly across different devices."

}}
]

}}
- The thoughts and updated summary will be:

{{
"Thoughts":"In the transcript snippet, the dicussion between PERSON1 and PERSON2 about the progress of the

development and the feature for real-time notifications are already included in the previous summary. PERSON2
responds to PERSON3’s question about the bug in the authentication module, which can be added to the "provided
information" for PERSON2. PERSON2 asks about the timeline of the project, which can be added to the "wanted
information" for PERSON2. PERSON2 also comments on PERSON3’s statement about the testing progress, offering to
provide some test cases, which can be added to the "provided information" for PERSON2."

"Updated Summary":
{{

"wanted information": [
"What’s the timeline of the project?"

],
"provided information": [

{{
"Context": "Respond to other participant’s question about the bug in the authentication module",
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"Information": "We identified the root cause of the bug reported by [PERSON3], and it’s been fixed.
It was due to a conflict with a third-party library we were using."

}},
{{

"Context": "Comment on other participant’s statement about the testing progress",
"Information": "In our development process, we accumulated some test cases which are helpful to

testing."
}}

]
}}

}}

## Example 3
- Here is an example of updating the utterances summary for PERSON6. You can refer to this example for better
understanding.
- Suppose the transcript snippet contains the following utterances:

(PERSON13) Hi.
Hello [PERSON6].
Hello [PERSON19].
Thanks for, uhm. (id=0)
(PERSON6) Hi everyone. (id=1)
(PERSON19) Hi. (id=2)
(PERSON13) Yeah, great.
Thanks for joining and, uh, yeah okay.
So, yeah.
Uh, I I see that people have written up ehm what they did. (id=3)
(PERSON19) Hi [PERSON13], I can hear you. (id=4)
(PERSON13) Yep, that’s great.
Uh, and also you were evaluating-.
Yes, so that’s that’s re re record.
What you did.
So what I have, uh, on my mind now is uh, uh, well, uh, preparations.
So, uh, [PERSON13], uh I am busy, uh, with the IW SLT, uh, write-up.
Uh, that was the, uh, the wra last part that I did.
Now busy with interviewing people people to uh to replace those who are em moving forward <laugh/> so to say.
So there is number of colleagues on projects that I am supervising, uh, that who are going for studies abroad

and other things.
Uh, so, uh, what I think we should focus on is the demo for Project Officer.
Then we need to focus on the ladder climbing, uh, which is building uh, uh, [PROJECT3] test set plus, uh,

regularly, uh, testing on it.
Ehm, and, ehm what else, uh, the deliverables.
Yeah.
[PROJECT3] deliverables.
So, I’ll try to provide the links-.
Or those who of you, who are already working on the deliverables, please mention that.
And yeah.
Let’s let’s go quickly over what what have done.
So [PERSON6] you are the first on the list.
Ehm, ehm, so please briefly update what what you have been working on.
And what what is the plan for the next week. (id=5)
(PERSON6) <other_noise/>
So, luckily.
<laugh/>
Not luckily but this week I had like quite less tasks to do.
So first I calculated the word error rate on Czech transcripts using that three versions of, uh, Czech ASR

which [PERSON10] created.
And so yesterday [PERSON10] told me that they were, uh, and the golden transcript and its corresponding video

there were there were huge huge mismatch.
And I <unintelligible/> and he said to update me.
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And then we conducted a few testing sessions with [PERSON11] and [PERSON18].
And they were not quite successful because the segmenters from, uh, uh, [ORGANIZATION1] they were still down

and [PERSON12] today he is he is working on them. (id=6)
(PERSON13) Mhm. (id=7)
(PERSON6) And lastly yeah I think I did-.
Uh, it was the input in the [PROJECT3] deliverable of for the punctuator and through caser.
<unintelligible/> (id=8)
(PERSON13) Mhm, yeah. (id=9)
(PERSON6) And I don’t have-.
I think that apart from the testing sessions to do this week so I am waiting for new tasks. (id=10)
(PERSON13) Yeah, so.
So the word error rate, there is also the English, uh, transcripts?
Ehm, and also we should have from [PERSON9] the German one, right?
So. (id=11)
(PERSON6) Yeah, yeah, yeah. (id=12)
(PERSON13) So, so I will make it to do-. (id=13)
(PERSON6) So I have updated the German transcripts in its corresponding path and like do we have the golden

transcripts for the English videos? (id=14)
(PERSON13) Yes, that’s the other part.
Because this is the consecutively translated videos.
So there is always the English speaker and then the Czech speaker who repeats the same content.
And [PERSON7] has split the video and while the English part should be more reliable, uh, the Czech part has

been done simply by using the other ends.
So the Czech video has been cut using the English time stamps.
Like the end of English and the beginning of the next English segment.
Uh, so it’s like like interleave the the the other way round.
So that’s why I’m not surprised that the Czech video is, uh, imprecise in timing.
But still, I was not expecting it to be that bad.
So, uh, that is something that, yeah.
[PERSON10], can you maybe tell us more details about that? (id=15)
(PERSON10) Yeah, yeah.
Well, I just like listened to the audio and followed the talk transcript <other_noise/>
and it was completely off.
I think it is-.
There must be some miss-match because-. (id=16)
(PERSON13) Mhm. (id=17)
(PERSON10) Yeah, yeah.
The transcription is for the completely different audio than it’s in the subdirectory. (id=18)
(PERSON6) Mhm. (id=19)
(PERSON13) Oh, so then someone must have like messed it up. (id=20)
(PERSON10) Yeah, yeah, I I may maybe it’s just like uh.
Maybe the files are just switched between the subdirectories? (id=21)
(PERSON13) Mhm. (id=22)
(PERSON10) I I haven’t checked but-.
Uh, yeah, there is some some serious mismatch there. (id=23)
(PERSON13) Yeah, so [PERSON10] can you coul could you do this check?
It should not be hard
Like try listening to all the files that are within this demo for [PERSON15], uh, and try to locate the correct

file, the appropriate files.
But we should have, we should have the transcripts ready for all of those.
So we should be able to, uh, to evaluate it.
And also for the English ones we have the translations.
So for the English ones [PERSON6], uh, I would like you to evaluate not only the word error rate of the ASR.
But also the machine translation quality or at the SLT even.
Uh, with the translation quality into German and Czech.
Both are available. (id=24)
(PERSON6) Okay. (id=25)
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(PERSON13) We have these files ready. (id=26)
(PERSON6) And so these, for like a German audio and English [PROJECT1]. (id=27)
(PERSON13) English, uh, input for English sound.
We have the golden English transcript, so you can check the ASR.
And we also have the translation into Czech and into German.
So you can also evaluate directly the translation quality, uh, of that. (id=28)
(PERSON6) Okay, yeah. (id=29)
(PERSON13) Yeah, so this is, this is an important, uh, task, uh, to do, uh wr also for German and English

audios.
And another to do, uh, bleu or SLTF, uh, for, uh, German and Czech translations of, uh, English. (id=30)

- Suppose the previous summary of PERSON6 contains the following information:
{{
"wanted information": [],
"provided information": []

}}
- The thoughts and updated summary will be:

{{
"Thoughts":"PERSON6 responds to PERSON13’s questions about the work done and the plan for the next week,

which can be added to the ’provided information’ for PERSON6. PERSON6 responds to PERSON13’s questions about the
word error rate for the English and German transcripts, which can be added to the ’provided information’ for PERSON
6. PERSON6 also asks about the golden transcripts for the English videos, which can be added to the ’wanted
information’ for PERSON6."

"Updated Summary":
{{

"wanted information": [
"Do we have the golden transcripts for the English videos?"

],
"provided information": "wanted information": [

"Do we have the golden transcripts for the English videos?"
],
"provided information": [

{{
"Context": "Respond to other participant’s question about the work done and the plan for the next

week",
"Information": "This week I had quite less tasks to do. So first I calculated the word error rate on

Czech transcripts using three versions of Czech ASR created by [PERSON10]. And so yesterday [PERSON10] told me that
there were huge huge mismatch between the golden transcript and its corresponding video. And he said to update me.
And then we conducted a few testing sessions with [PERSON11] and [PERSON18]. And they were not quite successful
because the segmenters from [ORGANIZATION1] were still down and [PERSON12] today is working on them. And lastly, I
think I did the input in the [PROJECT3] deliverable for the punctuator and through caser. Apart from the testing
sessions to do this week so I am waiting for new tasks."

}},
{{

"Context": "Respond to other participant’s question about the word error rate for the English and
German transcripts",

"Information": "I have updated the German transcripts in its corresponding path, and I don’t konw if
we have the golden transcripts for the English videos."

}}
]

}}
}}

## Note
- You MUST follow the instructions and examples provided.
- Similar to examples above, you should try to use original utterances as much as possible after removing noise
words and polishing them for better readability.
- You MUST NOT put the information provided by other participants or questions of other participants in the updated
summary of {participant}.
- You MUST NOT miss any important information provided by {participant} in the <Transcript Snippet>.
- You MUST give the output in the required format.
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- You are an NLP expert agent tasked with generating an evaluation dataset to assess {person_id}’s response abilities in the categories of ’Chime In’,
’Explicit Cue’, ’Implicit Cue’, based on the provided transcript.
- The conversation may involve multiple speakers, but your focus should solely be on {person_id}.
- Given the transcript contains lengthy utterances, selectively include only the highest quality exchanges in the evaluation dataset.
- Exclude chit-chat or unmeaningful utterances such as ["emm," "okay," "mhm," "uh-huh," "yeah," "oh," "right," "hmm"] from the evaluation dataset.
- Ensure that {person_id}’s responses are substantive and meaningful. Exclude responses from {person_id} that are simple acknowledgments or
confirmations like "Yeah, yeah, definitely, yeah" or "Okay."
- The transcript data is deidentified. Speakers and other named entities are identified by IDs in the format ENTITYNUMBER (e.g., PERSON1, Speaker1 or
PROJECT3) or simply as ENTITY (e.g., PATH).

## Evaluation Type
- Chime In: When {person_id} spontaneously contributes to the conversation without being directly prompted.
- Usually Chime In is when {person_id} is not already engaged in the conversation but chimes in with a relevant comment or question.
- Explicit Cue: When {person_id}’s name is specifically mentioned by another Speaker in utterance with ID, then {person_id} responds to a clear and
direct question or prompt towards {person_id}.
- Implicit Cue: When {person_id}’s name is not specifically mentioned by Speaker in utterance with ID, but {person_id} responds to a less direct prompt
or follows up on information that suggests a response is needed.
- Usually Implicit Cue is when {person_id} is already engaged in the conversation and responds to a follow-up question from Speaker in utterance with ID.

## Output Format
- Output must be in Json format. Here is the skeleton of the output format with explanation:
- Explanation: Your reason for selecting the evaluation instance and for categorizing it.
- Type: The category of the evaluation instance: ’Chime In’, ’Explicit Cue’, ’Implicit Cue’.
- Response IDs: The id or ids of the {person_id}’s response from the transcript. Include all Response IDs that are relevant to the evaluation instance. If
there are multiple Response IDs, separate them with commas.
- ID: The utterance id that {person_id} responds to.
- Speaker: The speaker of the utterance with the ID.
- Maintain the chronological order of the transcript when generating the evaluation dataset. ID MUST precede Response IDs.
- Response IDs must be from {person_id}’s responses only and ID must be from the speaker’s utterance that {person_id} responds to.
- Please return all suitable evaluation instances in the transcript. If you don’t find any suitable instances for a category, you can leave the evaluation dataset
empty. Please ensure you have thought through the transcript carefully before leaving the evaluation dataset empty.

## Example: Below are two examples of transcript and the corresponding evaluation datasets generated to assess PERSON18’s response abilities. You can
refer to these examples when generating {person_id}’s evaluation dataset.

<Transcript>
"speaker": "Speaker 19", "content": "If you want, I can resend it again. (id=71)"
"speaker": "Speaker 13", "content": "Space tokeniser. <unintelligible/> Yes, so es essentially to answer your question in the email. We have to switch to
and we have for the IWSLT. We have to switch to SacreBLEU and SacreBLEU does its own tokenisation before scoring. So there is no-. Let’s let’s simply
forget NLTK bleu score. That is not reliable. (id=72)"
"speaker": "Speaker 18", "content": "Yes, but-. (id=73)"
"speaker": "Speaker 19", "content": "Yes, but we can combine our tokeniser with NLTK. (id=74)"
"speaker": "Speaker 13", "content": "Uf. Let’s not do that. Let’s just forget it. Let’s let’s just use SacreBLEU. (id=75)"
"speaker": "Speaker 19", "content": "Okay. (id=76)"
"speaker": "Speaker 18", "content": "I I have one comment about it. (id=77)"
"speaker": "Speaker 13", "content": "Mhm. Yeah. (id=78)"
"speaker": "Speaker 18", "content": "You sh should use tokeniser before enverse segmenter. (id=79)"
"speaker": "Speaker 13", "content": "Yes, that’s it. Yeah. (id=80)"
"speaker": "Speaker 18", "content": "Because it’s much better. Because it can rely on the on the dots and commas and question marks and so on. And you
can you can check my script which does tokeniser, enverse segmenter and then de-tokeniser. And here is the path in the document.And-. (id=81)"
"speaker": "Speaker 13", "content": "Yeah. (id=82)"
"speaker": "Speaker 18", "content": "And it’s it’s using the Moses seg tokeniser and detokeniser. And it needs the the language tag as the first argument and
then reference. (id=83)"
"speaker": "Speaker 13", "content": "Yeah. So [PERSON19], do you do you fo-? Do you understand? (id=84)"
"speaker": "Speaker 19", "content": "Yeah. (id=85)"
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<Evaluation Dataset>
[

"Explanation": "PERSON18’s utterance is informative and suitable for evaluation
dataset. PERSON18 spontaneously contributes to the conversation without being directly
prompted. This is a Chime In instead of Implicit Cue since [PERSON18] is not already
engaged in the conversation.",

"Type": "Chime in",
"Response ID": [77, 79, 81, 83]
"ID": 76,
"Speaker": "Speaker 19",

]

## Example 2
<Transcript>
"speaker": "Speaker 13", "content": "Yes, so I need to review these and the internal deadline is in 6 days from now. Uh,
so, hopefully I will get back to all of you. To each of you independently towards the end of the week if there is anything
unclear. So that we meet the internal deadline on the 8th. Yeah, okay. Great. Uh. So [PERSON18], what what is your
progress? (id=117)"
"speaker": "Speaker 18", "content": "Hmhm. Yes, and by reading the papers I found an interesting tool. (id=118)"
"speaker": "Speaker 13", "content": "Mhm. (id=119)"
"speaker": "Speaker 18", "content": "I found out that it’s possible to measure out the speech rate by cutting the syllables.
And there is one tool. One patent tool, which can detect the gender of speaker and the speech rate. (id=120)"
"speaker": "Speaker 13", "content": "Mhm. (id=121)"
"speaker": "Speaker 18", "content": "And some other characteristics. So we can try it and make a dashboard out of it.
(id=122)"
"speaker": "Speaker 13", "content": "Mhm. That’s that’s useful thing. Uh, and later on we could even create models
like-. If we if we recognise that someone is speaking too fast, we could use like a harsher summarisation. (id=123)"
"speaker": "Speaker 18", "content": "Yes. (id=124)"
"speaker": "Speaker 13", "content": "So we could be reducing reducing their speech mole with a different model.
(id=125)"
"speaker": "Speaker 18", "content": "Yes, and there was also speech modes. Like whether it was angry or normal and so
on. (id=126)"
"speaker": "Speaker 13", "content": "Mhm. (id=127)"
"speaker": "Speaker 18", "content": "But I have no idea how the tool works in practice. I I I I saw it only in Gi GitHub
and I buy it. (id=128)"
"speaker": "Speaker 13", "content": "Yeah, uh. (id=129)"
"speaker": "Speaker 18", "content": "So we can try it and make a dashboard out of it. (id=130)"

<Evaluation Dataset>
[
"Explanation": "PERSON18’s utterance is informative and suitable for evaluation dataset.
PERSON18 was directly prompted by Speaker 13. This is an Explicit Cue.",
"Type": "Explicit Cue",
"Response ID": [118, 120, 122, 124, 126, 128, 130]
"ID": 117,
"Speaker": "Speaker 13",

]

- Please refer to the examples provided to ensure consistency and coherence in generating the evaluation dataset. The
evaluation dataset must be in json format.

Table 29: Prompt used for extracting test cases from meeting transcript (continued).
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Abstract

Large language models (LLMs) have revolu-
tionized natural language generation across var-
ious applications. Although LLMs are highly
capable in many domains, they sometimes pro-
duce responses that lack coherence or fail to
align with conversational norms such as turn-
taking, or providing relevant acknowledgments.
Conversational LLMs are widely used, but eval-
uation often misses pragmatic aspects of dia-
logue. In this paper, we evaluate how LLM-
generated dialogue compares to human con-
versation through the lens of dialogue acts, the
functional building blocks of interaction. Using
the Switchboard Dialogue Act (SwDA) corpus,
we prompt two widely used open-source mod-
els, Llama 2 and Mistral, to generate responses
under varying context lengths. We then auto-
matically annotate the dialogue acts of both
model and human responses with a BERT clas-
sifier and compare their distributions. Our ex-
perimental findings reveal that the distribution
of dialogue acts generated by these models dif-
fers significantly from the distribution of dia-
logue acts in human conversation, indicating
an area for improvement. Perplexity analysis
further highlights that certain dialogue acts like
’Acknowledge (Backchannel)’ are harder for
models to predict. While preliminary, this study
demonstrates the value of dialogue act analysis
as a diagnostic tool for human–LLM interac-
tion, highlighting both current limitations and
directions for improvement.

1 Introduction

Large language model-based dialogue systems are
hugely successful in open domain language gen-
eration tasks such as question-answering (Kann
et al., 2022). Although these systems generally
produce high-quality fluent dialogues and are able
to hold conversations, their utterances sometimes
fail to capture the nuances and emotions that are
common in human–human interactions. Effective
conversation depends on subtle patterns of dialogue

acts – utterances that serve functions such as ask-
ing questions, signaling agreement, or providing
acknowledgment. We aim to investigate the ex-
tent of interpersonal synergy exhibited by LLMs
in comparison to human interactions. Synergy in
terms of interactive and cooperative conversations
refers to the way one agent responds to the other
based on coordination and engagement between
agents (Fusaroli and Tylén, 2016).

Dialogue acts are labels assigned to utterances
that classify the intent of the speaker. In our study,
we prompt the Llama 2 model developed by Meta
(Touvron et al., 2023) and the Mistral-7B model de-
veloped by Mistral AI (Jiang et al., 2023), with con-
text from the Switchboard Dialogue Acts (SwDA)1

corpus of human telephonic conversations (Stolcke
et al., 2000) to generate the next utterance. We then
conduct dialogue act classification with a bert-base
model (Raheja and Tetreault, 2019) and compare
the dialogue acts of the LLM-generated responses
to those of the gold-standard responses. Our study
illustrates both the promise and the limits of current
LLMs as conversational partners, and proposes di-
alogue act analysis as a human-centered diagnostic
tool that complements surface-level metrics.

Dialogue acts, a basic unit of conversation and
indication of quality and engagement (Deriu et al.,
2021), allow us to measure the quality and type of
utterances generated by models. By analyzing the
specific types of dialogue act the Llama 2 and Mis-
tral models struggle to generate, we gain a better
understanding of the current limitations of LLMs.
Dialogue acts have been especially studied in work
with regard to classroom dialogue (Ganesh et al.,
2021), thus models that better follow human conver-
sation styles or use quality dialogue could mimic
a teacher’s discourse and guide each student indi-
vidually based on their utterances, leading to more
personalized feedback for each student (D’Mello

1https://catalog.ldc.upenn.edu/LDC97S62
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and Graesser, 2013; Macina et al., 2023).
Badshah and Sajjad (2024) and Nadeau et al.

(2024) suggest that Mistral outperforms Llama 2 in
several aspects, including reduced hallucinations
and enhanced engagement in back-and-forth con-
versations. Although Mistral tends to generate
more engaging and informative dialogues, typical
human conversations often diverge from this pat-
tern. Human interactions frequently involve vari-
ous cues and conventions, such as acknowledging
others’ opinions and providing affirmations. Our
experimental results demonstrate that the Llama 2
model adapts its responses to more accurately re-
flect the nature of the ongoing conversation, align-
ing itself with the conversational style of the inter-
locutor.

In this work, we ask whether dialogue act anal-
ysis can serve as a diagnostic lens for evaluating
conversational coherence in large language mod-
els. Specifically, we investigate whether systematic
differences in dialogue act distributions between
human and model-generated utterances can reveal
where LLMs diverge from human conversational
norms. Beyond NLP evaluation, this question con-
nects to cognitive science perspectives on prag-
matic competence, highlighting whether LLMs re-
produce or miss key interactional strategies, and
where dialogue act mismatches may help explain
why chatbot interactions sometimes feel less natu-
ral.

2 Background and Related Work

Recent work by Shaikh et al. (2024) highlights
that large language models often fail to establish
common ground in conversation, using signifi-
cantly fewer grounding acts such as clarifications,
acknowledgments, and follow-up questions com-
pared to humans. Their study introduces a tax-
onomy of grounding behaviors and demonstrates
that instruction-tuned models systematically under-
use these acts, particularly in high-stakes domains
like emotional support and teaching. While their
analysis focuses on how LLMs manage ground-
ing, our work addresses a complementary question:
how well LLMs reproduce the broader functional
structure of human conversation as captured by di-
alogue acts. By analyzing utterance-level dialogue
act distributions, we contribute an orthogonal yet
critical view of conversational alignment, revealing
that models overproduce questions and opinion-
ated statements, but underproduce backchannels

and agreement. Together, these findings indicate
that LLMs diverge from human norms not only in
their ability to construct shared understanding but
also in their broader interactional strategies.

2.1 Language Models and Prompting
LLMs excel in various language tasks, including
text generation, summarization, and translation. Yi
et al. (2024) notes that Meta’s LLaMA-2 is op-
timized for interactive conversations, adapting to
user input, while OpenAI’s GPT-4 (Achiam et al.,
2023) is more versatile. We use the LLaMA-2 13B-
chat and Mistral-7B-Instruct models to compare
dialogue act alignment, as they represent different
optimization strategies and to explore how vary-
ing training regimes influence dialogue structure.
While the models are not the most recent, the fo-
cus was on analyzing dialogue act patterns rather
than raw performance, and on employing widely
used open-source models to ensure accessibility,
transparency, and replicability.

LLaMA-2 13B-chat is a chain-of-thought opti-
mized model fine-tuned for dialogue using super-
vised learning and Reinforcement Learning from
Human Feedback (RLHF) with human evaluations
for coherence, helpfulness, and safety (Touvron
et al., 2023). It employs ‘ghost attention’ to pre-
serve system instructions across turns, making it
strongly suited for coherent multi-turn conversa-
tions.

In contrast, Mistral-7B-Instruct is a lightweight,
instruction-tuned version of the base model, fine-
tuned on publicly available conversational and in-
struction datasets (Jiang et al., 2023). While it re-
tains architectural efficiencies like Grouped-Query
Attention (GQA) and Sliding-Window Attention
(SWA), Mistral-7B-Instruct also benefits from
instruction-following refinement. However, it does
not appear to use RLHF or chat-specific alignment
via continued conversational feedback.

Prompting methods are crucial for enhancing
LLM performance and tailoring responses to user
specifications (Henrickson and Meroño-Peñuela,
2023). The system prompt in these models instructs
the model on how to respond, giving users some
control over generated dialogues. In-context learn-
ing, a prompt engineering technique, provides task
demonstrations to guide LLMs (Wu et al., 2024;
Rubin et al., 2021; Dong et al., 2022). It can be
zero-shot, one-shot, or few-shot, depending on the
number of input-output examples provided. This
method is particularly effective for models with
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large context windows. We provide several lines of
context and prompt the model to respond accord-
ingly.

For example, Kosinski (2024) demonstrates that
GPT-4 correctly completes 95% of a set of 40 tra-
ditional false-belief tests that are frequently used
to assess Theory-of-Mind (ToM) in humans when
given a large 32K context window size. By com-
parison, GPT-3 can only correctly solve 40% of the
false-belief tasks because it is a smaller model (up
to 1000 times smaller than GPT-4) with 2K context
window size.

2.2 Dialogue Acts

Dialogue acts are the functional units of conver-
sation, describing the communicative intent be-
hind an utterance. Drawing from speech act theory
(Searle et al., 1980) and conversation analysis, dia-
logue acts capture not only the literal meaning of
an utterance but also the role it plays in interac-
tion—for example, making a statement, asking a
question, or providing feedback. In computational
linguistics, the Switchboard Dialogue Act Corpus
(SwDA) (Jurafsky, 1997) has become a widely used
benchmark, defining a taxonomy of 44 dialogue
act categories. A few representative examples are
included in Table 1.

Recent research on dialogue act classification
treats it either as a text classification problem,
where each utterance is classified in isolation (Lee
and Dernoncourt, 2016), or as a sequence labeling
problem (Kumar et al., 2018; Tran et al., 2017).
According to Raheja and Tetreault (2019), some
of the most promising models for dialogue act
tagging are usually some sort of combination of
the following models: conditional random fields
(CRFs; Zhou et al., 2015), recurrent neural net-
works (RNNs; Chen et al., 2018), or BERT (Ribeiro
et al., 2019). We classify dialogue acts using the
Context-Aware Self-Attention Dialogue Act Clas-
sifier2, which outperforms state-of-the-art methods
by 1.6% on SwDA, the primary dataset for this
task (Raheja and Tetreault, 2019). This model uses
frozen BERT-base embeddings as input and em-
ploys a context-aware self-attention mechanism
over dialogue turns, followed by a softmax clas-
sifier trained on the SwDA corpus. This design
enables it to capture inter-turn dependencies criti-
cal for dialogue act identification.

2https://github.com/macabdul9/
CASA-Dialogue-Act-Classifier.git

3 Experimental Setup

3.1 Dataset and Prompt

We use 1000 SwDA transcripts for the experiments,
which are records of 2,400 two-sided telephonic
conversations between two strangers with about 70
provided conversation topics, where each utterance
is tagged with relevant dialogue acts. Since the
dataset is a transcription of phone recordings, we
removed the noises that did not contribute to the
actual conversation. We prompt the Llama 2 and
Mistral models with the following:

System Prompt: ‘You are a human, having a
conversation with a stranger on telephone, about
some topic from a predefined list. Given the con-
text of the conversation, respond as best you can.’

However, to assess the impact of different system
prompt lengths and to finalize our choice of prompt,
we experiment with both short and long variants:

Short System Prompt: ‘You are a human having
a conversation on telephone with another human
you do not know, about some topic, from a given
list. Given the context of the conversation, predict
the next line as best you can.’

Long System Prompt: ‘You are having a con-
versation on telephone with someone you do
not know. Given the context of the conversa-
tion, predict the next line as best you can. Re-
spond with a single line. Your response should
have dialogue act tags like- Statement-non-opinion,
Acknowledge (Backchannel), Statement-opinion,
Agree/Accept, Appreciation, Yes-No-Question, Non-
verbal, Yes answers, Conventional-closing, Unin-
terpretable, Wh-Question, No answers, Response
Acknowledgement like oh okay, Hedge, Declara-
tive Yes-No-Question, Other, Backchannel in ques-
tion form ,Quotation, Summarize/reformulate, Af-
firmative non-yes answers, Action-directive, Col-
laborative Completion, Repeat-phrase, Open-
Question, Rhetorical-Questions, Hold before an-
swer/agreement, and so on.’

3.2 Methods

While the quality of generated responses seems
to improve with in-context learning, the question
remains how much prior knowledge is required for
the dialogue systems to dynamically adjust their
response strategies to align with human interactions
(Brown et al., 2020).

Thus we initially conduct an experiment pro-
viding the LLMs the first 10 lines of utterances
from the switchboard corpus as previous knowl-
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Dialogue Act Tags Example

Statement-non-opinion (sd) Me, I’m in the legal department.
Acknowledge (Backchannel) (b) Uh-huh.

Statement-opinion (sv) I think it’s great
Yes-No-Question (qy) Do you have to have any special training?

Abandoned or Turn-Exit (%) So, -

Table 1: Some Dialog Act Markup in Several Layers (DAMSL) tags

edge. The model is then prompted to generate the
11th line. For evaluation, both the model-generated
responses and the corresponding human responses
from the SwDA corpus were automatically anno-
tated with dialogue act labels using the BERT clas-
sifier. We then compared these labels along two
dimensions: (1) distributional differences, by cal-
culating the relative frequency of each dialogue act
across model and human outputs; and (2) instance-
level agreement, by measuring how often the dia-
logue act assigned to the model’s response matched
that of the gold standard human response in the
same conversational context. In addition to these
automatic comparisons, we manually inspected a
random sample of 100 model–human pairs to qual-
itatively assess whether the classifier produced sen-
sible labels and whether mismatches reflected gen-
uine conversational differences rather than classi-
fier errors. This qualitative check suggested that
while the classifier rarely mislabels uncommon di-
alogue acts, the overall trends are robust.

We follow the same set of experiments with 30
lines of utterances instead of 10, and again with no
prior context (zero-shot learning) where we prompt
the model to converse with the user without hav-
ing context knowledge about the utterances or dia-
logues of the assistant, to gain a better perspective
of the extent to which prompt engineering influ-
ences the ability of dialogue assistants to engage in
human-like conversations. It is essential to gather
diverse system-generated responses to perform fur-
ther analysis on the trends of the generated dia-
logues focusing on patterns, consistencies, and ar-
eas of improvement or divergence, as compared to
human dialogues.

Our final experiments use the best performing
context length of 30 previous utterances.

Dialogue Act Tags Human Llama 2 Mistral

Statement-non-opinion (sd) 35.29 18.19 17.64
Statement-opinion (sv) 23.52 36.37 35.29
Yes-No-Question (qy) 18.47 27.24 29.41

Acknowledge/Backchannel (b) 11.76 13.63 11.76

Table 2: Percentages of Dialogue Act tags of the se-
lected utterances from the SwDA dataset, Llama 2 and
Mistral

4 Results and Analysis

Table 23 shows the distribution of the top 44 dia-
logue act labels for the original utterances from the
SwDA dataset next to the distribution of dialogue
act tags among Llama 2’s and Mistral’s generated
responses after conditioning the model on 30 lines
of previous conversational context.

We see that humans use non-opinion statements
significantly more compared to Llama 2 and Mis-
tral. Both the models generate more opinion state-
ments and questions, compared to humans. Al-
though the models exhibit similar performance,
Llama 2 demonstrates a greater tendency to ac-
knowledge the provided prior context. However,
solely measuring the overall distribution of dia-
logue acts might not be the most efficient method
for identifying whether a dialogue act has been al-
tered in the generated utterance compared to its
original classification in the dataset.

Next, we consider the dialogue act tag for the
generated versus the original sentence and provide
a normalized confusion matrices, Figure 1 and Fig-
ure 25, indicating how many kept the same tags in
the models’ classification outcomes.

We see both LLMs predominantly respond with
‘statement-opinion’, as corroborated by Table 2.

3This table shows the distribution of dialogue acts from
the gold standard ‘next line’ dialogues available from the
transcripts after 30 lines of utterances, not the entire SwDA.

4Top 4 dialogue act tags are shown as they account for
more than 85% of the dataset.

5Please refer to Table 2 for the list of dialogue act abbrevi-
ations.

320



Figure 1: Confusion Matrix (Actual vs. Llama 2 13B
Responses)

Llama 2 demonstrates a superior ability to align
with the prompt and respond in a manner consis-
tent with the given instructions, whereas Mistral
encounters difficulties in following follow-up in-
structions related to a previous prompt. However,
both models exhibit sub-optimal performance in
accurately replicating outcomes compared to the
ground truth data for our task. Further discussion
on the models’ accuracy is provided in the follow-
ing sub sections.

4.1 System Prompt and Context Lengths
While running the experiments, we find that shorter
and concise system prompts result in improved
performance outcomes, whereas the utilization of
broader prompts yields comparatively inferior re-
sults6. Longer system prompts, containing a signifi-
cant amount of information, overwhelms the model
and lead to incorrect associations. Whereas small
and precise system prompts offer clearer guidance
to the model, reducing ambiguity and potential con-
fusion.

We additionally experiment with various context
lengths. First, we provide 10 lines of conversa-
tion between the conversation participants from the
transcripts and ask the model to predict the next
utterance. This short context length causes a high
level of ambiguity in the generated response irre-
spective of the topic of conversation:

Assistant: Yeah, I know, it's kind
of surprising, right?

Assistant: Oh wow, that's surprising.
Assistant: Wow, that's something.

Expanding the preceding context to include 30
lines of previous utterances results in a notable

6Section 3.1 provides examples of long and short system
prompts.

reduction of ‘surprise’ exhibited by the models.
Moreover, the models demonstrate enhanced pro-
ficiency in maintaining coherence and relevance
throughout the conversation, akin to human conver-
sational comprehension:

Assistant: Yeah, it was a pretty
chaotic time, you know?

Assistant: Yes, it's about time we give
equal importance to all health
issues, regardless of who they
affect.

Finally, we conduct an experiment devoid of
any preceding user and assistant interactions,
instead supplying only the one utterance and
instructing the models to continue the conversation.
In this scenario, the models unsurprisingly exhibit
difficulty in following the conversation, as depicted
in the dataset, often introducing novel topics
and information to sustain the interaction. This
observed behavior suggests a limitation in the
model’s capacity to adapt its conversational style
without contextual cues, resembling the behavior
commonly observed in open-domain dialogue
systems. Additionally, we note a unique reaction of
the system to a subset of transcripts, ones in which
the conversations exhibit overt one-sidedness or
lack engagement. These especially dry transcripts
are characterized by an average utterance length
of less than 6 words per utterance for one or both
participants, such as the example taken from the
dataset below:

Speaker A: Are you still there?
Speaker B: Yes.
Speaker A: Okay,
Speaker B: it worked out fine.
Speaker A: Okay.

Subsequent conditioning of the model with such
dialogue context results in the generation of utter-
ances aimed at concluding the conversation, rather
than perpetuating dialogue that contributes mini-
mally to its progression or substance, previously
shown in Abbasiantaeb et al. (2024).

4.2 Perplexity
The perplexity of a large language model is a mea-
sure of its prediction effectiveness on a certain
dataset. It measures how likely a model finds a se-
quence of words by calculating the exponentiation
of the average negative log-likelihood of the pre-
dicted tokens. A lower perplexity indicates better
performance, as the model’s predictions are closer
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Figure 2: Confusion Matrix (Actual vs. Mistral 7B
Responses)

Figure 3: Top 5 Dialogue Acts with Highest Perplexity

to the actual sequence. We compute normalized
perplexity (Roh et al., 2020) for both models on
the gold response, using the first 30 lines of utter-
ance from each conversation as context. Table 3
depicts the average normalized perplexity for the
Llama 2 and Mistral models, where Mistral slightly
outperforms Llama 2, indicating it produces more
confident predictions.

Model Average Perplexity

Llama 2 2.96
Mistral 2.13

Table 3: Perplexity Evaluation Summary

In order to study the models’ responses to vari-
ous types of dialogue acts, we compute the average
perplexity for each tag, and sort the tags based on
their perplexity scores (highest and lowest), shown
in Figure 3 and Figure 4 respectively.

These figures effectively show what types of
responses– types of dialogue acts, the model finds
the most or least confusing.

The ‘Other’ dialogue act type causes the most

Figure 4: Bottom 5 Dialogue Acts with Lowest Perplex-
ity

confusion for both models, i.e., both models strug-
gle with less predictable dialogue types. This cat-
egory includes utterances that do not clearly fit
into any other dialogue act categories, encompass-
ing statements such as correct-misspeaking, sym-
pathetic comments, and greetings. The top five
dialogue acts that contribute most to model confu-
sion collectively account for less than 28% of the
Switchboard dataset, with the majority stemming
from the ‘Acknowledge (Backchannel)’ dialogue
act (19%)7. This aligns with our findings that large
language models are more likely to generate opin-
ionated statements rather than simple agreement
or acknowledgment, as the latter contributes mini-
mally to advancing the conversation. Mistral out-
performs Llama 2 in terms of lower perplexity for
most dialogue act types.

The dialogue act which causes the least confu-
sion among both the models is ‘Statement-opinion’,
as both models tend to generate ‘Statement-
opinion’ utterances (Burton et al., 2024), also in-
ferred from Table 1. The five dialogue acts that
lead to the lowest model confusion collectively
comprise 52.4% of the Switchboard dataset, with
the largest share attributed to the ‘Statement-non-
opinion’ dialogue act (36%).

4.3 Classification Report for Llama 2 and
Mistral

Table 4 and Table 5 show the precision, recall and
F1 score for the top 4 dialogue act categories for the
Llama 2 13B-chat model and Mistral-7B-Instruct
model respectively.

The models achieved varying levels of perfor-
mance across dialogue act categories. The overall

7https://web.stanford.edu/~jurafsky/ws97/
manual.august1.html
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DA Tags Precision Recall F1
sd 0.75 0.43 0.55
sv 0.38 0.75 0.50
qy 0.50 0.60 0.55
b 0.33 0.20 0.25

Table 4: Precision, Recall and F1 for Llama 2

accuracy for the given categories is 0.48 and 0.33,
respectively, for Llama 2 and Mistral, indicating
significant room for improvement. In the context
of human-like conversational carryover with prior
knowledge, Llama 2 demonstrates a slight perfor-
mance advantage over Mistral. Higher recall but
lower precision in the Mistral model follows the
previous result of lower perplexity but less aligned.

DA Tags Precision Recall F1
sd 0.33 0.50 0.40
sv 0.40 0.67 0.50
qy 0.20 0.50 0.29
b 0.50 0.12 0.20

Table 5: Precision, Recall and F1 for Mistral 7B

5 Conclusions and Future Work

We analyze dialogues generated by Llama 2 and
Mistral, using various levels of prompting and in-
context learning, comparing them to the original
human-human interactions from SwDA, utilizing
dialogue acts to gauge similarity. In our research,
we initially computed the percentages of the top
four categories of dialogue act tags in both the
original and corresponding LLM-predicted utter-
ances. Our findings suggest that dialogue acts are
not only a descriptive tool but also a potential pre-
dictor of when conversational systems fail to align
with human norms. This analysis shows that in
contrast to humans, who commonly use both opin-
ionated and non-opinionated statements, language
models exhibit a preference for generating opin-
ion statements, potentially to add perceived value
to the conversation. Additionally, these models
tend to ask more questions, aiming to contribute
more actively to the dialogue. Upon conducting
further investigation using a confusion matrix, we
discovered significant variations in the dialogue
acts between the generated and original utterances,
which were apparent in the differing proportions, as
discussed previously. Llama 2’s higher perplexity

suggests that it might be more sensitive to context
shifts and nuanced dialogue structures, resulting
in more accurate classifications but higher uncer-
tainty. Additionally, we found that context length
significantly impacts response quality.

Future research could expand this work in sev-
eral directions. One promising avenue is to evaluate
newer models, to assess whether advances in train-
ing and alignment reduce the dialogue act discrep-
ancies we observed. Another is to extend dialogue
act analysis beyond distributional comparisons, in-
corporating metrics for conversational flow, user
engagement, and appropriateness in interactive set-
tings. Finally, integrating human-in-the-loop eval-
uations, where human participants interact with
models and provide feedback on coherence and
naturalness, would help connect dialogue act diag-
nostics more directly to real-world conversational
quality.

Taken together, these directions highlight the po-
tential of dialogue act analysis to bridge natural
language processing and human–computer interac-
tion, supporting the development of conversational
systems that are not only fluent but also socially and
pragmatically aligned with conversational norms.

6 Limitations

A key limitation of the evaluation is that it com-
pares model-generated dialogue acts to those anno-
tated in the Switchboard corpus, implicitly treating
the human responses as a single “gold standard.” In
natural conversation, however, multiple dialogue
acts could be appropriate in the same context, e.g.,
a turn could plausibly be an Acknowledgment, a
Yes–No Question, or an Opinion statement depend-
ing on the speaker’s intent. As a result, this com-
parison may underestimate the flexibility of LLMs
or exaggerate deviations from human norms. We
therefore frame our findings as diagnostic rather
than definitive, using distributional patterns, such
as the models’ tendency to overproduce questions
and opinions, to highlight systematic behavioral
differences. Future work could incorporate human
judgments, multiple reference responses, or metrics
for conversational diversity and context-sensitive
appropriateness, providing a more nuanced assess-
ment of how well LLMs emulate human interac-
tion.

Our study is limited to English conversations,
since the Switchboard Dialogue Act corpus is avail-
able only in English. While this choice ensures

323



comparability with prior work and leverages a
widely studied benchmark, it also restricts the gen-
eralizability of our findings. Dialogue acts and
conversational norms vary across languages and
cultures; for example, the use of backchannels, po-
liteness markers, or indirect questions can differ
substantially. Future work should extend this anal-
ysis to multilingual corpora, which would allow us
to evaluate whether the dialogue act patterns we
identify are specific to English or reflect broader
conversational tendencies in LLMs.

The SwDA utilized in our research provides a
comprehensive array of dialogue acts; however, it
lacks representation of certain emotional expres-
sions commonly employed by humans. While di-
alogue act tags serve as valuable markers for cate-
gorizing communicative intents in dialogue, in the
particular dataset, they inherently lack the capacity
to encompass certain nuanced aspects of human
expression, such as sarcasm. Consequently, the ab-
sence of explicit consideration for such emotional
nuances within dialogue act frameworks represents
a notable limitation, potentially leading to incom-
plete or inaccurate characterizations of human ut-
terances in conversational AI systems.

Sometimes, there arise instances where the di-
alogue act labels assigned to the generated utter-
ances align with those found in the reference data,
yet substantial differences exist in the semantic con-
tent or pragmatic context of the dialogues. Such
divergences underscore the inherent complexity of
assessing dialogue quality solely through dialogue
act matching, as they indicate potential limitations
in capturing the richness and subtleties of human
conversation beyond surface-level categorizations.
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