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Abstract

Lemmatization is the task of transforming all
words in a given text to their dictionary forms.
While large language models (LLMs) have
demonstrated their ability to achieve competi-
tive results across a wide range of NLP tasks,
there is no prior evidence of how effective they
are in the contextual lemmatization task. In this
paper, we empirically investigate the capacity
of the latest generation of LLMs to perform in-
context lemmatization, comparing it to the tra-
ditional fully supervised approach. In particu-
lar, we consider the setting in which supervised
training data is not available for a target domain
or language, comparing (i) encoder-only su-
pervised approaches, fine-tuned out-of-domain,
and (ii) cross-lingual methods, against direct in-
context lemma generation with LLMs. Our ex-
perimental investigation across 12 languages of
different morphological complexity finds that,
while encoders remain competitive in out-of-
domain settings when fine-tuned on gold data,
current LLMs reach state-of-the-art results for
most languages by directly generating lemmas
in-context without prior fine-tuning, provided
just with a few examples. Data and code avail-
able upon publication: https://github.com/
oltoporkov/lemma-dilemma

1 Introduction

Lemmatization is one of the core NLP tasks widely
used during data pre-processing in such areas as in-
formation extraction, named entity recognition, and
sentiment analysis, and is of particular importance
for languages with complex morphology. To lem-
matize a word means to transform its inflected form
(e.g. chose, chosen) into its dictionary-based form,
also known as lemma (e.g. choose), according to
the definition of the contextual lemmatization task
in SIGMORPHON 2019 (McCarthy et al., 2019).

Most recent approaches tend to address contex-
tual lemmatization as a supervised classification
approach, which was first proposed by Chrupala

Figure 1: General overview of the lemmatization
task process for in-context learning and supervised ap-
proaches.

et al. (2008) and became the core idea in the ar-
chitecture of a variety of contextual lemmatizers
(Malaviya et al., 2019; Straka et al., 2019; Yildiz
and Tantuğ, 2019). This method learns to deter-
mine the minimum number of edits necessary to
convert the word into its lemma. Such techniques
require a large amount of annotated data, which can
be especially challenging for languages with rich
morphology (Straka et al., 2019; Yildiz and Tantuğ,
2019). Apart from that, the majority of lemma-
tization systems are evaluated mostly in-domain,
while their real application is almost always out-of-
domain, namely, out of the scope of the data they
have been trained on. Previous work has demon-
strated that lemmatizers’ performance worsens sub-
stantially when deployed out-of-domain (Toporkov
and Agerri, 2024).

The recent generation of large language models
(LLMs) has exhibited strong capabilities on a wide
variety of NLP tasks, such as reasoning, problem-
solving, code generation, information extraction,
and text composition (Brown et al., 2020; Clark
et al., 2021; Wang et al., 2022; Bubeck et al., 2023;
Sviridova et al., 2024; Sainz et al., 2024). How-
ever, as it has also been claimed, when LLMs are
evaluated on languages other than English or other
high-resource languages (e.g., Spanish), their per-
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formance is not as good as expected (Blasi et al.,
2022; Arnett and Bergen, 2025; Figueras et al.,
2025). As for the contextual lemmatization task, to
the best of our knowledge, there is no empirical evi-
dence on the capacity of such models in generating
the correct lemmas, especially for high-inflected
and low-resource languages.

The scarcity of manually annotated data is an-
other problem for training competitive contextual
lemmatizers. The attempts to create large annotated
corpora, such as Universal Dependencies (Nivre
et al., 2017) and the UniMorph project (McCarthy
et al., 2020), aim to bridge this resource gap, but
they still cover a very limited scope of languages
and domains (Joshi et al., 2020). In response to
data scarcity, model- and data-based cross-lingual
transfer for sequence labeling have been proposed
(García-Ferrero et al., 2022; Chen et al., 2023;
Yeginbergen et al., 2024). These approaches fo-
cus on overcoming the lack of data in a target lan-
guage by either fine-tuning a pre-trained multilin-
gual model on a source language (usually English)
in order to make predictions for any of the tar-
get languages included in the model pre-training
(model-transfer); or automatically generating la-
beled data for the target language (data-transfer),
which is then used to train a sequence labeling
model.

Considering the lemmatization challenges men-
tioned above, in this paper we raise the following
research questions (RQ): RQ1: To what extent
can the latest generation of large language mod-
els directly obtain lemmas in the target language
without prior fine-tuning, especially for the lan-
guages with complex morphology? RQ2: Could
in-context lemma generation, produced by LLMs,
be an alternative in solving the lemmatization task
out-of-domain? RQ3: What is the best strategy in
the scenario where the data in the target language
or domain is non-existent or difficult to access?
The setup to investigate these RQs is illustrated in
Figure 1.

Hence, our contributions are the following: (i)
we empirically investigate the ability of LLMs to
perform in-context lemma generation across lan-
guages of different morphological complexity; (ii)
we address the out-of-domain problem by compar-
ing the performance of LLMs against encoder-only
models fine-tuned on different data distribution,
and (iii) we conduct a comparative analysis of the
methods to overcome the data scarcity in the tar-
get language for the lemmatization task, namely,

model-transfer, data-transfer and direct lemma gen-
eration, using the data in English language as a
source. Overall, our results suggest that, while fine-
tuning encoders on gold data remains a competitive
option for out-of-domain settings, generative LLMs
reach state-of-the-art results in lemmatization by di-
rectly generating lemmas in-context without prior
fine-tuning, provided just with a few examples.

2 Related Work

Approaches to perform lemmatization evolved
from being rule-based language-dependent sys-
tems (Karttunen et al., 1992; Oflazer, 1993; Ale-
gria et al., 1996; Segalovich, 2003; Jongejan and
Dalianis, 2009) to advanced multilingual architec-
tures, trained on a large amount of annotated data
(Müller et al., 2015; Bergmanis and Goldwater,
2018; Malaviya et al., 2019; Straka et al., 2019).
The idea of addressing lemmatization as a sequence
labeling task, where the labels are induced as the
minimum amount of edits necessary to convert an
inflected word into its lemma, was first proposed
by Chrupala et al. (2008) and has been adopted in a
wide variety of systems such as the system by Ges-
mundo and Samardžić (2012), IXA pipes (Agerri
et al., 2014; Agerri and Rigau, 2016), Lemming
(Müller et al., 2015), the system of Malaviya et al.
(2019) and Morpheus (Yildiz and Tantuğ, 2019),
among others.

The advancement of supervised techniques in-
volving deep learning algorithms, and the devel-
opment of the Transformer architecture (Vaswani
et al., 2017) and Transformer-based masked lan-
guage models (MLMs) such as BERT (Devlin et al.,
2019) and the multilingual XLM-RoBERTa (Con-
neau et al., 2020), have massively improved the
performance of current contextual lemmatizers.
Thus, in the SIGMORPHON 2019 Shared Task
(McCarthy et al., 2019) on contextual lemmatiza-
tion, most of the participant systems were based
on MLMs (Straka et al., 2019; Kondratyuk, 2019;
Shadikhodjaev and Lee, 2019).

The evaluation of contextual lemmatizers is al-
most always performed in-domain, namely, on the
same data distribution used during the fine-tuning
process. However, in practice, lemmatizers are
usually deployed out-of-domain, which results in
a significant performance degradation, especially
for high-inflected languages (Toporkov and Agerri,
2024).

The rise and constant development of LLMs has
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demonstrated remarkable abilities in dealing with a
wide variety of NLP tasks such as language under-
standing, reasoning, language generation, code gen-
eration, and query response, especially when using
a few-shot learning approach (Brown et al., 2020;
Shi et al., 2022; Ahuja et al., 2023; Fernandes et al.,
2025). Model families such as LLaMa (Grattafiori
et al., 2024), Generative Pre-trained Transformer
(GPT) (OpenAI et al., 2024), Qwen (Yang et al.,
2024), Claude (Anthropic, 2025), Mistral (Jiang
et al., 2023; Mistral, 2024) or Gemma (Gemma
Team et al., 2024a,b), to name but a few, are expe-
riencing continuous growth, offering LLMs with
different parameter sizes and evaluated on various
downstream tasks.

Nevertheless, there seems to be a noticeable dif-
ference in the performance of such models depend-
ing on the resources of the language and its com-
plexity. Arnett and Bergen (2025) demonstrate that
there is a disparity in the performance of LLMs
between agglutinative and fusional languages, giv-
ing an advantage to high-resource languages like
English over more morphologically complex lan-
guages such as Turkish. This is attributed to tok-
enization quality, stating that morphological align-
ment does not influence the model’s performance.
In one of the first systematic analyses of the mor-
phological capabilities of LLMs for the tasks of
inflection and reinflection, models such as Chat-
GPT are still far from achieving state-of-the-art
results, performing on the level of some older su-
pervised models (Weissweiler et al., 2023). In their
multilingual version of the Wug test, Anh et al.
(2024) indicate that LLMs can apply their morpho-
logical knowledge to previously unseen words and
that the morphological complexity of languages is
more important than their relative representation in
the training data. This fact states the importance of
morphology for improving low-resource language
modeling.

Furthermore, it has also been demonstrated that
LLMs could be used for lemma disambiguation in a
dictionary-augmented approach for the endangered
languages such as Erzya and Skolt Sami (Hämäläi-
nen, 2024), reaching the level close to a human
annotator. Nonetheless, to the best of our knowl-
edge, no empirical work has studied the ability of
LLMs to generate correct lemmas.

The lack of quality annotated corpora for many
target languages led to the exploration of model-
transfer and data-transfer techniques. Model-
transfer is based on the cross-lingual capabilities of

multilingual pre-trained MLMs, where the knowl-
edge in the source data can be transferred to the
target language (Wang et al., 2023). Data-transfer
aims to automatically produce labeled data for the
target language, traditionally based on translation
and annotation approaches (Fei et al., 2020). Both
techniques have demonstrated competitive results
in the tasks of cross-lingual transfer for various se-
quence labeling tasks (García-Ferrero et al., 2022;
Chen et al., 2023), although lemmatization has not
been studied from a cross-lingual transfer perspec-
tive.

3 Materials and Methods

In this Section, we describe the datasets and models
we use for our experiments. We also describe the
prompting method we apply to perform in-context
lemma generation.

3.1 Datasets

In order to address the three RQs, we use 2 types
of corpora, described below.

To address RQ1 and RQ3, we use parallel cor-
pora, namely, the PUD treebank, presented for the
CoNLL 2017 Shared Task (Zeman et al., 2017).
This corpus was created for 18 languages, and each
PUD dataset consists of 1000 sentences extracted
from online sources and Wikipedia; 750 of 1000
sentences were originally in English, while the rest
came from German, Spanish, French, and Italian
texts. The corpora were further translated by pro-
fessional translators to the remaining languages.

Regarding RQ1, we chose a limited scope of
languages from our selection in order to test the
in-context lemma generation using LLMs, namely,
English, Spanish, Russian, and Basque. As Basque
does not have parallel corpora in the PUD treebank,
we took the first 100 sentences of the BDT test cor-
pus to establish an equal experimental setup. Such
language selection was motivated by our ability to
conduct detailed in-house analysis of the obtained
results, as well as to determine the optimal model
settings.

Concerning the experimentation to answer RQ3,
we chose 12 languages of different morphological
complexity, namely English, Spanish, French, Ger-
man, Italian, Finnish, Icelandic, Turkish, Swedish,
Czech, Polish, and Russian. In order to perform
model transfer experiments, we split the PUD data
into standard training, development, and test par-
titions, resulting in 800 sentences for training and
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100 sentences for the development and test sets,
respectively.

To respond to RQ2, we use datasets of differ-
ent data distributions for fine-tuning and testing in
Basque, Czech, English, Spanish, Russian, and
Turkish. The datasets were developed for the
SIGMORPHON 2019 Shared Task on contextual
lemmatization (McCarthy et al., 2019). The data
is annotated according to the Unimorph scheme
(McCarthy et al., 2020), the only exception being
the Basque Armiarma corpus, an external dataset
to UD, which includes lemma annotations of lit-
erary critics (Armiarma, 2000). This selection
of languages and datasets allows us to compare
with previous out-of-domain lemmatization results
(Toporkov and Agerri, 2024). In order to make the
computational load more manageable, the number
of sentences in the larger datasets is reduced to 900.
Statistics regarding the token and sentence counts
in the final sets are presented in the Table 1.

Language Corpus Tokens Sentences

Basque BDT 11901 900
Basque Armiarma 17172 900
Spanish AnCora 26917 900
Spanish GSD 24412 900
English EWT 13690 900
English GUM 8189 440
Turkish IMST 5734 564
Turkish PUD 1795 100
Czech CAC 17855 900
Czech PUD 1930 100
Russian GSD 9874 503
Russian SynTagRus 16594 900

Table 1: Datasets for the experiments on corpora across
different distributions.

3.2 Models
We evaluate the performance of several state-of-
the-art multilingual instruction-tuned generative
large language models, specifically, Mistral-Large-
Instruct-2407 (Mistral, 2024), LLaMA-3.3-70B-
Instruct (Grattafiori et al., 2024), Qwen-2.5-72B-
Instruct (Yang et al., 2024), and Claude-3.7-Sonnet
(Anthropic, 2025) (100B+ paremeters). All models
are evaluated using zero-shot and few-shot (1, 2,
3, 4 and 5) in-context learning. We use the default
configuration for all LLMs. Every model except
Claude has publicly released their weights.

For the contrastive supervised approach, we ap-
ply the large version of XLM-RoBERTa (Conneau
et al., 2020). This encoder model is based on

the RoBERTa architecture and was pre-trained on
2.5TB of filtered CommonCrawl data for 100 lan-
guages and has obtained state-of-the-art results for
many discriminative tasks (García-Ferrero et al.,
2022), such as cross-lingual sequence labeling.

3.3 Prompt Design

To establish which prompt could provide us with
the optimal results in the lemma generation task,
we try 4 different prompt settings to perform zero-
shot and few-shot experiments. As mentioned ear-
lier, we experiment with 4 languages of different
morphological complexity, namely English, Rus-
sian, Spanish, and Basque.

For each prompt type, we introduce two different
inputs to the model: the whole sentence as one
string and the sentence introduced as a list of words.
We aim to receive the output as a whole sentence
presented in the form of word-lemma pairs. The
instructions provided for the models are always
given in English. The prompts are designed in the
following fashion:

– basic prompt: simple description of the task;
– full prompt: simple description of the task +

lemmatization instructions;
– basic prompt + k-shot examples [1:5];
– full prompt + k-shot examples [1:5].
Simple description of the task (basic prompt).

The basic prompt consists of a brief description of
the lemmatization task without specifying any par-
ticular instructions. The example of such a prompt
is presented below:

"Your task is to lemmatize a sentence in Spanish. You
will be given a sentence, where each word starts from
the new line. You need to provide for each word in the
given sentence its dictionary form (lemma).
Provide the output in **TSV format** (Tab-Separated
Values) with the format:
‘initial word lemma’
Sentence: "El Parque Golden Gate ofrece un jardín
botánico , un planetario , y un jardín japonés ."
Answer with the required output only, without extra
spaces, quotation marks, or comments."

Simple description of the task + explicit lemma-
tization instructions (full prompt). The prelimi-
nary output analysis using the basic prompt demon-
strated that the model was skipping particular
words, introducing amendments to the existing
words (e.g., if the word was misspelled in the orig-
inal corpus), or struggling with specific particles
such as the articles in Spanish. Therefore, to im-
prove the LLM’s performance, we accompanied
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the prompt with a detailed set of instructions to
perform the lemmatization task, presented below:

Instructions:
1. Copy the word exactly as it is, and provide its
lemma.
2. **Process Every Word**: Lemmatize **each
word** in the sentence. Do not omit, change, or
remove any word.
3. **Handle Spelling Errors**: If a word is
misspelled, retain the original spelling as the initial
word, but lemmatize it to the closest dictionary form.
4. **Proper Nouns**: Proper nouns should retain
their capitalization.
5. **Punctuation**: Include punctuation marks in
the output, using the mark itself as the lemma.
6. **Part-of-Speech**: Lemmatize words based
on their part of speech (POS) (e.g., verbs to their
infinitive form, nouns to singular form).
7. **Articles**: Use the masculine singular form for
articles.
8. **Multi-Word Expressions**: If an input contains
multiple words, process each word separately.

Basic prompt and full prompt + k-shot exam-
ples. The third and fourth prompts include exam-
ples. In order to choose the examples for the few-
shot experiments, we experimented with the devel-
opment set of the PUD corpus using Mistral-Large-
Instruct-2407. We tried manual example selection,
random example selection, and choosing the exam-
ples with the highest number of errors committed,
such as skipping one of the words in the sentence,
wrong lemma generation, and generation of addi-
tional elements. We then introduce examples in
a range of 1 to 5 to each prompt configuration,
namely, basic and full (an example of the prompt
is given in Appendix A). The prompt configuration
with the best results on this particular experiment
is then applied to the rest of our experiments.

4 Experiments

In this paper, we aim to answer the following ques-
tions: (RQ1) What are the capabilities of the latest
generation of LLMs to perform in-context learn-
ing for lemmatization? (RQ2) Can we use direct
lemma generation to address the problem of poor
out-of-domain performance, namely, when evalu-
ated on a data distribution different from the one
seen during training? (RQ3) What is the optimal
strategy in a scenario in which annotated training
data in the target domain or language is not avail-
able?

To address these questions, we conduct three
sets of experiments. Each experimental setup and
its corresponding results are described below in a

separate subsection. Evaluation is performed us-
ing average word and sentence accuracy metrics.1

We conduct 3 runs and report the average results
for all experiments and models, except for Claude-
3.7-Sonnet, where only 1 run was performed due
to computational costs. To assess whether the ob-
served differences in model performance are statis-
tically significant, we apply McNemar’s test (Diet-
terich, 1998).

4.1 In-context Lemma Generation
To respond to RQ1, we experiment with direct
lemmatization using LLMs, employing Mistral-
Large-Instruct-2407 and the prompt types de-
scribed in Section 3.3. This model was selected for
its strong performance-to-cost ratio, fast inference
times, and accessibility within our computational
environment. For each prompt, 3 different runs
are performed using the datasets described in Sec-
tion 3.1 on English, Spanish, Russian, and Basque.
The most effective prompt setting will be identi-
fied based on word and sentence accuracy results,
performance on highly inflected languages such as
Russian and Basque, and the number of hallucina-
tions and errors.

Table 2 reports the results on 0-shot and 4-shot
(best overall configuration in terms of the num-
ber of examples) experiments combining different
prompt strategies. It can be observed that when
given the basic prompt without specific instruc-
tions and in a zero-shot setting, the model fails to
generate a lot of input words across all languages.

Adding some examples to the prompt signifi-
cantly improves the results, especially for more
complex languages such as Russian and Basque.
The input format also plays a role: with the sen-
tence represented as separated tokens, the model
hallucinates less and obtains higher accuracies. As
stated by Arnett and Bergen (2025), this could be
directly connected to the tokenization quality. Sur-
prisingly, introducing example selection (described
in Section 3.3) into the prompt makes the basic
prompt outperform the full one when the input is a
list of tokens.

In addition to word and sentence accuracy, the
optimal prompt design is chosen based on the
amount of produced errors, hallucinations, and
missing words. Thus, Table 2 shows that the best
setting corresponds to the basic prompt + 4-shot
examples, where the input is a sentence as a list of

1Sentence accuracy allows for better discrimination be-
tween models’ performance (Toporkov and Agerri, 2024).
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input: sentence as one string input: sentence as a list of words

WAcc SentAcc missing words wrong words WAcc SentAcc missing words wrong words

en basic prompt 0-shot 0.93 0.28 30 0 0.95 0.38 0 0
full prompt 0-shot 0.95 0.43 4 0 0.95 0.42 2 0
basic prompt 4-shot 0.96 0.42 0 0 0.96 0.44 0 0
full prompt 4-shot 0.96 0.46 0 0 0.95 0.43 0 0

es basic prompt 0-shot 0.92 0.12 32 2 0.93 0.22 0 0
full prompt 0-shot 0.93 0.22 4 3 0.92 0.17 1 0
basic prompt 4-shot 0.96 0.41 2 0 0.97 0.45 1 0
full prompt 4-shot 0.96 0.42 2 0 0.96 0.43 0 0

ru basic prompt 0-shot 0.91 0.20 32 5 0.92 0.29 0 2
full prompt 0-shot 0.94 0.33 4 3 0.94 0.34 0 4
basic prompt 4-shot 0.93 0.41 42 0 0.95 0.40 2 0
full prompt 4-shot 0.93 0.37 42 0 0.94 0.37 1 0

eu basic prompt 0-shot 0.76 0.00 78 3 0.82 0.07 3 0
full prompt 0-shot 0.78 0.03 44 3 0.81 0.05 1 0
basic prompt 4-shot 0.86 0.23 38 0 0.89 0.29 7 0
full prompt 4-shot 0.86 0.25 34 0 0.89 0.27 1 0

Table 2: Word and sentence accuracy using different prompting strategies with Mistral-Large-Instruct-2407. In
bold: best overall accuracy results per language.

words, and the example selection is based on rank-
ing sentences by the number of errors the model
produced during the inference on the development
set. The explicit word and sentence accuracy re-
sults for each of the prompt types are detailed in
Appendix A.

4.2 Experiments with Corpora of Different
Distributions

In the second part of our experiments, we aim to de-
termine the best strategy for performing the lemma-
tization task on data from a distribution different
from the one seen during training. We take the
experiments by Toporkov and Agerri (2024) as a
starting point, where they show that lemmatizers
(based on fine-tuned encoder-only models) substan-
tially worsen when evaluated out-of-domain, their
most common use case. Therefore, in this setting,
we compare the performance of encoder models
fine-tuned on gold-annotated corpora and applied
out-of-domain against the direct lemma generation
based on in-context learning using LLMs. For this
purpose, we employ datasets and models described
in Section 3. We fine-tune XLM-RoBERTa large
for each of the 6 languages of our selection in a
token classification task, where the model learns to
predict labels corresponding to the minimum num-
ber of edits required to transform the target word
into its lemma. We use 16 as a batch size, 0.01
weight decay, 5e-5 learning rate, and 20 epochs as
hyperparameters. For the in-context lemma gener-
ation, we choose the best prompt setting from the

previous experimental step and apply it using the
models described in Section 3.2.

Table 3 reports the results. We mark in bold the
best overall result for each language and with an
asterisk those results that are statistically signifi-
cant according to McNemar’s test. As previously
mentioned in Section 4, each result corresponds to
the average over 3 runs. The standard deviation
for both word and sentence accuracy across these
runs is consistently low (≤ 0.02), indicating stable
behavior of the models.

We could see that directly generating the lem-
mas with Claude and Mistral outperforms the fine-
tuned encoder in Turkish, Czech, and Russian.
For English, the results across models are very
close, although they are only statistically signif-
icant for EWT corpus. For Basque and Spanish
XLM-RoBERTa large evaluated out-of-domain is
the superior option. Among LLMs, the highest
accuracy for 6 out of 12 corpora is achieved using
Claude-3.7-Sonnet, while Mistral-Large-Instruct-
2407 ranks a close second for Spanish, English, and
Russian. It is worth noticing that the open-weights
Mistral significantly outperforms XLM-RoBERTA
large in 6 of the 11 evaluation settings.

4.3 Experiments with Parallel Corpora

To address RQ3, we perform a set of experiments
using cross-lingual transfer and in-context lemma
generation. For both model- and data-transfer, we
assume our source language to be English. For
model-transfer, we train a contextual lemmatizer
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Mistral-LI-2407 Llama-3.3-70B Qwen-2.5-72B Claude-3.7 XLM-R large
language_corpus Wacc SentAcc Wacc SentAcc Wacc SentAcc Wacc SentAcc Wacc SentAcc
eu_bdt 2 0.84 0.12 0.78 0.05 0.71 0.02 0.89 0.20 - -
eu_armiarma 0.83 0.08 0.75 0.04 0.70 0.02 0.88 0.15 0.89* 0.18*

es_ancora 0.93 0.23 0.87 0.16 0.92 0.24 0.94 0.32 0.97* 0.51*

es_gsd 0.93 0.25 0.87 0.15 0.91 0.21 0.94 0.32 0.96* 0.43*

en_ewt 0.93* 0.44* 0.92 0.39 0.92 0.42 0.93 0.33 0.92 0.39
en_gum 0.94 0.47 0.92 0.40 0.93 0.46 0.94 0.37 0.94 0.43
tr_imst 0.90 0.44 0.86 0.31 0.84 0.31 0.94* 0.60* 0.81 0.19
tr_pud (sigm’19) 0.81 0.06 0.80 0.04 0.77 0.01 0.84 0.08 0.85 0.08
cs_cac 0.94 0.39 0.87 0.21 0.89 0.19 0.97* 0.55* 0.93 0.32
cs_pud (sigm’19) 0.95 0.34 0.91 0.24 0.89 0.15 0.97* 0.55* 0.95 0.43
ru_gsd 0.94 0.41 0.87 0.26 0.92 0.29 0.96* 0.51* 0.94 0.39
ru_syntagrus 0.95 0.43 0.91 0.34 0.93 0.35 0.96* 0.48* 0.94 0.41
average 0.91 0.32 0.87 0.23 0.87 0.24 0.93 0.39 0.92 0.34

Table 3: Word and sentence accuracy results comparing in-context lemma generation against XLM-RoBERTa large
performance on lemmatization fine-tuned on a different data distribution. In bold: best overall accuracy results
across models for each language. *:statistically significant results at α = .05.

on English data using XLM-RoBERTa large in a
token classification task, applying the same hyper-
parameters as in the experiments of the previous
section. The data-transfer method, implemented
as translate-train, requires the automatic generation
of the training data for each of the target languages.
We apply Claude-3.7-Sonnet to translate the PUD
training set to the 11 target languages and to obtain
the lemmas directly from the translations. We then
fine-tune XLM-RoBERTa large using the generated
training set.

Table 4 displays the results of the experiments
conducted with the parallel corpora. We mark in
bold the best overall result per language and un-
derline the best model for the language per each
subset of models (decoder-only vs. encoder-only
models). We observe that the latest generation of
LLMs demonstrates strong results in the lemma
generation task, and the models’ performance re-
mains stable across consecutive runs, as in the
previous experimental setup (standard deviation
≤ 0.02). It should be emphasized that we explore
the performance of these models using in-context
learning, without them being specifically fine-tuned
for lemmatization. Among the 4 models of our
choice, Claude-3.7-Sonnet exhibits the highest ac-
curacy for all the languages except English, outper-
forming Mistral-Large-Instruct-2407, LLaMA-3.3-
70B-Instruct, and Qwen-2.5-72B-Instruct. Still, the
open-weights Mistral-Large-Instruct-2407 stays a
close second in this setting, while the other two
models demonstrate lower capabilities for the task.

Cross-lingual transfer obtains less competitive

results, suggesting that, in data scarcity scenarios,
directly generating lemmas with LLMs is a very
effective method, far superior to using traditional
model-transfer or data-transfer approaches (at least
for the set of languages considered).

Surprisingly, direct lemma generation using
Claude or Mistral is superior to even fine-tuning
XLM-RoBERTA large in-domain (e.g., monolin-
gual results) for 7 out of the 12 languages, although
for English, Swedish, Italian, French, and Turkish
XLM-RoBERTA remains the best option. It can
also be observed that significant differences in word
and sentence accuracy are demonstrated only for
Turkish, Swedish, and English, while for French
and Italian the distinction could be perceived only
by comparing sentence accuracy results. This high-
lights the importance of using sentence accuracy as
an alternative metric to word accuracy (Manning,
2011; Toporkov and Agerri, 2024).

Finally, results obtained with the data-transfer
approach exceed those of direct in-context lemma
generation using LLaMa or Qwen for 6 out of 11
languages, indicating the high quality of transla-
tions produced by Claude.

To perform all the experiments we utilized sev-
eral NVIDIA A100 80GB GPUs and the total com-
putational resources amounted to approximately
300 hours of processing time and 75 kWh of en-
ergy consumption, resulting in 32.4 kg of CO2
emissions.

2Since the Armiarma dataset lacks training data, we could
not perform out-of-domain experiments on the BDT test set,
and thus results for XLM-R large model are not reported.
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Mistral-LI-2407 Llama-3.3-70B Qwen-2.5-72B Claude-3-7 monolingual model-transfer data-transfer
language Wacc SentAcc Wacc SentAcc Wacc SentAcc Wacc SentAcc Wacc SentAcc Wacc SentAcc Wacc SentAcc
en 0.96 0.44 0.94 0.35 0.95 0.42 0.94 0.30 0.97 0.58 - - - -
de 0.96 0.51 0.93 0.25 0.93 0.31 0.97 0.64 0.95 0.37 0.64 0.00 0.95 0.39
is 0.90 0.13 0.84 0.10 0.80 0.01 0.94 0.30 0.89 0.09 0.73 0.00 0.87 0.03
sv 0.94 0.34 0.91 0.21 0.88 0.12 0.95 0.36 0.96 0.48 0.76 0.00 0.92 0.26
ru 0.95 0.40 0.93 0.36 0.93 0.30 0.96 0.49 0.94 0.27 0.76 0.00 0.92 0.21
cs 0.95 0.37 0.91 0.23 0.95 0.24 0.97 0.65 0.95 0.45 0.80 0.00 0.94 0.35
pl 0.95 0.42 0.92 0.22 0.90 0.17 0.95 0.46 0.94 0.36 0.75 0.00 0.91 0.18
es 0.97 0.45 0.94 0.31 0.96 0.40 0.98 0.65 0.97 0.55 0.78 0.00 0.96 0.38
it 0.96 0.37 0.92 0.25 0.94 0.26 0.97 0.44 0.97 0.55 0.78 0.00 0.95 0.34
fr 0.97 0.51 0.94 0.26 0.95 0.24 0.98 0.42 0.98 0.59 0.78 0.00 0.96 0.36
fi 0.89 0.15 0.84 0.09 0.80 0.03 0.93 0.35 0.86 0.06 0.77 0.00 0.82 0.05
tr 0.81 0.03 0.79 0.02 0.78 0.01 0.85 0.06 0.88 0.16 0.75 0.00 0.82 0.03
average 0.93 0.34** 0.90 0.22 0.90 0.21 0.95 0.43 0.94 0.38 0.75 0.00 0.91 0.23

Table 4: Word and sentence accuracy across various approaches to lemmatization task using parallel corpora. In
bold: best overall accuracy per language. Underlined: best model for the language for each subset of models.

5 Discussion

Although LLMs show promising results in in-
context lemma generation for the selected lan-
guages, their performance depends heavily on the
provided examples. In prompt development across
4 languages of varied morphological complexity,
the differences between the basic in a zero-shot set-
ting and the 4-shot prompt were quite significant.
We identified a number of problems when using
LLMs for direct lemma generation, such as: (i)
randomly generated output. LLMs such as Mistral-
Large-Instruct-2407 and Claude-3.7-Sonnet tend
to randomly generate quotation marks, but there
are also cases, exhibited for English (EWT corpus),
where Claude-3.7-Sonnet provided the output for
the same sentence more than once. In the case
of LLaMA-3.3-70B-Instruct, the model gives ad-
ditional explanations, for instance, in the case of
ambiguous Basque auxiliary verbs such as edun
and izan. (ii) modified wordforms. Despite the ex-
plicit instructions on not performing any changes
to the initial word, even if it is misspelled, LLMs
tend to ignore them (this was the case during the
experimental prompting phase with Mistral-Large-
Instruct-2407). Apart from that, it is common to
lowercase the input words at the beginning of the
sentence. (iii) arbitrarily skipping words. This was
the most interesting observation, as there was no
perceivable pattern of which words the model was
skipping. For instance, for Basque Mistral-Large-
Instruct-2407 ignored verbal forms such as ‘egingo’
(‘will do’ in English); (iv) struggling with certain
lemmas that do not appear in the few-shot exam-
ples. This case was observed for articles in Spanish
for which, instead of providing the lemma for defi-
nite articles such as ‘el’, LLMs were returning the

same word form of the determiner given in the in-
put text (e.g., la, los or las). This behaviour could
be changed by adding an example in the prompt to
deal with these particular cases.

Model scale also plays a crucial role in the qual-
ity of in-context lemmatization. Table 5 presents
comparative results for the smaller and larger ver-
sions of the Qwen and Mistral models, indicat-
ing that larger models demonstrate significantly
stronger performance on the lemmatization task.
Additionally, we experimented with LLaMa-3.1-
8B, but the results were difficult to report, as the
model failed to generate a coherent output for 10
out of 12 languages, performing a lot of hallucina-
tions, incorrect output format and numerous sen-
tence repetitions.

These are only some of the most common obser-
vations obtained during the analysis of LLMs’ per-
formance on contextual lemmatization. The qual-
ity of examples used in the prompt design plays
an important role, and careful and elaborated ex-
ample selection may be specifically beneficial for
low-resource languages. A deeper analysis should
be conducted regarding other potential pitfalls of
LLMs for this task, especially for languages with
more complex morphology.

6 Conclusions

In this paper, we present the first empirical analy-
sis of the ability of the latest-generation LLMs to
perform in-context lemma generation. Our results
suggest that, although fine-tuning encoders such
as XLM-RoBERTa large on gold data remains a
competitive option for its use out-of-domain, large
size LLMs still reach results close to the state-of-
the-art by directly generating lemmas in-context
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Qwen-2.5-7B Qwen-2.5-32B Qwen-2.5-72B Ministral-8B Mistral-LI-2407
language Wacc SentAcc Wacc SentAcc Wacc SentAcc Wacc SentAcc Wacc SentAcc

en 0.81 0.08 0.90 0.26 0.95 0.42 0.85 0.09 0.96 0.44
de 0.72 0.00 0.90 0.16 0.93 0.31 0.77 0.01 0.96 0.51
is 0.62 0.00 0.77 0.01 0.80 0.01 0.71 0.01 0.90 0.13
sv 0.75 0.00 0.86 0.06 0.88 0.12 0.80 0.02 0.94 0.34
ru 0.89 0.13 0.93 0.25 0.93 0.30 0.82 0.16 0.95 0.40
cs 0.78 0.03 0.87 0.07 0.95 0.24 0.81 0.03 0.95 0.37
pl 0.75 0.02 0.88 0.11 0.90 0.17 0.80 0.00 0.95 0.42
es 0.78 0.01 0.93 0.23 0.96 0.40 0.81 0.06 0.97 0.45
it 0.76 0.00 0.92 0.17 0.94 0.26 0.82 0.04 0.96 0.37
fr 0.70 0.00 0.92 0.19 0.95 0.24 0.83 0.03 0.97 0.51
fi 0.65 0.00 0.78 0.03 0.80 0.03 0.72 0.01 0.89 0.15
tr 0.66 0.00 0.76 0.03 0.78 0.01 0.71 0.00 0.81 0.03
average 0.74 0.02 0.87 0.13 0.90 0.21 0.79 0.04 0.93 0.34

Table 5: Word and sentence accuracy for in-context lemma generation across different model sizes using parallel
corpora.

in a few-shot setting. We also investigate the sce-
nario in which no training data is available for a
given language. Comparing model-transfer, data-
transfer, and direct lemma generation with LLMs,
we conclude that the best lemmatization approach
in such a case would also be direct in-context
lemma generation, which would remain predomi-
nantly achievable with large-scale language models.
Finally, future work should include model compar-
ison, broader linguistic sampling, and comprehen-
sive prompt optimization.

Lemmatization is a task generally studied and
evaluated in-domain, which is rather surprising as
the use of lemmatizers is predominantly out-of-
domain (Toporkov and Agerri, 2024). Our work
demonstrates, for the first time, the potential to
perform direct lemmatization directly without any
training data by applying direct in-context learn-
ing with large size LLMs, even for high-inflected
relatively low-resource languages.

Limitations

Several limitations constrain this investigation.
First, the comprehensive evaluation across the full
spectrum of large-scale language models remains
unexplored, potentially excluding architectures that
may demonstrate superior lemmatization capabil-
ities. Second, the scarcity of available evaluation
datasets, particularly for low-resource and mor-
phologically complex languages, limits our abil-
ity to conduct extensive cross-linguistic validation.
Third, we did not systematically explore alternative

prompt variations or instructional formats.
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A Appendix

Example of the full prompt with a 1-shot
example, where the input sentence is intro-
duced as a list of words.

Your task is to lemmatize a sentence in Spanish. You
will be given a sentence, where each word starts from
the new line. You need to provide for each word in
the given sentence its dictionary form (lemma). For
example, for the sentence:
Tina
Anselmi
se
ocupo
sobre
todo
de
los
derechos
de
los
trabajadores
textiles
y
los
profesores
.
The desired output is:
Tina Tina
Anselmi Anselmi
se el
ocupó ocupar
sobre sobre
todo todo
de de
los el
derechos derecho
de de
los el
trabajadores trabajador
textiles textil
y y
los el
profesores profesor
. .
Provide the output in **TSV format** (Tab-Separated
Values) with the format: ‘initial word lemma’
Sentence:
[‘El’, ‘festival’, ‘de’, ‘Venecia’, ‘cerró’, ‘hoy’,

‘con’, ‘la’, ‘entrega’, ‘de’, ‘los’, ‘premios’, ‘que’,
‘coronaron’, ‘a’, ‘el’, ‘realizador’, ‘Alexander’,
‘Sokurov’, ‘y’, ‘a’, ‘el’ ‘actor’, ‘Michael’,
‘Fassbender’, ‘.’ ]
Answer with the required output only, without extra
spaces, quotation marks, or comments.
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Sentence input Wordform input

Language Prompt Type Shots WAcc SentAcc Missing Wrong word Random WAcc SentAcc Missing Wrong word Random

Spanish (PUD)

basic prompt 0-shot 0.92 0.12 32 2 2 0.93 0.22 0 0 9
full prompt 0-shot 0.93 0.22 4 3 6 0.92 0.17 1 0 6
basic prompt + worst examples 4-shot 0.96 0.37 3 0 3 0.96 0.38 1 0 0
basic prompt + random examples 4-shot 0.97 0.50 5 0 0 0.94 0.33 0 0 0
basic prompt + most errors 4-shot 0.96 0.41 2 0 0 0.97 0.45 1 0 0
full prompt + worst examples 4-shot 0.97 0.41 3 0 3 0.97 0.40 0 0 0
full prompt + random examples 4-shot 0.96 0.49 1 0 0 0.95 0.41 0 0 0
full prompt + most errors 4-shot 0.96 0.49 1 0 0 0.95 0.41 0 0 0

English (PUD)

basic prompt 0-shot 0.93 0.28 30 0 0 0.95 0.38 0 0 6
full prompt 0-shot 0.95 0.43 4 0 1 0.95 0.42 2 0 12
basic prompt + worst examples 4-shot 0.96 0.50 0 0 0 0.95 0.36 0 0 0
basic prompt + random examples 4-shot 0.95 0.47 0 0 0 0.96 0.45 0 0 0
basic prompt + most errors 4-shot 0.96 0.42 0 0 0 0.96 0.44 0 0 4
full prompt + worst examples 4-shot 0.96 0.46 0 0 0 0.95 0.41 0 0 0
full prompt + random examples 4-shot 0.96 0.50 0 0 0 0.96 0.42 0 0 0
full prompt + most errors 4-shot 0.96 0.46 0 0 0 0.95 0.43 0 0 0

Russian (PUD)

basic prompt 0-shot 0.91 0.20 32 5 8 0.92 0.29 0 2 6
full prompt 0-shot 0.94 0.33 4 3 3 0.94 0.34 0 4 4
basic prompt + worst examples 4-shot 0.94 0.39 3 0 0 0.95 0.39 2 0 0
basic prompt + random examples 4-shot 0.94 0.39 4 0 1 0.95 0.40 0 0 0
basic prompt + most errors 4-shot 0.93 0.41 42 0 6 0.95 0.40 2 0 0
full prompt + worst examples 4-shot 0.94 0.40 3 0 0 0.95 0.36 2 0 0
full prompt + random examples 4-shot 0.94 0.38 5 0 1 0.95 0.39 2 0 0
full prompt + most errors 4-shot 0.93 0.37 42 0 0 0.94 0.37 1 0 0

Basque (BDT, 100 sentences)

basic prompt 0-shot 0.76 0.00 78 3 58 0.82 0.07 3 0 72
full prompt 0-shot 0.78 0.03 44 3 44 0.81 0.05 1 0 68
basic prompt + worst wacc 4-shot 0.85 0.11 23 0 2 0.89 0.24 0 0 2
basic prompt + random examples 4-shot 0.87 0.19 38 0 2 0.89 0.24 0 0 2
basic prompt + most errors 4-shot 0.86 0.23 38 0 2 0.89 0.29 7 0 2
full prompt + worst examples 4-shot 0.84 0.12 20 0 2 0.89 0.25 1 0 2
full prompt + random examples 4-shot 0.87 0.22 39 0 2 0.88 0.22 0 0 2
full prompt + most errors 4-shot 0.86 0.25 34 0 0 0.89 0.27 1 0 2

Table 6: Word and sentence accuracy using different prompting strategies with Mistral-Large-Instruct-2407.
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