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Abstract

Large Language Models (LLMs) exhibit sig-
nificant potential in complex software engi-
neering tasks, however, their fault localization
capabilities within repository are constrained
by inherent limitations in max context length.
Although Test-Time Scaling (TTS) can gen-
erate multiple candidate solutions, traditional
selection strategies often fail to identify the
optimal one. To solve this problem, we in-
troduces Hierarchical Localization Reward
Model (HiLoRM), which specifically designed
to evaluate and select the most accurate fault
localization candidates (at file, function, and
line levels) from the multiple sampled outputs
of LLMs, thereby enhancing localization accu-
racy. Furthermore, we constructed the HiFL-
44k dataset, comprising approximately 44,000
fault localization instances, to train HiLoRM.
Experimental results demonstrate that on the
SWE-Bench-Lite dataset, HiLoRM improves
the final line-level localization recall by 12%
compared to a baseline model that does not
use a reward model. Concurrently, HiLoRM
exhibits a strong capability to evaluate predic-
tions from larger LLMs (e.g., 32B parameters)
and demonstrates transferability and general-
ization potential when applied to other fault
localization methods. This work provides an
effective methodology and an accessible model
to significantly improve the accuracy and relia-
bility of LLMs for repository-level fault local-
ization. Our codes and dataset are available at
https://github.com/SZU-ZJW/HiFL-Method

1 Introduction

Large Language Models (LLMs) have demon-
strated potential in tackling complex software en-
gineering tasks within intricate code repositories,
such as resolving GitHub issues. However, their
performance on benchmarks like SWE-Bench re-
mains limited (Jimenez et al., 2024; Yang et al.,
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Figure 1: Comparative example of test-time scalling
and reward model selection strategy.

2024c), with even state-of-the-art open-source
LLMs often struggling to exceed a 50% resolution
rate. In-depth analysis reveals that fault localiza-
tion—precisely identifying code locations need-
ing modification—is a critical bottleneck hindering
LLM performance (Qin et al., 2024). The inherent
input context length limitations of current LLMs
prevent processing entire large repositories, mak-
ing precise identification of relevant code segments
challenging. Effective fault localization is thus a
fundamental prerequisite for successful code re-
pair (Wang et al., 2025).

To address LLM performance limitations in
code repair, researchers have explored strategies
like more fine-grained agent methods (Yang et al.,
2024c; Tao et al., 2024), Retrieval-Augmented Gen-
eration (RAG) for enhanced repository understand-
ing (Wadhwa et al., 2024), and fine-tuning LLMs
for specific domains (Liu et al., 2024). Test Time
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Scaling (TTS), a technique improving model out-
put quality by allocating additional computational
resources during testing without model retraining,
has also shown promise, with improved perfor-
mance in models like OpenAI’s o1 and DeepSeek-
R1 (Jaech et al., 2024; Guo et al., 2025). TTS
typically generates multiple candidate solutions,
with one subsequently selected. However, conven-
tional TTS selection strategies (e.g., "best of N",
majority voting) have limitations in discerning the
optimal solution, as shown in Figure 1. Empirical
evidence suggests these methods often prioritize
model confidence over the actual quality of the fix.
Therefore, the crucial challenge is accurately iden-
tifying the most correct repair from TTS-generated
candidates.

To address challenges in fault localization for
real-world software development, we propose lever-
aging a specifically trained reward model to eval-
uate multiple fault localization candidates from
test time scaling. A scoring mechanism based on
a reward model can provide a more reliable ba-
sis for selection by quantifying each candidate’s
quality. Our designed reward model, Hierarchical
Localization Reward Model (HiLoRM), assesses
fault localization accuracy, enabling detailed com-
parative analysis at file, function, and line levels
to identify the most precise answer from multiple
candidates. This selection mechanism allows more
reliable determination of the optimal fault localiza-
tion result.

For training our reward model, we constructed
HiFL-44k, a novel dataset with fine-grained bug
localization data (file, function, line levels). We
performed supervised fine-tuning (SFT) on a base
model, then trained our reward model using rein-
forcement learning, specifically the Group Relative
Policy Optimization (GRPO) method. During train-
ing, the model directly outputted the index of the
most likely correct answer from multiple candi-
dates. Experimental results show HiLoRM, trained
on HiFL-44k, significantly improves file-level bug
localization performance on SWE-Bench-Lite by
9.33% compared to scenarios without a reward
model.

Our primary contributions are:

• A dedicated reward model for evaluating
fault localization prediction effectiveness for
GitHub issues.

• The open-source HiFL-44k dataset (44k in-
stances of fine-grained bug localization data)

for training repository-level bug localization
models.

• Experimental results showing our trained re-
ward model outperforms comparison models
on repository-level fault localization.

• HiLoRM can be adapted to other fault location
methods and is transferable.

2 Related Work

2.1 Automated Program Repair for
Repository-Level Issues

The introduction of the SWE-Bench benchmark
dataset (Jimenez et al., 2024) has spurred increased
focus on Automated Program Repair (APR) tech-
niques that more accurately reflect real-world soft-
ware development scenarios. To address the com-
plexities of repository-level repairs, two primary
categories of approaches have emerged: pipeline-
based and agent-based methods.

Agent-based methods assign distinct roles to
LLMs, empowering them to autonomously perform
tasks such as code analysis and repair. Prominent
examples include SWE-agent (Yang et al., 2024c),
CodeR (Chen et al., 2024), and MAGIS (Tao et al.,
2024). This paradigm seeks to harness the auton-
omy and creative potential of LLMs for tackling
intricate repair challenges. Conversely, pipeline-
based methods employ predefined, structured re-
pair workflows. These approaches, such as Agent-
less (Xia et al., 2024) and AutoCodeRover (Zhang
et al., 2024), guide LLM behavior through explicit
steps, thereby enhancing the controllability and
predictability of the repair process. Although such
methods constrain LLM autonomy, they can offer
more directed guidance and may achieve greater
efficiency in specific scenarios.

2.2 Fault Localization
Efficient and accurate fault localization is a piv-
otal aspect of software development and a crucial
precursor to effective program repair. While tra-
ditional techniques like Spectrum-based Fault Lo-
calization (SBFL) and Mutation-based Fault Local-
ization (MBFL) have proven effective, they often
demand extensive high-quality labeled data and
entail complex program analysis or test case gen-
eration processes. The demonstrated proficiency
of LLMs in code understanding and reasoning has
recently opened novel avenues for automated fault
localization.
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Initial research in LLM-based fault localiza-
tion predominantly focused on smaller code seg-
ments, utilizing datasets such as Refactory and Hu-
manEval for evaluation (Hu et al., 2019; Widyasari
et al., 2024; Yang et al., 2024a). As the field has
matured, repository-level fault localization has gar-
nered significant attention due to its enhanced rele-
vance to practical software development. Current
strategies in this domain leverage LLMs through
various means, including multi-stage localization
frameworks (Qin et al., 2025), agent-based sys-
tems (Qin et al., 2024; Xu et al., 2025), meticu-
lous fine-tuning or sophisticated prompt engineer-
ing (Chang et al., 2025), knowledge enhancement
techniques, and graph-based methodologies (Yue
et al., 2025). These approaches commonly embody
"divide and conquer" principles and "fine-grained
enhancement" tactics. A primary motivation for
these strategies is to navigate the inherent context
window limitations of LLMs by decomposing com-
plex repository-wide localization tasks into more
manageable sub-problems.

Our research builds upon these existing
strengths, proposing a hierarchical, fine-grained
repository-level fault localization framework. This
framework leverages a coarse-to-fine strategy and
test-time scaling to improve performance without
requiring model fine-tuning.

3 Method

3.1 Motivation

The agentless paradigm offers a promising direc-
tion for simplifying software engineering automa-
tion, avoiding the complexities and overhead as-
sociated with full-fledged agent-based systems by
directly leveraging LLMs. However, to effectively
apply LLMs to pinpoint defects accurately and effi-
ciently within vast code repositories without resort-
ing to complex agentic control, a structured and so-
phisticated localization strategy is crucial; simpler
agentless techniques might struggle to systemati-
cally narrow the search space or make optimal use
of diverse LLM outputs.

To address this, our method introduces a signifi-
cantly enhanced multi-stage hierarchical localiza-
tion process that progresses through different levels:
File, Function, and Line-level, as shown in Figure 2,
named as Hierarchical Fault Localization method
(HiFL). Our core refinement to agentless localiza-
tion lies in a systematic "sample-and-select" strat-
egy employed at each hierarchical stage. Instead

of relying on single LLM outputs or basic heuris-
tics potentially used in more rudimentary agentless
setups, we first leverage the LLM to generate a
diverse set of candidate localizations (such as com-
binations of relevant files, specific functional units,
or precise code lines) through multiple sampling.
Subsequently, a dedicated reward model, HiLoRM,
rigorously evaluates these varied proposals to iden-
tify and select the most promising candidate. This
iterative application of LLM-driven diverse sam-
pling coupled with HiLoRM-guided selection is
designed to significantly enhance localization pre-
cision and reliability, allowing for a more robust
exploration and exploitation of the LLM’s capabili-
ties within a streamlined agentless framework.

3.2 File-level Localization

The goal of the file localization stage is to identify
a subset of files from the repository that are most
relevant to the reported issue. This process consists
of three key steps:

Relevant File Prediction First, we leverage
the powerful code understanding and generation
capabilities of LLMs. Given an issue description
I and the tree structure of the repository T , the
LLM generates k candidate combinations of rele-
vant files Crel = {C1, C2, . . . , Ck} through mul-
tiple sampling, where each Cj ⊂ F (F being the
complete set of files in the repository).

Subsequently, HiLoRM will evaluates the entire
set of candidate combinations Crel. This model
receives the task context (i.e., I and T ) as well as
all candidate combinations Crel, and from them
selects the one combination that best represents the
relevant files, denoted as Frel:

Frel = SelectHiLoRM(I, T ,Crel) (1)

where SelectHiLoRM represents the selection func-
tion of the reward model HiLoRM.

Irrelevant File Prediction To further nar-
row down the search space, a similar strategy is
employed to predict files that are irrelevant to
the issue. The LLM, based on the issue descrip-
tion I and the codebase structure T , generates
a set of m candidate irrelevant file combinations
Uirrel = {U1, U2, . . . , Um}. The reward model
HiLoRM also receives the task context and all can-
didate combinations Uirrel, and from them selects
one combination that best represents the set of ir-
relevant files Firrel:
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Figure 2: Overview of the proposed method, HiFL, which comprises three stages: file-level localization, function-
level localization, and line-level localization.

Firrel = SelectHiLoRM(I, T ,Uirrel) (2)

These files will be excluded from the candidate
set in the subsequent similarity retrieval process.

Similarity Retrieval After excluding the pre-
dicted irrelevant files, we obtain a reduced candi-
date file set F ′ = F \ Firrel. In this stage, we
calculate the semantic similarity between the issue
description I and each file f in F ′. Specifically,
we use the text-embedding-3-small1 model to
convert the issue description I and the full content
of each file f into high-dimensional vector embed-
ding representations. Let emb(·) be the embedding
function provided by text-embedding-3-small,
then the embedding of the issue description is
vI = emb(I), and the embedding of each file f is
vf = emb(f).

Subsequently, we evaluate their relevance
Scos(I, f) by calculating the cosine similarity be-
tween these vectors:

Scos(I, f) =
vI · vf

∥vI∥∥vf∥
(3)

where vI · vf is the dot product of the vectors, and
∥vI∥ and ∥vf∥ are the Euclidean norms (L2 norms)
of vectors vI and vf respectively.

The top N files with the highest cosine similar-
ity to the issue description, denoted as Fsim, are

1https://openai.com/api/

selected. Finally, the output of the file localization
stage, Ffinal, is the union of the set of top_N pre-
dicted relevant files Frel and the set of top_N files
from the similarity retrieval Fsim:

Ffinal = top_N(Frel) ∪ top_N(Fsim) (4)

3.3 Function-level Localization
After determining the target file set Ffinal, we fur-
ther localize the specific code units (such as func-
tions, classes, methods, or variables) within these
files that may contain the erroneous code.

Code Skeletonization First, we convert each
file in Ffinal into its "skeleton representation" fskel.
This representation preserves the structural infor-
mation of the code while omitting implementation
details.

Candidate Code Unit Generation and Selec-
tion Given the issue description I and the skele-
ton representation of a file, fskel, the LLM gener-
ates a set of p candidate code unit sets, Ecand =
{E1, E2, . . . , Ep}, where each Eq contains several
code unit signatures from within fskel.

The reward model HiLoRM receives the task
context (I, fskel) and all candidate sets Ecand, and
from these, it selects the set of code units Etarget

most likely requiring modification, where:

Etarget = SelectHiLoRM(I, fskel,Ecand) (5)

This process is carried out for each file in Ffinal.
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3.4 Line-level Localization
Line-level localization is the final stage of fault lo-
calization, aiming to precisely pinpoint the specific
lines of code that need modification.

Based on the target code units Etarget localized
in the previous stage, we extract their complete
contextual information, Context(Etarget), includ-
ing the line number.

We provide the issue description I and
Context(Etarget) to the LLM. The LLM, through
multiple sampling, generates a collection of r can-
didate sets of code lines (or line number ranges),
Lcand = {L1, L2, . . . , Lr}.

HiLoRM will receives the task context
(I,Context(Etarget)) and all candidate code line
sets Lcand, and from these, selects a final set
of code lines most likely requiring modification,
Lfinal:

Lfinal = SelectHiLoRM(I,Context(Etarget),Lcand)
(6)

Through this three-stage, coarse-to-fine localiza-
tion strategy, combined with the generative capa-
bilities of LLMs and the ability of reward models
to select the optimal choice from multiple candi-
dates, our method aims to efficiently and accurately
pinpoint code defects.

3.5 Reward Function
The reward function of the GRPO training phase
consists of two components, each assigned a weight
of 1.0: Correctness of Selection (CS) and a format
reward. The format reward yielded 1.0 for outputs
adhering to the predefined format and 0 otherwise.
The CS component was calculated as:

SCS =

{
1, if predindex = truthindex

0, if predindex ̸= truthindex
(7)

where predindex is the model’s predicted index and
truthindex is the ground truth index.

4 HiFL-44k Dataset

This study constructed a large-scale fault local-
ization dataset comprising 44k instances, named
HiFL-44k, the statistical results of the data set are
shown in Table 1. These instances were sourced
from nearly 100 open-source GitHub repositories
characterized by high star ratings (GitHub Stars >
1,000) and recent activity (updated within the last

Table 1: Detailed statistics of the HiFL-44k dataset

Category File-level Function-level Line-level

Number 27,425 9,193 7,484

two months). To ensure the reliability and quality
of the dataset, stringent filtering criteria were es-
tablished: relevant issues must have been resolved
and closed via a single merged Pull Request (PR);
concurrently, to ensure analytical validity, reposi-
tories containing only a small number of Python
source files (.py) were excluded. To prevent the
data leakage, any GitHub repositories included in
SWE-Bench or its sub-benchmarks were excluded
during the construction of HiFL-44k. Subsequently,
through meticulous parsing of the patch informa-
tion contained within these PRs, we established file-
level, function-level, and line-level ground-truth
modifications.

To evaluate model performance under conditions
more aligned with real-world application scenar-
ios, we employed the Qwen2.5-Coder-7B-Instruct
model to predict relevant and irrelevant files. After
deduplicating the prediction results, Precision (P),
Recall (R), and a weighted F1 score (F1w) were
adopted as core evaluation metrics. Inspired by
the work of (Ma et al., 2025), and prioritizing the
model’s performance in fault recall to mitigate the
risk of overlooking actual fault locations, this study
adopted the following weighted F1 calculation for-
mula:

F1w = λ ·R+ (1− λ) · Fcustom (8)

Fcustom = (1 + β2)
P ·R

(β2 · P ) +R
(9)

where the λ, β are hyperparameters used to balance
the impact of the recall and precision on the final
score, we set λ = 0.8 and β = 3 in this paper.
This formula emphasizes recall performance during
evaluation by assigning a higher weight to Recall.

In the experimental design for function-level and
line-level fault localization, we first conducted a
full parse of the target repository to construct a sus-
pect pool containing all potentially modifiable code
units (e.g., functions, classes, methods, variable
declarations, and executable code lines). There-
after, we mixed the ground-truth fault locations
with other code elements from this suspect pool
at various predefined ratios. This process gener-
ated prediction candidate sets with different diffi-
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culty gradients, intended to comprehensively assess
the model’s localization capabilities across diverse
complex scenarios.

5 Experiment

5.1 Model, Data, and Training Phases

The Qwen2.5-Coder-7B-Instruct model (Hui
et al., 2024; Yang et al., 2024b) served as the
backbone network for HiLoRM. Training data was
sourced from a subset of points extracted from
each of four different problem types within the con-
structed HiFL-44k dataset; these points were sub-
sequently combined and shuffled. The entire train-
ing process was managed using the ms-Swift(Zhao
et al., 2025). An initial SFT phase was conducted to
adapt the base model to the required output format,
utilizing a dataset of 1,000 data points from HiFL-
44k. Following SFT, the GRPO training stage was
performed using DeepSpeed ZeRO3 and LoRA,
with the LoRA rank set to 16 and LoRA alpha to
32. Training was conducted for 1 epoch using a
cosine learning rate decay strategy, with an initial
learning rate of 5e-6 and a warmup ratio of 0.01.
The batch size was 2, and the group size was 4.
To optimize memory, bf16 mixed-precision train-
ing was enabled. The training procedure required
approximately 12 hours on four RTX4090 GPUs.

5.2 Evaluation Methodology

This section outlines the setup for assessing the
performance of the trained HiLoRM. Please refer
to Appendix A for the detailed calculation methods
of the evaluation metrics, the experimental results
are the average of five experiments.

Benchmarking Setup The primary evalu-
ation was conducted on the SWE-Bench-Lite
dataset2, which is a subset of SWE-Bench3 con-
taining 300 instances (Jimenez et al., 2024). For
performance comparison, HiLoRM was bench-
marked against Skywork-Reward-Llama-3.1-8B4

(Liu and Zeng, 2024). An ablation study was
also performed by comparing HiLoRM against the
original Qwen2.5-Coder-7B-Instruct model. Dur-
ing these evaluations, the number of sampling for
the LLM generating prediction results was varied
across five values: 3, 7, 10, 15, and 30. A higher

2https://huggingface.co/datasets/princeton-nlp/SWE-
bench_Lite

3https://huggingface.co/datasets/SWE-bench/SWE-
bench

4https://www.modelscope.cn/models/Skywork/Skywork-
Reward-Models
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Figure 3: Performance of Qwen2.5-Coder-7B-Instruct
as an inference model in the relevant file localization
task (Gray line: results without any reward model and
no multiple sampling).

temperature of 1.0 was used for the LLM to ensure
a maximally diverse set of candidate solutions.

Generalizability Assessment To further ver-
ify the transferability and efficacy of HiLoRM,
supplementary experiments were conducted on the
CoSIL method (Jiang et al., 2025).

CoSIL is a training-free, LLM-driven fault local-
ization method that dynamically constructs code
graphs and utilizes module call graph enhanced re-
flection, iterative search, and a pruner to precisely
constrain the search space and manage context,
without requiring pre-built indexes.

6 Main Result

6.1 Effectiveness

In order to evaluate the effectiveness of a novel
proposed method for code defect localization tasks
in software engineering. Experiments were con-
ducted on the SWE-Bench-Lite dataset using the
Qwen2.5-Coder-7B-Instruct and Qwen2.5-Coder-
32B-Instruct large language models. The re-
ward models selected were the existing Skywork-
Reward-Llama-3.1-8B and HiLoRM, a model
trained in this work. The core evaluation method-
ology employed was HiFL. The recall results are
shown in Table 2, and the precision results are
shown in Table A1 in the Appendix B.2.

Experimental results on the SWE-Bench-Lite
dataset show that when using Qwen2.5-Coder-7B-
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Table 2: Comparison of fault localization recall performance under different reward models and numbers of samples
(3, 7, 10, 15, and 30) in the HiFL method (None: No reward model used, number of samples = 1).

Reward Model Qwen2.5-Coder-7B-Instruct Qwen2.5-Coder-32B-Instruct

3 7 10 15 30 3 7 10 15 30

File-level localization

None 0.79 0.79 0.79 0.79 0.79 0.86 0.86 0.86 0.86 0.86
Skywork-Reward

-Llama-3.1-8B
0.7967 0.8 0.7967 0.8067 0.8167 0.8567 0.8533 0.8633 0.8667 0.8667

HiLoRM(Ours) 0.8033 0.8067 0.8133 0.8133 0.82 0.87 0.8667 0.87 0.8733 0.8767

Function-level localization

None 0.2486 0.2486 0.2486 0.2486 0.2486 0.3410 0.3410 0.3410 0.3410 0.3410
Skywork-Reward

-Llama-3.1-8B
0.2414 0.2537 0.2566 0.2375 0.2371 0.2915 0.2492 0.2507 0.2648 0.2390

HiLoRM(Ours) 0.2485 0.2735 0.2743 0.2682 0.2771 0.3311 0.3446 0.3599 0.3731 0.3873

Line-level localization

None 0.12 0.12 0.12 0.12 0.12 0.1939 0.1939 0.1939 0.1939 0.1939
Skywork-Reward

-Llama-3.1-8B
0.1194 0.1183 0.0944 0.1033 0.0567 0.19 0.1928 0.2217 0.2122 0.1767

HiLoRM(Ours) 0.1206 0.1294 0.1344 0.1078 0.1228 0.1992 0.2086 0.2064 0.2361 0.2269

Instruct as the inference model, the HiFL method,
which uses HiLoRM as the reward model, improves
code fault localization recall by 3% at the file level,
11% at the function level, and 10% at the line
level, compared to a baseline configuration without
a reward model and using multi-round sampling.
This indicates that the proposed method can effec-
tively enhance the model’s localization capabilities
through multi-round sampling and a reward-model-
guided candidate answer selection mechanism.

Delving deeper into the file-level localization
sub-task, our method achieved optimal or near-
optimal performance across all metrics, including
Precision, Recall, F1-score, and Exact Match (Fig-
ure 3 and Appendix B.1). A clear positive correla-
tion was observed between the number of sampling
iterations and performance. Notably, on the Exact
Match metric, HiLoRM identified up to 34 correct
instances, a stark contrast to the 10 instances un-
der the no-sampling condition and the single-digit
results from the Skywork-Reward-Llama-3.1-8B
model. Furthermore, our method yielded a signifi-
cant precision uplift, ranging from 20.2% to 51%
over the baseline.

A key finding is that although the HiLoRM re-
ward model was trained based on a 7B parameter-
scale model, it can still effectively evaluate and
filter prediction results generated by larger base
models (such as a 32B model), demonstrating good

generalization capabilities.
We conducted an independent t-test compar-

ing HiLoRM against the two baseline models
(Skywork-Reward-Llama-3.1-8B and Qwen2.5-
Coder-7B-Instruct), as shown in Appendix B.4.

To validate the superiority of our task-specific
training approach, we benchmarked HiLoRM
against RISE-Judge-Qwen2.5-7B5 (Yu et al., 2025),
a reward model trained using the DPO technique.
As shown in Table A2, HiLoRM consistently out-
performs RISE-Judge on the file-level localization
task, confirming the advantages of our specialized
training methodology.

Finally, to assess the method’s robustness on
more challenging, real-world problems, we con-
ducted experiments on the SWE-Bench-Verified
6 (OpenAI, 2024) dataset (see Appendix C). The
results corroborated our findings, with HiLoRM
again achieving the highest recall at the file (6 –
7%) and function (5%) levels compared to the base-
line. This reinforces the efficacy of our approach
in complex, practical scenarios.

6.2 Transferability

To demonstrate the transferability of our proposed
method, we evaluated it from two perspectives: its

5https://huggingface.co/R-I-S-E/RISE-Judge-Qwen2.5-
7B

6https://huggingface.co/datasets/princeton-nlp/SWE-
bench_Verified
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Table 3: Recall performance comparison of the CoSIL
method: No reward model (None) with number of sam-
ples = 1 vs. HiLoRM with various numbers of samples

Reward Model #sample Qwen2.5-Coder-7B-Instruct

TOP-1 TOP-3 TOP-5

File-level localization

None 1 0.4633 0.5767 0.59

HiLoRM(Ours)
3 0.4767 0.6033 0.6133
7 0.4967 0.61 0.6233

10 0.4867 0.6167 0.6367

Function-level localization

None 1 0.1867 0.2433 0.2567

HiLoRM(Ours)
3 0.1933 0.2567 0.2667
7 0.1967 0.2533 0.2667

10 0.2133 0.2733 0.29

applicability to different localization frameworks
and its generalizability across diverse foundational
model architectures.

First, to validate the transferability of the
HiLoRM reward model trained in this study, its per-
formance was further evaluated within the CoSIL
method framework, with experimental results de-
tailed in Table 3. The experiments compared the
performance of the CoSIL method under two con-
figurations: one without a reward model, and an-
other using HiLoRM to select what it deems the
most promising candidate answer. Three different
sampling numbers were investigated: 3, 7, and 10.
Given that the CoSIL method primarily focuses on
file-level and function-level localization, this study
also concentrated on these two levels for evalua-
tion, adopting the TOP-N accuracy metric as used
in the original CoSIL publication.

The experimental results indicate that when
Qwen2.5-Coder-7B-Instruct served as the base in-
ference model, the CoSIL method integrated with
HiLoRM achieved a performance improvement of
up to 7.9% in TOP-N accuracy for file-level local-
ization, and up to 13.0% for function-level local-
ization, compared to the CoSIL method without
a reward model. These findings demonstrate that
although the training data for HiLoRM was pri-
marily generated based on the design principles
and processes of an agentless method, the reward
model exhibits good transferability, effectively em-
powering and enhancing the performance of other
distinct code defect localization approaches.

In addition to its transferability across methods,
we investigated the generalizability of our approach
across different LLM architectures. To this end, we

Table 4: Relevant-file-level localization recall of HiFL
on SWE-Bench-Lite using YiRM and its base model.

Reward Model Qwen2.5-Coder-7B-Instruct

3 7 10 15 30

Yi-Coder-9B 0.5033 0.49 0.4967 0.4867 0.4933
YiRM 0.58 0.5967 0.5933 0.5833 0.6033

Table 5: File-Level localization recall of HiFL on SWE-
Bench-Lite using YiRM and its base model.

Reward Model Qwen2.5-Coder-7B-Instruct

3 7 10 15 30

Yi-Coder-9B 0.77 0.7767 0.7833 0.79 0.77
YiRM 0.7967 0.79 0.8 0.7933 0.7867

applied our fine-tuning strategy to a LLaMA-based
model, Yi-Coder-9B7(Young et al., 2024), creating
a new reward model variant (YiRM), the results are
shown in Table 4 and Table 5. The results reveal a
notable 20% absolute improvement in localization
when the search space is confined to relevant files,
a substantial gain that underscores the effective-
ness of our method. In contrast, the performance
gains are more modest when the search includes
irrelevant files, due to the added complexity of the
similarity-based retrieval stage.

Experiments result on Qwen- and LLaMA-based
models show that our method generalizes effec-
tively across diverse LLM architectures. This val-
idates the broader applicability of our approach
beyond any single model family.

In conclusion, the ability of our reward model to
enhance a distinct localization framework (CoSIL)
and its successful implementation on a different
foundational architecture (LLaMA-based) collec-
tively validate the applicability and transferability
of our proposed method.

6.3 Ablation Study

Finally, to verify that the performance gains of the
HiLoRM model trained in this study are not solely
attributable to the inherent capabilities of its base
model, we further compared the performance differ-
ences between HiLoRM and its base model within
the HiFL method framework. Detailed experimen-
tal results are presented in Table 6.

The experimental results indicate that although
the base model of HiLoRM already outper-
forms the comparative reward model Skywork-
Reward-Llama-3.1-8B on most evaluation met-

7https://huggingface.co/01-ai/Yi-Coder-9B
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Table 6: Comparison of fault localization recall performance under different reward models and numbers of samples
(3, 7, 10, 15, and 30) in the HiFL method (using HiLoRM and its base model).

Reward Model Qwen2.5-Coder-7B-Instruct Qwen2.5-Coder-32B-Instruct

3 7 10 15 30 3 7 10 15 30

File-level localization

Qwen2.5-Coder-7B-Instruct 0.7967 0.7967 0.8033 0.7933 0.79 0.8567 0.85 0.86 0.8533 0.8533
HiLoRM(Ours) 0.8033 0.8067 0.8133 0.8133 0.82 0.87 0.8667 0.87 0.8733 0.8767

Function-level localization

Qwen2.5-Coder-7B-Instruct 0.2524 0.2546 0.2315 0.2327 0.2336 0.3422 0.3163 0.3356 0.3448 0.3020
HiLoRM(Ours) 0.2485 0.2735 0.2743 0.2682 0.2771 0.3311 0.3446 0.3599 0.3731 0.3873

Line-level localization

Qwen2.5-Coder-7B-Instruct 0.1361 0.1144 0.1222 0.1328 0.0867 0.2103 0.2094 0.1894 0.1825 0.1856
HiLoRM(Ours) 0.1206 0.1294 0.1344 0.1078 0.1228 0.1992 0.2086 0.2064 0.2361 0.2269

rics, HiLoRM itself consistently surpasses its base
model (i.e., a configuration relying only on the
base model with multi-round sampling and selec-
tion of the best result, without HiLoRM) across
all assessed aspects. When Qwen2.5-Coder-7B-
Instruct was used as the base model, its specific
performance in the relevant file localization task
is also illustrated in Figure 3. This figure shows
that HiLoRM outperforms the direct application
of its base model on all four evaluation metrics,
notably achieving improvements of 19.8% to 29%
in precision and F1-score, and a significant gain of
over 100% in the exact match metric.

Furthermore, our evaluation on SWE-Bench-
Verified corroborates these positive findings,
demonstrating that the performance of HiLoRM
remains robust (see Appendix C).

Therefore, these results robustly demonstrate
that the superior performance exhibited by the
HiLoRM model is not merely a consequence of the
underlying strength of the base model employed,
but rather that HiLoRM contributes substantial
additional improvements to the localization task
through its learned reward mechanism.

7 Conclusion

To address the context limitations and candi-
date selection challenges faced by LLMs in soft-
ware repository-level fault localization, this pa-
per proposes a hierarchical localization reward
model, HiLoRM. It was trained on the HiFL-
44k dataset that we built, can evaluate and se-
lect LLM-generated candidates at the file, func-
tion, and line levels. Experiments demonstrate
that integrating HiLoRM significantly improves
the fault localization accuracy of LLMs on SWE-

Bench-Lite (especially at the file level) and effec-
tively selects the best candidates from multiple sam-
ples. HiLoRM also exhibits good generalization
to larger-scale base models and different methods
such as CoSIL. Its performance improvement is pri-
marily attributed to the reward mechanism, rather
than just the base model.

HiLoRM and its accompanying HiFL-44k
dataset offer an effective solution for precise fault
localization by LLMs by optimizing candidate se-
lection. This significantly enhances localization
accuracy and reliability, and holds important prac-
tical significance.

Limitations

Despite promising results, this study has limitations
warranting future work: First, computational con-
straints limited exploration of HiLoRM built upon
larger foundation models; their performance char-
acteristics remain unassessed. Second, incorporat-
ing deeper reasoning or multi-step verification into
HiLoRM’s selection process, potentially via chain-
of-thought or iterative refinement, could improve
performance beyond direct index output. Finally,
the HiFL-44k dataset, while substantial, may not
cover all real-world fault complexities. Expanding
its scope or testing HiLoRM on more intricate bug
scenarios is a key future direction.
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A Evaluation index calculation method

A.1 File-level

In file-level localization tasks, we employ Preci-
sion, Recall, and F1-score as core evaluation met-
rics to measure the model’s performance in identi-
fying relevant files. Precision quantifies the propor-
tion of files predicted as relevant that are actually
relevant. Recall is defined as the proportion of all
genuinely relevant files that are successfully identi-
fied and retrieved by the model. The F1-score, as
the harmonic mean of Precision and Recall, pro-
vides a consolidated reflection of the model’s over-
all performance.

Furthermore, we incorporate the Exact Match,
which refers to the proportion of instances where
the set of files predicted by the model perfectly
matches the actual set of relevant files. Collectively,
these metrics offer a comprehensive assessment of
the model’s performance in the file localization task
from the perspectives of both accuracy and com-
pleteness. For the task of localizing relevant files
within this paper, these are precisely the metrics
utilized to evaluate its effectiveness.

A.2 Function-level

For function-level localization, we continue to em-
ploy the three core metrics introduced in the previ-
ous section: Precision, Recall, and F1-score for
evaluation. Acknowledging the inherent uncer-
tainty in the outputs from LLMs—for instance,
while the ground truth for function-level localiza-
tion of a specific instance might be valid.metric
(class_name.function_name), an LLM might some-
times output only the class name valid without
further specifying the concrete function. Within
our evaluation criteria in this paper, we uniformly
consider both scenarios (i.e., returning the full func-
tion signature or only the class name) as valid and
accurate localizations.

A.3 Line-level

we employ a hierarchical matching approach to
calculate relevant performance metrics. The eval-
uation process first compares instance identifiers
to ensure that predictions and ground truth refer
to the same problem instance, then uses a normal-
ization function to match file paths, ensuring cor-
rect identification of different path representations
pointing to the same file. At the finest granularity
of line level, the system compares the type of code
elements (such as functions, classes, variables),
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Figure A1: Performance of Qwen2.5-Coder-32B-
Instruct as an inference model in the relevant file lo-
calization task (Gray line: results without any reward
model and no multiple sampling).

their values (such as function names, class names),
and positional information (line number ranges).
When a predicted element matches a ground truth
element in type and value, and their line number
ranges overlap, it is classified as a true positive
(TP). Based on the matching results, we calculate
standard evaluation metrics:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

F1 = 2
Precision×Recall

Precision+Recall
(12)

where FP represents the number of incorrectly
predicted elements, and FN represents the number
of elements that should have been modified but
were not predicted.

A simple example illustrates this: if the ground
truth indicates that the func_name function in
file.py (lines 1-10) should be modified, and the
prediction is for the same function in the same file
but with line range 2-10, this is classified as a true
positive because the type and value match and the
line ranges overlap. This evaluation method objec-
tively reflects the actual performance of models in
code element localization tasks.
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Table A1: Comparison of fault localization precision performance under different reward models and numbers of
samples (3, 7, 10, 15, and 30) in the HiFL method (None: No reward model used, number of samples = 1).

Reward Model Qwen2.5-Coder-7B-Instruct Qwen2.5-Coder-32B-Instruct

3 7 10 15 30 3 7 10 15 30

File-level localization

None 0.1760 0.1760 0.1760 0.1760 0.1760 0.2584 0.2584 0.2584 0.2584 0.2584
Skywork-Reward

-Llama-3.1-8B
0.1717 0.1734 0.1724 0.1737 0.1765 0.2260 0.2018 0.1989 0.1967 0.2087

Qwen2.5-Coder-7B-Instruct 0.1779 0.1769 0.1773 0.1764 0.1792 0.2599 0.2508 0.2556 0.2581 0.2515
HiLoRM(Ours) 0.1835 0.1860 0.1877 0.1910 0.1948 0.2865 0.3209 0.3243 0.3298 0.3376

Function-level localization

None 0.1678 0.1678 0.1678 0.1678 0.1678 0.1743 0.1743 0.1743 0.1743 0.1743
Skywork-Reward

-Llama-3.1-8B
0.1491 0.1287 0.1283 0.1158 0.1055 0.1307 0.0915 0.0943 0.0950 0.0718

Qwen2.5-Coder-7B-Instruct 0.1857 0.1859 0.1706 0.1485 0.1844 0.1827 0.1624 0.1838 0.1754 0.1374
HiLoRM(Ours) 0.1825 0.2007 0.2157 0.1932 0.2062 0.197 0.2157 0.2159 0.1906 0.2094

Line-level localization

None 0.0989 0.0989 0.0989 0.0989 0.0989 0.1867 0.1867 0.1867 0.1867 0.1867
Skywork-Reward

-Llama-3.1-8B
0.1 0.0711 0.07 0.0728 0.0467 0.1722 0.1517 0.1811 0.1744 0.1444

Qwen2.5-Coder-7B-Instruct 0.1156 0.0917 0.11 0.1161 0.0744 0.1872 0.1933 0.1839 0.1606 0.1597
HiLoRM(Ours) 0.1009 0.1172 0.1178 0.0961 0.1058 0.1744 0.1973 0.1861 0.2150 0.2061

B Other experimental results in
SWE-Bench-Lite

B.1 Relevant File Localization Results

As depicted in Figure A1, when Qwen2.5-Coder-
32B-Instruct is employed as the inference model,
HiLoRM continues to demonstrate better perfor-
mance across various evaluation metrics. Notably,
its performance exhibits a trend of continuous im-
provement as the number of samples increases.

B.2 Precision Results

While Recall is often the prioritized metric in fault
localization tasks, an excessively high Recall co-
existing with overly low Precision can negatively
impact the accuracy of the model’s judgment, espe-
cially given the context length limitations of LLMs.
Therefore, we have summarized and presented the
Precision results for all experiments conducted on
the SWE-Bench-Lite dataset in this paper in Ta-
ble A1. As can be seen from the table, our method
has relatively high Precision in most cases.

B.3 Comparison with an RLHF-Trained
Reward Model

To further validate the novelty of the HiLoRM, we
conducted a comparative analysis against RISE-
Judge-Qwen2.5-7B. This model was selected as
a representative baseline due to its training with

Table A2: Recall and Precision Comparison on HiFL
method with HiLoRM and RISE-Judge-Qwen2.5-7B

Reward Model Qwen2.5-Coder-7B-Instruct

3 7 10 15 30

Recall for File-level localization

RISE-Judge-Qwen2.5-7B 0.7967 0.79 0.8 0.7933 0.7867
HiLoRM (Ours) 0.8033 0.8067 0.8133 0.8133 0.82

Precision for File-level localization

RISE-Judge-Qwen2.5-7B 0.1779 0.1790 0.1804 0.1777 0.1814
HiLoRM (Ours) 0.1835 0.1860 0.1877 0.1910 0.1948

Direct Preference Optimization (DPO), a promi-
nent RLHF technique, and its strong performance
on the RewardBench benchmark. As presented
in Table A2, our model significantly outperforms
RISE-Judge-Qwen2.5-7B on the SWE-Bench-Lite
dataset for file-level localization, showing supe-
rior performance in both recall and precision. This
result demonstrates that our task-tuned, hierarchi-
cal scorer provides a substantial advantage over a
general-purpose generative judgment model for the
specific challenge of fault localization.

B.4 Statistical Significance

To validate that the observed performance gains
of HiLoRM are not a result of random chance, we
conducted a statistical significance analysis. The
analysis was performed on the results from five
independent experimental replications. The infer-
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Table A3: Statistical significance of HiFL with HiLoRM
and two baseline models on SWE-Bench-Lite(p <
0.05).

Reward model 3 7 10 15 30

Relevant-file-level localization

Skywork-Reward-
Llama-3.1-8B

0.0423 0.0301 0.0129 0.0241 0.0024

Qwen2.5-Coder-
7B-Instruct

0.0018 0.0159 0.0148 0.0348 0.0004

Function-level localization

Skywork-Reward-
Llama-3.1-8B

0.6747 0.0227 0.0218 0.0101 0.0018

Qwen2.5-Coder-
7B-Instruct

0.3123 0.0816 0.0239 0.0091 0.0002

Line-level localization

Skywork-Reward-
Llama-3.1-8B

0.1047 0.0487 0 0.5122 0

Qwen2.5-Coder-
7B-Instruct

0.0037 0.0019 0.0206 0 0.0001

ence model for these experiments consistently used
the Qwen2.5-Coder-7B-Instruct. We set the signif-
icance level (P < 0.05), a standard threshold for
statistical validation.

The detailed results are presented in Table A3.
The statistical analysis validates the effectiveness
of HiLoRM. The method demonstrates statistically
significant improvements over strong baselines in
nearly all evaluated conditions, with particular
strength in file-level localization and at larger sam-
ple sizes across all tasks.

C Results in SWE-Bench-Verified

As seen in A4, at the file and function levels,
HiLoRM outperforms both baselines across all
sampling settings, achieving the highest recall.
Also, HiLoRM surpasses the no-reward baseline by
6–7% at the file level and by over 5% at the func-
tion level, indicating that our method can enhances
localization performance in complex, real-world
scenarios.

At the line-level, HiLoRM achieves the highest
recall in lower sampling (3–10). The benefit de-
creases, in higher sampling (15,30), due to accumu-
lated noise and increased difficulty in fine-grained
ranking.

Overall, HiLoRM remains effective on more
challenging datasets, supporting its applicability
in practical fault localization scenarios.

Table A4: Recall performance on SWE-Bench-Verified
in the HiFL method under different reward models and
numbers of samples (3, 7, 10, 15, and 30) (None: No
reward model used, number of samples = 1) .

Reward Model Qwen2.5-Coder-7B-Instruct

3 7 10 15 30

File-level localization

None 0.5387 0.5387 0.5387 0.5387 0.5387
Skywork-Reward

-Llama-3.1-8B
0.5351 0.5430 0.5418 0.5386 0.5836

Qwen2.5-Coder-
7B-Instruct

0.5501 0.5599 0.5644 0.5544 0.5699

HiLoRM(Ours) 0.5707 0.5734 0.5782 0.5867 0.6014

Function-level localization

None 0.2906 0.2906 0.2906 0.2906 0.2906
Skywork-Reward

-Llama-3.1-8B
0.3073 0.2917 0.2663 0.3133 0.2990

Qwen2.5-Coder-
7B-Instruct

0.2936 0.3115 0.2775 0.2775 0.3014

HiLoRM(Ours) 0.3110 0.3137 0.3175 0.3283 0.3443

Line-level localization

None 0.1361 0.1361 0.1361 0.1361 0.1361
Skywork-Reward

-Llama-3.1-8B
0.1207 0.1168 0.0964 0.1127 0.0902

Qwen2.5-Coder-
7B-Instruct

0.1468 0.1089 0.1047 0.1118 0.0781

HiLoRM(Ours) 0.1732 0.1479 0.1482 0.1141 0.0972

D Prompt

The prompt template utilized by the reward model
HiLoRM is illustrated in Example 1. This template
is consistently applied across all evaluation tasks,
regardless of their granularity. Within this tem-
plate, the task_definition_and_context place-
holder is designated to hold the task definition
and relevant contextual information, while the
candidate_answers placeholder is used to list
multiple candidate answers. Ultimately, the model
adheres to the instructions within this prompt to
return a response in JSON format, from which the
identifier of the selected candidate answer can be
parsed.
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Example 1: Prompt for Reward Model

You are tasked with selecting the single best answer from a list of potential solutions provided for a
specific code-related task.
You will be given two main sections:
1. Task Definition & Context
This section contains all the necessary information to understand the task you need to evaluate
responses for. This includes the original prompt that specifies the requirements and expected output
format, the problem description you are addressing, and any relevant context like repository structure
or file contents.
2. Candidate Answers
This section contains a list of potential solutions that were generated based on the information in the
first section.
Your goal is to carefully read and understand everything presented in the Task Definition & Context
section. This is crucial for knowing what constitutes a correct and well-formatted answer. Then, you
must evaluate each candidate answer presented in the Candidate Answers section. Select the *single*
candidate answer that you believe most accurately and effectively solves the problem *and* strictly
adheres to the specific instructions and formatting requested within the Task Definition & Context.
——
TASK DEFINITION & CONTEXT:
{task_definition_and_context}
——
CANDIDATE ANSWERS:
{candidate_answers}
——
**Selection Instruction:**
Based on your comprehensive evaluation of the **Task Definition & Context** and the **Candidate
Answers**, select the single best candidate answer.
Provide your selection in the following **strict JSON format**. Do not include any other text,
comments, or explanations outside the JSON object. The value for the "answer" key must be the
exact unique identifier (e.g., "candidate 1", "candidate 5", "candidate 28") corresponding to your
selected best answer from the **Candidate Answers** list.
```json
{

"answer": "candidate X"
}
```
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