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Abstract

The risk of generative Al systems providing un-
safe information has raised significant concerns,
emphasizing the need for safety guardrails. To
mitigate this risk, guardrail models are increas-
ingly used to detect unsafe content in human-AI
interactions, complementing the safety align-
ment of Large Language Models. Despite re-
cent efforts to evaluate those models’ effec-
tiveness, their robustness to input mutations
and adversarial attacks remains largely unex-
plored. In this paper, we present a comprehen-
sive evaluation of 15 state-of-the-art guardrail
models, assessing their robustness to: a) in-
put mutations, such as typos, keywords cam-
ouflage, ciphers, and veiled expressions, and
b) adversarial attacks designed to bypass mod-
els’ safety alignment. Those attacks exploit
LLMs capabilities like instruction-following,
role-playing, personification, reasoning, and
coding, or introduce adversarial tokens to in-
duce model misbehavior. Our results reveal
that most guardrail models can be evaded with
simple input mutations and are vulnerable to
adversarial attacks. For instance, a single ad-
versarial token can deceive them 44.5% of the
time on average. The limitations of the current
generation of guardrail models highlight the
need for more robust safety guardrails. !

1 Introduction

Generative Al systems have become increasingly
popular thanks to the advent of exceptionally ca-
pable general-purpose Large Language Models
(LLMs), such as Claude (Anthropic, 2024), Gem-
ini (Gemini Team, 2024b,a), GPT (Radford et al.,
2018a,b; Brown et al., 2020; OpenAl, 2023, 2024),
and Llama (Touvron et al., 2023a,b; Meta, 2024).
Systems built on those models are used in a variety
of fields, including sensitive areas like healthcare
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(Meské and Topol, 2023; Zhang and Boulos, 2023),
education (Baidoo-Anu and Ansah, 2023; Qadir,
2023), and finance (Chen et al., 2023). As Al sys-
tems continue to advance and be integrated into
various application domains, it is essential to en-
sure their safety.

Lately, due to the risk of systems providing harm-
ful information, the need for safety guardrails has
received particular attention. Despite considerable
efforts to align LLMs with human values (Wang
et al., 2023), users can still find ways misuse them
to generate harmful content. To mitigate this risk,
fine-tuned LLMs, known as guardrail models, are
increasingly employed to moderate human-Al inter-
actions, completing other safety measures at model
level such as alignment. Given the critical role of
those models in Al systems, their evaluation is es-
sential to ensure they are effective in the detection
of unsafe interactions. However, despite recent ef-
forts to evaluate their effectiveness (Bassani and
Sanchez, 2024), their robustness to input mutations
and adversarial attacks remains largely unexplored.

In this paper, we aim to fill this gap by conduct-
ing a comprehensive evaluation of the robustness
of 15 guardrail models at the state-of-the-art. Our
evaluation is two-fold. First, we consider input mu-
tations that alter user prompts with typos, keywords
camouflage, ciphers, and veiled expressions. Those
mutations have been reported among the base in-
gredients for evading LL.Ms’ alignment. Second,
we cover a wide range of adversarial attacks pro-
posed to make LLMs fulfill unsafe requests that
they would typically refuse. Those attacks leverage
LLMs’ capabilities, such as instruction-following,
role-playing, personification, reasoning, and cod-
ing, or employ adversarial input tokens to induce a
model to misbehave. Our evaluation unveil several
shortcomings of the current generation of guardrail
models and highlight the need for further research
into developing more robust safety guardrails.
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2 Related Work

In this section, we discuss previous research related
to our work. First, we introduce recent works on
guardrail models. Then, we discuss adversarial at-
tacks designed to bypass LLMs’ safety alignment.

2.1 Guardrail Models

Guardrail models were proposed to reduce the risk
of LLMs engaging in offensive conversations (Lee
et al., 2019; Curry and Rieser, 2018) or providing
unsafe information (Dinan et al., 2019). Specifi-
cally, guardrail models act as input-output filters in
human-AlI conversations, thus moderating human-
generated prompts and LLM-generated answers.
Those models are usually derived from general-
purpose LLMs via fine-tuning and follow a content
moderation policy provided as input. Notable mod-
els are Llama Guard (Inan et al., 2023; Meta, 2024;
Ghosh et al., 2024), Granite Guardian (Padhi et al.,
2024), MD-Judge Li et al. (2024a), and Shield
Gemma (Zeng et al., 2024), which are fine-tuning
of Llama (Touvron et al., 2023a,b; Meta, 2024),
Granite (Granite Team, 2024), Mistral (Jiang et al.,
2023), and Gemma (Mesnard et al., 2024; Riv-
iere et al., 2024), respectively. Our work focus on
providing a proper evaluation of the robustness of
those models to input mutations and adversarial
attacks.

2.2 Adversarial Attacks

Despite safety alignment, LLMs remain susceptible
to adversarial attacks as demonstrated by several
recent publications. Those attacks often leverage
LLMs capabilities, such as role-playing, personi-
fication, reasoning, and coding, to expose LLMs’
inherent security risks. Lv et al. (2024) proposed
an attack that leverages LLMSs’ coding capabilities
to evade safety measures. Li et al. (2024b) crafted a
jailbreak prompt that induce LLMs to override their
alignment by eliciting abstract reasoning. Deng
et al. (2024) leveraged the multilingual capabili-
ties of LLMs to attack them. Chao et al. (2023)
employed an attacker LLM to query and refine
jailbreaks autonomously. Wei et al. (2023) pro-
posed to craft malicious contexts to guide models
in generating harmful outputs. Yuan et al. (2024)
showed that LLMs can decode and understand en-
crypted messages and that ciphers can be lever-
aged to perform attacks. Shen et al. (2024) col-
lected several jailbreak prompts from various on-
line forums. Most of them leverage the instruction-

following and role-playing capabilities of LLMs.
Finally, a number of attacks aim to generate adver-
sarial suffixes able to bypass model alignment (Zou
et al., 2023; Andriushchenko et al., 2024; Liao and
Sun, 2024). Several input mutations, such as typos
(Ding et al., 2024), keywords camouflage (Huertas-
Garcia et al., 2024), cyphers (Yuan et al., 2024),
and veiled expressions (Xu et al., 2024), have been
reported as base ingredients of adversarial attacks.
As guardrail models are usually based on LLMs,
we evaluate whether those techniques can be em-
ployed to evade their safety detection.

3 Methodology

In this section, we describe the input perturba-
tion methods we employ to test the robustness of
guardrail models. We classify these methods into
mutations and adversarial attacks. Mutations alter
user prompts without adding adversarial content to
trick safeguards. Conversely, adversarial attacks
are conceived to fool safeguards by adding adver-
sarial content, thus causing models to misbehave.

3.1 Mutations

In this section, we introduce the mutations we apply
to user prompts to test the robustness of guardrail
models. Specifically, we employ typos, keywords
camouflage, ciphers, and veiled expressions. It is
worth notice that most LLMs are able to understand
user prompts in the presence of such mutations.

Typos The most straightforward way to mutate
text inputs is to introduce typos. Ding et al. (2024)
have shown that typos can be employed to conduct
adversarial attacks. Thus, we assess whether typos
can induce guardrail models to misbehave. In our
experiments, we consider (1) character deletion, (2)
character insertion, (3) character replacement, (4)
characters swapping (i.e., inverting the position of
two adjacent characters), and a (5) mix of those. To
resemble real-world typos, we rely on a key neigh-
borhood map based on the US QWERTY keyboard
layout to select characters for both insertion and
replacement. We apply typos only to keywords as
identified by the Python library KeyBERT (Groo-
tendorst, 2020). Specifically, we apply a single
random typo of the chosen kind to each keyword.

Keywords Camouflage Camouflaging keywords
is a common technique to evade content moderation
systems (Huertas-Garcia et al., 2023) and LLMs’
alignment (Huertas-Garcfia et al., 2024). Thus, we
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assess whether those techniques are also effective
in evading guardrail models. In our work, we con-
sider the following camouflage methods: (1) dis-
emvoweling, (2) punctuation insertion, (3) white
spaces insertion, (4) splitting, (5) syllables inver-
sion, and (6) leetspeak. Disemvoweling removes
all vowels in a word. Punctuation insertion adds a
punctuation mark (i.e., full stop) between each let-
ter of a word. White spaces insertion adds a space
between each letter of a word. Splitting divides
a word in two sub-words at random. Syllables
inversion flips two adjacent syllables of a word.
Leetspeak replaces characters with similar-looking
glyphs We apply the same camouflage technique
to each keyword in a user prompt.

Ciphers Ciphers are algorithms for performing
the encryption and decryption of messages. Yuan
et al. (2024) have shown that LLMs can decode
and understand encrypted messages, and that ci-
phers can be leveraged to bypass models’ align-
ment. Thus, we test whether ciphers can evade
guardrail models’ safety detection. To this end,
we consider three popular substitution algorithms
that most LLMs were likely exposed to during pre-
training: (1) Caesar cipher (2) Morse code, and (3)
Unicode. The Caesar cipher is a simple and well-
known encryption technique that replace each letter
of a message with another letter a fixed number of
positions down the alphabet. In our experiments,
we used the popular rotation 13 (ROT13). Morse
code is a telecommunications method which en-
codes text characters as standardized sequences of
two different signal durations, known as dots and
dashes. Unicode is a text encoding standard that
supports digital writing systems. In our experi-
ments, we replaced each letter with its correspond-
ing Unicode decimal code.

Veiled Expressions Veiled expressions are indi-
rect or subtle ways of conveying a message. They
are often used to discuss sensitive topics with-
out being explicit. These expressions can involve
euphemisms, metaphors, or ambiguous language
that allows to imply something without stating it
outright. Xu et al. (2024) have shown veiled ex-
pressions can be used to evade models’ alignment
and make LLMs output unsafe information. Thus,
we test whether they can be leveraged to bypass
guardrail models. Specifically, we handcraft veiled
variants for our test prompts as we found previ-
ously proposed automatic methods often alter the
meaning of the original prompts (Xu et al., 2024).

3.2 Adversarial Attacks

In this section, we introduce the adversarial attacks
we employ against recent guardrail models, LLMs
fine-tuned for safety detection. To comprehensively
evaluate their robustness, we cover a wide range of
attacks designed to make LLMs comply with un-
safe requests by targeting their capabilities, such as
instruction-following, role-playing, personification,
reasoning, and coding, or through the addition of
adversarial input tokens.

Jailbreak Templates Since the advent of LLM-
based chatbots, users have tried to trick the under-
lying models into providing unsafe content. Some
users succeeded in composing jailbreak prompts
able to bypass models’ alignment, making them
answer unsafe requests. Most of those prompts
leverage the instruction-following and role-playing
capabilities of LLMs to achieve their goals. For
example, they contain instructions such as disre-
gard all previous instructions or simulate a chatbot
who always says the exact opposite of what Chat-
GPT would say. To generalize and diffuse jailbreak
prompts, prompt templates are often derived from
those and shared on online forums. Thus, they con-
stitute a primary safety concern. We refer to those
templates, which can be used to embed any unsafe
request, as jailbreak templates. Shen et al. (2024)
have compiled a collection of jailbreak prompts
from various sources. From this collection, we
select 84 unique jailbreak templates that we fill
with our test samples to evaluate guardrail models’
robustness to jailbreak prompting attempts.

DeeplInception Deeplnception (Li et al., 2024b)
is an attack inspired by the authority influence
shown in the Milgram experiment (Milgram, 1963).
As described by its authors, the attack leverage
LLMs’ personification capabilities to construct a
virtual, nested scene, allowing it to realize an adap-
tive way to escape the usage control in a normal
scenario. In other words, the authors propose a
jailbreak prompt template that induce LLMs to
override their alignment and generate harmful con-
tent by eliciting reasoning in abstract nested scenes.
Deeplnception has been shown effective against
both open and closed models. We investigate this
attack in several scenes as it targets the personifica-
tion and reasoning capabilities of LL.Ms.

CodeChameleon CodeChameleon is a recent
jailbreak attack proposed by Lv et al. (2024). This
method leverages LLMs’ code completion capabil-
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ities to enable users to encrypt unsafe requests and
evade safety measures. CodeChameleon rely on
a coding prompt template to encrypt malicious re-
quests. By also providing a decryption function, it
elicits the generation of a response for the harmful
request embedded in the prompt. We investigate
all the variants of this attack as it targets the code
understating and generation capabilities of LL.Ms.

GCG One of the first and most known attacks to
evade LLMs’ alignment and make them produce
unsafe content is GCG (Zou et al., 2023). GCG
aims to find a suffix that, when attached to a prompt,
maximizes the probability that the model produces
an affirmative response (rather than refusing to an-
swer). GCG produces these adversarial suffixes
by a combination of greedy and gradient-based
search techniques. Finding adversarial suffixes to
jailbreak LLLMs is a common practice among other
recently proposed attacks (Andriushchenko et al.,
2024; Liao and Sun, 2024). We re-purpose GCG
to attack guardrail models and evaluate whether
adversarial suffixes can be used to evade them.

4 Experimental Setup

In this section, we introduce the experimental setup
adopted to evaluate the robustness of guardrail
models to input mutations and adversarial attacks.
Specifically, we compare the effectiveness of sev-
eral models at safety classification of mutated and
adversarial prompts obtained through the methods
described in Section 3.

In the following sections, we introduce the mod-
els we compare (Section 4.1), present the datasets
we use for evaluation (Section 4.2), and discuss the
evaluation metrics chosen to assess the models’ ro-
bustness (Section 4.3) before presenting the results
of our evaluation in Section 5.

4.1 Models

In this section, we introduce the models consid-
ered in our comparative evaluation. Specifically,
we evaluate the robustness of 15 recent models.
Among these are 13 guardrail models at the state-
of-the-art, such as Llama Guard models (Inan et al.,
2023; Meta, 2024; Ghosh et al., 2024) and Granite
Guardian models (Padhi et al., 2024). We also con-
sider two flavors of Mistral (Jiang et al., 2023) as it
was recently reported to achieve results compara-
ble to those of the state-of-the-art guardrail models
when prompted for safety moderation (Bassani and
Sanchez, 2024). Table 1 reports the list of the con-

sidered models as well as additional information
related to them. It is important to highlight that
the Meta’s Llama Guard series of models accounts
for 87% of the total downloads of guardrail mod-
els from HuggingFace? as of February 1st, 2025.
Moreover, Llama Guard 3 8B is by far the most
popular model, accounting for more than 1M down-
loads or 56% of the total. Thus, we deduce sev-
eral deployed generative Al systems rely on Llama
Guard models for safety moderation. This infor-
mation allow us to better contextualize the results
of our evaluation presented in Section 5 and the
severity of our findings.

4.2 Datasets

To conduct our assessment, we employ two
datasets. The first one is SimpleSafetyTests (Vid-
gen et al., 2023), a test suite comprising 100 un-
safe prompts designed to identify critical safety
risks. As this is a specific set of very unsafe
prompts, it is likely that models’ performance may
be lower for more deceptive prompts. The second
dataset, which acts as a control set, contains 100
safe prompts. It allows us to understand whether
the robustness of guardrail models to certain per-
turbation methods is due to generalization abili-
ties or other factors, such as overfitting to known
mutations or attacks. As the size of the datasets
may limit the generalizability of our findings, par-
ticularly regarding more nuanced unsafe prompts,
we discourage overgeneralizing the positive results.
For simplicity, we will refer to these datasets as
Unsafe and Safe in the following sections.

4.3 Evaluation Metrics

To assess model robustness, we employ False Neg-
ative Rate and False Positive Rate for unsafe and
safe prompts, respectively. In case of attacks, False
Negative Rate corresponds to Attack Success Rate
as not detecting an (adversarial) unsafe prompt as
such indicates a breach of the safety guardrails.
Given the critical role of guardrail models in Al
safety, we adopt a strict severity scale to interpret
the results of our evaluation. Specifically, we con-
sider performance decreases < 0.01 as negligible,
< 0.10 as moderate, and > 0.10 as severe.

5 Results and Discussion

In this section, we present the results of our eval-
uation of the robustness of guardrail models to

Zhttps://huggingface.co
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Model Alias Provider Base Model Params Downloads Reference

Granite Guardian 3 2B GG 32B IBM Granite 3.0 2B 2.63B 32786 Padhi et al. (2024)
Granite Guardian 3 8B GG 3 8B IBM Granite 3.0 8B 8.17B 4903 Padhi et al. (2024)
Granite Guardian 3.1 2B GG3.12B IBM Granite 3.12B  2.63 B 15883 Padhi et al. (2024)
Granite Guardian 3.1 8B GG 3.18B IBM Granite 3.1 8B 8.17B 1409 Padhi et al. (2024)
Llama Guard LG Meta Llama 2 7B 6.74 B 237396 Inan et al. (2023)
Llama Guard 2 LG2 Meta Llama 3 8B 8.03 B 395287 N/A

Llama Guard 3 1B LG3 1B Meta Llama 3.2 1B 1.50 B 57694 Meta (2024)
Llama Guard 3 8B LG 3 8B Meta Llama 3.1 8B 8.03B 1259174 Meta (2024)
Llama Guard Defensive LG Def Nvidia Llama 2 7B 6.74 B 196450 Ghosh et al. (2024)
Llama Guard Permissive LG Per Nvidia Llama 2 7B 6.74 B 2343 Ghosh et al. (2024)
MD-Judge MD-J Academia Mistral 7B 7.24 B 15046 Lietal. (2024a)
Mistral-7B-Instruct v0.2 Mis Mistral AI  Mistral 7B 7.24 B N/A  Jiang et al. (2023)
Mistral with MD-Judge prompt  Mis+ Mistral Al Mistral 7B 724 B N/A  Bassani and Sanchez (2024)
Shield Gemma 2B SG 2B Google Gemma 2 2B 2.61 B 27051 Zeng etal. (2024)
Shield Gemma 9B SG 9B Google Gemma 2 9B 9.24 B 4533  Zeng et al. (2024)

Table 1: Benchmarked models. Alias indicates the shortened names used in other tables. Downloads refers to the
total number of downloads from HuggingFace as of February 1Ist, 2025.

mutations (i.e., typos, keywords camouflage, ci-
phers, and veiled expressions) and to adversarial
attacks (i.e., jailbreak templates, DeeplInception,
CodeChameleon, and GCG).

5.1 Robustness to Mutations

Table 2 reports the evaluation results of the
guardrail models’ robustness to the mutations intro-
duced in Section 3.1. For unsafe requests only, we
also assess the robustness when an attacker selects
the best mutation of a given kind for each request.

Robustness to Typos As shown in Table 2, by
simply introducing one typo per keyword, most
guardrail models’ safety predictions can be signifi-
cantly altered, causing very noticeable performance
drops. Quite surprisingly, the most popular and ad-
vanced guardrail model in the Llama Guard series,
Llama Guard 3 8B, has a False Negative Rate of
0.20 when the best performing typos is selected
for each request, thus raising significant concerns.
The only models that appear robust to typos are
those from the Granite Guardian series. However,
although the results may indicate a greater robust-
ness of those models, the second half of Table 2
suggests that this robustness comes at a cost. While
all the other guardrail models do not show perfor-
mance drops for safe requests with typos, the Gran-
ite Guardian models are often susceptible to them,
potentially causing the interruption of safe con-
versations. Our findings suggest that all guardrail
models are adversely affected by typos and evad-
ing them can be as simple as misspelling unsafe
requests. It is worth noting that input sanitization
may alleviate some of the issues found with typos.

Robustness to keywords Camouflage As shown
in Table 2, simple camouflage techniques can often
fool most guardrail models’, causing severe per-
formance drops. As in the case of typos, Granite
Guardian models appear not to be affected by cam-
ouflaged keywords. Moreover, Llama Guard 3 8B
has a False Negative Rate of 0.30 when the best
performing camouflage method is selected for each
request. However, similarly to typos, the results for
our safe control set suggest Granite Guardian mod-
els have learned to classify as unsafe samples pre-
senting camouflaged keywords regardless of their
actual safety. Although users might have no inter-
est in camouflaging their safe requests, classifying
as unsafe the inputs that deviate from well-formed
English despite of their actual safety may have un-
intended consequences. Our findings suggest that
camouflaged keywords can evade guardrail models’
safety detection with a certain degree of success.

Robustness to Ciphers As shown in Table 2,
ciphered unsafe requests can reliably evade all
guardrail models, raising significant safety con-
cerns due to the successful use of ciphers to bypass
LLMs’ alignment (Yuan et al., 2024). The second
half of Table 2 reveal that guardrail models are not
able to understand the meaning of ciphered user
requests, unlike general-purpose LLMs. Our find-
ings suggest that all guardrail models are adversely
affected by ciphers. Since most available guardrail
models were trained on datasets derived from the
HH-RLHEF dataset (Bai et al., 2022; Ganguli et al.,
2022), it is unlikely they they were exposed to
ciphers during fine-tuning, making them out-of-
distribution.
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Dataset Method GG GG GG GG LG LG LG LG LG LG MD-J Mis Mis SG SG
set etho 328 38B 3.12B 3.18B 2 31B 38B Def Per + 2B 9B
Unsafe  Reference 0.0l 0.00 0.01 0.01 0.14 008 003 0.01 000 006 003 0.13 0.02 026 0.28
Typos
Deletion 0.00 0.01 0.00 0.03 027 027 022 0.1 006 0.18 022 022 0.14 037 042
Insertion 0.00 0.00 0.01 001 0.16 0.17 0.11 006 0.01 0.10 0.15 0.16 0.07 033 034
Replacement 0.00 0.01 0.01 0.01 029 033 023 0.13 0.08 023 028 029 0.15 042 043
Swapping 0.00 0.01 0.01 0.04 034 026 021 0.09 0.16 024 034 029 022 035 038
Mix 0.00 0.01 0.01 0.02 026 028 023 0.08 0.10 0.17 025 027 0.17 0.33 040
Best 0.00 0.02 0.01 0.05 048 050 044 020 024 039 047 050 036 0.56 048
Keywords Camouflage
Disemvoweling 0.00 0.01 0.04 0.00 046 048 024 022 0.17 038 050 037 036 049 055
Punctuation 0.00 0.00 0.02 0.02 028 0.5 018 0.04 0.08 0.15 028 024 030 029 029
White Spaces 0.00 0.00 0.02 0.01 022 0.14 026 0.03 003 0.11 034 032 040 028 0.27
Splitting 0.00 0.00 0.02 0.01 020 0.16 019 0.02 006 0.14 020 0.19 0.12 029 0.32
Syllables Inversion  0.00 0.01  0.03 003 036 035 018 0.13 0.11 026 029 037 024 039 049
Leetspeak 0.00 0.00 0.01 0.00 0.19 040 0.07 0.10 0.02 005 023 0.16 0.06 031 041
Best 0.00 0.02 0.07 0.04 064 065 050 032 030 051 064 0.69 0.57 0.64 0.64
Ciphers
Caesar (ROT13) 043 0.04 0.62 021 100 096 0.86 074 050 091 1.00 1.00 1.00 1.00 1.00
Morse 0.00 1.00 1.00 1.00 1.00 1.00 030 1.00 0.00 099 100 1.00 1.00 1.00 1.00
Unicode 0.00 0.00 0.04 0.00 100 100 000 0.71 0.00 100 1.00 0.53 052 1.00 1.00
Best 043 1.00 1.00 1.00 100 100 089 1.00 050 1.00 100 1.00 1.00 1.00 1.00
Veiled Expressions
Veiled Expressions  0.03  0.07  0.09 0.06 048 050 034 032 021 034 039 038 036 051 049
Safe Reference 0.03 0.01 0.01 0.01 0.00 0.00 001 0.00 0.01 0.00 000 0.00 0.00 0.00 0.00
Typos
Deletion 0.40 0.07 0.10 0.11 0.00 0.00 002 0.00 0.02 001 000 0.00 0.00 0.00 0.00
Insertion 041 0.11 0.10 0.12 0.00 0.00 002 0.00 0.01 001 000 0.01 0.00 0.00 0.00
Replacement 062 027 0.19 027 0.00 0.00 003 0.02 0.01 001 000 0.00 0.01 0.01 0.00
Swapping 044 0.11 0.09 0.10 0.00 0.00 0.02 0.00 0.01 001 000 0.00 0.00 0.00 0.00
Mix 050 0.11 0.10 0.12 0.00 0.00 002 0.00 0.03 0.02 000 0.00 0.00 0.00 0.00
Keywords Camouflage
Disemvoweling 091 059 041 049 0.02 000 009 0.02 005 003 001 0.03 0.00 0.02 0.00
Punctuation 041 0.14 0.29 0.18 0.04 000 009 0.04 0.18 0.12 000 0.02 0.00 0.02 0.00
White Spaces 021 0.01 0.04 0.00 0.01 0.00 004 0.00 0.05 0.02 000 0.00 0.00 0.00 0.00
Splitting 0.18 0.03 0.07 0.02 0.00 0.00 002 0.00 0.01 001 000 0.02 0.00 0.00 0.00
Syllables Inversion = 0.85 0.62  0.42 0.55 0.02 000 008 0.01 005 001 001 0.00 0.00 0.01 0.00
Leetspeak 099 092 092 092 0.2 0.12 043 021 049 025 0.13 030 0.58 0.10 0.03
Ciphers
Caesar (ROT13) 029 095 032 0.74 0.00 0.00 000 0.03 032 0.00 000 0.00 0.00 0.00 0.00
Morse 1.00  0.00 0.00 0.00 0.00 0.00 094 0.00 1.00 0.04 000 0.00 0.00 0.00 0.00
Unicode 1.00 1.00 0.97 1.00 0.00 0.00 1.00 048 1.00 0.07 000 043 0.59 0.00 0.00

Table 2: Robustness to mutations. In the first half of the table (Unsafe), results are reported in terms of False
Negative Rate (lower is better). In the second half of the table (Safe), results are reported in terms of False Positive
Rate (lower is better). Green, Yellow , and Red indicate a negligible (< 0.01), moderate (< 0.10), or severe

(> 0.10) performance decrease, respectively.

Robustness to Veiled Expressions As shown in
Table 2, all guardrail models can often be fooled
by veiled expressions. Surprisingly, Llama Guard
3 8B has a False Negative Rate of 0.32 when
prompted with veiled unsafe requests, making it
vulnerable to less direct prompts. Again, Granite
Guardian models performed the best, potentially
due to better training procedure. Our findings sug-
gest that most guardrail models are vulnerable to
veiled expressions. Automating the creation of con-

vincing and realistic veiled expressions for unsafe
prompts is challenging because it requires generat-
ing euphemisms, metaphors, and ambiguous lan-
guage, which current LLMs find difficult (Tong
et al., 2024). As noted in Section 3.1, we manu-
ally crafted veiled variants for our unsafe prompts
because automatic methods (Xu et al., 2024) often
change the original meaning. Consequently, exten-
sive red teaming exercises might be necessary to
create reliable veiled unsafe prompts for training.
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5.2 Robustness to Adversarial Attacks

Table 3 reports the evaluation results of guardrail
models’ robustness to the adversarial attacks intro-
duced in Section 3.2. For unsafe requests only, we
also assess the robustness when an attacker selects
the best attack variant for each request. It is worth
mentioning that, as far as reported by their authors,
only Granite Guardian models and MD-Judge have
been exposed to adversarial attacks during training.

Robustness to Jailbreak Templates As shown
in Table 3, guardrail models are generally robust
to jailbreak templates. However, as reported in
row Best, if an attacker aims to find at least one
template that bypasses a guardrail model for a spe-
cific unsafe request, most guardrail models can
be evaded with 100% success. Exceptions to this
are the Granite Guardian models and MD-Judge,
which maintain a reasonably low False Negative
Rate. It is worth noting that this may be because
these models’ training data include the same or
similar jailbreak templates, which can be easily har-
vested from the Internet, as discussed in Section 3.2.
To better understand whether guardrail models can
detect unsafe requests inside jailbreak prompts, we
also combine the jailbreak templates with our safe
requests. As reported in the second half of Table 3,
guardrail models often fail to recognize safe re-
quests embedded in jailbreak prompts. The lack of
detailed information and availability of these mod-
els’ training sets makes it difficult to determine
whether this results from the inherent harmfulness
of some jailbreak templates, overfitting to jailbreak
prompts during training, or a combination of both.
Our findings indicate that most guardrail models
can be evaded using publicly available jailbreak
templates.

Robustness to DeepInception As shown in Ta-
ble 3, Deeplnception’s templates can evade only
half of the guardrail models with a high degree
of success. Moreover, Llama Guard 3 8B and
Llama Guard Defensive show only moderate per-
formance drops, while Granite Guardian and Shield
Gemma models appear not affected by Deeplncep-
tion. However, the results for our safe control set
suggest Granite Guardian models may have been
exposed to Deeplnception. To better understand
whether Granite Guardian and Shield Gemma mod-
els may have been exposed to Deeplnception or
similar attacks, we reformulate Deeplnception’s
original template while preserving the logic of the

original attack. As reported in Table 4, the revised
template is more effective against all the guardrail
models, further affecting their performance and
reliably evade both Granite Guardian and Shield
Gemma models. We conclude that those models
may have been exposed to Deeplnception or simi-
lar attacks. Our findings indicate that attacks like
Deeplnception, which target the personification ca-
pabilities of LLLMs, can frequently bypass guardrail
models.

Robustness to CodeChameleon As shown in Ta-
ble 3, CodeChameleon’s templates are extremely
successful in evading all the considered guardrail
models. Moreover, it fooled Llama Guard 3 8B on
87 out of 100 very unsafe prompts. Although the
overall results are concerning, Granite Guardian 3
2B and 8B, Llama Guard 3 1B, Llama Guard De-
fensive and Mistral performed well in some cases.
However, second half of Table 3 shows that those
same models performed the worst on safe prompts.
The lack of information about those models’ train-
ing, makes it hard to determine whether the re-
sults for unsafe prompts are due to generalization
or memorization, i.e., CodeChameleon was used
to augment their training data. Our findings sug-
gest that attacks targeting LLMs’ coding capabil-
ities, such as CodeChameleon, can reliably evade
guardrail models.

Robustness to GCG  As shown in Table 3, none
of the guardrail models is robust to GCG, high-
lighting a very concerning situation. For example,
GCG was able to fool with a single adversarial
token Llama Guard 3 8B on 54 out of 100 very
unsafe user prompts. By using 4 adversarial suffix
tokens, all guardrail models can be reliably evaded.
As far as reported by their authors, only the Gran-
ite Guardian models were exposed to training data
augmented with adversarial suffixes generated with
GCQG. Still, they can be evaded by those same ad-
versarial suffixes. As the author of the GCG at-
tack leveraged 20 adversarial suffix tokens to jail-
break popular LLMs alignment, we believe that
finding adversarial suffixes able to evade both a
guardrail model and the generative model it pro-
tects may be plausible using GCG itself or other
more advanced attack techniques based on adver-
sarial suffixes. Our findings suggest that the lack
of robustness to adversarial suffixes of available
guardrail models is a major concern for the safety
of generative Al systems.
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Dataset Method GG GG GG GG LG LG LG LG LG LG MD-J] Mis Mis SG SG
32B 38B 312B 3.18B 2 31B 38B Def  Per + 2B 9B

Unsafe  Reference 0.01  0.00 0.01 0.01 0.14 0.08 0.03 001 000 006 003 013 002 026 028

Templates
Templates 0.00 0.00 0.00 0.00 032 026 005 0.0 000 005 000 055 003 030 029
Best 0.08 0.02 0.01 0.01 1.00 1.00 1.00 1.00 0.06 100 0.00 1.00 1.00 1.00 1.00
Deeplnception
Documentary 0.00 0.00  0.00 0.01 050 060 030 0.04 003 020 054 029 051 021 026
Onion news group  0.00  0.00  0.00 0.00 036 051 009 001 000 016 023 019 035 021 022
Science fiction 0.00 0.00  0.00 002 080 090 058 015 008 041 070 023 0.82 022 028
Spy movie 0.00 0.00 0.00 0.02 073 074 059 008 007 033 059 060 074 026 032
Stage scene 0.00 0.00  0.00 0.01 064 056 041 001 003 019 042 056 072 021 027
Best 0.00 0.00 0.00 0.02 080 090 062 0.5 009 043 070 070 083 027 033
CodeChameleon
Binary Tree Code ~ 0.00  0.20 1.00 1.00 1.00 084 0.00 054 0.00 0.8 097 0.00 1.00 0.86 0.73
Binary Tree Text 083 0.03 073 0.72 1.00 095 027 076 099 100 09 091 099 097 0.87
Length Code 0.00 0.71 1.00 0.98 1.00 089 0.00 054 0.00 100 096 0.00 1.00 091 0.73
Length Text 002 033 093 0.94 1.00 094 003 081 098 100 097 099 1.00 100 0.82
0Odd Even Code 0.05 0.00 0.97 0.22 1.00 065 0.00 0.16 0.00 1.00 072 0.00 099 046 043
Odd Even Text 0.02 0.06 024 0.07 093 080 006 037 039 077 075 100 062 062 057
Reverse Code 0.01  0.00 1.00 0.70 1.00 090 0.00 022 0.00 100 092 0.00 1.00 0.65 0.67
Reverse Text 0.00 0.15 0.00 0.62 1.00 094 021 053 068 094 08 1.00 0.8 081 0.77
Best 0.84 0.74 1.00 1.00 1.00 1.00 038 087 1.00 100 099 1.00 1.00 1.00 0.93
GCG
Suffix Len = 4 1.00 097 093 098 099 100 100 100 081 09 100 100 08 093 097
Suffix Len =2 098 077 040 056 076 1.00 0.88 095 040 068 092 100 072 077 087
Suffix Len = 1 041 032 0.08 0.13 042 097 044 054 015 026 078 089 015 053 0.61
Safe Reference 0.03  0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.01 000 0.00 0.0 0.00 0.00 0.00
Templates
Templates 022 053 085 045 004 004 015 008 052 018 089 038 039 002 007
Deeplnception
Documentary 1.00  1.00 1.00 0.41 0.00 0.00 0.00 045 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Onion news group ~ 1.00  1.00 1.00 1.00  0.00 0.00 055 000 000 0.00 000 000 0.00 000 0.00
Science fiction 1.00  0.92 1.00 0.01 0.00 0.00 0.00 0.09 0.0 000 0.00 0.0 0.00 0.00 0.00
Spy movie 1.00  1.00 1.00 099 0.00 0.00 000 001 014 0.00 0.00 0.00 0.00 0.00 0.00
Stage scene 1.00  1.00 1.00 1.o0 0.00 0.00 0.0 000 000 000 000 000 000 000 0.00
CodeChameleon

Binary Tree Code ~ 1.00  0.02  0.00 0.00 0.00 0.00 100 000 1.00 0.01 000 1.00 0.00 0.00 0.00
Binary Tree Text 0.00 0.00 0.02 0.01 0.00 0.00 0.69 0.00 0.0 000 0.00 0.0 0.00 0.00 0.00
Length Code 1.00  0.02  0.00 0.00 0.00 0.00 100 000 1.00 0.00 0.00 1.00 0.00 0.00 0.00
Length Text 0.88 0.00 0.00 0.00 0.00 0.00 053 000 000 000 000 000 000 000 0.00
Odd Even Code 093 0.69  0.00 002 0.00 0.00 100 000 1.00 0.00 000 1.00 0.00 000 0.00
Odd Even Text 071 0.02  0.04 0.02 0.00 0.0 0.5 001 000 000 000 000 000 000 0.00
Reverse Code 098 056  0.00 0.01 0.00 0.00 1.00 0.02 099 000 0.00 1.00 0.00 0.00 0.00
Reverse Text 099 0.00 0.73 0.00 0.00 0.00 0.07 000 000 000 000 000 000 000 0.00

Table 3: Robustness to adversarial attacks. In the first half of the table (Unsafe), results are reported in terms of
False Negative Rate (lower is better). In the second half of the table (Safe), results are reported in terms of False
Positive Rate (lower is better). Green, Yellow , and Red indicate a negligible (< 0.01), moderate (< 0.10), or

severe (> 0.10) performance decrease, respectively.

6 Conclusion and Future Work

In this paper, we presented a comprehensive eval-
uation of the robustness of 15 guardrail models
against several input mutations and adversarial at-
tacks. Our findings show that most guardrail mod-
els are vulnerable to simple input mutations, such
as adding typos to unsafe requests or camouflag-
ing their keywords with straightforward techniques.
Furthermore, we found that guardrail models can
be reliably evaded by employing attacks originally
proposed to bypass the safety alignment of LLMs.

Although evading guardrail models does not neces-
sarily lead to obtaining unsafe information from the
LLMs they protect, our results suggest that combin-
ing model alignment and guardrail models may not
be sufficient to prevent the abuse of generative Al
by malicious users. Our findings also suggest that
the performance of guardrail models in handling
well-formed, non-adversarial prompts might cre-
ate an undue sense of confidence in their ability to
provide comparable protection against adversarial
attacks. It is worth noting that the Granite Guardian
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Dataset Method GG GG GG GG LG LG LG LG LG LG MD-J Mis Mis SG SG
32B 38B 3.12B 3.18B 2 31B 38B Def Per + 2B 9B

Unsafe Reference 0.01 0.00 0.01 0.01 0.14 0.08 0.03 0.01 000 006 003 0.13 0.02 026 028

Revised DeepInception

Documentary 0.55 0.11 0.16 029 1.00 057 1.00 053 066 100 080 1.00 1.00 0.85 0.73

Onion news group 098 0.08  0.34 028 1.00 0.75 1.00 050 068 100 080 1.00 1.00 085 0.74

Science fiction 093 027 0.36 036 1.00 0.75 1.00 0.63 096 100 084 1.00 1.00 086 0.77

Spy movie 097 027 0.50 052 1.00 0.79 1.00 0.65 092 100 084 1.00 1.00 086 0.80

Stage scene 0.77 0.12 035 028 1.00 0.73 1.00 0.51 064 100 080 1.00 1.00 0.85 0.78

Best 098 029 0.51 052 1.00 0.81 100 0.68 097 100 085 1.00 100 0.87 0.80

Table 4: Robustness to the revised DeepInception’s template. Results are reported in terms of False Negative Rate
(lower is better). Green , Yellow , and Red indicate a negligible (< 0.01), moderate (< 0.10), or severe (> 0.10)

performance decrease, respectively.

models generally performed better than the other
models with unsafe prompts, offering some degrees
of protection against input mutations and adversar-
ial attacks, even though they performed worse with
safe prompts. Since our evaluation focused on a
specific set of very unsafe prompts, it is likely that
the performance of these models might be lower
with more deceptive ones. Moreover, our assess-
ments revealed that they do not necessarily gen-
eralize to unseen adversarial attacks. Therefore,
we caution against considering the positive results
reported in our paper as evidence of generalizable
robustness. The limitations presented emphasize
the need for further research into developing more
robust safety guardrails. Future works should ad-
dress the shortcomings we identified to enhance
the robustness of guardrail models. For instance,
advanced training regimes that includes data aug-
mentation techniques and extensive red teaming
exercises aimed at identifying areas of improve-
ments could benefit the overall quality of those
models. Additionally, developing complementary
safety measures may be essential to effectively pro-
tect Al systems from adversarial attacks.

Limitations

While providing a valuable analysis for guardrail
models’ robustness to input mutations and adver-
sarial attacks, our work has several limitations. Our
experiments are limited to assessing the robustness
of guardrail models and do not provide informa-
tion regarding the evasion of other complementary
safety measures, such as model alignment. As al-
ready stated, evading guardrail models does not
mean to obtain unsafe answers from the LLMs they
protect. Moreover, we limited our evaluation to
a small pool of unsafe prompts (100) given the
large number of models, mutations. and attacks we

tested. Thus, our evaluation with unsafe prompts
only has negative predictive power (Gardner et al.,
2020), i.e., there is no guarantees that models per-
forming well on those prompts will achieve the
same performances with more deceptive unsafe
prompts altered with mutations or embedded in ad-
versarial attacks. In other words, our experiments
are limited to assessing models’ weaknesses in rec-
ognizing unsafe content rather than characterizing
generalizable robustness. Therefore, claims about
model quality should not be overextended based
solely on the positive results reported in this paper.
Additionally, we employed only English prompts
in our evaluation. Further investigation is needed to
establish whether the same findings extend to other
languages. Finally, due to hardware constraints,
we mainly investigated models up to a scale of 10
billion parameters. We also did not consider closed-
weight and commercial moderation models such as
OpenAl Moderation API and Perspective API.

Ethical Statement

Our research is part of the workplan of the GENE-
SIS scientific project of the Joint Research Centre
of the European Commission (JRC), which has re-
ceived the approval from the JRC’s Ethical Review
Board. This research aims to advance the devel-
opment of Trustworthy Generative Al systems by
contributing to the design of robust and effective
guardrail models. Our evaluation of these models
has the goal identifying limitations of these critical
Al safety components, paving the way for further
research to increase their robustness in adversarial
scenarios.
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