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Abstract
Large language models demonstrate remark-
able reasoning capabilities but often produce
unreliable or incorrect responses. Existing veri-
fication methods are typically model-specific or
domain-restricted, requiring significant compu-
tational resources and lacking scalability across
diverse reasoning tasks. To address these limi-
tations, we propose VerifiAgent, a unified veri-
fication agent that integrates two levels of verifi-
cation: meta-verification, which assesses com-
pleteness and consistency in model responses,
and tool-based adaptive verification, where Ver-
ifiAgent autonomously selects appropriate ver-
ification tools based on the reasoning type,
including mathematical, logical, or common-
sense reasoning. This adaptive approach en-
sures both efficiency and robustness across dif-
ferent verification scenarios. Experimental re-
sults show that VerifiAgent outperforms base-
line verification methods (e.g., deductive ver-
ifier, backward verifier) among all reasoning
tasks. Additionally, it can further enhance rea-
soning accuracy by leveraging feedback from
verification results. VerifiAgent can also be
effectively applied to inference scaling, achiev-
ing better results with fewer generated samples
and costs compared to existing process reward
models in the mathematical reasoning domain.1

1 Introduction

Large language models (LLMs) have demonstrated
significant capabilities in natural language rea-
soning tasks, exhibiting potential to solve com-
plex problems across diverse domains (Yang et al.,
2024a; DeepSeek-AI et al., 2025; Dubey et al.,
2024; OpenAI, 2023). However, despite their ad-
vanced reasoning abilities, these models often pro-
duce responses that are unreliable or incorrect,
which poses substantial challenges for practical
applications that require high precision and trust-
worthiness (Augenstein et al., 2024; Huang et al.,

1Code is available at https://github.com/Jiuzhouh/
VerifiAgent.

2024). To address this critical issue, several verifi-
cation methods have been proposed, ranging from
task-specific verifiers to generalised verification
methods leveraging prompting techniques.

Training a task-specific verifier to verify the out-
put of LLM requires specific training data. For
instance, Ni et al. (2023) train a verification model
that judges language-to-code outputs based on
both program text and execution results. Liang
et al. (2024) design verifiers trained on outputs
from multiple reasoning paradigms, using correct-
ness signals for improvement. Han et al. (2024b)
train a lightweight verifier for improving semantic
graph generation in text-to-graph tasks. Similarly,
Thatikonda et al. (2024) train a verifier that corrects
potential syntactic and semantic first-order logic
translation errors. Nevertheless, these existing so-
lutions typically face limitations such as domain
restriction, computational inefficiency, and lack of
scalability when handling varied reasoning tasks.
Table 1 demonstrates a feature comparison of vari-
ous verification methods.

In this paper, we propose VerifiAgent, a uni-
fied verification agent designed specifically to over-
come these limitations by offering a generalisable
and efficient verification framework. Unlike prior
methods, VerifiAgent adopts a two-layer verifi-
cation mechanism, comprising meta-verification
and tool-based adaptive verification. The meta-
verification layer ensures completeness and logi-
cal consistency of responses, while the tool-based
adaptive verification autonomously selects appro-
priate external tools (e.g., Python interpreters, sym-
bolic solvers, search engines) to deal with different
reasoning types, including mathematical, logical,
commonsense, and hybrid reasoning tasks.

Our approach not only achieves superior ver-
ification accuracy compared to existing baseline
methods, such as deductive verifier (Ling et al.,
2023), backward verifier (Weng et al., 2023), but
also enhances reasoning accuracy by integrating
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Method Training-free Generalised Tool-based Fine-grained Feedback

DIVERSE (Li et al., 2023) × × × ×
PiVe (Han et al., 2024b) × × × ✓
Math/Code-Rev (Liang et al., 2024) × × ✓ ×
LEVER (Ni et al., 2023) × × ✓ ×
CoVe (Dhuliawala et al., 2024) ✓ × × ✓
CSV(Zhou et al., 2024) ✓ × ✓ ✓
Deductive Verifier (Ling et al., 2023) ✓ ✓ × ×
Backward Verifier (Weng et al., 2023) ✓ ✓ × ×
VerifiAgent (ours) ✓ ✓ ✓ ✓

Table 1: Comparison of various verification methods.

detailed feedback derived from the verification pro-
cess. Furthermore, VerifiAgent can be effectively
applied to inference scaling, requiring significantly
fewer computational resources compared to stan-
dard Process Reward Models (PRMs), thereby pro-
viding a practical approach to improve LLM per-
formance during inference. Through extensive ex-
periments across three types of reasoning tasks,
we summarise two key empirical findings: 1) An
LLM reasoner can improve via inference scaling
methods like Majority Vote, PRMs, or VerifiAgent,
but VerifiAgent achieves higher accuracy at lower
cost. 2) VerifiAgent’s capabilities scale alongside
improvements in its backbone LLM, enabling con-
sistent performance gains on the same reasoner.

2 Related Work

2.1 LLMs as Verifiers

Leveraging the prompting and in-contenxt learning
ability of LLMs to verify the outputs of LLMs pro-
vides a generalised approach of verification. Wu
et al. (2024); Weng et al. (2023) show that LLMs
can refine reasoning chains via backward verifica-
tion or masked condition checking, while Ling et al.
(2023) decompose solutions into verifiable steps
using a Natural Program format. Dhuliawala et al.
(2024) propose Chain-of-Verification, which de-
composes the verification into a sequence of ques-
tions, improving factual consistency through multi-
step prompting. Hong et al. (2024) evaluate LLMs’
ability to detect logical errors, finding that while
models can catch some flaws, their verification is
often shallow. Stechly et al. (2024) further investi-
gate the reliability of self-critique, demonstrating
that performance often degrades when doing self-
verification without external grounding.

To enhance the verification quality of LLMs,
some methods integrate external tools. Zhou
et al. (2024) introduce code-based self-verification,
which prompts GPT-4 Code Interpreter to evaluate
and fix its answers by executing code and inter-
preting the output. Similarly, Gou et al. (2024)
propose CRITIC, a framework where LLMs inter-

act with tools (e.g., calculators, search engines) to
critique and revise their own outputs, leading to
improved factuality and reasoning. Different from
these works, our VerifiAgent provides a generalised
verification agentic framework adaptable to diverse
reasoning tasks with fine-grained feedback.

A broader concept of verification by LLMs is re-
ferred to LLM-as-a-Judge, where LLMs are used as
general evaluators for tasks like response scoring,
pairwise comparison, and content moderation. As
surveyed by Gu et al. (2024); Li et al. (2024), LLM-
as-a-Judge systems perform holistic evaluations, as
a scalable and consistent alternative to human eval-
uation, applicable in model benchmarking, safety
assessment, and alignment data labelling. VerifiA-
gent can be viewed as a specialised type of LLM-as-
a-Judge system, specifically designed to evaluate
the correctness of certain reasoning tasks through
tool-based verification mechanisms.

2.2 Scaling Test-Time Compute

Scaling test-time compute refers to allocating more
computational budget during inference via sam-
pling, deeper reasoning, or adaptive search to
boost model accuracy. Brown et al. (2024) present
a comprehensive study of inference-time scaling
through repeated sampling, demonstrating that cov-
erage—the probability of generating at least one
correct answer—scales log-linearly with the num-
ber of samples. Stroebl et al. (2024) theoreti-
cally analyse the limits of resampling, showing
that imperfect verifiers lead to diminishing returns,
especially when false positives dominate. Simi-
larly, Setlur et al. (2025a) argue that verifier-based
strategies scale more robustly than verifier-free
ones, particularly when base models exhibit anti-
concentrated output distributions.

The growing use of Process Reward Models
(PRMs) suggests that fine-grained supervision over
intermediate reasoning steps can improve model re-
liability (Lightman et al., 2024; Wang et al., 2024;
Zhang et al., 2025). PRMs offer another strategy
for scaling test-time compute by enhancing Best-
of-N sampling (Snell et al., 2024). As a verifier,
VerifiAgent does not require any training process,
eliminating the need for collecting task-specific
training data. By leveraging frozen LLMs, it can
be integrated into test-time compute scaling strate-
gies, enhancing the accuracy of LLM outputs.
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3 VerfiAgent

VerifiAgent is a plug-and-play verification frame-
work that empowers frozen LLMs to utilise exter-
nal mechanisms to verify the correctness of solu-
tions of diverse reasoning tasks. As illustrated in
Figure 1, VerifiAgent adopts a two-layer verifica-
tion mechanism, which contains two levels of veri-
fication. The first level is to do a Meta Verification,
and the second level is to do a Tool-based Adap-
tive Verification. The solution will be evaluated
sequentially through the two layers. The second-
level verification can further validate the results
from meta-verification, enhancing the accuracy of
the verification results. With this two-layer veri-
fication mechanism, the VerifiAgent can provide
fine-grained feedback of the verification process.

3.1 Meta Verification

The Meta Verification aims to verify two aspects
of the solution: completeness and consistency.
The completeness refers to a solution that is self-
contained, fully addresses every part of the ques-
tion, and contains a clear result or conclusion. The
consistency refers to reasoning that follows a log-
ical structure with no jumps, gaps, or inconsis-
tencies. This initial layer acts as a foundational
check, preventing incomplete or inconsistent solu-
tions from progressing further. Through meta verifi-
cation, VerifiAgent ensures that only solutions with
structural integrity and coherent reasoning proceed
to the next tool-based adaptive verification.

Since the solutions of different types of reason-
ing tasks may have different structures, to make
VerifiAgent adaptable to diverse solutions, we lever-
age a unified way to rewrite the solutions in the
meta verification phase. Specifically, the agent will
first list all the known conditions and the final ob-
jective provided in the problem, then divide the
solution into individual and explicit logical steps.
This will be beneficial for the meta verification and
the following tool-based adaptive verification. See
Appendix E for examples.

3.2 Tool-based Adaptive Verification

After the meta verification stage, the solution en-
ters the Tool-based Adaptive Verification phase.
This level leverages external tools, such as Python
program interpreter, search engine and symbolic
solver, to cross-check the correctness of the solu-
tion. The agent will first solve the question using
appropriate tools, and then verify the results by

comparing them with the original solution. Unlike
the meta verification stage, which evaluates general
reasoning quality, this phase evaluates factual and
computational accuracy.

VerifiAgent dynamically selects the most suit-
able verification tool based on the nature of the task
and instructions. For instance, in mathematical rea-
soning, it may utilise a Python interpreter to verify
calculations, while for knowledge-based common-
sense reasoning, it may query a search engine to
gather relevant information. For hybrid reasoning
tasks, it can combine multiple tools to ensure com-
prehensive verification. Additionally, VerifiAgent
autonomously determines the required number of
external tool calls, continuing until it gathers suffi-
cient information to validate the answer.

When VerifiAgent selects a tool for verification,
the environment returns the corresponding execu-
tion result. Based on this observation, the agent
iteratively determines its next action until the veri-
fication process is complete. The VerifiAgent not
only ensures the accuracy of solutions but also pro-
vides a transparent and interpretable verification
process for natural language reasoning tasks. See
Appendix E for examples.

3.3 Fine-grained Feedback
Based on the two levels of verification, Veri-
fiAgent provides a final evaluation result (i.e.,
Correct/Incorrect) to indicate the correctness
of the solution. In addition to the verification result,
VerifiAgent also generate a Vscore as a confidence
score of the verification. Vscore is calculated by
applying the softmax function to the log probabil-
ity of the token (Correct/Incorrect) and the log
probabilities of the top 5 alternative tokens. Specif-
ically:

Vscore =
exp (p (t))∑5

k=1 exp (p (tk))

where Vscore represents the confidence score for
the verification result token t. the term p (t) de-
notes the log probability of the token t generated
by the LLM. p (tk) is for k = 1 to 5 represents the
log probabilities of the top five predicted tokens at
the verification result token position. This equation
ensures that the confidence score reflects the rela-
tive likelihood of the chosen token compared to the
top alternatives, effectively normalising the scores
within the range of 0 to 1.

Furthermore, when a solution is deemed incor-
rect, VerifiAgent provides fine-grained feedback
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The answer is complete and logically consistent. Next, let’s perform a Tool Verification.
For this reasoning task, I will use … to verify …

The tool execution result indicates that … Based on the two verification results …

To verify the correctness of the given answer, let’s perform a Meta Verification first.
1. List all the known conditions and final objective provided in the problem …
2. Divide the answer into individual and explicit logical steps …
Completeness: Check if it contains a clear result or conclusion to the question…
Consistency: Check whether each step logically follows from the previous one …

VerifiAgent

Mathematical Reasoning

Commonsense Reasoning

Logical Reasoning

Hybrid Reasoning

Evaluation Result

Error Reason

Revision Method

Verification Score

Output

Feedback

Reasoning Task & Solution

Input

Summarisation:
Evaluation Result: [Correct/Incorrect]
Error Reason: There is an error in Step … , and this error is because …
Revision Method: To avoid making the error again, …
Verification Score: …

Search EnginePython Interpreter Theorem Prover

Figure 1: An overview of VerifiAgent. Given a reasoning task and a candidate solution, VerifiAgent leverages two
levels of verification: (1) meta verification – verifying the completeness and consistency of the solution and (2)
tool-based adaptive verification – autonomously selecting appropriate tools to do the correctness verification. The
VerifiAgent can provide fine-grained feedback about the verification process based on the instruction in the prompt.

about the verification process based on the instruc-
tion in the prompt. This feedback includes the iden-
tified error reason, derived from the two levels of
verification, and a potential revision method that in-
corporates observations from tool execution results
(See Appendix E for examples). Such feedback
can be leveraged to refine and enhance the solution,
improving the accuracy of reasoning tasks.

4 Experiment

4.1 Baseline and Experimental Setup

Datasets. We evaluate VerifiAgent on three natural
language reasoning tasks, including mathematical
reasoning, logical reasoning, commonsense reason-
ing, and hybrid reasoning. Specifically, for math-
ematical reasoning we use GSM8K (Cobbe et al.,
2021) and MATH (Hendrycks et al., 2021), for log-
ical reasoning we use FOLIO (Han et al., 2024c)
and ProverQA (Qi et al., 2025), for commonsense
reasoning we use HotpotQA (Yang et al., 2018)
and StrategyQA (Geva et al., 2021), for hybrid rea-
soning we use ReWild (Yang et al., 2024c). The
statistics of the datasets are shown in Appendix A.
Baselines. Since VerifiAgent is a training-free and
generalised approach, we compare it against base-
line methods that are similarly prompting-based
and generalised. Specifically:
• Vanilla Verifier. Vanilla Verifier employs a

structured prompt to instruct the LLM to verify
a solution given a problem, without relying on

specialised mechanisms (Kamoi et al., 2024).
• Deductive Verifier. Deductive Verifier (Ling

et al., 2023) enables the LLM to carry out ex-
plicit and rigorous deductive reasoning to evalu-
ate the correctness of a solution. It decomposes
the verification process into a sequence of step-
by-step subprocesses using Natural Program,
a natural language-based deductive reasoning
format, to facilitate the breakdown of logical
steps in a step-by-step manner.

• Backward Verifier. Backward Verifier (Weng
et al., 2023) appends the predicted answer to the
question while masking the original condition,
then prompts the LLM to predict the masked
condition. Verification is conducted by com-
paring the predicted condition with the original
one. If the two conditions align, the solution
is deemed correct; otherwise, inconsistencies
indicate errors in the provided solution.

Models. We explored various combinations of
backbone LLMs for both the Reasoner and Ver-
ifiAgent. For the Reasoner, we utilise GPT-4o, o3-
mini, and Llama-3.3-70B-Instruct-Turbo, while for
the VerifiAgent, we employ GPT-4o and o1-mini.
In our experiments, unless explicitly stated other-
wise, both the Reasoner and VerifiAgent default to
GPT-4o as their backbone LLMs.

4.2 Main Result

Table 2 shows the performance of VerifiAgent
compared to baseline methods (Vanilla, Deductive,
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Type Dataset
Baselines VerifiAgent

Vanilla Verifier Deductive Verifier Backward Verifier

Acc Pre Rec Acc Pre Rec Acc Pre Rec Acc Pre Rec

Mathematical GSM8K 0.93 0.96 0.96 0.95 0.96 0.99 0.95 0.96 0.98 0.96 0.96 1.00
MATH 0.75 0.73 0.86 0.80 0.76 0.86 0.82 0.80 0.88 0.85 0.86 0.92

Logical FOLIO 0.75 0.78 0.96 0.73 0.73 0.95 0.74 0.76 0.96 0.76 0.78 0.97
ProverQA 0.75 0.77 0.97 0.74 0.75 0.98 0.75 0.78 0.96 0.77 0.82 0.95

Commonsense StrategyQA 0.78 0.79 0.92 0.75 0.82 0.92 0.79 0.80 0.94 0.84 0.85 0.95
HotpotQA 0.56 0.53 0.91 0.56 0.53 0.96 0.57 0.54 0.90 0.61 0.56 0.92

Hybrid ReWild 0.76 0.88 0.82 0.61 0.91 0.60 0.74 0.87 0.84 0.78 0.88 0.89

Table 2: Main results of VerifiAgent on different reasoning tasks. The evaluation metrics are accuracy (Acc),
precision (Pre), and recall (Rec). Bold shows the best result for each row.

and Backward Verifiers) across different reason-
ing tasks. Overall, VerifiAgent consistently out-
performs baselines, excelling in accuracy while
maintaining competitive precision and recall across
mathematical, logical, commonsense, and hybrid
reasoning tasks. Specifically, for mathematical rea-
soning tasks, VerifiAgent attains the highest accu-
racy (0.96 and 0.85) and recall scores (1.00 and
0.92) on GSM8K and MATH datasets, respectively.
In logical reasoning, VerifiAgent demonstrates im-
provements, particularly on FOLIO (accuracy 0.76,
recall 0.97) and ProverQA (precision 0.82). For
commonsense reasoning tasks, VerifiAgent signifi-
cantly outperforms baselines on StrategyQA with
accuracy and precision of 0.84 and 0.85, respec-
tively, while remaining competitive on HotpotQA.
Finally, on the hybrid reasoning dataset ReWild,
VerifiAgent achieves the best accuracy (0.78) and
recall (0.89), highlighting its verification capabili-
ties in handling complex reasoning tasks. To inves-
tigate the impact of different backbone LLMs on
VerifiAgent’s performance, we further evaluate Ver-
ifiAgent using o1-mini as an alternative backbone
model. The results indicate that the verification
capability of VerifiAgent scales effectively with
the underlying backbone model’s capacity. Due
to the page limit, we put the detailed results in
Appendix C.

4.3 Inference Scaling with VerifiAgent

Inference scaling aims at enhancing reasoning per-
formance by utilising increased computational re-
sources during the inference stage. However, this
approach inherently requires effective verification
to ensure the accuracy and reliability of generated
answers (Setlur et al., 2025b). Due to the verifi-
cation ability of VerifiAgent, it naturally comple-

ments inference scaling approaches by serving as
an effective verifier during the inference process.
Specifically, we first sample an output from the
LLM. If this output passes verification by the Veri-
fiAgent, the process terminates; otherwise, we con-
tinue sampling additional candidate outputs until
one passes verification or the maximum number of
samples is reached. For cases reaching the max-
imum number of samples, we select the final an-
swer using a majority vote approach. We compare
our VerifiAgent-based inference scaling method
with the standard Majority Vote approach that does
not employ a verifier. Majority Vote aggregates
multiple sampled responses directly from reason-
ers without any verification. Table 3 demonstrates
the performance across three reasoning datasets
(MATH, ProverQA, and StrategyQA) using vari-
ous combinations of reasoners (GPT-4o, o3-mini,
and Llama-3.3-70B-Instruct-Turbo) and VerifiA-
gent variants (GPT-4o and o1-mini).

Across all datasets and reasoners, inference scal-
ing with VerifiAgent consistently outperforms Ma-
jority Voting, achieving higher accuracy with fewer
samples and less cost (See Appendix D). Notably,
o3-mini reasoner achieves the highest performance
on MATH and ProverQA but the lowest on Strate-
gyQA among all reasoners, suggesting that o3-mini
is more proficient in mathematical and logical rea-
soning than in knowledge-intensive commonsense
reasoning tasks. We identify two key findings: (1)
When the reasoner and VerifiAgent are the same
model (e.g., GPT-4o) or have comparable capac-
ities (e.g., Llama-3.3-70B-Instruct-Turbo paired
with GPT-4o), integrating VerifiAgent significantly
enhances performance, with further improvement
achievable by employing a stronger VerifiAgent
(e.g., o1-mini). (2) When the reasoner (o3-mini)
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Method MATH ProverQA StrategyQA

GPT-4o Reasoner 69.4(1) 75.3(1) 84.2(1)
- IS w/ Majority Vote @10 73.5(10) 77.0(10) 85.6(10)
- IS w/ VerifiAgent (GPT-4o) 74.0(1.5) 77.3(1.6) 86.0(1.3)
- IS w/ VerifiAgent (o1-mini) 78.0(1.8) 77.7(1.3) 87.3(1.2)

o3-mini Reasoner 87.9(1) 78.3(1) 76.4(1)
- IS w/ Majority Vote @8 91.1(10) 80.0(10) 78.2(10)
- IS w/ VerifiAgent (GPT-4o) 88.3(1.3) 79.1(1.1) 78.6(1.3)
- IS w/ VerifiAgent (o1-mini) 91.4(1.1) 80.7(1.1) 79.0(1.6)

Llama-3.3-70B-Instruct-Turbo Reasoner 62.3(1) 70.6(1) 83.8(1)
- IS w/ with Majority Vote @10 68.3(10) 71.7(10) 84.7(10)
- IS w/ VerifiAgent (GPT-4o) 69.7(2.0) 72.0(1.3) 85.1(1.3)
- IS w/ VerifiAgent (o1-mini) 71.1(2.2) 74.0(1.3) 85.1(1.4)

Table 3: Results of different Reasoners with Inference Scaling (IS) methods on three datasets. The number in the
bracket denotes the average number of samples for each question.

surpasses the VerifiAgent (GPT-4o) in capability,
the performance gain is limited. However, pair-
ing a strong reasoner with a stronger VerifiAgent
(o1-mini) substantially enhances performance.

PRMs provide another approach to inference
scaling. We investigated two open-source PRMs
specifically designed for the MATH dataset:
Qwen2.5-Math-PRM-7B and Qwen2.5-Math-7B-
PRM800K, which fine-tune Qwen2.5-Math-7B-
Instruct using synthetic data from Qwen mod-
els (Zhang et al., 2025) and PRM800K (Light-
man et al., 2024), respectively. These PRMs as-
sign scores to each reasoning step, and we use the
last step score as the final response score. Follow-
ing previous studies (Zhang et al., 2025; Light-
man et al., 2024; Yang et al., 2024b; Wang et al.,
2024), we evaluate the PRMs using the Best-of-
N sampling strategy, selecting the highest-scored
response from N candidates according to a PRM.
The evaluation results for the GPT-4o and Qwen2.5-
Math-7B-Instruct reasoners are shown in Figure 2.
As the number of samples increases, both Majority
Vote and Best-of-N sampling strategies consistently
improve in accuracy. When sampling 10 responses,
the Best-of-N method’s accuracy approaches that
of VerifiAgent, which notably achieves comparable
performance with significantly fewer average sam-
ples (1.5 and 1.6 on GPT-4o reasoner and Qwen2.5-
Math-7B-Instruct reasoner, respectively).

Interestingly, the two PRMs exhibit distinct be-
haviours depending on the reasoner. For the GPT-
4o reasoner, Qwen2.5-Math-7B-PRM800K sig-
nificantly outperforms Qwen2.5-Math-PRM-7B,
which even underperforms relative to the Majority

MATH ProverQA StrategyQA

Init. Reasoning Acc. 69.4 75.3 84.3

Feedback Type Precaution-Based Feedback

Verification Result 69.7 76.0 84.3
+ Error Reason 74.9 77.0 85.6
+ Mitigation Method 73.4 77.6 86.0

Feedback Type Post-Editing-Based Feedback

Verification Result 71.7 77.3 84.7
+ Error Reason 72.3 74.7 84.3
+ Mitigation Method 72.6 74.3 83.8

Table 4: Results of feedback utilisation on GPT-4o.

Vote baseline. However, for the Qwen2.5-Math-
7B-Instruct reasoner, Qwen2.5-Math-PRM-7B out-
performs Qwen2.5-Math-7B-PRM800K at 10 sam-
ples. These results indicate that GPT-4o benefits
more from Qwen2.5-Math-7B-PRM800K, whereas
Qwen2.5-Math-7B-Instruct gains greater improve-
ments from Qwen2.5-Math-PRM-7B. We hypoth-
esise that the linguistic discrepancies may affect
the performance of PRMs. Specifically, Qwen2.5-
Math-7B-PRM800K utilises synthetic data from
GPT-style LLMs for training, while Qwen2.5-
Math-PRM-7B employs data generated by Qwen-
style LLMs for training.

4.4 Exploration on Feedback Utilisation

VerifiAgent provides fine-grained feedback during
verification, which includes an explicit error rea-
son and a suggested revision method for enhanc-
ing solutions. To evaluate the effectiveness of this
feedback, we conducted experiments using two dis-
tinct methods: precaution-based and post-editing-
based feedback. In the precaution-based method,
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Figure 2: Results of GPT-4o Reasoner and Qwen2.5-
Math-7B-Instruct Reasoner with different inference scal-
ing methods on MATH. VerifiAgent uses GPT-4o as the
backbone LLM.

the LLM leverages feedback from previous verifica-
tion attempts to proactively generate a new solution.
Conversely, the post-editing-based method allows
the LLM to directly refine its previous incorrect
solution based on feedback provided.

We explored three feedback settings for each
method: (1) verification result only (i.e., simply
indicating “Incorrect”), (2) verification result with
error reason, and (3) verification result with both er-
ror reason and revision method. Experiments were
conducted on instances initially identified as “Incor-
rect” by VerifiAgent, and the results are presented
in Table 4.

Overall, precaution-based feedback consistently
outperforms post-editing-based feedback, indicat-
ing the inherent difficulty for LLMs to effectively
correct previously incorrect responses. Addition-
ally, within precaution-based feedback, providing
richer information typically yields greater improve-
ments. For post-editing-based feedback, however,
mathematical reasoning tasks benefit from more
detailed feedback, whereas logical and common-
sense reasoning tasks achieve better performance

Method MATH ProverQA StrategyQA

GPT-4o (Tool-use) 56.9 47.8 83.5
GPT-4o (Tool-use) + Feedback 61.5 50.3 85.7
GPT-4o (CoT) 69.4 75.3 84.3
GPT-4o (CoT) + Feedback 73.4 77.6 86.0

Table 5: Resutls of GPT-4o reasoner using CoT and
Tool with feedback on three different reasoning tasks.

Dataset (Method) Acc Pre Rec

MATH (CoT) 0.85 0.86 0.92
MATH (Tool-use) 0.82 0.83 0.90

ProverQA (CoT) 0.77 0.82 0.95
ProverQA (Tool-use) 0.75 0.79 0.93

StrtegyQA (CoT) 0.84 0.85 0.95
StrtegyQA (Tool-use) 0.80 0.84 0.92

Table 6: Results of VerifiAgent evaluating CoT and
Tool-use outputs on different reasoning tasks.

with simpler, less detailed feedback.

4.5 VerifiAgent on Tool-based Reasoner

To evaluate the effectiveness of VerifiAgent on tool-
based reasoning tasks, we conducted experiments
using a tool-using reasoner with access to the same
tools as VerifiAgent. Specifically, we evaluated
GPT-4o on MATH, ProverQA, and StrategyQA,
where the model was instructed to use the Python
interpreter, Z3 Theorem Prover, and Search Engine,
respectively. We then applied VerifiAgent to these
outputs, leveraging its feedback to further improve
performance. The results are shown in Table 5.

Interestingly, the tool-use baseline does not
outperform CoT, especially in math and logic
reasoning. This trend is also observed in prior
works (Yao et al., 2023; Han et al., 2024a), where
tool-augmented methods such as ReAct can under-
perform compared to CoT. We hypothesise this is
due to several factors: (1) For simpler problems,
LLMs may already solve them accurately via CoT,
and mandatory tool use may introduce unnecessary
complexity and more opportunities for errors. (2)
For more difficult tasks, the LLM may still struggle
to solve them effectively, even with tools. (3) The
external knowledge from inaccurate tool-use can
sometimes mislead the LLM’s correct prior knowl-
edge. Despite these challenges, integrating Veri-
fiAgent feedback consistently improves tool-use
accuracy across all datasets, though results still lag
behind CoT+Feedback in math and logic. For com-
monsense tasks (StrategyQA), tool-use approaches
CoT+Feedback performance.
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Figure 3: The floating bar chart comparing Vscore distri-
butions (mean ± std) for correct and incorrect solutions
across three datasets. The horizontal grey line indicates
the mean.
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Figure 4: The pie charts showing the relative usage
frequency of three different tools by the VerifiAgent
across four types of reasoning tasks.

Method MATH ProverQA StragegyQA

Acc Pre Rec Acc Pre Rec Acc Pre Rec

Vanilla Verifier 0.75 0.73 0.86 0.75 0.77 0.97 0.78 0.79 0.92
Deductive Verifier 0.80 0.76 0.86 0.74 0.75 0.98 0.75 0.82 0.92
Backward Verifier 0.82 0.80 0.88 0.75 0.78 0.96 0.79 0.80 0.94

VerifiAgent 0.85 0.86 0.92 0.77 0.82 0.95 0.84 0.85 0.95
- w/o meta v. 0.79 0.78 0.96 0.74 0.81 0.90 0.83 0.83 0.94
- w/o tool v. 0.75 0.75 0.98 0.74 0.75 0.98 0.78 0.80 0.96

Table 7: Ablation study results of VerifiAgent.

We also measured VerifiAgent’s verification per-
formance on both CoT and tool-use outputs, shown
in Table 6. While performance is slightly lower
for tool-use outputs, which is expected, since Ver-
ifiAgent is not designed specifically for program
or tool-use evaluation. This points an important
direction for future work, enhancing VerifiAgent’s
robustness in verifying tool-based reasoning.

4.6 Ablation Study

Meta verification and tool verification are two es-
sential components of VerifiAgent. To evaluate the
individual contributions of these components, we
conducted an ablation study, with results presented
in Table 7. Results demonstrate that removing ei-
ther meta verification or tool verification consis-
tently reduces VerifiAgent’s performance across all
datasets. Specifically, omitting meta verification
leads to noticeable declines in overall accuracy,
while removing tool verification results in even
more substantial performance reductions, bringing
the performance close to baseline levels. Addition-
ally, tool verification tends to enhance accuracy
and precision, whereas meta verification primar-
ily improves recall. These findings underscore the
complementary roles of meta and tool verification,
with each contributing uniquely to the effectiveness
of VerifiAgent.

5 Analysis

Verification Score Visualisation. Figure 3 visu-
alises the Vscore for correct and incorrect solutions
across three datasets. As illustrated, the mean
Vscore for correct solutions is slightly higher than
for incorrect ones on all the reasoning tasks. Since
Vscore represents the confidence of the verification
result, this indicates that the VerifiAgent is more
confident when identifying correct solutions com-
pared to incorrect ones. Additionally, the consis-
tently lower variance in Vscore among correct solu-
tions further supports the reliability of the agent in
verifying correct responses.
Tool Usage Analysis. VerifiAgent autonomously
determines the reasoning type of a task and selects
the appropriate tool for verification. Figure 4 illus-
trates tool usage across four reasoning task types.
For the MATH dataset (mathematical), the Python
Interpreter is predominantly used (98.6%), with
minimal reliance on the Symbolic Solver (1.4%),
reflecting the computational nature of the task.
StrategyQA (commonsense) exclusively relies on
the Search Engine (100%), highlighting its depen-
dence on external knowledge for the verification.
ProverQA (logical) solely utilises the Symbolic
Solver (100%), aligning with its need for logical
and symbolic reasoning. ReWild (hybrid) shows a
more balanced tool distribution, primarily using the
Python Interpreter (84.5%), supplemented by the
Symbolic Solver (11.2%) and the Search Engine
(4.3%). The results demonstrate that the VerifiA-
gent effectively selects appropriate external tools
based on the nature of the reasoning task.
Error Analysis. To further investigate the capa-
bility of VerifiAgent, we conducted an error anal-
ysis on different types of questions. The MATH
dataset contains seven types of math problems: Al-
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Figure 5: The proportion of different question types among VerifiAgent’s incorrectly verified examples by GPT-4o
Reasoner. From top to bottom, the bars represent MATH, ProverQA, and StrategyQA datasets, respectively. For
MATH and ProverQA, the number of questions in each type is the same. For the imbalanced StrategyQA, the
proportion is normalised by the total number of questions per difficulty level.

gebra (Alg), Counting&Probability (Count&Prob),
Geometry (Geo), Intermediate Algebra (Int Alg),
Number Theory (Num Thr), Prealgebra (PreAlg)
and Precalculus (PreCal). The ProverQA classifies
the question into three types based on the difficulty
level: Hard, Medium and Easy. Although Strate-
gyQA does not explicitly label questions by diffi-
culty, each question includes a decomposition into
sub-questions that reflect its reasoning pathway.
We used the number of decomposed sub-questions
(ranging from 1 to 5) as an indicator of question
difficulty, classifying them into five levels (Level 1
through Level 5).

Figure 5 illustrates the distribution of question
types among cases where VerifiAgent provided in-
correct verifications. In the MATH dataset, Pre-
calculus and Geometry questions accounted for
the highest proportion of errors, suggesting these
question types pose greater verification challenges
for VerifiAgent. Errors in Counting & Probabil-
ity, Prealgebra, Intermediate Algebra, and Algebra
occurred at similar rates, while VerifiAgent per-
formed best on Number Theory problems. This
trend is in line with the capability of the backbone
LLMs. See Appendix B for the error distributions
on each type of question.

For ProverQA, VerifiAgent’s verification accu-
racy correlated clearly with question difficulty,
making the highest number of errors on Hard ques-
tions and the fewest on Easy questions. Conversely,
no clear error pattern emerged for StrategyQA.
Since verification relies mainly on search engines
to retrieve factual knowledge, VerifiAgent appears
capable of accessing sufficient information irre-
spective of question difficulty, indicating that the
complexity of questions in StrategyQA has mini-
mal impact on verification performance.

6 Conclusion

In this paper, we introduced VerifiAgent, a uni-
fied verification agent that verifies and improves

outputs from LLMs across mathematical, logical,
commonsense, and hybrid reasoning tasks. Ver-
ifiAgent employs a two-layer verification frame-
work combining meta-verification, which assesses
completeness and consistency, and adaptive tool-
based verification tailored to each reasoning type.
Experimental results demonstrate that VerifiAgent
consistently outperforms baseline methods in ver-
ification accuracy. Additionally, VerifiAgent can
be integrated with inference scaling approaches,
achieving improved performance with fewer sam-
ples than PRMs. Overall, VerifiAgent provides an
efficient and scalable solution, enhancing the relia-
bility and trustworthiness of large language model
reasoning.

VerifiAgent heavily relies on the instruction-
following capabilities of the backbone LLM, mean-
ing that only models proficient at accurately in-
terpreting and executing instructions can serve
effectively as the backbone. This reliance indi-
cates the importance of selecting suitable backbone
LLMs to ensure optimal performance. VerifiA-
gent currently supports only three verification tools
(Python interpreter, search engine, and symbolic
solver). Expanding its capabilities by integrating
additional verification tools could further enhance
VerifiAgent’s adaptability and effectiveness across
a broader range of reasoning scenarios.

Limitations

Our study has two primary limitations. First, due
to the significant computational costs associated
with accessing and running LLMs, we were un-
able to evaluate a comprehensive range of models,
necessitating a selection of representative models.
Second, the current implementation of VerifiAgent
only supports three tools. While these demonstrate
its core capabilities, we plan to expand the toolset
in future work to enhance its versatility and appli-
cability across more verification scenarios.
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Dataset GSM8K MATH FOLIO ProverQA StrategyQA HotpotQA ReWild

Size 300 350 204 300 229 200 491

Table 8: The statistics of the datasets.

Method MATH ProverQA StragegyQA

Acc Pre Rec Acc Pre Rec Acc Pre Rec

VerifiAgent (GPT-4o) 0.85 0.86 0.92 0.77 0.82 0.95 0.84 0.85 0.95
VerifiAgent (o1-mini) 0.86 0.86 0.98 0.78 0.84 0.96 0.84 0.87 0.96

Table 9: Results of VerifiAgent using different backbone
LLMs on three tasks.
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Appendix

A Data Statistics

Table 8 illustrates the statistics of the datasets.

B Error Statistics

Figure 6 shows the error statistics of the three
datasets on the GPT-4o reasoner.

C Different backbone LLMs for
VerifiAgent

Table 9 compares the performance of VerifiAgent
(o1-mini) with VerifiAgent (GPT-4o) across three
reasoning tasks. Given that VerifiAgent does not
require additional training data and utilises frozen

Method MATH ProverQA StrategyQA

GPT-4o Reasoner 0.018 0.003 0.008
- IS w/ Majority Vote @10 0.175 0.025 0.089
- IS w/ VerifiAgent (GPT-4o) 0.047 0.024 0.022
- IS w/ VerifiAgent (o1-mini) 0.051 0.028 0.019

o3-mini Reasoner 0.007 0.002 0.005
- IS w/ Majority Vote @8 0.067 0.018 0.042
- IS w/ VerifiAgent (GPT-4o) 0.022 0.016 0.018
- IS w/ VerifiAgent (o1-mini) 0.024 0.015 0.022

Table 10: The average cost (in $) per instance for dif-
ferent methods across three datasets, including both
the reasoner cost and the cost of the inference scaling
method.

backbone LLMs, these results indicate that the ver-
ification capability of VerifiAgent scales effectively
with the underlying backbone model’s capacity.

D Inference Cost Comparison

Table 10 demonstrates the average inference cost
per instance for different methods across three
datasets. Compared to Majority Vote, Inference
Scaling with VerifiAgent methods yields substan-
tially lower inference costs on MATH and Strat-
egyQA, whereas on ProverQA, both approaches
demonstrate similar cost levels. These results in-
dicate that VerifiAgent not only enhances perfor-
mance, but also offers greater cost-efficiency.

Figure 7 shows the average cost versus accu-
racy on the three datasets. We can find that using
a strong reasoner (o3-mini for math, logic reason-
ing) without any inference scaling techniques could
achieve better performance than using a weak rea-
soner with inference scaling techniques. In ad-
dition, A strong reasoner can still leverage infer-
ence scaling techniques to further enhance its per-
formance on the task. VerifiAgent is more effec-
tive than Majority Vote, with higher accuracy with
lower cost.

E Example of VerifiAgent Trajectory

An Example VerifiAgent Trajectory on
MATH Dataset

Question:
What is the smallest positive integer n such
that, out of the n unit fractions 1

k where
1 ≤ k ≤ n, exactly half of the fractions
give a terminating decimal?

GPT-4o Solution:
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To determine the smallest positive integer
n such that exactly half of the fractions 1

k
for 1 ≤ k ≤ n are terminating decimals,
we need to understand the conditions under
which a unit fraction 1

k has a terminating
decimal representation.
A fraction 1

k has a terminating decimal if
and only if the denominator k in its simplest
form (after removing common factors with
the numerator) has only the prime factors
2 and/or 5. Thus, k must be of the form
2a × 5b for non-negative integers a and b.
Now, let’s find the smallest n such that half
of the numbers 1, 2, . . . , n are of this form.
1. **Analyze numbers of the form
2a × 5b:**
- For k = 1, it is 20 × 50.
- For k = 2, it is 21.
- For k = 4, it is 22.
- For k = 5, it is 51.
- For k = 8, it is 23.
- For k = 10, it is 21 × 51.

- For k = 16, it is 24.
- For k = 20, it is 22 × 51.
- For k = 25, it is 52.
- For k = 32, it is 25.
- For k = 40, it is 23 × 51.
- For k = 50, it is 21 × 52.
- For k = 64, it is 26.
- For k = 80, it is 24 × 51.
- For k = 100, it is 22 × 52.

2. **Count such numbers up to n:**
We need to find n such that there are n

2 such
numbers. Notice the sequence of numbers
where k can be expressed as 2a × 5b.

Checking for small values of n:
- When n = 1, there is 1 number that gives
a terminating decimal.
- When n = 2, there are 2 numbers (1, 2).
- When n = 4, there are 3 numbers (1, 2, 4).
- When n = 5, there are 4 numbers (1, 2, 4,
5).
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- When n = 8, there are 5 numbers (1, 2, 4,
5, 8).
- When n = 10, there are 6 numbers (1, 2,
4, 5, 8, 10).
- When n = 12, it still remains 6.
- When n = 16, there are 7 numbers (1, 2,
4, 5, 8, 10, 16).
- When n = 20, there are 8 numbers (1, 2,
4, 5, 8, 10, 16, 20).

We need to verify when these numbers
equal n

2 . For this to hold:

- Let’s check n = 10, where the numbers
1, 2, 4, 5, 8, 10 are exactly half of the
numbers from 1 to 10.

Thus, the smallest n such that exactly half
of the fractions 1

k for 1 ≤ k ≤ n have
terminating decimals is 10 .

VerfiAgent Output:

To verify the correctness of the
given answer, let’s perform a meta
verification first.

1. List all the known conditions
and final objective provided in the
problem.
- Conditions:
1) A fraction 1

k has a terminating
decimal if and only if k in its
simplest form has only the prime
factors 2 and/or 5.
2) We need to find the smallest posi-
tive integer n such that exactly half
of the fractions 1

k for 1 ≤ k ≤ n are
terminating decimals.
- Objective: Find the smallest n
such that half of the fractions 1

k for
1 ≤ k ≤ n are terminating decimals.

2. Divide the answer into individual
and explicit logical steps.
- Step 1: Identify the condition for a
fraction 1

k to have a terminating

decimal: k must be of the form
2a × 5b.
- Step 2: List numbers of the form
2a × 5b up to a certain n.
- Step 3: Count such numbers for
increasing values of n and check
when they equal n

2 .
- Step 4: Verify that for n = 10,
there are 6 numbers (1, 2, 4, 5, 8,
10) that are of the form 2a × 5b,
which is half of 10.
- Step 5: Conclude that the smallest
n is 10.

3. Analyze the divided answer to
determine if it contains a clear result
or conclusion to the question.
- The last step provides a clear
conclusion: the smallest n is 10.

4. Check whether each step logically
follows from the previous one, ex-
plaining any logical errors if they ex-
ist.
- Each step logically follows from
the previous one. The reasoning is
consistent and correctly applies the
condition for terminating decimals.

Now, let’s perform tool verification
using Python Interpreter to ensure
the calculations are correct.

Thought: I will use Python Inter-
preter to find the correct smallest n
where the count of numbers of the
form 2a × 5b is exactly half of n.

Action: Use Python Interpreter

def solver():
def is_terminating(k):

while k % 2 == 0:
k //= 2

while k % 5 == 0:
k //= 5

return k == 1
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n = 1
while True:

terminating_count = sum(
1

for k in range(1, n + 1)
if is_terminating(k)
)

if terminating_count == n//2:
return n

n += 1

ans = solver()

The program will find the smallest
n where the count of terminating
decimals is exactly half of n. Let’s
see the result.

Observation: [12]

Thought: The tool verification result
indicates that the smallest positive
integer n such that exactly half of
the fractions 1

k for 1 ≤ k ≤ n are
terminating decimals is actually 12,
not 10 as initially stated in the an-
swer. Based on the tool verification,
the original answer is incorrect. The
correct smallest n is 12.

Action: Evaluate[Incorrect]
Summarisation:
Evaluation Result: Incorrect
Error Reason: Step 4 contains
the error. The original answer
incorrectly treated 6 as half of 10,
which led to prematurely stopping
at n = 10.
Revision Method: Systematically
check the count of numbers of
the form 2a × 5b for each n until
the count equals n

2 , which shows
n = 12 is the correct solution
instead of n = 10.

Observation: [Done]

Vscore: 0.8241994820658969

An Example VerifiAgent Trajectory on
StrategyQA Dataset

Question:
Will more people go in and out of Taco Bell
than a Roy Rogers each year? Answer the
question with True or False.

GPT-4o Solution:
To determine whether more people go in
and out of Taco Bell than a Roy Rogers
each year, we need to consider several
factors, including the number of locations,
brand popularity, and customer traffic.

1. **Number of Locations**:
- Taco Bell is a major fast-food chain with a
large number of locations worldwide. As
of recent data, Taco Bell has over 7,000
locations primarily in the United States.
- Roy Rogers, on the other hand, is a smaller
chain with significantly fewer locations.
As of recent data, Roy Rogers has around
50 locations, mostly concentrated in the
Mid-Atlantic region of the United States.

2. **Brand Popularity and Customer
Traffic**:
- Taco Bell is a well-known brand with a
strong presence in the fast-food industry. It
is part of Yum! Brands, which also owns
KFC and Pizza Hut. Taco Bell is known for
its Mexican-inspired menu and has a large
customer base.
- Roy Rogers is a smaller chain with a more
limited customer base. It is known for its
burgers, roast beef sandwiches, and fried
chicken, but it does not have the same level
of brand recognition or customer traffic as
Taco Bell.

3. **Conclusion**:
- Given the significantly larger number of
Taco Bell locations and its widespread
popularity, it is reasonable to conclude that
more people visit Taco Bell locations than
Roy Rogers locations each year.

Based on this reasoning, the answer is:
Answer: True.
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VerifiAgent Output:

To verify the correctness of the
answer, let’s perform a meta verifi-
cation first.

1. List all the known conditions
and final objective provided in the
problem.
- Conditions:
1) Taco Bell has over 7,000 locations
primarily in the United States.
2) Roy Rogers has around 50
locations, mostly concentrated
in the Mid-Atlantic region of the
United States.
3) Taco Bell is a well-known
brand with a strong presence in the
fast-food industry.
4) Roy Rogers is a smaller chain
with a more limited customer base.
- Objective: Determine if more
people go in and out of Taco Bell
than a Roy Rogers each year.

2. Divide the answer into individual
and explicit logical steps.
- Step 1: Compare the number of
locations of Taco Bell and Roy
Rogers.
- Step 2: Compare the brand popu-
larity and customer traffic of Taco
Bell and Roy Rogers.
- Step 3: Conclude that more people
visit Taco Bell locations than Roy
Rogers locations each year. - Step 4:
Answer: True.

3. Analyze the divided answer to
determine if it contains a clear result
or conclusion to the question.
- The last independent step contains
the answer “True”, which is a clear
result to the question.

4. Check whether each step logically
follows from the previous one, ex-
plaining any logical errors if they

exist.
- Step 1 logically follows from the
conditions about the number of loca-
tions.
- Step 2 logically follows from the
conditions about brand popularity
and customer traffic.
- Step 3 logically follows from Steps
1 and 2, concluding that more people
visit Taco Bell.
- Step 4 provides a clear answer
based on the conclusion in Step 3.

The meta verification indicates that
the answer is complete and logically
consistent. However, to ensure the
accuracy of the factual information
regarding the number of locations
and brand popularity, I will use
the Online Search Engine to verify
these details.

Thought: I will verify the number
of locations and brand popularity of
Taco Bell and Roy Rogers to ensure
the factual accuracy of the answer.

Action: Use Search Engine[Number
of Taco Bell locations 2023]

Observation: [As of 2023, Taco
Bell operates approximately 8,200
locations globally. In the United
States alone, there are more than
7,980 Taco Bell restaurants. The
company has plans for significant
expansion, aiming to increase its
total number of locations to 10,000
in the coming years, with a focus on
growing its international presence
from 1,150 to 3,000 restaurants
outside the U.S. over the next five
years [2][4][5].]

Thought: The information obtained
from the search engine confirms that
Taco Bell has a significantly larger
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number of locations than initially
stated in the answer, with over 7,980
locations in the United States alone.
This further supports the conclusion
that more people visit Taco Bell than
Roy Rogers each year. Now, I will
verify the number of Roy Rogers
locations to ensure the accuracy of
the comparison.

Action: Use Search Engine[Number
of Roy Rogers locations 2023]

Observation: [As of 2023, there are
over 50 Roy Rogers restaurant loca-
tions. This reflects a resurgence in
interest and investment in the brand
following a decline in the number
of locations in previous years due to
conversions and closures [2].]

Thought: The information obtained
from the search engine confirms that
Roy Rogers has over 50 locations,
which aligns with the data provided
in the answer. This supports the con-
clusion that Taco Bell, with its sig-
nificantly larger number of locations,
likely has more customer traffic than
Roy Rogers. Since both the num-
ber of locations and brand popular-
ity have been verified and support
the conclusion, I will proceed to the
final evaluation.

Action: Evaluate[Correct]
Summarisation:
Evaluation Result: Correct
Error Reason: None
Revision Method: None

Observation: [Done]

Vscore: 0.941521122813535

An Example VerifiAgent Trajectory on
ProverQA Dataset

Context:
Raul either ignored warning signs or lis-
tened to his body. Raul did not ignore warn-
ing signs.
Question:
Based on the above information, is the fol-
lowing statement true, false, or uncertain?
Raul got proper medical attention when
needed.
Options: [‘A) True’, ‘B) False’, ‘C)
Uncertain’]

GPT-4o Solution:
Based on the context provided, Raul either
ignored warning signs or listened to his
body. Since it is stated that Raul did not
ignore warning signs, it implies that he
listened to his body. Listening to one’s
body typically suggests being attentive to
health needs, which often leads to seeking
proper medical attention when necessary.

Therefore, the statement “Raul got proper
medical attention when needed” is likely
true.
Answer: A) True

VerifiAgent Output:

Meta Verification:

1. List all the known conditions
and final objective provided in the
problem.
- Conditions: [Raul either ignored
warning signs or listened to his
body, Raul did not ignore warning
signs]
- Objective: [Determine if the
statement “Raul got proper medical
attention when needed” is true, false,
or uncertain]
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2. Divide the answer into individual
and explicit logical steps.
- Step 1: Raul either ignored warning
signs or listened to his body.
- Step 2: Raul did not ignore warning
signs.
- Step 3: Therefore, Raul listened to
his body.
- Step 4: Listening to one’s body
typically suggests being attentive
to health needs, which often leads
to seeking proper medical attention
when necessary.
- Step 5: Therefore, the statement
"Raul got proper medical attention
when needed" is likely true.
- Final Answer: A) True
3. Analyze the divided answer to
determine if it contains a clear result
or conclusion to the question.
- The last independent step contains
the answer “A) True”, which is a
clear result to the question.

4. Check whether each step logically
follows from the previous one, ex-
plaining any logical errors if they ex-
ist.
- Step 1 to Step 2: The transition
is logical as it uses the given condi-
tion that Raul did not ignore warning
signs.
- Step 2 to Step 3: The transition is
logical as it concludes that Raul lis-
tened to his body based on the given
conditions.
- Step 3 to Step 4: The transition
is logical as it makes a reasonable
assumption that listening to one’s
body suggests attentiveness to health
needs.
- Step 4 to Step 5: The transition is
logical as it concludes that being at-
tentive to health needs often leads to
seeking proper medical attention.

The answer is complete and logically
consistent. However, to ensure

the correctness of the assumption
made in Step 4, I will use the Z3
Theorem Prover to verify the logical
reasoning.

Thought: I will use the Z3 The-
orem Prover to verify the logical
reasoning that listening to one’s
body implies getting proper medical
attention when needed.

Action: Use Theorem Prover

import z3
from z3 import *

def check_model(solver):
res = solver.check()
if res == sat:

return 'sat'
elif res == unsat:

return 'unsat'
else:

return 'unsolvable'

def check_constraint(solver, c):
pos_res = solver.check(c)

neg_res = solver.check(Not(c))

if (pos_res == sat) and
(neg_res == unsat):

return 'Agree'
elif (pos_res == unsat) and
(neg_res == sat):

return 'Contradict'
elif (pos_res == unknown) or
(neg_res == unknown):

return 'unsolvable'
else:

return 'Uncertain'

def main():
s = z3.Solver()
# Define the variables

ignored_warning_signs = Bool
('ignored_warning_signs')
listened_to_body = Bool
('listened_to_body')
got_med_attention = Bool
('got_med_attention')
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# Define the conditions
s.add(Or(ignored_warning_signs,
listened_to_body))

s.add(Not(ignored_warning_signs))

# Define the implication
implication = Implies

(listened_to_body, got_med_attention)

# Check if the implication is
consistent with conditions
return check_constraint(s,
implication)

ans = main()

Observation: [Uncertain]

Thought: The tool verification result
is “Uncertain”, which means that the
logical implication that listening to
one’s body leads to getting proper
medical attention is not definitively
supported by the given conditions.
This suggests that the assumption
made in Step 4 of the solution may
not be entirely reliable. Therefore, I
will reflect on both the meta verifi-
cation and tool verification results to
make a final decision.

Action: Evaluate[Incorrect]
Summarisation:
Evaluation Result: Incorrect
Error Reason: Step 4 contains the
error. The assumption that listening
to one’s body typically leads to
seeking proper medical attention
is not definitively supported by the
given conditions, as indicated by the
tool verification result.
Revision Method: To avoid making
the error again, the reasoning should
not assume that listening to one’s
body directly implies getting proper
medical attention without additional
supporting information.

Observation: [Done]

Vscore: 0.6459490712193161

F VerifiAgent Prompt

VerifiAgent System Prompt

You are an expert in evaluating the correct-
ness of answers to reasoning problems,
including mathematical reasoning, com-
monsense reasoning and logical reasoning.
Your unique strength lies in your ability to
utilise specialised tools to verify answers
effectively. You will be provided with a
reasoning question and a potential answer.
Your task is to verify the correctness of
the answer using the following tools. You
should select appropriate tools for different
reasoning problems as needed.

Before you perform tool verification, you
should first do a meta verification without
tool that verifies (1) the completeness of
the answer (2) the logical consistency of
the answer. Your final decision should be
based on the meta verification and tool
verification results.

Definition:
- Completeness refers to an answer that is
self-contained, fully addresses every part of
the question, and contains a clear result or
conclusion.
- Logical consistency refers to reasoning
that follows a logical structure with no
jumps, gaps, or inconsistencies.

Meta Verification Steps:
1. List all the known conditions and the
final objective provided in the problem.
• Put the known conditions in the format of
‘Conditions: [condition1, condition2, ...]’
• Put the final objective in the format of
‘Objective: [Objective]’
2. Divide the answer into individual and
explicit logical steps.
• Put the individual steps in the format of
‘Step 1: [step 1] Step 2: [step 2]...’
• Put the final answer in the last independent
step.
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3. Analyse the divided answer to determine
if it contains a clear result or conclusion to
the question.
• You should check whether the last
independent step contains an answer.
• If the answer is not complete, there is no
need to check the logical consistency.
4. Check whether each step logically
follows from the previous one, explaining
any logical errors if they exist.
• You should analyse the reasoning flow
one by one, from Step 1 to Step 2, from
Step 2 to Step 3, ...
• Based on the reasoning flow, check
whether every step move is reasonable and
logically correct.

Below are the introduction and guidelines
for three tools you can use:

**Python Interpreter**
Python Interpreter is ideal for verifying
answers to mathematical reasoning prob-
lems involving calculations or numerical
analysis. By executing Python programs,
you can obtain precise results and compare
them against the provided answer.

Instructions for using Python Interpreter:

1. Understand the problem and think about
how you would solve the problem using
Python programs.
2. Write a Python program to solve the
problem using appropriate variables and
functions.
3. Ensure the code is clean and executable,
but do not include any extra output.
4. The program must start with ‘def
solver():’ and end with ‘ans = solver()’.

Python Program Template:

def solver():
# Let's write a Python program to
solve the problem using appropriate
# variables and functions, and then
return the answer.
# Firstly, we need to define the
following variable:

ans = solver()

**Online Search Engine**
Online Search Engine is best suited for
verifying answers to factual or knowledge-
based reasoning problems. By querying the
search engine, you can retrieve authoritative
results that serve as ground-truth references
to verify the given answer.

Instructions for using Online Search
Engine:
1. Understand the problem and identify
any areas where additional information is
needed to verify the answer.
2. Generate specific questions that will help
you gather the necessary information.
3. Your questions should be clear, concise,
and directly related to verifying the original
answer.
4. You can use a search engine multiple
times, but you should only generate one
question per time.

Question Template:
Question

**Z3 Theorem Prover**
Z3 Theorem Prover excels at solving
logical reasoning problems that require
deductive, inductive, or abductive reason-
ing. It allows you to represent problems
in first-order logic (FOL), comprising
constants, predicates, logic variables,
quantifiers, functions, operators, grounded
facts, and logic formulas. Using the Z3
library, you can perform formal reasoning
to determine the validity of the answer.

Instructions for using Z3 Theorem Prover:
1. Understand the Logical Reasoning types:
- Deductive reasoning: Given Facts and
Logic Formulas, deduce new Facts from
the system by applying the Formulas to the
Facts.
- Inductive reasoning: Given Facts and
potentially some Formulas, induce new
Formulas that entail the given Facts and are
consistent with the preexisting Formulas.
- Abductive reasoning: Given Facts, Logic
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Formulas, and a consequence Fact, infer
the missing Facts or Formulas, such that
the consequence Fact can be entailed by the
system.
2. Note that the type of reasoning and the
system built for the problem determine:
- How the output is interpreted.
- Whether the output serves as the final
answer or intermediate checks for the
problem-specific answer.
- For example:
for a deductive reasoning task with a
given hypothesis, one builds the system to
determine if the hypothesis Agree/Contra-
dict/Uncertain to the system;
for a deductive reasoning task where one
wants to deduce all possible Facts, then one
should infer all Facts that Agree with the
system;
for inductive reasoning, one infers the
Formulas that Agree with the system;
for abductive reasoning, one infers the
Facts or Formulas that Agree with the
consequence and the system.
3. Write a Python program with Z3 lib
to solve the problem using appropriate
variables and functions.
4. Ensure the code is clean and executable,
but do not include any extra output.
5. You should use the following code
template to solve the problem and end with
‘ans = main()’.

Z3 Program Template:

import z3
from z3 import *

def check_model(solver):
res = solver.check()
if res == sat:

return 'sat'
elif res == unsat:

return 'unsat'
else:

return 'unsolvable'

def check_constraint(solver, c):
pos_res = solver.check(c)
neg_res = solver.check(Not(c))

if (pos_res == sat) and
(neg_res == unsat):

return 'Agree'
elif (pos_res == unsat) and
(neg_res == sat):

return 'Contradict'
elif (pos_res == unknown) or
(neg_res == unknown):

return 'unsolvable'
else:

return 'Uncertain'

def main():
s = z3.Solver()
# Your code here

ans = main()

Important:
1. For each time of tool call, you will
receive a response based on your request
and you should use tool response to
evaluate the potential answer.
- The program will return the program
execution result.
- The search engine will return the obtained
result from the Internet.
2. This is an iterative process, you can
repeat the process of using tools until
you have sufficient information to make a
confident verification of the answer.
3. Once you think you have enough
information to verify the answer, provide a
Final Evaluation of the original answer.
- Based on the meta verification and tool
verification, make your final decision.
- State whether the answer is Correct or
Incorrect based on your analysis.
- Provide a clear and concise explanation
for your assessment, referencing the
information gathered.
4. The tool verification is to help you
further verify your meta verification result,
so you cannot skip tool verification process.
- If tool verification result disagrees with
meta verification result, you should reflect
on both verification processes and decide
which one you will trust.

You should strictly follow the following re-

16430



sponse format and only generate responses
in this way:

If you want to use Python Interpreter:
Thought: [The reason why you choose to
take this action.]
Action: Use Python Interpreter[your
Python Program]

If you want to use Online Search Engine:
Thought: [The reason why you choose to
take this action.]
Action: Use Search Engine[your Question]

If you want to use Z3 Theorem Prover:
Thought: [The reason why you choose to
take this action.]
Action: Use Theorem Prover[your Z3
Program]

If you want to generate Final Evaluation
result:
Thought: [The reason why you choose to
take this action.]
Action: Evaluate[Correct/Incorrect]
Summarisation:
Evaluation Result: [Correct/Incorrect]
Error Reason: [Only generate the error
reason when the evaluation is ‘Incorrect’,
otherwise generate ‘None’. The reason
should first indicate which step in the
solution contains the error and then explain
why the error occurred.]
Revision Method: [Only generate the
revision method when the evaluation is
‘Incorrect’, otherwise generate ‘None’. The
revision method should be summarised
from the tool verification result to avoid
making the error again.]
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