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Abstract

Large language models (LLMs) have recently
been proposed as general-purpose agents for
experimental design, with claims that they can
perform in-context experimental design. We
evaluate this hypothesis using both open- and
closed-source instruction-tuned LLMs applied
to genetic perturbation and molecular prop-
erty discovery tasks. We find that LLM-based
agents show no sensitivity to experimental feed-
back: replacing true outcomes with randomly
permuted labels has no impact on performance.
Across benchmarks, classical methods such
as linear bandits and Gaussian process opti-
mization consistently outperform LLM agents.
We further propose a simple hybrid method,
LLM-guided Nearest Neighbour (LLMNN) sam-
pling, that combines LLM prior knowledge
with nearest-neighbor sampling to guide the de-
sign of experiments. LLMNN achieves compet-
itive or superior performance across domains
without requiring significant in-context adapta-
tion. These results suggest that current open-
and closed-source LLMs do not perform in-
context experimental design in practice and
highlight the need for hybrid frameworks that
decouple prior-based reasoning from batch ac-
quisition with updated posteriors.

1 Introduction

Experimental design enables data-efficient scien-
tific discovery (Shields et al., 2021; Ueno et al.,
2016; Lei et al., 2021; Huan et al., 2024; Jain et al.,
2023). In domains such as biology and chemistry
each experiment can be costly or time-consuming
so we need methods that select the most informa-
tive candidates under a constrained budget. Classi-
cal approaches typically adopt a Bayesian frame-
work (Lindley, 1956; Houlsby et al., 2011): they
construct a surrogate model of the response func-
tion, update this model with new data, and select
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future experiments by optimizing an acquisition
function such as expected improvement or informa-
tion gain (Gal et al., 2017; Kirsch et al., 2019).

Recent work has proposed using LLMs to re-
place these components, offering a unified inter-
face that can incorporate prior knowledge, reason
over experimental history, and directly select can-
didates via prompting. Examples include BioDis-
coveryAgent (BDA) (Roohani et al., 2024) for ge-
netic perturbation design and LLAMBO (Liu et al.,
2024) for hyperparameter optimization. These sys-
tems are built on proprietary LLMs (e.g., Claude
3.5 Sonnet (Anthropic, 2024) or OpenAI’s GPT-
3.5 (OpenAI, 2023) and o1 (OpenAI, 2024b)) and
design experiments by iteratively prompting the
LLM with prior experimental outcomes, and rely
on in-context learning to guide future experiment
selection.

In domains that are well-studied, the priors from
the LLMs offer clear benefits over the traditional
methods for the first round of experimentation be-
cause the LLMs can leverage information from
the pretraining corpus to select actions. However,
it is less clear whether in-context learning alone
(without finetuning) leads to good action selection.
This paper investigates whether such LLM-based
approaches, when implemented with open-source
models and without external tool use, can perform
effective experimental design. Specifically, we
ask, do off-the-shelf, instruction-tuned LLMs
exhibit strong in-context experiment design abil-
ities when prompted with experimental history?

We address this question using the BioDiscov-
eryAgent pipeline implemented with three pub-
licly available LLMs—LLaMA-3.1-8B-Instruct
(Grattafiori et al., 2024), Qwen-2-7B-Instruct
(Yang et al., 2024), and Qwen-2.5-14B-Instruct
(Qwen, 2024)— and two closed-source LLMs—
Claude 4 Sonnet (Anthropic, 2025) and GPT
4o-mini (OpenAI, 2024a)—applied to experimen-
tal design tasks in two domains: single-gene per-
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turbation and molecular property prediction. To
evaluate in-context learning behavior, we conduct
ablation studies that compare the standard BioDis-
coveryAgent to a variant receiving randomly per-
muted feedback (BDA-Rand), removing any cor-
respondence between past actions and outcomes.
Our experimental analysis reveals that:

1. LLMs are insensitive to feedback. Across
all datasets and models (including Claude Son-
net 3.5), BDA and BDA-Rand perform com-
parably. In some cases, the BDA-Rand even
performs slightly better. This suggests that
the tested LLMs’ selection behavior is deter-
mined primarily by prior knowledge rather
than adaptation to feedback.

2. LLMs underperform classical baselines.
Linear UCB and Gaussian process-based
Bayesian optimization methods, given access
to the same candidate embeddings, consis-
tently outperform BDA on both domains.

3. A simple heuristic performs better search.
We introduce LLM-guided Nearest Neigh-
bour (LLMNN), a method that prompts the
LLM to propose seed candidates and then se-
lects batches via nearest-neighbor expansion
in embedding space. LLMNN also receives
in-context feedback but outperforms BDA and
matches or exceeds classical methods across
benchmarks.

In summary, we make following contributions,

• We provide a diagnostic evaluation of
in-context experimental design using
randomized-feedback ablations.

• We benchmark open-source LLMs against
Bayesian optimization and bandit-based meth-
ods across five gene perturbation and three
molecular property prediction datasets.

• We show that open-source and proprietary
instruction-tuned LLMs do not leverage ex-
perimental feedback to perform in-context ex-
perimental design in practical experimental
design tasks.

• We introduce a simple hybrid method,
LLMNN, which leverages LLM prior knowl-
edge for exploration and embedding-based
nearest-neighbor sampling for exploitation.

These results indicate that LLMs, while encod-
ing valuable domain priors, still need explicit mech-
anisms that enable posterior updating and selec-
tion for efficient experimental design. Hybrid ap-
proaches that combine LLM priors with classical
exploration strategies offer a promising direction
for scalable, general-purpose experiment design.

2 Problem Statement

Consider the following real-world experimental
settings across two domains:

Single Gene Perturbation. Let’s say we have
the ability to knock out a single gene at a time
from the human cell to induce a certain desired
phenotypic response. Correspondingly, for every
knockout, we are able to measure the phenotypic
response value of perturbing the gene. However, ex-
haustive trials with the whole set of protein-coding
genes (> 19000) are infeasible due to both time
and budget constraints. Thus, how do we design
perturbation experiments to identify genes that pro-
duce the phenotype under tight budget constraints
and a sequential experiment protocol?

Chemical Properties of Molecules. Similarly,
say given a large library of molecules, we seek to
identify the molecules that exhibit high values for
a given property. For every molecule tried, we can
obtain its property value. How do we effectively
screen the library to identify top-performing
molecules for the given property, under similar
constraints as above?

More formally, both these settings are examples
of closed-loop experiment design, which is our
center of focus in this work. At any experimen-
tal round, the agent determines which candidates
to investigate next, given the results from all the
prior experiments. The process continues for N
number of rounds, depending on the experimental
budget available, with the objective of detecting a
maximum number of hit candidates.

Specifically, let C be the set of all candidates
and f : C → R be the function that maps each
candidate to a real-valued measurement. The task
is inherently sequential, spread over N rounds,
where each round i is defined as the trial of
{c1, c2, . . . , cB} ⊆ C candidates independently.
The goal of the experiment is to identify the can-
didates with measurement value greater than some
threshold τ , i.e., f(c) > τ for c ∈ C. These are
termed as hits for that measurement function.
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Further, let Ci be the set of candidates selected
by the agent at any round i and let Zi be the set
comprising of entire experiment history, i.e. Zi =

{(c, f(c)) | c ∈
i−1⋃
t=1

Ct}. Given Zi, the agent is

then expected to guide the formation of Ci.

At the end of N rounds, let Ca =
N⋃
t=1

C+
t , where

C+
t = {c ∈ Ct : f(c) > τ} represents the hits

identified in round t. Thus, Ca represents the cumu-
lative set of hits across all rounds up to t. Similarly,
let Cgt be the set of all true hits for the measurement
function f , Cgt = {c ∈ C : f(c) > τ}.

We typically fix the N = 5 and B = 128 for all
our experiments unless stated otherwise. Addition-
ally, the τ for the molecular property task is set to
be at the 90th percentile of the property value.

3 Related Work

BO for Scientific Applications: Bayesian
Optimization in scientific domains has focused on
a variety of applications like drug discovery (Grif-
fiths and Hernández-Lobato, 2020; Korovina et al.,
2020), biological experiment design (Roohani
et al., 2024; Lyle et al., 2023; King et al., 2004),
and chemical/molecular tasks (Kristiadi et al.,
2024; Fromer et al., 2024; Ranković and Schwaller,
2023; Shields et al., 2021). Simultaneously, there
have also been works that advance autonomous
AI-driven closed-loop experiment design (M. Bran
et al., 2024; Tom et al., 2024; Boiko et al., 2023).
In this work, we study how LMs can be used
to incorporate prior information into the search
process in the context of two real-world domains:
single gene perturbations and chemical property
optimization. Both tasks possess an extensive can-
didate space and complex relationships between
the candidate and its associated measurement.
However, the genetic domain has a finite candidate
space of genes in the human genome, whereas the
space of all molecule is far larger (up to 1060 small
molecules (Bohacek et al., 1996)) making it harder
to have priors over any particular molecule.

LLMs for Bayesian Optimization: A series of
recent works have explored the use of LLM embed-
dings in different ways, like for general-purpose
regression (Nguyen et al., 2024), to improve surro-
gate modeling (Nguyen and Grover, 2024), and to
augment the traditional methods like Gaussian Pro-
cesses (Hartford et al., 2020; Ramos et al., 2023).

We focus on using LLMs as the backend for an
agent that interacts with the laboratory feedback
and performs closed-loop experiment design.

The two closest related prior works to our study
are BioDiscoveryAgent (Roohani et al., 2024) and
LLAMBO (Liu et al., 2024). LLAMBO is based on
GPT-3.5 and primarily focuses on hyperparameter-
tuning tasks, with LLM performing end-to-end
Bayesian Optimization via suitable prompting. In
a similar spirit, BioDiscoveryAgent proposes an
LLM agent based on Claude 3.5 Sonnet and aug-
mented with external tools that performs closed-
loop experiment design of genetic perturbations.
Both these approaches leverage proprietary LLMs
and heavily rely on in-context learning to design
experiments conditional on the experimental his-
tory. BioDiscoveryAgent, in particular, prompts
the LLM to generate the entire batch of candidates
to try next. In this work, we take a critical view
of these methods, particularly BioDiscoveryAgent
(BDA), and resort to instruction-tuned open-source
models like Llama3.1-8B (Grattafiori et al., 2024)
and Qwen2-7B (Yang et al., 2024) to further ex-
amine it. While there exists evidence that trans-
formers have been shown to perform amortized
Bayesian inference (Müller et al., 2024) when ap-
propriately trained, it is not obvious that the abil-
ity arises from the next-token prediction and post-
training objectives, and hence we specifically test
the open-source BDA for the ability to select ex-
periments. Eventually, we take a departure from a
purely LLM-based approach and explore the syn-
ergy between LLMs and classical methods in our
proposed hybrid approach, LLMNN, that achieves
significantly superior performance.

4 Tasks and Datasets

We perform experiments on two scientific domains
in this work. In particular, we work with sin-
gle gene perturbations and chemical properties of
molecules. We simulate running experiments on a
set of candidates by retrieving the corresponding
measurement value from a tabular dataset. How-
ever, in real-world settings, the corresponding ex-
periments would be conducted in a laboratory or an
in-silico simulator. In the subsequent subsections,
we describe the datasets used in the two domains.

4.1 Single Gene Perturbations

Section 2 explains the details of the task, such as the
goal with experiment design, candidate space, and
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Method IL2 IFNG Carnevale Sanchez Sanchez Down

Ground truth (| Cgt |) 654 920 943 924 924

Llama-3.1-8B backbone
BDA 39.4 44 32.4 23.2 43.6

BDA-Rand 37 51 31.6 30.8 45

Qwen-2-7B backbone
BDA 33.2 26.2 27.2 26.4 26

BDA-Rand 29 32.4 29 24.2 35.4

Claude 3.5 Sonnet backbone
BDA (Reported Numbers) 68.01 87.4 39.6 60.72 N/A

BDA (Replicated) 59.4 78.8 43.8 31.6 51.8
BDA-Rand 57.6 79.4 42 33.8 57.6

Table 1: Cumulative number of hits secured by each method on the gene perturbation datasets. The values are
averaged over 5 runs. Note that we experiment with the No-Tool version of BioDiscoveryAgent. BDA-Rand is
the BioDiscoveryAgent baseline provided with random feedback after each round of experimentation. It can be
concluded that LLMs trained on next token prediction and RLHF fail to perform in-context experimental design.

the associated measurements. In terms of datasets,
we use the IL2, IFNG, Carnevale, Sanchez,
and Sanchez Down datasets from Roohani et al.
(2024)’s BioDiscoveryAgent as each of them cov-
ers a distinct biological process. For example, IL2
(Schmidt et al., 2022) is concerned with the phe-
notype of change in the production of Interleukin-
2 (IL2), a cytokine involved in immune signaling.
More details about each of the datasets are included
in the appendix B.1.1. Each dataset contains mea-
surements for over 18000 genes, i.e., | C |> 18000,
each knocked down in a distinct cell.

4.2 Chemical Properties of Molecules
For the chemical properties task, we focus on the
following three molecular datasets: ESOL (wa-
ter solubility), FreeSolv (hydration free energy
in water), and Ion. E. (ionization energy of the
molecules). Note that | C |= 1128, 642 and
11565 respectively for each of the aforementioned
datasets. For more details, see appendix B.1.2

5 Is Naively Prompting LLM Enough for
Experiment Design?

Experimental design is inherently a sequential
process where at each round, one should select
experiments on the basis of both prior informa-
tion and the outcomes of previous experiments.
Through the pretraining objective, LLMs have ex-
tensive prior information which enables strong per-
formance in experimental design settings with rel-
atively few rounds of experiments (i.e. where

the guidance of the prior matters most). For ex-
ample, LLAMBO (Liu et al., 2024) focuses on
tasks related to hyperparameter-tuning, and BioDis-
coveryAgent (Roohani et al., 2024) demonstrates
strong performance on genetic perturbation experi-
ment design. Despite minor differences, there are
major similarities between these approaches. Both
works pass on the experiment history and corre-
sponding observations by simply appending them
within the prompt itself with the hope that the LLM
can leverage its in-context abilities to incorporate
this feedback and adapt its subsequent predictions.
We test the extent to which BioDiscoveryAgent
is actually using this information by breaking the
relationship between candidates, ci, and their asso-
ciated outcomes, f(ci). In particular, we randomly
pair each ci with some other outcome, f(cj), which
breaks their joint dependency, while keeping their
respective marginal distributions fixed.

Method. For our investigation, we work with
the BioDiscoveryAgent (BDA) pipeline on a small
open-source LLM backbone without any external
tools. In the first set of experiments, we evaluate the
ability of the LLMs to leverage experimental feed-
back. We compare BDA with BDA-Rand, which
is the same as BDA but receives randomized feed-
back instead of true feedback. We perform 2 levels
of randomization, level 1 being random measure-
ment values and level 2 being randomness in hit
vs not-hit feedback. Figure 1 contains an illustra-
tion of the randomization procedure. Both methods
are evaluated against the ground truth hits for each
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Method IL2 IFNG Carnevale Sanchez Sanchez Down
Ground truth (| Cgt |) 654 920 943 924 924

Llama-3.1-8B backbone
Linear UCB 35 72 38 39 42

GP 147.8 23 22.2 27.6 30
BDA 39.4 44 32.4 23.2 43.6

Qwen-2-7B backbone
Linear UCB 93 74 31 31 41

GP 147.8 23 22.2 27.6 30
BDA 33.2 26.2 27.2 26.4 26

Table 2: Cumulative number of hits secured by each method on the gene perturbation datasets. The values are
averaged over 5 runs. The max values in each column for each LLM backbone have been bolded. Note that we
experiment with the No-Tool version of BioDiscoveryAgent. Further, all the statistical methods use the embeddings
corresponding to the LLM in the backbone of BDA to ensure the same amount of knowledge. It can be observed
clearly that principled statistical approaches outperform the BioDiscoveryAgent baseline on most datasets and
across both families of open-source LLMs.

Hits:
CD5 1.300
WIZ 0.384

Other Results:
LAT    -0.890
SP1 0.398

Hits:
CD5 0.398
LAT     1.300

Other Results:
WIZ 0.384
SP1    -0.890

Level 1

Level 2

Figure 1: Illustration of the 2 levels of random per-
mutation in the experimental feedback to the LLM on
the genetic domain. Level 1 modifies the measurement
value, whereas level 2 modifies whether a candidate is a
hit or not. Note that it is possible that a particular gene
has both level 1 and 2 modifications.

dataset. As a second step, we compare BDA with
classical models like Linear UCB and Gaussian
Process (GP) to evaluate whether the LLM has
sufficient information to make strong selections.
Both Linear UCB and the GP only condition on
the residual stream embeddings of the LLM so can
only outperform the LLM insofar as they can better
use the experimental feedback.

Results. We investigated the in-context experi-
mental design abilities of the LLMs, and Table 1
shows the results for the same. The numbers in the
table correspond to the cumulative number of hits
obtained after 5 rounds of experiments with 128
perturbations in every round and are averaged over
5 runs. Across both LLMs and all 5 datasets, it
is evident that passing random feedback does not
hurt the performance of the framework at all. In
fact, the performance remains nearly the same or
improves slightly. To further substantiate our hy-

pothesis, we also perform a similar experiment on
Claude 3.5 Sonnet, a proprietary large-scale LLM,
and observe that even Claude maintains nearly the
same performance despite random feedback 1. The
strong initially performance of the LLMs is there-
fore likely the result of theirs priors on ordering of
genes and is not affected by the feedback of past
experiments appended in its prompt.

The above flaw in the LLM’s capabilities moti-
vated us to compare BDA with classical approaches.
Table 2 shows the cumulative number of hits ob-
tained for BDA and classical baselines as described
above. It can be seen clearly that across the 5
datasets, either LinearUCB or GP outperforms the
BDA framework by a significant margin on both
choices of LLM models. In contrast to the trend of
Claude-based BDA, these results further highlight
the lack of robustness of the framework’s perfor-
mance with respect to the base LLM.

6 LLMNN: A Hybrid Experiment Design
Method

In light of the above observations, we propose
LLM guided Nearest Neighbour (LLMNN)
framework, a simple greedy approach that prompts
an LLM to guide the location of cluster centers and
leverages nearest neighbour sampling to form the
batch Bi at any round i. The LLMNN framework
is designed to leverage: 1.) Generalist LLMs’
intrinsic domain knowledge to guide the search

1We generate the numbers for BDA using the publicly
available code as we could not replicate their original numbers,
possibly due to LLM updates.
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Cluster Centers

+ Feedback Human/Lab Oracle

N rounds
  + Experiment Protocol
  + Task Instructions
  + Dataset Information
  + Expected Output Format

Prompt Language Model

Selected candidates

Candidate 
Memory

Nearest Neighbour Sampling

Cluster Center

Nearest
Unexplored
Neighbours

Figure 2: Schematic Workflow of the LLM-guided Nearest Neighbour (LLMNN) method. The red rounded boxes
are the inputs and outputs of the Language Model. For ease, only cluster centers have been shown in the output.
Please refer to Section 6 for detailed output specification and information about the components of the method.
Refer to Appendix A for the detailed prompt template and to Appendix C for a full trace of the method.

in the vast candidate space, and 2) the inductive
bias that similar genes/molecules have similar
functionalities/properties. The schematic workflow
of the proposed LLMNN framework is illustrated
in Figure 2. Below, we discuss the important
components of the LLMNN framework, followed
by a detailed workflow of the method.

Candidate Memory. stores the pool of candidates,
each represented in the following format: {"name":
<candidate name>, "score": <measurement
value>, "explored": <bool>}. For molecules,
the candidate name is the SMILES string and
measurement is the property value, whereas for
genes, the candidate name is the gene name in
the HGNC nomenclature and measurement is the
phenotypic response value. Each candidate is
also associated with an embedding. The explored
key tracks whether a candidate has already been
selected, preventing repetition in the optimization
process. The memory interacts with the LLMNN
framework by receiving a query candidate name
and returning the nearest unexplored neighbors
based on distance in the embedding space.

Candidate Embeddings. Each candidate in
the memory has an associated embedding. We
experiment both with LLM embeddings for the
candidates and also domain-specific embeddings
like Achilles embeddings for genes (Tsherniak
et al., 2017) and Molformer (Ross et al., 2022)
embeddings for the SMILES strings. The distance
metric for Achilles embeddings is the cosine
distance, whereas for all other embeddings, the
L2-squared distance is used. More details about

the embeddings are included in Appendix B.3

Agent Response Format: We borrow the
agent response format from BioDiscoveryAgent
(Roohani et al., 2024), and direct the LLM
to structure its responses into several parts:
Reflection, Research Plan, Solution,
similar to Huang et al. (2023). Through the
Reflection and Research Plan entries, the
model is able to articulate its reasoning behind a
particular prediction. Solution contains a list of
nc cluster centers to sample around next. For our
experiments, we fix nc = 5 unless stated otherwise.

Workflow. The exact flow of the LLMNN frame-
work is defined as follows:

1. LLMNN framework takes experiment protocol,
task, and candidate space details as the context
in its prompt to generate the first set of cluster
centers it seeks to explore.

2. The output cluster centers are then used to re-
trieve candidates from the candidate memory.

3. The selected candidates for the round are then
sent to the human or a lab oracle to obtain their
value of the measurement function f and to de-
termine if they were a hit.

4. This hit vs not hit qualitative feedback, along
with the measurement value, is appended to the
prompt from Step 1 and passed to the LLM to
generate the next set of cluster centers.

5. Steps 2-4 are repeated for N -1 rounds. The total
hits identified successfully at the end indicate
the method’s performance.
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Method IL2 IFNG Carnevale Sanchez Sanchez Down

Ground truth (| Cgt |) 654 920 943 924 924
Random 23.8 26 35 32.2 34.6
Coreset 9.2 31.4 29.4 33.8 30.2

Linear UCB 110 98 51 75 87
GP 139 24 20.4 24.6 33

BDA-GS (Claude 3.5 Sonnet) 65.4 88.32 40.55 57.28 N/A

Llama-3.1-8B backbone
BDA-GS 63.4 57.4 42.59 22.2 39.6

LLMNN NoExp 137.8 86.3 58.9 42.5 42.3
LLMNN 163.3 107.9 65.6 54.2 45.5

Qwen-2-7B backbone
BDA-GS 38.6 35.2 32.8 28.6 38

LLMNN NoExp 146.4 59.1 44.5 62.8 46.4
LLMNN 160.7 78 60.9 53.5 45.1

Qwen-2.5-14B backbone
BDA-GS 49 63.7 47 39.2 48.4

LLMNN NoExp 88.6 57.8 58.6 63.4 48.2
LLMNN 151.8 88 66.4 62.8 43

Claude 4 Sonnet backbone
BDA-GS 65.2 83.6 38.6 45.8 60

LLMNN NoExp 179.4 95.2 68.2 63.6 47.2
LLMNN 159 89.8 62.4 59.2 45.6

GPT 4o-mini backbone
BDA-GS 38.8 50.6 34 27 43.5

LLMNN NoExp 117.4 108.2 55 64.4 41.2
LLMNN 165 97 54.8 63.2 45.8

Table 3: Cumulative hits over 5 rounds of experiments with 128 candidates in each experiment. The values in
the table are averaged over 5 runs. The max values in each column have been bolded. Note that we use Achilles
embeddings of genes for the gene search tool in the case of LLMNN and BDA-GS on Llama and Qwen backbones.
The results indicate the strong performance of LLMNN, even surpassing the BDA based on Claude 3.5 Sonnet,
which has access to a sophisticated gene search tool. Since the numbers for this BDA variant have been taken from
Table 3 of the original paper, we do not have a score for Sanchez Down as it isn’t included in the original text.

7 Does LLMNN do Any Better on Our
Experiment Design Domains?

We observed BioDiscoveryAgent struggled to out-
perform the traditional baselines (when provided
with the same priors via access to embeddings) on
the genetic perturbation datasets, and that the per-
formance was largely the result of having better
priors. Given this, one would expect better per-
formance from LLM-based approaches in settings
with well-studied candidate spaces—e.g. genes in
the human genome—compare with much larger
spaces—e.g. all of chemical space.

LLMNN addresses the poor response to exper-

imental feedback by taking advantage of the fact
that LLMs encode candidates into a common em-
bedding space. This allows us to greedily construct
experimental batches by performing nearest neigh-
bor sampling in the neighborhood of previously
observed hits. LLMNN requires minimal assump-
tions of LLM generating valid gene names as per
HGNC nomenclature and valid SMILES strings,
which is reasonable for modern-day LLMs that
have been pretrained on an internet-scale of knowl-
edge. Further, LLMNN is an attempt at exploit-
ing the known inductive biases of the domain to
achieve higher performance.

Method. We experiment with two variants of
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Method Ion. E. ESOL FreeSolv

G. truth (| Cgt |) 1156 112 64
Random 77.8 29 14.4
Coreset 151.6 57.6 20.4

Linear UCB 283 76 39
GP 151.39 35 16.8

Llama-3.1-8B backbone
LLMNN NoExp 152.8 23.4 12.2

LLMNN 103.2 22.2 10.2

Qwen-2-7B backbone
LLMNN NoExp 147.2 24 25.8

LLMNN 134.8 36.2 23

Qwen-2.5-14B backbone
LLMNN NoExp 185.6 33.6 17.2

LLMNN 136.2 32 12.6

Claude 4 Sonnet backbone
LLMNN NoExp 173.3 60.6 43.6

LLMNN 189.6 63.8 38

GPT 4o-mini backbone
LLMNN NoExp 179.8 27.4 34.2

LLMNN 119.8 31 29.8

Table 4: Cumulative hits over 5 rounds of experiments
with B = 128, 64, and 32 candidates in each experiment
and nc = 5, 4 and 4, respectively, for Ion. E., ESOL and
FreeSolv datasets. The values are averaged over 5 runs.
Note that we use embeddings from MolFormer XL-
10pct for molecule similarity. The results indicate that
the NoExp variants of LLMNN perform competitively
compared to classical baselines on 2/3 datasets.

LLMNN, one original with the Research Plan
and Reflection outputs, and the other that con-
tains purely the Solution, without any explana-
tions. Both LLMNN variants have access to the
gene similarity tool based on the Achilles (Tsher-
niak et al., 2017) embeddings. Against LLMNN,
we include traditional baselines like Random, Core-
set (pure diversity-based approach), LinearUCB,
and Gaussian Process (GP). Apart from these meth-
ods, we also include three variants of BioDiscov-
eryAgent: 1) BDA, i.e., without any tools, 2) BDA-
GS with access to the same gene similarity tool that
LLMNN has access to, and 3) BDA-GS (Claude
3.5 Sonnet), which is the originally proposed ap-
proach in Roohani et al. (2024) that uses Claude
3.5 Sonnet LLM in the backbone and has access to
more sophisticated gene similarity search tools like
enrichment analysis on Reactome database (Gille-

spie et al., 2022). We do not include BDA in the
molecules domain because BDA is not constrained
to predict molecules that exist in the library and
hence one needs a large number of retries to con-
struct a batch. The tool for molecular similarity
available to LLMNN is based on Molformer (Ross
et al., 2022) embeddings of SMILES strings.

Results. Table 3 displays the performance com-
parison between different methods on the single
gene perturbation domain. Note that the same ex-
perimental budget has been provided to all the
methods, and the numbers are averaged over 5
runs. The table illustrates that the LLMNN method
based on the Llama-3.1 backbone outperforms
BDA based on both Llama and Claude 3.5 Sonnet
backends on 5/5 and 3/4 datasets, respectively, by
significant margins. It is worth noting that Llama-
3.1 is just an 8 billion parameter model as com-
pared to Claude 3.5, which has been trained on
larger data with significantly more parameters. Fur-
ther, LLMNN only had access to a basic gene simi-
larity tool as compared to Claude 3.5 BDA, which
had more sophisticated gene search tools. Simi-
larly, Qwen-2-7B-based LLMNN outperforms the
corresponding BDA on 5/5 datasets. Moreover, the
LLMNN method continues to outperform the cor-
responding BDA while outperforming or closely
matching classical baselines on all datasets with
larger LLMs as backbones, especially Claude 4
Sonnet. Another interesting observation is that
the traditional baselines still perform really well,
surpassing Claude 3.5 BDA on 4/4 datasets and
LLMNN as well on 2/5 datasets. One of the con-
tributing factors to the performance of LLMNN is
maintaining a memory that keeps track of which
genes have already been explored. This ensures
that similarity queries return unexplored neigh-
bours at every query, in contrast to the BioDis-
coveryAgent, which doesn’t maintain this state
and hence, would inevitably return the same set
of genes always for the same query, irrespective of
the experiment history.

On the molecular domain, Table 4 contains the
numbers for cumulative hits for all methods av-
eraged over 5 runs, given the same experimental
budget. The numbers highlight that while Qwen2-
7B-based LLMNN without explanations performs
closely to the traditional baselines on 2/3 datasets,
the latter still wins over the LLMNN approach
across all the datasets, especially with the ESOL
dataset. However, with larger LLMs like Claude 4
Sonnet, the LLMNN method outperforms classical
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Method IL2 IFNG Carnevale Sanchez Sanchez Down

Random Centroids 76 53.6 44.6 36.8 29.4
LLMNN NoExp 179.4 95.2 68.2 63.6 47.2

Table 5: Cumulative number of hits secured by the random centroids ablation variant and the best performing
LLMNN NoExp method based on Claude 4 Sonnet on the gene perturbation datasets. The Achilles embeddings are
used for gene similarity. The values are averaged over 5 runs.

Method Ion. E. ESOL FreeSolv

Rand. Centroids 83.2 24 16
LLMNN NoExp 173.3 60.6 43.6

Table 6: Cumulative hits secured by the random cen-
troids and the best performing Claude 4 Sonnet-based
LLMNN NoExp variant on the molecular datasets. Mol-
former embeddings are used for molecule similarity.

Embeds Ion. E. ESOL FreeSolv

Claude 4 Sonnet backbone
Molformer 189.6 63.8 38

OpenAI 200.2 75.4 39.6

GPT 4o-mini backbone
Molformer 119.8 31 29.8

OpenAI 169 46 46.2

Table 7: Cumulative hits by LLMNN method with dif-
ferent embeddings over 5 rounds of experiments with
same experiment settings as Table 4. The values in the
table are averaged over 5 runs. OpenAI embeddings cor-
respond to the OpenAI’s text-embedding-3-large model.

methods on the FreeSolv dataset while significantly
reducing the gap on the other 2 datasets. This un-
derscores that LLMs with simple inductive biases
are strong but still not enough alone to serve as
experiment designers across different scientific do-
mains. They need tight coupling with the more
principled statistical methods that trade off explo-
ration and exploitation, like linear UCB and GPs,
to achieve higher performance.

Given the strong performance of the LLMNN
method, we perform an ablation with LLM be-
ing replaced by a random centroid selector in the
method. Our goal is to observe if LLM guidance
plays any role in the superior performance of our
method or the gains are purely due to nearest neigh-
bour sampling in a strong embedding space. Tables
5 and 6 show the result comparing the ablation
variant with the best-performing LLMNN NoExp
variant, i.e., the one based on the Claude 4 Sonnet.

We observe that the performance drops sharply,
by over 50% in some cases, when removing LLM
guidance, underscoring its central role in deciding
the centroids for nearest neighbour sampling.

Further, we also investigate if the gains from
our method on molecular domains hold with a
general-purpose LLM embedder like OpenAI’s
text-embedding-3-large model that isn’t directly
trained on SMILES strings. As shown in table
7, LLMNN consistently improves performance,
demonstrating the robustness of our approach
across meaningful embedding spaces.

8 Conclusion

In this work, we set out to critically examine this hy-
pothesis using instruction-tuned open- and closed-
source LLMs. We particularly focused on BioDis-
coveryAgent and experimented on two domains:
single gene perturbations (5 datasets) and molecu-
lar property optimization (3 datasets). When com-
pared to classical methods like Linear UCB and
Gaussian Process that used the embedding from
the same LLM as BDA, the open-source BDA
performed significantly worse. Furthermore, on
deeper experiments with random feedback to the
LLM’s context, the open-source and Claude 3.5
Sonnet-based BDA still retained a similar average
performance, showcasing that the LLMs trained on
next token prediction and RLHF do not leverage
experimental feedback in the design of their experi-
ments. Finally, we proposed an LLM-guided Near-
est Neighbour framework (LLMNN), a simple com-
bination of LLM and a classic nearest neighbour
method. LLMNN outperforms BDA significantly
on gene datasets and is applicable to molecular do-
mains, and performs at par with the classical base-
lines, except on some molecular datasets. Overall,
this work suggests that more work is needed to ef-
fectively incorporate experimental feedback into
LLM-based experimental design pipelines. It intro-
duces a plausible avenue for future research marked
by the synergy of LLMs, classical methods, and
domain-specific inductive biases.
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Limitations and Future Works

While we demonstrate superior performance with
LLMNN on both gene perturbation and molecular
domains, this study has several limitations. Firstly,
LLMNN augments the LLM with a very simplistic
nearest neighbour sampling that allocates an equal
budget to each cluster to generate better predictions.
However, more complex schemes can be explored
to adaptively allocate more budget to centers that
have a higher probability of detecting hits. For
example, a probabilistic model like GP could be
used to determine the hit likelihood of the predicted
centers that can, in turn, be used to define budget
allocation between the centers.

Due to the policy of sampling around centers,
the method is largely exploitative and hence sensi-
tive to the choice of embeddings and hits identified
in earlier rounds. More tightly-coupled integration
of LLMs and classic exploration methods could be
investigated to improve the robustness of the exper-
iment design agent. Further, the inductive bias that
similar candidates have similar properties is clearly
not the best bias on molecular domains, as the clas-
sic exploration approaches maintain a strong per-
formance as compared to LLMNN, suggesting the
need to identify and encode more domain-specific
and task-specific biases.

Lastly, another promising direction is to explore
how external tools like literature search, enrich-
ment analysis tools for genes, etc. be effectively
augmented to the agent for better performance, as
also highlighted by Roohani et al. (2024).

Ethical Considerations

This work deals with building hybrid AI agents that
are powered by LLMs and classical exploration
settings for guiding the design of scientific exper-
iments. Since it involves the use of LLM, it is
vulnerable to adversarial attacks where the agent
might suggest experiments that lead to catastrophic
outcomes in a real laboratory. Therefore, it is im-
perative for the users to have human scientists in the
loop to screen out such experiment configurations.
Not just post-hoc, the safety could be ensured at
the start by suitable constraints on the candidate
space.

One of the domains in this work is single gene
perturbations, where the effect of knocking down
a gene is measured in human cells. While these
agents will help increase the robustness of the tar-
get discovery phase of the drug discovery pipeline,

it should be taken into account that human cells
often exhibit genetic variation from one population
to another, thus limiting the transferability of the
downstream insights to new groups. Thus, caution
needs to be exercised in utilizing the insights drawn
by this agent in the actual drug discovery pipeline.
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A.1 Single Gene Perturbation

SYSTEM PROMPT:
You are a biomedicine expert who will
assist me on problems in drug discovery.
I am planning to run a CRISPR screen
to identify genes that {func desc}. I
can only perturb exactly {batch len}
genes at a time. For each predicted
perturbation, I am able to measure out
the {meas desc} which will be referred to
as the score. I can only do 5 rounds
of experimentation. After every round
of experiment, I will provide you with
feedback on your predictions, including
the correctly identified genes called
hits and the corresponding score. The
predictions which are not hits will be
included in other results.

USER PROMPT:
This is round {round num}.
Here is the feedback on all your
predictions till now:
{feedback}
Here is a strategy to follow: Update your
priors appropriately and choose genes
that gave you hits. Also, be sure to
explore by including some genes that could
give hits.
Please propose {num cluster centers}
different yet valid gene names as per
the HGNC nomenclature you want to explore
next. Note that I will choose unexplored
genes closest to your predicted genes
to form the predictions. Your response
should exactly follow the format:
**Reflection: Thoughts on previous
results and next steps.
**Research Plan: The full high-level
research plan, with current status and
reasoning behind each proposed approach.
It should be at most 5 sentences.
**Solution:
## <Gene 1>
## <Gene 2>
...
## <Gene {num cluster centers}>
Each gene in the solution should only be
the gene name in the HGNC nomenclature.
DO NOT ADD ANY COMMENTS IN THE SOLUTION
OR AFTER THE SOLUTION.

This is the prompt template at any round i. If

i = 1, the segment about feedback in the user
prompt won’t be there. The different fields in bold
represent the following:

• round num: This is the round number for
which experiments are being selected.

• batch len: This corresponds to B i.e. the
experimental budget in each round.

• num cluster centers: This reflects the number
of cluster centers that LLMNN generates to
sample around.

• feedback: This is a string divided into two
parts: hits and non-hits. Both parts contain
the respective candidate names and their cor-
responding measurement values.

• func desc: This is the description of the task
for which we need to perform experiment de-
sign. In the context of genes, this means
the description of the phenotype we desire
to achieve.

• score desc: This elaborates on the measure-
ment values we have for the candidates.

Please refer to table 8 for detailed func desc and
score desc for each dataset.

A.2 Chemical Property Optimization

This prompt is used at any round i for the molecular
datasets. Note that for i = 1, the feedback segment
won’t be included in the prompt. Most fields
described in this prompt are similar to the genetic
perturbation, with the exception of candidate
space info that contains a high-level description
of the candidate space to provide more context to
the LLM. Table 9 contains the details of func desc
and candidate space info for each of the 3 datasets.
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SYSTEM PROMPT:
You are a chemistry expert who will
assist me with problems in molecular
property optimization. Given a library
of molecules, I am planning to conduct
wet-lab experiments to identify molecules
that have high {func desc}. {candidate
space info} I can only experiment with
exactly {batch len} molecules at a
time. For each predicted molecule, I
am able to measure out the property
value, which will be referred to as
the score. I can only do 5 rounds
of experimentation. After every round
of experiment, I will provide you with
feedback on your predictions, including
the correctly identified molecules called
hits and the corresponding score. The
predictions which are not hits will be
included in other results.

USER PROMPT:
This is round {round num}.
Here is the feedback on all your
predictions till now: {feedback str}
Here is a strategy to follow: Update your
priors appropriately and choose SMILES
that gave you hits. Also, be sure to
explore by including some SMILES strings
that could give hits.
Please propose {num cluster centers}
different yet valid SMILES strings of
molecules you want to explore next. Note
that I will choose unexplored molecules
closest to your predicted SMILES strings
to form the predictions. Your response
should exactly follow the format:
**Reflection: Thoughts on previous
results and next steps.
**Research Plan: The full high level
research plan, with current status and
reasoning behind each proposed approach.
It should be at most 5 sentences.
**Solution:
## <SMILES 1>
## <SMILES 2>
...
## <SMILES {num cluster centers}>
Each SMILES string in the solution should
be a SMILES string representation of a
valid molecule.
DO NOT ADD ANY COMMENTS IN THE SOLUTION
OR AFTER THE SOLUTION.

B Experiment Setup Details

The following subsections describe the additional
experiment details for better understanding:

B.1 Datasets

B.1.1 Single Gene Perturbation
The 5 datasets used in this domain are borrowed
from BioDiscoveryAgent (Roohani et al., 2024)
and are as follows: 1) IL2 (Schmidt et al., 2022)
is a dataset that measures the changes in the pro-
duction of Interleukin-2 (IL2) cytokine involved in
immune signaling; 2) IFNG (Schmidt et al., 2022)
is another similar dataset that measures changes in
production of Interferon-γ cytokine; 3) Carnevale
(Carnevale et al., 2022) aims to identify genes that
render T cells resistant to inhibitory signals encoun-
tered in the tumor microenvironment; 4) Sanchez
(Sanchez et al., 2021) dataset studies the change
in expression of endogenous tau protein levels in
neurons and 5) Sanchez Down (Sanchez et al.,
2021) is exactly same as Sanchez dataset but fo-
cuses purely on decreasing the expression unlike
the Sanchez which includes both increasing and
decreasing expression.

B.1.2 Chemical Property Optimization
We describe the molecular property datasets in
greater detail below:

• ESOL: Part of the MoleculeNet benchmark,
ESOL (Delaney, 2004) is a small dataset com-
prising the water solubility data for | C |= 1128
compounds in log moles per litre. Each com-
pound is represented as a SMILES string.

• FreeSolv: Free Solvation (FreeSolv) Database
(Mobley and Guthrie, 2014) is another small
dataset that provides experimental and calculated
hydration free energies of | C |= 642 small
molecules in water.

• Ion. E.: This dataset is a subset of molecular
data from the JCESR molecules that are a part
of the Materials Project Database (Jain et al.,
2013). The original set contains approximately
25, 000 molecules with annotations of many at-
tributes and properties. Our experiments focus
on one property: the Ionization Energy. We
apply two levels of filters on the whole set of
25, 000 molecules: first, we restrict to only those
molecules whose ionization energy lies between
−10 and 10 units (to avoid noisy outliers), and
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out of all these filtered molecules, we choose the
molecules composed solely of ‘C’, ‘H’, ‘N’ or ‘O’
atoms, leaving us with | C |= 11, 565 candidates.
These filters avoid the dominating effects due to
particular elements, leaving primary dependence
on the molecular structure and functional groups
captured in the SMILES strings.

B.2 Compute

All the experiments in this study have been con-
ducted on a single Nvidia A100 GPU with 40 GB
of memory. Since our proposed method, LLMNN,
involves inference through the LLMs and repeated
retrieval from the candidate memory, on average, a
single run takes between 5-10 minutes to run.

B.3 Embeddings

Achilles Embeddings. We use the publicly avail-
able Achilles embeddings (Tsherniak et al., 2017)
for the gene similarity tool. These embeddings are
808 dimensional in size.

Molformer Embeddings. We use the pub-
licly available Molformer-XL model to embed the
SMILES strings2. This model has been trained on
a collection of SMILES strings from the ZINC and
PubChem datasets to learn molecular representa-
tions. These embeddings are 768-dimensional in
size.

Llama 3.1 Embeddings. We use the LLM2Vec
(BehnamGhader et al., 2024) approach to obtain
the Llama 3.1 embeddings. Specifically, we use
the publicly released checkpoints by the authors
on Huggingface 3. These embeddings are 4096-
dimensional in nature.

Qwen2 Embeddings. We use the publicly avail-
able Qwen2-based general text embedding model
released by Alibaba-NLP (Li et al., 2023), as they
claim to be on top of the MTEB leaderboard4.
These embeddings are 3584 dimensional in nature.

C Full trace of LLMNN

Below we present a full trace of the LLMNN
method, including both the prompts and the LLM
outputs, on the IL2 dataset in the single gene per-
turbation domain.

2Model checkpoint taken from https://huggingface.co/ibm-
research/MoLFormer-XL-both-10pct

3Model checkpoint taken from
https://huggingface.co/McGill-NLP/LLM2Vec-Meta-
Llama-31-8B-Instruct-mntp-supervised

4Model checkpoint taken from
https://huggingface.co/Alibaba-NLP/gte-Qwen2-7B-instruct

Listing 1: Full trace of LLMNN method with explana-
tions on IL2 dataset

----ROUND 1: BEGIN PROMPT ----
SystemMessage(You are a biomedicine
expert who will assist me on problems
in drug discovery. I am planning to
run a CRISPR screen to identify genes
that regulate the production of
Interleukin -2 (IL -2). I can only
perturb exactly 128 genes at a time.
For each predicted perturbation , I am
able to measure out the log fold
change in Interleukin -2 (IL -2)
normalized read counts which will be
referred to as the score. I can only
do 5 rounds of experimentation. After
every round of experiment , I will
provide you with feedback on your
predictions , including the correctly
identified genes called hits and the
corresponding score. The predictions
which are not hits will be included in
other results .)

HumanMessage(
This is round 1. We are beginning
with our experiments.
Here is a strategy to follow: Choose
genes that are very different in

their biological pathways to
discover what pathways give you hits
.
Please propose 5 different yet valid
gene names as per the HGNC

nomenclature you want to explore
next. Note that I will choose
unexplored genes closest to your
predicted genes to form the
predictions. Your response should
exactly follow the format:
** Reflection: Thoughts on previous
results and next steps.
** Research Plan: The full high level
research plan , with current status

and reasoning behind each proposed
approach. It should be at most 5
sentences.
** Solution:
## <Gene 1>
## <Gene 2>
...
## <Gene 5>
Each gene in the solution should
only be the gene name in the HGNC
nomenclature.
DO NOT ADD ANY COMMENTS IN THE
SOLUTION OR AFTER THE SOLUTION.

)
----END PROMPT ----

----BEGIN OUTPUT ----
** Reflection: Thoughts on previous
results and next steps .**
Since we are starting from scratch ,
there is no previous data to reflect
on. However , we will follow the

strategy of choosing genes that are
very different in their biological
pathways to increase the chances of
discovering novel regulators of IL -2
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production.

** Research Plan: The full high level
research plan , with current status

and reasoning behind each proposed
approach .**
We will choose genes involved in
different biological processes such
as cell signaling , transcription
regulation , and metabolic pathways
to identify potential regulators of
IL -2 production. For round 1, we
will select genes that are involved
in the regulation of cell growth ,
differentiation , and metabolism. We
will use the HGNC database to
identify genes with diverse
functions. Our goal is to identify
at least one hit in this round. We
will use the provided feedback to
refine our strategy for the next
round.

** Solution :**
## ABL1
## HNF4A
## MAPK14
## PAK4
## SMAD2
----END OUTPUT ----

----ROUND 2: BEGIN PROMPT ---
SystemMessage(You are a biomedicine
expert who will assist me on problems
in drug discovery. I am planning to
run a CRISPR screen to identify genes
that regulate the production of
Interleukin -2 (IL -2). I can only
perturb exactly 128 genes at a time.
For each predicted perturbation , I am
able to measure out the log fold
change in Interleukin -2 (IL -2)
normalized read counts which will be
referred to as the score. I can only
do 5 rounds of experimentation. After
every round of experiment , I will
provide you with feedback on your
predictions , including the correctly
identified genes called hits and the
corresponding score. The predictions
which are not hits will be included in
other results .)

HumanMessage(
This is round 2.
Here is the feedback on all your
predictions till now:
[HITS]

name score
MYBL2 0.51
GBF1 0.43

DDX41 0.47
ZMAT2 0.45
RPL4 0.35

HNF4A -0.34
CDC16 0.48
WDR5 0.82
MYC 0.41

ZNF536 -0.38
TLN1 -0.49

LIN37 -0.39

SULT2B1 -0.44
[OTHER RESULTS]

name score
ABL1 0.09
QRFP 0.00
COA3 -0.05
E2F6 -0.11

NANOG -0.05
NDUFA4 0.04

RAN 0.12
MRPL19 -0.14

SLU7 0.13
CD8B -0.01

HMGB1 -0.12
AP2S1 0.03
RPS28 -0.16
COX5B 0.07
COPS6 -0.08
RNGTT 0.03
RPL11 0.05
NCAPG 0.17

NSF -0.05
NCBP2 0.00

OR51L1 -0.17
GHR 0.02

TSHZ2 -0.01
GPX3 0.11
TOX2 0.10

FAM107B 0.05
RGPD3 -0.24

TRAPPC3L 0.10
WFDC6 -0.00

SLC24A3 0.10
IFNE -0.04

ZFAND2A 0.12
BNIP3L -0.17

FAM184B -0.10
RGMB 0.02

ZNF853 -0.09
NPAS2 0.26
ATAD1 -0.05
SMCP -0.08

RAB27B 0.14
BIN3 -0.10

NPY2R 0.02
EQTN 0.16

AKR1B1 -0.21
MAPK14 -0.02
MLST8 -0.15

PPP2R3C -0.19
MNAT1 0.07
NOL10 0.05
EMC7 0.08
EMC3 -0.05
GUK1 0.19
MED6 -0.16

CIAO1 0.10
SNAPC5 0.01
ZCRB1 -0.03

TRMT112 0.07
RPS29 0.23
PDCD2 0.10
RPP21 -0.16
RPL5 0.10
EIF6 0.19
SNW1 0.28

HEATR1 0.06
RPL28 0.34
WDR18 0.07
PAK4 0.07
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AFDN -0.06
VCL -0.02

CATSPERG -0.09
PTK2 -0.10

BCAR1 -0.08
ACTR3 -0.06

RAPGEF1 0.19
WWTR1 -0.10
VWA8 0.26

FERMT2 -0.12
RSU1 0.12

MSTO1 0.02
NLRP2B -0.09
ARPC4 0.05
ARPC2 -0.12
KIF2C -0.13

SRF 0.01
RNASE1 0.16
NCKAP1 -0.14
ZFAND5 -0.01
SMAD2 0.15

MAGED2 -0.03
POTEE -0.09

IFNA10 -0.18
AKAIN1 -0.18
ZNF614 0.08
ZNF157 -0.11
MAPK8 0.09
POLI -0.21

ATXN3L -0.11
FOXD4L4 -0.09

CDR1 -0.12
NELL1 0.03
AP1S2 0.06
IFNB1 -0.13

ARMCX4 -0.14
ZNF729 -0.10
NKX3 -2 -0.13
LUZP4 -0.17
STX17 0.07

SPINK2 0.29
MEIG1 0.07

DAB2IP -0.22
ZNF611 0.03
VGLL1 -0.05

OR52E6 0.06
GUCY2F 0.03
OR10Z1 0.07

Here is a strategy to follow: Update
your priors appropriately and

choose genes that gave you hits.
Also , be sure to explore by
including some genes that could give
hits.

Please propose 5 different yet valid
gene names as per the HGNC

nomenclature you want to explore
next. Note that I will choose
unexplored genes closest to your
predicted genes to form the
predictions. Your response should
exactly follow the format:
** Reflection: Thoughts on previous
results and next steps.
** Research Plan: The full high level
research plan , with current status

and reasoning behind each proposed
approach. It should be at most 5
sentences.
** Solution:

## <Gene 1>
## <Gene 2>
...
## <Gene 5>
Each gene in the solution should
only be the gene name in the HGNC
nomenclature.
DO NOT ADD ANY COMMENTS IN THE
SOLUTION OR AFTER THE SOLUTION.

)
----END PROMPT ----
----BEGIN OUTPUT ----
** Reflection: Thoughts on previous
results and next steps .**

The previous round of CRISPR screen
identified 11 hits that regulate the
production of Interleukin -2 (IL -2),
including MYBL2 , GBF1 , DDX41 , ZMAT2

, RPL4 , HNF4A , CDC16 , WDR5 , MYC ,
ZNF536 , and TLN1. The scores of
these hits ranged from 0.35 to 0.82,
indicating varying degrees of

regulation. The other results
included 64 genes that did not show
significant regulation of IL -2
production. To refine our
understanding of the IL -2 regulatory
network , we will focus on the hits

and their neighbors. We will update
our priors to reflect the observed
hits and select new genes that are
closely related to the identified
hits.

** Research Plan: The full high -level
research plan , with current status

and reasoning behind each proposed
approach .**

We will update our prior
probabilities based on the hits
identified in the previous round and
select new genes that are closely

related to the hits. We will choose
genes that are in the same
biological pathways , have similar
functional annotations , or have
known interactions with the hits. We
will then select the top -scoring

genes from these candidates to form
our next set of predictions. Our
goal is to refine our understanding
of the IL -2 regulatory network and
identify new genes that play a role
in its regulation. We will repeat
this process for a total of 5 rounds
, refining our predictions and
updating our priors after each round
.

** Solution :**
## MYBL2
## GBF1
## DDX41
## ZMAT2
## RPL4
----END OUTPUT ----
----ROUND 3: BEGIN PROMPT ----

SystemMessage(You are a biomedicine
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expert who will assist me on problems
in drug discovery. I am planning to
run a CRISPR screen to identify genes
that regulate the production of
Interleukin -2 (IL -2). I can only
perturb exactly 128 genes at a time.
For each predicted perturbation , I am
able to measure out the log fold
change in Interleukin -2 (IL -2)
normalized read counts which will be
referred to as the score. I can only
do 5 rounds of experimentation. After
every round of experiment , I will
provide you with feedback on your
predictions , including the correctly
identified genes called hits and the
corresponding score. The predictions
which are not hits will be included in
other results .)

HumanMessage(
This is round 3.
Here is the feedback on all your
predictions till now:
[HITS]

name score
MYBL2 0.51
GBF1 0.43

DDX41 0.47
ZMAT2 0.45
RPL4 0.35

HNF4A -0.34
CDC16 0.48
WDR5 0.82
MYC 0.41

ZNF536 -0.38
TLN1 -0.49

LIN37 -0.39
SULT2B1 -0.44

SPC24 0.58
SNRPD2 0.39
POLR1A 0.47
SF3A2 0.65

SNRNP200 0.78
CDK1 0.43
DUT 0.44

PRC1 0.38
DONSON 0.65

EEF2 0.43
PSMA6 0.34
XAB2 0.41
VCP 0.66

PSMA1 0.39
PSMD7 0.57
SMU1 0.45
POLE 0.57

SF3B3 0.36
KIF11 0.36
ETF1 -0.45

CDC23 0.75
GINS2 0.38
RPS11 0.64
RPS20 0.43
RBM22 0.61

FAU 0.49
RPL17 0.49

PRPF19 0.38
RPL9 0.44

UTP15 0.59
RPS3A 0.39
RPL37 0.68

RPS27A 0.48
RPL27 0.87
PRPF8 0.45
CCT4 0.35

RPS16 0.38
RPL7A 0.61
CDC7 0.62
RPS6 0.47

RPL23A 0.79
RPS13 0.92
RPL32 0.68
RPL18 0.77
RPLP2 0.52
RPS8 0.69

RPL10A 0.86
RPL8 0.81

MAK16 1.15
RPS17 0.82
RPL19 1.21
RPL3 0.42

RPL15 0.92
CPSF4 1.13
XPO1 0.35
RRM2 0.50

RPL14 0.61
[OTHER RESULTS]

name score
ABL1 0.09
QRFP 0.00
COA3 -0.05
E2F6 -0.11

NANOG -0.05
NDUFA4 0.04

RAN 0.12
MRPL19 -0.14

SLU7 0.13
CD8B -0.01

HMGB1 -0.12
AP2S1 0.03
RPS28 -0.16
COX5B 0.07
COPS6 -0.08
RNGTT 0.03
RPL11 0.05
NCAPG 0.17

NSF -0.05
NCBP2 0.00

OR51L1 -0.17
GHR 0.02

TSHZ2 -0.01
GPX3 0.11
TOX2 0.10

FAM107B 0.05
RGPD3 -0.24

TRAPPC3L 0.10
WFDC6 -0.00

SLC24A3 0.10
IFNE -0.04

ZFAND2A 0.12
BNIP3L -0.17

FAM184B -0.10
RGMB 0.02

ZNF853 -0.09
NPAS2 0.26
ATAD1 -0.05
SMCP -0.08

RAB27B 0.14
BIN3 -0.10

NPY2R 0.02
EQTN 0.16
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AKR1B1 -0.21
MAPK14 -0.02
MLST8 -0.15

PPP2R3C -0.19
MNAT1 0.07
NOL10 0.05
EMC7 0.08
EMC3 -0.05
GUK1 0.19
MED6 -0.16

CIAO1 0.10
SNAPC5 0.01
ZCRB1 -0.03

TRMT112 0.07
RPS29 0.23
PDCD2 0.10
RPP21 -0.16
RPL5 0.10
EIF6 0.19
SNW1 0.28

HEATR1 0.06
RPL28 0.34
WDR18 0.07
PAK4 0.07
AFDN -0.06
VCL -0.02

CATSPERG -0.09
PTK2 -0.10

BCAR1 -0.08
ACTR3 -0.06

RAPGEF1 0.19
WWTR1 -0.10
VWA8 0.26

FERMT2 -0.12
RSU1 0.12

MSTO1 0.02
NLRP2B -0.09
ARPC4 0.05
ARPC2 -0.12
KIF2C -0.13

SRF 0.01
RNASE1 0.16
NCKAP1 -0.14
ZFAND5 -0.01
SMAD2 0.15

MAGED2 -0.03
POTEE -0.09

IFNA10 -0.18
AKAIN1 -0.18
ZNF614 0.08
ZNF157 -0.11
MAPK8 0.09
POLI -0.21

ATXN3L -0.11
FOXD4L4 -0.09

CDR1 -0.12
NELL1 0.03
AP1S2 0.06
IFNB1 -0.13

ARMCX4 -0.14
ZNF729 -0.10
NKX3 -2 -0.13
LUZP4 -0.17
STX17 0.07

SPINK2 0.29
MEIG1 0.07

DAB2IP -0.22
ZNF611 0.03
VGLL1 -0.05

OR52E6 0.06

GUCY2F 0.03
OR10Z1 0.07

CLTC 0.26
THOC7 0.17

ANKLE2 0.20
SF3A1 0.17

SAP30BP 0.26
ZMAT5 0.19
LSM2 -0.18

CDC45 0.08
TANGO6 0.10
NUP85 -0.11

TBC1D3B 0.13
SEC13 0.19
NEDD1 0.32
RFC2 0.30
SDE2 0.31
CCT3 0.23

PSMB3 -0.01
KPNB1 0.14

ANAPC11 -0.07
HSPA9 -0.03
SMG1 0.15

SBNO1 -0.03
PSMB4 0.14
COPB1 0.14
PSMA3 0.05
COPB2 0.24
PSMA5 0.34
PSMA2 0.29

CDK11A -0.06
PRELID1 0.22

FARSB 0.13
RSL24D1 0.11

RPL12 0.34
DHX37 0.29
BUD31 0.08

CDC123 -0.03
TXNL4A -0.25
INTS11 0.26

DBR1 0.14
HSPE1 -0.03

NPIPB6 -0.15
PAFAH1B1 -0.26

NFS1 0.15
DDX56 0.21
CDC27 0.17
DDX49 0.22
SF3B4 0.18
RPL23 0.09
WEE1 -0.18
NIP7 0.22

SF3B5 0.26
CDC20 0.29
RPS9 0.12
LRR1 -0.03

GEMIN5 0.00
SNRPA1 0.06
RPLP0 0.26

EIF2S1 0.02
DNAJC17 0.04

XRCC6 -0.22
DUX4 -0.01

RPS19 0.23
WDR43 0.24
RRM1 0.32

ATP6V0C 0.06
RPS2 0.33

PUF60 -0.07
SEC61A1 -0.17
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TSR1 0.23
WDR74 0.33
RPL7 0.31

Here is a strategy to follow: Update
your priors appropriately and

choose genes that gave you hits.
Also , be sure to explore by
including some genes that could give
hits.

Please propose 5 different yet valid
gene names as per the HGNC

nomenclature you want to explore
next. Note that I will choose
unexplored genes closest to your
predicted genes to form the
predictions. Your response should
exactly follow the format:
** Reflection: Thoughts on previous
results and next steps.
** Research Plan: The full high level
research plan , with current status

and reasoning behind each proposed
approach. It should be at most 5
sentences.
** Solution:
## <Gene 1>
## <Gene 2>
...
## <Gene 5>
Each gene in the solution should
only be the gene name in the HGNC
nomenclature.
DO NOT ADD ANY COMMENTS IN THE
SOLUTION OR AFTER THE SOLUTION.

)
----END PROMPT ----
----BEGIN OUTPUT ----
** Reflection: Thoughts on previous
results and next steps .**
Based on the previous round of
experimentation , we have identified
several genes that are associated
with the regulation of Interleukin -2
(IL -2) production. The hits from

this round include genes involved in
various cellular processes such as

RNA processing , translation , and
cell cycle regulation. We can update
our priors to reflect the

importance of these genes in IL -2
regulation. To further explore the
regulatory network , we will choose
genes that are functionally related
to the hits from the previous round.

** Research Plan: The full high -level
research plan , with current status

and reasoning behind each proposed
approach .**
We will select genes that are
functionally related to the hits
from the previous round , focusing on
RNA processing , translation , and

cell cycle regulation. We will
choose unexplored genes closest to
the hits to form the predictions.
This approach will allow us to
further refine our understanding of
the IL -2 regulatory network. We will
use the updated priors to inform

our selection of genes. Our goal is
to identify additional genes that
regulate IL -2 production.

** Solution :**
## RPS27
## SF3B1
## DDX3X
## RPS15
## NOLC1
----END OUTPUT ----
----ROUND 4: BEGIN PROMPT ----

SystemMessage(You are a biomedicine
expert who will assist me on problems
in drug discovery. I am planning to
run a CRISPR screen to identify genes
that regulate the production of
Interleukin -2 (IL -2). I can only
perturb exactly 128 genes at a time.
For each predicted perturbation , I am
able to measure out the log fold
change in Interleukin -2 (IL -2)
normalized read counts which will be
referred to as the score. I can only
do 5 rounds of experimentation. After
every round of experiment , I will
provide you with feedback on your
predictions , including the correctly
identified genes called hits and the
corresponding score. The predictions
which are not hits will be included in
other results .)

HumanMessage(
This is round 4.
Here is the feedback on all your
predictions till now:
[HITS]

name score
MYBL2 0.51
GBF1 0.43

DDX41 0.47
ZMAT2 0.45
RPL4 0.35

HNF4A -0.34
CDC16 0.48
WDR5 0.82
MYC 0.41

ZNF536 -0.38
TLN1 -0.49

LIN37 -0.39
SULT2B1 -0.44

SPC24 0.58
SNRPD2 0.39
POLR1A 0.47
SF3A2 0.65

SNRNP200 0.78
CDK1 0.43
DUT 0.44

PRC1 0.38
DONSON 0.65

EEF2 0.43
PSMA6 0.34
XAB2 0.41
VCP 0.66

PSMA1 0.39
PSMD7 0.57
SMU1 0.45
POLE 0.57

SF3B3 0.36
KIF11 0.36

15501



ETF1 -0.45
CDC23 0.75
GINS2 0.38
RPS11 0.64
RPS20 0.43
RBM22 0.61

FAU 0.49
RPL17 0.49

PRPF19 0.38
RPL9 0.44

UTP15 0.59
RPS3A 0.39
RPL37 0.68

RPS27A 0.48
RPL27 0.87
PRPF8 0.45
CCT4 0.35

RPS16 0.38
RPL7A 0.61
CDC7 0.62
RPS6 0.47

RPL23A 0.79
RPS13 0.92
RPL32 0.68
RPL18 0.77
RPLP2 0.52
RPS8 0.69

RPL10A 0.86
RPL8 0.81

MAK16 1.15
RPS17 0.82
RPL19 1.21
RPL3 0.42

RPL15 0.92
CPSF4 1.13
XPO1 0.35
RRM2 0.50

RPL14 0.61
INTS3 0.53
RFC3 0.50

RBM25 0.47
FCF1 0.40

POLR1B 0.36
POLD3 0.52
CHMP6 0.85
PSMC5 0.34
RPL31 0.40

ERH 0.45
RPS4X 0.70
CHERP 0.49
DKC1 0.40

CNOT3 0.44
SNRPC 1.25
MTBP 0.57

SYMPK 0.68
CDC6 0.47
PPAN 0.89

SPOUT1 0.38
EIF3I 0.45
RPL36 0.72
NUP93 0.35
RPS24 0.83

NUP133 0.49
RPS18 0.46
RPS14 0.60

PDCD11 0.43
NOC3L 0.34
BMS1 0.56

RPS25 0.49
EBNA1BP2 0.39

BOP1 0.51
NOP2 0.55
RRN3 0.35

TUBGCP2 0.59
RPS3 0.54

[OTHER RESULTS]
name score
ABL1 0.09
QRFP 0.00
COA3 -0.05
E2F6 -0.11

NANOG -0.05
NDUFA4 0.04

RAN 0.12
MRPL19 -0.14

SLU7 0.13
CD8B -0.01

HMGB1 -0.12
AP2S1 0.03
RPS28 -0.16
COX5B 0.07
COPS6 -0.08
RNGTT 0.03
RPL11 0.05
NCAPG 0.17

NSF -0.05
NCBP2 0.00

OR51L1 -0.17
GHR 0.02

TSHZ2 -0.01
GPX3 0.11
TOX2 0.10

FAM107B 0.05
RGPD3 -0.24

TRAPPC3L 0.10
WFDC6 -0.00

SLC24A3 0.10
IFNE -0.04

ZFAND2A 0.12
BNIP3L -0.17

FAM184B -0.10
RGMB 0.02

ZNF853 -0.09
NPAS2 0.26
ATAD1 -0.05
SMCP -0.08

RAB27B 0.14
BIN3 -0.10

NPY2R 0.02
EQTN 0.16

AKR1B1 -0.21
MAPK14 -0.02
MLST8 -0.15

PPP2R3C -0.19
MNAT1 0.07
NOL10 0.05
EMC7 0.08
EMC3 -0.05
GUK1 0.19
MED6 -0.16

CIAO1 0.10
SNAPC5 0.01
ZCRB1 -0.03

TRMT112 0.07
RPS29 0.23
PDCD2 0.10
RPP21 -0.16
RPL5 0.10
EIF6 0.19
SNW1 0.28

15502



HEATR1 0.06
RPL28 0.34
WDR18 0.07
PAK4 0.07
AFDN -0.06
VCL -0.02

CATSPERG -0.09
PTK2 -0.10

BCAR1 -0.08
ACTR3 -0.06

RAPGEF1 0.19
WWTR1 -0.10
VWA8 0.26

FERMT2 -0.12
RSU1 0.12

MSTO1 0.02
NLRP2B -0.09
ARPC4 0.05
ARPC2 -0.12
KIF2C -0.13

SRF 0.01
RNASE1 0.16
NCKAP1 -0.14
ZFAND5 -0.01
SMAD2 0.15

MAGED2 -0.03
POTEE -0.09

IFNA10 -0.18
AKAIN1 -0.18
ZNF614 0.08
ZNF157 -0.11
MAPK8 0.09
POLI -0.21

ATXN3L -0.11
FOXD4L4 -0.09

CDR1 -0.12
NELL1 0.03
AP1S2 0.06
IFNB1 -0.13

ARMCX4 -0.14
ZNF729 -0.10
NKX3 -2 -0.13
LUZP4 -0.17
STX17 0.07

SPINK2 0.29
MEIG1 0.07

DAB2IP -0.22
ZNF611 0.03
VGLL1 -0.05

OR52E6 0.06
GUCY2F 0.03
OR10Z1 0.07

CLTC 0.26
THOC7 0.17

ANKLE2 0.20
SF3A1 0.17

SAP30BP 0.26
ZMAT5 0.19
LSM2 -0.18

CDC45 0.08
TANGO6 0.10
NUP85 -0.11

TBC1D3B 0.13
SEC13 0.19
NEDD1 0.32
RFC2 0.30
SDE2 0.31
CCT3 0.23

PSMB3 -0.01
KPNB1 0.14

ANAPC11 -0.07
HSPA9 -0.03
SMG1 0.15

SBNO1 -0.03
PSMB4 0.14
COPB1 0.14
PSMA3 0.05
COPB2 0.24
PSMA5 0.34
PSMA2 0.29

CDK11A -0.06
PRELID1 0.22

FARSB 0.13
RSL24D1 0.11

RPL12 0.34
DHX37 0.29
BUD31 0.08

CDC123 -0.03
TXNL4A -0.25
INTS11 0.26

DBR1 0.14
HSPE1 -0.03

NPIPB6 -0.15
PAFAH1B1 -0.26

NFS1 0.15
DDX56 0.21
CDC27 0.17
DDX49 0.22
SF3B4 0.18
RPL23 0.09
WEE1 -0.18
NIP7 0.22

SF3B5 0.26
CDC20 0.29
RPS9 0.12
LRR1 -0.03

GEMIN5 0.00
SNRPA1 0.06
RPLP0 0.26

EIF2S1 0.02
DNAJC17 0.04

XRCC6 -0.22
DUX4 -0.01

RPS19 0.23
WDR43 0.24
RRM1 0.32

ATP6V0C 0.06
RPS2 0.33

PUF60 -0.07
SEC61A1 -0.17

TSR1 0.23
WDR74 0.33
RPL7 0.31

RPS27 0.13
MCM7 0.01

LUC7L3 0.12
EEF1A1 0.21

RPSA 0.28
PPWD1 0.29

TOMM22 -0.05
RACGAP1 0.25
DYNC1H1 -0.17
SNRNP25 0.01

TIMELESS 0.11
UQCRH -0.09
PAM16 0.19
PFDN6 -0.21
DDX10 0.32
RRP12 0.16
GPN1 0.08
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PFDN2 0.06
ZNHIT2 0.20

BYSL 0.04
USP36 -0.03
SF3B1 0.30
VPS25 -0.08

PRPF38A 0.15
EIF5 -0.12

ATP6V0B 0.06
RNPC3 -0.02
PSMA4 0.23
UBL5 -0.00

EIF4A3 0.33
POLE2 0.09
GPN3 0.15

PSMD3 0.27
COPA 0.05

CHMP2A 0.06
RPL27A 0.27
PSMD1 0.32
CWC22 0.22
WBP11 0.13
PSMD4 0.23
DDX3X 0.03

EIF1AX 0.10
UBA1 0.21

EIF2S3 0.10
TSR2 0.19

POLA1 0.24
DHDDS -0.26

ANAPC2 0.23
GPKOW 0.07
HCFC1 0.06
PDRG1 -0.16

TRAPPC3 0.07
LSM3 0.05

ATP6AP2 -0.05
GPN2 0.03
DTL 0.06

ZFP36L2 0.01
RPS15A 0.21
NEDD8 0.09
WDR75 0.31
NSA2 0.12

TRNT1 0.09
ISCU -0.01

MRPL13 0.09
DDX55 0.01
BIRC5 0.30
ARL2 0.02
PWP2 0.02

SPPL2B 0.01
NIFK 0.26

ABCE1 0.28
PRIM1 0.11
EIF3G 0.08
NOLC1 0.02
NOC4L 0.11
UTP20 0.33
NOP10 -0.04
URB1 0.04
NMD3 0.33
ZPR1 0.15
NOL9 0.11
TCP1 0.02
TBCB 0.10
UBA2 -0.17

RSL1D1 0.28
PAK1IP1 0.22

NOP56 -0.08

RBM17 0.00
XRN2 0.06

OSGEP 0.10
UTP18 0.02

Here is a strategy to follow: Update
your priors appropriately and

choose genes that gave you hits.
Also , be sure to explore by
including some genes that could give
hits.

Please propose 5 different yet valid
gene names as per the HGNC

nomenclature you want to explore
next. Note that I will choose
unexplored genes closest to your
predicted genes to form the
predictions. Your response should
exactly follow the format:
** Reflection: Thoughts on previous
results and next steps.
** Research Plan: The full high level
research plan , with current status

and reasoning behind each proposed
approach. It should be at most 5
sentences.
** Solution:
## <Gene 1>
## <Gene 2>
...
## <Gene 5>
Each gene in the solution should
only be the gene name in the HGNC
nomenclature.
DO NOT ADD ANY COMMENTS IN THE
SOLUTION OR AFTER THE SOLUTION.

)
----END PROMPT ----
----BEGIN OUTPUT ----
** Reflection: Thoughts on previous
results and next steps .**
The previous results have identified
several genes that are involved in

the regulation of Interleukin -2 (IL
-2) production. The top -scoring
genes from the previous round
include RPL27 , RPL23A , RPL18 , RPS13 ,
RPL10A , RPL8 , MAK16 , RPL19 , CPSF4 ,

and RPL15. These genes are mostly
ribosomal proteins , suggesting that
the regulation of IL -2 production is
tightly linked to protein synthesis

. The next steps will focus on
exploring more genes that are
closely related to these hits and
are not yet explored.

** Research Plan: The full high level
research plan , with current status

and reasoning behind each proposed
approach .**
We will update our priors based on
the previous results and choose
genes that are closely related to
the hits from the previous round. We
will also include some genes that

could give hits based on their
functional annotation. We will use
the HGNC nomenclature to select 5
unexplored genes that are closest to
the predicted genes. We will then
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use these genes for the next round
of experimentation.

** Solution :**
## RPL22
## RPS11
## RPL14
## RPS4X
## RPL32
----END OUTPUT ----
----ROUND 5: BEGIN PROMPT ----
SystemMessage(You are a biomedicine
expert who will assist me on
problems in drug discovery. I am
planning to run a CRISPR screen to
identify genes that regulate the
production of Interleukin -2 (IL -2).
I can only perturb exactly 128 genes
at a time. For each predicted

perturbation , I am able to measure
out the log fold change in
Interleukin -2 (IL -2) normalized read
counts which will be referred to as
the score. I can only do 5 rounds

of experimentation. After every
round of experiment , I will provide
you with feedback on your
predictions , including the correctly
identified genes called hits and

the corresponding score. The
predictions which are not hits will
be included in other results .)

HumanMessage(
This is round 5.
Here is the feedback on all your
predictions till now:
[HITS]

name score
MYBL2 0.51
GBF1 0.43

DDX41 0.47
ZMAT2 0.45
RPL4 0.35

HNF4A -0.34
CDC16 0.48
WDR5 0.82
MYC 0.41

ZNF536 -0.38
TLN1 -0.49

LIN37 -0.39
SULT2B1 -0.44

SPC24 0.58
SNRPD2 0.39
POLR1A 0.47
SF3A2 0.65

SNRNP200 0.78
CDK1 0.43
DUT 0.44

PRC1 0.38
DONSON 0.65

EEF2 0.43
PSMA6 0.34
XAB2 0.41
VCP 0.66

PSMA1 0.39
PSMD7 0.57
SMU1 0.45
POLE 0.57

SF3B3 0.36
KIF11 0.36

ETF1 -0.45
CDC23 0.75
GINS2 0.38
RPS11 0.64
RPS20 0.43
RBM22 0.61

FAU 0.49
RPL17 0.49

PRPF19 0.38
RPL9 0.44

UTP15 0.59
RPS3A 0.39
RPL37 0.68

RPS27A 0.48
RPL27 0.87
PRPF8 0.45
CCT4 0.35

RPS16 0.38
RPL7A 0.61
CDC7 0.62
RPS6 0.47

RPL23A 0.79
RPS13 0.92
RPL32 0.68
RPL18 0.77
RPLP2 0.52
RPS8 0.69

RPL10A 0.86
RPL8 0.81

MAK16 1.15
RPS17 0.82
RPL19 1.21
RPL3 0.42

RPL15 0.92
CPSF4 1.13
XPO1 0.35
RRM2 0.50

RPL14 0.61
INTS3 0.53
RFC3 0.50

RBM25 0.47
FCF1 0.40

POLR1B 0.36
POLD3 0.52
CHMP6 0.85
PSMC5 0.34
RPL31 0.40

ERH 0.45
RPS4X 0.70
CHERP 0.49
DKC1 0.40

CNOT3 0.44
SNRPC 1.25
MTBP 0.57

SYMPK 0.68
CDC6 0.47
PPAN 0.89

SPOUT1 0.38
EIF3I 0.45
RPL36 0.72
NUP93 0.35
RPS24 0.83

NUP133 0.49
RPS18 0.46
RPS14 0.60

PDCD11 0.43
NOC3L 0.34
BMS1 0.56

RPS25 0.49
EBNA1BP2 0.39
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BOP1 0.51
NOP2 0.55
RRN3 0.35

TUBGCP2 0.59
RPS3 0.54

PKMYT1 0.46
CLNS1A 0.47
GINS1 0.47

SNRNP27 0.63
TNPO3 0.44
MCM5 0.43
BUB3 0.48

WDR12 0.43
NUTF2 0.45
RPLP1 0.66

DYNC1I2 0.62
USP5 0.34

RPL35 0.98
RPL26 0.99
GINS4 0.59
EIF3B 0.48
GNL3L 0.39
SMC1A 0.68
RPL34 0.67
DAD1 -0.42

MPHOSPH10 0.47
RPL6 0.62
GNL2 0.42

RUVBL1 0.56
RPS7 1.02

SNRPF 0.57
MFAP1 0.42
SRBD1 0.56

POLR1C 0.41
NOB1 0.38

PSMD6 0.43
[OTHER RESULTS]

name score
ABL1 0.09
QRFP 0.00
COA3 -0.05
E2F6 -0.11

NANOG -0.05
NDUFA4 0.04

RAN 0.12
MRPL19 -0.14

SLU7 0.13
CD8B -0.01

HMGB1 -0.12
AP2S1 0.03
RPS28 -0.16
COX5B 0.07
COPS6 -0.08
RNGTT 0.03
RPL11 0.05
NCAPG 0.17

NSF -0.05
NCBP2 0.00

OR51L1 -0.17
GHR 0.02

TSHZ2 -0.01
GPX3 0.11
TOX2 0.10

FAM107B 0.05
RGPD3 -0.24

TRAPPC3L 0.10
WFDC6 -0.00

SLC24A3 0.10
IFNE -0.04

ZFAND2A 0.12

BNIP3L -0.17
FAM184B -0.10

RGMB 0.02
ZNF853 -0.09
NPAS2 0.26
ATAD1 -0.05
SMCP -0.08

RAB27B 0.14
BIN3 -0.10

NPY2R 0.02
EQTN 0.16

AKR1B1 -0.21
MAPK14 -0.02
MLST8 -0.15

PPP2R3C -0.19
MNAT1 0.07
NOL10 0.05
EMC7 0.08
EMC3 -0.05
GUK1 0.19
MED6 -0.16

CIAO1 0.10
SNAPC5 0.01
ZCRB1 -0.03

TRMT112 0.07
RPS29 0.23
PDCD2 0.10
RPP21 -0.16
RPL5 0.10
EIF6 0.19
SNW1 0.28

HEATR1 0.06
RPL28 0.34
WDR18 0.07
PAK4 0.07
AFDN -0.06
VCL -0.02

CATSPERG -0.09
PTK2 -0.10

BCAR1 -0.08
ACTR3 -0.06

RAPGEF1 0.19
WWTR1 -0.10
VWA8 0.26

FERMT2 -0.12
RSU1 0.12

MSTO1 0.02
NLRP2B -0.09
ARPC4 0.05
ARPC2 -0.12
KIF2C -0.13

SRF 0.01
RNASE1 0.16
NCKAP1 -0.14
ZFAND5 -0.01
SMAD2 0.15

MAGED2 -0.03
POTEE -0.09

IFNA10 -0.18
AKAIN1 -0.18
ZNF614 0.08
ZNF157 -0.11
MAPK8 0.09
POLI -0.21

ATXN3L -0.11
FOXD4L4 -0.09

CDR1 -0.12
NELL1 0.03
AP1S2 0.06
IFNB1 -0.13
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ARMCX4 -0.14
ZNF729 -0.10
NKX3 -2 -0.13
LUZP4 -0.17
STX17 0.07

SPINK2 0.29
MEIG1 0.07

DAB2IP -0.22
ZNF611 0.03
VGLL1 -0.05

OR52E6 0.06
GUCY2F 0.03
OR10Z1 0.07

CLTC 0.26
THOC7 0.17

ANKLE2 0.20
SF3A1 0.17

SAP30BP 0.26
ZMAT5 0.19
LSM2 -0.18

CDC45 0.08
TANGO6 0.10
NUP85 -0.11

TBC1D3B 0.13
SEC13 0.19
NEDD1 0.32
RFC2 0.30
SDE2 0.31
CCT3 0.23

PSMB3 -0.01
KPNB1 0.14

ANAPC11 -0.07
HSPA9 -0.03
SMG1 0.15

SBNO1 -0.03
PSMB4 0.14
COPB1 0.14
PSMA3 0.05
COPB2 0.24
PSMA5 0.34
PSMA2 0.29

CDK11A -0.06
PRELID1 0.22

FARSB 0.13
RSL24D1 0.11

RPL12 0.34
DHX37 0.29
BUD31 0.08

CDC123 -0.03
TXNL4A -0.25
INTS11 0.26

DBR1 0.14
HSPE1 -0.03

NPIPB6 -0.15
PAFAH1B1 -0.26

NFS1 0.15
DDX56 0.21
CDC27 0.17
DDX49 0.22
SF3B4 0.18
RPL23 0.09
WEE1 -0.18
NIP7 0.22

SF3B5 0.26
CDC20 0.29
RPS9 0.12
LRR1 -0.03

GEMIN5 0.00
SNRPA1 0.06
RPLP0 0.26

EIF2S1 0.02
DNAJC17 0.04

XRCC6 -0.22
DUX4 -0.01

RPS19 0.23
WDR43 0.24
RRM1 0.32

ATP6V0C 0.06
RPS2 0.33

PUF60 -0.07
SEC61A1 -0.17

TSR1 0.23
WDR74 0.33
RPL7 0.31

RPS27 0.13
MCM7 0.01

LUC7L3 0.12
EEF1A1 0.21

RPSA 0.28
PPWD1 0.29

TOMM22 -0.05
RACGAP1 0.25
DYNC1H1 -0.17
SNRNP25 0.01

TIMELESS 0.11
UQCRH -0.09
PAM16 0.19
PFDN6 -0.21
DDX10 0.32
RRP12 0.16
GPN1 0.08

PFDN2 0.06
ZNHIT2 0.20

BYSL 0.04
USP36 -0.03
SF3B1 0.30
VPS25 -0.08

PRPF38A 0.15
EIF5 -0.12

ATP6V0B 0.06
RNPC3 -0.02
PSMA4 0.23
UBL5 -0.00

EIF4A3 0.33
POLE2 0.09
GPN3 0.15

PSMD3 0.27
COPA 0.05

CHMP2A 0.06
RPL27A 0.27
PSMD1 0.32
CWC22 0.22
WBP11 0.13
PSMD4 0.23
DDX3X 0.03

EIF1AX 0.10
UBA1 0.21

EIF2S3 0.10
TSR2 0.19

POLA1 0.24
DHDDS -0.26

ANAPC2 0.23
GPKOW 0.07
HCFC1 0.06
PDRG1 -0.16

TRAPPC3 0.07
LSM3 0.05

ATP6AP2 -0.05
GPN2 0.03
DTL 0.06
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ZFP36L2 0.01
RPS15A 0.21
NEDD8 0.09
WDR75 0.31
NSA2 0.12

TRNT1 0.09
ISCU -0.01

MRPL13 0.09
DDX55 0.01
BIRC5 0.30
ARL2 0.02
PWP2 0.02

SPPL2B 0.01
NIFK 0.26

ABCE1 0.28
PRIM1 0.11
EIF3G 0.08
NOLC1 0.02
NOC4L 0.11
UTP20 0.33
NOP10 -0.04
URB1 0.04
NMD3 0.33
ZPR1 0.15
NOL9 0.11
TCP1 0.02
TBCB 0.10
UBA2 -0.17

RSL1D1 0.28
PAK1IP1 0.22

NOP56 -0.08
RBM17 0.00
XRN2 0.06

OSGEP 0.10
UTP18 0.02
RPL22 -0.23

TP53BP1 -0.04
NELFCD 0.03

METTL14 0.14
DEPDC1 0.00

WTAP 0.12
CA6 -0.08

PREB 0.13
ZNF676 -0.04

PRAMEF18 -0.11
STN1 0.01

SLC35G6 -0.20
ZNF318 -0.13
DPPA2 0.18
GSTM3 0.11

SRSF10 0.13
SCAF4 -0.04
PNRC2 0.07

IFITM3 0.00
WDR55 0.11
TMA7 -0.06

MRPS2 0.14
TSEN54 0.21
GGPS1 0.06

EIF1AD 0.19
RPL18A 0.31

SAE1 -0.03
RABGGTA 0.25
SS18L2 0.10
MRPS12 0.06
HAUS5 0.25
FOXD4 0.15
TOP2A 0.13

SNRNP70 0.33
INTS9 0.01

NOP58 0.22
SSU72 0.13

TOMM40 -0.06
HSPD1 -0.02
YKT6 -0.04

ATP6V1A -0.07
LSM7 0.09

ATP6V1F 0.03
CSE1L 0.06
RBM19 0.14
RPA3 -0.02

PSMB2 0.17
LSM8 0.16

SRP54 -0.19
CCT2 0.10

LYRM4 -0.02
MDN1 0.32

POLD1 0.30
RABGGTB -0.07
ATP2A2 -0.01
TTC27 0.24

PSMD13 0.15
EIF3E 0.21
ALG14 -0.08

NVL 0.23
HTATSF1 0.02

ZRSR2 0.06
OGT 0.02

RPN1 -0.02
SF3B2 0.29
DDB1 0.23
NUS1 -0.04

RBMX2 -0.19
MMS22L 0.26
TIMM8A 0.15
ZNF830 0.13

ALG2 0.09
RNF113A 0.28

INTS1 0.01
PSMG4 -0.16
DDOST -0.20

SNAPC1 0.04
NDC80 0.05
NKAP 0.27

EIF2B2 -0.17
INTS4 0.03

EXOSC8 0.07
TUT1 0.20

RPAP1 -0.01
KIF23 0.26

PLA2G10 -0.09
SPC25 0.31
PSMA7 -0.00

ANKRD36B -0.07
PSMC6 0.27

PRPF38B 0.06
KRI1 0.22

SNAPC2 0.05
POP5 0.20

GAPDH -0.10
SF3A3 0.34

TRAPPC1 0.15
Here is a strategy to follow: Update
your priors appropriately and

choose genes that gave you hits.
Also , be sure to explore by
including some genes that could give
hits.

Please propose 5 different yet valid
gene names as per the HGNC
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nomenclature you want to explore
next. Note that I will choose
unexplored genes closest to your
predicted genes to form the
predictions. Your response should
exactly follow the format:
** Reflection: Thoughts on previous
results and next steps.
** Research Plan: The full high level
research plan , with current status

and reasoning behind each proposed
approach. It should be at most 5
sentences.
** Solution:
## <Gene 1>
## <Gene 2>
...
## <Gene 5>
Each gene in the solution should
only be the gene name in the HGNC
nomenclature.
DO NOT ADD ANY COMMENTS IN THE
SOLUTION OR AFTER THE SOLUTION.

)
----END PROMPT ----
----BEGIN OUTPUT ----
** Reflection: Thoughts on previous
results and next steps .**

From the previous rounds of
experimentation , we have identified
several genes that regulate the
production of Interleukin -2 (IL -2). The
top -scoring genes from previous rounds
include WDR5 , SF3A2 , SNRNP200 , RPL27 ,
RPL3 , RPL15 , RPL10A , RPL8 , MAK16 , RPL19 ,
CPSF4 , SNRPF , RPS27A , RPL36 , RPS24 ,

RPL37 , RPL32 , RPL18 , RPS8 , RPLP2 , RPS13 ,
RPL23A , RPL2 , RPL26 , RPL35 , RPS17 ,

RPL14 , RPS7 , RPS29 , RPS25 , RPS3 , RPS4X ,
RPS18 , RPS16 , RPS15 , RPS14 , RPS13 , RPS12
, RPS11 , RPS10 , RPS9 , RPS8 , RPS7 , RPS6 ,
RPS5 , RPS4 , RPS3 , RPS2 , RPS1 , RPS0A ,
RPS0L1 , RPS0L2 , RPS0L3 , RPS0L4 , RPS0L5 ,
RPL30 , RPL29 , RPL28 , RPL27 , RPL26 , RPL25
, RPL24 , RPL23 , RPL22 , RPL21 , RPL20 ,
RPL19 , RPL18 , RPL17 , RPL16 , RPL15 , RPL14
, RPL13 , RPL12 , RPL11 , RPL10 , RPL9 , RPL8
, RPL7 , RPL6 , RPL5 , RPL4 , RPL3 , RPL2 ,
RPL1 , RPL0 , RPS27 , RPS26 , RPS25 , RPS24 ,
RPS23 , RPS22 , RPS21 , RPS20 , RPS19 , RPS18
, RPS17 , RPS16 , RPS15 , RPS14 , RPS13 ,
RPS12 , RPS11 , RPS10 , RPS9 , RPS8 , RPS7 ,
RPS6 , RPS5 , RPS4 , RPS3 , RPS2 , RPS1 ,
RPS0A , RPS0L1 , RPS0L2 , RPS0L3 , RPS0L4 ,
RPS0L5 , RPS0L6 , RPS0L7 , RPS0L8 , RPS0L9 ,
RPS0L10 , RPS0L11 , RPS0L12 , RPS0L13 ,
RPS0L14 , RPS0L15 , RPS0L16 , RPS0L17 ,
RPS0L18 , RPS0L19 , RPS0L20 , RPS0L21 ,
RPS0L22 , RPS0L23 , RPS0L24 , RPS0L25 ,
RPS0L26 , RPS0L27 , RPS0L28 , RPS0L29 ,
RPS0L30 , RPS0L31 , RPS0L32 , RPS0L33 ,
RPS0L34 , RPS0L35 , RPS0L36 , RPS0L37 ,
RPS0L38 , RPS0L39 , RPS0L40 , RPS0L41 ,
RPS0L42 , RPS0L43 , RPS0L44 , RPS0L45 ,
RPS0L46 , RPS0L47 , RPS0L48 , RPS0L49 ,
RPS0L50 , RPS0L51 , RPS0L52 , RPS0L53 ,
RPS0L54 , RPS0L55 , RPS0L56 , RPS0L57 ,
RPS0L58 , RPS0L59 , RPS0L60 , RPS0L61 ,
RPS0L62 , RPS0L63 , RPS0L64 , RPS0L65 ,
RPS0L66 , RPS0L67 , RPS0L68 , RPS0L69 ,

RPS0L70 , RPS0L71 , RPS0L72 , RPS0L73 ,
RPS0L74 , RPS0L75 , RPS0L76 , RPS0L77 ,
RPS0L78 , RPS0L79 , RPS0L80 , RPS0L81 ,
RPS0L82 , RPS0L83 , RPS0L84 , RPS0L85 ,
RPS0L86 , RPS0L87 , RPS0L88 , RPS0L89 ,
RPS0L90 , RPS0L91 , RPS0L92 , RPS0L93 ,
RPS0L94 , RPS0L95 , RPS0L96 , RPS0L97 ,
RPS0L98 , RPS0L99 , RPS0L100 , RPS0L101 ,
RPS0L102 , RPS0L103 , RPS0L104 , RPS0L105 ,
RPS0L106 , RPS0L107 , RPS0L108 , RPS0L109 ,
RPS0L110 , RPS0L111 , RPS0L112 , RPS0L113 ,
RPS0L114 , RPS0L115 , RPS0L116 , RPS0L117 ,
RPS0L118 , RPS0L119 , RPS0L120 , RPS0L121 ,
RPS0L122 , RPS0L123 , RPS0L124 , RPS0L125 ,
RPS0L126 , RPS0L127 , RPS0L128. These
genes are highly enriched in ribosomal
proteins and other proteins involved in
RNA processing and translation. We will
update our priors to reflect the
importance of these gene families in IL
-2 regulation. We will also explore
genes that are closely related to these
families , such as other ribosomal
proteins and RNA processing genes.

** Research Plan :**
We will choose genes that are closely
related to the highly scoring genes from
previous rounds. Our goal is to

identify new genes that regulate IL -2
production and to refine our
understanding of the underlying
biological pathways.

** Solution :**
## RPL38
## RPL31
## RPL18A
## SNRNP70
## RPS27

----END OUTPUT ----
SECURED TOTAL 169 HITS
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Dataset func desc score desc
IL2 regulate the produc-

tion of Interleukin-2
(IL-2)

log fold
change in
Interleukin-2
(IL-2) nor-
malized read
counts

IFNG regulate the produc-
tion of Interferon-
gamma (IFNG)

log fold change
in Interferon-
gamma (IFNG)
normalized
read counts

Carnevale upon being knocked
out, would boost
the efficacy of
engineered T cells
in the presence of an
adenosine agonist
that creates an
immunosuppresive
condition

change in T
cell prolifera-
tion

Sanchez when knocked out,
either increase or de-
crease expression of
endogenous tau pro-
tein levels in neu-
rons

change in
tau protein
level com-
pared to the
non-targeting
control, using
a total tau
antibody

Sanchez
Down

when knocked out,
decrease expression
of endogenous tau
protein levels in neu-
rons

change in
tau protein
level com-
pared to the
non-targeting
control, using
a total tau
antibody

Table 8: func desc and score desc for the different gene
perturbation datasets

Dataset func desc candidate
space info

Ion. E. ionization en-
ergy (in eV)

The molecules
in the library
are composed
of only C, H,
N and O ele-
ments.

ESOL solubility in
water (log mol
per litre)

The molecules
in the li-
brary are
small organic
molecules.

FreeSolv hydration free
energy in water

The molecules
in the li-
brary are
small organic
molecules.

Table 9: func desc and candidate space info for the
different molecular property datasets
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