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Abstract

Multi-agent systems (MAS) powered by large
language models (LLMs) have shown poten-
tial in tackling multifaceted problems through
advanced understanding and reasoning. How-
ever, they struggle to adapt to evolving task
dependencies and to handle uncertainties, such
as shifting priorities or unpredictable disrup-
tions. These constraints undermine their abil-
ity to dynamically adjust long-term strategies
and inter-agent collaboration. To address these
challenges, we propose DeMAC, a Dynamic
Environment-Aware Manager-Player Agents
Coordination framework that enhances multi-
agent coordination through long-term strate-
gic planning. DeMAC uses a dynamically
updated directed acyclic graph (DAG) and a
Manager-Player Dual-Feedback mechanism to
align strategic and operational decisions. More-
over, DeMAC enables agents to maintain col-
laboration and dynamically adapt to chang-
ing environmental conditions, outperforming
traditional reinforcement learning and human-
agent collaboration in the Overcooked simula-
tion. Experimental results highlight DeMAC’s
ability to tackle complex coordination tasks,
demonstrating its potential to advance LLM-
based MAS in dynamic, complex task depen-
dency environments.

1 Introduction

Multi-agent systems (MAS) based on large lan-
guage models (LLMs) (Achiam et al., 2023; Wang
et al., 2024a) have shown significant potential
in tackling multifaceted challenges by utilizing
LLMs’ advanced language understanding, reason-
ing, and generalization capabilities. LLM-based
multi-agents are applied to abstract language tasks
including debates, fact verification, and third-party
arbitration (Wang et al., 2024c; Hong et al., 2024;
Chan et al., 2024; Wang et al., 2024b). Beyond
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these abstract tasks, recent investigations have be-
gun evaluating their efficacy in physical simulation
environments (Park et al., 2023; Wang et al., 2023;
Chen et al., 2024b). In these settings, MAS of-
ten require strategic reasoning capabilities that not
only enable agents to navigate dynamic environ-
ments but also anticipate or plan actions from other
agents (van der Hoek et al., 2005; Zhang et al.,
2024c; Duan et al., 2024).

The Overcooked environment is widely lever-
aged in MAS research (Wu et al., 2021; Carroll
et al., 2019) for its realistic simulation of complex
tasks and dynamic interactions, ideal for multi-
agent coordination (Tan et al., 2024). The variety
of items and actions influences environmental un-
certainty and task dependencies. Figure 1a illus-
trates a scenario where the variety of items and
actions are limited, the task flow is relatively fixed,
resulting in low-level uncertainty. In low-level
uncertainty scenario, agents only require basic co-
ordination because task dependency relationships
are clear. In contrast, Figure 1b depicts a dynami-
cally changing environment with diverse task flows,
leading to high-level uncertainty driven by factors
like ingredient locations, pot states, and resource
competition, which complicate task dependencies.
Action sequences (e.g., chopping lettuce or onions
first) reshape dependencies, influencing task priori-
tization and coordination. In high-level uncertainty,
agents must adapt their coordination strategies to
address changing conditions and evolving task de-
pendencies.

In Overcooked environments, most LLM-based
MAS (Zhang et al., 2024a; Agashe et al., 2024;
Zhang et al., 2024d; Liu et al., 2024; Yan et al.,
2024) rely on a synthesis of reinforcement learning
and human-agent interaction. However, in com-
plex task dependency and uncertain environments
(Figure 1b), these approaches demonstrate some
constraints. Reinforcement learning optimizes in-
dividual agent policies but limits global perspective
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(a) Low-level uncertainty scenario: basic coordination in Cramped Room layout
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(b) High-level uncertainty scenario: complex multi-ingredient coordination in Partition layout

Figure 1: Comparison of task uncertainty and dependency in multi-agent cooking processes. (a) In a low-level
uncertainty scenario (uncertainty value: 1.48, for specific calculation methods, refer to D.1), agents coordinate in a
simpler task with minimal dependencies, preparing onion soup through basic actions. (b) In a high-level uncertainty
scenario (uncertainty value: 4.93), agents handle multiple ingredients and complex task dependencies.

and long-term collaboration (Sarkar et al., 2022;
Fontaine et al., 2021; Knott et al., 2021; Sutton,
2018). This results in misaligned objectives and
inefficiencies in multi-agent collaboration (Notting-
ham et al., 2023), ultimately undermining cohesive
team performance. Human-agent interaction en-
ables decentralized collaboration (Bradshaw et al.,
2017; Liu et al., 2024), but it struggles to cope with
the dynamic and unpredictable nature of human de-
cisions, such as suddenly extinguishing a fire or de-
viating from planned tasks. This process frequently
leads to re-planning of tasks, ultimately hindering
effective coordination. These approaches are insuf-
ficient for delivering cohesive long-term strategies
and dynamic inter-agent collaboration required for
complex task dependency, uncertain environments.

To address these limitations, we propose
Dynamic Environment-Aware Manager-Player
Agent Coordination Framework (DeMAC), which
targets the challenges of task dependencies and
uncertainties in MAS. DeMAC utilizes a directed
acyclic graph (DAG) (similar to the task flow in
Figure 1b) to represent task dependencies and ex-
ecution order. This ensures that agents follow a
consistent, conflict-free plan, addressing the limi-
tations of previous methods, where agent coordina-
tion often leads to conflicting goals and inconsis-

tent task execution. DeMAC consists of three key
modules: (i) Dynamic DAG Information Update:
This module ensures the DAG remains updated to
reflect task progress and environmental changes,
addressing task dependencies and uncertainty. Dy-
namically adjusts the task flow, optimizing task or-
der, and minimizing conflicts. (ii) Manager-Player
Dual-Feedback: Integrates strategy formulation
and high-level planning to synchronize both strate-
gic and operational decisions and employs a re-
flection loop to optimize agent coordination and
ensure alignment with long-term goals. (iii) Envi-
ronment Perception: Converts environmental data
into actionable insights by abstracting grid-level
observations into high-level representations, allow-
ing agents to adjust their strategies and reduce un-
certainty in decision-making.

In summary, the key contributions of this paper
are as follows:
• DeMAC enhances MAS robustness and effi-

ciency with long-term strategic planning and
harmonized actions, enabling coherence amid
complex dependencies and uncertainties.

• We introduce a dynamic DAG that updates task
statuses and dependencies, ensuring precise co-
ordination among agents and improving respon-
siveness in complex, evolving environments.
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• Experimental results show that DeMAC outper-
forms reinforcement learning and human-agent
methods, demonstrating its potential for complex
collaborative tasks in MAS.

2 Related Work

2.1 Multi-agent collaboration

MAS are widely used in fields such as distributed
control, intelligent transportation, and robotics
(Van der Hoek and Wooldridge, 2008). Reinforce-
ment learning enhances MAS collaboration via in-
dividual optimization and global rewards (Rashid
et al., 2020; Hu and Foerster, 2020; Yu et al.,
2022; Knott et al., 2021; Zhang et al., 2023; Qian
et al., 2024). Previous methods are limited by
fixed task settings and struggle with novel sce-
narios (Zhang et al., 2024a). MultiAgentBench
(Zhu et al., 2025) spans collaboration and competi-
tion for broader evaluation. LLMs enhance MAS
adaptability and strategy (Chen et al., 2024a; Tran
et al., 2025; Li et al., 2023a; Wu et al., 2024). For
instance, Li et al. (2023b) evaluated LLM-based
agents in Theory of Mind tasks within cooperative
games. AutoForm (Chen et al., 2024c) demon-
strated efficiency gains from structured communi-
cation, while MetaGPT (Hong et al., 2024) stream-
lined collaboration through role assignment. Both
traditional and LLM-based MAS face critical chal-
lenges: the former often lack flexibility in dynamic
settings, while the latter struggle to maintain coher-
ent alignment with long-term objectives.

2.2 Reasoning in Physical Simulation
Environments via LLMs

Studies have explored LLMs for task-solving in
physical simulation environments (Huang et al.,
2024; Li et al., 2024; Zhang et al., 2024d; Kim
et al., 2024; Ma et al., 2025), demonstrating their
potential in understanding and planning complex
scenarios. DEPS (Wang et al., 2023) applies LLMs
for reasoning in physical simulations but focuses
on single-agent planning. The LLM Compiler
(Kim et al., 2024) utilizes DAG structures to en-
hance parallel reasoning and coordinate complex
tasks efficiently. And coELA (Zhang et al., 2024b)
evaluates modular cooperative skills across diverse
scenes. VillagerAgent (Dong et al., 2024) applies
DAG-based multi-agent planning, but its DAG fol-
lows an incremental update mechanism without
pruning or structural refinement, which limits its
capacity for long-term adaptation and failure recov-

ery. Proagent (Zhang et al., 2024a) uses LLMs to
observe and infer the intentions of reinforcement
learning agents, facilitating cooperation. Some
studies use LLM-human interactions to improve
decision-making in dynamic environments by ad-
dressing the lack of a global perspective (Liu et al.,
2024; Yan et al., 2024; Tan et al., 2024). However,
current LLM-based MAS frameworks remain lim-
ited in sustaining coherent, long-horizon strategies
across complex, partially observable environments
like Overcooked, where task interdependence and
dynamic replanning are critical.

3 Method

3.1 DeMAC framework overview

In this section, we present the methodology for
designing and implementing DeMAC, as shown
in Figure 2. DeMAC consists of three compo-
nents: Environment Perception (§3.2), Manager-
Player Dual-Feedback (§3.3), and Dynamic DAG
Update Information (§3.4). Environment Percep-
tion synthesizes inputs into actionable intelligence.
Manager-Player Dual-Feedback facilitates strategy
formulation by dynamically assessing tasks and
roles while enabling adaptive DAG decomposition
for robust planning. Lastly, Dynamic DAG Update
Information continuously refines task dependen-
cies, enabling adaptive coordination in response to
changing conditions.

The Overcooked environment can be modeled
as a simplified Partially Observational Markov De-
cision Process (POMDP) : ⟨S,A,O, E⟩. Here, S
represents the set of environment states, A denotes
the agents’ actions, O represents observations, E
encapsulates both autonomous environment evolu-
tion and state transition dynamics, allowing us to
omit an explicit P without loss of generality.

3.2 Environment perception

The Environment Perception module, illustrated in
Figure 3, enhances DeMAC by providing dynamic
environmental awareness to support agent decision-
making. The Environmental Analysis (EA) com-
ponent leverages LLMs to process environmental
inputs (task orders, player states, and map data)
into structured, actionable outputs. By analyzing
these inputs, EA helps agents adapt to both exter-
nal environmental changes and their own actions.
The EA defined by the prompt ze1.

1For details on Agent profiles, please refer to App. A.1
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Figure 2: Overview of the DeMAC framework, illustrating Environment Perception, Manager-Player Dual-
Feedback, and Dynamically update DAG information. These modules enable adaptive coordination, efficient task
allocation, and consistent logical validation for multi-agent operations.
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Figure 3: Comparison of native LLM agent commu-
nication versus Environment Perception in DeMAC in
Overcooked environment.

At each time step t, the observation state Ot ∈
O encapsulates orders, player states, and map de-
tails, representing the environment. Observations
O are derived based on S×A×E → O, where the
inclusion of E highlights the independent evolution
of the environment, requiring agents to respond to
dynamic conditions. Feature extraction from ob-
servations follows the transformation:

Lt, Dt = LLMEA(pt, Ot||ze) (1)

where Lt and Dt denote the structured language
state and DAG-based task dependencies at time

t. Specifically, the structured language state Lt =
(Qt, Rt, Vt) encodes: (i) the set of observed entities
Qt (e.g., object categories, attributes, contextual
tags), (ii) the relative spatial configuration Rt (dis-
tances, reachable zones, and spatial relations), and
(iii) the valid actions Vt available to the agent given
current affordances (e.g., pick, cook, chop). The
prompt pt incorporates partial information from
(Lt, Dt), enabling it to adapt dynamically to the
evolving environment and current task context.

In this DAG structure2, nodes represent item
states (e.g., Chopped Lettuce, Cooked Soup), while
edges represent state transitions caused by actions
(e.g., Chop, Cook). DAG ensures actions follow
the correct sequence, preventing cycles or dead-
locks, and effectively managing task execution for
timely completion.

3.3 Manager-Player dual-feedback

The Manager-Player Dual-Feedback module is es-
sential to the DeMAC framework and facilitates
cohesive multi-agent coordination through hierar-
chical feedback. Environmental data from the En-
vironment Perception (Lt, Dt) is broadcasted to

2For more specific DAG design, please refer to App. C.1
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all agents, ensuring synchronized understanding.
Operating at two levels, this dual-feedback mech-
anism continuously refines task assignments and
supports long-term strategic planning based on dy-
namic environmental outputs.

Player-Level Feedback. At this level, Player-
Agents generate descriptive information about their
local environment, including nearby objects, feasi-
ble actions, as well as other relevant information,
instead of output actions directly:

mi
t = LLM i

player(Lt, Dt||zip) (2)

where mi
t represents the information generated by

Player-Agent i, which provides contextual insights
like nearby objects and possible actions. zip is the
system prompt that defines the behavior and role
of Player-Agent i.

Manager-Level Strategic Planning. The func-
tion of the Manager-Agent can be formalized as
LLMmanager : (M× D × L) → A, where M
represents the collective memory or refined infor-
mation (mi

t) provided by each Player-Agent and
A represents the generated actions. The Manager-
Agent utilizes a DAG Dt, to analyze task depen-
dencies and plan task to Player based on conditions
and feedback:

At+T = LLMmanager(Dt, Lt,m
1
t , . . . ,m

n
t ||zm)

(3)
where At+T denotes the sequence of actions for
Player from time t to t + T . zm is the system
prompt that defines the Manager-Agent’s overall
strategy and objectives, guiding it in processing
feedback and dynamically adjusting task assign-
ments. Refined feedback from Player-Agents (mi

t)
is integrated to dynamically adjust task assign-
ments, ensuring a coherent and adaptive task se-
quence that meets overall system goals.

During each planning step (t, t+ 1, . . . , t+ T ),
the Manager-Agent deconstructs the DAG to derive
specific tasks and assigns them to Player-Agents3,
maintaining consistent progress towards system
objectives.

Manager-level Feedback.4 DeMAC follows a
centralized planner with decentralized perception:
the manager maintains a task-DAG while players
act locally and return structured feedback. This
provides long-horizon consistency under strong de-
pendencies but introduces risks of a single point of

3For a comprehensive description of the configuration files
for Manager and Player agents, refer to App.B.1

4See App. B.2 for details of the feedback-reflection loop.

failure and stale global state. We therefore add a
manager-level feedback loop that monitors plan-
ner health and plan freshness. After Manager plan-
ning, the Manager-Agent uses the DAG Logic De-
tection to validate the logical consistency of the
plan:

dt = DAGLogic(Dt, At+T ) (4)

where dt represents the outcome of the logical
check. If inconsistencies are detected, the Manager-
Agent replans and adjusts the tasks accordingly:

A(t+T )new
= LLMManager(Dt, Lt, dt,

m1
t , . . . ,m

n
t ||zm)

(5)

where A(t+T )new
is the updated action se-

quence ensuring compliance with DAG constraints.
Part of output result is shown as {Step t :
Player1: Xt,Player2: Yt}Tt=1.

The reflection loop improves task accuracy and
efficiency by incorporating continuous feedback
and memory updates, which ensures alignment in
task progress across agents. Based on the result
dt, either the Manager agent or Player memory
is updated. If the logical check fails, the Man-
ager agent corrects inconsistencies. Otherwise, the
Player memory stores current allocations and state.

3.4 Dynamically update DAG information

The Dynamically Update DAG Information Mod-
ule maintains task consistency by adapting to evolv-
ing dependencies and updating task allocations in
the Overcooked environment. It consists of three
key components: Plan Generation, Task Alloca-
tion, and DAG Update. This module ensures task
dependency consistency, supporting DeMAC’s co-
ordination in dynamic environments.

Plan Generation and Task Allocation. The
Manager-Agent evaluates the current DAG (Dt),
state (Lt), and feedback from Player-Agents (mi

t)
to construct a multi-step action plan, where each
step defines the actions assigned to each Player-
Agent. This plan ensures synchronized execution
and minimizes conflicts by aligning with both the
current environment state and the long-term strate-
gic objectives of the task.

DAG Update. After task allocation, the DAG
is updated to reflect changes in task progress and
environmental conditions:

Dt+T = UpdateDAG(Dt, At+T ) (6)
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where Dt+T represents the updated DAG, keep-
ing plans and allocations aligned with the current
state. Dynamic DAG Update ensures that task
progress and dependencies are aligned with condi-
tions. UpdateDAG involve adding new nodes for
incoming tasks, removing completed nodes based
on task status, and adjusting dependencies dynami-
cally to maintain task feasibility.

4 Experiments

In this section, we present the experimental setup
and results to evaluate the DeMAC framework’s
performance. We conducted experiments in two
Overcooked environments5 (Wu et al., 2021; Car-
roll et al., 2019) to assess DeMAC under varying
task complexities. The experiments focus on eval-
uating the effectiveness of DeMAC in terms of
task completion, efficiency, and adaptability across
different layouts and environments.

4.1 Experimental setup

Classic Environment. The classic environment
(Carroll et al., 2019), illustrated in Figure 1a, tasks
agents with collaboratively preparing as many
soups as possible under time constraints. Five dis-
tinct layouts are employed, spanning challenges
from fine-grained motion coordination to strategic
task planning, enabling a comprehensive evalua-
tion of foundational agent capabilities.

Extended Environment. The extended environ-
ment (Wu et al., 2021; Liu et al., 2024) introduces
dynamic task flows to evaluate DeMAC’s adapt-
ability. Agents manage varying soup orders with
strict time limits—delays incur penalties, and unat-
tended soup may burn and cause fires requiring
intervention. This setting imposes planning pres-
sure, challenging both coordination and decision-
making under evolving conditions.

Metrics.6 In accordance with the standard eval-
uation protocol of the Overcooked benchmark, our
experiments are conducted with two Player agents
by default. We adopt established metrics to eval-
uate agent performance across environments: (i)
Game Score: Agents earn points by completing
food orders. In the classic environment, only onion
soup is required, whereas the extended environ-
ment includes a dynamic mix of dishes. (ii) Steps
and Success Rate: We measure the number of
steps required for completing simpler tasks (e.g.,

5For details of tasks, refer to the App. D.3 and D.4
6For details of metrics, please refer to App. D.

vegetable salad) and compute the corresponding
success rate. (iii) Token Consumption: To assess
computational efficiency, we track the number of
LLM tokens consumed during task execution. (iv)
NQ (Number of Queries): The number of LLM
queries made reflects the planning efficiency and
system responsiveness (Zhang et al., 2024d).

4.2 Results and Analysis

Classic Environment Performance. Table 1 com-
pares the average performance of SP (Carroll et al.,
2019), PBT (Jaderberg et al., 2017), FCP (Strouse
et al., 2021), MEP (Zhao et al., 2023), COLE (Li
et al., 2023c), CAC (Agashe et al., 2024), Villager-
Agent (Dong et al., 2024), ProAgent (Zhang et al.,
2024a) 7, and our DeMAC. The results show that
some methods struggle with complex task inter-
dependencies due to their inability to deconstruct
DAG dependencies, leading to local optimizations
that overlook broader task relationships. In con-
trast, DeMAC dynamically disassembles the DAG,
adjusting task allocations based on environmental
information, ensuring that tasks are executed in
the optimal order, even in complex scenarios. The
key observations are as follows: (i) Superior Per-
formance Across Layouts: DeMAC consistently
achieves superior scores across all the Overcooked
layouts compared to the reinforcement learning
baselines (PBT, MEP, SP, COLE, FCP). (ii) Adapt-
ability and Robustness: DeMAC demonstrates
competitive robustness under high-uncertainty lay-
outs such as Forced Coord. and Count. Circ.,
where its performance surpasses all LLM-based
and RL baselines. On Cramped Rm., Asym. Adv.,
and Coord. Ring., VillagerAgent achieves higher
scores, whereas DeMAC remains competitive and
consistently outperforms CAC and ProAgent under
the same backbones. (iii) Enhanced LLM-based
Performance: The gains of DeMAC hold for both
GPT-3.5-Turbo and GPT-4-Turbo/4o, indicating
that the improvements stem from our DAG-aware
coordination and retrieval rather than merely from
a stronger language model.

Extended Environment Performance. We
adopt a step-by-step approach to testing, starting
with simpler tasks. Table 2 shows the average per-
formance of various methods across these simpler
cooking tasks, including comparisons with rein-
forcement learning-based approaches such as FB

7ProAgent with GPT-4 Turbo results are based on our re-
evaluation under the same experimental settings to ensure a
fair comparison.
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Table 1: Performance comparison across different Overcooked layouts in terms of average score (Classic Environ-
ment). The number in brackets in the first column represents the uncertainty value of the layout.

AI Agent Cramped Rm. (1.48) Asym. Adv. (1.61) Coord. Ring (1.62) Forced Coord. (1.93) Count. Circ. (2.06)

PBT 179.8± 26.8 182.2± 27.9 141.3± 28 61.7± 46 64.7± 45.9
MEP 185± 15 184.7± 41.8 167.2± 22.4 39.3± 16.9 81.5± 27.5
SP 168.5± 15.2 183.3± 27.5 133.3± 23.7 30.2± 21.9 64.7± 45.8
COLE 169.2± 16.8 201.3± 34.5 168.8± 26.1 57.3± 36.4 100.8± 31.1
FCP 196± 11.9 185.7± 22.7 148.8± 19.4 44.7± 36.4 60± 38.3

CACGPT-3.5-Turbo 33.3± 10.9 46.6± 10.9 40.0± 0.0 66.6± 14.4 53.3± 5.4
ProAgentGPT-3.5-Turbo 197.3± 6.1 229.8± 21.9 183± 31.7 49.7± 33.1 128.5± 28.1
DeMACGPT-3.5-Turbo 202.4± 13.1 246.7± 23.8 183.6± 10.2 158.7± 8.9 161.3± 4.9

CACGPT4-Turbo 173.3± 6.7 260.0± 11.6 140.0± 0.0 180.0± 11.6 160.0± 0.0
ProAgentGPT4-Turbo 202.4± 24.6 255.3± 22.5 169.6± 35.4 68.67± 71.1 132.8± 24.6
VillagerAgentGPT4-Turbo 213.3± 9.4 304± 8.76 226.7± 18.9 120± 16.97 148± 4.38
DeMACGPT4-Turbo 205.7± 9.4 289.3± 14.4 192.0± 9.8 193.3± 20.2 168.3± 12.2
DeMACGPT4o 208.0± 9.8 281.4± 23.8 188.0± 9.8 184.1± 13.1 165.3± 8.8

Table 2: Performance comparison of various methods for different cooking tasks in terms of steps and average
success rate (Extended Environment).

Method Tomato (Step ↓) Tomato-Lettuce (Step ↓) Tomato-Lettuce-Salad (Step ↓) Average Success (↑)

BD 23.71 42.39 44.32 0.98
UP 25.34 57.32 48.64 0.94
FB 25.63 45.44 47.33 0.95
D&C 31.42 (Except-Full) 58.65 (Except-Full) 83.78 (Except-Full) 0.61
Greedy 32.91 (Except-Full) 63.21 (Except-Full) 74.13 (Except-Full) 0.57

HLA* 42.15 65.93 58.31 0.87
DeMAC 26.04 41.87 34.25 0.96

"Except-Full" means that the method cannot complete the task on the "Full-Divider" map, and the average value is calculated
after excluding this map. "*" represents human-machine collaboration.

Table 3: Performance comparison across different Over-
cooked layouts in terms of average score (Extended
Environment). The numbers in brackets in the first col-
umn indicate the uncertainty values of the layouts, while
those in the remaining columns represent the standard
deviations.

Method Ring (4.35) Partition (4.66) Bottleneck (4.93) Quick (4.20)

SMOA*GPT-3.5-Turbo 80.9(29.1) 33.0(27.1) 102.4(35.6) 60.8(48.5)
FMOA*GPT-3.5-Turbo 92.5(21.7) 57.7(37.9) 103.8(30.6) 71.2(50.2)
HLA*GPT-3.5-Turbo 114.4(19.4) 100.3(36.4) 130.3(19.7) 117.2(45.3)
DeMACGPT-3.5-Turbo 120.3(12.1) 112.7(8.0) 136.1(10.8) 126.4(15.1)

DeMACQwen2.5-Max 115.3(8.3) 110.3(10.8) 126.5(17.4) 141.5(13.1)
DeMACLlama-3.3 118.3(16.8) 108.8(14.9) 127.8(19.6) 136.9(21.9)

"*" represents human-machine collaboration.

(Tesauro et al., 1995), UP (Sutton, 2018), D&C
(Ephrati and Rosenschein, 1994), Greedy (Mnih
et al., 2015), and BD (Wu et al., 2021).

Key insights from Table 2: DeMAC outperforms
in the Tomato-Lettuce-Salad task due to its ad-
vanced global planning and multi-step coordina-
tion. In contrast, reinforcement learning methods,
optimized for short-term rewards, often assume "lo-
cal optimum equals global optimum" and tend to
excel in tasks with smaller state spaces. D&C and
Greedy fail in Full-Divider because they cannot
explicitly coordinate on the same subtask to pass
objects across the counters. DeMAC demonstrates

substantially fewer steps to complete tasks com-
pared to HLA*, the LLM human-agent interaction
baseline, and has a success rate that is 9% higher.

Table 3 shows game scores across various Over-
cooked layouts, with SMOA* and FMOA* being
variants of HLA* (Liu et al., 2024), an LLM-based
human-agent collaborative framework. To assess
the generality of the DeMAC framework, we tested
it using several models, including GPT-3.5-Turbo
(the same underlying model as HLA), Qwen-Max
(Yang et al., 2024), and the open-source Llama
(Dubey et al., 2024). The results show consis-
tent performance across all models, demonstrating
DeMAC’s robustness in dynamic task planning and
coordination, independent of the LLM used.

Under the same LLM, DeMAC outperforms
other methods in all layouts, especially in high-
uncertainty environments like "Partition" and
"Quick", with improvements of 12.36% and 7.85%,
respectively. The higher scores and lower variance
highlight its superior strategic planning and coor-
dination. As uncertainty increases (e.g., in Parti-
tion (4.66) and Bottleneck (4.93)), other methods
struggle, leading to fewer completed orders and
lower scores. In contrast, DeMAC dynamically
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Table 4: Number of Queries (NQ) to LLMs for task completion across different layouts (Classic Environment).
Overall represents the average score across 400 timesteps. First Order indicates the performance on completing the
first order in the environment. Second Order measures performance on the subsequent order, reflecting the system’s
ability to maintain consistency and efficiency across sequential tasks.

Method Cramped Rm. Forced Coord.

Overall First Order Second Order Overall First Order Second Order

Proagent 96.8± 25.0 9.1± 3.96 22.7± 8.24 580.6± 65.62 111.3± 6.20 192.8± 72.55
CAC 518.8± 19.76 58.2± 14.46 116.1± 7.34 563.11± 64.99 86.7± 29.96 177.3± 31.63
READ-J – 23.9± 1.49 – – 27.2± 0.53 –
DeMAC 27.5 ± 3.56 2.3 ± 0.64 4.9 ± 1.58 38.5 ± 3.75 6.1 ± 1.14 9.8 ± 2.99

Table 5: Ablation study on the DeMAC framework (Extended Environment). First Order Step: Measures the
efficiency in completing primary tasks. Second Order Step: Evaluates the ability of agents to handle dependencies
and long-term planning. Manager is the core of planning, it cannot be removed.

DeMAC Variants Env Perception DAG Info Player-level Feedback First Order Second Order Step ↓ Score ↑
& Reflection Loop Succ. (%) ↓ Step ↓

Variant 1 ✓ ✓ ✓ 85.9 80.9 132.9 123.6
Variant 2 ✓ ✗ ✓ 81.5 88.3 156.2 106.3
Variant 3 ✓ ✓ ✗ 80.0 87.4 165.4 98.7
Variant 4 ✗ ✓ ✓ 82.1 86.3 145.1 110.9
Variant 5 ✗ ✗ ✓ 78.3 90.4 177.8 86.7
Variant 6 ✗ ✗ ✗ 24.7 198.7 324.1 42.1

adjusts its task dependencies via its updated DAG
structure, maintaining high performance even in
complex scenarios.

Token Consumption and LLM Queries. To-
ken consumption, defined as the total tokens used
per action, reflects computational efficiency and
resource usage. Figure 4 shows the token con-
sumption required for generating actions by var-
ious methods. The consumption of HLA is 4.12
times that of DeMAC, and the consumption of
ProAgent is 3.61 times that of DeMAC. The re-
sults suggest that DeMAC’s strategic planning and
efficient decision-making lead to lower token con-
sumption. DeMAC consumes more tokens in the
extended environment, but still less than the ProA-
gent tested in the classic environment.

Table 4 presents the evaluation of the number
of queries made to the LLMs during the task ex-
ecution. All methods were tested under the same
underlying language model. The key observa-
tions are as follows: (i) In scenarios involving se-
quential order completion, DeMAC demonstrates
query efficiency in sequential tasks, suggesting
its ability to learn efficient strategies for subse-
quent tasks. (ii) DeMAC requires substantially
fewer LLM queries compared to Proagent and
CAC, which highlights its efficiency in commu-
nication and decision-making. (iii) In layouts with
higher uncertainty, the number of queries made to
the LLMs by all compared methods increases, but

Figure 4: Comparison of token consumption (in thou-
sands) across different methods for 6 and 30 actions.
▲ indicates tests conducted in the classic environment;
others tested in the extended environment.

is still the lowest by DeMAC.

4.3 Ablation Studies
The ablation study in the Extended Environment 8

(Ring Layout, 30 trials) evaluated DeMAC’s key
components, as shown in Table 5. Removing DAG
Info (Variant 2) increases steps and lowers the
score, showing its role in structured task depen-
dencies. Without Environment Perception (Variant
4), the score drops further, highlighting its impor-
tance in adaptability. Variant 3 (No Player-Level

8For ablation experiments on different layouts, please refer
to App. E.1
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Table 6: Uncertainty-oriented comparison on two layouts (mean ± std over 10 episodes; lower is better).

Layout / Method Avg calls/replan Replan times Plan queries Conflict ratio

Cramped Room
DeMAC 1.486± 0.241 7.300± 1.567 28.100± 2.767 20.62
ProAgent 3.477± 0.290 48.500± 7.276 104.700± 10.531 31.66

Counter Circuit
DeMAC 1.312± 0.198 7.400± 1.625 26.700± 5.851 21.70
ProAgent 3.194± 0.161 35.800± 4.450 108.300± 10.264 24.84

Feedback) results in a notable decline in success
and efficiency, but the most severe impact is seen in
Variant 6, where success rate plummets to 24.7%,
steps surge (198.7 First Order, 324.1 Second Or-
der), and the score drops to 42.14. Among all
components, Player-Level Feedback & Reflection
Loop is the most crucial, as its absence causes the
sharpest decline in both success rate and efficiency,
proving essential for coordination and overall task
performance. To further examine DeMAC’s scal-
ability, we extend our test to a 3-agent setup (see
App. E.2).

4.4 Uncertainty-Oriented Evaluation
To provide quantitative evidence of how DeMAC
handles execution uncertainty, we report a set of
proxy indicators that reflect conflict frequency and
repair effort during online planning. We follow the
evaluation protocol of ProAgent: each layout is run
for 10 episodes with 400 time steps per episode
under matched inference settings.

Metrics. We measure four interpretable indica-
tors (lower is better):

• Avg. calls per replan : average #LLM calls
made when a detected conflict triggers re-
planning; smaller values indicate lower repair
cost per inconsistency.

• Replan times : total #re-planning events;
fewer events suggest stronger robustness of
the initial plan.

• Plan queries : #LLM queries during normal
planning (no conflicts); reflects baseline plan-
ning effort.

• Conflict ratio (%) : #Replans
#Replans+#PlanQueries ×

100%. A smaller ratio means the agent spends
more time in stable execution than in recov-
ery.

Across both layouts, DeMAC consistently low-
ers the repair effort and instability: (1) Avg. calls

per replan drop by ∼57% (1.486 vs. 3.477) on
Cramped Room and ∼59% (1.312 vs. 3.194) on
Counter Circuit; (2) replan times reduce by ∼85%
(7.3 vs. 48.5) and ∼79% (7.4 vs. 35.8), respec-
tively; (3) plan queries decrease by ∼73% and
∼75%; (4) conflict ratio decreases from 31.66%
to 20.62% and from 24.84% to 21.70%. These
improvements indicate that DeMAC maintains
more stable execution under identical sources of
uncertainty (layout geometry, object randomness,
and agent initialization), requiring fewer conflict-
driven repairs and less LLM effort.

We view these indicators as practical surrogates
for uncertainty reduction: the DAG-aware plan-
ner reduces conflict incidence by enforcing long-
horizon dependencies; the manager–player feed-
back lowers ambiguity in local decisions; and selec-
tive retrieval curbs unnecessary planning queries.

5 Conclusion

This paper proposes the DeMAC Framework that
integrates long-term planning into LLM-based
multi-agent systems for collaborative tasks. By
leveraging dynamic DAG structures for task de-
composition and harmonizing actions, DeMAC
enables agents to maintain coherence amidst intri-
cate dependencies and environmental uncertainties.
Experiments conducted in the Overcooked simula-
tion environment show significant improvements
in traditional reinforcement learning methods and
human-agent collaboration in terms of game score,
success rate and task completion efficiency. Future
work includes extending DeMAC to more diverse
and realistic environments and exploring its appli-
cability in real-world scenarios that require sophis-
ticated agent coordination and long-term planning.

Limitations

Multimodal Information. In physical simulation
tasks, successful task execution often depends on
the perception of visual, spatial layouts and tempo-
ral sequences, rather than text information alone.

14080



However, the DeMAC framework primarily relies
on language models for reasoning, lacking the abil-
ity to process multimodal information such as vi-
sual and spatial data. This limitation becomes par-
ticularly evident in tasks involving complex path
planning, object localization, and visual feedback.
Future work could integrate visual-language mul-
timodal models into the framework to enhance
agents’ comprehensive perception of environmen-
tal details, thereby improving their adaptability to
multimodal tasks.
Quantification of Uncertainty Reduction. While
the framework effectively reduces uncertainty in
task planning and execution by leveraging Dy-
namic DAG and environment perception, we have
not been able to develop a direct, precise method
to measure the reduction of uncertainty in a quan-
tifiable manner. Instead, we rely on indirect in-
dicators, such as evaluating game scores or us-
ing ablation experiments to assess the contribution
of each component of the DeMAC framework to
overall performance improvement. While these
evaluations demonstrate the effectiveness of the
framework and its components, they do not pro-
vide a clear, numerical measure of the exact un-
certainty reduction achieved in the environment.
Future work could explore more direct methods to
quantify the reduction of uncertainty, potentially
providing deeper insights into the framework’s per-
formance and its impact on decision-making under
uncertainty.
Generalization to Diverse Multi-Agent Environ-
ments. While DeMAC demonstrates strong per-
formance in Overcooked-style cooperative tasks,
its applicability to broader multi-agent environ-
ments remains unexplored. Scenarios involving
heterogeneous agents, competitive dynamics, or de-
centralized coordination may introduce challenges
that differ fundamentally from structured cooper-
ative cooking tasks. Evaluating DeMAC in such
settings—e.g., mixed-motive tasks, resource con-
tention, or open-world environments—would pro-
vide stronger evidence of its generality and robust-
ness across diverse multi-agent applications.
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Appendix

A Environment perception

Environment perception converts the obtained
information into structured information output,
which can then be used by decision-making and
planning. We use Langchain’s 9 output parser as
the extractor.

A.1 Agent Profiles

The detailed prompting ze of the Environmental
Analysis Agent is shown in Figure 7. We also
designed the corresponding output JSON schema,
an example of which is shown in Figure 8.

To facilitate the understanding of environmental
information by the LLM, we adopted a few-shot
learning approach, providing the agent with sev-
eral examples, as illustrated in the Figure 16 and
Figure 17.

B Manager-Player Dual-Feedback

The Manager-Player Dual-Feedback module is a
core part of the DeMAC framework, designed to
ensure effective coordination.

B.1 Agent Profiles and Roles

Manager-Agent. It is responsible for aggregating
the information provided by each Player-Agent,
analyzing task dependencies, and making strategic
decisions regarding task allocations. The Manager-
Agent system prompt zm is shown in Figure 9.
The Manager-Agent prompt for inputting informa-
tion is shown in Figure 10. Given the limitations
of LLMs in interpreting grid-based spatial infor-
mation, we choose to provide LLMs with simpli-
fied position and state information of each player.
The input information received comes from Player-
Agent and broadcast information. Mutable prompt
components are marked in < >. We also provide
an example of Manager-Agent output Figure 11.

Player-Agent. The Player-Agent focuses on
providing detailed contextual information about its
local environment rather than directly selecting ac-
tions. Its main role is to perceive its surroundings,
identify nearby objects, assess feasible actions, and
generate descriptive insights that can be used by the
Manager-Agent. The Player-Agent system prompt
zp is shown in Figure 12. The Player-Agent prompt
for inputting information is shown in Figure 13.
Mutable prompt components are marked in < >.

9https://python.langchain.com

B.2 Reflection Loop

DAG Logic Detection. The DAG Logic Detection
module is a crucial component in ensuring that task
assignments adhere to logical execution sequences,
respecting the dependencies and constraints of a
dynamic environment. Within the DeMAC frame-
work, each order and sub-task is represented as a
node in a DAG, with directed edges defining depen-
dencies between tasks. This structure guarantees
that each action occurs in the correct sequence,
preventing violations of logical task flow.

To facilitate effective collaboration and coordi-
nation, the DAG Logic Detection operates through
the following steps:

B.2.1 Dependency Analysis

The Manager-Agent leverages the DAG to ana-
lyze which tasks are eligible for execution based
on the current state of dependencies. Nodes cor-
responding to sub-tasks are only activated when
all their prerequisite conditions are met. For exam-
ple, a Chop Action must be completed before an
Assemble Action or Cook Action can be initiated.

B.2.2 Consistency Check

After generating a plan for each Player-Agent, the
Manager-Agent applies the DAG Logic Detection
mechanism to validate that all dependencies are
correctly maintained. For example, before an agent
is assigned a Cook Action, the DAG ensures that
all required ingredients have been chopped and are
available. If any inconsistency is detected, it is
flagged for correction.

B.2.3 Logic Detection and Error Handling

Once a plan is generated, it is checked against the
DAG to identify logical inconsistencies. Consider
the following example scenario:

Example: Error Detection in Task Sequencing
Suppose two agents, Player 1 and Player 2, must
cooperate to prepare a Lettuce Tomato Soup. The
DAG dependency sequence for this dish is struc-
tured as follows:
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Fresh Lettuce
Chop−−−→ Chopped Lettuce

Fresh Tomato
Chop−−−→ Chopped Tomato
↓ ↓

Lettuce Tomato Assemble−−−−−→ Lettuce Tomato
Cook−−−→ Cooked Lettuce Tomato

Serve−−−→ Complete Lettuce Tomato Soup
(7)

Given the current environment state, the Man-
ager produces the following long-term plan:

• Step 1: Player 1: Chop Lettuce, Player 2:
Chop Tomato,

Step 2: Player 1: Cook Lettuce Tomato,
Player 2: Serve Lettuce Tomato Soup

Applying Logic Detection to this plan, the sys-
tem identifies an inconsistency: The Cook Action
should occur only after the Assemble Action. The
Serve Action should occur only after the Cook Ac-
tion.

If the environment already contains an assem-
bled Lettuce Tomato, the error detection process
refines its output: "There is an error in Step 2.
Player 2: The Serve action should occur only after
the Cook action. Please re-plan."

B.2.4 Adaptive Task Re-plan
If an inconsistency is detected, such as assigning
a Cook Action before all required ingredients are
ready, the Manager-Agent automatically revises
the task assignments. The correction prompt pro-
vided to the Manager is illustrated in Figure 15, and
an example of the logic correction process is shown
in Figure 14. The Manager then generates an up-
dated plan that adheres to the DAG constraints and
redistributes tasks to the Player-Agents, ensuring
a coherent workflow without redundant steps or
unnecessary backtracking. The specific algorithm
flow is shown in Algorithm 1.

This iterative validation and correction process
ensures that the Manager’s long-term strategy
aligns with the dynamically evolving environment
and DAG constraints, optimizing coordination and
task execution efficiency.

C Dynamically DAG information

This component is responsible for capturing and
representing the relationships between different
tasks or sub-tasks within a dynamically changing
environment.

Algorithm 1 Task Plan Refinement with Logical
Consistency

Input: Initial plan with N steps, max_iter = 5
Output: Refined and executable task plan
Step 1: Initialization
iter ← 0, steps← N
Step 2: Iterative Refinement
while iter ≤ max_iter do

Generate candidate task_seq with steps
steps

if task_seq satisfies DAG constraints then
return task_seq

else
Revise task_seq via Manager Agent

end if
iter ← iter + 1

end while
Step 3: Step Reduction
if no valid plan found then

steps← steps− 1
if steps > 1 then retry planning
elsegoto Step 4
end if

end if
Step 4: Fallback Strategy
if still invalid then

Execute independent tasks (e.g., Chop Ac-
tions)

Resolve conflicts dynamically during execu-
tion
end if
Step 5: Execution
if plan valid then begin execution
end if

C.1 DAG information
The DAG is used to represent the interdependen-
cies among various tasks assigned to agents. Each
node in the DAG represents a specific task or sub-
task, while directed edges represent the dependen-
cies between these tasks. The absence of cycles
ensures that there is always a clear progression
from one task to the next, making it possible to
efficiently allocate resources and manage depen-
dencies without creating conflicts or deadlocks.
Figures 16 and 17 display portions of the DAGs.

C.2 Depth and Breadth of the DAG
Depth of the DAG. The depth of the DAG is de-
fined as the longest path length from the starting
node to the final node. This metric corresponds
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to the critical path of the task execution process,
representing the minimum number of sequential
steps required to complete the workflow.

Example: Calculating DAG Depth. Consider
a workflow where the task starts with Fresh Lettuce
and concludes with Lettuce Tomato Soup. The state
transitions are as follows:

Fresh Lettuce
Chop Lettuce−−−−−−−→ Chopped Lettuce
Assemble−−−−−→ Lettuce Tomato
Cook−−−→ Lettuce Tomato Soup (8)

The longest sequence of dependencies consists
of three sequential steps:

1. Chop Lettuce

2. Assemble Lettuce and Tomato

3. Cook Lettuce Tomato Soup

Thus, the depth of the DAG is 3, indicating that
at least three sequential actions are required to
complete this task.

Breadth of the DAG. The breadth of the DAG
refers to the number of tasks that can be executed
in parallel at the same hierarchical level. A wider
breadth indicates a higher degree of parallelism,
meaning that multiple tasks can be processed con-
currently, thereby increasing system efficiency.

Example: Calculating DAG Breadth. At a
certain level of the DAG, consider the follow-
ing nodes: Node3 (Chopped Lettuce), Node4
(Chopped Tomato).

Since both chopping actions can occur indepen-
dently, they belong to the same level in the DAG.
The breadth at this level is 2, as two operations
can be executed simultaneously. A higher breadth
enhances efficiency by allowing parallel execution,
reducing total processing time.

D Experimental Settings

In a multi-agent system, the size of state space
directly affects the complexity and computational
requirements of the system.

We test DeMAC and other methods on two dif-
ferent Overcooked environments. Overcooked en-
vironment is a grid game where each agent’s goal
is to collaborate, create soup, and deliver it to the
designated delivery location.

Figure 5: Comparison of uncertainty between the Clas-
sic and Extended environments.

D.1 Uncertainty in Multi-Agent Systems
The uncertainty in multi-agent systems arises from
a variety of spatial and task-related factors, includ-
ing bottlenecks in the map, resource distribution
dispersion, task dependency complexity, and agent
path conflicts. To quantify the overall uncertainty,
we propose a metric U , which integrates these fac-
tors into a unified representation.

The total uncertainty U is computed as a
weighted sum of individual components:

U =w1 ·Brate + w2 · Crate + w3 ·
1

1 +Rstd

+ w4 · Pavg + w5 · Tdep + w6 ·Dgraph (9)

where each term corresponds to a specific aspect
of uncertainty in the environment. Brate represents
the bottleneck rate, defined as the proportion of
nodes with only one connection:

Brate =
|B|
|V| (10)

where |B| is the number of bottleneck nodes, and
|V| is the total number of nodes. Crate quantifies
path conflicts, defined as the fraction of edges tra-
versed by multiple agents:

Crate =
|Econflict|
|E| (11)

where |Econflict| is the number of conflicting edges,
and |E| is the total number of edges in the graph.

The dispersion of resources, denoted as Rstd, is
introduced to quantify how spatially scattered the
resources are within the environment. Intuitively,
this measure reflects the degree to which individual
resource positions deviate from their collective cen-
ter. A larger value of Rstd indicates that resources
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are widely spread out, implying higher spatial het-
erogeneity and potentially greater difficulty for
agents to coordinate. Conversely, a smaller value
means that resources are concentrated in a compact
region, which usually facilitates easier coordina-
tion but may also increase competition. Formally,
Rstd is computed as the standard deviation of the
pairwise distances among resources:

Rstd =

√√√√ 1

|R|

|R|∑

i=1

∥ri − r̄∥2 (12)

where R is the set of resources, ri is the position
of resource i, and r̄ denotes their centroid.

The average path length, Pavg, reflects the mean
shortest path between nodes:

Pavg =
1

|V|(|V| − 1)

∑

u̸=v

d(u, v) (13)

where d(u, v) is the shortest path distance between
nodes u and v.

Task dependency complexity, Tdep, accounts for
the sequential relationships among tasks, calcu-
lated as:

Tdep =
∑

t∈T
|Pre(t)| (14)

where T is the set of tasks, and Pre(t) represents
the predecessor tasks of t.

Finally, Dgraph measures the maximum shortest
path in the graph:

Dgraph = max
u,v∈V

d(u, v) (15)

The weights w1, w2, w3, w4, w5, w6 are non-
negative and normalized such that:

6∑

i=1

wi = 1 (16)

These weights can be adjusted based on the specific
scenario to reflect the relative importance of each
component.

To analyze the impact of environmental com-
plexity on uncertainty, we applied this metric to
two distinct environments: Classic Environment
and Extended Environment. The results, shown
in Figure 5, reveal that Extended Environment ex-
hibits significantly higher uncertainty due to in-
creased bottleneck rate and task dependency com-
plexity. This demonstrates the utility of the metric

in capturing both spatial and task-related complex-
ities. The decision to use the same uncertainty cal-
culation method across both environments is driven
by the fundamentally similar uncertainty-related
challenges they present. Despite differences, both
environments share key challenges such as layout
similarity, where tasks are represented as intercon-
nected DAGs with specific dependencies. Addi-
tionally, task dependencies in both environments
cause uncertainties, as one task cannot proceed un-
til another is completed. Agent blocking is another
common challenge, where one agent’s inability to
complete a task can delay or restrict the progress
of other agents. Given these shared uncertainties,
a unified uncertainty calculation method ensures
consistent handling across both environments.

D.2 LLMs

We employ the GPT-3.5-Turbo, GPT-4-Turbo,
LLaMA, Qwen and GPT-4o, as the underlying
language model to build our Agent framework. We
uniformly set the temperature to 0.1 for all experi-
ments.

D.3 Classic overcooked environment

The Classic overcooked environment has 5 differ-
ent layouts: Cramped Room, Asymmetric Advan-
tages, Coordination Ring, Forced Coordination and
Counter Circuit. Each layout targets different prob-
lems10.

Task Description. Players place 3 onions in a
pot, leave them to cook for 20 timesteps, put the
resulting soup in a dish, and serve it, giving all
players a reward of 20 score. Agents need to plan
and collaborate reasonably to achieve higher scores
within the specified time steps.

Game Score. To evaluate the agents’ perfor-
mance, we used a scoring system where the agents’
objective was to serve as many soups as possible
within a time limit of 400 timesteps. To ensure
robustness and avoid biases due to randomness,
we performed 20 trials (in the study by (Carroll
et al., 2019), where each algorithm was tested 5
times.) on each layout and reported the average
score as the final evaluation metric for comparison
with other methods.

10For the specific functions and settings of each layer in
the Classic overcooked environment, please refer to (Carroll
et al., 2019)
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D.4 Extended overcooked environment

The Overcooked benchmark (Liu et al., 2024) in-
corporates the Overcooked game mechanics de-
signed by (Wu et al., 2021), introducing some ex-
tensions that make the environment more challeng-
ing. Table2 is based on the experimental environ-
ment established by (Wu et al., 2021), featuring
three distinct tasks (Tomato, Lettuce Salad and
Lettuce-Tomato Salad), as illustrated in Figure 16.
Additionally, three maps with unique strategic sig-
nificance were designed to support these tasks.

In this extended version, agents are required
to prepare a variety of soups, each with different
ingredient requirements, while managing dynamic
changes and additional constraints.

Dynamic Orders and Additional Challenges.
Unlike the Classic environment, the extended envi-
ronment presents agents with dynamic soup orders,
which change continuously throughout the game.
Each type of soup requires a different set of in-
gredients, and each order comes with a specific
time limit11. Agents are rewarded for successfully
completing an order within the given time, while
missing the deadline results in penalties. The in-
creased diversity of tasks, as well as the timing
constraints, demand more sophisticated planning
and quick adaptation from agents.

Task Description. Agents in the extended envi-
ronment must place the correct ingredients in the
pot, allow sufficient cooking time, and deliver the
completed dish to the serving station. However,
agents must also adapt to changing orders and pri-
oritize tasks based on the time-sensitive nature of
each order. Effective prioritization is crucial, as
poorly timed actions may lead to unfinished or
burnt soups, significantly impacting overall perfor-
mance. This environment includes the risk of soup
burning if left unattended in the pot for too long.
Burnt soup not only results in a penalty but also re-
quires agents to extinguish the fire and discard the
burnt contents before resuming their tasks. At the
same time, the success rate and Step tests of simple
tasks (Same as the experiment set up in (Wu et al.,
2021)) were also conducted. In the experiment
comparing the success rates and steps for simple
tasks, the methods in the original algorithm’s im-
plementation are limited to these fixed tasks and
cannot complete the entire game process, which is

11The orders and score set in the experiments in the main
text are consistent with those in the original paper (Wu et al.,
2021; Liu et al., 2024).

why no game score comparison was made.
Game Score. Similar to the (Liu et al., 2024),

the performance of agents in the extended environ-
ment is measured using a scoring system based on
the number of successful soups delivered. Success-
ful delivery of a soup yields a certain number of
points, depending on the complexity of the recipe.
Each trial consisted of 100 seconds, and we con-
ducted 20 trials per layout to ensure statistical ro-
bustness (in the study by (Liu et al., 2024), where
each algorithm was tested 15 times.). The aver-
age score from these trials was used to compare
DeMAC with other methods.

D.5 Token Consumption
Token consumption refers to the total number of
tokens utilized by an LLM to generate a sequence
of actions for an agent.

Measurement Setup. To assess token consump-
tion, we conducted experiments in both classic and
extended Overcooked environments, comparing
DeMAC to baselines such as ProAgent, CAC. To
ensure fairness, the layout and LLMs parameters
selected in each experiment are consistent. Each
experiment ran for 15 times trials, and the average
token consumption across all trials was calculated
to ensure statistical robustness. Figure 4 illustrates
the token consumption (in thousands) for 6 and
30 actions generated during various Overcooked
tasks.

D.6 Number of Queries (NQ) to LLMs for
Task Completion

The number of queries (NQ) metric measures the
number of times an agent has to query the LLM to
obtain a feasible plan for the task at hand.

Measurement Setup. To calculate the NQ met-
ric, we monitored the number of requests made
to the LLMs during task execution across various
layouts. The Overcooked layouts used included
Cramped Room, Forced Coordination, and Coordi-
nation Ring. Similar to token consumption, each
layout was evaluated over 15 times trials, and the
mean value was reported. Table 4 presents the av-
erage number of queries for task completion across
the different Overcooked layouts.

D.7 Latency
Table 7 reports the macro action latency across
representative planning frameworks. Compared
to HLA, a recent hierarchical agent framework,
DeMAC further improves latency while enabling
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Table 7: Comparison of Macro Action Latency across
methods.

SMOA FMOA HLA DeMAC

Mac. Act. Latency (s) 4.16 (1.01) 2.30 (1.81) 1.07 (0.22) 1.03 (0.43)

fine-grained task assignment via dependency-
aware planning. Notably, SMOA and FMOA are
ablated versions of HLA, where essential reason-
ing and coordination mechanisms are removed.

Despite issuing more model queries than HLA,
DeMAC benefits from its ability to generate mul-
tiple macro actions for multiple agents within a
single planning iteration. This increases planning
throughput and significantly reduces the amortized
latency per action. The results validate that the
DeMAC structured, yet parallel planning strategy
offers a more scalable and responsive solution for
multi-agent coordination.

E Ablation study

E.1 Different layouts

As shown in Table 8, the ablation study reveals
the distinct contributions of each core component
in DeMAC. When DAG Info is removed, particu-
larly in more complex layouts such as Partition and
Bottleneck, we observe substantial performance
drops—25.98% and 29.30% respectively. These
declines suggest that DAG Info is essential for
coordinating tasks and ensuring the correct exe-
cution order. Player-level Feedback & Reflection
Loop also shows a considerable impact, especially
in complex environments. The removal of this
component leads to a 39.02% drop in Bottleneck
and 30.80% in Partition, emphasizing the impor-
tance of continuous feedback for agent coordina-
tion. Env Perception has a secondary but still no-
ticeable impact on performance. Its absence leads
to moderate drops in environments like Bottleneck
(23.37%) and Partition (17.41%), where environ-
mental awareness is crucial for adapting to chang-
ing conditions and managing spatial tasks. This
module also plays a key role in shielding DeMAC
from low-level grid noise by converting spatial lay-
outs into abstract, high-level cues, thus enabling
more stable and focused decision-making.

Overall, the ablation results demonstrate that
DAG Info and Player-level Feedback are the most
critical components for task coordination and en-
suring effective execution, especially in layouts
that require handling complex task interdependen-

Lettuce Onion Tomato Soup

Lettuce Tomato Soup
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Figure 6: Comparison of average step and standard
deviations across four soup types under 2-agent and
3-agent configurations.

cies and dynamic agent interactions. When all
components are removed, as in Variant 6, the per-
formance drops drastically by up to 79.18% in
Partition and 78.04% in Bottleneck, reinforcing
the conclusion that each of these components plays
an integral role in maintaining high performance
across different layouts. The combined absence of
all these components leads to a severe decline in
efficiency, highlighting their complementary func-
tions in ensuring effective task execution in dy-
namic environments.

Complexity-Conditioned Ablation. We
quantify how module importance scales
with task complexity by ordering layouts
(Ring→Quick→Partition→Bottleneck) using our
uncertainty/critical-path statistics and reporting
relative score drops when ablating each module.
The degradation monotonically increases with
complexity; the Feedback Loop shows the largest
sensitivity in constrained layouts, reflecting the
need for runtime re-planning under uncertainty.

The steeper drops on Partition/Bottleneck in-
dicate the symbolic dependency representation
(DAG Info) and online correction (Feedback Loop)
are increasingly critical as interleaving and con-
tention grow. This connects Table 9 with Table 5’s
per-module results.

E.2 Different agents

We further investigate the impact of the number of
agents on task efficiency by comparing the average
number of steps required to complete various soup-
making tasks under 2-agent and 3-agent configu-
rations. As illustrated in Figure 6, increasing the
number of agents consistently reduces the required
steps across all task types, indicating improved
collaboration efficiency.
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Table 8: Ablation study on different Overcooked layouts.

DeMAC Variants Env Perception DAG Info Player-level Feedback Performance Scores

& Reflection Loop Ring (4.35) Partition (4.66) Bottleneck (4.93) Quick (4.20)

Variant 1 ✓ ✓ ✓ 123.6 114.3 134.8 127.6
Variant 2 ✓ ✗ ✓ 106.3 ↓ 13.99% 84.6 ↓ 25.98% 95.3 ↓ 29.30% 104.7 ↓ 17.95%
Variant 3 ✓ ✓ ✗ 98.7 ↓ 20.15% 79.1 ↓ 30.80% 82.2 ↓ 39.02% 96.8 ↓ 24.14%
Variant 4 ✗ ✓ ✓ 110.9 ↓ 10.28% 94.4 ↓ 17.41% 103.3 ↓ 23.37% 116.4 ↓ 8.78%
Variant 5 ✗ ✗ ✓ 86.7 ↓ 29.85% 76.4 ↓ 33.16% 79.4 ↓ 41.10% 90.1 ↓ 29.39%
Variant 6 ✗ ✗ ✗ 42.1 ↓ 65.94% 23.8 ↓ 79.18% 29.6 ↓ 78.04% 62.4 ↓ 51.10%

Layout (uncertainty) Env. Perception ↓ DAG Info ↓ Feedback Loop ↓
Ring (4.35) 35.36% 36.60% 43.04%
Quick (4.20) 29.75% 32.81% 37.62%
Partition (4.66) 43.25% 46.11% 54.99%
Bottleneck (4.93) 47.50% 49.48% 58.53%

Table 9: Average score drops when ablating each mod-
ule across layouts with increasing complexity.

Specifically, in complex tasks such as Lettuce
Onion Tomato Soup, the average step count drops
from 87.3 (2-agent) to 77.6 (3-agent), demonstrat-
ing that a third agent can significantly ease coordi-
nation and parallelization under intricate dependen-
cies. Similar trends are observed in other recipes,
such as Lettuce Tomato Soup (78.7→ 68.2) and
Lettuce Onion Soup (76.5→ 70.7), where the addi-
tion of an extra agent enhances the system’s ability
to divide labor and reduce redundancy.

Notably, the performance gain is more promi-
nent in multi-ingredient recipes, where multiple
chopping and assembly actions must be handled
concurrently.

These results highlight the importance of adap-
tive agent collaboration in dynamic environments.
While increasing the agent count generally leads
to better task efficiency, the marginal gains depend
heavily on task structure and action dependencies.

F Future Outlook

Looking ahead, there are several exciting opportu-
nities to expand and apply the DeMAC framework.
Two key directions for its future development are
outlined below:

Extension to MAS with More Agents: While
DeMAC has shown strong results with two agents,
it is well-positioned to be extended to MAS in-
volving more agents. With its dynamic task plan-
ning and coordination capabilities, DeMAC can
be adapted to handle more complex environments
where multiple agents must collaborate. The goal
is to develop strategies for coordinating a larger
number of agents, resolving conflicts, and ensuring
effective communication among them. By scaling

the framework, we aim to explore how it can ef-
ficiently manage task dependencies and optimize
decision-making in a multi-agent context, paving
the way for broader applications in collaborative
AI environments.

Integration with Real-World Applications: An-
other promising direction for DeMAC is its integra-
tion into real-world applications. The framework’s
ability to adapt to changes in task dependencies
and environmental conditions makes it a strong
candidate for use in industries such as logistics,
smart cities, and robotics. In the future, we plan to
explore how DeMAC can be adapted to decision-
making tasks in these fields. This includes examin-
ing how the framework can handle real-world con-
straints, process data, and improve coordination in
dynamic, complex settings. Potential applications
could range from automated scheduling to intelli-
gent resource allocation and coordination across
distributed systems.
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You are a highly professional information extractor tasked with simplifying and 
compressing key information from the Overcooked game environment for subsequent 
planning agents.

Task:
1.Extract the following:

1.Timestep: Current game timestep.
2.Current Order: Details of the current order.
3.Closest Coordinates: List the closest coordinates of each item to Player 1 and 

Player 2 from "Map_info".
4.Action DAG Paths: Different action paths generated through directed independent 

graphs.
2.If the current order has ≤ 2 actions, include all actions for the next order.

Instructions:
#If an attribute's value is unknown, set it to null.
#Follow the exact format of the example provided.
#Keep the output concise and clear.
Important: Always refer to the examples to guide your response.

Environmental Analysis Agent

Figure 7: Environmental Analysis Agent system prompt.

available_actions: str = Field(
description = "List the possible actions Player 1 and Player 2 can take separately 

at the current timestep.")

timestep: Optional[int] = Field(
default=None,
description = "Current timestep number in the game.")

current_order: str = Field(
description = "Details about the current active order.")

dag_orders_path: Optional[list] = Field(
description = ‘’‘
1. Extract the first action list from "Current order Action paths" and place it in 

the "First" dictionary.
2. Extract remaining actions from "Current order Action paths" and place them as a 

list in the second part of the output.
3. Extract the first action list from "Next order Action paths" and place it in the 

"Next order First" dictionary.
4. Ensure the output follows the example format.
5. If “Current order Action paths” has ≤ 2 actions, output all actions for the 

“Next order Action paths” instead of just the “Next order First.”
‘’‘)

map_info: Optional[str] = Field(
default=None,
description = '''
1. List distances from Player 1 and Player 2 to the items needed for the current 

order.
2. Extract relevant order and action information from "Map_info.“
3. Provide the locations of Player 1, Player 2, and current items in natural 

language, including details of current and next orders.
4. Include any contents currently cooking in the pot.
'''

)

JSON schema

Figure 8: JSON schema example.
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You are the Manager in a simplified Overcooked game involving two players, Player 1 and 
Player 2. Your role is to effectively direct their actions to maximize cooperation, 
player engagement, and scoring efficiency.

GAME SCENARIO:
You supervise Player 1 and Player 2 as they collaborate in a kitchen to prepare and 
serve different types of soup under time constraints. Your objective is to manage the 
players in a way that maximizes the total score through timely and accurate completion 
of orders.

GAME GUIDELINES:
1.Dependencies

•Assemble Ingredients:
•Lettuce Onion Soup: ["Chop Lettuce", "Chop Onion"]
•Lettuce Tomato Soup: ["Chop Lettuce", "Chop Tomato"]
•Onion Tomato Soup: ["Chop Onion", "Chop Tomato"]
•Lettuce Onion Tomato Soup: ["Chop Lettuce", "Chop Tomato", "Chop Onion"]

•Cook Soup:
•Lettuce Onion Soup: ["Assemble Lettuce Onion Soup Ingredients"]
•Lettuce Tomato Soup: ["Assemble Lettuce Tomato Soup Ingredients"]
•Onion Tomato Soup: ["Assemble Onion Tomato Soup Ingredients"]
•Lettuce Onion Tomato Soup: ["Assemble Lettuce Onion Tomato Soup Ingredients"]

•Serve Soup:
•Lettuce Onion Soup: ["Cook Lettuce Onion Soup"]
•Lettuce Tomato Soup: ["Cook Lettuce Tomato Soup"]

2.Error Handling:
•If Player X encounters an error during an action in Step n, select an action from 
the "Next Order First" list in the DAG action information.
•Only output the action itself in this format: PlayerX: Action. For example, instead 
of outputting "Player2: Next Order First: Chop Tomato", simply state "Player2: Chop 
Tomato".

3.Primary Actions:
•Prioritize actions listed in the primary DAG action information, particularly those 
under "First".

4.Ingredient Management:
•After performing an "Assemble" action, the ingredients used must be chopped again
before being used for any subsequent "Assemble" action.

5.Action Uniqueness:
•Avoid repeating non-chopping actions whenever possible.

6.Parallel Actions:
•Actions by Player 1 and Player 2 are executed in parallel.

7.Distinct Actions:
•Player 1 and Player 2 cannot perform the same action simultaneously (e.g., both 
players cannot "Chop Onion" in the same step).

8.Handling Uncertainty:
•If uncertain about which action to take next, proceed with the "Next Order First"
action from the DAG.

9.Serve Action Priority:
•If there are cooked items in the pot, immediately perform the Serve action.

Manager-Agent system prompt

Figure 9: Manager-Agent system prompt.
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Evaluate the players' positions and current tasks to create a concise, coordinated 
action plan for effective collaboration and timely completion of orders.

INPUTS:
•Player's Info: <player_info>
•DAG Action Info: <dag_info>
•Available Actions: <available_actions>

GUIDELINES:
1.Prioritize Execution:

•If the 'First' action in DAG Action Info is a "Serve", prioritize it.
•Next Order First actions involving "Cook" should be executed first.
•Prioritize actions in this order: Cook > Serve > Assemble > Chop.
•Actions must be from DAG Action Info or Available Actions, prioritizing DAG Action 
Info.
•Avoid both players performing the same action simultaneously.
•Focus on Cook, Serve, and Assemble actions over Chop whenever possible.

2.Steps & Parallel Actions:
•Limit actions to 3-4 steps.
•Each step must include actions for Player 1 and Player 2.
•Actions in each step are parallel, with no sequential order between players.

3.Response Format:
•Thought: Provide reasoning for action choices and strategic considerations.
•Steps: List actions for each step using the specified structure.

RESPONSE FORMAT:
use this format for clarity and easy parsing:
{

"Thought": "Explain the rationale behind your chosen actions and any strategic 
considerations.",

"Steps": {
"Step1": "Player1: action, Player2: action",
"Step2": "Player1: action, Player2: action",
"...": "..."

}
}

Manager-Agent input prompt

Figure 10: Manager-Agent input prompt.
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Orders: 

Input information:
•DAG Action Info: <[{'First': ['Chop Lettuce', 'Chop Tomato']}, ['Assemble Lettuce 
Tomato Soup Ingredients', 'Cook Lettuce Tomato Soup', 'Serve Lettuce Tomato Soup'], 
{'Next order First': ['Chop Onion', 'Chop Tomato', 'Chop Lettuce']}, ['Assemble Lettuce 
Onion Tomato Soup Ingredients', 'Cook Lettuce Onion Tomato Soup', 'Serve Lettuce Onion 
Tomato Soup’]]>

Player‘s Info: <{"Items&Players":{
'Player1' : "Hold nothing, The one closest to Player1 is Fresh Tomato, followed by Fresh 
Onion. Firstly, I can go chop tomatoes, Player 2 may go chop Lettuce",
'Player2' : "Hold nothing, The one closest to Player2 is Fresh Lettuce, followed by 
Fresh Tomato. I can go chop Lettuce",
'Counter_Items': "None",
},
"Current order: Lettuce Tomato Soup, Next order: Lettuce Onion Tomato Soup, Third order: 
Lettuce Tomato Soup"}>

•Available Actions: <['Chop Tomato', 'Chop Lettuce', 'Chop Onion’]>

Output:
Manager: 'Steps': {'Step1': 'Player1: Chop Lettuce, Player2: Chop Tomato', 'Step2': 
'Player1: Assemble Lettuce Tomato Soup Ingredients, Player2: Chop Onion', 'Step3': 
'Player1: Cook Lettuce Tomato Soup, Player2: Chop Lettuce', 'Step4': 'Player1: Serve 
Lettuce Tomato Soup, Player2: Chop Tomato'}

Figure 11: Manager-Agent Decision-Making Based on Environment and DAG Action Information (Example).

You are Player in a simplified Overcooked game where you and other agent collaborate to 
complete various soup orders. Your role is to observe your surroundings and provide 
essential information to assist in effective planning and task execution by others.

GAME SCENARIO:
In this game, your primary role is not to execute actions directly, but to communicate 
your immediate environment details to help the team make better decisions.

SPECIFIC REPORTING GUIDELINES:
1.Surrounding Objects: List objects near you, including their type and coordinates
(e.g., ingredients, vegetable, pot).
2.Important Changes: Inform if there are significant events in your area (e.g., a 
burning pot or completed soup ready for serving).
3.Team Coordination: Provide updates on your observations so that task allocation and 
strategic decisions can be optimized by the Manager-Agent.

Player-Agent system prompt

Figure 12: Player-Agent system prompt.
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Current Scenario
•Environment Info: Includes kitchen stations, ingredients, orders, and task DAG: <
environment>.
•Player Info: <communication>.

GUIDELINES:
•Discuss next possible tasks considering:

•Proximity to ingredients or items.
•Order progress.
•Interaction with other players' actions.

•Length: Be concise, max 20 words.

RESPONSE FORMAT:
Use the following for easy JSON parsing:
{

"Nearby_items": "Crucial items near you for next steps.",
"Communication": "Brief strategy or thoughts to other agents.",
"Possible_tasks": "Tasks you can perform next, from 'available_actions' or 

'dag_orders_path', considering position and order needs."
}

Player-Agent input prompt

Figure 13: Player-Agent input prompt.

Input information:

Manager: 'Steps': {'Step1': 'Player1: Chop Lettuce, Player2: Chop Tomato', 'Step2': 
'Player1: Assemble Lettuce Tomato Soup Ingredients, Player2: Chop Onion', 'Step3': 
'Player1: Cook Lettuce Tomato Soup, Player2: Chop Tomato', 'Step4': 'Player1: Serve 
Lettuce Tomato Soup, Player2: Assemble Lettuce Onion Tomato Soup Ingredients'}

Logic detection result:
Step 4, Player2's action: The required ingredient 'Chop Lettuce' already used in Step 2 
by Player1 needs to be chopped again before it can be used in step 4 by Player2's action 
'Assemble Lettuce Onion Tomato Soup Ingredients".

Output:
Manager: 'Steps': {'Step1': 'Player1: Chop Lettuce, Player2: Chop Tomato', 'Step2': 
'Player1: Assemble Lettuce Tomato Soup Ingredients, Player2: Chop Onion', 'Step3': 
'Player1: Cook Lettuce Tomato Soup, Player2: Chop Lettuce', 'Step4': 'Player1: Serve 
Lettuce Tomato Soup, Player2: Chop Tomato'}

At this step, there are not
enough ingredients available.

Figure 14: Logic Detection and Correction Example.
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The previous sequence of steps contained logical errors. To ensure correctness and 
efficiency, please revise the steps to maintain logical consistency and promote 
efficient collaboration.

INPUTS:
•Error Reason: <reason>
•Player's Info: <player_info>
•DAG Action Info: <dag_info>
•Available Actions: <available_actions>

Re-evaluation Guidelines:
1.Violation Handling:

•If a violation occurs for Player X in Step n, choose an action from "Next Order 
First" in DAG action information (e.g., output 'Player2: Chop Tomato').
•If unable to resolve a violation, reduce the total number of steps in the sequence.

2.Prioritization:
•Prioritize actions in DAG action information (especially actions labeled 'First').
•Minimize "Chop" Actions: Unless "Chop" is specifically required by the DAG, avoid 
using it frequently.

New Steps Proposal:
Re-evaluate the provided information and generate a new, logically consistent action 
sequence using the format below to facilitate parsing:
{

"Correction": "Describe improvements and the logical reasoning for the changes.",
"Steps": {

"Step1": "Player1: action, Player2: action",
"Step2": "Player1: action, Player2: action",
"...": "..."

}
}

Manager-Agent correct prompt

Figure 15: Manager-Agent Corrective Prompt.
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(a) Tomato Salad

(b) Onion Salad

(c) Lettuce Salad

(d) Onion Tomato Salad

(e) Onion Lettuce Salad

(f) Lettuce Tomato Salad

(g) Lettuce Tomato Onion Salad

Figure 16: Partial dAG representations for salad recipes in Overcooked.

(d) Putout Fire
(a) Onion Tomato Soup

(b) Lettuce Tomato Soup

(c) Lettuce Onion Soup

(e) Lettuce Tomato Onion Soup

Figure 17: Partial DAG representations for soup recipes and other tasks in Overcooked.
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