
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 13693–13704
November 4-9, 2025 ©2025 Association for Computational Linguistics

LoRA-PAR: A Flexible Dual-System LoRA Partitioning Approach to
Efficient LLM Fine-Tuning

Yining Huang1*, Bin Li2†, Keke Tang3,4‡, Meilian Chen§

1School of Politics and Public Administration, South China Normal University
2Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences

3University of Chinese Academy of Sciences
4Shenyang institute of computing technology, Chinese academy of sciences

Correspondence: huangyining1987@gmail.com, b.li2@siat.ac.cn

Abstract

Large-scale generative models like DeepSeek-
R1 and OpenAI-O1 benefit substantially from
chain-of-thought (CoT) reasoning, yet push-
ing their performance typically requires vast
data, large model sizes, and full-parameter fine-
tuning. While parameter-efficient fine-tuning
(PEFT) helps reduce cost, most existing ap-
proaches primarily address domain adaptation
or layer-wise allocation rather than explicitly
tailoring data and parameters to different re-
sponse demands. Inspired by “Thinking, Fast
and Slow,” which characterizes two distinct
modes of thought—System 1 (fast, intuitive,
often automatic) and System 2 (slower, more
deliberative and analytic)—we draw an analogy
that different “subregions” of an LLM’s param-
eters might similarly specialize for tasks that
demand quick, intuitive responses versus those
requiring multi-step logical reasoning. There-
fore, we propose LoRA-PAR, a dual-system
LoRA framework that partitions both data and
parameters by System 1 or System 2 demands,
using fewer yet more focused parameters for
each task. Specifically, we classify task data
via multi-model role-playing and voting, and
partition parameters based on importance scor-
ing, then adopt a two-stage fine-tuning strategy
of training System 1 tasks with supervised fine-
tuning (SFT) to enhance knowledge and intu-
ition and refine System 2 tasks with reinforce-
ment learning (RL) to reinforce deeper logical
deliberation next. Extensive experiments show
that the two-stage fine-tuning strategy, SFT and
RL, lowers active parameter usage while match-
ing or surpassing SOTA PEFT baselines.

1 Introduction

Large language models (LLMs) such as DeepSeek-
R1 (DeepSeek-AI et al., 2025) and OpenAI-O1

*huangyining1987@gmail.com
†b.li2@siat.ac.cn
‡tkk2012@gmail.com
§523062863@qq.com

Model�(QwQ)

Model�(R1)

Model�(Omni)

act�as�
Target�Model

(LlaMa�2)

Target�Model

(LlaMa�2)

act�as�

Target�Model

(LlaMa�2)

act�as�

Sample�Splitter

vote

D1(system1)

D2(system2)

Corpus�D

①�Multiple�Models�Role�Playing�&�Voting

Coordinator

Target�Model

(LlaMa�2)

Peft�Module�(LoRA�etc.)
Importance(s2)

Importance(s1)

③�2-stage�Finetuning

Params�partitioned

based�on�θ,�α,�β

tuning tuning

stage�1:�SFT stage�2:�RL

s1:�activated

s2:�freezed

s1:�freezed

s2:�activated

②�Importance�Calculation�&�Parameter�Partitioning

... ...

#�model�=�{1,�3,�5,�...}

s1:�system1�parameter

s2:�system2�parameter

Corpus�D Corpus�D

θ:�accumulated�

importance�

ratio�cutpoint

α,�β:�params�utilized�

ratio�on�shared�region

...

s1

s2

��LoRA�module��

A

B

Basemodel

Role-playing�as�target�models

Voting�for�increasing�reliability

D1(system1)

D2(system2)

Freezed�ParamsImportance Calculation
I(φ) = | g φ - 1/2 F φ |

j

2

j j j j j
^

Figure 1: Overview of our proposed workflow. (1) Sam-
ple Splitter: Multiple LLMs role-play the target model
and vote to classify the corpus into System 1 and Sys-
tem 2 data. (2) Coordinator: We calculate importance
scores for each LoRA parameter in both tasks and selec-
tively partition them based on cumulative ranking. (3) A
two-stage fine-tuning pipeline (SFT then RL) trains the
shared or task-specific parameters, ensuring efficiency
while preserving both language fluency and logical rea-
soning performance.

(Contributors et al., 2024) have shown remarkable
progress in complex reasoning when equipped with
CoT prompts. However, pushing their performance
to new levels often relies on massive datasets and
full-parameter fine-tuning, requiring considerable
compute and large model sizes. To alleviate this
burden, parameter-efficient fine-tuning (PEFT) ap-
proaches have emerged as a promising alternative.
Most existing PEFT methods, however, predomi-
nantly insert uniform adapter modules (e.g., LoRA
(Hu et al., 2021)) and do not specifically tailor their
parameter configurations to the unique demands

13693

mailto:huangyining1987@gmail.com
b.li2@siat.ac.cn
mailto:huangyining1987@gmail.com
mailto:b.li2@siat.ac.cn
mailto:tkk2012@gmail.com
mailto:523062863@qq.com

Inspiration

Thinking,�Fast�&�Slow

"A�car�travels�for�2�hours�at�60�

km/h,�then�1�hour�at�80�km/h.�

How�far�does�it�travel�in�total?"

�Question�Type�2�

"Which�is�brighter,�3�

PM�or�3�AM?"

�Question�Type�1�

Distance�in�the�first�2�hours:�

60�×�2�=�120�km

Distance�in�the�next�1�hour:�

80�×�1�=�80�km

Total�distance�=�120�+�80�=�

200�km

1.

2.

3.

�Thinking�mode�

System�1 System�2
fast

intuitive

automatic

slow

deliberative

analytic

�Thinking�mode�

Human�Brain

"So,�the�car�travels�200�km�in�

total."
"Obviously�3�PM."

�Answer� �Answer�

quick,�intuitive,�straight analytical,�multi-step,�thoughtful

Applied�in�Training�LLMs

Classify�data�

into�2�types

Adopt�parameters�

partitioning

Train�model�in�the�

ways�that�System�

1/2�would�think

Role-playing�

&�Voting�by

Multiple�Experts

Paramters�

partitioned�based�

on�task�specific�

importance

Supervised�Fine-

tuning�

Reinforcement

Learning�(GRPO)

1.

2.

The�human�brain�engages�in�fast�and�slow�thinking.�

In�our�framework,�we�mimic�this�approach�by�

classifying�tasks�into�System�1�and�System�2. Multiple�Advanced�Models�Role-

play�Classification�&�Voting�

I(φ) = | g φ - 1/2 F φ |
j

2

j j j j j
^

"Tom�has�8�coins,�and�each�coin�is�

either�a�penny�(1�cent)�or�a�nickel�(5�

cents).�If�their�total�value�is�32�cents,�

how�many�nickels�does�Tom�have?"

�Data�Type�2�

"Which�number�is�

larger,�10�or�5?"

�Data�Type�1�

Reasoning�RL�

System�1 System�2
fast

intuitive

automatic

slow

deliberative

analytic

End2End�SFT

LLM�parameters

"Tom�has�6�nickels.""10�is�larger�than�5."

�Answer� �Answer�

Question

Answer

Learning�the�

way�that�

mapping�from�

question�to�

answer�

directly.

Question

Let�x�be�the�number�of�nickels.�Then�

there�are�(8−x)�pennies.

Each�nickel�is�5�cents,each�penny�is�1�

cent.

Total�value�equation:�5x�+�1�*�(8�-�x)�=32�

Simplify:�5x�+�8�−�x�=�32�->�4x�+�8�=�32�->�

4x�=�24�->�x�=�6

1.

2.

3.

4.

Answer

�Reasoning�Process�

Layer�1

Layer�2

...

Layer�z

Partition�

parameters�

for�SFT�(System1)

Partition�

parameters�

for�RL�(System2)

Figure 2: Inspired by Thinking, Fast and Slow, we introduce System 1 and System 2 into LLM training. (1) We
assume subregions of model parameters can mirror the brain’s distinct cognitive modes; (2) we classify data into
System 1 or System 2 via expert role-play voting and allocate parameters accordingly, then parameters will be
partitioned based on importance score with respect to different task data; and (3) we train System 1 with end-to-end
SFT for direct mappings from question to answer, while System 2 uses RL (GRPO) to encourage multi-step
reasoning.

of different tasks or reasoning levels. Although
there have been some recent attempts to design
more task- or data-aware PEFT solutions (Zhang
et al., 2023a,b), these works largely focus on do-
main adaptation or layer-wise parameter alloca-
tion rather than explicitly targeting more advanced,
multi-step reasoning capabilities.

Meanwhile, inspired by Thinking, Fast and Slow
(Kahneman, 2011), we incorporate the dual-system
concept into parameter-efficient fine-tuning for
LLMs. Specifically, as shown in Figure 2, we draw
on the idea that the human brain engages partially
distinct neural processes for System 1 versus Sys-
tem 2. Recent studies further evidence that large
language models can manifest or benefit from dis-
tinct “fast” vs. “slow” modes: (Hagendorff et al.,
2022) exhibit human-like intuitive biases, (Pan
et al., 2024) propose dynamic decision mechanisms
inspired by Kahneman’s framework, and more gen-
eral discussions support bridging cognitive dual-
process theories and AI (Booch et al., 2020). By
analogy, we posit that an LLM’s parameters can be

partitioned into “subregions” specialized for differ-
ent response demands. We implement this in three
steps: (1) we use multi-expert role-play and vot-
ing to classify each training instance into System
1 or System 2 tasks, ensuring quick, direct “fast
thinking” problems are kept separate from more
deliberative multi-step tasks; (2) we then allocate
different subsets of parameters of LoRA modules
(via importance-based partitioning) for System 1
and System 2, akin to activating distinct cognitive
modes; (3) we train System 1 parameters with end-
to-end SFT for direct question–answer mapping,
and refine System 2 parameters using reinforce-
ment learning (GRPO (Shao et al., 2024)), simi-
lar to how models like DeepSeek-R1 (DeepSeek-
AI et al., 2025) achieve deeper chain-of-thought
style reasoning. In this way, our approach remains
within the lightweight scope of PEFT, while still
capturing the dual-process benefits of human cog-
nition—fast, intuitive responses and methodical,
step-by-step logic.

13694

2 Related Work

2.1 Parameter Importance Calculation and
Pruning

SparseGPT (Frantar and Alistarh, 2023) effectively
prunes large-scale LLM parameters without retrain-
ing, drastically reducing model size with minimal
performance loss. Wanda (Sun et al., 2023) em-
ploys activation-aware magnitude pruning without
retraining, significantly outperforming traditional
magnitude-based methods. LLM-Pruner (Ma et al.,
2023) identifies and removes structurally redundant
components via gradient-based scoring, retaining
general multitask capabilities. Týr-the-Pruner (Li
et al., 2025) applies second-order Taylor approx-
imations for global structured pruning, achieving
high sparsity levels with minimal accuracy loss.

2.2 Selective Freezing and Dual-Stage
Training

LIMA (Zhou et al., 2023) shows minimal fine-
tuning effectively aligns pretrained models, im-
plying substantial portions of models can remain
frozen without loss of knowledge. ILA (Shi et al.,
2024) develops an analysis technique to selectively
freeze non-critical layers, improving fine-tuning
efficiency and performance. Safety Layer Freez-
ing (Li et al., 2024a) suggests freezing identified
"safety-critical" layers during further fine-tuning to
preserve original alignment and safety behaviors.

2.3 LoRA and PEFT Variants

LoRA (Hu et al., 2021) introduces low-rank adap-
tation, drastically reducing fine-tuning overhead
by freezing most parameters while updating small
adapter matrices. PiSSA (Meng et al., 2024) ini-
tializes LoRA adapters using pretrained singular
vectors, accelerating convergence and boosting task
accuracy. OLoRA (Büyükakyüz, 2024) enhances
LoRA initialization with orthonormal matrices,
significantly accelerating fine-tuning convergence.
QLoRA (Dettmers et al., 2023) enables highly ef-
ficient 4-bit quantized fine-tuning of large models,
drastically lowering computational requirements
without performance loss. LoRA+ (Hayou et al.,
2024) optimizes LoRA fine-tuning via learning-rate
scaling adjustments, achieving faster convergence
and higher accuracy.

2.4 Training & Data Strategies for Better
LLM Reasoning

GSM-DC builds math problems as symbolic depen-
dency graphs to inject controlled irrelevant context
and adds stepwise evaluation to improve reason-
ing robustness (Yang et al., 2025). Toolformer
self-supervises API-call annotations to help LLMs
learn when/how to use external tools, which im-
proves reasoning on tasks needing computation or
lookup (Schick et al., 2023). AlphaGeometry syn-
thesizes millions of theorems and proofs to train
a neuro-symbolic system that reaches Olympiad-
level geometry performance (Trinh et al., 2024).
A NeurIPS’24 study proposes a neuro-symbolic
data-generation pipeline that mutates math prob-
lems and verifies them with solvers, then realigns
LLMs on the generated set to surpass state-of-the-
art baselines (Li et al., 2024b).

3 Method

3.1 Overall Workflow

The overall workflow of our proposal proceeds as
follows. First, multiple teacher LLMs vote to la-
bel each query as fast, single-step (System 1) or
multi-step reasoning (System 2). Next, we com-
pute parameter importance in LoRA and keep only
the most cumulative-importance score parameters
for each system, identifying a shared subset that are
important to both. Finally, we apply a two-stage
fine-tuning strategy, using SFT for System 1 tasks
and RL for System 2. Shared parameters can be
partially activated in both stages, controlled by α
and β. This design efficiently addresses “fast vs.
slow thinking” within a single LLM by freezing
irrelevant parameters and focusing updates on the
most crucial subregions.

3.2 Multi-Model Role-Play and Voting for
Data Classification

Before partitioning model parameters into different
mode of thinking, questions are needed to be identi-
fied to fall into which category. Rather than relying
on a single classifier—which may be error-prone
or biased—we design a multi-model role-playing
approach. Here, several advanced LLMs (like the
“teachers”) each act to be the “target” model (like
the “student”) and classify the questions accord-
ingly. Because these teacher models typically have
broader pretraining coverage, they can approxi-
mate how the student would perceive the question
type—either System 1 or System 2. The prompt

13695

Figure 3: The prompt for classification and example
questions of System 1 & System 2

of role-playing and example questions of System 1
and System 2 are shown in Figure 3.

As shown in the upper panel of Figure 1 (cf.
“Sample Splitter”), each teacher independently
provides a classification, and we then apply a
voting procedure to aggregate these judgments.
This ensures that disagreements—arising from the
teachers’ differing architectures or training histo-
ries—are resolved in a robust manner. The result-
ing labeled subsets, D1 (System 1) and D2 (System
2), feed into the subsequent modules, where they
guide parameter partitioning and two-stage train-
ing.

3.3 Parameter Importance Calculation for
Subregion Partitioning

After classifying questions, the next step is to deter-
mine which LoRA parameters should be “activated”
for each category. We adopt LoRA rather than full-
parameter fine-tuning to preserve the base model’s
global knowledge and enable a modular strategy
of activate or freeze for System 1 and System 2
tasks. The partitioning process parallels how dif-
ferent regions of the human brain are activated in
response to different cognitive demands (Kahne-
man, 2011). In large language models, parameter
gradients serve as an analogue to neural activations.
If the gradient for a certain parameter is large, it im-
plies that parameter is critical in correcting output
errors for a particular task. To improve the model’s
ability to answer different types of questions (Sys-
tem 1 or System 2), we apply a mask to ignore
the prompt and context tokens in the loss computa-

tion—i.e., we focus only on output positions. This
ensures our importance scores emphasize each pa-
rameter’s contribution to generating the correct fi-
nal answer rather than merely modeling the prompt
text.

Computing Importance Scores. In practice,
we attach LoRA modules at positions of
Q/K/V/Gate/Up/Down within the target model lay-
ers. Let ϕj denote an individual LoRA parameter.
We measure its importance via a Taylor expansion
of the masked cross-entropy loss L(·) up to second
order:

∆L(ϕj) ≈
∣∣∣gj ϕj − 1

2 F̂jj ϕ
2
j

∣∣∣ (1)

gj =
∂L

∂ϕj
, F̂jj ≈

1

N

N∑

k=1

(
∂Lk

∂ϕj

)2

(2)

I(ϕj) =
∣∣∣gj ϕj − 1

2 F̂jj ϕ
2
j

∣∣∣ (3)

Here, gj is the gradient of the masked loss w.r.t.
ϕj , and F̂jj is the diagonal of the Fisher matrix
approximated from per-example gradients Lk. Fo-
cusing on the output tokens aligns parameter impor-
tance with the model’s ability to produce correct
answers.

Selecting and Freezing Parameters. We rank
{ϕj} by I(ϕj) and choose the top fraction (con-
trolled by θ) as the “activated” subregion for each
System. During training, activated parameters re-
main learnable while the rest are frozen, reducing
overhead. Some parameters may appear crucial for
both System 1 and System 2; these “overlapping”
parameters are shared across the two fine-tuning
stages. By partitioning parameters in this manner,
our framework moves closer to the neural analogy
that different “subregions” are engaged for tasks
that demand fast vs. slow thinking.

3.4 Two-Stage Fine-tuning Strategy with
Importance-Based Parameter Selection

Building on the importance scores computed in
§3.3, we now formalize how to (i) determine
how many parameters to activate for each sys-
tem, (ii) handle the overlap between System 1 and
System 2 parameters, and (iii) schedule the fine-
tuning process in two distinct stages. As shown
in Algorithm 1, our approach hinges on three
hyperparameters—θ, α and β—that control which
parameters and how many are updated for System
1 (SFT) and System 2 (RL).

13696

Threshold θ: Selecting the Most Important Pa-
rameters. From the parameter-importance visu-
alization (see Figure 4), we observe that System 1
and System 2 each rely on a partially disjoint set of
LoRA parameters, with a notable overlap. More-
over, each dataset contains many “low-impact” pa-
rameters whose importance is near zero for both
systems. We introduce a cumulative-importance
threshold θ. Specifically, for each system’s impor-
tance ranking, we keep only the most important
subset of parameters with cumulative-importance
score over θ, discarding the tail of negligible-
importance parameters to reduce overhead and
avoid unnecessary updates. For instance, setting
θ = 0.9 means we retain only the parameters with
cumulative-importance score over 90%, they are
crucial for System 1 and System 2 tasks, respec-
tively.1

Activation Fractions α and β: Handling Over-
lap. Applying θ individually to System 1 and Sys-
tem 2 yields two top-ranked sets of LoRA param-
eters, which partially overlap. Concretely, some
parameters rank among the top-ranked for both
systems; we call these “shared” (see the purple
region in Figure 4). We thus introduce two acti-
vation fractions, α and β, to control how many of
these shared parameters are updated during the two
training stages:

• Stage 1 (SFT on System 1 tasks): We acti-
vate (a) all parameters in the System 1-only
subset and (b) an α fraction of the shared pa-
rameters. If α < 1, we only partially train the
shared region in this stage.

• Stage 2 (RL on System 2 tasks): We then
activate (a) all parameters in the System 2-
only subset and (b) a β fraction of the shared
parameters. The rest remain frozen, enabling
us to flexibly allocate more (or fewer) shared
parameters to System 2 based on β.

By varying α and β, we fine-tune the balance
between “fast, direct” adaptation for System 1 and
“multi-step, deliberative” adaptation for System 2,
ensuring that parameters useful for both can be
partially or fully trained in each stage as needed.

1The θ is not the ratio of parameters used in the follow-
ing training procedure. In the situation of puting LoRA on
QKVGUD of LLaMa2 7B, if we set θ = 0.9, there are ap-
proximately 40% of parameters that will treated as important
to System 1/2.

Why Two Distinct Stages (SFT then RL)? We
adopt SFT −→ RL following practices in Ope-
nAI GPT, DeepSeek-R1, and related literature on
multi-stage language model training. System 1
tasks—quick, direct Q&A—are naturally suited to
end-to-end SFT, which establishes “fast-thinking”
capability without delving into complex reason-
ing. This “knowledge foundation” helps bootstrap
the second stage, where RL encourages step-by-
step logical reasoning for System 2 tasks (akin to
a “slow-thinking” process). In essence, RL refines
and extends the capabilities acquired via SFT, re-
warding correct multi-step strategies rather than
just direct answers.

Putting It All Together. Algorithm 1 outlines
these steps more formally. In Stage 1 (SFT), only
the System 1-only subset plus α-portion of shared
parameters are trained; in Stage 2 (RL), only the
System 2-only subset plus β-portion of shared pa-
rameters are updated. This design ensures each
system’s specialized subregion is honed for its re-
spective tasks, while shared parameters can flexibly
contribute to both fast and slow thinking modes.

4 Experiment

4.1 Experimental Setup.
We begin by partitioning each dataset via multi-
model role-playing and voting §3.2, then com-
pute LoRA parameter importance and keep the
top-ranked for each system §3.3. Training pro-
ceeds in two stages §3.4: (1) SFT for System 1,
and (2) RL for System 2, with shared parameters
managed by α and β. We measure accuracy across
GSM8K (Cobbe et al., 2021), MMLU (Hendrycks
et al., 2021) (trained using Dolly15K (Conover
et al., 2023) or OpenPlatypus (Lee et al., 2023)),
and HumanEval (Chen et al., 2021) (code tasks),
comparing our approach to LoRA (Hu et al., 2021),
OLoRA (Büyükakyüz, 2024), PiSSA (Meng et al.,
2024), and PiSSA+RL, all based on LLaMA2 7B.
Key hyperparameters include θ (fraction of top-
ranked parameters), α, β (activation fractions for
overlapping parameters), and 1–2 training epochs
for each baseline.

4.2 Role-Playing and Voting for Data
Classification

We first verify the role-playing and voting approach
introduced in §3.2 by comparing various data clas-
sification strategies on GSM8K. Specifically, we
contrast (a) a single model without role-play, (b) a

13697

0.0000 0.0002 0.0004 0.0006
System1 Importance (normalized)

0.0000

0.0002

0.0004

0.0006

0.0008

Sy
st

em
2

Im
po

rta
nc

e
(n

or
m

al
ize

d)
GSM8K

sys1_only(24.32%)
sys2_only(23.53%)
shared(jaccard: 0.614)

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005
System1 Importance (normalized)

Dolly15K
sys1_only(38.00%)
sys2_only(43.15%)
shared(jaccard: 0.422)

0.0000 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006
System1 Importance (normalized)

CodeAlpaca
sys1_only(37.12%)
sys2_only(39.87%)
shared(jaccard: 0.444)

Figure 4: Scatter plots of LoRA parameter importance for System 1 (x-axis) vs. System 2 (y-axis) with a cumulative
importance cutpoint θ = 0.9. Each dot is then labeled as System 1 only (red), System 2 only (blue), or shared
(purple), the legend indicate the fraction of non-overlapping parameters and the Jaccard overlap between System 1
and System 2 top sets. Notice that a substantial portion of parameters specialize in one system while a moderate
number are shared, highlighting the potential for distinct subregions of LoRA parameters in multi-stage fine-tuning.

Data Classification Strategy Performance
QwQ w/o role play 25.32
QwQ w/ role play 26.23
Deepseek-R1 w/ role play 26.84
Random partition 25.85
Role play + voting (n=3) 27.07
Role play + voting (n=5) 27.60

Table 1: Performance on GSM8K under different
data classification approaches. All runs use LLaMA2
7B + LoRA (QKV/Gate/Up/Down) and SFT. “n” indi-
cates the number of external LLM used to vote.

single model prompted to “act as” LLaMA2 7B, (c)
random partitioning, and (d) multiple models with
role-play plus voting. As shown in Table 1, the
multi-model role-play+voting setup achieves the
highest performance. Prompting an external LLM
to imitate the target model’s decision boundary
(role-playing) reduces misclassification compared
to its default inference style, while the voting en-
semble mitigates individual biases and yields more
robust splits. This result aligns with our intuition
that combining multiple “teacher” perspectives bet-
ter approximates how LLaMA2 7B would distin-
guish System 1 vs. System 2 questions, ultimately
enhancing downstream fine-tuning.

4.3 Adaptive Parameter Usage via θ

We next investigate how varying the cumulative im-
portance cutpoint θ (from 0% to 100%) affects both
the number of LoRA parameters activated and the
resulting performance under SFT. In essence, θ dic-
tates which and how many parameters are updated,
as introduced in §3.4. For each setting, we compare
three LoRA module configurations—QKV, GUD,
and QKVGUD—against a random-selection base-

Algorithm 1 Two-stage Fine-tuning

1: Input: LoRA parameters {ϕi}Ni=1, importance
scores s1(i), s2(i), thresholds θ, α, β

2: Step 1 (Partition):
3: Sort parameters by s1(i)/s2(i) and keep the

top important fraction as S1/S2.
4: Ω1-only = S1 \ S2, Ω2-only = S2 \

S1, Ωshared = S1 ∩ S2.
5: Step 2 (Stage 1: SFT):
6: Activate all parameters in Ω1-only.
7: For each ϕi ∈ Ωshared, activate it if it is in the

top-α fraction by s1(i).
8: Freeze all other parameters.
9: Step 3 (Stage 2: RL):

10: Activate all parameters in Ω2-only.
11: For each ϕi ∈ Ωshared, activate it if it is in the

top-β fraction by s2(i).
12: Freeze all other parameters.

line that picks the same fraction of parameters but
without regard to importance.

Table 3 summarizes our results on GSM8K, and
Figure 5 illustrates the overall trend. As θ in-
creases, performance generally improves, but di-
minishing returns emerge near the high end. No-
tably, QKVGUD reaches close to its maximum
accuracy even around θ between 0.8 and 0.9, ac-
tivating only 30%–40% of LoRA parameters. In
contrast, random selection of an equivalent fraction
falls short, underscoring that targeting the most
important parameters is critical to strong perfor-
mance. In practice, θ can thus be tuned to strike a
balance between absolute accuracy and parameter
budget.

13698

0 20 40 60 80 100
% Parameter

0

5

10

15

20

25

30

Pe
rfo

rm
an

ce
 (%

)

(0.0, 0.1)
(1.4, 0.2)

(15.8, 0.3)

(18.4, 0.4)

(20.6, 0.5)

(22.3, 0.6)
(23.7, 0.7)(23.6, 0.8) (23.4, 0.9)

(26.5, 1.0)

QKV

Performance (%),
Base model (LlaMa-2 7B) = 13.3
Random

0 20 40 60 80 100
% Parameter

(12.1, 0.1)

(6.9, 0.2)
(5.8, 0.3)(6.2, 0.4)

(11.1, 0.5)

(17.4, 0.6)

(21.1, 0.7)
(22.1, 0.8)

(25.5, 0.9)

(30.2, 1.0)

GUD

Performance (%),
Base model (LlaMa-2 7B) = 13.3
Random

0 20 40 60 80 100
% Parameter

(8.9, 0.1)

(12.6, 0.2)
(11.9, 0.3)

(13.0, 0.4)(13.1, 0.5)

(15.2, 0.6)

(20.6, 0.7)

(24.0, 0.8)

(27.3, 0.9)

(30.6, 1.0)
QKVGUD

Performance (%),
Base model (LlaMa-2 7B) = 13.3
Random

Figure 5: Performance on GSM8K versus the fraction of LoRA parameters activated (controlled by θ), comparing
QKV, GUD, and QKVGUD configurations. The dashed gray line represents random selection of the same fraction,
and the horizontal yellow line is the base model’s (LLaMA2 7B) performance.

α β Perf. (SFT) Perf. (RL)
0 0 18.88 19.03
0 0.5 18.12 25.25
0 1 18.35 23.58
0.5 0 23.65 25.85
0.5 0.5 24.79 29.57
0.5 1 24.94 31.01
1 0 27.75 27.75
1 0.5 26.99 31.92
1 1 27.14 34.37

Table 2: Influence of α and β on two-stage fine-
tuning (SFT then RL). All experiments use the
GSM8K dataset with role-playing + voting classifica-
tion, SFT+RL training, θ = 0.9, and the QKVGUD LoRA
module. “Perf. (SFT)” measures model accuracy after
the first stage, while “Perf. (RL)” is the final accuracy
after the second stage. When α = β = 1, yielding the
highest final score (in bold).

4.4 Utilizing Shared Parameters via α & β

Recall that α and β (introduced in §3.4) control
how many of the shared parameters remain ac-
tive in the SFT (System 1) and RL (System 2)
stages, respectively. We fix θ = 0.9 for each
system, then vary α and β to measure their im-
pact on training dynamics. Table 2 shows results
on GSM8K using QKVGUD LoRA. The “Perfor-
mance (SFT)” column reflects accuracy after the
first stage, while “Performance (RL)” is the fi-
nal accuracy after the second stage. When both
α = β = 1, shared parameters remain fully active
in both stages—maximizing the SFT checkpoint
and yielding the best final score (34.37). Lower

values of α or β reduce the overlap, limiting early
gains in SFT or hampering the RL stage’s capacity
for multi-step reasoning. In effect, a strong SFT
foundation provides a “warm start” for RL (System
2), letting the model build deeper logic on top of
its fast-thinking skills.

4.5 Final Performance and Baseline
Comparisons

We conclude by evaluating our approach along-
side several LoRA-based baselines (LoRA (Hu
et al., 2021), OLoRA (Büyükakyüz, 2024), PiSSA
(Meng et al., 2024), PiSSA+RL) on four tasks:
GSM8K, MMLU (trained with Dolly15K or Platy-
pus), and HumanEval. Each column in Table 4
corresponds to one of these tasks, trained for ei-
ther one or two epochs. For instance, GSM8K is
trained on its own data, whereas MMLU(Dolly)
and MMLU(Platypus) use Dolly15K and Open-
Platypus, respectively. HumanEval relies on code-
focused data (CodeAlpaca (Chaudhary, 2023),
CodeFeedback). The base model (LLaMA2 7B) is
shown for reference, with no fine-tuning. Baselines
typically perform two rounds of SFT, except for
PiSSA+RL, which does one SFT epoch and then
a RL epoch. Our proposals (marked with *) apply
θ-based parameter selection (θ = 0.9 or θ = 0.95)
along with role-play+voting data splits and fully
active overlaps (α = β = 1) in the two-stage train-
ing. Notably, PiSSA(θ = 0.9 or θ = 0.95) uses
about 40% of the full LoRA parameters yet out-
performs vanilla PiSSA, indicating that focusing
on high-importance subregions can yield stronger
results. Overall, our method achieves the best ac-

13699

QKV GUD QKVGUD
θ %Param Perf. Rand. %Param Perf. Rand. %Param Perf. Rand.

0 (Base LLaMA2 7B) - 13.3 - - 13.3 - - 13.3 -
1 (Original LoRA) 100 26.46 - 100 30.25 - 100 30.63 -

0.1 0.30 0 - 0.22 12.13 - 0.32 8.87 -
0.2 1.03 1.44 - 1.21 6.90 - 1.22 12.59 -
0.3 2.20 15.77 0 2.89 5.76 3.11 2.72 11.90 6.29
0.4 3.93 18.44 - 5.30 6.22 - 4.90 13.04 -
0.5 6.39 20.55 - 8.61 11.14 - 7.91 13.12 -
0.6 9.88 22.29 11.22 13.10 17.36 17.13 12.07 15.16 13.87
0.7 14.90 23.73 - 19.30 21.15 - 17.87 20.62 -
0.8 22.52 23.65 - 28.27 22.14 - 26.40 24.03 -
0.9 35.70 23.35 21.30 42.90 25.47 23.43 40.56 27.3 23.43

Table 3: Performance on GSM8K with varying cutpoint (θ) and different module configurations. For each θ,
“%Param” denotes the percentage of LoRA parameters activated, “Perf.” is the performance metric (accuracy), and
“Rand.” is the performance when randomly selecting the same fraction of parameters. All runs use LLaMA2 7B +
LoRA with SFT.

GSM8K MMLU(Dolly) MMLU(Platypus) HumanEval
Method 1 epoch 2 epoch 1 epoch 2 epoch 1 epoch 2 epoch 1 epoch 2 epoch
LLaMa2 7B 13.3 – 46.48 – 46.48 – 14.39 –

LoRA

LoRA (2021) 27.8 31.86 45.85 44.99 43.36 43.16 15.37 18.54
OLoRA (2024) 29.57 32.83 45.08 45.06 45.16 45.26 15.85 19.02
PiSSA (2024) 30.78 33.59 22.95 23.27 24.14 23.89 21.95 24.39
PiSSA+RL 30.63 37.45 22.96 23.45 23.98 23.92 21.34 25.61

Proposal
*PiSSA(θ = 0.9) 28.73 38.97 23.10 24.07 24.11 25.01 22.56 26.22
*PiSSA(θ = 0.95) 30.86 41.85 23.33 24.14 24.41 25.38 23.17 27.43
*LoRA(θ = 0.9) 27.07 34.57 46.34 47.09 44.15 45.66 16.46 19.51

Table 4: Comparison of LoRA-based baselines versus our proposals on four benchmarks. We use LLaMA2
7B as the base model; One or two training epochs are performed, as our proposal, PiSSA+RL specifically doing
one SFT followed by one RL epoch. Our proposed methods (marked) combine role-play+voting data splitting and
importance-based parameter activation (θ) with fully active shared region (α = β = 1).

curacy on GSM8K (41.85%), surpassing PiSSA
by about 12% while using significantly fewer pa-
rameters. On MMLU, we also observe gains over
standard LoRA and PiSSA, confirming that selec-
tively activating only the most relevant parame-
ters is both efficient and effective. Beyond PiSSA,
our QKVGUD configuration activates only about
40% of LoRA parameters (based on θ = 0.9 or
0.95) for each system, yet still outperforms both
full LoRA and random subsets of comparable size.
As illustrated by the scatter plots in Figure 4, these
“top-ranked” parameters form a highly specialized
subregion for fast & intuitive (System 1) vs. multi-
step (System 2) tasks. In other words, by focusing
updates on those parameters that are important to
each reasoning style, we realize the dual-system
analogy—distinct parameter subsets excel at quick,
intuitive SFT or stepwise RL—while lowering ac-
tive parameter usage.

5 Limitations

Our experiments confirm that selectively activating
LoRA parameters for System 1 and System 2 yields
clear benefits in both performance and parameter
efficiency. By combining role-play-based data split-
ting with importance-driven parameter partition-
ing, we effectively approximate the dual-process
paradigm within an LLM. Nonetheless, there are
a few limitations: (1) Multi-Model Annotations.
Although using multiple teacher LLMs improves
labeling quality, it adds computational overhead
and presupposes access to diverse, high-capacity
models. (2) Granularity of Task Partitioning.
Our approach treats tasks at a coarse level (System
1 vs. System 2). More nuanced distinctions (e.g.,
intermediate steps or partial multi-hop reasoning)
may require finer-grained analysis. (3) Applicabil-
ity to Other Architectures. We have shown results
on LLaMA2 7B; generalizing to other model fam-
ilies (e.g., decoder-encoder hybrids) may require
adjustments in how LoRA parameters are attached
and scored.

13700

6 Conclusion

We presented a dual-system PEFT framework in-
spired by Thinking, Fast and Slow, wherein System
1 and System 2 “subregions” of LoRA parame-
ters address fast, intuitive tasks vs. slower, multi-
step reasoning. Our pipeline (i) classifies queries
via multi-model role-playing and voting, (ii) deter-
mines each LoRA parameter’s importance relative
to System 1 or System 2, and (iii) fine-tunes in
two stages—SFT for intuitive response, then RL
for deeper logic. Across GSM8K, MMLU, and
HumanEval, we find that focusing updates on top-
ranked parameters not only cuts active parameter
usage (often to 40% or less) but also surpasses base-
line PEFT methods that uniformly fine-tune larger
parameter sets. By assigning each subregion to a
distinct “cognitive” mode, we effectively reconcile
fast vs. slow thinking within a single LLM. We
believe this “subregion specialization” opens new
directions for cognitively guided LLM adaptations,
enabling more efficient models that still excel at
both intuitive and methodical reasoning.

References
Grady Booch, F. Fabiano, L. Horesh, Kiran Kate,

Jonathan Lenchner, Nick Linck, Andrea Loreggia,
Keerthiram Murugesan, Nicholas Mattei, Francesca
Rossi, and Biplav Srivastava. 2020. Thinking fast
and slow in ai. In AAAI Conference on Artificial
Intelligence.

Kerim Büyükakyüz. 2024. Olora: Orthonormal low-
rank adaptation of large language models. ArXiv,
abs/2406.01775.

Sahil Chaudhary. 2023. Code alpaca: An instruction-
following llama model for code generation. https:
//github.com/sahil280114/codealpaca.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. Preprint, arXiv:2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,

Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned llm.

Foundational Contributors, Ahmed El-Kishky, Daniel
Selsam, Francis Song, Giambattista Parascandolo,
Hongyu Ren, Hunter Lightman, Hyung Won, Ilge
Akkaya, Ilya Sutskever, Jason Wei, Jonathan Gor-
don, Karl Cobbe, Kevin Yu, Lukasz Kondraciuk,
Max Schwarzer, Mostafa Rohaninejad, Noam Brown,
Shengjia Zhao, and 189 others. 2024. Openai o1
system card. ArXiv, abs/2412.16720.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Jun-Mei Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiaoling Bi, Xiaokang
Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
Zhihong Shao, Zhuoshu Li, Ziyi Gao, and 179 oth-
ers. 2025. Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning. ArXiv,
abs/2501.12948.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. ArXiv, abs/2305.14314.

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-
sive language models can be accurately pruned in
one-shot. ArXiv, abs/2301.00774.

Thilo Hagendorff, Sarah Fabi, and Michal Kosinski.
2022. Human-like intuitive behavior and reasoning
biases emerged in large language models but disap-
peared in chatgpt. Nature Computational Science,
3:833 – 838.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. 2024.
Lora+: Efficient low rank adaptation of large models.
ArXiv, abs/2402.12354.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

J. Edward Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, and Weizhu
Chen. 2021. Lora: Low-rank adaptation of large
language models. ArXiv, abs/2106.09685.

Daniel Kahneman. 2011. Thinking, fast and slow.

Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. 2023.
Platypus: Quick, cheap, and powerful refinement of
llms.

Guanchen Li, Yixing Xu, Zeping Li, Ji Liu, Xuanwu
Yin, Dong Li, and Emad Barsoum. 2025. Týr-the-
pruner: Unlocking accurate 50% structural pruning
for llms via global sparsity distribution optimization.
ArXiv, abs/2503.09657.

Shen Li, Liuyi Yao, Lan Zhang, and Yaliang Li. 2024a.
Safety layers in aligned large language models: The
key to llm security.

13701

https://api.semanticscholar.org/CorpusID:222310220
https://api.semanticscholar.org/CorpusID:222310220
https://api.semanticscholar.org/CorpusID:270226881
https://api.semanticscholar.org/CorpusID:270226881
https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://api.semanticscholar.org/CorpusID:274611667
https://api.semanticscholar.org/CorpusID:274611667
https://api.semanticscholar.org/CorpusID:275789950
https://api.semanticscholar.org/CorpusID:275789950
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:255372747
https://api.semanticscholar.org/CorpusID:255372747
https://api.semanticscholar.org/CorpusID:255372747
https://api.semanticscholar.org/CorpusID:259145108
https://api.semanticscholar.org/CorpusID:259145108
https://api.semanticscholar.org/CorpusID:259145108
https://api.semanticscholar.org/CorpusID:267750102
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:260437022
https://api.semanticscholar.org/CorpusID:276961144
https://api.semanticscholar.org/CorpusID:276961144
https://api.semanticscholar.org/CorpusID:276961144
https://api.semanticscholar.org/CorpusID:272310211
https://api.semanticscholar.org/CorpusID:272310211

Zenan Li, Zhi Zhou, Yuan Yao, Xian Zhang, Yu-Feng
Li, Chun Cao, Fan Yang, and Xiaoxing Ma. 2024b.
Neuro-symbolic data generation for math reasoning.
Advances in Neural Information Processing Systems,
37:23488–23515.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023.
Llm-pruner: On the structural pruning of large lan-
guage models. ArXiv, abs/2305.11627.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. 2024.
Pissa: Principal singular values and singular vec-
tors adaptation of large language models. ArXiv,
abs/2404.02948.

Jiabao Pan, Yan Zhang, Chen Zhang, Zuozhu Liu, Hong-
wei Wang, and Haizhou Li. 2024. Dynathink: Fast
or slow? a dynamic decision-making framework for
large language models. In Conference on Empirical
Methods in Natural Language Processing.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle-
moyer, Nicola Cancedda, and Thomas Scialom. 2023.
Toolformer: Language models can teach themselves
to use tools. Advances in Neural Information Pro-
cessing Systems, 36:68539–68551.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Jun-
Mei Song, Mingchuan Zhang, Y. K. Li, Yu Wu, and
Daya Guo. 2024. Deepseekmath: Pushing the limits
of mathematical reasoning in open language models.
ArXiv, abs/2402.03300.

Guangyuan Shi, Zexin Lu, Xiaoyu Dong, Wenlong
Zhang, Xuanyu Zhang, Yujie Feng, and Xiao-Ming
Wu. 2024. Understanding layer significance in llm
alignment. ArXiv, abs/2410.17875.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter.
2023. A simple and effective pruning approach for
large language models. ArXiv, abs/2306.11695.

Trieu H Trinh, Yuhuai Wu, Quoc V Le, He He,
and Thang Luong. 2024. Solving olympiad ge-
ometry without human demonstrations. Nature,
625(7995):476–482.

Minglai Yang, Ethan Huang, Liang Zhang, Mihai Sur-
deanu, William Wang, and Liangming Pan. 2025.
How is llm reasoning distracted by irrelevant context?
an analysis using a controlled benchmark. arXiv
preprint arXiv:2505.18761.

Qingru Zhang, Minshuo Chen, Alexander Bukharin,
Pengcheng He, Yu Cheng, Weizhu Chen, and
Tuo Zhao. 2023a. Adaptive budget alloca-
tion for parameter-efficient fine-tuning. ArXiv,
abs/2303.10512.

Zhenru Zhang, Chuanqi Tan, Haiyang Xu, Chengyu
Wang, Jun Huang, and Songfang Huang. 2023b. To-
wards adaptive prefix tuning for parameter-efficient
language model fine-tuning. In Annual Meeting of
the Association for Computational Linguistics.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
L. Yu, Susan Zhang, Gargi Ghosh, Mike Lewis, Luke
Zettlemoyer, and Omer Levy. 2023. Lima: Less is
more for alignment. ArXiv, abs/2305.11206.

Content of Appendix

A Implemetation Details
A.1 Data Preparation and System 1/2 Label-

ing
A.2 LoRA Integration
A.3 Importance Scoring and Parameter Acti-

vation
A.4 Supervised Fine-Tuning (System 1)
A.5 Reinforcement Learning (System 2)
A.6 Training Footprint

B Additional Experiments
B.1 Generalization to a Different Backbone

(Qwen-2.5-7B on GSM8K)
B.2 Broader PEFT Baselines on LLaMA-2-

7B
B.3 Order-of-Training Ablation: SFT→RL

vs. RL→SFT

A Implemetation Details

Here we summarize the implementation of LoRA-
PAR corresponding to Section 3. We first construct
a reusable S1/S2–labeled pool via role-play + vot-
ing, then estimate element-wise LoRA importance
on small S1/S2 subsamples and activate parameter
subregions by a cumulative-importance threshold θ,
with shared elements governed by α and β. Stage 1
performs SFT on the S1-activated subregion; Stage
2 applies GRPO-based RL on the S2-activated sub-
region with a composite reward that prioritizes an-
swer correctness while stabilizing output format.
Element-wise gradient hooks enforce the masks
throughout, all non-LoRA weights remain frozen,
and we report hardware/software settings and train-
ing footprint to support reproducibility. 2

A.1 Data Preparation and System 1/2
Labeling

Following Section 3, we first split data into System
1 (S1) vs. System 2 (S2) using role-play + voting.
In practice we produce a single labeled pool and
reuse it across experiments. For importance cal-
culation we subsample only 100 S1 and 100 S2
samples respectively to bound cost while keeping a

2The code of our proposal can be viewed at
https://github.com/EmergencerOnEarth/LoRA-PAR

13702

https://api.semanticscholar.org/CorpusID:258823276
https://api.semanticscholar.org/CorpusID:258823276
https://api.semanticscholar.org/CorpusID:268889493
https://api.semanticscholar.org/CorpusID:268889493
https://api.semanticscholar.org/CorpusID:270869563
https://api.semanticscholar.org/CorpusID:270869563
https://api.semanticscholar.org/CorpusID:270869563
https://api.semanticscholar.org/CorpusID:267412607
https://api.semanticscholar.org/CorpusID:267412607
https://api.semanticscholar.org/CorpusID:273532094
https://api.semanticscholar.org/CorpusID:273532094
https://api.semanticscholar.org/CorpusID:259203115
https://api.semanticscholar.org/CorpusID:259203115
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:257631760
https://api.semanticscholar.org/CorpusID:258865689
https://api.semanticscholar.org/CorpusID:258865689
https://api.semanticscholar.org/CorpusID:258865689
https://api.semanticscholar.org/CorpusID:258822910
https://api.semanticscholar.org/CorpusID:258822910
https://github.com/EmergencerOnEarth/LoRA-PAR

stable signal from each class. During tokenization,
we concatenate the prompt and the target; labels
for prompt tokens are set to -100, so the loss is
computed only on the answer segment.

A.2 LoRA Integration

LoRA adapters to the MLP projections gate_proj,
up_proj, and down_proj (GUD) are attached for
the S1 stage; other attachment patterns (e.g., QKV)
are compatible with the same pipeline. Unless
noted otherwise, we use rank r=8, lora_alpha=64,
and set LoRA dropout to 0.05 for training
(initialized as 0.0 then updated programmati-
cally). All non-LoRA parameters are frozen
(requires_grad=False). To avoid all importance
scores are set to zero, we explicitly initialize LoRA
A/B matrices with respect to N (0, 0.01).

A.3 Importance Scoring and Parameter
Activation

To implement the parameter "subregion" idea from
Section 3, we estimate element-wise importance
for all LoRA weights using a masked-loss, second-
order proxy computed over the 100-sample S1 and
S2 mini-corpora. For each batch we back propa-
gation once and accumulate, per LoRA tensor ele-
ment, (i) the sum of grad∗weight and (ii) the sum
of (grad ∗weight)2. We then apply L2-normalize
to the importance and choose a cut-point so that
the cumulative sum reaches a threshold θ; all ele-
ments with normalized score greater than cut-point
are marked "activated." Before SFT we register
per-element gradient hooks that zero out gradi-
ents where the mask is 0, implementing element-
wise freezing inside each LoRA tensor (rather than
whole-module freezing). We report the fraction of
trainable elements with a simple counter to verify
the effective active-parameter rate.

A.4 Supervised Fine-Tuning (System 1)

SFT trains only the S1-activated subregion plus any
globally unfrozen LoRA elements. We use TRL’s
SFTTrainer with: max sequence length 512, learn-
ing rate 2e-4, cosine schedule, warm-up ratio 0.03,
per-device batch size 1 with gradient accumulation
32, and 1 epoch. After SFT all element-wise freeze
hooks are removed so that the subsequent stage
(RL for S2) can re-apply its own mask.

A.5 Reinforcement Learning (System 2)

For the RL phase we re-partition the LoRA sub-
space to target System-2 reasoning. Using the S1

SFT checkpoint as initialization, we activate all ele-
ments in ω2−only together with the top β fraction of
the shared region ranked by S2 importance. Activa-
tion is enforced at element granularity via gradient
hooks that zero the per-element gradient wherever
the mask is zero, so only the intended LoRA sub-
region is trainable while all base weights remain
frozen. We optimize with TRL’s GRPO package;
the trainer maintains the frozen SFT policy inter-
nally for KL control. Unless stated otherwise, train-
ing uses a learning rate of 5e-6 with Adam, weight
decay 0.1, cosine decay with warm-up ratio 0.1,
group size 8 samples per prompt, maximum prompt
and completion lengths of 128 and 256 tokens re-
spectively, 1 epoch, and gradient-norm clipping
at 0.1; checkpoints are saved periodically and all
element-wise hooks are removed after training to
allow subsequent reconfiguration if needed.

Rewards are shaped to make correctness the
dominant learning signal while stabilizing struc-
ture. Each generated sample receives the sum of
five components: a small dense XML well format-
ted score that rewards the presence and proper clo-
sure of tags with mild penalties for trailing content;
a permissive format check and a stricter template
match that together encourage consistent scaffold-
ing; a type check that grants a bonus if the extracted
answer is an integer; and a correctness bonus that
yields 2.0 for exact match between the extracted
answer and the gold answer. The first four terms
are each scaled to 0.5, whereas the 2.0 correctness
term provides the main learning pressure toward
solving the task.

A.6 Training Footprint

Runs use a single NVIDIA L20 (48 GB). On
GSM8K, SFT completes in under one hour per
epoch; the RL/GRPO epoch is longer (≈ 13 h).
Because we freeze low-importance LoRA ele-
ments, peak training memory and optimizer state
size scale with the active subregion; inference la-
tency/memory remain comparable to a standard
LoRA model.

B Additional Experiments
B.1 Generalization to a Different Backbone

(Qwen-2.5-7B on GSM8K)

To assess whether LoRA-PAR is tied to a spe-
cific model family, we repeat the main pipeline
on Qwen-2.5-7B under the same recipe as in
the proposal, unless otherwise noted: LoRA
on Q/K/V/Gate/Up/Down, rank = 8; importance

13703

Method 1 epoch 2 epoch
Base model
Qwen 2.5 7B (0-shot) 21.91 –
Qwen 2.5 7B (1-shot) 62.02 –
LoRA family
LoRA 67.32 68.61
OLoRA 65.43 67.32
PiSSA 55.80 57.24
LoRA+RL 67.25 69.83
Proposal
LoRA-PAR 68.69 81.65

Table 5: GSM8K on Qwen-2.5-7B. Baselines use two
SFT epochs (except LoRA+RL / LoRA-PAR where
the second epoch is RL). The LoRA-PAR is with
θ=0.9, α=β=1.

Method / Schedule 1 epoch 2 epoch
Base model
Qwen 2.5 7B (0-shot) 21.91 –
Qwen 2.5 7B (1-shot) 62.02 –
Two-stage schedules
SFT → RL (proposal) 68.69 81.65
RL → SFT 70.81 68.46

Table 6: Order-of-training ablation on Qwen-2.5-
7B (GSM8K). For two-stage schedules, “1 epoch” is
phase 1 and “2 epoch” is phase 2.

threshold θ = 0.9; shared-subset activation α =
β = 1; one epoch of SFT followed by one epoch of
RL (GRPO). For data labeling we used DeepSeek-
R1 role-playing as Qwen-2.5-7B (single model,
no voting) to obtain the system 1/2 labels. Table
5 shows that our method achieves 68.69% after
SFT and 81.65% after RL, outperforming strong
LoRA-family baselines and also exceeding the base
model’s 1-shot score. This indicates that the our
propoal is not specific to LLaMA-2.

B.2 Broader PEFT Baselines on LLaMA-2-7B

We additionally compared against non-LoRA PEFT
variants on LLaMA-2-7B, training each baseline
for two SFT epochs. As reported in Table 7,
these alternatives (prompt-tuning, P-tuning, prefix-
tuning, IA3) underperform the LoRA family under
our setup. Our proposal, when applied on top of
PiSSA with θ = 0.95, reaches 41.85%, exceeding
all compared PEFT baselines.

Method 1 epoch 2 epoch
Base model
LLaMA-2-7B 13.3 –
LoRA family
LoRA 27.8 31.86
OLoRA 29.57 32.83
PiSSA 30.87 33.59
PiSSA+RL 30.63 37.45
Other PEFT
Prompt Tuning 22.37 26.31
P-Tuning 24.18 26.76
Prefix-Tuning 25.7 30.02
IA3 22.97 26.46
Proposal
PiSSA (θ=0.9) 28.73 38.97
PiSSA (θ=0.95) 30.86 41.85
LoRA (θ=0.9) 27.07 34.57

Table 7: GSM8K on LLaMA-2-7B with broader
PEFT baselines. Non-LoRA baselines are trained with
two SFT epochs; proposal rows use importance-based
activation with the indicated θ.

B.3 Order-of-Training Ablation: SFT→RL vs.
RL→SFT

To probe the training-order choice, we ran a re-
verse schedule on Qwen-2.5-7B / GSM8K using
the same LoRA configuration as in B.1. Table 6
shows that starting with RL yields 70.81% after
the first epoch, slightly above SFT-first (68.69%).
However, the subsequent SFT epoch reduces perfor-
mance to 68.46%, whereas our original SFT→RL
pipeline continues to improve to 81.65%. A plau-
sible interpretation is that RL initially cultivates
multi-step reasoning behaviors, which next-token
SFT may overwrite; by contrast, SFT establishes a
strong imitational base that RL can refine without
eroding emergent reasoning skills.

13704

