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Abstract

Multi-condition information retrieval (IR)
presents a significant, yet underexplored chal-
lenge for existing systems. This paper intro-
duces MULTICONIR, a benchmark specifi-
cally designed to evaluate retrieval and rerank-
ing models under nuanced multi-condition
query scenarios across five diverse domains.
We systematically assess model capabilities
through three critical tasks: complexity ro-
bustness, relevance monotonicity, and query
format sensitivity. Our extensive experiments
on 15 models reveal a critical vulnerability:
most retrievers and rerankers exhibit severe per-
formance degradation as query complexity in-
creases. Key deficiencies include widespread
failure to maintain relevance monotonicity, and
high sensitivity to query style and condition
placement. The superior performance of GPT-
4o reveals the performance gap between IR
systems and advanced LLM for handling so-
phisticated natural language queries. Further-
more, this work delves into the factors con-
tributing to reranker performance deterioration
and examines how condition positioning within
queries affects similarity assessment, provid-
ing crucial insights for advancing IR systems
towards complex search scenarios. The code
and datasets are available at https://github.
com/EIT-NLP/MultiConIR

1 Introduction

Information retrieval (IR) is critical for helping
users find relevant information across various do-
mains. Traditionally, IR systems retrieve docu-
ments by matching queries based on lexical similar-
ity, such as BM25 (Carpineto and Romano, 2012;
Ponte and Croft, 2017), or semantic similarity us-
ing dense vector representations (Karpukhin et al.,
2020; Zhan et al., 2021). Though highly effective
for queries with straightforward query-document

*Equal contribution
†Corresponding author

Figure 1: From single-condition to multi-condition re-
trieval. Standard and instruction-aware retrieval address single-
condition queries. SQL-based filtering is restricted to pre-
defined attributes within structured data. Real-world multi-
condition retrieval enables the formulation of multiple, often
semantic, conditions using natural language query.

relationships (Su et al., 2024), they often fail to
fully capture nuanced intent as user needs become
more complex (Zhu et al., 2023; Su et al., 2024;
Zhu et al., 2025).

A significant challenge arises when users spec-
ify multiple requirements simultaneously, as illus-
trated in Fig. 1. Whether searching for a movie
with specific attributes or selecting a product that
meets various criteria, multi-condition search has
become an integral part of modern information-
seeking behavior. Traditional IR systems handle
such scenarios using structured filtering, such as
SQL-based queries that retrieve information from
backend databases based on predefined conditions.
However, this approach is inherently rigid and lim-
ited, as it relies on explicitly defined attributes and
lacks the flexibility to accommodate evolving or
diverse user preferences. As a result, it struggles to
support nuanced or semantic-level queries that go
beyond structured data filtering.

The advent of Large Language Models (LLMs)
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has enhanced IR by introducing instruction-
following capabilities (Asai et al., 2023; Weller
et al., 2024a; Oh et al., 2024; Liu et al., 2024). This
approach augments standard queries with explicit
instructions, which serve as additional constraints
to refine search results, as shown in Fig.1. Despite
these advancements, existing evaluation bench-
marks remain predominantly focused on single-
condition queries and binary relevance assess-
ments—classifying documents as either relevant
or irrelevant (Nguyen et al., 2016; Kwiatkowski
et al., 2019; Muennighoff et al., 2022)—thus over-
looking the nuanced challenges of multi-condition
queries, where relevance depends on the degree to
which multiple conditions are satisfied.

An ideal multi-condition retrieval system should
exhibit the following properties: (1) Complexity
Robustness: The system should maintain high per-
formance regardless of query complexity (i.e., the
number of conditions specified); (2) Relevance
Monotonicity: The relevance scores should scale
monotonically with the number of matched con-
ditions; for example, a document matching all n
conditions should be ranked higher than one match-
ing n − 1; (3) Format Invariance: The system
should yield consistent results regardless of the
query format, whether presented as a structured list
or as free-form natural language.

Existing benchmarks do not offer a structured
framework for evaluating multi-condition retrieval
along these dimensions. To address this gap, we in-
troduce MULTICONIR—a benchmark designed to
comprehensively evaluate multi-condition retrieval
systems. Through systematic experiments on 15
state-of-the-art models (including dense retrievers,
cross-encoders, and LLM-based agents), we un-
cover several critical insights:

• Multi-Condition Struggle: Retrievers and
Rerankers struggle with multi-condition re-
trieval, showing performance decline as query
conditions increase, difficulty with relevance
monotonicity, and sensitivity to query style
variations.

• Retrievers and Rerankers Differ: Rerankers
excel with single-condition queries but fail un-
der multiple conditions. Retrievers demon-
strate greater robustness. GritLM demon-
strates the best robustness among retrievers.

• Position Impacts Model Focus: Dense re-
triever pooling strategies emphasize different

condition positions, mean pooling focuses on
initial positions, while <EOS> pooling empha-
sizes final positions. Rerankers exhibit non-
uniform attention across positions and greater
sensitivity to document length variations.

By quantifying these gaps, our work reveals key
deficiencies in the ability of current IR systems
to understand multi-condition intent, laying the
groundwork for advancing IR toward human-like
reasoning in complex search scenarios.

2 Related Works

Retriever: From Sparse To Dense Traditional
sparse retrieval methods are based on BM25
(Robertson and Zaragoza, 2009), TF-IDF (Ramos
et al., 2003), etc., rely on keyword matching and
statistical weighting to evaluate relevance, which
suffers from the well-known issue of lexical gap
(Berger et al., 2000), restricting their ability to
effectively capture semantic relationships (Luan
et al., 2021; Nian et al., 2024). Dense retrieval
addresses this limitation by encoding both queries
and documents as embeddings within a joint latent
space, where the semantic relationship is captured
through the similarity scores between their embed-
dings (Li et al., 2023a). Pre-trained language mod-
els like BERT (Devlin et al., 2019) and T5 (Raffel
et al., 2020), are widely used as backbone encoders
for dense retrieval (Li et al., 2023b; Sturua et al.,
2024; Xiao et al., 2023). Recent advancements
have shown that LLMs offer significant potential
as backbone encoders for dense retrieval (Wang
et al., 2024a; Weller et al., 2024c; BehnamGhader
et al., 2024). For instance, Repllama (Ma et al.,
2023) fine-tuned Llama-2 to serve as dense re-
trievers. GritLM (Muennighoff et al., 2024) uni-
fied text embedding and generation within a single
LLM. LLM2Vec (BehnamGhader et al., 2024) in-
troduced an unsupervised approach for transform-
ing decoder-only LLMs into dense retrievers.

Benchmarks In Complex Retrieval Tasks Ex-
isting datasets for information retrieval, such as MS
MARCO (Nguyen et al., 2016), Natural Questions
(Kwiatkowski et al., 2019), and MTEB (Muen-
nighoff et al., 2022), primarily focus on queries
sourced from search engines. The relationships be-
tween queries and documents are typically simple
and direct (Su et al., 2024). Recent studies have
expanded retrieval benchmarks to address more
complex scenarios. BIRCO (Wang et al., 2024b)
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introduces a benchmark designed to evaluate in-
formation retrieval tasks with complex objectives.
Instruction-based datasets (Weller et al., 2024a; Qin
et al., 2024; Oh et al., 2024), for instance, evaluate
the instruction-following capabilities of retrieval
models by embedding explicit instructions within
queries to better represent users’ retrieval intents.
Furthermore, some works have assessed retrieval
models’ abilities to handle logical reasoning tasks,
including Boolean logic (Mai et al., 2024; Zhang
et al., 2024c), negation (Zhang et al., 2024a; Weller
et al., 2024b), and multi-hop reasoning (Su et al.,
2024; Liu et al., 2025). These efforts mark sig-
nificant progress in increasing query complexity.
However, while research in the generative mod-
eling domain has explored the ability of LLMs
to handle multi-constraint instructions (He et al.,
2024; Ferraz et al., 2024; Zhang et al., 2024b), stud-
ies on retrieval models in multi-condition scenarios
remain sparse.

3 MULTICONIR

We introduce MULTICONIR, a benchmark de-
signed to evaluate the capacity of retrieval mod-
els to process multi-condition queries. Formally,
given a query qk composed of k conditions C =
{c1, c2, . . . , ck} with k ∈ {1, . . . , 10}, we con-
struct a structured retrieval setup consisting of:

(1) Two query formulations, denoted as qinst
k

and qdesc
k , where qinst

k corresponds to a structured
instruction-style query, formally expressed as a tu-
ple qinst

k = ⟨f, C⟩ where f is an explicit function
describing retrieval constraints, and qdesc

k is a natu-
ral language descriptive-style query, represented as
an unstructured sequence about the same set C,

(2) A positive document d+ that satisfies all k
conditions, i.e., d+ |= C,

(3) A sequence of hard negative (HN) docu-
ments {d0, d1, . . . , dk−1}, where each dj satisfies
exactly j out of k conditions, formally expressed
as dj |= {c1, . . . , cj} and dj ̸|= {cj+1, . . . , ck}.

This controlled design enables a principled eval-
uation of multi-condition retrieval along three fun-
damental axes: (1) Complexity Robustness: The
model’s retrieval effectiveness as k increases, mea-
sured by its ability to distinguish d+ from dk−1; (2)
Relevance Monotonicity: The extent to which the
retrieval model enforces a strict ordering such that
S(qk, dj) > S(qk, dj+1) for all j, ensuring that
documents satisfying more conditions are ranked
higher; and (3) Format Invariance: The stability

of retrieval performance under transformations of
query representation, quantified by discrepancies
in ranking outcomes across query formats.

3.1 Domain Selection
To construct the MULTICONIR dataset, we meticu-
lously selected five domains—Books, Movies, Peo-
ple, Medical Cases, and Legal Documents—each
chosen for its practical significance and inherent
suitability for evaluating multi-condition retrieval
capabilities.

Books & Movies: These domains represent
common consumer searches where nuanced pref-
erences are expressed by combining structured at-
tributes (e.g., genre, creator, year, cast) with narra-
tive elements (e.g., plot details, thematic content
like “a story about time travel”). Effective retrieval
demands semantic understanding beyond simple
keyword matching to process multifaceted queries,
such as "an action film directed by Christopher
Nolan, starring Leonardo DiCaprio, released after
2010, with an intense chase scene."

People: Queries about individuals frequently
rely on partial or vague information, such as no-
table achievements or specific traits. An exam-
ple query could be “a Nobel laureate in Physics
who studied black holes.” These searches demand
that IR systems effectively handle incomplete data
and infer connections between various attributes to
identify the correct individual.

Medical Case & Legal Document: The med-
ical case and legal document domains offer more
practical and application-driven use cases. In the
medical domain, doctors often rely on retrieval
systems to reference historical cases to support
diagnostic decisions. A typical query might in-
clude multiple conditions, such as “Find a case
that meets the following conditions: 1) middle-
aged female patient; 2) hospitalized for breathing
difficulties; 3) has a history of antibiotic allergies;
4) has a family history of peanut allergies.” Sim-
ilarly, in the legal domain, retrieval users often
seek case law with high similarity to ongoing cases,
which requires matching various legal and factual
attributes in historical court decisions. These com-
plex queries require IR systems to perform fine-
grained condition matching and understand the in-
terdependencies between various factors.

3.2 Dataset Construction Pipeline
To construct MULTICONIR, we design a multi-step
data generation framework. As shown in Fig. 2,
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Figure 2: MULTICONIR Dataset Construction Pipeline: (1) relevant condition sentences are extracted from documents; (2)
these conditions are then used to generate multi-condition queries; (3) hard negative (HN) versions of the condition sentences are
created; and (4) positive documents and progressively challenging HN documents are assembled from these elements.

this pipeline is highly adaptable across multiple
domains, enabling the generation of queries and
hard negative (HN) documents that progressively
satisfy 1 to 10 conditions. To preserve dataset in-
tegrity and mitigate the generalization issues asso-
ciated with fully synthetic datasets (Li et al., 2023c;
Wang et al., 2024c), we employ LLM-based genera-
tion (GPT-4o) exclusively for modifying sentences
within hard negatives, rather than altering entire
documents.1 The data creation process consists of
the following steps, with detailed prompt templates
provided in Appendix B:

Step 1: Condition Sentences Extraction. For
each source document d, we issue a structured
prompt to GPT-4o that (1) reads the entire text,
(2) identifies ten non-overlapping conditions that
describe key features expressed in d, and (3) return
ten original sentences, where every sentence is se-
mantically complete, and expresses a distinct condi-
tion. Documents yielding fewer than ten qualified
sentences are discarded. The final ten sentences
constitute the condition set C(d), which we later
recombine into queries of varying complexity and
use as the ground-truth positive for multi-condition
retrieval experiments.

Step 2: Query Generation. Given the ten-
sentence condition set C(d), we prompt GPT-

1Fully LLM-generated datasets may introducing inherent
linguistic biases of the underlying LLMs, and lacks the con-
textual richness and complexity in real-world retrieval (Shu-
mailov et al., 2024). To mitigate these issues, we restricted
LLM interventions to modifying only condition sentences
rather than entire document. We further discuss this problem
in Appendix G.1.

4o to synthesise a hierarchy of ten queries
{q1, q2, ..., q10}. Each qk incorporating the first k
conditions. To enhance linguistic diversity, For ev-
ery qk we request two forms: (1) Instruction-style
qinst
k : a bullet-like template (“Find a document that

satisfies: (1). . . (2). . . ”) for explicit parsing. (2)
Descriptive-style qdes

k : embedding conditions natu-
rally within a coherent sentence.

Step 3: Hard Negative Sentence Construc-
tion. For each condition sentence ci ∈ C(d) we
instruct GPT-4o to produce a semantically diver-
gent yet fluently written variant hi that no longer
satisfies the original constraint. The rewrite must
preserve overall length and style while introduc-
ing either (i) a subtle alteration of a critical fact
(applied to books, movies, medical cases, and le-
gal documents) or (ii) an innocuous clause that
injects misleading information without changing
the existing keywords (used for the people cor-
pus). 2 The ten variants form the hard-negative set
HNS(d) = {h1, . . . , h10}.

Step 4: Hard Negative Document Genera-
tion. Starting from the ten-sentence condition set
C(d) = {c1, . . . , c10} and its hard-negative coun-
terparts HNS(d) = {h1, . . . , h10}, we build an or-
dinal ladder of document variants. The positive doc-
ument d+ contains the full sequence [c1, . . . , c10].
For each k ∈ {1, . . . , 10} we generate a HN doc-
ument d−k =

[
h1, . . . , hk, ck+1, . . . , c10

]
, i.e., the

2Retrievers are more robust when adding misleading in-
formation; Modifying critical facts is challenging for both
retrievers and rerankers. A detailed comparison of these two
strategies is given in Appendix G.2.
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Figure 3: Benchmark quality evaluation framework of MUL-
TICONIR. Query realism was assessed by human annotators.
Label accuracy involved initial GPT-4o filtering, followed by
a final human double-check.

first k conditions are replaced by their semantically
perturbed versions while the remaining 10− k con-
ditions stay intact. This yields a controlled degrada-
tion chain d+→ d−1 → · · ·→ d−10, ranging from a
single violated constraint to a completely adversar-
ial variant. Coupled with the hierarchical queries
{Qk}10k=1, the corpus enables fine-grained evalua-
tion of retrieval performance under progressively
stricter condition sets.

Benchmark Quality Assurance. The reliability
of MULTICONIR was audited on two complemen-
tary fronts (Fig. 3). (1) Query validity. From
each of the five domains we randomly sampled 100
multi-condition queries (500 in total) and asked
ten trained annotators to judge whether each query
was natural, precise, and contextual plausibility
(valid vs. unvalid). The resulting inter-annotator
agreement reached 93.7%, with Fleiss’ κ = 0.84.
(2) Document–label validity. To detect false pos-
itives/negatives, we first applied GPT-4o to the
entire corpus: the model verified for every doc-
ument variant d−k whether exactly k of the ten
conditions were satisfied, and we discarded mis-
matched instances. We then drew another 100
document–query pairs per domain (500 total) for
manual spot-checking; two independent annotators
reviewed each pair and a third adjudicated disagree-
ments, yielding a residual error rate of 2.4%. After
these filtering steps the final benchmark sizes for
each domain are summarised in Table 1, and the
full evaluation protocol is detailed in Appendix C.

3.3 Evaluation Metrics

Conventional IR metrics—e.g., Precision@1,
NDCG@k—only confirm whether a highly rele-
vant document appears early, but they cannot dis-
tinguish how well a model orders candidates that
satisfy different numbers of query conditions. We
therefore propose Win Rate: the proportion of pair-
wise comparisons in which a candidate that fulfils
more conditions ranks above one that fulfils fewer.
We further discuss the difference of Win Rate and

traditional IR metrics in the Appendix D

Complexity Robustness Queries range from
query1 to query10, each progressively incorporat-
ing 1 to 10 conditions. The candidate set comprises
a Positive document that fully satisfies all condi-
tions and a HN1 document, which is derived from
the positive by modifying a single condition. Com-
plexity robustness is measured using Win Rate
(WR) 3under various k, defined as:

WRk =
1

N

N∑

i=1

1(S(qk, d
+) > S(qk, dk−1)),

where S(qi, d
+) and S(qi, d

−) denote similarity
scores for the positive document and hard negative.

Relevance Monotonicity The query is fixed as
query10 (containing all 10 conditions), while the
candidate set includes one positive and ten hard
negatives (d0−d9), each containing 0–9 conditions.

We evaluate performance using WRk,k−1 be-
tween adjacent hard negatives:

WRk,k−1 =
1

N

N∑

i=1

1
(
S(q10, dk)

> S(q10, dk−1)
)
,

Format invariance. We compare two query for-
mats: (1) Instruction-style, which explicitly lists
conditions (e.g., Find a movie that meets the fol-
lowing conditions: 1. Action genre, 2. Directed by
James Cameron). (2) Descriptive-style, which in-
tegrates conditions into a natural query (e.g., Find
an action movie directed by James Cameron).

To quantify ranking variability between query
styles, we define the Flip Rate (FR):

FR =
1

N

N∑

i=1

1
(
1(Sins(q10, dk) > Sins(q10, dk−1))

̸= 1(Sdes(q10, dk) > Sdes(q10, dk−1))
)
,

where Sins and Sdes denote similarity scores un-
der instruction-style and descriptive-style queries.
The indicator function returns 1 if the ranking order
of positive and hard negative documents changes
between query styles and 0 otherwise. A higher FR
indicates greater sensitivity to query formulation.

3In Complexity Robustness evaluation, WRk and Preci-
sion@1 are numerically equivalent.

13475



Domain Number Avg. Length Source License Example
D+ Q D− Q D

People 420 4200 4200 31.2 225.2 People Wikipedia Dat(Mahajan, 2017) CC0 1.0 Table 8
Books 482 4820 4820 25.6 235.3 Books Dataset (Rustamov, 2021) CC0 1.0 Table 9
Movies 500 5000 5000 24.8 184.6 Wikipedia Movie Plots (Robischon, 2018) CC BY-SA 4.0 Table 10
Medical Case 479 4790 4790 28.4 212.1 Medical Transcription (MTSamples, 2025) CC0 1.0 Table 11
Legal Document 426 4260 4260 34.1 302.2 LexGLUE (Chalkidis et al., 2022) CC BY 4.0 Table 12

Table 1: Data statistics of MutiConIR. For each dataset, we show the number of positive documents (D+ ), queries (Q) and hard
negative documents(D−), and the average length (in words) of queries and documents, and the source dataset of each domain.

4 Experiments

We evaluate 15 representative retrieval and rerank-
ing models from diverse architectures and vary-
ing model sizes, including sparse retrieval model:
BM25 (Robertson and Zaragoza, 2009); BERT-
based retrieval models: gte-large-en-v1.5 (Li
et al., 2023b) and jina-embeddings-v3 (Stu-
rua et al., 2024); LLM-based retrieval mod-
els: NV-Embed-v2 (Lee et al., 2024), bge-en-
icl (Li et al., 2024), gte-Qwen2-7B-instruct (Li
et al., 2023b), gte-Qwen2-1.5B-instruct (Li
et al., 2023b), e5-mistral-7b-instruct (Wang et al.,
2024a), GritLM-7B (Muennighoff et al., 2024),
LLM2Vec (BehnamGhader et al., 2024); Point-
wise reranking models: bge-reranker-v2-m3 (Chen
et al., 2024), bge-reranker-v2-gemma (Chen et al.,
2024), FollowIR-7B (Weller et al., 2024a); Fine-
tuned list-wise reranker: RankZephyr (Pradeep
et al., 2023); Advanced LLM for zero-shot ranking:
GPT-4o (OpenAI, 2024). Details of each model are
provided in Appendix A.

4.1 Results for Complexity Robustness
Table 2 presents the average Win Rate scores
for evaluating complexity robustness across five
datasets. The results reveal several notable trends:

Performance decline with more conditions As
the number of conditions in the query increases,
the performance of both retrieval and reranking
models declines. This suggests that with more
conditions, models struggle to accurately distin-
guish between positives and HNs. Among all mod-
els, GPT-4o maintained the highest win rate from
Query1 to Query10, with its performance declining
by 9.23%. GritLM-7B exhibits the lowest perfor-
mance degradation of 6.13%.The remaining mod-
els all exceeded 10% decline.

Rerankers exhibit steeper performance drop
As shown in Table 2, fine-tuned rerankers outper-
form retrievers with single-condition queries. How-
ever, as the number of conditions increases, their

performance declines more sharply. Eventually,
rerankers even fell behind some retrievers. The
Win Rates for all rerankers declined by over 25%,
with an average decline of 35.76%. For retriever
models, the average decline was 14.06%.

4.2 Results for Relevance Monotonicity

Fig. 4 illustrates the trend of average WRk,k−1

in the multi-condition retrieval setting of Task 2,
which evaluates the model’s ability to distinguish
the relevance hierarchy among documents with
varying conditions. The complete results are pro-
vided in Table 13. Several key observations can be
made:

Relevance monotonicity struggle As documents
become increasingly hard (i.e., satisfying more
conditions in the query), it becomes harder for
retrieval and reranking models to accurately dis-
tinguish dk and dk−1, leading to a decline in Win
Rate performance. This failure emphasizes the
challenge of preserving relevance monotonicity in
multi-condition retrieval settings and highlights a
gap in current model capabilities when handling
complex queries.

Sensitive to exact match and complete mis-
matches We observe a slight upward trend at the
end of Win Rate curves for most dense retrievers,
likely due to their contrastive learning-based train-
ing. Traditional contrastive learning treats retrieval
as a binary task, pulling query-positive pairs closer
while pushing negatives further apart, without ac-
counting for partial matches. As a result, dense
retrievers perform more reliably in clear-cut “exact
match” or “complete mismatch” cases.

4.3 Results for Format Invariance

Table 3 presents the Flip Rate induced by query
format variations. GPT-4o showed the lowest flip
rate of 6.98%, showcasing the robustness of ad-
vanced LLMs against variations in query style. Ad-
ditionally, most models exceed 10%, indicating a
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Model Query1 Query2 Query3 Query4 Query5 Query6 Query7 Query8 Query9 Query10 Decline

Sparse Retriever

BM25 28.59 34 33.14 36.53 37.38 37.95 38.08 38.41 38.86 39.87 ↓-11.28

Dense Retriever

jina-embeddings-v3 76.09 71.26 71.84 71.04 65.59 65.65 64.75 64.24 64.62 60.71 ↓15.38
gte-large-en-v1.5 75.87 77.26 73.79 70.22 70.71 67.40 67.53 64.97 65.36 61.36 ↓14.51

NV-Embed-v2 80.53 80.32 78.81 75.70 75.68 72.61 73.28 71.54 70.00 68.02 ↓12.51
bge-en-icl 83.42 80.65 78.44 76.77 74.54 73.00 74.23 73.25 69.70 68.00 ↓15.42

gte-Qwen2-7B-instruct 70.75 72.22 69.99 68.51 65.20 63.53 62.22 62.20 59.15 56.17 ↓14.58
gte-Qwen2-1.5B-instruct 73.64 74.97 72.23 71.37 69.94 67.46 66.92 64.64 63.65 58.68 ↓14.96

e5-mistral-7b-instruct 75.05 70.85 68.18 67.45 63.70 61.60 59.70 59.07 57.85 58.12 ↓16.93
GritLM-7B 82.08 80.32 78.38 76.40 76.40 73.50 75.69 74.62 74.53 75.95 ↓6.13
LLM2Vec 83.13 77.42 75.49 75.48 72.49 72.56 70.56 70.73 68.71 67.00 ↓16.13

Fine-tuned Reranker

bge-reranker-v2-m3 87.14 85.56 78.62 76.05 74.29 68.41 67.86 59.48 55.59 44.87 ↓42.27
bge-reranker-v2-gemma 91.07 90.02 86.70 84.99 83.17 79.00 75.89 72.29 67.11 56.09 ↓34.98

followIR 83.41 79.72 76.25 74.60 70.12 67.94 62.62 55.93 48.59 43.52 ↓39.89
RankZephyr 92.72 90.29 88.38 87.69 84.57 80.88 78.93 75.99 72.39 66.84 ↓25.88

Zero-shot LLM for Ranking

GPT-4o 95.49 94.89 93.71 92.11 90.81 89.08 88.43 88.08 86.82 85.26 ↓9.23

Table 2: Impact of increasing condition quantity in queries on average Win Rate (Task 1). The Decline reflects the
degree of Win Rate reduction from query1 to query10.

substantial impact of query formulation on retrieval
performance. Table 3 presents the complete results
of Format Invariance.

Model People Books Movies Medical Legal Avg.

Sparse Retriever

BM25 14.86 17.88 16.84 19.25 12.14 16.19

Dense Retriever

jina-embeddings-v3 10.55 8.65 10.24 14.72 13.10 11.45
gte-large-en-v1.5 11.74 8.84 12.96 15.70 15.16 12.88

NV-Embed-v2 10.17 8.80 7.52 10.17 8.94 9.12
bge-en-icl 13.48 12.74 15.18 19.81 14.44 15.13

gte-Qwen2-7B-instruct 12.71 15.56 13.62 16.37 17.56 15.16
gte-Qwen2-1.5B-instruct 12.38 13.26 10.48 16.81 12.51 13.09

e5-mistral-7b-instruct 9.17 9.92 8.20 10.75 12.25 10.06
GritLM-7B 8.52 5.35 8.32 8.98 9.86 8.21
LLM2Vec 12.81 7.93 9.56 8.12 10.49 9.78

Fine-tuned Reranker

bge-reranker-v2-m3 42.40 32.22 34.82 28.35 31.24 33.81
bge-reranker-v2-gemma 27.50 18.94 16.52 13.42 24.41 20.16

followIR 35.81 31.60 23.70 25.07 28.43 28.92
RankZephyr 20.21 16.34 14.86 11.53 25.31 17.65

Zero-shot LLM for Ranking

GPT-4o 7.21 4.22 6.78 6.32 10.35 6.98

Table 3: Flip Rate for query format shift (Task 3). The Flip
Rate reflects the win rate reversal when switching the query
format from instruction-style to descriptive-style.

Dense retrieval models show relatively lower
sensitivity than rerankers, with Flip Rates between
8% to 16%. GritLM-7B (8.21%), NV-Embed-v2
(9.12%), and LLM2Vec (9.78%) exhibit less vari-
ation. In contrast, reranking models show signifi-
cantly higher sensitivity to query format changes,
with Flip Rates exceeding 20%. The highest Flip
Rate observed is 33.81% for bge-reranker-v2-m3.

Figure 4: Relevance Monotonicity Distinction. Win Rate re-
flects the success rate between documents satisfying different
numbers of conditions under a multi-condition query.

5 Analysis

5.1 Retrievers vs. Rankers

Our experiments reveal notable differences be-
tween retrievers and rerankers across the three
tasks. Fine-tuned rerankers exhibited excel-
lent ranking performance under single-condition
queries, but their efficacy rapidly diminished as the
number of conditions increased. Retrievers demon-
strate greater robustness under multi-condition
queries and query style variations.

We hypothesize that one contributing factor to
these performance disparities lies in the training
datasets. Many dense retrieval models are trained
on a mixture of retrieval-specific and general tex-
tual datasets (Lee et al., 2024; BehnamGhader et al.,
2024; Wang et al., 2024a). Such diverse training en-

13477



(a) Retrieval Performance when padding to 512 words (b) Retrieval Performance when padding to 1024 words

Figure 5: Retrieval performance when padding the document set to 512 words and 1024 words. Rerankers are highly sensitive
to increases in document length, showing rapid performance degradation, whereas retrievers remain comparatively robust.

hances their generalization across various retrieval
scenarios and query styles, which, in turn, improves
their robustness against query complexity.

Beyond training data, we posit that the distinct
input processing mechanisms also contribute to
the observed performance differences. Retriever
models typically employ a bi-encoder architecture,
processing queries and documents independently.
Conversely, rerankers, which process a concate-
nation of the query and document as a single in-
put, appear more susceptible to input complexifi-
cation—whether arising from an increase in query
conditions or changes in query style. To validate
this speculation, we re-evaluated the Win Rate
for the relevance monotonicity task under multi-
condition queries using documents that padded to
512 and 1024 words. Results as shown in Fig.5 , re-
vealed that fine-tuned rerankers are highly sensitive
to such increases in document length, which further
illustrates the sensitivity of rerankers to complex
input. In contrast, retriever models demonstrated
greater robustness to length modifications.

5.2 Condition Position Impact on Focus

Our experimental findings indicate that the position
of a condition significantly influences the model’s
subsequent similarity judgment. This phenomenon
was observed consistently across both retriever and
reranker models.

To illustrate position effects in retriever mod-
els, we conducted a targeted study on how relo-
cating a single condition within the query influ-
ences its similarity score. We selected represen-
tative retriever models employing distinct pooling
strategies: mean pooling, <EOS> pooling, and la-
tent layer pooling. The results, as depicted in Fig.6,
revealed that models utilizing mean pooling tend

to weight the early tokens most heavily: similarity
drops steadily as the condition is shifted toward the
tail of the query. <EOS> shows the opposite bias,
emphasising the final tokens. Latent layer pooling
heightened focus on both the beginning and end
of the query, with comparatively less focus on the
middle.

Similarly, for reranker models, we selected a
cross-encoder model (bge-reranker-m3) to visu-
alize the attention heatmap. Fig.7 shows a non-
uniform distribution of attention across different
token positions. This implies that these rerankers
tend to assign differential focus to specific con-
ditions or tokens within the concatenated query-
document input, rather than distributing their atten-
tion uniformly across all elements.

6 Conclusion

In this work, we introduced MULTICONIR, a novel
benchmark designed to rigorously evaluate infor-
mation retrieval models in realistic multi-condition
scenarios, a critical area where existing evaluation
frameworks are lacking. Through three specifi-
cally designed tasks—complexity robustness, rel-
evance monotonicity, and query format sensitiv-
ity—conducted across five diverse domains. Exper-
iments revealed that existing models struggle with
multi-condition retrieval, with their performance
degrading as the number of conditions increases;
rerankers excel for single-condition queries but fail
in multi-condition scenarios. Notably, rerankers
are more sensitive to complex inputs. GPT-4o out-
performs specialised IR systems, exposing a perfor-
mance gap in handling complex information needs.

Our findings highlight an urgent need for
new modeling approaches and training paradigms
specifically tailored for robust multi-condition un-
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(a) Mean pooling (b) <EOS> pooling (c) Latent attention layer pooling

Figure 6: Impact of condition position on different pooling methods. The condition is placed at different positions (1–10) in the
query, with other positions filled by ten “[unused0]” tokens (example from Table 9). The dashed line represents the original data,
while the solid line shows the Gaussian-smoothed trend (kernel size = 1) for clarity.

Figure 7: Attention heatmap of cross-encoder model (bge-reranker-m3).

derstanding. MULTICONIR serves as a valuable
resource to drive this research, benchmark progress,
and ultimately propel information retrieval systems
towards a more sophisticated, human-like compre-
hension of complex information needs.

Limitations

While MULTICONIR provides a novel benchmark
for evaluating retrieval models in multi-condition
scenarios, several limitations should be acknowl-
edged. First, our dataset relies on automated query
generation and hard negative creation, which may
introduce biases in condition representation despite
efforts to ensure accuracy. These biases could af-
fect retrieval models’ ability to distinguish fine-
grained differences. Second, our evaluation focuses
on retrieval tasks and does not cover reasoning-
based retrieval or interactive search scenarios. Real-
world systems often incorporate reranking, user
feedback, and hybrid retrieval, which are not ex-
plicitly modeled. Lastly, our dataset does not fully
consider query reformulation strategies or multi-
turn retrieval, limiting its applicability to dynamic
search environments. These limitations highlight

the need for further research into multi-condition
retrieval, particularly in addressing dataset biases,
expanding evaluation scopes, and integrating re-
trieval with realistic user interactions.

Ethics Statement

This study adheres to ethical standards in AI re-
search, ensuring transparency and reproducibility
in dataset construction and model evaluation while
exclusively using publicly available pre-trained
models for experiments. Dataset Considerations:
MULTICONIR is built from publicly available
sources and does not contain sensitive or person-
ally identifiable information. Given its inclusion
of medical and legal documents, we apply strict
data filtering and safety measures to respect model
safety constraints and prevent the generation of
harmful or misleading content. Additionally, we
recognize that automatically generated queries and
hard negatives may introduce biases. Therefore,
during dataset construction, we take measures to
minimize the impact of inherent language model
biases on retrieval tasks. MultiConIR aims to ad-
vance multi-condition retrieval research while en-
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suring data fairness and ethical compliance. We
encourage future research to further explore bias
detection strategies in retrieval dataset, enhancing
model fairness and reliability in diverse corpus en-
vironments.
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A Details of Models

For each model used in this paper, Table 4 provides details on model size, architecture, maximum input
context length, and whether instructions is included. The GPT-4o model utilized for dataset generation
and ranking in this work was the "2024-07-01-preview" version.

Model Size Architecture Instruction Max length Pooling Method

Sparse Retriever

BM25 (Robertson and Zaragoza, 2009) N/A Sparse No N/A N/A

Dense Retriever

jina-embeddings-v3 (Sturua et al., 2024) 572M Encoder No 4K Mean
gte-large-en-v1.5 (Li et al., 2023b) 434M Encoder No 8K <GLS>
NV-Embed-v2 (Lee et al., 2024) 7.8B Decoder Yes 32K Latent Attention Layer

bge-en-icl (Li et al., 2024) 7.1B Decoder Yes 32K <EOS>
gte-Qwen2-7B-instruct (Li et al., 2023b) 7.6B Decoder Yes 131K <EOS>

gte-Qwen2-1.5B-instruct (Li et al., 2023b) 1.5B Decoder Yes 131K <EOS>
e5-mistral-7b-instruct (Wang et al., 2024a) 7.1B Decoder Yes 32K <EOS>

GritLM-7B (Muennighoff et al., 2024) 7.2B Decoder Yes 4K Mean
LLM2Vec (BehnamGhader et al., 2024) 7.5B Decoder Yes 8K Mean

Fine-tuned Reranker

bge-reranker-v2-m3 (Chen et al., 2024) 568M Cross-Encoder No 8k N/A
bge-reranker-v2-gemma (Chen et al., 2024) 2.5B Decoder Yes 8K N/A

followIR (Weller et al., 2024a) 7.2B Decoder Yes 4K N/A
RankZephyr (Pradeep et al., 2023) 7B Decoder Yes 32K N/A

Zero-shot LLM for Ranking

GPT-4o (OpenAI, 2024) N/A Decoder Yes 128K N/A

Table 4: Details of models used in experiments. We list the number of parameters of each model except the
sparse model (BM25). Regarding the model architecture, we distinguish between sparse models, dense models,
and rerankers. Dense models are further classified as Encoders or Decoders. Rerankers are categorized into Cross
Encoders and Decoders (LLM-based generative relevance scoring). The Instruction column indicates whether
instructions are included in the retrieval process. Max length denotes the maximum input length used for each
model in the experiments. The Pooling Method represents the approach used by the model to obtain embeddings.

For Dense Retrieval models that require instructions (NV-Embed-v2, bge-en-icl, gte-Qwen2-7B-instruct,
gte-Qwen2-1.5B-instruct, e5-mistral-7b-instruct, GritLM-7B, and LLM2Vec), we use the following
instruction:

“Given a domain retrieval query, retrieve documents that meet the specified conditions.”
For LLM-based rerankers (bge-reranker-v2-gemma and followIR), we adopt the model’s default prompt.

For example, bge-reranker-v2-gemma uses the following prompt:
“Given a query A and a passage B, determine whether the passage contains an answer to the query by

providing a prediction of either ‘Yes’ or ‘No’.”
For models that do not require instructions, we directly input the query and document, such as jina-

embeddings-v3, gte-large-en-v1.5, and bge-reranker-v2-m3.

B Prompt Templates For Constructing MULTICONIR DATASET

Table 5, 6, and 7 present the prompts used in Steps 1 to 3 for constructing our MULTICONIR dataset.
For placeholders, {domain} ∈ {People, Books, Movies, Medical Case, Legal Document}. {do-

main_features} specifies key attributes within a particular domain. In the medical case domain, {do-
main_features} ∈ { patient symptoms, clinical diagnosis, drug allergies, family medical history, surgical
details, postoperative outcomes, hospitalization duration, recovery status.} In the legal document domain,
{domain_features} ∈ { case type, involved parties, court ruling, legal provisions, evidence summary,
defense strategy. } In the movies domain, {domain_features} ∈ { summary, lead actors, release date,
release area, genre, detailed plots. } In the books domain, {domain_features} ∈ { author, publication

13483



year, genre, main content, detailed plots. } In the people domain, {domain_features} ∈ { profession,
nationality, notable achievements, social impact, related events. }

Task Prompt
Step 1: Condi-
tion Sentence Ex-
traction

I will provide you a document of {domain}, you should extract ten detailed
sentences that represent the key conditions the document satisfies.

Please adhere to the following guidelines:
- Extract fine-grained condition-related sentences relevant to {domain}, such as
{domain_features}.
- Do not paraphrase; use the original sentences from the document.
- Ensure each sentence is semantically intact and not conflict with the context.
- Format the output as an array, e.g., [“sentence1”, “sentence2”, ..., “sen-
tence10”].

Here is the document: {domain_document}.
Return array only.

Table 5: Prompt for GPT-4o to extract condition sentence (Step 1).

C Benchmark Quality Evaluation

To guarantee the reliability of MULTICONIR, we applied a two–stage audit that examines both query
validity and document–label validity. Figure 3 gives a visual outline; full numbers appear in Table 1.

Query validity. From each of the five domains (People, Books, Movies, Medical, Legal) we randomly
sampled 100 multi-condition queries, yielding a 500-item evaluation set. Ten trained graduate annotators
independently rated every query for linguistic naturalness, precision of constraints, and contextual plausi-
bility (i.e., whether logically plausible). Inter-annotator agreement reached 93.7% with Fleiss’ κ = 0.84,
indicating near-perfect consensus that the automatically generated queries resemble genuine information
needs.

Document–label validity.

1. LLM filtering. We applied GPT-4o to the entire corpus. For every positive document d+ the model
verified that all ten conditions in C(d) were satisfied; for each hard-negative document d−k it checked
that exactly k−1 conditions held. Instances failing these criteria (false positives or false negatives)
were discarded, reducing domain sizes to: People (420), Books (482), Movies (500), Medical (479),
Legal (426).

2. Human spot-check. To confirm the LLM filter, we randomly drew another 100 document–query
pairs per domain (500 in total). Two independent annotators judged whether the labelled number of
satisfied conditions was correct; disagreements were resolved by a third adjudicator. The residual
error rate was 2.4%, implying that the automatic filter removed the vast majority of mis-labelled
items.

D Discussion: Win Rate vs. Traditional IR Metrics

Why introduce Win Rate? MULTICONIR poses multi-condition queries for which models must sense
fine-grained semantic differences. We focus on two abilities: (i) discriminating the positive document
from a hard negative as the number of query conditions grows (Task 1); (ii) preserving a monotonic
ordering in which a document satisfying k conditions outranks one satisfying k−1 under the same query
(Task 2).
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Task Prompt
Step 2: Query
Generation
(Instruction-style)

I will provide you {num} condition-related sentences; formulate a retrieval
query for me.

Here are a few examples for reference:
- {Instruction-style example 1}
- {Instruction-style example 2}

Please adhere to the following guidelines:
- Each sentence represents a condition; with {num} sentences, the number of
conditions is {num}.
- The query should be instruction-style, explicitly listing all conditions. - Each
condition should be around 10 words.
- Make conditions concise, summarizing each sentence.
- You can paraphrase and modify keywords while maintaining meaning.

Here are the sentences: {info}.
Return one query only. Do not include extra information.

Step 2: Query
Generation
(Descriptive-style)

I will provide you {num} condition-related sentences; formulate a retrieval
query for me.

Here are a few examples for reference:
- {Descriptive-style example 1}
- {Descriptive-style example 2}

Please adhere to the following guidelines:
- Each sentence represents a condition; with {num} sentences, the number of
conditions is {num}.
- The query should be descriptive-style, integrating and describing all conditions
in natural language.
- Each condition should be around 10 words.
- Make conditions concise, summarizing each sentence.
- You can paraphrase and modify keywords while maintaining meaning.

Here are the sentences: {info}.
Return one query only. Do not include extra information.

Table 6: Prompt for GPT-4o to generate queries with varying conditions (Step 2).

Limitations of conventional metrics.

• Precision@1 coincides with Win Rate in Task 1 (one positive vs. one HN) but, in Task 2, observes
only the top result and ignores the intended hierarchy d+ ≻ HN1 ≻ · · · ≻ HN10.

• NDCG@k introduces graded relevance but still weights absolute rank more than pairwise consistency,
thus blurring step-wise violations of the monotonic order.

• Recall proved even less informative in early pilot runs dominated by easy negatives: high recall was
achievable without respecting the semantic precision that MULTICONIR is designed to test.

How Win Rate fills the gap. Win Rate computes the proportion of pairwise comparisons in which a
document that fulfils more conditions is ranked above one that fulfils fewer. Hence, it matches Precision@1
in the degenerate Task 1 case, yet remains sensitive to every local inversion in the graded Task 2 ladder,
offering a sharper lens on a model’s ability to capture incremental semantic constraints.
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Task Prompt
Step 3: Hard
Negative Sentence
Making (For
Books, Movies,
Medical Case, and
Legal Document
Datasets)

I will provide you one query and one sentence, generate a modified sentence
for me.

Here are a few examples for reference:
Query: - {query}
Sentence: - {condition sentence}
Modified: - {hard negative sentence}

Please adhere to the following guidelines:
- Modify the sentence so that its meaning no longer aligns with the query.
- Keep key terms unchanged.
- Ensure the new sentence is semantically different from the original.

Here is the query: {query}.
Here is the Sentence: {information}.
Return only the modified sentence.

Step 3: Hard
Negative Sentence
Making (For
People Dataset)

I will provide you one query and one sentence, generate a modified sentence
for me.

Here are a few examples for reference:
Query: - Who is the American artist that went to RISD?
Sentence: - He went to RISD for graduate school.
Modified: - He went to ACCA for graduate school, but his sister went to RISD.

Please adhere to the following guidelines:
- Modify the sentence so that its meaning no longer aligns with the query.
- Keep key terms unchanged, but introduce dummy information to mislead the
retrieval model. For example, if the original sentence states, “He went to RISD
for graduate school,” you can modify it to, “He went to ACCA for graduate
school, but his sister went to RISD,” where the key term (RISD) remains but is
assigned to an irrelevant entity (his sister).
- Ensure the new sentence is semantically different from the original by using
different wording and synonymous substitution.
- The changed sentence should prevent the query from retrieving it as relevant
information.

Here is the query: {query}.
Here is the sentence: {information}.
Return only the modified sentence.

Table 7: Prompt for GPT-4o to modify the condition sentence to hard negative sentence (Step 3).

E Examples Of The MULTICONIR Dataset

Tables 9, 10, 8, 11, and 12 illustrate examples from their respective domains.

F Complete Results

F.1 Complete Results Of Task 2

Table 13 presents the experimental results of Task 2, where Win Rate reflects the success rate between
documents that satisfy different numbers of conditions under a multi-condition query (query10, which
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Query 3 Positive HN 1
Find a notable individual who
meets these criteria:

1. Studies plasma mela-
tonin to assess biological
rhythm disorders.

2. Identified 25-hour circa-
dian rhythms in totally
blind individuals.

3. Worked at NIMH in
Bethesda, Maryland
before 1981.

Relying on a very precise as-
say for plasma melatonin, a hor-
mone that has a clearly defined
24-hour pattern of secretion, bio-
logical rhythm disorders can be
assessed and their treatment can
be monitored. Totally blind in-
dividuals have 25-hour circadian
rhythms, drifting an hour later
each day unless they take a mela-
tonin capsule at a certain time
every day. Prior to moving to
Oregon in 1981, Lewy was at
the National Institute of Men-
tal Health (NIMH) in Bethesda,
Maryland, working with senior
colleague Thomas Wehr. In
Oregon, he has worked closely
with Robert L. Sack. He de-
scribes his research as follows:
’My laboratory studies chrono-
biologic sleep and mood disor-
ders.’ Alfred J. Lewy, aka Sandy
Lewy, graduated from Univer-
sity of Chicago in 1973 after
studying psychiatry, pharmacol-
ogy, and ophthalmology. As of
December 2005, he had 94 pub-
lications available on PubMed.
He is a full professor and vice-
chair of the Department of Psy-
chiatry at OHSU (Oregon Health
Science University) and holds an
MD and PhD. Current research
is focused on developing bright
light exposure and melatonin ad-
ministration as treatment modal-
ities for these disorders. These
disorders include winter depres-
sion, jet lag, maladaptation to
shift work, and certain types of
sleep disturbances.

Relying on a very precise as-
say for plasma melatonin, a hor-
mone that has a clearly defined
24-hour pattern of secretion, bio-
logical rhythm disorders can be
assessed and their treatment can
be monitored. Totally blind in-
dividuals have 25-hour circadian
rhythms, drifting an hour later
each day unless they take a mela-
tonin capsule at a certain time ev-
ery day. After to moving to Ore-
gon in 1981, Lewy was at the Na-
tional Institute of Mental Health
(NIMH) in Bethesda, Maryland,
working with senior colleague
Thomas Wehr. In Oregon, he
has worked closely with Robert
L. Sack. He describes his re-
search as follows: ’My labora-
tory studies chronobiologic sleep
and mood disorders.’ Alfred J.
Lewy, aka Sandy Lewy, gradu-
ated from University of Chicago
in 1973 after studying psychiatry,
pharmacology, and ophthalmol-
ogy. As of December 2005, he
had 94 publications available on
PubMed. He is a full professor
and vice-chair of the Department
of Psychiatry at OHSU (Oregon
Health Science University) and
holds an MD and PhD. Current
research is focused on develop-
ing bright light exposure and
melatonin administration as treat-
ment modalities for these disor-
ders. These disorders include
winter depression, jet lag, mal-
adaptation to shift work, and cer-
tain types of sleep disturbances.

Table 8: An example in domain of People

contains ten conditions), i.e., dk vs. dk−1.
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Query 5 Positive HN 1
Find a notable individual who
meets these criteria:

1. Details Bernie Madoff’s
$65B Ponzi collapse.

2. Covers the impact on na-
tional media.

3. Investigates Madoff’s
history of fraud.

4. Offers deep insight into
Madoff’s family.

5. Contains exclusive
news and material.

The collapse of Bernie Madoff’s
Ponzi scheme led to the instant
evaporation of $65 billion of
wealth. The effects of Mad-
off’s brazen fraud were felt most
closely in New York and Palm
Beach but the story was, and con-
tinues to be, front page news
across the country. Brian Ross
and his team of investigators shed
an unyielding light onto Mad-
off’s scheme–how he got started,
how he succeed for so long, who
helped him, and who shielded
him from early investigations.
This is an incisive and voyeuris-
tic look into this first family of
financial crime. The Madoff
Chronicles includes a vast ar-
ray of news and material that
readers won’t find anywhere
else. Contains a reproduction
of Bernie’s Little Black Book.
Ross has also secured Madoff’s
calendar for the past three years
and other never-before-seen doc-
uments from inside the Madoff
empire, straight from his desk.
Read key details of how Madoff
carried out his scam and the rev-
elation that he began the fraud
from almost the first day, in the
1960s. Extensive cooperation
by Madoff’s personal assistant,
Eleanor Squillari. Contains in-
criminating connections between
Madoff and certain members of
the SEC.

The collapse of Bernie Madoff’s
Ponzi scheme led to the instant
evaporation of $65 billion of
wealth. The effects of Mad-
off’s brazen fraud were felt most
closely in New York and Palm
Beach but the story was, and con-
tinues to be, front page news
across the country. Brian Ross
and his team of investigators shed
an unyielding light onto Mad-
off’s scheme–how he got started,
how he succeed for so long, who
helped him, and who shielded
him from early investigations.
This is an incisive and voyeuris-
tic look into this first family of
financial crime. The Madoff
Chronicles includes a vast array
of news and material. Contains
a reproduction of Bernie’s Little
Black Book. Ross has also se-
cured Madoff’s calendar for the
past three years and other never-
before-seen documents from in-
side the Madoff empire, straight
from his desk. Read key details
of how Madoff carried out his
scam and the revelation that he
began the fraud from almost the
first day, in the 1960s. Exten-
sive cooperation by Madoff’s per-
sonal assistant, Eleanor Squillari.
Contains incriminating connec-
tions between Madoff and certain
members of the SEC.

Table 9: An example in domain of Book

F.2 Complete Results Of Document Length

Table 14 and Table 15 present the effect of document length on retrieval performance, with documents
padded to 512 and 1024 words, respectively. We use repeated filler text, such as “The grass is green.
The sky is blue. The sun is yellow. Here we go. There and back again.”, following the setting in Wang
et al. (2023). The filler text is inserted between the original document sentences until the total text length
reaches 512 or 1024 words.
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Query 8 Positive HN 1
Find a movie that matches all
conditions:

1. Originated from Ameri-
can.

2. Plot: Mrs. Lowe and
Black were lovers.

3. Plot: Terry carelessly
spends money.

4. Plot: Terry promoted to
ship foreman.

5. Cast: Mary Miles
Minter, Allan Forrest.

6. Plot: Julia Deep works
behind exchange desk.

7. Director: Lloyd Ingra-
ham.

8. Plot: Terry’s spending
takes a toll.

Origin/Ethnicity: American
Meanwhile, it is revealed Mrs.
Lowe and Black were once
lovers. He is spending his
money carelessly and doesn’t
put any time in paying the bills,
much to the dislike of the depart-
ment store owner Timothy Black.
Soon, Terry is promoted to a fore-
man on a ship.
Cast: Mary Miles Minter, Al-
lan Forrest Julia Deep is a young
woman working behind the ex-
change desk at a department
store.
Director: Lloyd Ingraham
After a while, Terry’s money
spending takes its toll. Lottie
gets distracted and does not no-
tice Terry and Julia at the park.
Release Year: 1918

Origin/Ethnicity: American
Meanwhile, it is revealed Mrs.
Lowe and Black were once
lovers. He is spending his
money carelessly and doesn’t
put any time in paying the bills,
much to the dislike of the depart-
ment store owner Timothy Black.
Soon, Terry is promoted to a fore-
man on a ship.
Cast: Mary Miles Minter, Al-
lan Forrest Julia Deep is a young
woman working behind the ex-
change desk at a department
store.
Director: Lloyd Ingraham
Eventually, Terry’s frugality
leads to financial growth. Lot-
tie gets distracted and does not
notice Terry and Julia at the park.
Release Year: 1918

Table 10: An example in domain of Movie

F.3 Comparative Results for other LLMs

We evaluated two additional LLMs—Qwen3-32B and Gemini-2.0-Flash—on the same MultiConIR Task
1. As shown in Table 16, the results indicate that Gemini-2.0-Flash attains the highest WinRate (91.20),
marginally outperforming GPT-4o (90.47), with Qwen3-32B in third place (86.61). GPT-4o is therefore
not significantly superior, confirming that MultiConIR does not inherently favor GPT-4o.

G Findings In Constructing MULTICONIR Dataset

G.1 The Use Of LLM-generated Data in Retrieval

In recent years, artificial datasets generated by LLMs have become a common practice for training
and evaluating retrieval models (Weller et al., 2024a; Shi et al., 2025, 2024; Zhang et al., 2025; Han
et al., 2025). For instance, E5-Mistral (Wang et al., 2024a) rely entirely on LLM-generated datasets for
fine-tuning. While this approach can significantly expand training corpora, prior studies have highlighted
its potential drawbacks, including introducing inherit linguistic biases of the underlying LLMs (Shumailov
et al., 2024), potentially constraining the retrieval model’s performance and generalizability. Furthermore,
purely artificial data often lacks the contextual richness and complexity found in real-world retrieval
scenarios (Li et al., 2023c; Wang et al., 2024c), making it difficult to capture the actual needs of users’
queries accurately.

During our dataset construction, we observed similar issues. When using LLM-generated transforma-
tions to modify positive documents into hard negatives, the model often restructured expressions to fit
its learned patterns, even when explicitly instructed to modify only a few condition-related words while
keeping the rest unchanged. For example, in the legal documents dataset, a positive sentence like: “The
defendant was convicted of fraud under Section 420 of the Penal Code and sentenced to five years in
prison.” was frequently modified by the LLM into a generic pattern, such as: “The defendant was found
guilty of fraud and received a prison sentence.”
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Query 7 Positive HN 1
Find a case where the patient:

1. Underwent ascending
aortic arch angiogram.

2. Had left common carotid
artery angiogram.

3. Received right com-
mon carotid artery
angiogram.

4. Undergone left subcla-
vian artery angiogram.

5. Had right iliac an-
giogram with runoff.

6. Performed bilateral cere-
bral angiograms.

7. Experienced TIA and
moderate carotid steno-
sis.

PROCEDURE PERFORMED:
1. Selective ascending aortic arch
angiogram. 2. Selective left com-
mon carotid artery angiogram. 3.
Selective right common carotid
artery angiogram. 4. Selective
left subclavian artery angiogram.
5. Right iliac angio with runoff.
6. Bilateral cerebral angiograms
were performed as well via right
and left common carotid artery
injections.
INDICATIONS FOR PROCE-
DURE: TIA, aortic stenosis,
postoperative procedure. Mod-
erate carotid artery stenosis.
ESTIMATED BLOOD LOSS:
400 ml.
After obtaining informed con-
sent, the patient was brought to
the cardiac catheterization suite
in postabsorptive and nonsedated
state. Using modified Seldinger
technique, a 6-French sheath was
placed into the right common
femoral artery and vein without
complication.

PROCEDURE PERFORMED:
1. Selective ascending aortic arch
angiogram. 2. Selective left com-
mon carotid artery angiogram. 3.
Selective right common carotid
artery angiogram. 4. Selective
left subclavian artery angiogram.
5. Right iliac angio with runoff.
6. Bilateral cerebral angiograms
were performed as well via right
and left common carotid artery
injections.
INDICATIONS FOR PROCE-
DURE: TIA, aortic stenosis, post-
operative procedure. Severe
carotid artery stenosis.
ESTIMATED BLOOD LOSS:
400 ml.
After obtaining informed con-
sent, the patient was brought to
the cardiac catheterization suite
in postabsorptive and nonsedated
state. A 6-French sheath was
used in the left femoral artery
and vein with minor complica-
tions, employing the modified
Seldinger technique.

Table 11: An example in domain of Medical Case

Similarly, in medical case documents, a sentence like: “The patient reported experiencing persistent
chest pain and shortness of breath, leading to a diagnosis of angina.” was often transformed into a
standardized version: “The patient was diagnosed with a heart condition after reporting chest pain.”

These modifications eroded the diversity and long-tail characteristics of real-world data, reducing the
fine-grained variability necessary for retrieval tasks. Instead of preserving rich domain-specific details,
LLM-generated transformations tended to normalize distinct cases into overly generic patterns, which
could misrepresent real-world retrieval challenges.

Empirical results further confirm the limitations of fully LLM-generated training data. The E5-Mistral
model, which relies entirely on synthetic data, performs the worst on MULTICONIR. In Task 1, as shown
in Table 2, it exhibits the highest performance decline (16.93%) among retrieval models, and in Task 2,
as shown in Table 13, its average win rate (60.36%) is the lowest among retrieval models, trailing the
second-worst model (Jina-Embeddings-V2) by 5%. These results reinforce the generalization challenges
posed by fully synthetic datasets in retrieval tasks, highlighting the importance of incorporating real-world
document structures and constraints in training data.

To mitigate this, our pipeline minimizes document-wide modifications, instead restricting LLM inter-
ventions to condition sentences only. This targeted approach preserves real-world data authenticity while
introducing controlled semantic perturbations, ensuring that retrieval models are trained on meaningful
and realistic hard negatives rather than fully synthetic documents.
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G.2 Impact of Different Hard Negative Construction Strategies
To systematically examine the impact of hard negative sentence (HNS) construction on retrieval models,
we experimented with two distinct approaches: (1) Key Information Modification – altering critical
details while maintaining overall sentence structure (applied to books, movies, medical cases, and legal
documents). (2) Keyword Retention with Dummy Information – keeping all original keywords intact
while injecting irrelevant dummy information (used for the people dataset).

A key objective of this study was to investigate how different HNS construction strategies affect retrieval
difficulty. Our initial hypothesis was that the second approach (retaining keywords but adding dummy
information) would pose a greater challenge for retrieval models, particularly Dense Retrievers, since hard
negatives in this setting contain all the key terms present in positive documents.

However, our experimental results contradicted this expectation. As shown in Fig.8 on the people
dataset, Dense Retrieval models remained highly stable, demonstrating a strong ability to differentiate
semantic nuances even when all keywords were retained. This suggests that Dense Retrieval primarily
relies on contextual embeddings rather than simple keyword matching, allowing it to distinguish between
truly relevant documents and distractors with superficial lexical overlap.

In contrast, Reranker models exhibited a significant performance drop when dealing with dummy-
information-based HNS. This suggests that Rerankers are more sensitive to this type of negative con-
struction, likely due to their cross-encoder or generative architectures, which process both the query and
document jointly. Since Rerankers typically assign scores based on fine-grained textual relevance, the
presence of keyword overlap without genuine semantic alignment may mislead them more than Dense
Retrieval models.

These findings highlight important considerations for hard negative sampling in multi-condition retrieval.
While Dense Retrievers appear robust to surface-level keyword retention, Rerankers are more vulnerable
to semantically misleading negatives, suggesting that future retrieval pipelines should adapt negative
sampling strategies based on the target retrieval model architecture.

(a) Task1 on Peole dataset (b) Task1 on Legal dataset

Figure 8: Impact of different HNS construction strategies.
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Query 10 Positive HN 1
Find a case where:
1. Michigan Leg-
islature enacted a
statute in 1987.
2. Petitioners chal-
lenged the statute
under Contract
Clause and Due
Process Clause.
3. The statute
affected workers
injured before
March 31, 1982.
4. Petitioners
argued a 1981 law
allowed reduction
of workers’ com-
pensation benefits.
5. The Michigan
Supreme Court ac-
cepted petitioners’
interpretation in
1985.
6. Legislature
introduced a bill to
overturn the court’s
decision.
7. House Bill 5084
was introduced in
October 1985.
8. The bill became
law on May 14,
1987.
9. Petitioners were
ordered to refund
nearly $25 million.
10. Michigan
Supreme Court
upheld the statute
for lacking vested
rights and rational
purpose.

In 1987, the Michigan Legislature en-
acted a statute that had the effect of re-
quiring petitioners General Motors Cor-
poration (GM) and Ford Motor Com-
pany (Ford) to repay workers’ com-
pensation benefits GM and Ford had
withheld in reliance on a 1981 work-
ers’ compensation statute. Petitioners
challenge the provision of the statute
mandating these retroactive payments
on the ground that it violates the Con-
tract Clause and the Due Process Clause
of the Federal Constitution. The benefit
coordination provision did not specify
whether it was to be applied to workers
injured before its effective date, March
31, 1982. Petitioners took the posi-
tion that the 1981 law allowed them
to reduce workers’ compensation ben-
efits to workers injured before March
31, 1982, who were receiving benefits
from other sources. In 1985, petition-
ers’ interpretation was accepted by the
Michigan Supreme Court. Chambers
v. General Motors Corp., decided to-
gether with Franks v. White Pine Cop-
per Div., Copper Range Co., 422 Mich.
636, 375 N.W.2d 715. The Michigan
Legislature responded almost immedi-
ately by introducing legislation to over-
turn the court’s decision. On October
16, 1985, before the Michigan Supreme
Court had ruled on the motion for re-
hearing in Chambers, House Bill 5084
was introduced. The amended Sen-
ate bill passed into law on May 14,
1987. 1987 Mich.Pub.Acts No. 28.
As a result of the 1987 statute, peti-
tioners were ordered to refund nearly
$25 million to disabled employees. The
Michigan Supreme Court upheld the
statute against these challenges, on
the ground that the employers had
no vested rights in coordination for
Contract Clause purposes, and that
the retroactive provisions furthered a
rational legislative purpose. 436 Mich.
515, 462 N.W.2d 555 (1990).

In 1987, the Michigan Legislature en-
acted a statute that had the effect of re-
quiring petitioners General Motors Cor-
poration (GM) and Ford Motor Com-
pany (Ford) to repay workers’ com-
pensation benefits GM and Ford had
withheld in reliance on a 1981 work-
ers’ compensation statute. Petitioners
challenge the provision of the statute
mandating these retroactive payments
on the ground that it violates the Con-
tract Clause and the Due Process Clause
of the Federal Constitution. The benefit
coordination provision did not specify
whether it was to be applied to workers
injured before its effective date, March
31, 1982. Petitioners took the posi-
tion that the 1981 law allowed them
to reduce workers’ compensation ben-
efits to workers injured before March
31, 1982, who were receiving benefits
from other sources. In 1985, petition-
ers’ interpretation was accepted by the
Michigan Supreme Court. Chambers
v. General Motors Corp., decided to-
gether with Franks v. White Pine Cop-
per Div., Copper Range Co., 422 Mich.
636, 375 N.W.2d 715. The Michigan
Legislature responded almost immedi-
ately by introducing legislation to over-
turn the court’s decision. On October
16, 1985, before the Michigan Supreme
Court had ruled on the motion for re-
hearing in Chambers, House Bill 5084
was introduced. The amended Senate
bill passed into law on May 14, 1987.
1987 Mich.Pub.Acts No. 28. As a re-
sult of the 1987 statute, petitioners were
ordered to refund nearly $25 million
to disabled employees. The Michigan
Supreme Court found the statute in-
valid on the grounds that the retroac-
tive provisions did not further a ra-
tional legislative purpose and that the
employers had vested rights in coordi-
nation for Contract Clause purposes.
436 Mich. 515, 462 N.W.2d 555 (1990).

Table 12: An example in domain of Legal Document
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Model d1_vs_d0 d2_vs_d1 d3_vs_d2 d4_vs_d3 d5_vs_d4 d6_vs_d5 d7_vs_d6 d8_vs_d7 d9_vs_d8 d10_vs_d9 Avg.

Sparse Retriever

BM25 13.91 16.50 16.81 18.14 22.10 29.04 37.78 38.87 39.93 40.19 25.90

Dense Retriever

jina-embeddings-v3 73.43 70.52 67.45 66.66 65.32 63.40 63.15 62.82 65.13 60.35 65.82
gte-large-en-v1.5 76.74 73.85 72.70 69.91 70.32 68.05 67.39 64.09 65.14 62.58 69.08

NV-Embed-v2 82.57 76.39 74.45 72.10 73.27 69.15 69.48 66.74 68.75 71.57 72.45
bge-en-icl 79.40 70.58 69.36 68.13 64.80 63.12 63.01 61.72 61.31 63.69 66.51

gte-Qwen2-7B-instruct 79.84 74.02 70.57 69.97 65.44 60.54 61.35 59.42 59.55 60.40 66.11
gte-Qwen2-1.5B-instruct 74.30 71.80 72.28 68.49 69.32 65.69 67.08 64.97 63.46 65.09 68.25

e5-mistral-7b-instruct 75.11 67.88 62.73 58.61 56.87 54.52 55.26 54.03 56.68 61.94 60.36
GritLM-7B 79.59 77.73 73.40 74.71 75.56 72.15 73.52 71.87 72.01 75.21 74.58
LLM2Vec 83.50 74.25 73.43 72.24 70.36 67.21 66.99 67.07 66.49 67.48 70.90

Fine-tuned Reranker

bge-reranker-v2-m3 76.08 68.06 63.83 62.06 60.65 58.35 54.79 50.60 48.57 44.96 58.80
bge-reranker-v2-gemma 87.98 82.08 78.07 77.10 76.21 72.13 68.84 65.63 62.32 56.13 72.65

followIR 61.99 59.82 60.87 60.76 59.91 56.41 51.63 47.93 44.71 43.52 54.76
RankZephyr 90.20 86.04 83.96 83.14 82.23 79.41 76.07 72.43 70.26 66.84 79.06

Zero-shot LLM for Ranking

GPT-4o 93.37 92.76 92.20 91.16 90.51 89.55 88.38 86.82 85.96 85.26 89.60

Table 13: Average Win Rate Comparison Between Documents in Task 2

Model d1_vs_d0 d2_vs_d1 d3_vs_d2 d4_vs_d3 d5_vs_d4 d6_vs_d5 d7_vs_d6 d8_vs_d7 d9_vs_d8 d+_vs_d9 Avg.

Sparse Retriever

BM25 11.91 14.34 14.75 14.45 15.99 24.75 36.58 37.68 38.02 39.34 24.78

Dense Retriever

jina-embeddings-v3 64.8 60.11 58.61 58.31 57.83 56.36 56.42 57.20 58.56 58.59 58.68
gte-large-en-v1.5 66.63 61.15 57.66 59.44 56.26 55.10 53.64 53.14 51.34 54.51 56.89

NV-Embed-v2 68.83 62.87 60.97 62.16 61.78 61.80 62.04 61.10 62.75 64.78 62.91
bge-en-icl 70.55 62.18 59.35 60.33 59.70 60.19 59.28 58.95 60.16 60.23 61.09

gte-Qwen2-7B-instruct 68.63 64.87 61.91 60.28 61.98 58.70 59.28 59.06 60.28 59.69 61.47
gte-Qwen2-1.5B-instruct 69.51 66.38 63.47 61.89 60.13 58.76 58.57 57.36 58.62 62.11 61.68

e5-mistral-7b-instruct 69.98 63.50 60.30 59.3 56.77 54.52 53.05 53.14 51.47 53.99 57.60
GritLM-7B 73.46 70.37 69.19 70.36 68.36 67.05 68.34 61.55 58.38 59.57 66.66
LLM2Vec 70.57 68.37 67.10 67.10 66.35 58.73 36.04 36.81 35.37 37.03 54.35

Fine-tuned Reranker

bge-reranker-v2-m3 73.65 66.55 63.28 61.65 54.60 38.54 28.42 27.92 28.14 28.02 47.08
bge-reranker-v2-gemma 82.39 77.63 71.80 70.00 65.10 56.91 41.75 32.01 28.84 29.96 55.64

followIR 50.48 51.78 49.64 46.27 37.60 25.22 24.41 24.51 25.67 24.71 36.03
RankZephyr 85.41 79.91 72.91 70.41 64.41 52.91 47.91 45.41 42.30 42.56 60.41

Zero-shot LLM for Ranking

GPT-4o 89.41 88.15 87.50 87.80 86.30 84.90 83.20 82.95 81.10 80.35 85.17

Table 14: Effect of document length on retrieval performance (padded to 512 words).

13493



Model d1_vs_d0 d2_vs_d1 d3_vs_d2 d4_vs_d3 d5_vs_d4 d6_vs_d5 d7_vs_d6 d8_vs_d7 d9_vs_d8 d+_vs_d9 Avg.

Sparse Retriever

BM25 12.25 14.32 14.86 14.81 15.97 24.48 36.00 37.53 38.85 39.53 24.86

Dense Retriever

jina-embeddings-v3 64.56 59.74 58.13 57.20 55.47 55.90 55.33 53.70 54.75 54.81 56.96
gte-large-en-v1.5 68.62 61.61 58.47 54.77 54.97 54.52 54.44 49.88 39.09 38.34 53.47

NV-Embed-v2 59.23 61.26 62.58 62.81 64.57 63.95 62.98 63.49 65.65 67.55 63.41
bge-en-icl 66.08 61.93 60.83 59.63 59.34 61.04 61.08 51.67 36.00 35.95 55.36

gte-Qwen2-7B-instruct 66.06 63.23 63.36 61.35 59.63 58.56 56.62 57.97 36.61 35.96 55.94
gte-Qwen2-1.5B-instruct 68.46 63.66 62.02 62.21 59.47 60.78 59.38 58.71 35.01 34.91 56.46

e5-mistral-7b-instruct 66.97 61.11 59.05 54.53 54.40 54.47 53.02 54.55 53.88 53.57 56.56
GritLM-7B 71.47 67.97 69.41 56.02 54.49 52.58 54.21 56.35 54.87 57.26 59.46
LLM2Vec 74.81 72.05 71.55 26.85 26.68 26.35 25.24 26.16 26.04 27.27 40.30

Fine-tuned Reranker

bge-reranker-v2-m3 76.56 70.75 56.83 18.33 19.86 19.09 18.55 20.75 19.88 21.78 34.24
bge-reranker-v2-gemma 83.48 77.02 66.34 19.76 20.54 19.81 20.64 19.34 20.65 21.46 36.90

followIR 52.36 51.43 19.70 18.35 17.15 17.11 17.78 16.94 17.77 18.75 24.73
RankZephyr 84.34 76.84 66.64 35.14 33.34 34.04 31.54 32.64 30.74 31.24 45.65

Zero-shot LLM for Ranking

GPT-4o 88.80 86.50 85.80 86.10 83.50 82.00 80.20 79.50 78.30 77.63 82.83

Table 15: Effect of document length on retrieval performance (padded to 1024 words).

Model Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Avg.

Qwen3-32B 91.20 90.64 89.55 88.08 86.91 85.35 84.74 84.44 83.27 81.88 86.61
GPT-4o 95.49 94.89 93.71 92.11 90.81 89.08 88.43 88.08 86.82 85.26 90.47
Gemini-2.0-flash 95.67 95.10 94.06 92.63 91.50 89.99 89.38 89.08 87.95 86.61 91.20

Table 16: Performance comparison across Q1–Q10 queries and average score.
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