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Abstract

Despite the rapid development of large lan-
guage models (LLMs), existing benchmark
datasets often focus on low-level cognitive
tasks, such as factual recall and basic compre-
hension, while providing limited coverage of
higher-level reasoning skills, including anal-
ysis, evaluation, and creation. In this work,
we systematically assess the cognitive depth
of popular LLM benchmarks using Bloom’s
Taxonomy to evaluate both the cognitive and
knowledge dimensions. Our analysis reveals
a pronounced imbalance: most datasets con-
centrate on 'Remembering’ and *Understand-
ing’, with metacognitive and creative reasoning
largely underrepresented. We also find that in-
corporating higher-level cognitive instructions
into the current instruction fine-tuning pro-
cess improves model performance. These find-
ings highlight the importance of future bench-
marks incorporating metacognitive evaluations
to more accurately assess and enhance model
performance.

1 Introduction

In recent years, large language models (LLMs)
based on the transformer architecture have made
remarkable progress (Zeng et al., 2023). GPT-4
introduced multimodal capabilities and achieved
human-level cognition on professional benchmarks.
The success of ChatGPT has spurred major tech
companies to invest heavily in foundational LLM
research and to release their own models, such as
LLaMA (Touvron et al., 2023), PaLM (Chowdhery
etal., 2023), Gemini (Reid et al., 2024), among oth-
ers. The latest generation of LLMs exhibits excep-
tionally remarkable capabilities in text generation,
reasoning, and knowledge-based QA, unlocking a
wide range of applications from chatbots (Debets
et al., 2025) to programming copilots (Chen et al.,
2021). The release of open-source LLMs repre-
sents a significant milestone in foundational model
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development and has accelerated the downstream
ecosystem of model fine-tuning and customized
applications. As LLM capabilities continue to im-
prove, conducting task and capacity evaluations
has become a critical task, and a growing body of
work is now devoted to assessing the performance
of these LLMs.

Designing benchmarks for LLMs has become
a significant task. Substantial work has been de-
voted to evaluating models’ capabilities, includ-
ing domain-specific knowledge (Li et al., 2024;
Hendrycks et al., 2021; Wang et al., 2024), com-
monsense (Gu et al., 2024b; Team et al., 2025;
Sakai et al., 2024), mathematical (Cobbe et al.,
2021; Muennighoff et al., 2025; Patel et al., 2024)
and code (Yan et al., 2024; Manh et al., 2024; Quan
et al., 2025) reasoning. The current evaluation
datasets exhibit two clear trends: first, extensive re-
search has carefully designed more refined bench-
marks to assess the capabilities of large models;
second, the construction of benchmarks is becom-
ing increasingly complicated.This trend stems from
continuous advancements in model performance,
necessitating benchmarks with enhanced distin-
guishable capabilities to effectively evaluate these
models. Humanity’s Last Exam (Phan et al., 2025)
is a prime example. This reveals that current most
benchmarks do not truly measure a model’s true
capabilities; they merely construct comparatively
harder tasks rather than following any theoretical
foundation to guide the design of instructions.

We contend that simply augmenting the num-
ber or complexity of benchmarks does not in-
herently enhance the accuracy of model per-
formance assessment. The bias stemming from
task-driven design means that when datasets are
structured solely around specific tasks, they fail to
capture a broader, cognitive evaluation of a model’s
abilities, which can consequently distort the results
(McCoy et al., 2019). Therefore, we argue that it is
essential to provide a guiding framework for bench-
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mark design, grounded in LLMs’ capabilities, to en-
able precise measurement of their abilities. Given
that LLMs demonstrate their capabilities through
cognitive abilities, we propose a comprehensive
evaluation framework anchored in cognitive abil-
ities, encompassing instructions partition as well
as assessment methodologies. To address this gap,
we turn to human cognition theories to support our
evaluation of benchmark datasets for large mod-
els. We use an assessment framework based on the
notion of ability, aligning it with human cognitive
capacities rather than merely instruction difficulty.
There have been substantial advances in the study
of human cognitive theories within the field of edu-
cation, and Bloom’s taxonomy framework stands
out as the significant theory (Forehand et al., 2005).
Specifically, we draw upon Bloom’s Taxonomy,
a framework integrating cognitive and knowledge
dimensions to characterize data to systematically
organize benchmarks. This approach enables us to
address the following four Research Questions:

RQ1: Do the current benchmarks align with hu-
man cognitive dimensions? A1l: No, benchmarks
are misaligned with human cognition; uneven dis-
tribution.

RQ2: Do the current benchmarks align with hu-
man knowledge dimensions? A2: No, benchmarks
are misaligned with human knowledge; uneven dis-
tribution.

RQ3: Do existing evaluations accurately reflect
the model’s performance? A3: No, benchmarks
are inaccurate due to misalignment and lack of
advanced metacognitive tests.

RQ4: How can we organize instructions to im-
prove model performance? A4: The model can be
enhanced with analytical and creative-like instruc-
tions for fine-tuning.

2 Related Work

2.1 Bloom Taxonomy Framework

In recent years, a growing number of research stud-
ies have attempted to integrate Bloom’s Taxonomy
with human tests and cognition to enhance edu-
cational content creation and assessment (Elkins
et al., 2023). Sabina Elkins et al. (2024) proposed
a teacher-centric framework that harnesses LLMs
to generate quizzes aligned with Bloom’s six cog-
nitive levels, revealing that these automatically pro-
duced quizzes matched the quality and teacher sat-
isfaction of manually designed ones. Meanwhile,
Scaria et al. (2024) conducted a comparative anal-

ysis of five leading LLMs; the findings indicated
notable inconsistencies in the quality of higher-
level instructions and recommended advanced mul-
tistage prompting strategies to bridge this gap. Yaa-
coub et al. (2025) organizes a dataset with multiple-
choice questions annotated by Bloom’s level and
benchmarked classification models, demonstrating
that transformer-based models significantly outper-
formed traditional approaches across all cognitive
categories. Huber and Niklaus (2025) provided
the systematic mapping of prominent LLM eval-
uation benchmarks onto Bloom’s framework, un-
covering a predominant emphasis on lower-order
skills and marked deficits in analytical, evaluative,
and creative assessments. Zhang et al. (2023) em-
ployed a diagnostic assessment approach using
the MoocRadar dataset to illuminate the cognitive
knowledge structure of LLMs across Bloom’s lev-
els, offering nuanced insights into model strengths
and limitations in educational diagnostics. There
have also been studies on controlling the outputs of
LLMs (Jackson, 2025; Luo et al., 2025) , offering
practical guidelines for domain-specific learning
environments.

2.2 Benchmarks

In recent years, a diverse array of benchmarks has
been developed to rigorously evaluate the breadth
and depth of large language models’ (LLMs)
knowledge and reasoning capabilities. Hendrycks
et al. (2021) introduced the Massive Multitask
Language Understanding (MMLU) benchmark to
measure pre-trained models’ zero- and few-shot
performance on academic and professional tasks.
Clark et al. (2018) assembled the AI2 Reasoning
Challenge (ARC), partitioning grade-school sci-
ence questions into "Easy" and "Challenge" sub-
sets to improve research in robust reasoning beyond
simple retrieval baselines. To probe multi-hop in-
ference, Khot et al. (2020) released QASC, with
annotated supporting facts, explicitly designed to
require compositional reasoning over retrieved sen-
tences. Focusing on commonsense reasoning, sev-
eral research (Talmor et al., 2019a; Mihaylov et al.,
2018; Li et al., 2024; Huang et al., 2023) proposals
are made with different perspectives that combine
a lot of core facts with broad common-sense knowl-
edge. Additionally, lots of math reasoning datasets
are proposed, such as (Dua et al., 2019; Cobbe
et al., 2021), specialized mathematical reasoning
benchmarks have further enriched the evaluation
landscape. Collectively, these benchmarks form a
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Figure 1: Bloom’s Taxonomy Framework: A hierarchical framework for categorizing educational objectives
by cognitive process (Remember, Understand, Apply, Analyze, Evaluate, Create) and knowledge type (Factual,
Conceptual, Procedural, Metacognitive), guiding the design of clear learning outcomes and assessments.

rigorous evaluation ecosystem that drives progress
in LLM development across diverse knowledge
domains and reasoning paradigms.

3 Evaluation Method

3.1 Bloom’s Taxonomy Framework

Bloom’s Taxonomy, originally put forward by
Bloom et al. (1956), delineates six ascending lev-
els of cognitive complexity, ranging from basic
knowledge recall to complex creative processes.
Later Anderson and Krathwohl (2001) transformed
these levels into active verbs to emphasize the dy-
namic nature of learning. By aligning human cog-
nitive processes with the hierarchical structure of
the taxonomy, researchers can systematically eval-
uate performance across the full range of mental
cognition, from foundational recall operations to
higher-level analytical reasoning, so that it can re-
veal both the strengths and limitations inherent in
contemporary assessment frameworks. Its hierar-
chical structure provides a practical framework for
annotating benchmark instructions with precisely
defined levels (Anderson and Krathwohl, 2001).
Taking these considerations into account, this pa-
per adopts Bloom’s Taxonomy as the analytical
framework for evaluating instruction benchmark
datasets.

3.2 Category Method

In this work, we present a comprehensive method-
ology for assessing the cognitive distribution of
instructions. Inspired by CompassJudger-1 (Cao
et al., 2024), we adopt a few-shot chain-of-thought
prompting approach to label different instructions.

Table 1: Consistency validation of annotation results

Models yyen2.5 GPT-40 Human
Groups
Math 0.95 096  0.96+0.02
Reasoning
Code 0.92 0.91 0.90 + 0.02
Reasoning
Professional 0.93 093  0.94+0.02
Exams
C‘;{mm"“?e“se 0.97 093  0.97+0.01
easonmg
Broad-
Domain 0.97 092  0.924+0.02
Evaluations

Let the input instruction be denoted as z;, and
the instruction dataset as D = {x1,x2,...,2n}.
Let p; represent the prompt used for Bloom’s tax-
onomy definition tagging prompts. Based on this,
the output labels are defined as:

(ki, ci, t;) = Annotator(p;, x;) €))

where k; € {FACTUAL, CONCEPTUAL,
PROCEDURAL, METACOGNITIVE} denotes
the knowledge dimension label, ¢; €
{REMEMBERING, UNDERSTANDING, APPLYING,
ANALYZING, EVALUATING, CREATING } the cog-
nitive dimension label, and ¢; the reasoning process
underlying the annotation. Annotator refers to
the model performing the labeling. We have
elaborately crafted our user prompts p; to embed
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Figure 2: The cognitive dimension for the benchmarks: Most instructions are concentrated in low-level cognition,
with high-level cognitive aspects notably underrepresented.

Bloom’s taxonomy definitions for both knowledge
and cognitive dimensions, supplying LLMs with
essential definitions. The prompts are shown in the
appendix. The system prompt requires that the
model first engage in thinking ¢; before providing
its final answer, thereby ensuring the accuracy
of the output labels. This design ensures that
the model can generate accurate labels, thereby
facilitating subsequent analysis processes.

3.3 Consistency Evaluation

To verify the reliability of our automated anno-
tations, we conduct a consistency analysis: We
randomly sampled a subset with 800 instructions
from the fully annotated set, and then compared
the subset with those annotated by Qwen2.5-72B-
Instruct and GPT-40. Concurrently, three human
experts independently annotated the same subset,
enabling a direct comparison between the LLM out-
puts and expert labels. We adopted an established
educational verification principle: an annotation
is considered correct if its cognitive or knowledge
level diverges by no more than one adjacent level.
Related research has demonstrated the validity of
this approach (Thompson and Lake, 2023). Finally,
based on the consistency results presented in Ta-
ble 1, we conclude that our automated annotation

results are closely consistent with human annota-
tions, achieving high consistency scores exceeding
90% across evaluation metrics.

4 Experiment

4.1 Experiment Setup

Our experimental framework comprises two key
components: First, evaluating and validating the
Bloom labels associated with the instructions; Sec-
ond, assessing the performance of the model fine-
tuned using those instructions.

Datasets Using Bloom’s taxonomy to annotate
instructions, we assessed a wide range of task or
domain specific benchmark datasets organized into
five ability-driven groups, including mathemati-
cal reasoning, code comprehension and genera-
tion, expert-level broad-domain knowledge, profes-
sional exams and commonsense reasoning, which
is shown in Table 4 and Figure 7.They focus on
core cognitive skills to transparently reveal model
strengths and weaknesses,widely used in many
evaluations.

Models To make annotations for benchmarks
aligned with Bloom’s cognitive levels, we adopted
CompassJudger-32B-Instruct as our annotator and
employed Qwen2.5-72B-Instruct and ChatGPT-4o
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Figure 3: The knowledge dimension for the benchmarks:Most instructions are concentrated on the foundational
knowledge, while the metacognitive is severely underrepresented.

for consistency verification. Given the vast scale
of our dataset, we randomly sampled 10% of the
set for consistency testing. During fine-tuning, we
selected Qwen2.5-7B as our target model, trained
it on the reconstructed instructions, and systemati-
cally assessed its performance.

Platform Our experiments are conducted on 8
GPU accelerator devices, and we use PyTorch 2.6
in Python 3.11. We set the maximum sequence
length for both input and output sequences to 1024
tokens.

Metrics Suppose D = {d;|i =1,..., N} as the
annotated instructions, and p; as the percentage for
each category. To measure the balance of distribu-
tion for benchmarks, we used the following four
metrics to assess the dataset’s balance:

¢ Shannon—Wiener Index (SWI):

N
> pilnp;

¢ Simpson’s Diversity Index (SDI):

N
SDI(D)=1-) p}

i=1

* Jensen—Shannon Divergence (JSD): Given
dataset distribution P and uniform distribu-
tion Q, define M = (P + @), so we get

JSD(D) = H(M) - 3 (H(P) + HQ) @)

and H(X) = — 3 pilnps, (X € {P.Q})

=1
e Gini Index (GI):

N N

> 2w —
GI(D) = =71

o 3)

M=

and,u:%‘ ;.

=1

4.2 RQ1: Do the current benchmarks align
with human cognitive dimensions?

We conducted a comprehensive analysis of various
test datasets through the lens of Bloom’s taxonomy,
focusing on the distribution of cognitive levels and
the entropy of these distributions. Our findings
reveal significant disparities in the cognitive de-
mands posed by different datasets,as illustrated in
Figure 2. The observations draw out that: Cur-
rently, most benchmarks are not aligned with
human cognition.
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Figure 4: The distribution of the benchmarks with Bloom’s Taxonomy visualization

(1) Dominance of Lower-Level Cognition: The
radar charts make it clear in Figure 2(a), Fig-
ure 2(b), and Figure 2(e) that 'Remembering’
and ’Understanding’ take center stage, with their
axes stretching out much farther than those for
higher-order skills like broad-knowledge or com-
mon sense. This shows the datasets are mostly fo-
cused on recalling facts and grasping basics, rather
than tackling more complex thinking or practical
reasoning. The distribution of these tests set up
shows that most of them are mainly focused on
basic stuff, like remembering facts or understand-
ing simple ideas, rather than pushing people to use
what they know in new ways or think more deeply.

(2) Mid-Level Cognition Gains in Inferences:
The plots in Figure 2(c) and Figure 2(d) show
that datasets like AGIEval, PutnamBench, and
MMLUPro+ place a stronger focus on the "An-
alyzing" and "Evaluating” dimensions compared to
others. This perspective points to a clear trend to-
ward testing mid-level cognition, such as applying
knowledge and thinking critically. While some spe-
cialized benchmarks are starting to ramp up their
assessments of these higher-level abilities, they still
don’t address the "Creating" dimension, meaning
creativity and original thinking aren’t yet part of
the picture.

(3) Balanced Coverage in Exam-Like
Datasets: Standardized exam-style collections,
such as the AGIEval series and Humanity’s Last
Exam (as seen in Figure 2(c)), take a more well-
rounded approach. They blend significant portions
of "Applying," "Analyzing," and "Evaluating"
with moderate support for "Remembering" and

"Understanding." This mix ensures they cover all
cognitive dimensions, offering a fuller picture of a
person’s capabilities.

(4) Imperative for Higher-Level Cognitive De-
velopment: To effectively evaluate advanced rea-
soning capabilities, future benchmarks must sig-
nificantly increase their inclusion of Evaluate and
Create-level cognition tests. This expansion is par-
ticularly crucial given that such higher-level cogni-
tive challenges are rarely found outside specialized
examination benchmarks, creating a substantial gap
in our assessment frameworks.

4.3 RQ2: Do the current benchmarks align
with human knowledge dimensions?

After analyzing various datasets, we noticed signif-
icant differences in how they cover different dis-
tributions of knowledge. This is clearly shown in
Figure 3. Finally, we get the following findings:
Most benchmarks don’t cover the full range of
knowledge dimension.

(1) Uneven coverage: The datasets don’t treat
all cognitive areas the same. The plotted points
rarely cluster near the central ideal; they lean heav-
ily toward certain areas while neglecting others. On
the radar chart, this appears as prominent bulges
and dips rather than a uniform shape.

(2) Focus on procedures and facts: Most
benchmarks place a strong emphasis on "Proce-
dural" knowledge (How to do things) and Factual
knowledge (Remembering information). This is
evident in Figure 3(c) and Figure 3(d), where these
dimensions extend further out on the chart.

(3) Moderate attention to concepts: The radar
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shows that "Conceptual" dimension, which in-
volves abstract thinking and linking relationships,
is covered to some extent but not as thoroughly as
procedures or facts. Its representation on the chart
falls between the prominent "Procedural" and "Fac-
tual" dimensions, which implies that while abstract
relational reasoning is addressed to some extent, its
depth and breadth remain limited.

(4) Neglect of meta-cognitive cognition: Per-
haps the most striking finding is how little attention
is given to meta-cognitive cognition. This cogni-
tion, which includes self-awareness and learning
strategies, is consistently underrepresented across
the datasets. On the chart in Figure 3, this dimen-
sion is almost flat, indicating a significant gap in
current evaluations.

4.4 RQ3: Do existing evaluations accurately
reflect the model’s performance?

Our analysis of Figure 4 sheds light on how ex-
isting benchmarks are distributed across Bloom’s
taxonomy based on their cognitive and knowledge
dimensions. Figure 4 maps datasets along two axes:
cognitive scores (from "Remembering" =1 to "Cre-
ating" = 6) and knowledge scores (from "Factual"
= 1 to "Meta-Cognitive" = 4). This visualization
reveals four distinct clusters: low-cognitive tasks
in the bottom-left, common-sense reasoning in the
center, mathematical problems in the bottom-right,
and broad-domain or professional exams in the top-
right. The clustering shows that most datasets
target lower-level cognitive and knowledge di-
mensions, with fewer addressing higher cogni-
tion or depth. A regression analysis of Figure 4
with a gray line further indicates that the depth
of cognition is linearly correlated with that of the
knowledge. This suggests that benchmarks requir-
ing deeper knowledge naturally demand more ad-
vanced cognitive tests.

We carried out a thorough analysis to evaluate
how evenly different datasets cover cognitive and
knowledge areas, guided by Bloom’s taxonomy. To
do this, we used four measures: SWI, SDI, JSD,
and GI. For SWI and SDI, higher values mean the
dataset is more balanced, while for JSD and GI,
lower values indicate better balance. The detailed
results are shown in Table 5, with a summary pro-
vided in Table 2. To make the table easier to read,
it’s color-coded: redder cells show more balance,
and bluer cells show less balance.

We draw out the following conclusions: the cur-
rent benchmarks are neither accurate nor com-

Table 2: Bloom’s Taxonomy Distribution Balance Index
Across Different Domain Groups

Domain SWI SDI JSD GI
Broad-domain ) 15 5670 0595 | 0,833
Evaluations

Code Reasoning  0.447  0.627  0.619 | 0.851
Commonsense ) 575 (776 0567 0799
Reasoning

Mathematical 355 1534 0661 | 0.893
Reasoning

Professional EX- 615 0819 0556 0773

ams

prehensive in evaluating large models, chiefly
for the following reasons:

(1) Professional Exams and Commonsense
Reasoning: This part reached the highest SWI
and SDI values alongside the lowest JSD and GI
scores. This indicates that their tests span cognitive
and knowledge categories both broadly and evenly,
making them ideal for comprehensive model evalu-
ation with minimal sampling cognitive bias.

(2) Broad-domain Evaluations fall in the mid-
dle: They show moderate diversity and only a
slight skew toward common categories, suggest-
ing that augmenting underrepresented dimensions
could further strengthen their coverage.

(3) Code Reasoning and especially Mathe-
matical Reasoning, display the lowest diversity
(SWI/SDI) and the greatest skewness (JSD/GI).
Their heavy concentration in particular cognitive
levels or knowledge types risks encouraging mod-
els to overfit frequent cognitive levels while under-
performing on less common cognitive levels.

4.5 RQ4: How can we organize instructions to
improve model performance?

Remembering

Creatifig Undekstanding

Evaluding Applying

Analyzing

Figure 5: The cognitive distribution for tests
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Rembering

Understanding  Applying Analyzing

Evaluating Creating

Base 0.806 0.808
High-order 0.821 0.793
Low-order 0.813 0.826

Full 0.751 0.754

0.807 0.761 0.675 0.765
0.819 0.816 0.722 0.787
0.792 0.782 0.678 0.753
0.785 0.742 0.634 0.746

Table 3: The results of the fine-tuning

Factual

Procedural

Figure 6: The knowledge distribution for tests

To solve this problem, we build an instruction
set that fully spans Bloom’s cognitive taxonomy
while preserving an almost balanced representa-
tion across knowledge dimensions, and the distri-
bution of the set shows in Figure 5 and Figure 6.
To investigate how constructing fine-tuning data
along Bloom’s cognitive dimensions affects model
performance, we divide the instructions into four
categories: (1) instructions that contain only higher-
order cognitive tasks; (2) instructions that contain
only lower-order cognitive tasks; (3) instructions
that include all cognitive tasks; and (4) no instruc-
tions at all (No instruction fine-tuning). We draw
out that introducing high-level cognitive instruc-
tions enhances the model’s reasoning capabil-
ities. In constructing the instruction dataset, we
employed LLMs to assist in synthesizing an evalu-
ation set of instructions, while combining this with
manual filtering to ensure balance and quality. To
further enhance coverage across Bloom’s cogni-
tive taxonomy, we supplemented the dataset with
a small number of manually curated instructions,
specifically targeting underrepresented categories
such as metacognitive and procedural tasks. Al-
though these additions were minimal, they helped
guarantee that the final dataset spans all major di-
mensions of Bloom’s taxonomy (Some details are
shown in Figure 8).

(1) High-order instructions reach the high-

est overall gains : Compared to the base model,
fine-tuning with high-order instructions consis-
tently boosts performance across nearly all dimen-
sions,which is shown in Table 3. The largest im-
provements appear in Analyzing and Evaluating,
while solid gains are also observed in Applying
and Creating. This indicates that instructions
aligned with advanced cognitive processes enhance
the model’s higher-level reasoning and problem-
solving abilities.

(2) Low-order instructions mainly strengthen
foundational understanding: Fine-tuning on low-
order instructions achieves the best result on Un-
derstanding, slightly surpassing the high-order
setting. It also provides moderate improvement in
Remembering. However, this setup shows weaker
performance in higher-order tasks (such as Eval-
uating and Creating), suggesting that low-order
training primarily benefits knowledge recall and
comprehension without effectively generalizing to
complex reasoning tasks.

(3) Full mix of instructions actually reduces
performance: Surprisingly, when all instruction
types are combined, performance consistently
drops below the base across all dimensions, most
notably in Remembering, Understanding, and
Evaluating. This indicates that mixing heteroge-
neous cognitive instructions without prioritization
may introduce noise, limiting the model’s ability
to specialize in specific reasoning abilities. Thus,
indiscriminate inclusion of all cognitive levels may
be counterproductive.

5 Conclusion

The paper evaluates the reasonableness of exist-
ing LLM benchmarks through the lens of Bloom’s
taxonomy, analyzing their coverage across cogni-
tion and knowledge dimensions. We find that most
current benchmarks are heavily biased toward low-
level cognitive skills such as "Remembering" and
"Understanding" , while higher-level abilities like
"Analyzing" , "Evaluating" , and "Creating" are un-
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derrepresented. Similarly, "Factual" and "Concep-
tual" knowledge dominate, with limited emphasis
on "Procedural” and "Metacognitive" knowledge.
Our results suggest that commonly used bench-
marks may not fully reflect the comprehensive cog-
nitive capabilities of LLMs. We propose that future
benchmark designs integrate a broader range of
high-level, cognitively diverse tasks and include a
structured framework to guide their evaluation.

Limitations

Our study has several limitations that should be
acknowledged. First, while we leverage Bloom’s
Taxonomy as a structured framework for analyzing
LLM benchmarks, the categorization of tasks into
cognitive and knowledge dimensions may involve
some subjectivity. Despite the annotator consis-
tency checks, there remains room for ambiguity
in how certain tasks align with specific levels of
the taxonomy. Second, our analysis focuses on
a selected set of widely used benchmarks, which
may not fully represent the diversity of all avail-
able evaluation datasets or capture niche domains
where higher-level reasoning is critical. Third, the
metrics used to assess distributional balance, Shan-
non—Wiener Index and Simpson’s Diversity Index,
provide insights into dataset diversity but do not di-
rectly measure model performance across different
cognitive levels. Finally, while this work highlights
the bias toward low-level cognitive skills in current
benchmarks, future studies should explore dynamic
evaluation methods that adaptively test varying cog-
nitive levels during model inference.
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A Testing Benchmarks

The selection of the five categories of evaluation datasets was informed by extensive prior work(Zhong
et al., 2024; Polo et al., 2024; Liang et al., 2023), as these datasets have been widely adopted in the
literature to represent diverse task types across multiple domains. The benchmarks used in our study are
selected from widely adopted evaluation suites for large language models (LLMs), including datasets
from MMLU, AGIEval, CMMLU, BBH, and others. These benchmarks are recognized as standard and
authoritative in evaluating LLM performance, covering a wide range of task types such as multi-choice
QA, reasoning, math, code, and domain-specific knowledge, hence providing strong representativeness
and task diversity.

Category Dataset Name Size
GSMS8K(Cobbe et al., 2021) 8,792
UTMath(Yang et al., 2024) 1,053
Mathematical Reasoning OpenAlMath(Muennighoff et al., 2025) 12,500
AIME(Patel et al., 2024) 90
CodeScope(Yan et al., 2024) 1,949
CodeMMLU(Manh et al., 2024) 19,913
Code Reasoning CruxEval(Gu et al., 2024a) 800
MBPP(Yu et al., 2024) 964
CodeElo(Quan et al., 2025) 408
AGIEval (various)(Zhong et al., 2024) 7,272
Professional Exam LastHumanExam(Phan et al., 2025) 2,500
olessional Exams Omni-MATH(Gao et al., 2024) 4,428
PutnamBench(Tsoukalas et al., 2024) 522
CMMLU(Li et al., 2024) 11,917
. MMLU(Hendrycks et al., 2021) 14,327
g“;?déi‘;glsam MMLU-Pro(Wang et al., 2024) 12,102
vad MMLU-Pro+(Taghanaki et al., 2024) 12,102
M3KE(Liu et al., 2023) 20,477
CommonsenseQA(Talmor et al., 2019b) 10,962
Xiezhi(Gu et al., 2024b) 54,530
Commonsense reasoning SuperGPQA (Team et al., 2025) 26,529
mCSQA(Sakai et al., 2024) 13,636
MMCU(Li et al., 2024) 9,380

Table 4: Categorized evaluation datasets

B The Diversity and Distributional Imbalance Results of Benchmarks

The table reports detailed results for several datasets under Bloom’s Taxonomy conditions, where SWI,
SDI, JSD, and GI denote the Shannon—Wiener Index, Simpson’s Diversity Index, Jensen—Shannon
Divergence, and Gini Coefficient, respectively. For SWI and SDI, higher values (shown in red) indicate
more balanced cognitive distributions, whereas lower values (shown in blue) signal greater imbalance.
In contrast, for JSD and GI, larger values (blue) correspond to more uniform distributions, and smaller
values (red) reflect increased concentration. Overall, our experiments show that professionally designed
exam items and commonsense reasoning benchmarks exhibit relatively even coverage across cognitive
levels, while professional-task datasets display markedly more skewed distributions.

13452



Table 5: Bloom’s taxonomy distribution balance index in various domain groups for details

w SWI SDI JSD GI
Dataset
GSMSK 02061 02940 07047
Mathematical Reasoning OpenAIMath 03879 05381  0.6339
AIME 04506 07095  0.6453
UTMath 03745 05960  0.6603
CodeScope 0.5357 0.6970 0.5696
CruxEval 02865 04877  0.6898
Code Reasoning MBPP 02470 0388 07007
CodeMMLU 0.6207 05472 0.7761
CodeElo 05466 07520 05856 | 0.8196 |
PutnamBench 0.6125 0.5661 0.7734
Professional Exams Omni-MATH 05481 07691 05856 | 08198 |
LastHumanExam 0.6657 0.5226 0.7385
AGIEval 0.6323 - 05497 07607
MMCU 06487 | 08248 | 05258 07517
CommonsenseQA 0.5324 0.7366 0.5818
Broad-domain Evaluations SuperGPQA 0.5585 0.7722 0.5784
Xiezhi 04326 06267  0.6209
mCSQA 02862 03905  0.6673
MMLU 0.6084 05590  0.7767
CMMLU 05426 07408 05755 | 08163 |
Commonsense Reasoning MMLUPro 0.5907 0.7963 0.5646 0.7937
MMLUPro+ 05893 07938 05652  0.7950
M3KE 05428 07312 05700 | 08145 |
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Figure 7: Statistics for each group

C Prompt Templates

We address the potential subjectivity in Bloom’s Taxonomy-based categorization by using a standardized
prompting protocol, which ensures consistent and deterministic labeling across annotators(Chen et al.,
2024). Indeed, Bloom’s Taxonomy-based categorization can involve a degree of subjectivity(Ullrich
and Geierhos, 2021; Huber and Niklaus, 2025; Chen et al., 2024; Sahu et al., 2021). To mitigate this,
we adopted a standardized prompting protocol for annotation: all evaluators were instructed to label
each instruction according to a fixed set of Bloom-aligned definitions and criteria, ensuring consistent
interpretation across tasks. This approach leads to deterministic labeling once the prompt and instruction
are fixed, reducing variability in judgment. This methodology is consistent with recent work on aligning
evaluation frameworks with cognitive taxonomies, where standardized prompts effectively ground task
classification across annotators.

C.1 Labeling Prompts

System Template: You are a helpful assistant facilitating meaningful dialogue between users and
assistants.

The user poses a question, and the assistant provides a solution by first reasoning through the problem
before delivering a response.

Please make sure to display the complete thought process in your outputs, including <think></think> in
think sections, <answer></answer> in answer section.

Example Output: <think>thinking process</think><answer>Final answer</answer>

User Template: Assume you are a data expert. Please classify the following questions according to
Bloom’s taxonomy.

The revised version of Bloom’s taxonomy is divided into two dimensions: cognitive and knowledge.
The cognitive dimensions include:

* Remembering: Retrieving, recognizing, and recalling relevant knowledge from long-term memory.

* Understanding: Constructing meaning from information through interpreting, exemplifying, classi-
fying, summarizing, inferring, comparing, and explaining.

* Applying: Carrying out or using a procedure for executing or implementing in a given situation.
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* Analyzing: Breaking material into its constituent parts and determining how those parts relate to one
another and to an overall structure or purpose through differentiating, organizing, and attributing.

* Evaluating: Making judgments based on criteria and standards through checking and critiquing.

* Creating: Putting elements together to form a coherent or functional whole; reorganizing elements
into a new pattern or structure through generating, planning, or producing.

The dimensions of knowledge include:
* Factual: Basic elements such as terminology, facts, and discrete pieces of information (the "what").
* Conceptual: Relationships among ideas, theories, models, and structures (the "why").

* Procedural: How to do something—methods, techniques, and criteria for using skills and algorithms
(the "how").

* Metacognitive: Awareness and regulation of one’s own cognition—strategies for learning and
self-assessment (the "knowing about knowing").

Please categorize the following questions with bloom’s taxonomy, DONOT SLOVE THE PROBLEM,
provide your thought process,and then give the answer.
Here is an example:

Input:
{
"passage"”: "The capital of France is Paris.”,
"question”: "What is the capital of France?”
}
Output:
<think>

The question is about the capital of France, which is a factual question. The answer is Paris.
</think><answer>(Remebering,Factual)</answer>

Write the answers in the tags with format (cognitive, knowledge), and there is only one tag for cognitive
dimension and one tag for knowledge dimension,DO NOT GENERATE OTHER IRRELATIVE THINGS,
and multiple tags cannot be generated.

Now begin your inputs:

C.2 Fine-Tuning Prompts

System Template: You are a helpful assistant facilitating meaningful dialogue between users and
assistants.

The user poses a question, and the assistant provides a solution by first reasoning through the problem
before delivering a response.

Please make sure to display the complete thought process in your outputs, including <think></think> in
think sections, <answer></answer> in answer section.

Example Output: <think>thinking process</think><answer>Final answer</answer>

D Generated samples
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Table 6: Examples of evaluation and training

Knowledge\Cognitive Remember Understand Apply Analyze Evaluate Create
What is the How does electric How can you use Can you How would you Can you construct
definition of current relate to the formula of distinguish assess the accuracy an example where
Factual entropy in voltage? Explain kinetic energy to between mass and of Newton’s Laws force results in no
thermodynamics? their relationship. calculate the weight in physics? in modern motion?
motion of a car? mechanics?
A: A measure of A: Voltage causes A: By calculating A: Mass is the A: They are A: A book resting
the total energy ina  current to flow the work done by amount of matter; completely on a table with
system. through a friction. weight is the force outdated and no gravity pulling
conductor. due to gravity on longer used. down and table
that matter. pushing up.
B: A measure of B: Current causes B: By using the B: Mass and weight ~ B: They are B: A car
disorder or voltage to appear in  formula KE = 1/2 are exactly the accurate for accelerating on a
randomness in a a circuit. mv2, where m is same. everyday objects at highway.
system. mass and v is low speeds but less
velocity. accurate at very
high speeds or
small scales.
C: The force C: Voltage and C: By measuring C: Weight C: They perfectly C: A ball thrown in
exerted by a system  current are the car’s measures volume; describe all the air.
per unit area. unrelated. temperature mass measures physical
change. density. phenomena.
D: The velocity of D: Voltage D: By estimating D: Weight is D: They are only D: A person
particles in a decreases as the potential energy  constant regardless applicable in outer running.
system. current increases. at a height. of location; mass space.
changes.
Answer: B Answer: A Answer: B Answer: A Answer: B Answer: A
What is the primary ~ What role do How would you How can you How would you Can you formulate
purpose of logical quantifiers apply Bayes’ differentiate judge the validity a scenario that
Conceptual probability play in symbolic theorem to update between deductive of a syllogistic demonstrates
distributions in reasoning? beliefs? and inductive argument? causal inference?
statistics? reasoning?
A: To list all A: They represent A: By calculating A: Deductive A: By checking if A: Studying how
possible outcomes numerical conditional reasoning derives the conclusion smoking causes
without assigning calculations probabilities based conclusions logically follows lung cancer
likelihoods on new evidence guaranteed by from the premises through
premises; inductive observational data
reasoning
generalizes from
specific examples
B: To describe how B: They specify the ~ B: By ignoring B: Deductive B: By measuring B: Listing all
probabilities are quantity of prior information reasoning the emotional symptoms of a
assigned to elements that generalizes from appeal of the disease
different possible satisfy a property data; inductive argument
outcomes reasoning derives
conclusions from
axioms
C: To collect raw C: They identify C: By multiplying C: Both are forms C: By counting the C: Describing the
data from statistical probabilities of guesswork number of words in  parts of a cell
experiments distributions without conditions the argument
D: To solve D: They measure D: By listing all D: Inductive D: By comparing it~ D: Calculating
algebraic equations  probability possible hypotheses ~ reasoning uses to scientific data averages in a
logic symbols; dataset
deductive
reasoning uses
statistics
Answer: B Answer: B Answer: A Answer: A Answer: A Answer: A
What is the first Why is it necessary ~ Can you apply the Which of the How would you Can you design a
step in solving a to understand Euclidean following steps in evaluate the decision tree to
Procedural linear equation? algorithmic algorithm to find the quicksort correctness of a solve a
complexity when the GCD of 56 and algorithm typically recursive function? classification
designing 98?7 causes the greatest problem with
solutions? efficiency multiple features?
bottleneck?
A: Isolate the A: To make the A: 14 A: Partitioning the A: By checking ifit  A: Yes, by
variable program easier to array runs without errors selecting features,
debug creating branches
based on feature
values, and
defining leaf nodes
with classes
B: Simplify both B: To determine B:7 B: Choosing the B: By using test B: Yes, by sorting
sides how well the pivot cases to verify base  all input data
solution performs and recursive cases
at scale
C: Multiply both C: To reduce the C:28 C: Recursively C: By comparing it C: Yes, by drawing

sides by the same
number

amount of memory
usage

sorting subarrays

to an iterative
version

a graph and
labeling all nodes
randomly

See the next page
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Knowledge\Cognitive Remember Understand Apply Analyze Evaluate Create
D: Graph the D: To choose the D:2 D: Copying D: By measuring D: Yes, by
equation correct elements to a its runtime performing linear
programming temporary array regression first
language
Answer: B Answer: B Answer: A Answer: B Answer: B Answer: A
Which of the Why is it important ~ How can you Which step would How would you What is the best

Metacognitive

following best
illustrates a time
when your strategy
for solving a
problem failed?

A: You followed a
proven method and
succeeded
immediately.

B: You used a
familiar method,
but it did not work
and you had to
revise it.

C: You guessed
randomly and
happened to get it
right.

D: You let someone
else solve the
problem for you.

Answer: B

to reflect on your
cognitive biases
during reasoning?

A: Because
reflection helps
identify and correct
flawed thinking
patterns.

B: Because
cognitive biases are
always useful in
decision-making.

C: Because
reflecting slows
down the
problem-solving
process.

D: Because it helps
you avoid doing
any reasoning at
all.

Answer: A

implement a
self-monitoring
routine while
solving logic
puzzles?

A: By writing
down the answer
immediately.

B: By solving as
many puzzles as
quickly as possible.

C: By regularly
checking your
thought process
and correcting
mistakes as you go.
D: By skipping
over hard problems
to save time.

Answer: C

help you break
down your own
approach to
proof-writing to
identify flaws?

A: Ignoring the
logic used in each
step.

B: Focusing only
on the final answer.

C: Reviewing each
assumption and
step in your proof
critically.

D: Skipping the
analysis phase to
save time.

Answer: C

critique your
problem-solving
plan after getting
an incorrect
answer?

A: Blame the
problem for being
too difficult.

B: Identify which
parts of your plan
worked and which
led to errors.

C: Ignore the
mistake and move
on.

D: Repeat the same
plan without
changes.

Answer: B

way to devise a
personal checklist
to improve learning
from complex
reasoning tasks?

A: Write down
unrelated tasks to
feel productive.

B: Include steps for
planning,
monitoring, and
reviewing your
reasoning process.
C: Avoid listing
your mistakes to
maintain
confidence.

D: Rely on memory
instead of writing

anything down.

Answer: B

E The Instruction Fine-Tuning Results
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Figure 8: Data gain effect diagram
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The following results provide a detailed account of the fine-tuned models on individual cognitive
dimensions or cognitive groups, as shown in Figure 8.
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