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Abstract

Parameter generation has emerged as a novel
paradigm for neural network development, of-
fering an alternative to traditional neural net-
work training by synthesizing high-quality
model weights directly. In the context of
Low-Rank Adaptation (LoRA) for evolving
(i.e., constantly updated) large language mod-
els (LLMs), this approach promises efficient
adaptation without costly retraining. How-
ever, existing methods face critical limitations
in simultaneously achieving scalability and
controllability. In this paper, we introduce
ORAL, a novel conditional recurrent diffu-
sion framework that addresses these challenges.
ORAL incorporates a novel conditioning mech-
anism that integrates model architecture and
textual task specifications, enabling the gen-
eration of task-specific LoRA parameters that
can seamlessly transfer across evolving foun-
dation models. Our approach successfully
scales to billions-of-parameter LLMs and main-
tains controllability. Through extensive experi-
ments across seven language tasks, four vision
tasks, and three multimodal tasks using five
pre-trained LLMs, we demonstrate that ORAL
generates high-quality LoRA parameters that
achieve comparable or superior performance to
vanilla trained counterparts.

1 Introduction

Recent advancements in generative AI have been
fueled by the vast amount of valuable data through-
out the Internet, demonstrating profound trans-
formations in the creation of texts, images, and
videos (Liu et al., 2024; Achiam et al., 2023; Zhao
et al., 2024; Zhang et al., 2024; Lin et al., 2023;
Liu et al., 2023; Brooks et al., 2024). Inspired
by these breakthroughs, researchers have begun to
investigate whether the vast number of online pre-
trained model checkpoints can serve as an untapped
resource for AI development. Building on weight-
space learning (Eilertsen et al., 2020; Schürholt

Table 1: Comparison of LLM parameter generation
methods across three dimensions: Scalability (ability
to generate parameters at the scale of hundreds of mil-
lions); Controllability (support for task-specific condi-
tional generation); and Portability (capacity to adapt to
evolving foundation models without retraining).

Method Scalable Controllable Portable

P-Diff (Wang et al., 2024) ✗ ✗ ✗

Cond P-Diff (Jin et al., 2024) ✗ ✓ ✗

RPG (Wang et al., 2025) ✓ ✗ ✗

ORAL (Ours) ✓ ✓ ✓

et al., 2021; Zhao et al., 2023; Horwitz et al., 2024),
which treats neural network parameters as a distinct
modality, parameter generation has emerged as a
novel paradigm.

Pioneering works in this direction, such as P-
Diff (Wang et al., 2024), have demonstrated the
potential of diffusion models to generate neural
network parameters that match or even surpass the
performance of conventionally trained networks. P-
Diff primarily focuses on unconditional generation,
treating parameter synthesis as a distribution mod-
eling problem without explicit control mechanisms.
While this approach has shown promising results
for small-scale architectures, it lacks the ability to
guide the generation process toward specific tasks
or model architectures, limiting its practical appli-
cations in rapidly evolving LLM ecosystems.

A subsequent work, Cond P-Diff (Jin et al.,
2024), introduced conditionality to parameter gen-
eration, enabling task-specific adaptation by in-
corporating textual guidance. This significant ad-
vancement allows the synthesis of Low-Rank Adap-
tation (LoRA) parameters tailored for particular
downstream tasks. However, Cond P-Diff faces
critical limitations in: (1) scaling, typically con-
strained to generating around one million parame-
ters, and (2) flexibility to adapt to weight changes
in foundation models, requiring costly retraining
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whenever the model evolves.
The recent RPG (Wang et al., 2025) framework

alleviates the scalability challenge through a re-
current diffusion architecture. Despite this break-
through in scale, RPG focuses exclusively on un-
conditional generation, offering no mechanisms to
guide the generation process toward specific tasks
or adaptation requirements. This is a significant
limitation for practical deployment scenarios where
task specificity is crucial.

Meanwhile, the landscape of LLMs undergoes
frequent updates to their parameters (Khan et al.,
2024), necessitating parameter generation methods
that can efficiently adapt to these changes without
the need for complete retraining. As summarized
in Table 1, existing methods have only partially
addressed the challenges in LLM parameter gen-
eration. While Cond P-Diff enables controllability
and RPG achieves scalability, no current approach
successfully combines all three crucial properties:
scalability, controllability, and portability across
evolving foundation model. These challenges lead
us to our center research question:

RQ: How can we design a parameter genera-
tion framework that flexibly adapts to continuously
evolving foundation models while maintaining effi-
cient scaling properties for practical deployment?

We introduce ORAL, a novel framework that en-
ables evolvable and scalable LoRA parameter gen-
eration. Our approach, building upon the recurrent
diffusion backbone introduced in RPG (Wang et al.,
2025), proposes a novel conditioning mechanism
that incorporates both model architectural and tex-
tual specifications of adaptation characteristics as
inputs to the diffusion process. Specifically, Our
contributions are:

• We introduce a novel conditioning mechanism
that integrates both model architectural and
textual task specifications, enabling flexible
generation of LoRA parameters for specific
downstream tasks.

• We develop a novel conditional parameter gen-
eration pipeline that facilitates seamless trans-
fer of generated LoRA parameters to evolving
foundation models without requiring resource-
intensive retraining, ensuring compatibility
with rapidly advancing foundation models.

• Through comprehensive experiments across
seven language tasks, four vision tasks, three
multimodal tasks, and five pre-trained LLMs,

we demonstrate the efficacy of our approach.
The results validate that ORAL achieves re-
markable scaling efficiency, effectively han-
dling models with up to 7B parameters while
maintaining or exceeding the performance of
traditional fine-tuning approaches.

2 Related Works

Diffusion Models. Diffusion models have trans-
formed generative AI, successfully creating high-
quality images and other complex data. These
methods (Dhariwal and Nichol, 2021b; Hertz
et al., 2022; Li et al., 2022, 2023) build on non-
equilibrium thermodynamics principles (Jarzyn-
ski, 1997; Sohl-Dickstein et al., 2015; Peebles and
Xie, 2023) and have followed a development path
similar to GANs (Brock et al., 2018; Isola et al.,
2017a; Zhu et al., 2017; Goodfellow et al., 2014),
VAEs (Kingma et al., 2013; Razavi et al., 2019),
and flow-based models (Dinh et al., 2014; Rezende
and Mohamed, 2015). They’ve evolved from sim-
ple unconditional generation to sophisticated sys-
tems that respond to text, images, and other struc-
tured inputs. Research on diffusion models spans
four main areas: The first focuses on improving vi-
sual quality—exemplified by DALL-E 2 (Ramesh
et al., 2022), Imagen (Saharia et al., 2022), and
Stable Diffusion (Rombach et al., 2022; Podell
et al., 2023)—significantly enhancing the realism
of generated outputs. The second addresses their
initially slow sampling process through methods
like DDIM (Song et al., 2020), Analytic-DPM (Bao
et al., 2022), and DPM-Solver (Lu et al., 2022),
which have dramatically accelerated generation
speeds. The third area involves theoretical work
reexamining diffusion through continuous mathe-
matical frameworks (Feng et al., 2023; Song and
Ermon, 2019; Salimans and Ho, 2022; Shi et al.,
2025), particularly score-based generative model-
ing (Feng et al., 2023), deepening our understand-
ing of these techniques. The fourth focuses on
applying diffusion across varied domains like Au-
dio (Kong et al., 2020), 3D Point Generation (Luo
and Hu, 2021) and Anomaly Detection (Wolleb
et al., 2022), demonstrating their versatility as a
generative approach.
Conditional Generation. The area of conditional
generation has experienced incredible progress
over the last decade, evolving through several dis-
tinct methodological stages. Initial efforts focused
on conditional GANs (Mirza and Osindero, 2014;
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Figure 1: Overview of our ORAL framework. (a) Recurrent Generation: The foundation model weights are
processed through a tokenizer to create weight tokens, which are then fed into a recurrent architecture consisting of
both Mamba and Diffusion models to generate parameters from noise N (0, I). (b) Conditional Generation: Our
approach supports evolving foundation model by adapting parameters Wi to updated foundation models Wi +∆i

without retraining, which is enabled by our novel conditioning mechanism that incorporates model architecture and
textual task specifications.

Isola et al., 2017b; Zhu et al., 2017; Ho et al., 2020),
which pioneered the integration of specific control
signals into the generative process. Although these
methods showcased the potential for guided synthe-
sis, they often faced challenges related to training
instability and limited output diversity. The advent
of conditional VAEs (Sohn et al., 2015; Yan et al.,
2016) initiated a notable transition toward prob-
abilistic models. These models provided a more
principled approach to managing uncertainty and
enhancing sample diversity, although this some-
times impacted the quality of the generated outputs.
They established critical theoretical frameworks
for modeling the interactions between conditioning
information and generated results.

Parameter Generation. The domain of parame-
ter generation has significantly evolved, addressing
the challenge of learning distributions over neural
network weights. Early methods in parameter learn-
ing included stochastic neural networks (Sompolin-
sky et al., 1988; Bottou, 1991; Graves, 2011) and
Bayesian neural networks (Neal, 1995; Kingma
et al., 2013; Gal and Ghahramani, 2015), aimed
at modeling probability distributions over weights
to improve generalization and uncertainty estima-
tion. While theoretically appealing, these faced
scalability issues with modern architectures. Hy-
perNetworks (Ha et al., 2016) advanced the field
by generating parameters for other networks. This
idea expanded in SMASH (Brock et al., 2017), en-
hancing architecture support through memory read-
write mechanisms. More detailed recent works are
discussed in Appendix B.

3 Method

3.1 Overview

In this section, we introduce ORAL (LoRA via con-
ditional), our large-scale conditional LoRA gen-
eration framework. Building on the idea of re-
current diffusion from RPG (Wang et al., 2025),
our approach fuses two distinct condition sources:
(1) base-model encoding that identify which pre-
trained foundation model we are adapting, and (2)
textual instructions that specify the target task or
style. These two conditions feed directly into a
diffusion-based architecture, augmented by a recur-
rent module. By decomposing the LoRA matrices
into tokens, we enable scalable parameter gener-
ation for hundreds of millions of weights, while
retaining explicit conditional control. Detailed pre-
liminaries with primers on diffusion models, con-
ditional generation and LoRA adapters have been
provided in Appendix C.

3.2 Two-Part Conditional Modules

We aim to synthesize LoRA updates Θ suitable
for adapting a foundation model W0 to a specific
downstream task. Formally, a LoRA update seeks
to fine-tune via a low-rank update ∆W = BA,
with B ∈ Rd×r and A ∈ Rr×d. However, in
practice, a large transformer typically has multi-
ple trainable matrices across different layers; we
use Θ = {∆W (l)} to denote all LoRA updates,
where each ∆W (l) factors into B(l)A(l). Merging
these updates with W0 yields the adapted weights
for inference. Our approach aims to generate these
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updates ∆W directly via a diffusion model con-
ditioned on: (1) the base model and (2) a textual
description of the task.
Base-Model Encoding. We rely on an encoder
fbase that maps the entire base model weights W0

to a compact embedding cmodel = fbase(W0). We
flatten certain structural metadata from W0 (dimen-
sion, layer count, special tokens), and convert this
into a string. Then we pass this string through an
encoder which will generate an embedding vector.
This embedding vector ensures that the generative
process "knows" the architecture and dimension of
W0, so that the LoRA updates we synthesize are
structurally compatible with it.
Textual Prompt Encoding. We simultaneously
feed in a textual description T of the downstream
task–e.g. "LoRA adapter for sentiment classifica-
tion", or "LoRA Adapter for SST-2 task" along-
side some fewshot examples from the dataset itself.
An encoder ftext converts T into a condition vec-
tor ctext = ftext(T ). This can be realized by a
pretrained text encoder like CLIP (Radford et al.,
2021) or T5 (Raffel et al., 2019), depending on
the application. This textual embedding imposes
semantic constraints on the desired LoRA adapter.

Finally, we combine these two embeddings
through concatenation into a global condition c:

c = [cmodel ; ctext] (1)

Throughout training and inference, c is provided
to the generative modules so that both model en-
codings and textual instructions guide the LoRA
generation.

3.3 LoRA Tokenization and Recurrent
Prototypes

Tokenization. To handle LoRA updates at large
scale, we adopt a tokenization approach similar to
RPG (Wang et al., 2025). In particular, we break
each ∆W (l) ∈ Rdl×dl into fixed-size tokens:

❶ Flatten and Group: We flatten each layer’s
LoRA update ∆W (l) and then apply normal-
ization per layer to reduce any distributional
shifts.

❷ Splitting into Tokens: We slice flattened vec-
tor at a predetermined token size k. Large
layers simply produce more tokens; small lay-
ers produce fewer, and to make them of the
same lengths, we pad them accordingly.

❸ Positional Annotations: Each token uj is
annotated with a layer index l and an intra-
layer offset to preserve ordering. We represent
these via simple sinusoidal embeddings pj
concatenated with the tokens.

After repeating the above process for all layers,
we obtain a sequence {u1, . . . , uT }. Each LoRA
checkpoint Θi thus yields a "token list" plus condi-
tions ci.

Recurrent Prototypes. Following the insights
from RPG (Wang et al., 2025), we incorporate a
recurrent module fϕ to handle the token sequence.
Given the tokens uj , the module produces "proto-
type" vectors pj , that summarize local correlation.
Formally,

pj , hj = fϕ(uj , hj−1) (2)

where hj−1 is the recurrent hidden state from to-
ken j − 1. We use a small memory-efficient mod-
ule based on Mamba (Gu and Dao, 2023). Once
we reach the final token, the set of prototypes
{p1, . . . , pT } collectively encodes the entire LoRA
adapter Θ in a compact representation. This en-
sures that the network can scale to large LoRA sets,
without needing to flatten them into one huge input.

3.4 Conditional Diffusion

We adopt diffusion-based generative model, specif-
ically 1D convolution network, to denoise each
token, conditioning on both the recurrent proto-
types pj and global conditions c. Let uj,0 = uj be
the original clean token. The forward process adds
noise across time steps T :

uj,t = αtuj,0 + σtϵ, ϵ ∼ N (0, I) (3)

Yielding highly corrupted tokens at large t. The
reverse process is learned by a denoising network
ϵθ, which predicts the noise given the current state,
the prototype pj , and the condition c. We train this
network using the usual noise prediction loss:

Ldiff (θ, ϕ) =

T∑

t=1

E
[
∥ϵ− ϵθ(uj,t, pj , c, t∥2

]

(4)
This allows us to train the diffusion model, as well
as pass the gradient through the recurrent module,
without having to explicitly train it.
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Table 2: Experimental results on different Image Generation and Multi-modal Tasks.

(a) FID scores (lower is better) for Stable-Diffusion
2.1 adapted to four target styles. “Stable-Diffusion
2.1” uses the original model directly, “Original
LoRA” denotes standard fine-tuning, and “Ours”.
Best results are represented by bold.

Pokemon PixelArt Cartoon Retro
FID(↓) FID(↓) FID(↓) FID(↓)

Stable-Diffusion 2.1 89.45 104.56 110.22 145.23
Original LoRA 24.40 26.89 25.61 42.39
ORAL (Ours) 23.95 26.32 25.77 41.50

(b) Performance comparison on Flickr30K, NoCaps,
and DocVQA datasets. Retrieval@1 is reported for
Flickr30K and NoCaps, and accuracy is reported for
DocVQA. Best results are in bold.

Flickr30K NoCaps DocVQA
Retrieval@1(↑) Retrieval@1(↑) Accuracy(↑)

Qwen-7B-VL 85.78 121.42 65.11
Original LoRA 96.65 132.76 84.53
ORAL (Ours) 96.72 134.81 84.49

Table 3: Performance comparison on seven NLP datasets (BoolQ, SST-2, MRPC, RTE, Winogrande, WNLI, GSM8K) using
accuracy as the evaluation metric. We report results for the Mistral-7B base model, Original LoRA baseline, and our conditional
recurrent diffusion method.

BoolQ SST-2 MRPC RTE Winogrande WNLI GSM8K
Accuracy(↑) Accuracy(↑) Accuracy(↑) Accuracy(↑) Accuracy(↑) Accuracy(↑) Accuracy(↑)

Mistral-7B 83.58 66.86 65.20 67.51 74.11 57.76 6.37
Original LoRA 91.01 95.99 89.46 87.73 85.95 83.11 32.04
ORAL (Ours) 90.67 ↓ 0.25 96.01 ↑ 0.02 89.23 ↓ 0.23 86.34 ↓ 1.39 86.10 ↑ 0.15 83.11 ↑ 0.00 34.67 ↑ 0.63
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Figure 2: Comparison of parameter generation capacity be-
tween our proposed method, ORAL, and the baseline Cond
P-Diff. ORAL effectively generates LoRA adapters at a signifi-
cantly larger scale (e.g., 7B Models), surpassing the capacity
of Cond P-Diff, which fails to operate efficiently at higher
parameter scales. This demonstrates ORAL’s ability to handle
large-scale parameter synthesis, crucial for adapting modern
large language models.

4 Experiments

In this section, we will evaluate our conditional
large-scale LoRA generation method to gener-
ate parameters across multiple tasks, models, and
modalities. We first report our experimental setup
that is constant across all experiments, like train-
ing details, and then experiment-dependent settings
and results are contained within their own sections.

4.1 Experimental Setup

Training Details. We train our conditional re-
current diffusion model for 100, 000 iterations on
eight A6000 GPUs. Each run processes tokens of
fixed size 8196, leveraging a Mamba (Gu and Dao,
2023) block as the recurrent backbone alongside a
1D convolution diffusion network. We encode the
base model via a text description passed through a
BERT-Base-Uncased (Devlin et al., 2018) encoder,
while task prompts are handled by the CLIP (Rad-
ford et al., 2021). Within each experiment, we

devote one training pipeline per task, ensuring the
model fully learns the distribution of LoRA param-
eters tailored to that specific objective. For all the
experiments we set our LoRA rank to be 8, how-
ever, an ablation study on various ranks was done.
Inference Details and Comparisons. During in-
ference, our approach takes as input both the textual
prompt and the base-model description. We initial-
ize each token with Gaussian noise and then run
through our learned 1D convolutional diffusion net-
work, conditioned on the recurrent prototypes from
Mamba and the global conditions. Thanks to the
tokenization scheme, inference scales to hundreds
of millions of LoRA parameters without memory
overflow. Notably, no existing method can gener-
ate large-scale LoRA parameters conditionally in
this manner, so we do not compare against external
baselines for a like-for-like evaluation. Instead, we
focus on our method’s ability to effectively synthe-
size LoRA adapters across various tasks and model
sizes and compare them to the original results. For
evaluation, we synthesize LoRA parameters three
times (via different random seeds) for each tar-
get condition. We merge these generated LoRAs
into the base model and measure downstream per-
formance, reporting the average (and sometimes
best/min) accuracy.

4.2 Performance on Image Generation Task

Setup and Datasets. In this experiment, we
test our method’s ability to adapt Stable-Diffusion
2.1 (Rombach et al., 2022), to four distinct styles,
each realized as a LoRA Adapter: Pokemon, Pix-
elArt, Cartoon, and Retro. Concretely, we treat
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Stable-Diffusion as the base model and synthesize
separate LoRA parameters to specialize it for each
of the four styles. We evaluate image generation
quality using the FID score, sampling images from
the adapted model in each style and comparing
their statistics to a style-specific reference set. We
compare the results from our generated LoRA with
the original LoRA as well as the zero-shot perfor-
mance of the base model to motivate the need for
fine-tuning.
Results. Table 2a reports the FID scores for all four
tasks and we can summarize our results as follows:
❶Comparison with original LoRA: Our method
closely matches or slightly surpasses standard
LoRA fine-tuning in terms of style fidelity, as mea-
sured by the FID. In particular, we observe improve-
ments in FID for Pokemon (0.45 decrease) and
PixelArt (0.57 decrease), while achieving nearly
identical results for Cartoon (0.16 increase) and
a clear improvement for Retro (0.89 decrease).
These results demonstrate that our conditional re-
current diffusion method successfully captures and
reproduces most of the style-specific characteristics
traditionally obtained through gradient-based fine-
tuning. ❷Comparison with Base Model: Com-
pared to the original Stable-Diffusion 2.1 (without
LoRA), our generated LoRA adapters significantly
enhance image-generation quality across all eval-
uated styles. Specifically, we achieve substantial
FID reductions for the evaluated styles—Pokemon
(89.45→ 23.95), PixelArt (104.56→ 26.32), Car-
toon (110.22 → 25.77), and Retro (145.23 →
41.50). These improvements confirm our model’s
effectiveness at synthesizing style-specific adapters,
greatly enhancing style consistency.

4.3 Performance on Multi-modal Tasks

Setup and Datasets. The goal of this experiment
is to evaluate our framework for LoRA parameter
generation on multi-modal tasks. The experimental
setup consists of adapting the base model Qwen-
7B-VL (Bai et al., 2023), using LoRA adapters
specialized for three distinct multimodal tasks: (1)
Flickr30K (Plummer et al., 2015): a captioning
task, (2) NoCaps (Agrawal et al., 2019): another
captioning task, and (3) DocVQA (Mathew et al.,
2020): a document based Visual Questioning An-
swering Task. We compare our method against the
zero-shot performance of the base model, as well
as the original LoRA adapter to showcase the gen-
eration. For Flickr30K and NoCaps, we utilize the
Image-to-Text Retrieval at 1 metric, while for the

DocVQA task we use Accuracy.

Results. The results for all three multi-modal tasks
are summarized in Table 2b. Our method closely
matches or slightly surpasses the Original LoRA
baseline for image-to-text retrieval tasks, as mea-
sured by Retrieval@1. Specifically, we observe im-
provements in Retrieval@1 for Flickr30K (0.07 in-
crease) and NoCaps (2.05 increase). However, for
the DocVQA dataset, our accuracy slightly trails
Original LoRA by 0.04%. These results confirm
that our conditional recurrent diffusion method
effectively captures task-specific characteristics,
demonstrating comparable or superior performance
to gradient-based LoRA fine-tuning.

4.4 Performance on NLP Tasks

Setup and Datasets. We would also like to eval-
uate the quality of our LoRA adapters for NLP
Tasks. We test our framework’s ability to adapt
the base model, Mistral-7B (Jiang et al., 2023), us-
ing LoRA adapters specifically tailored for seven
diverse NLP datasets where five of them: BoolQ
(Boolean Question-Answering Task), SST-2 (Sen-
timent Analysis Task), MRPC (Paraphrase Detec-
tion Task), RTE (Recognizing Textual Entailment
Task), WNLI (Natural Language Inference Task)
are from SuperGLUE Benchmark (Wang et al.,
2019) as well as 2 other tasks: Winogrande Bench-
mark (Sakaguchi et al., 2019) (Commonsense Rea-
soning Task), and GSM8K (Cobbe et al., 2021)
(Grade-school Math Problems). For each down-
stream task, we calculate the accuracy and report it
for comparison.

Results. Our third experiment evaluates our
method’s effectiveness in generating LoRA parame-
ters for natural language processing tasks using the
Mistral-7B model. As shown in Table 3, our gener-
ated LoRA parameters demonstrate strong perfor-
mance across seven diverse NLP tasks. When com-
pared to the Original LoRA baseline, our method
achieves competitive or superior results, with slight
improvements on SST-2 (+0.02%), Winogrande
(+0.15), and GSM8K (+0.63), identical perfor-
mance on WNLI, and only marginally lower ac-
curacy on BoolQ (−0.25), MRPC (−0.23), and
RTE (−1.39). More importantly, our generated pa-
rameters substantially outperform the Mistral-7B
base model across all tasks, with remarkable im-
provements ranging from +11.99 on Winogrande
to +29.15 on SST-2 and +28.30 on GSM8K. The
most significant gains appear in specialized rea-
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Dataset
R = 2 R = 4 R = 8 R = 16 R = 32

Original Ours Original Ours Original Ours Original Ours Original Ours
BoolQ 90.52 91.43 90.81 91.27 91.01 90.76 91.07 90.74 90.00 88.44
MRPC 87.30 88.42 89.42 89.96 89.46 89.23 89.22 88.99 88.97 87.04

Table 4: Performance comparison between Original LoRA and our method on BoolQ and MRPC datasets across different
LoRA ranks R. Results are reported in accuracy (%).
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Figure 3: Accuracy comparison of our synthesized
LoRA adapters against zero-shot base models on the
unseen evolved Mistral continually pretrained on Al-
pacaGPT4.
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Figure 4: Accuracy comparison of our synthesized
LoRA adapters against zero-shot base models on
the unseen evolved Mistral continually pretrained on
GPT4LLM.

soning and classification tasks, demonstrating that
our conditional generation approach can effec-
tively capture task-specific adaptations without tra-
ditional gradient-based fine-tuning. These results
validate our proposed method’s capability to gen-
erate high-quality LoRA parameters that match
or occasionally exceed traditional fine-tuning ap-
proaches while offering the advantages of our scal-
able, conditional generation framework.

4.5 Generalization on Evolving Models
Setup and Datasets. In this experiment, we investi-
gate the generalization capability of our conditional
recurrent diffusion framework to synthesize LoRA
Adapters for evolving base models not seen during
training. PortLLM (Khan et al., 2024) shows that
most of the closed source models go through data
updates (i.e., evolution) that changes the model
weights, hence requiring re-fine-tuning, which can
be quite costly sometimes, or can be a hindrance
due to the lack of data availability (time-sensitive
access). To tackle this, we showcase the gener-
alizability of our method in such an evolving set-
ting, so that we do not have to re-fine-tune a newer
evolved model on a downstream task, instead we
can prompt our framework to generate the LoRA
parameters that can be directly plugged in any iter-
ation of the base model. Specifically, we use LoRA
adapters trained on base models of the same ar-
chitecture but different pertaining data to simulate
the evolution. For the downstream tasks we utilize

six datasets: BoolQ, SST-2, MRPC, RTE, Wino-
grande and GSM8K, and for the pretrained base
model we utilize the 3 different time steps (evo-
lutions): Base Mistral-7B Model (t = 0), Mistral
continually pretrained on {OpenOrca} (Lian et al.,
2023) (t = 1), and Mistral continually pretrained
on {OpenOrca,OpenPlatypus (Lee et al., 2023)}
(t = 2). For each of these base models, we curate
all 6 LoRAs, so we have a total of 18 LoRAs in our
training set. Then we synthesize LoRA adapters
for t = 3 and t = 4 for base models: Mistral
continually pretrained on {OpenOrca, OpenPlaty-
pus, AlpacaGPT (Taori et al., 2023)} and Mistral
continually pretrained on {OpenOrca, OpenPlaty-
pus, AlpacaGPT, GPT4LLM (Peng et al., 2023)},
which are both unseen base models for the trained
pipeline. Then we compare the zero-shot perfor-
mance of these pretrained models, against our gen-
erated LoRAs to showcase the improvement.

Results. The results for the experiment are
summarized in Figures 3 and 4, comparing
zero-shot performance on two unseen evolved base
models (AlpacaGPT4 and GPT4LLM) against
LoRA adapters generated by our framework ORAL.
❶Performance Improvement over base models:
Our generated LoRA adapters demonstrate no-
table improvements, with the highest accuracy
increases observed on SST-2 (10%) and GSM8K
(30%) tasks. ❷Generalization Capability: The
synthesized LoRA adapters effectively generalize
to unseen evolved models (t = 3 and t = 4),
significantly outperforming the zero-shot perfor-
mance of base models. The results demonstrate
that our conditional recurrent diffusion frame-
work successfully transfers learned adaptation
knowledge to new evolving base models without
requiring additional fine-tuning, underscoring the
robust generalization capabilities of our method.
❸Consistency Across Models and Tasks: The
synthesized adapters consistently demonstrate
improved or comparable performance across
diverse NLP tasks. Particularly, the task-specific
synthesized adapters for BoolQ, SST-2, MRPC,
and GSM8K consistently outperform the baseline,
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Figure 5: Ablation results showing accuracy comparisons across NLP tasks using random model embeddings, random textual
embeddings, and our method with meaningful embeddings. Higher accuracy achieved by our conditional embeddings highlights
their importance in guiding effective LoRA adapter generation.

indicating the broad applicability of ORAL.

4.6 Effect of Random Embeds.
In this ablation study, we evaluate the impact of ran-
dom embeddings on our conditional recurrent diffu-
sion framework by comparing performance across
six NLP datasets: BoolQ, SST-2, MRPC, RTE,
Winogrande, and GSM8K. Specifically, we com-
pare the accuracy achieved by our method using
meaningful conditional embeddings against two
baseline scenarios—random model embeddings
and random textual embeddings. The results are
summarized in Figure 5.

From the results, we observe that using mean-
ingful embeddings consistently outperforms both
random embedding scenarios across all evaluated
datasets. This indicates the importance of mean-
ingful conditioning for synthesizing high-quality
LoRA adapters. Interestingly, we see a more
substantial performance drop with random tex-
tual embeddings than with random model embed-
dings, particularly noticeable in tasks requiring nu-
anced semantic understanding, such as GSM8K
and SST-2. For example, in GSM8K, random tex-
tual embeddings show substantially lower accu-
racy than our method, underscoring the critical role
of textual conditioning in generating high-quality,
task-specific LoRA adapters. Conversely, random
model embeddings still demonstrate moderate per-
formance, suggesting that while base-model con-
ditioning contributes to effective parameter gener-
ation, textual conditioning provides more crucial
guidance.

4.7 Effect of LoRA Rank
In this ablation study, we analyze the impact of
varying the LoRA rank (R) on the quality of the
adapters generated by our conditional recurrent
diffusion method. We compare the performance
across two NLP datasets: BoolQ and MRPC, using
LoRA ranks of 2, 4, 8, 16, and 32.

The results in Table 4 provide some interesting
insights: ❶Comparison with Original LoRA:
Our method consistently matches or surpasses

the performance of Original LoRA across all
ranks, showing the effectiveness of conditional
generation even with limited parameter capacity.
❷Performance Variation Across LoRA Ranks:
We observe that as the LoRA rank increases, perfor-
mance initially improves and then slightly declines.
For example, on BoolQ, our method achieves
the highest accuracy at rank R = 4(91.27%) but
then sees a slight drop at higher ranks (90.76%
for R = 8 and further decreases at R = 32).
Similar trends are observed on MRPC, with peak
accuracy at rank 4. These observations highlight
the importance of carefully choosing an optimal
LoRA rank, balancing parameter efficiency and
performance. Lower ranks appear sufficient to
achieve competitive performance.

5 Conclusion
We introduced ORAL, a novel framework for con-
ditional recurrent diffusion that enables scalable
generation of Low-Rank Adaptation (LoRA) pa-
rameters at large scale. Our approach is designed
to address the critical challenge of adapting to con-
stantly evolving large language models without
the computational burden of retraining. By incor-
porating both model architecture and textual task
specifications as conditional inputs to the diffu-
sion process, ORAL achieves remarkable flexibility
and portability across model architectures while
maintaining performance comparable or superior
to traditionally trained LoRA parameters.

Our comprehensive experiments across various
diverse tasks, three state-of-the-art pre-trained mod-
els (Stable-Diffusion2.1, Mistral, Qwen-7B-VL),
and two modalities demonstrate the practical via-
bility of our approach for real-world deployment.
ORAL successfully scales to generate hundreds of
millions of parameters while preserving adaptation
quality. In the future, exploring the interpretability
of generated parameters could provide insights into
how different tasks influence parameter properties.
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Limitations

While ORAL introduces a novel and effective
framework for conditional, scalable, and portable
LoRA parameter generation, several limitations
should be acknowledged to provide a comprehen-
sive perspective on the current work and to outline
avenues for future research:
❶Generalization to Unseen Architectures and
Tasks: Our experiments demonstrated ORAL’s ef-
ficacy across a diverse set of LLMs, vision models,
and various tasks. However, the extent to which
ORAL can generalize to fundamentally different
or highly novel model architectures not encoun-
tered during its training remains an area for fur-
ther investigation. Similarly, its performance on
tasks that are drastically different from those in its
training data, or tasks requiring extremely nuanced
or specialized adaptations, would need more ex-
tensive testing. The reliance on specific encoders
(e.g., BERT for model architecture, CLIP for task
prompts) for conditioning might also introduce lim-
itations if these encoders do not adequately capture
the semantics of new model types or task descrip-
tions not well-represented in their own pertaining
❷Quality and Granularity of Conditioning In-
formation: The performance of ORAL is contin-
gent upon the quality and specificity of the base-
model architectural encoding and the textual task
descriptions. Ambiguous, incomplete, or poorly
formulated textual prompts, or overly simplified ar-
chitectural descriptions, might lead to suboptimal
LoRA parameter generation. The current method
of flattening structural metadata into a string for
model conditioning, while effective, might not cap-
ture all architectural nuances or inter-dependencies
that could influence optimal LoRA adaptation. Fu-
ture work could explore more sophisticated and
structured model conditioning mechanisms.
❸Computational Cost and Data Requirements
for Training ORAL: While the inference of LoRA
parameters using a trained ORAL model is efficient,
and the use of LoRA itself is parameter-efficient,
the initial training of the ORAL framework (the
conditional recurrent diffusion model) can be com-
putationally intensive. It requires a substantial and
diverse dataset of existing LoRA parameters paired
with their respective base models (and their archi-
tectural descriptions) and task specifications. Cu-
rating such a dataset across many models and tasks
can be a significant undertaking, and the availabil-
ity of such data may be a bottleneck for training

ORAL for new, less common domains or model
families.
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A Use of Generative AI

To enhance clarity and readability, we utilized
LLMs exclusively as a language polishing tool.
Its role was confined to proofreading, grammat-
ical correction, and stylistic refinement—functions
analogous to those provided by traditional grammar
checkers and dictionaries. This tool did not con-
tribute to the generation of new scientific content
or ideas, and its usage is consistent with standard
practices for manuscript preparation.

B Expanded Related Works

Conditional Generation. Recently, conditional
diffusion models (Corenflos et al., 2024; Bansal
et al., 2023; Dhariwal and Nichol, 2021a; Ho,
2022; Nichol et al., 2021) have surfaced as the
leading paradigm, fundamentally transforming ex-
pectations for conditional generation tasks. By
intertwining the mathematical elegance of gradual
noise reduction with advanced conditioning mech-
anisms, these models deliver unparalleled accuracy
in converting conditioning signals—especially text
descriptions—into coherent visual outputs. Our re-
search extends the boundaries of conditional diffu-
sion in a groundbreaking way, applying these tech-
niques to generate neural network parameters. This
marks a significant shift from conventional media-
focused applications, highlighting the broader po-
tential of conditional diffusion as a comprehensive
framework for structured output synthesis across
various problem domains.
Parameter Generation. Recent work has uti-
lized diffusion models for parameter generation (Li
et al., 2024a,b; Lin et al., 2024; Soro et al., 2024;
Wang et al., 2024; Erkoç et al., 2023; Peebles
et al., 2022). Notable progress has been made in
representation learning; NeRN (Ashkenazi et al.,
2022) showed that neural representations can di-
rectly encode weights of pre-trained convolutional
networks, while Hyper-Representations (Schürholt
et al., 2022) used autoencoders to capture latent
distributions. Furthermore, conditional parame-
ter generation has emerged as a promising area.

COND P-DIFF (Jin et al., 2024) and Tina (Li et al.,
2024b) introduced text-controlled methods for pa-
rameter generation, facilitating semantic guidance
of weight synthesis. Yet, many current methods
struggle with large-scale architectures like ResNet,
ViT, or ConvNeXt. RPG (Wang et al., 2025) pro-
poses a tokenization strategy with recurrent dif-
fusion for large-scale generation, but conditional
generation remains limited. Our work builds on
these studies, proposing a new method for large-
scale conditional parameter generation for LoRA
parameters that maintains high performance across
various tasks.

C Preliminary

C.1 Conditional Diffusion Models

A diffusion model (Ho et al., 2020) is the state-of-
the-art generation model, normally consisting of
a forward process that progressively adds noise to
training data, and a reverse process that learns to
remove noise step by step. When conditioned on
auxiliary information, these models further enable
controllable or guided generation, often referred to
as a conditional diffusion model. In this section
we go over the basics of (conditional) diffusion
models.
Forward Process. Let x0 ∈ X be a data sample
drawn from the true distribution q(x0). For a total
of T time steps, the forward process incrementally
corrupts x0 into {x1, x2, . . . , xT } by adding Gaus-
sian Noise:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI). (5)

Here βt is a small variance scheduled over steps
t = 1, . . . , T , and I is the identity matrix. After
many steps xT is nearly pure noise and thus easy
to sample from a known Gaussian. Crucially, this
forward process does not require training: it is
defined by a simple Markov Chain. An important
convenience is that at any step t, one can directly
draw xt from x0 via

xt =
√
αtx0 +

√
1 + αtϵ, αt =

t∏

s=1

(1− βs)

This closed-form reparameterization is often used
to simplify training objectives.
Reverse Process. While the forward process is
explicitly defined, the reverse process is more chal-
lenging: given a noisy sample xt, the model must
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predict xt−1. One assumes a Gaussian form:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))
(6)

where µθ and Σθ are learned neural networks with
parameters θ. Training proceeds by matching this
learned reverse process to the true (unknown) re-
verse distribution. A common simplified objective
is the mean-squared error between the model’s pre-
dicted noise and the actual noise injected in the
forward process:

L(θ) =
T∑

t=1

Ex0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
(7)

where xt is obtained by sampling noise ϵ and apply-
ing the forward formula above. Minimizing L(θ)
forces the reverse process to remove noise properly
at each time step. At inference time, one starts
from a random Gaussian sample xT and sequen-
tially applies pθ(xt−1, xt) to denoise it from t = T
down to t = 1. The result is a generated sample x0
that (approximately) follows the data distribution.
Conditional Diffusion Models. To allow control-
lable generation, a conditional diffusion model aug-
ments each step with a condition c. This condition
can represent any auxiliary information relevant
to the task—for instance, a text prompt, a domain
label, or a style embedding. The forward process
typically remains unchanged:

q(xt|xt−1, c) = q(x|xt−1) (8)

but the reverse process is now defined by

pθ(xt−1|xt, c) = N (xt−1;µθ(xt, t, c),Σθ(xt, t, c))
(9)

We then modify the training objective so that at
each step t, the model sees not only the noisy sam-
ple xt but also the condition c. A practical variant
of the training loss becomes:

Lcond(θ) =
T∑

t=1

Ex0,ϵ,c

[
∥ϵ− ϵθ(xt, t, τ(c)∥2

]

(10)
where τ(c) is an encoder or projection function that
maps c into a representation usable by the network.
At sampling time, we repeatedly apply the reverse
distribution

xt ∼ pθ(xt−1|xt, c), t = T, . . . , 1 (11)

ensuring that the resulting x0 is guided toward the
desired condition. This approach thus enables flex-
ible, high-quality generation with explicit control

over the style, content, or any other information
captured by c.

C.2 Low-Rank Adaptation
Let W0 ∈ Rd×d be a pretrained weight matrix in
a transformer model—for example, the weight of
a particular layer. A typical fine-tuning procedure
would update W0 directly, requiring substantial
storage and computation for large-scale models.
Low-Rank Adaptation or simply LoRA (Hu et al.,
2021) offers a more parameter-efficient approach
by assuming that the update ∆W ∈ Rd×d to W0

(the difference between W0 and the fully fine-tuned
matrix) can be factorized into a low-rank form:

∆W = BA (12)

where B ∈ Rd×r and A ∈ Rr×d are trainable
matrices, and r ≪ d is the rank of the decomposi-
tion. This drastically cuts the number of learnable
parameters: instead of adjusting all d2 entries of
∆W , LoRA only requires tuning 2rd parameters
(the entries in A and B). Thus, after fine-tuning,
the adapted weight matrix is

Wnew = W0 +∆W = W0 +BA (13)

enabling the model to learn task-specific adapta-
tions using significantly fewer parameters. This
approach maintains much of the flexibility of con-
ventional fine-tuning while being more efficient in
both computation and memory.
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