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Abstract

Large vision-language models (LVLMs) have
demonstrated exceptional capabilities in un-
derstanding visual information with human
languages but also exhibit an imbalance in
multilingual capabilities. In this work, we
delve into the multilingual working pattern of
LVLMs and identify a salient correlation be-
tween the multilingual understanding ability
of LVLMs and language-specific neuron activa-
tions in shallow layers. Building on this insight,
we introduce PLAST, a training recipe that
achieves efficient multilingual enhancement for
LVLMs by Precise LAnguage-Specific layers
fine-Tuning. PLAST first identifies layers in-
volved in multilingual understanding by mon-
itoring language-specific neuron activations.
These layers are then precisely fine-tuned with
question-translation pairs to achieve multilin-
gual alignment. Our empirical results on MM-
Bench and MMMB demonstrate that PLAST ef-
fectively improves the multilingual capabilities
of LVLMs and achieves significant efficiency
with only 14% of the parameters tuned. Further
analysis reveals that PLAST can be generalized
to low-resource and complex visual reasoning
tasks, facilitating the language-specific visual
information engagement in shallow layers1.

1 Introduction

Large vision-language models (LVLMs) have made
remarkable progress in understanding visual infor-
mation with human languages, achieving impres-
sive performance in multimodal tasks like visual
question answering (VQA) (Liu et al., 2024a,c; Lin
et al., 2024). However, they still struggle in multi-
lingual scenarios because the training corpora are
predominantly English-centric (Chen et al., 2023a).
This imbalance poses significant challenges for
their real-world applications across the globe.

* Corresponding author.
1The project will be available at: https://github.com/

fmm170/PLAST

Figure 1: The logit lens (Nostalgebraist, 2020) applies
the language modeling head (LLaVA-1.5-7B in our case)
to intermediate layer embeddings, producing one next-
token distribution per position (x-axis) and per layer
(y-axis). The blue-to-red gradient indicates entropy
levels, ranging from low to high. Full visualizations for
all languages are shown in Figure 9–13.

Recent efforts to enhance the multilingual abil-
ities of LVLMs primarily focus on two aspects.
One line of research (Qin et al., 2023; Zhang et al.,
2024b; Guo et al., 2023; Mu et al., 2023) involves
incorporating translation, either implicitly or ex-
plicitly, into the design of prompts, encouraging
the model to first comprehend questions in English
and then solve them step by step. However, the
inadequate multilingual understanding capability
of LVLMs often triggers cascading errors, lead-
ing to inferior performance. Another approach ex-
pands this idea by adopting a translate-then-train
strategy (Sun et al., 2025; Qu et al., 2024), where
English training data are first translated into mul-
tiple languages via machine translation, followed
by fine-tuning for multilingual instruction align-
ment. Despite effectiveness, these approaches rely
on accurately translating large-scale complex mul-
timodal data and full-parameter fine-tuning, which
limits their applicability in data-deficiency and
resource-constrained scenarios.
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When considering multilingual models, one
might think of capturing language-specific rep-
resentation in certain parts of these models. In-
spired by recent studies (Tang et al., 2024; Zhao
et al., 2024; Zhao and Zhang, 2024) on the mul-
tilingual mechanisms in large language models
(LLMs), which have verified that the multilin-
gual working pattern of LLMs can be divided into
three stages: language understanding, task-solving,
and language converting. Moreover, during this
process, the activation of language-specific neu-
rons (Fan et al., 2025) can serve as a crucial indi-
cator for distinguishing each working stage. We
further investigate whether this pattern persists in
LVLMs (§2). Our pilot study reveals that LVLMs
also follow this three-stage process for handling
multilingualism, with lower-level layers more en-
gaged in learning language-specific representations.
As shown in Figure 1, the Chinese query under-
goes an explicit process of language understanding
(Zh → En) and language converting (En → Zh).
This motivates us to unlock the multilingual ca-
pabilities more efficiently by precisely enhancing
language-specific representations.

To this end, we propose PLAST, a training recipe
designed to achieve efficient multilingual enhance-
ment for LVLMs, as outlined in Figure 2. Specifi-
cally, starting with a visual instruction-tuned model,
we first identify decoder layers mostly involved
in language understanding by monitoring the ac-
tivation of language-specific neurons using multi-
lingual image-text pairs (§3.1). More concretely,
we calculate the mean squared deviation (MSD)
of the numbers of neurons activated by different
languages and select the layers with higher MSD
scores. Subsequently, PLAST precisely fine-tunes
only these identified layers using a small amount
of image-question translation pairs (§3.2). This
improves its multilingual understanding ability by
precisely enhancing the language-specific represen-
tation while not affecting task-solving abilities at
higher layers.

To evaluate the effectiveness of PLAST, we con-
duct extensive experiments on two multilingual
VQA benchmarks, MMBench (Liu et al., 2024c)
and MMMB (Sun et al., 2025) across three LVLMs.
Experimental results demonstrate the effectiveness
of PLAST in improving multilingual performance,
with average gains of 8.0% and 4.0% on MM-
Bench and MMMB. Furthermore, compared to full-
parameter fine-tuning approaches, PLAST achieves
superior efficiency with only 15.6% and 12.5% of
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Figure 2: An overview of our method, PLAST.
denotes the question-translation data. For instance, the
instruction for training is: “Translate this from Chinese
to English: 这座建筑是什么样子的?”.

the parameters within 7B and 13B models tuned.
Further analysis reveals that PLAST can be general-
ized to low-resource and complex visual reasoning
tasks, facilitating the language-specific visual in-
formation engagement in shallow layers.

2 Preliminaries

Recent studies (Tang et al., 2024; Fan et al., 2025)
have underscored the pivotal role of language-
specific neurons within LLMs for multilingual pro-
cessing. Drawing from these findings, this sec-
tion starts with a preliminary analysis aimed at
exploring whether neurons within LVLMs exhibit
language-specific behavior and understanding their
significance for multilingual visual understanding.

2.1 Notation

LVLMs, represented by the LLaVA series (Liu
et al., 2023), typically comprise a vision encoder
with a pre-trained LLM. Given a visual input Xv

and a textual input Xt, the visual content is en-
coded into vision tokens Hv by a vision encoder
(e.g., CLIP ViT-L/14 (Radford et al., 2021)) and
a projection layer. Concurrently, the textual in-
put Xt is converted into textual embeddings Ht

via the LLM’s embedding layer. These vision to-
kens and textual embeddings, concatenated into H ,
are subsequently processed by the LLM (e.g., Vi-
cuna (Chiang et al., 2023)) to generate the output.

More precisely, the feed-forward network (FFN)
sub-layer within the i-th layer of the LLM back-
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Figure 3: The number of activated neurons Ri
l across

all non-English languages. “AVG” indicates the average
activation level computed over these languages.

bone is formulated as:

FFN(H i) =
[
f(W i

gateH
i)⊗ (W i

upH
i)
]
W i

down,
(1)

where W i
gate, W i

up ∈ Rdmodel×dinter are weight matri-
ces for the gate and up-projection respectively, and
W i

down ∈ Rdinter×dmodel is the down-projecting ma-
trix. f(·) denotes a non-linear activation function.

In the context of an FFN sub-layer, a neuron is
defined as a single column within W i

up, implying
that each FFN sub-layer contains dinter neurons. A
specific neuron in the i-th FFN sub-layer is consid-
ered activated if its corresponding value within the
f(W i

gateH
i) exceeds zero (Tang et al., 2024).

2.2 Experimental Setups for Pilot Study
To investigate the influence of language-specific
neurons on the multilingual understanding capabili-
ties of LVLMs, we conduct our pilot study using the
MMBench dataset (Sun et al., 2025). MMBench
is a comprehensive multilingual VQA dataset, fea-
turing image-question pairs annotated across six
distinct languages. For our analysis, we sample n
instances per language. We denote the language of
the question in each pair as l. For each language l,
we quantify the activation of neurons by the image-
question pair in the i-th layer as follows:

Ai
l = I[f(W i

gateH
i) > 0], (2)

where I is the element-wise indicator function. We
then normalize the number of activated neurons by
the total number of neurons in layer i to compute
the proportion of activated neurons as follows:

Ri
l =

∑dinter
k=1(A

i
l)k

dinter
. (3)

To analyze language-specific activation patterns,
we categorize activated neurons sets N i in layer i
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Figure 4: The overlap ratio Oi
l between non-English and

English activated neurons. “AVG” indicates the average
overlap ratio among all non-English languages.

by English and non-English. Let Lnon-eng denote
the set of all non-English languages. The overlap
ratio of activated neuron sets between each non-
English l ∈ Lnon-eng and English is computed as:

Oi
l =

|N i
l ∩N i

eng|
|N i

eng|
. (4)

2.3 Observations
Our analysis reveals significant language-specific
neurons activity throughout the decoder layers of
LVLMs. Illustrative data for the LLaVA-1.5-7B are
presented in Figure 3, which shows the count of
activated neurons per layer, and Figure 4, which de-
picts the overlap ratio of activated neurons between
non-English and English. We observe a progres-
sive decline in the total number of activated neu-
rons across non-English languages with increasing
layer depth. Conversely, the overlap ratio of acti-
vated neurons between non-English and English
increases, ultimately reaching a distinct peak.

This pattern suggests that language representa-
tions are initially distinct and independent, while
progressively converging toward an English-centric
pattern at greater depths. This confirms that certain
layers within the decoder are primarily respon-
sible for processing language-specific represen-
tation. Building upon this, we classify the layers
preceding the point where the average overlap ratio
among all non-English languages attains its maxi-
mum as language-specific layers. Full visualization
of all layers is available in Appendix A.

3 Methodology

Building upon our findings, we propose a training
method designed to achieve efficient multilingual
enhancement of LVLMs, which includes two pro-
cesses: (1) identifying layers responsible for multi-
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lingual understanding; (2) precisely fine-tuning the
selected layers to enhance multilingual capabilities.

3.1 Select Multilingual Understanding Layers
Prior research (Zhang et al., 2025a) suggests that
LVLMs predominantly extract crucial information
from visual representations in shallow to intermedi-
ate layers to facilitate the core task-solving process.
Indiscriminately fine-tuning all language-specific
layers might compromise inherent general capa-
bilities embedded within them. Consequently, we
introduce a more granular layer selection algorithm
designed to strike a balance between enhancing
multilingual understanding and maintaining the
model’s general abilities. To this end, we utilize the
mean squared deviation (MSD) to precisely mea-
sure the stability of neuron activation across differ-
ent languages. For each layer i within language-
specific layers K, we compute its MSDi as follows:

µi =
1

|L|
∑

l∈L
Ri

l , (5)

MSDi =
1

|L|
∑

l∈L
(Ri

l − µi)2, (6)

where L denotes the collection of all languages,
and Ri

l represents the normalized count of activated
neurons, as calculated by Equation (3).

A higher MSDi for a given layer indicates a
greater divergence in its activation pattern across
different languages, suggesting a more substantial
engagement in multilingual understanding rather
than general abilities. To quantify the average
engagement in multilingual understanding across
language-specific layers, we calculate as follows:

θ =
1

|K|
∑

i∈K
MSDi. (7)

Layers whose MSDi exceeds the threshold θ are
ultimately selected for fine-tuning, as these layers
contribute more significantly to multilingual under-
standing than to general capabilities.

3.2 Supervised Fine-Tuning for Enhancing
Multilingual Understanding

Recent studies (Basu et al., 2024; Zhang et al.,
2024a; Ye et al., 2025) have shown that text to-
kens effectively integrate visual information from
vision tokens via attention sub-layers, particularly
within the shallow layers of LVLMs. In light of
this, we undertake fine-tuning across all modules

within the selected layers. This not only preserves
the model’s fundamental ability to process visual
information within these crucial layers, but also
significantly enhances its capacity to comprehend
multilingual questions. Given the visual inputs Xv,
non-English questions Xt,l and their English coun-
terparts Xt,eng, the loss function is formulated as:

L = −
∑

l∈Lnon-eng

logP (Xt,eng | Xt,l, Xv; θ), (8)

where θ represents the parameters of the selected
layers actively involved in the fine-tuning process.

4 Experiment Settings

4.1 Datasets

To assess the efficacy of PLAST, our main exper-
iments are conducted on two multilingual VQA
datasets covering six languages, including Arabic
(Ar), Turkish (Tr), Russian (Ru), Portuguese (Pt),
Chinese (Zh), and English (En).

MMBench (Sun et al., 2025) consists of data in
six languages, translated from the original MM-
Bench (Liu et al., 2024c) using GPT-4 (OpenAI,
2023). These translations are subsequently verified
manually to ensure their accuracy.

MMMB (Sun et al., 2025) is compiled by sam-
pling items from the ScienceQA (Lu et al., 2022),
MME (Fu et al., 2023), and SEED-Bench (Li et al.,
2024) datasets, which are then translated into five
other languages using GPT-4.

4.2 Evaluation Metrics

We follow the evaluation settings from Sun et al.
(2025), primarily focusing on accuracy. During
our assessments, we employ the VLMEvalKit from
OpenCompass (Contributors, 2023), and ensure
consistent configuration settings across all com-
pared methods to facilitate a fair comparison.

4.3 Baselines

We compare our method with two types of base-
lines: prompting-based and training-based. To
validate the generalizability of PLAST, we select
three representative LVLMs with different sizes for
evaluation: LLaVA-1.5-7B/13B (Liu et al., 2024a)
and LLaVA-1.6-7B/13B (Liu et al., 2024b), and
Qwen-VL-Chat (Bai et al., 2024). Comprehensive
baseline details are provided in Appendix B.
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Method Training
Cost

Training
Layers

Trained
Param.

MMBench MMMB

Ar Tr Ru Pt Zh En Avg. Ar Tr Ru Pt Zh En Avg.

LLaVA-1.5-7B 34.6 42.4 54.8 61.1 58.1 64.7 52.6 41.7 43.1 55.1 59.2 57.7 66.2 53.8
+ ITP - - - 22.2 39.0 49.6 55.6 48.1 64.7 46.5 30.6 33.6 42.5 46.8 45.7 66.2 44.2
+ ETP - - - 35.2 40.6 58.1 58.0 52.7 64.7 51.6 42.4 45.3 57.5 58.7 57.6 66.2 54.6
+ M-SFT 7.3× 1-32 100.0% 39.3 50.2 54.9 57.6 58.4 63.7 54.0 44.3 47.3 56.4 58.4 55.7 63.4 54.2
+ QALIGN 2.8× 1-32 100.0% 24.3 29.0 39.7 39.7 38.7 44.6 36.0 36.3 40.7 43.8 41.3 41.2 49.6 42.2
+ PLAST 1.0× 1-5 15.6% 44.4 51.9 58.4 62.3 59.4 64.2 56.8 46.7 50.1 59.4 57.1 56.8 65.1 55.8

LLaVA-1.5-13B 46.6 53.2 61.6 63.0 63.2 69.0 59.4 45.9 50.7 62.6 61.7 61.6 69.8 58.7
+ ITP - - - 43.9 53.5 62.4 64.7 61.0 69.0 59.1 44.5 49.3 62.2 60.9 55.4 69.8 57.0
+ ETP - - - 42.8 49.4 60.2 59.5 61.0 69.0 57.0 45.0 50.9 62.9 58.5 63.8 69.8 58.5
+ M-SFT 12.5× 1-40 100.0% 48.4 59.5 60.6 61.7 60.9 67.1 59.7 48.7 53.0 60.1 63.1 59.9 68.1 58.8
+ QALIGN 4.9× 1-40 100.0% 45.9 57.4 59.1 61.8 59.2 66.9 58.4 47.5 47.2 56.8 55.5 54.6 62.7 54.0
+ PLAST 1.0× 1-5 12.5% 51.5 58.7 62.2 64.3 62.3 67.6 61.1 49.7 53.1 61.8 61.5 60.6 69.2 59.3

Qwen-VL-Chat 36.7 40.1 47.9 49.1 56.0 57.3 47.9 43.0 44.1 51.7 46.4 57.8 56.0 49.8
+ ITP - - - 23.5 37.2 42.6 44.8 49.5 57.3 42.5 33.2 34.6 39.3 34.4 46.0 56.0 40.6
+ ETP - - - 38.3 41.7 49.5 48.2 53.6 57.3 48.1 45.9 47.9 52.8 45.5 53.6 56.0 50.3
+ M-SFT 7.3× 1-32 100.0% 41.6 51.2 48.7 52.4 58.1 58.2 51.7 47.4 48.2 54.6 48.5 58.0 58.5 52.5
+ QALIGN 2.8× 1-32 100.0% 22.3 31.6 31.5 34.7 38.2 37.4 32.6 32.0 39.1 45.3 36.9 41.4 41.2 39.3
+ PLAST 1.0× 1-5 15.6% 47.9 50.6 51.8 54.6 58.7 59.0 53.8 48.4 52.6 54.8 50.2 56.1 60.7 53.8

Table 1: The Accuracy (%) on the MMBench and MMMB benchmarks. “Avg.” denotes the average accuracy across
six languages. “Training Cost” refers to the time required to train the models. “Training Layers” specifies the
decoder layers selected for trainig. “Trained Param.” indicates the proportion of trainable parameters in the LLM
backbone. Bold and underline numbers indicate the best performance and second performance among each group.

4.3.1 Prompting-based Methods
We select two established prompting strategies that
enhance the multilingual capabilities of LVLMs via
implicit and explicit translation, respectively.

Implicit Translation Prompting (ITP) (Shao
et al., 2024). To enhance the model’s ability
across multilingual scenarios, we prompt the model
to implicitly translate non-English questions into
English, enabling it to think in English.

Explicit Translation Prompting (ETP) (Qin
et al., 2023). This approach incorporates a two-
stage prompting strategy: first prompting the model
to explicitly translate non-English questions into
English, then solving the task in English. This
explicit translation mechanism has shown effective-
ness in improving multilingual performance.

4.3.2 Training-based Methods
Multilingual Supervised Fine-tuning (M-SFT)
further fine-tunes the visual instruction-tuned
model with multilingual visual-instruction data,
aiming to achieve better multilingual alignment.

QALIGN (Zhu et al., 2024) incorporates a ques-
tion alignment stage, where the model is first
trained to translate non-English image-question
pairs into English. Then, the model is further fine-
tuned using English-only visual-instruction data,
effectively leveraging the acquired language trans-
lation capabilities for visual instruction alignment.

4.4 Implementation Details

Due to the scarcity of multilingual visual instruc-
tion training data, we first sample English image-
text pairs from the ShareGPT4V dataset (Chen
et al., 2024) and then translate the English ques-
tions into five other languages using GPT-4 to con-
struct our training data. During the fine-tuning
process, we only train the first five decoder layers
of the visual instruction-tuned models. For more
details, please refer to Appendix C.

5 Experimental Results

We present the main results of LLaVA-1.5-7B/13B
and Qwen-VL-Chat on MMBench and MMMB
benchmarks in Table 1. The results of LLaVA-1.6-
7B/13B are presented in Table 7 in Appendix D.

LVLMs exhibit significant performance imbal-
ances in multilingual scenarios. As shown in
Table 1, while the LLaVA-1.5-7B model achieves a
strong performance of 64.7 on the MMBench and
66.2 on the MMMB in English, its performance
significantly declines in moderately low-resource
languages, such as Arabic. Specifically, it shows a
decrease of 46.5% (64.7 → 34.6) on the MMBench
and 37.0% (66.2 → 41.7) on MMMB. These per-
formance imbalances are notably exacerbated in
prompting-based strategies. Both implicit and ex-
plicit prompting strategies struggle to improve per-
formance and can even result in substantial decline.
Notably, ITP results in an average performance de-
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Figure 5: Average accuracy across different training
layers. The x-axis signifies training the decoder layers
from the first up to the specified layer. “R” denotes
randomly selected layers, and “A” denotes all layers.

crease of 21.7% in Arabic and 10.2% in Turkish
among the three models, primarily due to the trans-
lation inaccuracies triggered by the model’s inferior
performance in relatively low-resource languages.

PLAST enhances multilingual performance and
shows robust cross-model generalization. It
can be observed that PLAST consistently outper-
forms all baselines on both MMBench and MMMB,
achieving state-of-the-art performance. Specifi-
cally, it achieves an average improvement of 8.0%
and 4.0% on MMBench and MMMB respectively
across the three evaluation models. These results
highlight the effectiveness of PLAST in enhancing
the multilingual capabilities of LVLMs. Remark-
ably, PLAST leads to substantial gains for moder-
ately low-resource languages, with improvements
of 12.0% (41.7 → 46.7) in Arabic and 16.2% (43.1
→ 50.1) in Turkish on the MMMB for the LLaVA-
1.5-7B model. This suggests that PLAST, by lever-
aging only a modest amount of question-translation
data, effectively bridges language gaps to some ex-
tent. In addition, among all evaluated models of
varying architecture and scales, PLAST consistently
delivers improvements, highlighting its strong gen-
eralizability across different models.

PLAST demonstrates superior efficiency. Un-
like training-based baselines that require extensive
multilingual image-text data for full-parameter fine-
tuning, PLAST achieves remarkable efficiency by
utilizing less than half of the training data (see
Table 10) and selectively fine-tunes only shallow
decoder layers. As detailed in Table 1, PLAST

fine-tunes merely 15.6% and 12.5% of the LLM
backbone’s parameters in 7B and 13B models, re-
spectively, resulting in a reduction of the training

Method Hi Iw Ro Th Avg.

LLaVA-1.5-7B 5.8 7.0 21.9 14.6 12.3
+ ITP 1.7 3.5 2.8 12.3 5.1
+ ETP 9.5 6.7 4.8 8.6 7.4
+ M-SFT 8.3 3.0 34.3 18.9 16.1
+ QALIGN 9.8 4.3 19.8 12.7 11.7
+ PLAST (Ours) 10.7 10.2 36.7 20.8 19.6

Table 2: The accuracy (%) on the MaXM benchmark.

time by 7.3× and 12.5×. Additionally, compared
to the two-stage QALIGN, PLAST effectively miti-
gates catastrophic forgetting during continual fine-
tuning by precisely targeting the layers responsible
for multilingual understanding. This targeted fine-
tuning leads to significant improvements, with av-
erage performance gains of 42.5% and 26.3% on
MMBench and MMMB benchmarks, respectively.

6 Ablation Study and Further Analysis

We conduct extensive ablation studies and analysis
to verify the effectiveness of PLAST. For more
analysis, please refer to Appendix E.

Effect of layer selection strategy. To validate
the necessity of the layer selection, we conduct
ablation studies by training different layers within
LVLMs. Our method identifies the top five layers
as multilingual understanding layers by monitoring
the dynamics of language-specific neurons using
100 parallel image-question pairs. As depicted in
Figure 5, PLAST achieves the highest average accu-
racy on both the MMBench and MMMB. Training
with an insufficient number of layers hinders the
model’s ability to understand multilingual ques-
tions effectively, whereas excessive layers impair
the model’s general capabilities, resulting in a de-
crease in accuracy. These results highlight that mul-
tilingual understanding is predominantly localized
in the shallow layers of LVLMs. Precisely select-
ing layers that are actively involved in multilingual
comprehension is essential for effectively enhanc-
ing the multilingual abilities of LVLMs without
compromising their general abilities.

Extend to truly lower-resource languages.
Given that MMBench and MMMB primarily en-
compass medium-resource languages, we further
evaluate PLAST on MaXM benchmark (Chang-
pinyo et al., 2023) to demonstrate its generalizabil-
ity across a more diverse language families, par-
ticularly for low-resource languages. Specifically,
we select Hindi (Hi), Hebrew (Iw), Romanian (Ro),
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Method Hi Th Ru En Avg.

LLaVA-1.5-7B 38.1 38.8 41.3 47.8 41.5
+ ITP 45.1 51.7 55.8 47.8 50.1
+ ETP 50.0 55.0 59.2 47.8 53.0
+ M-SFT 42.8 47.2 48.8 45.1 46.0
+ QALIGN 26.6 28.5 25.8 28.4 27.3
+ PLAST (Ours) 56.9 59.5 58.4 46.2 55.3

Table 3: The accuracy (%) on M5-VGR benchmark.

and Thai (Th) for evaluation, with results presented
in Table 2. The empirical results reveal that PLAST

achieves substantial performance improvements of
45.7% and 67.6% improvements for Iw and Ro, re-
spectively, compared to the baseline models. These
significant gains demonstrate the strong generaliz-
ability of our approach in truly low-resource set-
tings. More details refer to Appendix F.1.

Generalization to complex reasoning tasks. To
evaluate the cross-task transferability of PLAST, we
conduct experiments on M5-VGR (Schneider and
Sitaram, 2024), a challenging visually grounded
reasoning benchmark spanning multiple languages.
As illustrated in Table 3, PLAST shows substantial
performance enhancements on complex reasoning
tasks, particularly for low-resource languages, e.g.,
Hi and Th, achieving an average improvement of
51.3% over the LLaVA-1.5-7B model. These find-
ings confirm that the benefits of PLAST extend be-
yond fundamental VQA capabilities to more com-
plex multimodal reasoning scenarios, highlighting
its versatility and broader applicability across di-
verse multilingual task domains. For more experi-
mental details, please refer to Appendix F.2.

PLAST indeed outperforms other parameter-
efficient fine-tuning strategies. To further
demonstrate the advantage of PLAST over other
parameter-efficient approaches, we compare with
the Low-Rank Adaptation (LoRA) (Hu et al., 2022;
Zhong et al., 2025; Zhang et al., 2025b) strategy.
Unlike PLAST that selectively fine-tunes all pa-
rameters within specific language-specific layers,
LoRA trains a small subset of parameters across
all layers. As shown in Table 4, with rank set to
512, PLAST requires fewer trainable parameters
while simultaneously achieving superior perfor-
mance, with improvements of 7.1% and 6.0% on
MMBench and MMMB benchmarks, respectively.
These results indicate the significance of language-
specific layers, which precisely activate the model’s
multilingual capabilities, effectively preventing per-

Method Training
Cost

Trained
Param. MMBench MMMB

LLaVA-1.5-7B - - 52.6 53.8
+ LoRA (r=512) 4.9× 19.8% 52.3 53.2
+ PLAST 1.0× 15.6% 56.8 55.8

LLaVA-1.5-13B - - 59.4 58.7
+ LoRA (r=512) 6.5× 15.8% 57.9 55.4
+ PLAST 1.0× 12.5% 61.1 59.3

Table 4: The average accuracy of LoRA training strategy
on the MMBench and MMMB test sets. For accuracy
of all languages, refer to Table 8.
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Figure 6: The comparison of the average overlap ratio
(columns) and the MSD of activated neurons (curves)
per layer in the LLaVA-1.5-7B model.

formance degradation associated with full-layer
fine-tuning, while maintaining parameter efficiency.
For more details, please refer to Appendix F.3.

Comparison of neuron activation and overlap
ratio before and after training. To further inves-
tigate neuron activation dynamics before and after
training, we compute the MSDi using Equation (6)
and the average overlap ratio across all non-English
languages as specified in Equation (4). As shown
in Figure 6, after training, the overlap ratio between
non-English and English activated neurons shows
a trend of an initial increase, followed by oscillat-
ing in the middle, and continuing to rise, which
is consistent with the trend before training, repre-
senting that the model’s representations gradually
align with English representations. Notably, the
overlap ratio across layers is significantly higher
after training, indicating that PLAST effectively
facilitates the transition from language-specific rep-
resentations to English-centered representations in
shallow layers. Moreover, the substantial decrease
in MSDi demonstrates that PLAST promotes more
consistent neuron activation patterns, suggesting
enhanced stability during multilingual processing.

Visual attention and semantic representation
analysis before and after training. To assess
the impact of multilingual alignment, we first uti-
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Question: ؟حصانهل يوجد 
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Figure 7: We compare the recognition of the object “horse” in images before and after training in LLaVA-1.5-7B
using LLaVA-CAM (Zhang et al., 2025a), which reveals how attention scores guide the model to focus on relevant
image regions during forward propagation based on the given questions. The case comes from the MMBench test
sets, and the Arabic question in English means “Is there any horse?”. For the visualization of the question in
Turkish, and some qualitative case studies of PLAST and other baselines, please refer to the Appendix G.

lize LLaVA-CAM (Zhang et al., 2025a) to visualize
the information flow from multilingual questions to
corresponding image tokens. As shown in Figure 7,
when processing an Arabic question explicitly ref-
erencing a specific visual element (e.g., “horse”),
models trained with PLAST demonstrate signifi-
cantly enhanced attention allocation to the relevant
regions in the 7th and 11th shallow layers. This indi-
cates that by encouraging alignment between visual
inputs and multilingual queries, PLAST enables the
model to precisely capture language-specific visual
features at early layers. Furthermore, we also in-
vestigate the transformation of linguistic represen-
tations through the model using t-SNE projections
of language embeddings across various layers. Fig-
ure 20 (see Appendix F.4) reveals that the semantic
space becomes notably more unified after training
with PLAST, thereby enabling more effective capa-
bility sharing across languages.

7 Related Work

With the acceleration of globalization, multilingual
LVLMs (Chen et al., 2023b; Li et al., 2023) have
gained great attention for their ability to handle
multiple languages comprehensively. However,
due to the training corpora being mainly English-
centric, these models perform significantly better
in English than in other languages, leading to an
imbalanced performance in multilingual scenarios.

Numerous approaches have been proposed to en-
hance the multilingual abilities of LVLMs, primar-
ily categorized into prompting-based and training-
based methods. Prompting-based methods lever-

age models’ inherent understanding capabilities to
translate non-English questions into English before
generating final responses. For instance, Qin et al.
(2023); Zhang et al. (2024b) employ either implicit
or explicit prompting to guide the model to solve
tasks step-by-step in English. Conversely, training-
based methods focus on synthesizing multilingual
training data via machine translation for multilin-
gual visual instruction tuning (Sun et al., 2025;
Maaz et al., 2024; Geigle et al., 2025). For example,
Sun et al. (2025) constructs multilingual image-text
pairs to train additional Mixture-of-Experts mod-
ules to convert English-biased features to language-
specific features for multilingual alignment.

Unlike these approaches, our work focuses on
achieving efficient multilingual capability enhance-
ment. Rather than relying on extensive translated
multilingual image-text pairs and full-parameter
fine-tuning, PLAST precisely identifies the spe-
cific layers responsible for multilingual understand-
ing, enabling more efficient multilingual alignment
while maintaining superior performance.

8 Conclusion

This work proposes PLAST, a novel training recipe
for efficient multilingual enhancement of LVLMs.
PLAST first identifies layers predominantly en-
gaged in multilingual understanding by monitor-
ing language-specific neuron activations. These
critical layers are then precisely fine-tuned with
translation pairs to achieve multilingual alignment.
Extensive evaluations show that PLAST signifi-
cantly enhances LVLM multilingual performance.
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Moreover, compared to full-parameter tuning meth-
ods, PLAST achieves superior performance and
efficiency with only 14% of parameters tuned. Fur-
ther analysis confirms its effectiveness across both
low-resource languages and more complex visual
reasoning tasks, demonstrating its broad applicabil-
ity in diverse multilingual scenarios.

Limitations

This work exhibits several limitations worth not-
ing. First, although our experiments cover a variety
of model types (e.g., the LLaVA series and Qwen-
VL-Chat) and model scales (7B/13B), we do not
conduct experiments on larger-scale models (larger
than 13B) due to limited computing resources. We
believe that PLAST still has great potential and
is worth exploring on larger-scale models in fu-
ture work. Second, while PLAST achieves com-
prehensive and efficient multilingual enhancement
across on the MMBench, MMMB, MaXM, and
M5-VGR benchmarks, the performance still in-
volves trade-offs across different languages. We
hypothesize that these trade-offs may arise from
imbalances in multilingual training data during the
pre-training and visual instruction tuning stages.
However, our work starts from the perspective of
language-specific layers to explore the efficient
enhancement of multilingual abilities in LVLMs,
rather than from the data-level. In future work, we
will explore data-centric strategies for improving
multilingual capabilities, especially data selection
and data augmentation.
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A Details of the number of activated
neurons and overlap ratio for all
models across all layers

We respectively present the complete visualization
across all layers of LLaVA-1.5-7B/13B, LLaVA-
1.6-7B/13B, and Qwen-VL-Chat in Figure 14-18.

B Experimental Details of baseline
methods

We conduct experiments on the visual instruction-
tuned LLaVA-1.5-Vicuna-7B/13B (Liu et al.,
2024a) and LLaVA-1.6-Vicuna-7B/13B models
(Liu et al., 2024b), and Qwen-VL-Chat. The
LLaVA series models are equipped with the CLIP
Vit-L/336px (Radford et al., 2021) as the vision
encoder and the Vicuna-1.5 (Chiang et al., 2023)
as the LLM backbone. And the Qwen-VL-Chat
model is equipped with Openclip’s ViT-bigG (Il-
harco et al., 2021) as the vision encoder and Qwen-
7B-Chat (Bai et al., 2023) as the LLM backbone.
The detailed baseline implementation is as follows:

B.1 Prompting-based-methods

Implicit Translation Prompting (ITP) (Shao
et al., 2024): For each question in the MMBench
and MMMB test sets, ITP implicitly prompts
LVLMs to first translate the non-English questions
into English before reasoning in English. Dur-
ing evaluation, we utilize the VLMEvalKit from
OpenCompass (Contributors, 2023) to evaluate the
MMBench and MMMB test sets, and adopt the
greedy decoding strategy for all models, setting
the maximum generation length to 256. The eval-
uation prompt template used for MMBench and
MMMB datasets is shown in Table 6. In the tem-
plate, {source_lang} can be replaced with any of
the following languages: Arabic, Turkish, Russian,
Portuguese, Chinese, Hindi, Hebrew, Romanian,
and Thai.

Explicit Translation Prompting (ETP) (Qin
et al., 2023): For each question in the MMBench
and MMMB test sets, ETP explicitly prompts
LVLMs to first translate non-English questions into
English, and then solve multimodal tasks with the
translated questions. The evaluation prompt tem-
plate used for MMBench and MMMB datasets is
shown in Table 6. In the template, {source_lang}
can be replaced with any of the following lan-
guages: Arabic, Turkish, Russian, Portuguese, Chi-
nese, Hindi, Hebrew, Romanian, and Thai. {Trans-
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Training Prompt Translate this from [{source_lang}] to [English]:\n[{source_lang}]:
{source sentence}\n[English]: {English sentence}

Table 5: The prompt used to train the decoder layers selected by PLAST.

MMBench & MMMB

ITP Prompt Translate this question from [{source_lang}] to English and then answer
with the option’s letter from the given choices directly.

ETP Prompt
Stage 1: Translate this question from [{source_lang}] to English.
Stage 2: {Translation result}\nAnswer with the option’s letter from the
given choices directly.

MaXM

ITP Prompt Translate this question from [{source_lang}] to English. \nAnd then only
output the short answer in {language}:

ETP Prompt
Stage 1: Translate this question from [{source_lang}] to English.
Stage 2: {Translation result}\nAnd only output the short answer in {lan-
guage}:

M5-VGR

ITP Prompt Translate the question from [{source_lang}] to English. Based on the two
images, is it correct? Yes or no? One word answer in English:

ETP Prompt
Stage 1: Translate this question from [{source_lang}] to English.
Stage 2: Based on the two images, is it correct to say {Translation result}
? Yes or no? One word answer in English:

Table 6: The prompt used for ITP and ETP baselines of MMBench, MMMB, MaXM, and M5-VGR test sets.

Method Training
Cost

Training
Layers

Trained
Param.

MMBench MMMB

Ar Tr Ru Pt Zh En Avg. Ar Tr Ru Pt Zh En Avg.

LLaVA-1.6-7B 37.2 46.0 57.9 62.3 60.6 68.0 55.3 40.5 44.5 62.4 60.6 60.1 70.1 56.4
+ ITP - - - 10.6 29.3 41.6 44.0 49.4 68.0 40.5 27.2 31.0 42.4 41.6 31.7 70.1 40.7
+ ETP - - - 35.3 40.2 59.5 58.7 56.1 68.0 53.0 43.5 47.1 62.8 62.5 59.9 70.1 57.7
+ M-SFT 7.3× 1-32 100.0% 41.7 52.0 56.6 61.8 59.6 65.6 56.2 47.4 47.9 59.8 59.4 58.3 68.4 56.8
+ QALIGN 2.8× 1-32 100.0% 35.7 43.3 53.1 54.1 51.1 58.8 49.4 40.3 42.1 51.2 47.9 47.7 59.6 48.1
+ PLAST 1.0× 1-5 15.6% 43.3 51.9 58.1 63.0 59.8 66.3 57.1 50.5 48.5 61.5 57.5 59.3 69.3 57.8

LLaVA-1.6-13B 45.4 52.9 61.9 64.1 64.5 70.9 59.9 45.4 50.6 67.5 65.6 66.8 73.5 61.6
+ ITP - - - 23.7 36.2 49.5 43.8 58.2 70.9 47.0 31.3 28.7 40.3 36.3 46.6 73.5 42.8
+ ETP - - - 42.0 49.3 60.5 62.9 60.3 70.9 57.7 49.0 54.7 67.3 62.7 67.4 73.5 62.4
+ M-SFT 12.5× 1-40 100.0% 47.3 54.1 60.8 64.7 63.4 69.7 60.0 50.9 51.4 67.1 64.2 64.9 72.4 61.8
+ QALIGN 4.9× 1-40 100.0% 39.2 49.9 53.6 55.2 51.7 59.5 51.5 48.8 48.3 57.2 51.5 52.2 62.9 53.5
+ PLAST 1.0× 1-5 12.5% 49.4 56.3 61.5 65.1 62.8 68.5 60.6 53.7 53.5 66.1 64.6 63.5 72.9 62.4

Table 7: The Accuracy (%) on the MMBench and MMMB benchmarks. “Avg.” denotes the average accuracy across
six languages. “Training Cost” refers to the time required to train the models. “Training Layers” specifies the
decoder layers selected for training. “Trained Param.” indicates the proportion of trainable parameters in the LLM
backbone. Bold and underline numbers indicate the best performance and second performance among each group.

Method Training
Cost

Training
Layers

Trained
Param.

MMBench MMMB

Ar Tr Ru Pt Zh En Avg. Ar Tr Ru Pt Zh En Avg.

LLaVA-1.5-7B - - - 34.6 42.4 54.8 61.1 58.1 64.7 52.6 41.7 43.1 55.1 59.2 57.7 66.2 53.8
+ LoRA (r=512) 4.9× 1-32 19.8% 37.5 48.3 53.1 56.2 56.9 62.0 52.3 43.8 46.6 55.2 56.3 54.6 62.8 53.2
+ PLAST 1.0× 1-5 15.6% 44.4 51.9 58.4 62.3 59.4 64.2 56.8 46.7 50.1 59.4 57.1 56.8 65.1 55.8

LLaVA-1.5-13B - - - 46.6 53.2 61.6 63.0 63.2 69.0 59.4 45.9 50.7 62.6 61.7 61.6 69.8 58.7
+ LoRA (r=512) 6.5× 1-40 15.8% 45.8 54.3 58.5 61.9 61.2 65.9 57.9 45.8 49.3 54.2 59.8 58.1 65.4 55.4
+ PLAST 1.0× 1-5 12.5% 51.5 58.7 62.2 64.3 62.3 67.6 61.1 49.7 53.1 61.8 61.5 60.6 69.2 59.3

LLaVA-1.6-7B - - - 37.2 46.0 57.9 62.3 60.6 68.0 55.3 40.5 44.5 62.4 60.6 60.1 70.1 56.4
+ LoRA (r=512) 4.9× 1-32 19.8% 41.6 48.9 56.2 61.0 59.4 66.4 55.9 46.3 44.8 59.1 57.0 57.9 66.0 55.2
+ PLAST 1.0× 1-5 15.6% 43.3 51.9 58.1 63.0 59.8 66.3 57.1 50.3 48.5 60.4 57.4 59.3 69.3 57.5

LLaVA-1.6-13B - - - 45.4 52.9 61.8 64.1 64.5 70.9 59.9 45.4 50.6 67.5 65.6 66.8 73.5 61.6
+ LoRA (r=512) 6.5× 1-40 15.8% 45.7 52.4 56.8 63.8 63.1 68.1 58.3 49.3 48.4 66.2 61.9 60.4 72.1 59.7
+ PLAST 1.0× 1-5 12.5% 49.4 56.3 61.5 65.1 62.8 68.5 60.6 53.1 53.5 66.1 64.6 63.5 72.9 62.3

Table 8: The Accuracy (%) on the MMBench and MMMB test sets of LoRA training strategy.
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Method
MMBench MMMB

Ar Tr Ru Pt Zh En Avg. Ar Tr Ru Pt Zh En Avg.

LLaVA-1.5-7B 34.6 42.4 54.8 61.1 58.1 64.7 52.6 41.6 43.1 55.1 59.2 57.7 66.2 53.8
+ PLAST 44.4 51.9 58.4 62.3 59.4 64.2 56.8 46.7 50.1 59.4 57.1 56.8 65.1 55.8
+ w/o MLP 39.2 45.4 56.1 58.1 55.8 61.9 52.8 44.5 46.8 57.2 50.4 54.9 63.6 52.9
+ w/o Attention 43.7 49.4 58.6 60.9 58.5 63.2 55.7 46.3 45.2 50.7 56.2 56.9 64.1 53.3

Table 9: The Accuracy (%) of training different sub-layers on MMMB and MMBench test sets across all languages.

lation result} can be replaced with the translation
result by the model itself in the first round of dia-
logue.

B.2 Training-based-methods

Multilingual Supervised Fine-tuning (M-SFT):
This method involves directly full-parameter
fine-tuning models with multilingual instruction-
following data during the visual instruction tuning
stage. During training, we adopt the training hy-
perparameter from Liu et al. (2024a), using the
M-ShareGPT4V (Sun et al., 2025) dataset. We
keep the vision encoder frozen and train the pro-
jector and the LLM backbone for one epoch using
eight NVIDIA A800 GPUs. The total batch size
is set to 128, and the learning rate is maintained at
2e-5. The maximum input sequence length is set to
2,048 tokens. During decoding, we adopt the same
decoding hyperparameter as the prompting-based
method.

QALIGN: Zhu et al. (2024) proposes a two-stage
training strategy to enhance multilingual abilities.
In the first stage, we train the visual instruction-
tuned model using multilingual question transla-
tion data paired with images, referred to as M-
ShareGPT4V-Q, to translate non-English questions
into corresponding English questions that convey
the same meaning. In the second stage, to recover
the general capabilities that were compromised dur-
ing the first stage, we employ the English image-
text instruction-following data paired with images,
used in the first stage, referred to as ShareGPT4V-
Sub, for visual instruction fine-tuning. In both two
stages, we freeze the visual encoder layers and fine-
tune the projection as well as all the decoder layers
in the LLM backbone for one epoch using eight
NVIDIA A800 GPUs. The total batch size is set
to 128, and the learning rate is set to 2e-5. The
maximum input sequence length is set to 2,048
tokens.

Function Dataset Usage Lang Size

Training
M-ShareGPT4V M-SFT Ar, Tr, Ru, Pt, Zh, En 138,000
M-ShareGPT4V-Q PLAST, QALIGN Ar, Tr, Ru, Pt, Zh 60,000
ShareGPT4V-Sub QALIGN En 12,000

Evaluation

MMBench - Ar, Tr, Ru, Pt, Zh, En 25,205
MMMB - Ar, Tr, Ru, Pt, Zh, En 11,879
MaXM - Hi, Iw, Ro, Th 1092
M5-VGR - Hi, Th, Ru, En 478

Table 10: Dataset Statistics used for training and eval-
uation. “Usage” indicates the training data used by
each method, “Lang” denotes the languages covered,
and “Size” denotes the total number of samples. “M-
ShareGPT4V” refers to the multilingual ShareGPT4V
dataset (Sun et al., 2025), and “ShareGPT4V-Sub” is a
subset sampled from ShareGPT4V (Chen et al., 2024).
“M-ShareGPT4V-Q” contains question-translation data
from “ShareGPT4V-Sub” and “M-ShareGPT4V”.

C Experimental Details of PLAST

C.1 Training and Evaluation Datasets

To avoid translation errors caused by overly com-
plex image-text pairs, we select the relatively sim-
ple sentence structures from the coco and GQA
datasets within the ShareGPT4V dataset. Then
we sort these data by length, extracting 7,200
and 4,800 image-text pairs from coco and GQA,
respectively, which we refer to as ShareGPT4V-
Sub. Subsequently, we translate the questions in
ShareGPT4V-Sub into Arabic, Turkish, Russian,
Portuguese, and Chinese using GPT-4 (OpenAI,
2023), followed by manual calibration. Finally, we
use these translated questions paired with images
to construct X-English question-translation data,
referred to as M-ShareGPT4V-Q for PLAST train-
ing. We provide detailed statistics of the training
set in Table 10, including the training data adopted
by each method, the total number of samples, and
the languages involved. For the main experiments,
we select MMBench and MMMB as the evalua-
tion benchmarks. Table 10 presents the data vol-
umes and the languages included in MMBench and
MMMB test sets. For the analysis experiment, we
chose MaXM and M5-VGR as evaluation bench-
marks. The specific data volume and included lan-
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Figure 8: Comparison of the average accuracy of train-
ing different sub-layers on MMBench and MMMB. The
detailed accuracy of all languages is shown in Table 9.

guages in these test sets are shown in Table 10.

C.2 Training Prompts

The prompt template employed for training is
shown in Table 5. The prompt explicitly trains mod-
els to translate multilingual questions into English.
In the template, {source_lang} can be replaced
with any of the following languages: Arabic, Turk-
ish, Russian, Portuguese, and Chinese. The place-
holder {source sentence} is substituted with the
multilingual questions, and {English sentence} is
replaced with the corresponding English questions
that convey the same meaning.

C.3 Training Details

We use LLaVA project2 as our training frame-
work. Training is conducted on eight NVIDIA
A800 GPUs using Deepspeed stage 2 (Rajbhandari
et al., 2020) for efficient multi-GPU distribution,
with training precision set to Bfloat16. We maintain
a total batch size of 128, a learning rate of 2e-5,
and a maximum input sequence length of 2,048
tokens. Both the LLaVA-1.5-7B/13B and LLaVA-
1.6-7B/13B models are trained over 2 epochs.

D Experimental Results of LLaVA-1.6

We present the complete results of LLaVA-1.6-7B
and LLaVA-1.6-13B in Table 7.

E Additional Analysis

FFN sub-layers in LLMs have been recognized
as storing the multilingual knowledge (Dai et al.,
2022; Zhao et al., 2024; Tang et al., 2024). There-
fore, we investigate the function of FFN and At-
tention sub-layers of selected layers by separately
trainig them. As indicated in Figure 8, compared

2https://github.com/haotian-liu/LLaVA

with only training the FFN and Attention sub-
layers, PLAST further improves average accuracy
by 5.1% and 4.8% across MMBench and MMMB
test sets, respectively. This indicates that PLAST,
by training the entire selected layer, not only im-
proves the fusion of language information and vi-
sual information but also enhances the multilingual
understanding abilities of LVLMs.

F Experimental Details of Ablation
Studies and Analysis

F.1 Experimental Details of MaXM
Benchmark

We follow the main experimental settings and uti-
lize GPT-4 to translate the “ShareGPT4V-Sub”
dataset into four low-resource languages included
in the MaXM test set (Hindi, Hebrew, Romanian,
and Thai) for mixed-language training. The evalua-
tion prompt used for MaXM test set is shown in Ta-
ble 6. To ensure a fair comparison and mitigate the
risk of hallucinations (Huang et al., 2025c, 2024a,
2025b,a, 2024b) that can arise from complex mul-
tilingual questions, we use evaluation scripts3 pro-
vided by Schneider and Sitaram (2024).

F.2 Experimental Details of Complex
Reasoning Tasks

Following the main experimental settings, we uti-
lized GPT-4 to translate the “ShareGPT4V-Sub”
dataset into Hindi and Thai as included in the M5-
VGR benchmark, and combined these translations
with Russian training data from “M-ShareGPT4V”
for mixed-language training. The evaluation
prompt used for the M5-VGR test set is shown
in Table 6. For a fair comparison, we use evalu-
ation scripts3 provided by Schneider and Sitaram
(2024).

F.3 Experimental Details of LoRA Training
Strategy

We use Low-Rank Adaptation (LoRA) (Hu et al.,
2022) as an alternative to M-SFT. For the LoRA
training, we use a rank of 512, and the LoRA tar-
get modules are ‘q_proj, k_proj, v_proj, o_proj,
up_proj, down_proj, gate_proj’. We set a total
batch size of 128, a learning rate of 2e-4 for the
LLM backbone, a learning rate of 2e-5 for the pro-
jector, with a 0.03 linear warmup ratio, and a max-
imum input sequence length of 2,048 tokens. All
the models are trained over 1 epoch.

3https://github.com/floschne/m5b
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F.4 Experimental Details of t-SNE
To better understand the model’s multilingual capa-
bility, we visualize the hidden state representations
of the final token in multilingual questions, as it
plays a crucial role in guiding the model’s subse-
quent output (Wendler et al., 2024). Specifically,
we randomly sample 250 instances from each of
the five languages in the MMBench test set and
extract 4096-dimensional hidden state representa-
tions from each layer of LLaVA-1.5-7B, both be-
fore and after training. These representations are
then projected into a 2D space using t-SNE for
visualization, as illustrated in Figure 20.

G Case Study

The visualization of attention scores for the ques-
tion in Turkish is shown in Figure 19. Further-
more, we provide several qualitative examples from
MMBench test sets in Figure 21 and Figure 22
to compare different methods of enhancing the
multilingual abilities on LLaVA-1.5-7B. As shown
in Figure 21, 22, the ITP often leads the model
to produce mere translations under low-resource
language conditions, failing to follow instructions
to provide the final answer. In contrast, PLAST

achieves efficient alignment of multilingual capa-
bilities in LVLMs by facilitating shallow-layer un-
derstanding of multilingual instructions and inte-
grating this information with visual features. In ad-
dition, we provide examples from the MaXM test
sets in Figure 23 and 24 respectively. As shown
in Figure 23 and 24, PLAST not only performs
well in multilingual VQA types of multiple-choice
questions, but also can follow instructions and an-
swer correctly in multilingual non-multiple-choice
question types.
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Figure 9: The complete visualization of next-token distributions in Arabic.
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Figure 10: The complete visualization of next-token distributions in Turkish.
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Figure 11: The complete visualization of next-token distributions in Russian.
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Figure 12: The complete visualization of next-token distributions in Portuguese.
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Figure 13: The complete visualization of next-token distributions in Chinese.
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Figure 14: The overlap ratio between non-English and English activated neurons and the normalized number of
activated neurons across non-English languages in the LLaVA-1.5-7B model.
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Figure 15: The overlap ratio between non-English and English activated neurons and the normalized number of
activated neurons across non-English languages in the LLaVA-1.5-13B model.
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Figure 16: The overlap ratio between non-English and English activated neurons and the normalized number of
activated neurons across non-English languages in the LLaVA-1.6-7B model.
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Figure 17: The overlap ratio between non-English and English activated neurons and the normalized number of
activated neurons across non-English languages in the LLaVA-1.6-13B model.
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Figure 18: The overlap ratio between non-English and English activated neurons and the normalized number of
activated neurons across non-English languages in the Qwen-VL-Chat model.

Question: Herhangi bir at var mı?

Input Layer 11 Layer 20 Layer 32Layer 7
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Figure 19: We compare the recognition of the object “horse” in images before and after training in LLaVA-1.5-7B
using LLaVA-CAM (Zhang et al., 2025a), which reveals how attention scores guide the model to focus on relevant
image regions during forward propagation based on the given questions. The case comes from the MMBench test
sets, and the question in English means “Is there any horse?”
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Figure 20: The final token representations from the MMBench test set are visualized using t-SNE for dimensionality
reduction. The distributions in LLaVA1.5-7B at the 1th, 10th, 18th, 26th, and 32th layers are compared before and
after training. Different colors represent different languages.

Instruction:

كوب .Aما هو الكائن في هذه الصورة؟ B. حاوية القمامة C. صَحن D. طبق<image>\n

LLaVA-1.5-7B:

What is the object in this picture? A. Cup B. Rubbish bin C. Plate D. Plate

+ ETP:

+ M-SFT:

+ Ours:

A

B

B

B

Figure 21: Example where PLAST can yield a correct answer compared to other baselines. The case comes from the
MMBench Arabic test sets, and the question in English means “What is the object in this picture? A. Cup B. Trash
can C. Bowl D. Plate”.

Instruction:
<image>\n

LLaVA-1.5-7B:

In which direction is Turkmenistan from Iran? A. East B. South C. West D. North

+ ETP:

+ M-SFT:

+ Ours:

D

C

C

A

土库曼斯坦在伊朗的哪个方向？A. 东 B. 南 C. 西 D. 北

Figure 22: Example where PLAST can yield a correct answer compared to other baselines. The case comes from the
MMBench Chinese test sets, and the question in English means “In which direction is Turkmenistan from Iran? A.
East B. South C. West D. North”.
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Instruction:

काांच के गिलास में तरल ककस रांि का है?<image>\n

LLaVA-1.5-7B:

Glass

+ ETP:

+ M-SFT:

+ Ours:

गुलाबी

टेबल

रंग का निरे्दश िही ं है, क्यनंक

What is the cup made of?

Figure 23: Example where PLAST can yield a correct answer compared to other baselines. The case comes from the
MaXM Hindi test sets. The question in English means “What is the color of the liquid in the glass?”, and the correct
answer in English means “pink”.

Instruction:
<image>\n

LLaVA-1.5-7B:

What is on the gas stove?

+ ETP:

+ M-SFT:

+ Ours:

סיר עם מכסה

Fire

stove

Kettle

?מה יש על הגז שנדלק

Figure 24: Example where PLAST can yield a correct answer compared to other baselines. The case comes from
the MaXM Hebrew test sets. The question in English means “What is on the lit stove?”, and the correct answer in
English means “A pot with a lid”.
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