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Abstract

Temporal question answering is an established
method for evaluating temporal reasoning in
large language models. Expected answers are
often numeric (e.g., dates or durations), yet
model responses are evaluated like regular text
with exact match (EM), unable to distinguish
small from large errors. In this investigative
work, we frame temporal question answering
as a numerical estimation task to assess the
shortcomings of EM. We introduce TempAn-
swerQA, a benchmark distilled from Test of
Time and TempTabQA, where all questions re-
quire a numerical, temporal answer, allowing
us to evaluate models beyond EM. We use the
forecasting metrics symmetric mean absolute
percentage error (SMAPE) and mean absolute
scaled error (MASE). With sSMAPE, we find
that error size and EM are decoupled. Mod-
els with low EM still have low sMAPE (both
20%), and some models have high sMAPE de-
spite high EM. Scaling errors by the deviation
of the ground truth data with MASE reshuf-
fles model rankings compared to EM, revealing
gaps in models’ understanding of temporal do-
main knowledge, especially when trained with
synthetic data. Lastly, the models’ most fre-
quent error is to deviate by only 1 from the
ground truth. SMAPE and MASE, unlike EM,
adequately weight these errors. Our findings
underscore the need for specialised metrics for
temporal QA tasks.

1 Introduction

Time is an inherent part of the real world, and rea-
soning about it is essential for intelligent behaviour
(Xiong et al., 2024). As such, temporal reasoning is
crucial in many domains, including high-stakes ar-
eas such as logistics (Li et al., 2023), finance (Wu
et al., 2023), and medicine (Blease et al., 2024),
which increases the stakes for adequate evaluation.
Temporal question-answering (QA) benchmarks
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Exact match

Q1: How many hours before an anaesthesia with
Halothane should you stop taking Levodopa?
Al: 8 Model A: 8 Model B: 24 X

Q2: What is the absolute time difference between Andi
and Lee in hours given Andi is in EST(-0500)
and Lee is in PST(-0800)?

A2:3 Model A: 5 Model B: 3

Conclusion Model A and B tie on exact match rate.

Temporal difference

Expected
v
Qt: 8 2
Model A Model B A
Expected
v
Q2: 35
Model A
Model B

Conclusion Model A has a smaller error than Model B.

Figure 1: Exemplary performance evaluation of two
models comparing exact match and temporal difference.
Both models have an exact match of 50%, but Model B
has a greater temporal difference than Model A.

are a well-established method for evaluating tem-
poral reasoning in large language models (LLMs),
and the binary string-matching metric exact match
(EM) is a widely used for this purpose (Wang and
Zhao, 2024; Wei et al., 2023).

While prevalent, EM does not consider the con-
tinuous nature of time. As illustrated in Fig. 1,
EM considers Model A and Model B to be tied,
despite Model A’s error being much smaller (A2h)
than Model B’s (A8h). Although continuous alter-
natives exist, such as ROUGE, METEOR (Gupta
et al., 2023) and F1 (Gruber et al., 2024), they
collapse to binary scores when temporal answers
consist solely of digits. The limitations of cur-
rent metrics have been noted across domains. In
medication direction systems, for example, these
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metrics are unable to distinguish acceptable from
lethal errors in medication schedules (Pais et al.,
2024) (e.g., Ql in Fig. 1). Therefore, current bench-
marks suffer from a mismatch between evaluation
and deployment risk. This work aims to address
this mismatch by exploring metrics more suitable
for the temporal nature of the task.

Exploring continuous alternatives to EM allows
us to differentiate between small and large errors.
Beyond that, continuous metrics are more suitable
for assessing temporal reasoning for two additional
reasons. First, studies by Jack Lindsey et al. (2025)
and Khodja et al. (2025) have shown that LLMs
tend to approximate the answer to a (temporal)
arithmetic task. Relying solely on EM underval-
ues models that approximate correct answers well.
Second, answers to temporal questions can be am-
biguous, such as calculating a person’s age using
only their birth year, where two answers with a
difference of 1 year could be true (Khodja et al.,
2025). This ambiguity is caused by transitional
times. With EM alone, we cannot distinguish rele-
vant errors from transitional time ambiguities.

We frame temporal QA as a numerical estima-
tion task and borrow two scale-free error metrics
from forecasting to evaluate LLMs beyond EM.
The first is the symmetric mean absolute percent-
age error (SMAPE) (Tofallis, 2015), which mea-
sures the percentage error of the model predic-
tions. The second is the mean absolute scaled error
(MASE) (Hyndman and Koehler, 2006). This met-
ric scales errors by a sensible baseline derived from
the benchmark data, thus aiming to measure the
models’ temporal domain knowledge.

Our contributions can be summarised as follows:

1. We sample QA pairs from recent temporal
benchmarks composed solely of questions re-
quiring temporal answers to explore the limita-
tions of EM. Augmenting questions with meta-
data allows us to transform model responses
into time-aware objects that are suitable for
regression-based metrics.

2. Our evaluation with the regression-based met-
ric SMAPE reveals that relative errors do not
increase much even for very low EM (both
~20 %). At the same time, it reveals outliers,
that is, models with large relative errors de-
spite a high EM. EM and sMAPE produce
similar but not identical model rankings, mak-
ing it a crucial addition to identifying robust
models that make smaller errors.

3. MASE scales errors by the deviation of the
ground truth data to assess the temporal do-
main knowledge of the models. It yields dif-
ferent model rankings than EM, lowering the
ranking of models trained on synthetic data.
MASE reveals that models can achieve high
EM and sMAPE and still make errors that
exceed what we expect, given sufficient tem-
poral domain knowledge.

4. Finally, by treating errors numerically, we
show that many model predictions are off by
only £1, caused by transitional times (e.g., de-
termining someone’s age based only on their
birth year). Furthermore, MASE shows that
the error magnitude is not symmetric to the
sign, and that errors with a positive sign are
significantly larger (> 0). Our findings un-
derscore the need for a specialised evaluation
procedure for temporal QA tasks and the in-
adequacy of using EM alone.

2 Related work
2.1 Temporal QA benchmarks

Generally speaking, temporal QA aims to evaluate
a model’s understanding of time. Prior work of-
ten thematises the numeric nature of this task. The
seminal QA benchmark TempQuestions by Jia et al.
(2018) defined temporal questions as those that
have a temporal expression (e.g. “three weeks”),
a temporal signal (e.g. “before”), or expect a tem-
poral answer (“When...”). The latter indicates that
the expected answer needs to be a measure of time.
Tan et al. (2023), while probing temporal reasoning
in LLMs, identified a connection between a lack of
temporal reasoning and shortcomings in numeric
reasoning. Again, this highlights the central role of
numeric properties in time in temporal QA. Further-
more, temporal reasoning capabilities have often
been linked to mathematical reasoning skills (Su
et al., 2024b; Yuan et al., 2024; Fatemi et al., 2025;
Wang and Zhao, 2024; Islakoglu and Kalo, 2025).
While there is consensus on the numeric properties
of time, it has not been studied in isolation.

2.2 Evaluation challenges in temporal QA

All benchmarks mentioned above either use token-
level binary metrics or EM for evaluation. In one
instance, ROUGE and METEOR were also used
(Gupta et al., 2023).

Non-binary evaluations were conducted in some
instances. Tan et al. (2023) and Wang et al. (2025)
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measured the mean absolute error for a selection of
temporal arithmetic tasks. However, this measure
cannot be compared across temporal resolutions
(days vs. years). Wallat et al. (2025) proposed a
date-matching metric. However, their experiments
focused on event dating and robustness against dif-
fering time granularities. Tan et al. (2023) also
measured trend accuracy, recognising that tempo-
ral errors are directional. Since this metric is binary,
it does not detect directional biases.

Evaluations of models in an application setting
are less informative because established metrics
do not consider the numeric nature of time (Pais
et al., 2024). Zhang et al. (2025) mitigated this
issue by using a temporal version of the F1 score
that considers only temporal entities. This score
is adequate for evaluating longer texts, but not in
settings where answers consist only of digits, such
as our own.

A review by Su et al. (2024a) shows that a grow-
ing body of work in temporal QA focuses on knowl-
edge graphs. They often aim to retrieve the correct
answer from graphs. Retrieval is evaluated differ-
ently from free text, so the concerns raised in this
work do not apply here.

2.3 Transitional times

The necessity of investigating error magnitudes has
been shown before. Khodja et al. (2025) found that
LLMs have a significantly higher log-likelihood
for answers constituting transitional times (errors
of +1) than for the correct answer. They hypothe-
sised that transitional dates are more prevalent in
the models’ training data since events tend to be
mentioned more often around their start and end.
However, the log-likelihood of answers is not avail-
able for closed-source models.

Fatemi et al. (2025) also observed a higher pro-
portion of errors equal to £1 in duration questions
and suspected shortcomings in the models’ arith-
metic precision. Despite these findings, no alter-
native to EM has been proposed. We, therefore,
see an urgent need to investigate model errors on a
continuous scale.

3 Methods and data

3.1 Dataset creation

Existing temporal QA benchmarks expect a mix of
free text and temporal answers. “Who won the Os-
car for best actor in 20247 is a temporal question,
but its answer is not. “When was Oppenheimer

. Temporal — Answer
Question Answer P
answer  format
How many years did Art
Carney work as an actor 54 v # years

starting from 19397

Barbara
Isaac

Who was the spouse
of Art Carney in 1970?

Table 1: Example of labelling results for TempAn-
swerQA. Questions from TTQA and ToT expecting a
temporal answer (date or duration) were retained. The
expected answer format was added to facilitate parsing
answers as numeric objects. Newly created columns are
in italics.

released?”, on the other hand, expects a temporal
answer. We classified an answer as a temporal an-
swer if it is a date or a duration (including age).
Currently, no QA dataset expects only (numeric)
temporal answers. To fill this gap, we sampled
a QA dataset that expects only temporal answers,
which we refer to as TempAnswerQA. Tab. 1 con-
tains an example of the dataset.

The dataset should reflect current benchmarks
and, therefore, should include stand-alone ques-
tions, questions that require context, real-world
questions, and synthetic ones. The latter has be-
come increasingly relevant for combating leakage
into LLMs’ training data. Test of Time (ToT) and
TempTabQA (TTQA) meet these requirements 2,

ToT (Fatemi et al., 2025) is a synthetic QA
benchmark for temporal reasoning. It consists of
an arithmetic and a semantic subset. The arith-
metic subset has a real-world focus and contains
questions that require time-related computations.
The semantic subset consists of questions related to
randomly generated graphs that assess the model’s
understanding of temporal semantics and logic.

The enhanced version of TTQA evaluates a
model’s ability to answer temporal questions over
semi-structured Wikipedia tables (Deng et al.,
2025). The authors split the dataset to mitigate
data leakage problems into a head and tail dataset,
where the latter consists of less-frequented tables.

We manually extracted questions that require a
temporal answer, resulting in 1,103 QA pairs for
the head subset of TTQA and 634 for the tail sub-
set. For ToT, we extracted 1,016 QA pairs for the
arithmetic subset and 681 for the semantic subset.
In total, we have 3,434 QA pairs. Additionally,

>ToT has CC BY 4.0.
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ToT TTQA
Temp.oral Count Temp.oral Count
unit unit

# seconds 411  #years 1194
Date 328  yyyy 305
# years 229  #days 94
# days 100  # months 85
# months 50 Date 59
# minutes 38

Table 2: The number of questions per temporal unit of
the answer. Answers can be either a duration measured
as a number of <temporal unit>, a full date or a date
with only the year (yyyy).

we annotated the required temporal unit for each
question, i.e. if the answer is a date or a tempo-
ral measure in years, months, days, minutes, or
seconds. We chose the higher temporal resolution
if the answer contained a mix of units, for exam-
ple, seconds if the answer was formatted as HH:SS.
Lastly, we annotated the expected answer format
to allow parsing the answer numerically as inte-
gers, timedelta, or datetime objects in Python.
Tab. 2 lists the number of temporal answer units
per dataset.

3.2 Regression-based metrics for temporal
QA

Metrics used to evaluate QA benchmarks are de-
signed for text and, therefore, do not capture the
size and direction of the error for temporal answers.
Specifically, minor errors due to transitional times
are indistinguishable from significant errors. Temp-
AnswerQA’s expected answers all have numerical
representation, which allows us to use regression-
based metrics for evaluation.

There were a few considerations we made before
selecting metrics. We needed to select (1) an ag-
gregation technique that avoids errors of different
signs cancelling each other out, (2) decide whether
we want to weight errors, (3) how to summarise
errors, and lastly, ensure that (4) errors will be
comparable across different units, e.g., years and
seconds.

We selected metrics using absolute errors to
avoid the cancellation of errors of different signs.
We decided against weighting errors by squaring
or taking their logarithm, as this impedes interpre-
tation, and we lack justification. Errors can be sum-
marised using the mean or median. However, the

median resulted in many scores of Os or 100s for
EM and sMAPE. Therefore, we picked the mean.
Lastly, we needed to select a scale-free metric to
compare errors across units (e.g. relative errors).
SMAPE is scale-free and uses absolute errors. It
is bounded between 0 and 100 and exhibits higher
symmetry between negative and positive errors
than its precursor, the mean absolute percentage
error, although a bias against under-predictions re-
mains. SMAPE cannot be easily compared between
experiments as its denominator contains model pre-
dictions and expected values. It is defined as:

sMAPE = 100% Zn: 19: =il
n = Gl + vl

where n is the number of QA pairs, y is the ex-
pected temporal answer, and  is the predicted tem-
poral answer. If an answer is not parsable, SMAPE
is defined as 100%, and if the numerator and de-
nominator are 0, we define it as 0%.

A subset of answers are dates whose percentage
error is not defined (Tab. 2). Therefore, we also
consider MASE. It fulfils our requirements and is
defined for dates. MASE measures the absolute
errors scaled by the mean absolute deviation of the
dataset. It has no upper bound like sSMAPE. MASE
is also considered superior to most forecasting met-
rics and is used in the well-known Makridakis fore-
casting challenge (Makridakis et al., 2022). We use
an adaptation for non-timeseries data (Hyndman
and Athanasopoulos, 2014). It is defined as:

n ~
MASE — lz |yi_yi|7
n-= ’yz - Y,

where Y is the average of the expected values.
Instead of using all data to calculate Y, we use a
temporal unit-specific Y;,. Some of the answers
have a bimodal distribution. The answers with the
temporal unit years in ToT have a peak for the an-
swers < 100 (e.g., age) and a peak around 2000
(calendar year). The mean is not representative in
this case. To resolve this issue, we perform cluster-
ing with a setting that allowed our model to also
return one cluster (unimodally distributed). The
results and model settings are in the Appendix E.

The motivation for using MASE is that the
dataset’s answers are not uniformly distributed.
With sufficient domain knowledge, we can often
make reasonable estimates for the answer — for
instance, someone’s age is unlikely to exceed 100.
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Even without annotations, MASE captures such ex-
pectations from the data. However, when no plau-
sible range exists (for example, predicting when to
sell a stock), SMAPE is more interpretable.

Another class of metrics measures semantic
similarity. BERTScore (Zhang et al., 2020) is a
widespread implementation of such a metric. How-
ever, it cannot distinguish between small and large
differences between integers (Appendix F), so we
did not consider it.

3.3 Models and prompts

Similar to previous work, we used a selection of
open-source models for our experiments, namely
Phi-4-mini, Phi-4 (Abdin et al., 2024), Llama-
3.1-8B, Llama-3.3-70B (Grattafiori et al., 2024),
Qwen2.5-7B, and Qwen2.5-14B (Qwen et al.,
2025). The model settings are in the Appendix B.
Since evaluation relied on parsing answers into
time-aware objects, we selected instruction-tuned
models for better instruction-following capabilities.
We considered using Timo, a temporal Llama 2
model by Su et al., but its context window was too
small for some questions.

TTQA and ToT come with their own (user)
prompts, which we adopted to make use of chat
templates. Our selection of small models had diffi-
culties following instructions otherwise. We moved
the formatting instructions to the system prompt.
These were especially important for ToT, where
answers needed to be JSONs. Examples were pre-
sented as turns between the assistant and user in the
case of few-shot prompting. Both adjustments im-
proved instruction following. Furthermore, models
produced valid JSONs more often when ending the
prompt with an assistant turn, appending the begin-
ning of the required JSON and removing generation
prompts (see Appendices C and D for prompts and
B for experiments justifying chat templates and
different generation strategies).

4 Experiments and results

We conducted our experiments based on these six
selected models of different sizes, with and without
few-shot prompting, on TempAnswerQA. Its ques-
tions expect temporal answers that can be assessed
in a regression-like fashion. Our experiments aim
to answer the following questions:

RQ1: Is the binary metric EM enough to evaluate
LLMs on temporal QA benchmarks, expect-
ing temporal answers?

RQ2: Can regression-based metrics help improve
our understanding of LLMs’ performance on
QA tasks expecting a temporal answer?

RQ3: What advantages do we have in using
regression-based metrics compared to EM?

4.1 Exact match does not capture error
magnitudes

EM does not differentiate between small and large
errors, that is, their error magnitudes. Wrong pre-
dictions (EM = 0) can have vastly different values
for sMAPE. For example, two models with EM of
80% could have an SMAPE of 1% and 20%, respec-
tively. The lower the EM rate, the wider the range
of values that sSMAPE can assume. Appendix A
contains an illustration of this relationship.

Model predictions on the TempAnswerQA
dataset evaluated by EM and SsMAPE are shown in
Fig. 2. According to EM, Llama-3.3-70B is the best
model. Phi-4 and then Qwen2.5-14B closely follow
it. Smaller models follow thereafter. The range of
EM is wide with values as low as 20% for Llama-
3.1-8B, Qwen2.5-7B, and Phi-4-mini. SMAPE val-
ues, on the other hand, span a shorter range be-
tween models and data splits (up to 40%) than in
the EM dimension (15-80%). sMAPE changes
the model ranking, placing Qwen2.5-14B in the
first place. It is also the model with the narrow-
est 95% confidence interval. All models, except
Qwen2.5-14B, have outliers hovering around 40%.
For example, Llama-3.3-70B fails severely in an-
swering how many days Ingenuity took to reach
Mars. Due to an arithmetic mistake, it answers
0.057 days. The expected answer is 418 days.

Qwen2.5-14B, which has improved mathemat-
ical capabilities and improved understanding of
structured data, overtakes Llama-3.3-70B when
evaluated with sSMAPE. The findings also show that
larger models perform better, equivalent to the EM
results. If errors produce non-linear costs and low
errors are more desired than a high EM, Qwen2.5-
14B should be preferred over Llama-3.3-70B. The
results in tabular form, including baselines predict-
ing the mean and median, are in Appendix G. This
appendix also contains an investigation of the re-
lationship between correct model responses and
arithmetic mistakes in the chain-of-thought (CoT)
reasoning traces for the ToT dataset.

11907



Llama-3.3-70B A —p—= ] splits x prompts |- Qwen2.5-14B
®— Mean + 95% CI
Phi-4 - —— - I Llama-3.3-70B
Qwen2.5-14B i T - Phi-4
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0 20 40 60 80
Exact Match (1)

100 0 20 40 60 80 100

SMAPE (])

Figure 2: Model ranking by SMAPE and EM. Blue dots represent the mean score, and bars around them the 95%
confidence interval. Grey dots are individual runs with and without few-shot prompting on all splits of ToT and
TTQA. Arrows indicate a rank change from EM to sMAPE. It is green if it improves, red if it decreases, and black

if it stays the same.

4.2 Tolerable error magnitudes depend on the
task difficulty

MASE was introduced as a metric superior to other
regression-based metrics and is the gold standard
in forecasting. Unlike sMAPE, it can also be ap-
plied to dates. Its main property is that it scales the
prediction errors by the difficulty of the problem,
which is relevant because answers in the TempAn-
swerQA are not arbitrarily distributed and benefit
from temporal domain knowledge. For example,
a subset of questions is related to the time zone.
The maximum time difference between time zones
is 26 hours. Models with this knowledge should
not produce errors larger than that. Without human
annotation for acceptable error ranges, MASE can
extract them from the data instead.

Figure 3 shows model performance on TempAn-
swerQA using EM and MASE. All models have
a MASE above 1, indicating their mean absolute
error exceeds the dataset’s mean absolute deviation
(stratified by temporal unit and data split). While
EM and sMAPE tend to favour larger models—and
SMAPE highlighted Qwen2.5-14B ’s strength from
training on maths and structured data, MASE tells a
different story. Llama-3.1-8B jumps from last place
to second. This shift illustrates why error scaling
matters: SMAPE alone does not show whether a
mistake is significant given plausibility ranges for
answers. For example, when asked in which year
racing driver Jenson Button won his first champi-
onship, Qwen2.5-7B answers 2018 instead of 2009.
That nine-year gap yields a scaled error of 5.12,
which is given the brevity of athletic careers.

Qwen2.5-7B’s and Llama-3.1-8B’s MASE
scores differ significantly, despite similar architec-
tures and parameter sizes, leaving the difference
in training data as an explanation for performance
gaps. Interestingly, Llama models are the only
ones not trained on synthetic data. We thus sus-
pect Qwen’s and Phi’s synthetic training regimes
distorts the models’ temporal domain knowledge,
comparable to catastrophic forgetting. The tabular
results, including baselines that predict the mean
and median, are presented in Appendix G. Exem-
plary model responses are provided in Appendix H.

4.3 Scaled errors produce different rankings,
percentage errors do not

EM is a gold standard metric for evaluating LLMs
on QA benchmarks. Therefore, it is necessary to
compare SMAPE and MASE with EM. We used
Spearman’s rank correlation coefficient to compare
model rankings across metrics, and the results are
shown in Fig. 4a and Fig. 4b.

EM has a high rank correlation with sMAPE for
both datasets, ToT (-0.82) and TTQA (-0.92). It
is negative because a higher EM is better, while a
lower sMAPE is better. The correlation is much
lower between MASE and EM, with values around
0.4 for both datasets.

Considering the high agreement in the ranking
between both metrics, but knowing that SMAPE is
more affected by outliers by definition, which is
also observable in Fig. 2, we find that SMAPE is a
crucial addition to EM for model evaluation if error
magnitude matters. Since it does not produce sig-
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Figure 3: Model ranking by MASE and EM. Blue dots represent the mean score, and bars around them the 95%
confidence interval. Grey dots are individual runs with and without few-shot prompting on all splits of ToT and
TTQA. Arrows indicate a rank change from EM to MASE. It is green if it improves, red if it decreases, and black if

it stays the same.

m m
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(a) TTQA correlations (b) ToT correlations

Figure 4: Spearman rank correlation between metrics
on all experiments (models x prompts) per dataset.

nificantly different model ranks, interpreting EM
and SMAPE in tandem is easier.

MASE produces different model ranks, which is
unsurprising since, unlike SMAPE, the same error
magnitude scales differently depending on the task.
MASE is, therefore, stricter if data deviation is
low. Scaling errors for time zone or age-related
questions are examples of this. Datasets are most
likely designed to span reasonable time periods.
If not, clustering should help make MASE more
reliable. However, further verification, ideally by
humans, is required.

4.4 Transitional times and error directions

Casting answers into time-aware objects allows us
to investigate raw errors, helping us identify off-by-

ToT TTQA
Share Share
le]  Count (%) le]  Count (%)
1 1002 11.62 1 1853  49.49
2 446 5.17 2 250 6.68
4 344 3.99 3 159 4.25
3 258 2.99 4 128 3.42
5 208 241 6 117 3.12

Table 3: Five most frequent absolute errors per dataset
over all experiments (models x prompts) with number
of occurrences and relative share in percent. Note that
models performed better on TTQA, explaining the high
share of errors equal to |e| = 1.

one errors (£1) due to transitional times and the
direction of the error. Transitional times most often
involve questions asking for durations. To inves-
tigate this relationship, we measure the frequency
of these off-by-one errors (|e| = 1) and determine
whether they occur more often in duration ques-
tions.

Indeed, our analysis reveals that off-by-one er-
rors (Je] = 1) are the most frequent in both datasets
(Tab. 3). For ToT, the share of these errors is
11.62%. For TTQA, it is 49.49%. This result is
significant because the number of possible errors
is infinite.

Next, we verify whether |e| = 1 errors occur
more often for duration-related questions. We di-
vide the dataset by question type as defined by the
authors of ToT, and by answer format for TTQA.
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Tab. 4 shows that the types of questions are evenly
distributed within ToT. The share of question types
where |e| = 1 is vastly different. RelationDura-
tion and Duration questions tremendously increase
their share. The share for Trick questions doubles.
The Trick setup confuses LLMs about whether to
exclude or include either the start and end dates for
a duration calculation.

Question type Share (%)

all data  where |e| =1
MultiOP 20.57 4.99
EventAtWhatTime 20.15 4.59
RelationDuration 19.98 32.14
AddSubtract 14.73 16.57
Duration 11.79 18.96
Trick 6.89 22.36
Timezone 5.89 0.40

Table 4: Share of question types in ToT dataset com-
pared by share of question types where prediction error
is 1 (le] = 1) over all experiments (models x prompts).

Due to a lack of question-type labels in TTQA,
we use the expected answer format instead. Tab. 5
compares the share of questions by answer format
for all data and when the errors are equal to |e| = 1.
The TTQA dataset contains many more duration-
related questions than ToT. Therefore, the increase
in share is not as prominent as in ToT, but it is
striking that all non-duration answers have a signif-
icantly smaller share among the questions where
the error is |e| = 1.

Finally, we investigate whether model errors
have a directional bias. In Tab. 6, we see that
sMAPE is similar for positive and negative errors.
This is not the case for MASE. Positive errors pro-
duce much higher MASE. This difference is pro-
nounced for the TTQA dataset. In the ToT dataset,
the difference in the standard deviation is more no-
ticeable. This insight is relevant to applications

Answer format Share (%)

all data  where |e| =1
# years 68.74 81.27
yyyy 17.56 5.56
# days 541 7.34
# months 4.89 5.40
%8B %d, %Y 3.40 0.43

Table 5: Share of answer formats in TTQA dataset
compared by share of answer formats where prediction
error is 1 (le] = 1) over all experiments (models X
prompts).

SMAPE MASE
Dataset  Error (+std) (£std)
ToT neg. 24.73 (31.21) 1.40 (7.09)
pos. 21.60 (29.26) 3.98 (40.82)
TTQA neg. 22.83 (30.42) 0.55 (1.09)
pos. 29.32 (31.72)  48.09 (334.80)

Table 6: SMAPE and MASE including their standard
deviation where error is either strictly positive or nega-
tive per dataset.

where the cost of errors is not symmetric with re-
spect to direction.

5 Conclusion

In this work, we release TempAnswerQA, a dis-
tilled benchmark focused on the continuous nature
of time. With it, we show that EM systematically
ignores error magnitude and direction, which are
both critical to temporal reasoning.

To this end, we use SMAPE and MASE, two
regression-based metrics that capture properties
in the prediction errors of the models that EM
does not. sMAPE is relatively low, even if EM
is low. EM underestimates the models’ understand-
ing of the correct answer. Qwen2.5-14B, which
was trained on structured data and mathematical
reasoning, ranks first according to sSMAPE, over-
taking Llama-3.3-70B, the best model according
to EM. Both Llama models perform the best ac-
cording to MASE. They are the only models not
trained on synthetic data, suggesting that their tem-
poral domain knowledge is higher and synthetic
data distorts this knowledge.

Answers to duration-related questions can be
ambiguous due to transitional times, leading to two
answers being correct with a difference of just 1.
This leads to an inflation of errors equal to +1.
SMAPE and MASE are continuous metrics and
thus provide a more balanced evaluation than EM.

Lastly, we show that MASE and sMAPE are
valuable additions to EM. Although sMAPE yields
rankings similar to EM, its sensitivity to error sizes
gives it an edge when large deviations need to be
penalised. MASE ranks models significantly differ-
ently. It attempts to scale errors by plausible ranges
of correct answers and thus tries to probe mod-
els’ temporal domain knowledge rather than their
relative errors as with sMAPE. Without human-
annotated data, MASE is a viable alternative to
measure prior temporal knowledge.
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6 Outlook

While we have shown critical gaps in EM for tem-
poral reasoning evaluation and offered regression-
based alternatives, more work is required to verify
their benefits. Verification can be achieved either
through a separate dataset or by human preference.
Specifically, other approaches for scaling errors for
MASE should be considered. Future work should
also consider LLM-as-a-judge to overcome the re-
ported limitations. Small sMAPE suggests that
models have a good understanding of the problem,
but struggle with precise arithmetic. Tool calling
is an interesting next step in assessing whether the
low performance is due to arithmetic miscalcula-
tions rather than insufficient temporal reasoning
capabilities.

7 Limitations

There were answers in both datasets that we ex-
cluded, although they were temporal because they
are not trivially evaluable (115 in total). These
included date and time ranges, multiple answers,
and frequencies such as “every first Monday of the
month”. The latter is related to absolute times and
dates, which have a bounded error. For example, if
we ask in which month Christmas is celebrated, the
maximum error is 11 months. In contrast, errors for
other answers in the dataset do not have an upper
bound.

Neither regression-based metric is applicable to
all model responses. Either because the answer is
not parsable in the case of MASE, or because the
answer is a date or a time (SMAPE). This shortcom-
ing needs to be addressed.

MASE was scaled by each subset of both
datasets and the expected temporal unit of the an-
swer. Although this approach makes the reasonable
assumption that the authors of the paper produced
problems that are similar within a subset and that
the expected temporal unit sufficiently captures
similar kinds of problems, this may not always hold.
Clustering could unravel such questions into more
representative clusters. However, this approach
does not hold up to a hand-crafted dataset, where
the mean absolute deviation is neatly justified for
each question.
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Figure 5: EM does not capture error magnitude. The
possible variance in error magnitude (measured by
SMAPE) is higher the lower the EM is.

A sMAPE intuition

If a model’s answer is wrong, the answer’s error
can range from a tiny relative error up to an in-
finitely large one. The lower the EM, the higher the
SMAPE can be in a model. In other words, models
with the same EM can spread more widely, and
the lower the EM is, the better sMAPE is at dis-
criminating between model performances. Fig. 5
illustrates this. If we assume that for all wrong
predictions that a model makes, the minimum error
measured by SMAPE is 1%, 25%, and 50%, the
figure shows the range of values that a model can
still score with respect to SMAPE for all possible
values of EM.

B Model settings

All our models were accessed via Hugging Face
using the transformers Python library at version
4.49.0 (Wolf et al., 2020). We used the default set-
tings for each model in our experiments. For text
generation, we used the settings in Tab. 7. We used
a mix of GPUs to run our experiments, including
GeForce 3090s and 4090s, and two A100s in paral-
lel to run inference for Llama-3.3-70B. GPU hours
required to run inference on Llama-3.3-70B re-
quired approximately 24 hours. Experiments with
smaller models took 1 to 3 hours per run. At least
as many GPU hours across GPUs were used to run
small experiments or to test code.

The evaluation of ToT depends on the models
that produce parsable JSONs. Therefore, we ex-
perimented with setting either add_generation_-
prompt or continue_final_message to true in
Hugging Face. The first appends an assistant to-

End of

Dataset Max. new token
sequence tokens
ToT 512 No
TTQA 512 Yes
Table 7: Generation settings.
Model # Parsing errors
add generation continue
prompt final message
Llama-3.1-8B 0/50 2/50
Qwen2.5-7B 4/50 0/50
Phi-4-mini 13/50 1/50

Table 8: Number of parsable JSONs per model for differ-
ent generation strategies tested on 50 randomly selected
questions from the semantic split of ToT.

ken to our messages, if available, indicating an
answer. The latter does not do this, prompting the
models to continue their messages. The resulting
prompts are presented in the Appendix D. To test
when JSON formatting was more successful, we
randomly sampled 50 questions from the semantic
split of ToT and compared the number of correctly
parsed JSONs. The results are in Tab. 8. Setting
continue_final_message produced fewer pars-
ing errors (3 over three models) than add_genera-
tion_prompt (17 over three models).

The evaluation of TTQA also depended on the
correct format of the output. Specifically, models
needed to place their answer after the string “Fi-
nal Answer:”. We observed a low rate of correct
formatting and thus experimented with transferring
prompts into a chat template. The correct output
formatting was compared between the original and
the prompts translated into chat templates. We
tested the models’ instruction following on the head
split of the TTQA dataset. The results are shown
in Tab. 9. Qwen and Phi improved their instruc-
tion following, with Qwen almost doubling it from
44.52 t0 99.56%. Llama experiences a slight de-
crease in performance when using chat templates,
from 81.98% to 74.40%.

C TTQA prompts

Below, we list the TTQA prompts used in this work.
We compare the prompts originally used by Deng
et al. (2025) and our adaptation, which utilises chat
templates. For brevity, we replaced some turns
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Correct output format (%)

Model
Original prompt With
chat template
Llama-3.1-8B 81.98 74.40
Qwen2.5-7B 44.52 99.56
Phi-4-mini 94.76 99.38

Table 9: Number of answers containing the expected
string “Final Answer:” in their response for each model
on the head split of the TTQA dataset. The percentages
were calculated based on slightly varying numbers of
questions as experiments were conducted at different
steps in the labelling process.

in the few-shot example with “...”. Furthermore,
we did not use the original questions, tables, or
answers below but replaced them with placeholders
enclosed by “<>".

C.1 TTQA zero-shot prompt

User prompt: Given an entity-centric ta-
ble and corresponding question, answer the
question by providing step-by-step reason-
ing and then clearly and concisely stating
the final answer using "Final Answer:".
Each table-question pair is presented as
a table (identified by "Table:") followed
by a question (identified by "Q:"). Tables
are presented in a linear format, with
columns separated by tabs, rows separated
by newlines, and subsections separated by
double newlines. If necessary, assume the
current date is December, 2022.

Table:
<TABLE>
<QUESTION>

A: Let’s think step by step.
Assistant:

C.2 TTQA zero-shot prompt as chat template

System prompt: Given an entity-centric ta-
ble and corresponding question, answer the
question by providing step-by-step reason-
ing and then clearly and concisely stating

the final answer using "Final Answer:".
Each table-question pair is presented as a
table (identified by "Table:") followed by
a question (identified by "Q:"). Tables are
presented in a linear format, with columns
separated by tabs, rows separated by new-
lines, and subsections separated by double
newlines. If necessary, assume the current
date is December, 2022.

User prompt:

Table:

<TABLE>
<QUESTION>

A: Let’s think step by step.
Assistant:

C.3 TTQA few-shot prompt

User prompt: Given an entity-centric ta-
ble and corresponding question, answer the
question by providing step-by-step reason-
ing and then clearly and concisely stating
the final answer using "Final Answer:".
Each table-question pair is presented as
a table (identified by "Table:") followed
by a question (identified by "Q:"). Tables
are presented in a linear format, with
columns separated by tabs, rows separated
by newlines, and subsections separated by
double newlines. If necessary, assume the
current date is December, 2022.

Here is an example that follows these
instructions. Answer the provided questions
in a similar format:

Table:
<TABLE, SHOT 1>
Q: <QUESTION, SHOT 1>

A: <ANSWER, SHOT 1>

<TABLE, SHOT 3>
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Q: <QUESTION, SHOT 3>

A: <QUESTION, SHOT 3>

Table:
<TABLE>
<QUESTION>

A: Let’s think step by step.
Assistant:

C.4 TTQA few-shot prompt as chat template

System prompt: Given an entity-centric ta-
ble and corresponding question, answer the
question by providing step-by-step reason-
ing and then clearly and concisely stating
the final answer using "Final Answer:".
Each table-question pair is presented as
a table (identified by "Table:") followed
by a question (identified by "Q:"). Tables
are presented in a linear format, with
columns separated by tabs, rows separated
by newlines, and subsections separated by
double newlines. If necessary, assume the
current date is December, 2022.

Here is an example that follows these
instructions. Answer the provided questions
in a similar format:

User prompt

Table:

<TABLE, SHOT 1>
Q: <QUESTION, SHOT 1>

A:

Assistant prompt: <ANSWER, SHOT 1>
User prompt:

Table:

<TABLE, SHOT 3>

Q: <QUESTION, SHOT 3>

A:

Assistant prompt: <ANSWER, SHOT 3>
User prompt:

Table:

<TABLE>
<QUESTION>

A: Let’s think step by step.
Assistant:

D ToT prompts

Below, we list the ToT prompts used in this work.
We compare the prompts originally used by Fatemi
et al. (2025) with our adaptation, which utilises
chat templates.

A few-shot version of the prompts was con-
structed by modifying existing questions. The chat
template was filled as in C.4, where examples were
presented as turns between the user and the assis-
tant. In the case of the semantic subset, the graph
information was included in the system prompt.
The generation prompt was removed, and the assis-
tant prompt was pre-filled.

D.1 ToT zero-shot prompt

User prompt: Natalie and Chris were born
on 2004-Feb-18 and 2004-Dec-30 respec-
tively. When Chris was 991 days old, how
old was Natalie in days? Return your answer
as a JSON like: JSON = {""explanation"":
<your step by step solution>, ""answer"":
<num_days>}

Assistant:

D.2 ToT zero-shot prompt as chat template

System prompt: Return your answer as a
JSON like: JSON = {"explanation": <your
step by step solution>, "answer": <num_-
days>}

User prompt: Natalie and Chris were born
on 2004-Feb-18 and 2004-Dec-30 respec-
tively. When Chris was 991 days old, how
old was Natalie in days?

Assistant: JSON = {"explanation":
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Expected Predicted BERTScore

1 1 1.0000
1 2 0.9998
1 10 0.9992
1 100 0.9987

Table 10: BERTScore for some predictions. Scores
were rounded to the last four digits.

E Cluster results

MASE required the mean answer per temporal unit
of the answer and the split of each dataset. Clus-
tering did not affect the TTQA data. ToT, however,
exhibited some bimodality, which was identified
by the clustering algorithm. The distribution of
the answers per split and temporal unit for TTQA
is shown in Fig. 6 and Fig.7. ToT’s answer dis-
tribution for the arithmetic split before and after
clustering can be found in Fig. 8 and Fig. 9, respec-
tively, and in Fig. 10 for the semantic split.
Clustering was performed using scikit-learn’s
HDBSCAN (hierarchical density-based spatial
clustering of applications with noise) model. The
minimum cluster size was set to 30% to avoid too
small clusters. The model was allowed to pro-
duce single clusters. All other settings were set
to their default values. We used version 1.6.1 of
scikit-learn (Pedregosa et al., 2011).

F BERTScore

We did not consider similarity-based metrics, as
they tend to return high similarity scores for digits,
regardless of how close they are to each other, as
shown in Tab. 10.

G Results extended

Results in tabular form are listed in Tab. 12 for
ToT and in Tab. 11 for TTQA. Both tables include
baseline experiments predicting the mean and the
median of the respective data’s split.

We can see that for TTQA, the mean baseline’s
SMAPE is relatively high and underperforms all
models. Only Llama-3.1-8B with zero-shot prompt-
ing underperforms the median baseline in the tail
split. SMAPE shows that it favours small errors
and that a simple baseline performs much worse
than LLMs. The median baseline, according to
MASE, outperforms two models in the head split.
In the test split, 7 out of 12 models are worse than
the baseline in the tail split, which is interesting

given that the tail split contains less popular topics
on Wikipedia for which it is harder to have good
temporal domain knowledge. On the other hand,
seeing that the median rather than the mean base-
line ranks high should make us careful whether
outliers skew model performance.

We see a similar pattern in the ToT dataset. Ac-
cording to sSsMAPE, only three models are slightly
worse than the mean and median baseline when
being evaluated on the arithmetic split. Regarding
the semantic split, all models outperform both base-
lines according to SMAPE. According to MASE,
both baselines are the worst performing on the
arithmetic split. Regarding the semantic split, only
Llama-3.3-70B outperforms the mean baseline ac-
cording to MASE. No model has a better MASE
than the median baseline. Since the dataset is syn-
thetic, the variety in the data is low. An inspection
of the data reveals that expected answers gravitated
around similar answers (198X). It puts into perspec-
tive why so many models have very low MASE.
Tasks in the semantic split require the extraction of
dates from a graph, and these dates exhibit minimal
variance, making the median baseline surprisingly
effective, which explains the models’ good perfor-
mance otherwise.

Fig. 12 is a scatter plot with the results compar-
ing EM and sMAPE, and Fig. 13 is a scatter plot
comparing EM and MASE.

EM is defined for all QA pairs; sSMAPE and
MASE are not. sSMAPE is not defined for dates
or times. Since it has a maximum value, namely
100%, it is defined even if the answer of the model
is not parsable. MASE does not have this property
as it has no upper bound. Instead, it is defined for
dates and times. Tab. 14 lists the number of QA
pairs in the ToT dataset for which either metric is
defined, and Tab. 13 does the same for the TTQA
dataset.

G.1 Arithmetic errors in reasoning

ToT, especially the arithmetic split, requires strong
mathematical reasoning skills. We investigated the
relationship between correct arithmetic operations
in the CoT-traces and a correct final model response.
We used a regular expression to extract mathemat-
ical operations from the CoT-trace, calculated the
left-hand side of each operation, and compared it
with the correct answer on the right-hand side in
the traces. The results are in Fig. 11.

A higher proportion of correct arithmetic calcu-
lations in the CoT-traces appears more often when
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Figure 6: Distribution of the expected answers by temporal unit of the answer for the head split of the TTQA dataset.
Answers were transformed into numeric form. In the case of dates, they were converted into timestamps.
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Figure 7: Distribution of the expected answers by temporal unit of the answer for the tail split of the TTQA dataset.
Answers were transformed into numeric form. In the case of dates, they were converted into timestamps.
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Figure 8: Distribution of the expected answers by temporal unit of the answer for the arithmetic split of the ToT
dataset. Answers were transformed into numeric form. In the case of dates, they were converted into timestamps.
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Figure 9: Distribution of the expected answers by temporal unit of the answer for the arithmetic split of the ToT
dataset. If answers were clustered, clusters are highlighted by different colours. Answers were transformed into
numeric form. In the case of dates, they were converted into timestamps.
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Figure 10: Distribution of the expected answers by temporal unit of the answer for the semantic split of the ToT
dataset. On the left is the raw distribution, and on the right is the distribution after clustering. Answers were
transformed into numeric form. In the case of dates, they were converted into timestamps.

the model’s final response was correct. This rela-
tionship is strong in smaller models and in Llama
models. This relationship is the smallest for Qwen
models.

H Model responses

We hypothesise that synthetic data training con-
tributes to lower MASE scores. Here are two exam-
ples from ToT and TTQA to illustrate high MASE
responses from Qwen2.5-7B and Phi-4-mini.

TTQA question: How old was Arntzen
when she began to play for her first senior
club?

Qwen2.5-7B: 6

Expected: 16

Qwen2.5-7B needs to answer a question about
the Norwegian handball player Emilie Arntzen. It
should be clear that a professional handball player
cannot be six years old.

ToT question: It takes Sophia an average of
16 minutes and 46 seconds to bake 2 cakes.
If she wants to bake 15 cakes at the same
rate, it will take her X hours, Y minutes, and
Z seconds. Report the values of X, Y and Z
as a json of the form "explanation": [object
Object], "X": X, "Y": Y, "Z": Z.
Phi-4-mini: °X’: 127,°Y’: 30,’Z’: 0

[ Expected: *X’:2.0,°Y’:5.0,°Z2’:45.0

By roughly averaging, we can see that 17 min-
utes X 15 must be below 300 minutes (20 x 15).
Instead, Phi-4-mini estimates that it must take more
than 5 days.
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Figure 12: Comparison of performance measured by sMAPE and EM.
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Split  Model Prompting EM (1) sMAPE () MASE (})

head Llama-3.1-8B few shot 75.34 17.02 0.50
zero shot 63.37 33.11 0.25

Llama-3.3-70B few shot 83.71 6.58 0.20
zero shot 74.62 20.59 0.17

Phi-4-mini few shot 77.05 7.03 0.52
zero shot 73.09 12.65 7.45

Phi-4 few shot 79.39 6.13 0.34
zero shot 61.30 29.36 0.29

Qwen2.5-7B few shot 79.12 7.77 4.47
zero shot 77.77 8.05 091

Qwen2.5-14B few shot 81.73 4.28 0.63
zero shot 76.33 9.21 3.91

Baseline, mean - 0.00 37.52 7.35
Baseline, median - 0.00 34.24 2.25
tail Llama-3.1-8B few shot 69.10 18.52 1.17
zero shot 57.14 36.29 1.66

Llama-3.3-70B few shot 79.19 7.50 0.19
zero shot 66.30 22.51 8.72

Phi-4-mini few shot 70.81 8.89 8.87
zero shot 70.34 14.04 27.06

Phi-4 few shot 77.48 7.96 10.53
zero shot 61.18 29.58 11.41

Qwen2.5-7B few shot 73.29 8.20 2.03
zero shot 70.81 10.62 23.05

Qwen2.5-14B few shot 80.12 4.89 0.17
zero shot 73.60 8.60 16.09

Baseline, mean - 0.00 38.67 123.88
Baseline, median - 0.00 31.21 2.29

Table 11: Model performance on the TTQA subset. The best performance per metric and split is bold.
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Split Model Prompting EM (1) sMAPE (J) MASE ()

arithmetic Llama-3.1-8B few shot 20.57 23.66 2.23
zero shot 14.47 35.80 2.03

Llama-3.3-70B few shot 49.70 10.54 0.15
zero shot 41.34 13.53 0.37

Phi-4-mini few shot 26.38 21.19 1.00
zero shot 19.59 38.37 3.47

Phi-4 few shot 55.71 7.12 0.17
zero shot 58.56 9.03 0.16

Qwen2.5-7B few shot 31.00 20.85 1.06
zero shot 25.30 34.11 0.46

Qwen2.5-14B few shot 43.21 9.21 0.71
zero shot 44.00 10.88 0.52

Baseline, mean - 0.00 24.26 4.60
Baseline, median - 0.00 23.14 2.96
semantic ~ Llama-3.1-8B few shot 72.69 10.43 1.18
zero shot 67.11 14.19 11.34

Llama-3.3-70B few shot 89.43 4.61 0.11
zero shot 90.16 6.09 0.19

Phi-4-mini few shot 65.64 10.54 1.04
zero shot 56.68 17.64 1.27

Phi-4 few shot 83.55 4.01 0.32
zero shot 80.32 6.39 0.46

Qwen2.5-7B few shot 63.00 8.47 1.19
zero shot 59.32 11.57 1.27

Qwen2.5-14B few shot 72.98 8.79 0.50
zero shot 67.99 11.72 0.61

Baseline, mean - 0.00 18.14 0.26
Baseline, median - 0.10 18.07 *0.04

Table 12: Model performance on the ToT subset. The best performance of a model per metric and split is bold. A
baseline exceeding a model is made bold with an additional asterisk.

# of defined errors
Model Prompting EM sMAPE MASE

Llama-3.1-8B  few shot 1737 1373 1530
zero shot 1737 1373 1225
Llama-3.3-70B  few shot 1737 1373 1667
zero shot 1737 1373 1417

Phi-4-mini few shot 1737 1373 1722
zero shot 1737 1373 1668
Phi-4 few shot 1737 1373 1680

zero shot 1737 1373 1341
Qwen2.5-7B few shot 1737 1373 1706
zero shot 1737 1373 1708
Qwen2.5-14B  few shot 1737 1373 1727
zero shot 1737 1373 1700

Table 13: Number of QA pairs of the TTQA dataset for which each metric is defined. EM is defined for each
question. sSMAPE is not defined for dates and is set to 100% if errors are not parsable. MASE is defined for all
questions, but is not defined if the model’s answer is not parsable.
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# of defined errors
Model Prompting EM sMAPE MASE

Llama-3.1-8B  few shot 1697 1369 1575
zero shot 1697 1369 1527
Llama-3.3-70B  few shot 1697 1369 1581
zero shot 1697 1369 1524

Phi-4-mini few shot 1697 1369 1618
zero shot 1697 1369 1438
Phi-4 few shot 1697 1369 1640

zero shot 1697 1369 1595
Qwen2.5-7B few shot 1697 1369 1600
zero shot 1697 1369 1499
Qwen2.5-14B  few shot 1697 1369 1660
zero shot 1697 1369 1648

Table 14: Number of QA pairs of the ToT dataset for which each metric is defined. EM is defined for each question.
SMAPE is not defined for dates and is set to 100% if errors are not parsable. MASE is defined for all questions, but
is not defined if the model’s answer is not parsable.
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Figure 13: Comparison of performance measured by MASE and EM.
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