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Abstract

Hallucination detection remains a fundamen-
tal challenge for the safe and reliable deploy-
ment of large language models (LLMs), espe-
cially in applications requiring factual accuracy.
Existing hallucination benchmarks often op-
erate at the sequence level and are limited to
English, lacking the fine-grained, multilingual
supervision needed for a comprehensive eval-
uation. In this work, we introduce PsiloQA,
a large-scale, multilingual dataset annotated
with span-level hallucinations across 14 lan-
guages. PsiloQA is constructed through an au-
tomated three-stage pipeline: generating ques-
tion—answer pairs from Wikipedia using GPT-
4o, eliciting potentially hallucinated answers
from diverse LLMs in a no-context setting, and
automatically annotating hallucinated spans us-
ing GPT-40 by comparing against golden an-
swers and retrieved context. We evaluate a
wide range of hallucination detection methods
— including uncertainty quantification, LLM-
based tagging, and fine-tuned encoder models
— and show that encoder-based models achieve
the strongest performance across languages.
Furthermore, PsiloQA demonstrates effective
cross-lingual generalization and supports ro-
bust knowledge transfer to other benchmarks,
all while being significantly more cost-efficient
than human-annotated datasets. Our dataset
and results advance the development of scal-
able, fine-grained hallucination detection in
multilingual settings.'

1 Introduction

Large Language Models (LLMs) became a cru-
cial component in a wide range of text genera-
tion applications, including summarization, trans-
lation, and question-answering systems in various
domains. However, even state-of-the-art models,
such as GPT-4 (OpenAl, 2023), or open-weight
models, such as LLaMa (Dubey et al., 2024)

"https://github.com/s-nlp/psiloga

and DeepSeek (DeepSeek-Al et al., 2025) are in-
evitably prone to production of hallucinations or
unsupported facts in their generated output (Xiao
and Wang, 2021; Dziri et al., 2022; Xu et al., 2024).
This phenomenon poses a crucial obstacle for
the real-world deployment of LLMs, particularly
in safety-critical domains such as medicine (Ben
Abacha and Demner-Fushman, 2019; He et al.,
2025). A single hallucinated word can substan-
tially alter the overall meaning of the generation,
potentially causing harm to end-users. Conse-
quently, hallucination detection has become a criti-
cal challenge in the development and application
of LLMs (Huang et al., 2025).

Hallucination detection is typically categorized
into three standard tasks: sequence-level, span-
level, and entity-level. Sequence-level detection
focuses on identifying entire generations that con-
tain some factual inconsistencies. In contrast, span-
level and entity-level detection addresses the more
challenging task of precisely highlighting factually
misaligned spans or individual entities within the
generated text.

Several approaches have been proposed for
the detection of hallucination of LLMs. Uncer-
tainty quantification (UQ) emerging as one of
the most prominent research directions (Gal and
Ghahramani, 2016; Shelmanov et al., 2021; Baan
et al., 2023; Geng et al., 2024; Vashurin et al.,
2025; Belikova et al., 2024). Recently, numerous
UQ methods have been developed specifically for
LLMs (Kuhn et al., 2023; Lin et al., 2023). How-
ever, most of these methods focus on sequence-
level verification (Farquhar et al., 2024), while
only a few methods operate at the token or span
level (Zhang et al., 2023; Fadeeva et al., 2024).
While Rykov et al. (2025) proposed combining
uncertainty estimation methods with a fine-tuned
LLM, Qwen2.5-7B-Instruct, using a weighted aver-
aging approach, where the weights were optimized
separately for each language.
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Passage: Japan Airlines (JAL) is the
flag carrier of Japan. The airline was
fully privatised in 1987, after over three
decades of service and expansion.

@ GPT-40

Question: In what year was Japan
Airlines fully privatised?
Golden Answer: 1987

Question: In what year was
Japan Airlines fully privatised?

@ Open Source
LLMs
Y&

LLM Answer: JAL was fully
privatised in 1989

Question: In what year was Japan Airlines fully privatised?

Annotation: JAL was fully privatised in [HAL]1989[/HAL]

Passage: Japan Airlines (JAL) is the flag carrier of Japan.
The airline was fully privatised in 1987, after over three

Question: What is the new name of
the museum after its relocation to the
city centre?

@ gpt-oss-120B

Incomplete question

decades of service and expansion.

Golden Answer: 1987

LLM Answer: JAL was fully privatised in 1989

@ GPT-40

Figure 1: PsiloQA generation pipeline, where a dataset is built in fourth steps. Step 1: Generation of multilin-
gual question-answer pairs using the GPT-40 and randomly retrieved passages from Wikipedia articles. Step 2:
Generation of an answer to the question without the supporting passages from Wikipedia. By using only internal
knowledge without external sources of information, LLMs cannot easily answer hard factual questions. Step 3:
Span-level inconsistency detection between the golden answer generated by GPT-40 and the LLM hypothesis. Step
4: Filtration of incomplete or subjective questions and cases when LLM refuses to answer.

Although UQ is a rapidly growing area of re-
search, even the most advanced methods still face
significant limitations. For instance, sampling-
based methods (Duan et al., 2024) require sub-
stantial computational overhead and operate only
on the sequence level. Information-based meth-
ods (Fomicheva et al., 2020; Fadeeva et al., 2024)
demonstrate strong performance in span-level tasks
but still fail to detect some hallucinations and re-
main far from ideal performance.

Another set of approaches focuses on fact-
checking techniques based on external knowl-
edge sources (Niu et al., 2024) or auxiliary
LLMs (Mishra et al., 2024). While these methods
achieve high performance, they require substantial
computational overhead. These approaches first
extract atomic claims from the generated response
and compare them to a retrieved context using an
auxiliary LLM (Min et al., 2023). This process
produces a verification score, indicating the degree
to which the extracted claims supported with the
retrieved evidence. Moreover, the performance of
such systems is heavily dependent on the quality of
both the retrieved context and the auxiliary LLM,
which typically requires fine-tuning for better per-
formance (Mishra et al., 2024).

To evaluate the quality of both systems, includ-
ing those based on uncertainty quantification and
external knowledge, we require a dataset with an-
notated hallucinations. High-quality, fine-grained
annotations, particularly at the span level, are
labor-intensive, requiring expert human annota-
tors (Vazquez et al., 2025) or costly automated
pipelines (Min et al., 2023). Span-level annota-
tion, though more practical for pinpointing unsup-
ported text, introduces additional complexity com-

pared to sequence-level verification. Multilingual
contexts increase these challenges due to linguis-
tic diversity, limited non-English data availability,
and the need for language-specific pipeline adjust-
ments (Vashurin et al., 2025).

To address these limitations, we introduce a
novel methodology for automatically generating
multilingual data with fine-grained hallucination
annotations, which includes (i) synthetically cre-
ating question-answering pairs from Wikipedia ar-
ticle summaries, (ii) generating hypotheses using
LLMs in a zero-context setting to produce both
hallucinated and accurate answers, (iii) automat-
ing span-level inconsistency annotation by compar-
ing responses to context and ground truth via an
advanced LLM, and (iv) automated filtering step
through both rule-based and prompt-based meth-
ods. Further details of this pipeline are outlined in
Section 3.

The contributions of this work could be summa-
rized as follows:

* We propose an automated and scalable
pipeline for generating and annotating syn-
thetic data.

* We introduce a large multilingual dataset with
high-quality and fine-grained span-level hal-
lucination annotations for numerous open-
weighted and proprietary LLMs.

* We conduct comprehensive empirical evalua-
tions of various state-of-the-art hallucination
detection methods of different types across 14
languages.
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Dataset Domain  Annotation Generation Lang #LLMs #Train #Val #Test Licence
Mu-SHROOM (Vazquez et al., 2025) General Manual Natural Mult 38 3,351* 499 1,902 CC-BY-4.0
HalluEntity (Yeh et al., 2025) Biography Manual Natural En 1 - - 157 MIT
RAGTruthga (Niu et al., 2024) General Manual Natural En 6 5,034 - 900 MIT
FAVA-Bench (Mishra et al., 2024) General Auto Synthetic En 3 - - 902 CC-BY-4.0
PsiloQA (ours) General Auto Natural Mult 24 63,792 3,355 2,897 CC-BY-4.0

Table 1: Comparative overview of span-level hallucination detection datasets. The Mu-SHROOM dataset has an
unlabeled training set (*) comprising 4 languages (en, es, fr, zh). The Generation column distinguishes whether
LLM answers were generated with intentional error insertion (synthetic) or used as-is (natural).

2 Related Work

2.1 Hallucination Detection Datasets

Most hallucination detection benchmarks operate
at the sentence or paragraph level, such as Truth-
fulQA (Lin et al., 2022), ANAH (Ji et al., 2024; Gu
et al., 2024) and HaluEval (Li et al., 2023). These
benchmarks categorize each generated response as
either hallucinated or correct. However, instance-
level detection is unable to identify specific hallu-
cinated content, which is essential for correcting
misinformation. This limitation is especially con-
cerning in long-form text where a single response
may include both supported and unsupported in-
formation, rendering binary quality assessments
insufficient (Min et al., 2023).

To tackle these issues, recent studies have im-
proved benchmarks for more detailed hallucina-
tion detection. For instance, Min et al. (2023)
introduced FActScore, a dataset focusing on fine-
grained hallucination detection in Wikipedia bibli-
ographies. It aids in assessing hallucination detec-
tion techniques that utilize external knowledge and
detailed fact-level annotations.

Similarly, HalluEntity (Yeh et al., 2025) includes
biographies created by ChatGPT, with each entry
comprising a name, a ChatGPT-generated biogra-
phy, and a list of atomic facts marked as True or
False, aligning with the relevant entity in the lan-
guage model’s output.

RAGTruth (Niu et al., 2024) is a large-scale
benchmark with nearly 18,000 human-annotated
examples designed for retrieval-augmented gener-
ation (RAG) tasks. It provides fine-grained word-
level annotations marking hallucinated spans that
contradict reference documents, covering question
answering, data-to-text, and summarization tasks.

FAVA (FavaBench) (Mishra et al., 2024) is a
dataset containing fine-grained hallucination anno-
tations with external knowledge support, used to
evaluate hallucination detection and editing. It in-
cludes diverse generation tasks and has been shown

effective in fine-grained hallucination detection re-
search.

The multilingual Mu-SHROOM dataset has been
suggested in the shared task on Multilingual Hal-
lucinations and Related Observable Overgenera-
tion Mistakes (Vazquez et al., 2025). In particu-
lar, the Mu-SHROOM task aims to detect hallu-
cination spans in the outputs of instruction-tuned
LLMs in multilingual context models for Arabic,
Basque, Catalan, Chinese, Czech, English, Farsi,
Finnish, French, German, Hindi, Italian, Spanish,
and Swedish.? The datasets with their respective
annotation levels and splits are outlined in Table 1.

2.2 Hallucination Detection Methods

Most hallucination detection methods operate at
the sentence-level. For instance, recent works pro-
pose various sampling-based UQ methods that mea-
sure the consistency of multiple sampled genera-
tions (Kuhn et al., 2023; Lin et al., 2023; Duan
et al., 2024; Zhang et al., 2024). On the con-
trary, reflexive methods aims to assess an LLM’s
confidence in its generation by directly prompt-
ing it for self-evaluation (Kadavath et al., 2022;
Tian et al., 2023). Supervised methods are appli-
cable at both sequence and token levels, but they
often require model-specific training due to differ-
ences in number of hidden features and attention
heads (Azaria and Mitchell, 2023; Vazhentsev et al.,
2024; Chuang et al., 2024; CH-Wang et al., 2024;
Vazhentsey et al., 2025).

Token probability and entropy (Fomicheva et al.,
2020) are trivial baselines for span-level detection,
which utilize the distribution of token probabili-
ties. Fadeeva et al. (2024) propose to analyze the
consistency of the top most probable token candi-
dates by leveraging the natural language inference
(NLI) model using the Claim Conditioned Proba-
bility (CCP) method. Zhang et al. (2023) propose
to model the conditional dependencies between the

2https://helsinki-nlp.github.io/shroom
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generated tokens by reweighing token uncertainty
scores, leveraging uncertainty of the previous to-
kens and attention weights after max-pooling.

Several methods leverage external knowledge to
evaluate the factuality of the generations. Among
the most well-known is FActScore (Min et al.,
2023), which extracts atomic facts from the
model’s response and compares them to a re-
trieved context using an additional LLM. This fact-
checking process generates a score that indicates
whether the claims are supported by the retrieved
context.

Niu et al. (2024) introduce RAGTruth, a pipeline
for the detection of word-level hallucinations in
retrieval-augmented generation (RAG) systems.
This work introduces a dataset and benchmark
to evaluate the factuality of LLM responses for
various tasks, such as summarization, question-
answering, and others. Moreover, this framework
could be easily adapted for the fact-checking task.
The hallucinations annotations in the presented data
were created by human annotators.

Furthermore, the task of hallucination detection
can naturally be extended to hallucination editing.
For example, the FAVA (Mishra et al., 2024) model
is specifically trained for word-level hallucination
detection and editing tasks according to the intro-
duced hallucination taxonomy. To collect training
data, the authors asked LLMs to insert errors from
the introduced taxonomy into the responses.

Despite their advantages, both RAGTruth and
FAVA are limited in their applicability, as they are
designed only for English-language tasks and re-
quire human annotations.

3 PsiloQA: A Synthetic Span-Level
Hallucination Dataset

3.1 Dataset Generation Process

Figure 1 illustrates the dataset generation pipeline.
Our objectives in developing the PsiloQA genera-
tion process include: (i) utilizing real LLM halluci-
nations rather than artificially inserted errors; (ii)
ensuring the process is cost-effective, quick, and
scalable; (iii) encompassing multiple languages
and domains.

The initial stage of the PsiloQA pipeline involves
generating context-based question—answer pairs.
Given the scarcity of such multilingual data in
the general domain, we constructed a multilingual
context-based QA dataset from scratch. This is
achieved by utilizing passages from Wikipedia to

source diverse, multilingual data. The passages,
along with a specific prompt, are submitted to GPT-
4o to generate QA pairs. To achieve varying ques-
tion complexity, 3 different question-answer pairs
are produced with varying levels of complexity, as
demonstrated in Figure 7.

To generate answers that contain hallucinations,
we asked various LLMs to respond to previously
generated questions without referring to Wikipedia
for support. When relying solely on internal knowl-
edge, LLMs often produce hallucinations in their
responses to factual questions. The same models
employed in Mu-SHROOM (Vazquez et al., 2025)
were used to generate these inaccurate answers.

To catch hallucinations, we prompt GPT-40 to
review the passage and question, comparing the
golden answer with the LLM hypothesis. Any dis-
crepancies are marked with [HAL] tags. Otherwise,
the LLM’s response is copied unchanged when no
inconsistencies are found. The prompt for detect-
ing inconsistencies is illustrated in Figure 8. For
span-level annotation, we followed the RAGTruth
pipeline (Niu et al., 2024) and asked GPT-4o to an-
notate spans at the word level, encouraging precise
labeling and discouraging overgeneralization (e.g.,
marking the entire answer as a hallucination).

Additionally, we conducted several automatic fil-
tering steps, including both rule-based and prompt-
based. The rule-based filter removes samples
where [HAL] tags did not properly match, cases
where the annotator model generated empty spans,
and cases where the annotated answer is not consis-
tent with the initial LLM’s answer after removing
all [HAL] tags. The prompt-based filter removes
subjective questions, incomplete questions, and an-
swers where LLLM refuses to answer. Subjective
questions are non-factual and thus do not require
context for answering. Consequently, it is challeng-
ing to recognize any inconsistencies when compar-
ing the answers to subjective questions with the
original contexts. Incomplete questions are arti-
facts of the QA pairs generation process, as they
have a reference to the original context, or use pro-
nouns with no clear antecedent. The absence of an
explicit subject in a question makes it unanswerable
without context. Finally, cases when LLM refuses
to answer also introduce difficulties in identifying
inconsistent segments, as they do not constitute
responses to factual questions. Prompt-based filter-
ing was performed using gpt-o0ss-120B3 model.

Shttps://hf.co/openai/gpt-oss-120b
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Instructions are shown in Appendix H. In total,
approximately 6,500 samples were filtered.

Consequently, PsiloQA fulfills all our previously
outlined criteria. It utilizes LLM for question an-
swering, which results in samples containing gen-
uine hallucinations. Furthermore, using GPT-40 for
annotation makes the generation process scalable,
more cost-effective, and faster compared to human
annotation. Wikipedia is used as a dependable and
varied source of multilingual seeds.

After all filtration steps, the training set of Psil-
0QA consists of 63,792 samples. For each lan-
guage and LLM checkpoint combination, we select
100 random samples for benchmarking. The Psil-
0QA testing split contains 2,897 samples.

3.2 Dataset Statistics

Figure 4 illustrates the distribution of samples by
language in the PsiloQA dataset. English is the
most prevalent, with nearly 23,000 samples. Hindi,
Finnish, Catalan, Chinese, Swedish, and Czech
each range between 5,000 and 7,000 samples. The
dataset contains roughly 3,700 Farsi samples, and
approximately 2,000 to 2,500 samples per language
for Spanish, Euskara, French, Italian, and Arabic.
German appears as the least represented language,
with about 1,500 samples. Figure 2 displays the
statistics by LLMs. Figure 5 illustrates the num-
ber of hallucination spans present in each sample.
There are 14,000 samples with no hallucinations
and 50,000 samples containing just one span of
hallucination. Other samples have 2 or more spans,
with a maximum of 10 in rare cases. Figure 6
depicts the word distribution of span lengths. Psil-
0QA spans are relatively short, with 50,000 spans
including fewer than 5 words.

Also, we analyzed the distribution of predicted
domains in the PsiloQA dataset. Each passage was
assigned a single domain using zero-shot classifica-
tion with the bart-large-mnli* model across 34
candidate domains. Geography and Sports are the
most prevalent, with roughly 25-30% of samples
each. Overall, the dataset exhibits a diverse distri-
bution, with some highly represented domains and
a long tail of less frequent categories.

3.3 Dataset Production Cost

The estimated cost of GPT-40 labeling is $535,
based on token generation pricing where $4 is
charged for every 1M input tokens and $16 for

*https://hf.co/facebook/bart-large-mnli

every 1M tokens. To compare this with RAGTruth,
the only span-level hallucination dataset with a
labeled training set, we estimated its cost. To anno-
tate RAGTruth, annotators proficient in English and
holding a bachelor’s degree in English, Communi-
cations, or relevant fields were employed to ensure
accuracy and reliability. They were recruited from
a professional vendor and compensated at $25 per
hour per individual. Each response was labeled by
two annotators, achieving a 91.8% consistency rate
at the response level and 78.8% at the span level.
The total cost of labeling is not specified in the
paper, but our rough estimation suggests the span-
level labeling of RAGTruthga was approximately
$3,000.

3.4 Manual Dataset Analysis

To validate the quality of our automatic annotation
pipeline, we conducted a manual verification study
on 100 randomly selected samples from the En-
glish PsiloQA test split. Three annotators with MS
degrees in relevant fields were tasked with identify-
ing hallucination spans within these samples, using
general instruction presented in Figure 8.

Following our dual-level evaluation approach
(detailed in Section 4), we assessed annotation qual-
ity using two metrics: average precision (AP) and
intersection over union (IoU). For inter-annotator
agreement, we computed the mean of all pairwise
comparisons between annotators, yielding an AP
of 80.1% and IoU of 76.8%, demonstrating sub-
stantial consensus among human annotators. To
compare human labels against GPT-40’s automatic
predictions, we first aggregated the three manual
annotations: for IoU, we computed the character-
level union, while for AP, we calculated the mean
score for each character position. The aggregated
reference showed strong alignment with GPT-40’s
predictions, achieving an AP of 84.3% and IoU of
71.0%.

The result indicates that GPT-4o0 is a reliable
annotator of span-level hallucination given ground-
truth context. The chosen sample size yields a
worst-case margin of error of approximately 9.8%
at the 95% confidence level (Klie et al., 2024),
providing reasonable confidence of the pipeline’s
overall adequacy. To further validate annotation
quality, we present cross-lingual transfer results
in Section 5.2 using the Mu-SHROOM (Vazquez
et al., 2025) dataset.
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4 Experimental Setup

In our experiments, we pursue the following ob-
jectives: (i) to evaluate the performance of uncer-
tainty quantification (UQ) baselines, large language
models (LLMs), and state-of-the-art methods on
the PsiloQA dataset; (ii) to demonstrate the trans-
ferability of knowledge from models trained on
PsiloQA and RAGTruth to a range of downstream
benchmarks; (iii) to assess the impact of multilin-
gual training in PsiloQA by comparing two config-
urations of mmBERT (Marone et al., 2025): one
trained on the full multilingual PsiloQA dataset
and the other trained separately on each individual
language subset.

4.1 Datasets

In addition to PsiloQA (described in Section 3),
we employ four different QA-based benchmarks to
evaluate several methods for identifying span-level
hallucinations, with the dataset specifics outlined
in Table 1.

Mu-SHROOM: a multilingual benchmark for 14
languages. The dataset contains 3,351 unlabeled
samples in four languages: English, Spanish, Chi-
nese, French. The test set contains 1,902 sam-
ples (Basque, Catalan, Czech and Farsi containing
around 100 items, and other languages containing
around 150 items).

FAVA-Bench: An English-language, human-
annotated benchmark designed to identify and cor-
rect various types of hallucinations according to
the FAVA taxonomy. Due to the inability of most
models to detect errors using this taxonomy, the
original benchmark’s focus was limited to span-
level hallucination detection.

HalluEntity: A benchmark in English for de-
tecting entity-level hallucinations, comprising 157
human-annotated samples. Annotations were gath-
ered by having ChatGPT generate biographies of
various well-known individuals.

RAGTruthga: An English-language, human-
annotated benchmark for detecting hallucinations,
consisting of 900 samples with questions
sourced from the MS MARCO dataset. For
generating responses, six different models were uti-
lized: GPT-3.5-turbo-0613, GPT-4-0613,
Llama-2-7B-chat, Llama-2-13B-chat,
Llama-2-70B-chat and Mistral-7B-Instruct.

4.2 Metrics

Due to the complex nature of hallucination detec-
tion, we employ a dual-level evaluation approach
combining span-level and character-level assess-
ment. As with Mu-SHROOM, we selected the
intersection over union (IoU) metric to evaluate
span-level hallucination detection. Additionally,
we use average precision (AP) for ranking-based
evaluation on character-level.

First, the span-level annotation is converted into
a set of binary labels for each character. Next, the
IoU is calculated as follows:

IoU = ‘ébin N Chin

/ ‘ébin U Chin

(D

where Cl;, is the set of binarized character-level
annotations, and C’bin is the set of characters that
the model predicts as hallucinated.

Average precision provides a threshold-
independent evaluation by computing the area
under the precision-recall curve. In practice, it is
calculated as:

AP = Zp(n)Ar(n) )

where p(n) is the precision at cut-off n in the
ranked list and Ar(n) is the change in recall be-
tween items n — 1 and n. This metric is particularly
valuable for hallucination detection as it handles
imbalanced datasets effectively and provides robust
evaluation across different prediction confidence
distributions, making it suitable for both in-domain
evaluation and cross-dataset transfer scenarios.

4.3 Baselines
4.3.1 Uncertainty Quantification

Most uncertainty quantification methods either
operate at the sequence-level or require model-
specific training. Therefore, for a given gener-
ated text y of a length N, for each token ¢; € g,
1 = 1...N, we compute three uncertainty quan-
tification methods, which are designed for token-
level tasks. The set of baselines includes Max-
imum Token Probability (MaxProb; Fomicheva
et al. (2020)), Claim Conditioned Probability (CCP;
Fadeeva et al. (2024)), and Focus (Zhang et al.,
2023). To compute the IoU metrics, we employ
language-specific threshold calibration on the vali-
dation set.
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Method Mode Metrics ar ca cs de

es eu fa fi fr hi it sV zh

Uncertainty Quantification

MSP B AP 4338 3941 40.12 30.86
IoU 3570 2836 33.68 30.03
AP 4890 41.17 4098 31.18
ToU 3570 2837 33.68 33.25
AP 49.87 39.88 4386 32.71
ToU 36.93 2837 33.68 32.05

CcCp -

Focus -

59.38  52.04 50.76 41.08 6595 4984 56.75 47.71 4539 49.18
45.69 3372 33.04 22.13 53.13 37.67 4345 31.61 2696 2842
62.52 5255 51.63 4487 66.75 5043 59.62 49.75 4530 52.67
45.69 3372 33.04 22.13 53.13 37.67 4345 3220 2696 27.39
63.61 61.72 52.84 47.12 6890 53.65 60.09 48.07 5620 53.05
45.69 4224 3465 2994 53.13 3926 4345 3220 36.15 2783

Encoder Models

AP 4623 57.71 3253  32.15
ToU 37.81 4437 30.08 30.31
AP 60.37 7548 5346 4477
IoU 5527 6570 4473 46.27
AP 7071 7722 67.62 61.40

lettuce-detect-base -

ModernBERT-base SFT

5421 5127 30.78 3245 5743 3751 33.17 3536 4897 31.01
4328 40.08 3335 3245 5644 3560 16.95 3497 49.11 3594
81.63 81.71 5872 53.84 66.87 6848 7194 72.00 79.94 66.84
68.23 61.69 5043 68.63 64.68 5390 54.15 62.75 67.09 56.95
84.88 84.84 6530 7524 75.85 7352 7833 7381 84.04 73.79

mmBERT-base SFT ToU 58.10 67.01 48.81 5497 70.67 66.18 50.27 76.61 68.16 5638 61.19 66.57 6624 61.58
Language Models
FActScore (GPT-40) — AP 53.62 4524 58.65 4332 6238 5175 66.82 70.04 7449 71.12 5035 69.81 69.68 58.68

IoU 20.75 2899 1044 26.68
AP 5452 67.66 61.18 70.50

Qwen2.5-32B-it IoU 3554 5171 4683 23.57

3-shot

25.84 2854 19.68 26.62 28.16 1021 21.03 4392 1925 2518
63.17 5469 57.10 59.68 7242 6741 76.14 57.65 6443 77.20
39.98 4051 36.52 19.18 34.69 31.92 4456 3795 5089 42.77

Table 2: Performance comparison of span-level hallucination detection methods on the PsiloQA test set across 14
languages. Encoder models were supervised fine-tuned (SFT) on the complete PsiloQA train set, while Qwen2.5-

32B-it used 3-shot prompting.

4.3.2 Encoder Models

We evaluate several encoder-based transformer
models fine-tuned for token-level hallucination de-
tection. These models process context-question-
answer triples to identify unsupported claims at
the token level. LettuceDetect models (Kovacs
and Recski, 2025), built on ModernBERT (Warner
et al., 2025), were trained on the RAGTruth dataset
and offer extended context processing capabili-
ties (8,192 tokens) through a local-global attention
mechanism (Riviere et al., 2024). However, they
were pre-trained primarily on English data from
various sources like web documents, code, and sci-
entific literature. This implies that the models are
not directly suitable for use with other languages,
and their effectiveness may be further reduced for
low-resource languages, even though the tokenizers
might include subtokens pertaining to non-English
languages.

To address multilingual requirements, we fine-
tuned mmBERT-base®, Modern Multilingual En-
coder (307M parameters) that extends Modern-
BERT with native support for multiple languages.
We also fine-tuned ModernBERT-base® on the com-
plete PsiloQA dataset for comparison. All models
were fine-tuned using identical hyperparameters
as those in LettuceDetect, detailed in Table 5 (Ap-
pendix C).

4.3.3 Language Models

We also use two LLM-based approaches.
FActScore (Min et al., 2023) decomposes model re-
sponses into atomic facts and verifies each against

5https://hf.co/jhu—clsp/mmBERT—base
®https://hf.co/answerdotai/ModernBERT-base

the provided context using an LLM (GPT-40 in
our implementation). To adapt this sentence-level
method for token-level annotation, we compute
token-level hallucination scores based on their fre-
quency in unsupported claims, applying a threshold
of 0.5 for binary classification. Tokens appearing
in all claims or present in the original input are
excluded from hallucination marking. Few-shot
prompting with Qwen2.5-32B-Instruct’ using
3-shot learning with examples randomly selected
from the validation set. The prompting template is
detailed in Figure 11.

5 Results

5.1 Performance on PsiloQA

Table 2 presents the performance of span-level hal-
Iucination detection methods on PsiloQA across 14
languages.

Uncertainty Quantification methods show mod-
erate performance, with Focus consistently outper-
forming MSP and CCP across both metrics, achiev-
ing the highest AP scores (e.g., 68.90 for Finnish,
63.61 for English) among UQ approaches. How-
ever, loU scores remain relatively low across all lan-
guages, indicating limited precision in span-level
detection.

Encoder models demonstrate superior perfor-
mance, with a clear hierarchy emerging. The
pre-trained LettuceDetect model shows mixed re-
sults, performing reasonably on some languages.
Fine-tuned models significantly outperform the pre-
trained baseline: ModernBERT achieves strong re-
sults, while mmBERT obtains the best overall per-

7https: //hf.co/Qwen/Qwen2.5-32B-Instruct
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Strategy Metrics  ar ca cs de en eu fa fi fr hi it sV zh

PsiloQA

Per language IoU 457 59.88 4564 39.68 72.05 5505 4233 6937 6198 492 5211 5927 62.74 51.62
AP 57.1 70.79 53771 5829 82.82 67.71 4981 6554 651 6257 713 69.88 83.69 69.73

Multilingual IoU 58.1 67.01 4881 5497 70.67 66.18 50.27 76.61 68.16 56.38 61.19 66.57 66.24 61.58
AP 70.71 7722 67.62 614 8488 8484 653 7524 7585 7352 7833 73.81 84.04 73.79

Mu-SHROOM

Per language IoU 47.17 524 31.43 3842 5851 3127 38.11 49.62 61.69 53.53 6291 61.27 3358 31.05
AP 67.18 6433 51.05 60.34 70.18 447 51.85 6891 8137 7693 7591 79.07 7052 60.8

Multilingual IoU 6587 65.12 4214 6413 58 4528 48.16 69.01 51.69 5949 71.69 72.6 4945 38.19
AP 824 7887 63.5 8151 7227 5312 6645 78.61 7851 80.88 79.73 84.02 747 56.01

Table 3: Cross-lingual transfer results comparing two training strategies of mmBERT-base: language-specific
models trained independently on each language subset of PsiloQA (per language) versus a single multilingual model
trained on the complete PsiloQA dataset (multilingual). Both approaches are evaluated on test sets from PsiloQA

and Mu-SHROOM datasets.

Test Metrics Train

RAGTruthgs  PsiloQAe.  Both
FAVABench 1V 1555 10 173
HalluEntity }:1(3} % ﬁ éggg
Mu-SHROOM., 0t e 2018 %

Table 4: Generalization performance of mmBERT-base
across different hallucination detection benchmarks.
Models were fine-tuned on RAGTruthga, PsiloQAg,,
or both datasets, and evaluated on FAVA-Bench, Hallu-
Entity, and Mu-SHROOM,,, test sets.

formance, achieving the highest scores in 12 of 14
languages for both metrics. This superiority high-
lights the importance of multilingual pre-training
for cross-lingual hallucination detection.

Language model approaches exhibit diver-
gent patterns. FActScore achieves competitive
AP scores in certain languages (e.g., Finnish,
French) but consistently shows poor IoU perfor-
mance, suggesting it identifies hallucinated re-
gions but struggles with precise span boundaries.
Qwen2.5-32B-it with 3-shot prompting demon-
strates language-specific strengths, achieving the
best AP for German and Chinese, though its IoU
scores remain moderate.

@ Takeaway

Fine-tuned multilingual encoder models con-
sistently outperform both uncertainty-based
and LLM-based approaches. But the gap be-
tween AP and IoU metrics across all methods
indicates that precise span-level boundary de-
tection remains a significant challenge.

5.2 Cross-lingual Transfer

To evaluate the cross-lingual transferability of Psil-
0QA, we compare mmBERT-base models trained
on the complete multilingual PsiloQA dataset
against models trained on individual language sub-
sets. We evaluate performance on both PsiloQA
and Mu-SHROOM test sets to measure within-
distribution and cross-dataset generalization.

Table 3 demonstrates that training on the full
multilingual PsiloQA dataset enables robust cross-
lingual transfer. The multilingual model consis-
tently outperforms language-specific models across
most target languages, with improvements ob-
served even for languages with distinct scripts (Ara-
bic, Hindi) and those from different language fami-
lies.

@ Takeaway

Multilingual training on PsiloQA enables
superior cross-lingual transfer compared to
language-specific training, with benefits ex-
tending across different scripts and language
families.

5.3 Knowledge Transfer

To evaluate generalization across datasets, we as-
sess model transferability (Karpov and Konovalov,
2023) by comparing models fine-tuned on synthetic
PsiloQA versus human-annotated RAGTruth. We
utilize mmBERT-base as our strongest baseline. We
fine-tune it in three configurations: (i) exclusively
on RAGTruthqa, (ii) solely on PsiloQA.,, and (iii)
on both datasets combined. All configurations
use identical hyperparameters and are evaluated
on three independent benchmarks: FAVA-Bench,
HalluEntity, and Mu-SHROOM,,.
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Table 4 reveals that PsiloQAg,-trained mod-
els consistently outperform RAGTruthga across
benchmarks. Most notably, PsiloQA achieves
substantial gains on Mu-SHROOM,, — represent-
ing a 45% improvement in IoU. Similar advan-
tages appear on HalluEntity, while FAVA-Bench
shows limited performance across all configura-
tions, suggesting valuable task differences. Com-
bining both datasets demonstrates selective bene-
fits, with PsiloQA-based configurations (alone or
combined) dominating. Joint training achieves the
highest AP on HalluEntity. On Mu-SHROOMg,,
the combined model maintains strong performance,
ranking second only to PsiloQA alone.

The advantage of PsiloQA., might stem from
its larger training set size, yet PsiloQA’s synthetic
generation remains more than 17 times cheaper
than manually curated RAGTruthga (Section 3).

@ Takeaway

The superior ability of PsiloQA to transfer
knowledge could be attributed to its larger size
compared to RAGTruth, yet its generation
cost is significantly lower than the labeling
cost of RAGTruth.

Conclusion

In this work, we introduced PsiloQA, a large-
scale, multilingual, span-level hallucination detec-
tion dataset constructed using a scalable and cost-
effective pipeline. Our approach leverages real
hallucinations produced by LLMs in a zero-context
setting and employs GPT-40 for automated span-
level annotations. PsiloQA offers extensive lan-
guage coverage and supports diverse LLM architec-
tures, providing a valuable resource for evaluating
and training hallucination detection models.

Through comprehensive evaluations across mul-
tiple baselines — including uncertainty quantifi-
cation, encoder-based detectors, and LLM-based
methods — we demonstrated the effectiveness of
PsiloQA for benchmarking hallucination detec-
tion. Our results reveal that fine-tuned encoder-
based methods, particularly multilingual models
like mmBERT and ModernBERT, outperform other
baselines, though significant challenges remain.
Additionally, we showed that PsiloQA supports
strong cross-lingual generalization and outper-
forms human-annotated datasets like RAGTruth
in knowledge transfer experiments, despite being

over 17 times cheaper to produce.

Our findings highlight the feasibility and advan-
tages of using synthetically generated datasets with
automated high-quality annotations to improve the
robustness and factuality of LLMs. Future work
will explore extending the PsiloQA pipeline to
other generation tasks, such as summarization and
data-to-text generation, further broadening its util-
ity in hallucination research.

Limitations

While PsiloQA presents significant advancements
in span-level hallucination detection across lan-
guages, several limitations remain:

Annotation Source Bias: PsiloQA relies ex-
clusively on GPT-40 for both generating ques-
tion—answer pairs and annotating hallucination
spans. This introduces potential bias in annotation
and generation patterns, as the judgment of a single
model may not reflect broader consensus or gener-
alize well across diverse use cases. This bias could
be substantially mitigated by using an ensemble
of annotators composed of several state-of-the-art
models with span averaging. We consider this a
promising direction for future work.

Task Narrowness: The current version of Psil-
0QA is limited to the question-answering (QA)
task. While QA is a strong proxy for factual reason-
ing, other generative tasks such as summarization,
dialogue, and data-to-text generation also suffer
from hallucinations and warrant similar treatment.
Hallucination Type Coverage: Unlike datasets
that inject controlled hallucination types (e.g.,
FAVA), PsiloQA does not explicitly cover a diverse
taxonomy of hallucinations. The hallucinations
in PsiloQA arise naturally from LLM errors in a
zero-context setting, which may result in skewed
distributions and underrepresentation of certain er-
ror types.

Language Resource Imbalance: Despite cover-
ing 14 languages, the sample distribution across
languages is uneven, and lower-resource languages
may suffer from fewer high-quality examples. Ad-
ditionally, many baselines used for comparison are
predominantly trained or optimized for English,
potentially underestimating performance in other
languages.

Dependency on Wikipedia: Using Wikipedia as
the sole source of context limits the topical, stylis-
tic, and cultural diversity of the dataset. While
Wikipedia provides clean, factual content across
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many languages, its coverage is uneven: some lan-
guages, cultures, and topics are better represented
than others, potentially introducing cultural or re-
gional biases into the dataset. Consequently, mod-
els trained on this data may inherit these biases.
Moreover, real-world applications often involve
noisier or domain-specific data

Ethical Considerations

This work involves the creation and analysis of a
multilingual question-answering (QA) dataset, Psil-
0QA, designed for evaluating span-level hallucina-
tion detection in large language models (LLMs).
We address several ethical aspects to ensure re-
sponsible data generation, annotation, and usage:
Data Source and Privacy: All questions and
corresponding answers were generated using pub-
licly available information from Wikipedia. The
dataset contains no personally identifiable infor-
mation (PII), and no sensitive or private data was
collected, stored, or processed at any stage.
Intended Use and Limitations: PsiloQA and the
associated models are intended solely for research
purposes, particularly in the development of more
trustworthy and interpretable QA systems. While
our models aid in detecting hallucinations, they are
not error-free and should not be considered reliable
for deployment in high-stakes or real-time decision-
making systems (e.g., healthcare, legal domains)
without rigorous domain-specific evaluation and
validation.

Fairness and Inclusivity: The dataset includes
samples across 14 languages to support multilin-
gual research. However, language coverage is un-
even, and performance disparities may exist due
to varying model training resources and language-
specific complexities. Researchers should account
for these disparities when interpreting results or
deploying tools based on PsiloQA.

Avoidance of Misuse: We explicitly discourage
the use of our dataset or trained models for surveil-
lance, censorship, or automated moderation with-
out human oversight. The tools are not intended
for identifying or suppressing content and must not
be used to enforce ideologically biased or discrimi-
natory practices.

Transparency and Reproducibility: We provide
complete documentation of our data generation and
annotation pipeline, including prompt designs and
filtering mechanisms, to ensure transparency and
reproducibility. Our approach emphasizes the use
of real hallucinations generated by LLMs in a zero-

context setting, promoting authentic error analysis.
Model Dependency and Bias: Since both the gen-
eration and annotation of PsiloQA rely on GPT-4o,
there is an inherent risk of model bias influenc-
ing the dataset. Although GPT-40 was among the
state-of-the-art models available during dataset de-
velopment, its judgments may reflect underlying
model biases or fail to align with human consensus
in edge cases. Furthermore, GPT-40’s proficiency
varies across languages, which may affect the con-
sistency and quality of cross-lingual annotations.
Future iterations of PsiloQA may incorporate di-
verse model perspectives and human-in-the-loop
validation to mitigate this concern.

By making PsiloQA publicly available, we aim
to support the development of robust, multilingual
hallucination detection systems while promoting
ethical, fair, and responsible Al research.
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A License and Infrastructure

Experiments utilized 2 NVIDIA A100 GPUs, to-
taling around 50 GPU-hours. Models were used
according to their licenses: Qwen 2.5 under Apache
2.0. We release our dataset under CC-BY-4.0.

B Packages

To generate the PsiloQA dataset, we used the
VLLM (Kwon et al., 2023) package for efficient
inference of LLMs on available GPUs, following
the default hyperparameters recommended in the
Hugging Face README files. Encoder model
training was performed using the Transformers li-
brary (Wolf et al., 2020), with training hyperparam-
eters detailed in Appendix C.

C Encoder Hyperparameters

Hyperparameter  Value
learning_rate le-5
num_train_epochs 6
weight_decay 0.01
batch_size 8

Table 5: Training followed LettuceDetect (Kovécs and
Recski, 2025) hyperparameters for six epochs, with the
best validation checkpoint selected.
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D PsiloQA Dataset Statistics

Language Language Model # of parameters  Avg # of spans  Avg span length  # of samples

ar SealLLMs/SeaLLM-7B-v2.5 7-9B 1.35 9.09 2072
ca occiglot/occiglot-7b-es-en-instruct 7-9B 1.07 11.18 6240
cs mistralai/Mistral-7B-Instruct-v0.3 7-9B 1.60 16.18 4984
de malteos/bloom-6b4-clp-german-oasst-v0.1 3-7B 0.97 9.96 1378
en HuggingFaceH4/zephyr-7b-beta 7-9B 241 22.46 665

en HuggingFaceTB/SmolLM2-1.7B-Instruct 1-3B 2.20 21.36 608

en HuggingFaceTB/SmolLM?2-135M-Instruct <1B 2.09 36.80 581

en HuggingFaceTB/SmolLM2-360M-Instruct <IB 1.85 25.97 578

en ServiceNow-Al/Apriel-5B-Instruct 3-7B 1.37 10.66 3525
en TinyLlama/TinyLlama-1.1B-Chat-v1.0 1-3B 1.87 21.46 2151
en tiiuae/falcon-7b-instruct 7-9B 1.70 14.96 1595
en togethercomputer/Pythia-Chat-Base-7B-v0.16 7-9B 1.29 9.31 2042
es Iker/Llama-3-Instruct-Neurona-8b-v2 7-9B 1.43 14.84 2364
eu google/gemma-7b-it 7-9B 1.03 10.81 3853
fa Qwen/Qwen2-7B-Instruct 7-9B 1.22 7.46 4550
fi BSC-LT/salamandra-7b 7-9B 0.83 2.37 4512
fi Finnish-NLP/llama-7b-finnish-instruct-v0.2 7-9B 1.09 9.38 2561
fr croissantllm/CroissantLLMChat-v0.1 1-3B 1.56 26.84 2026
hi google/gemma-7b-it 7-9B 1.03 10.81 3853
hi nickmalhotra/ProjectIndus 1-3B 1.25 25.65 1801
hi sarvamai/sarvam-1 1-3B 0.98 11.67 3331
it sapienzanlp/modello-italia-9b 7-9B 1.39 15.13 2181
Y utter-project/EuroLLM-9B-Instruct 7-9B 1.12 11.27 7729
zh Qwen/Qwen2-7B-Instruct 7-9B 1.22 7.46 4550
zh Qwen/Qwen2.5-3B-Instruct 3-7B 1.11 1.46 1170
zh ikala/bloom-zh-3b-chat 3-7B 1.28 3.04 3309

Table 6: The list includes the utilized LLMs along with their corresponding languages and statistics like the average
number of spans and the average span length.
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Figure 2: Number of samples generated by every model in PsiloQA.
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E PsiloQA Dataset Sample

Passage Question Complexity Golden Answer LLM Answer

Lillian Richter (1915-2000) When was Lillian Easy 1915 Lillian Richter was born in
was an American lithogra- Richter born? 1932.

pher. Richter did work for

the Works Progress Admin-

istration (WPA).

Things I Carry Around is What is the title Easy Things I Carry The eleventh studio album
the eleventh studio album of the eleventh stu- Around by Troy Cassar-Daley is
by Australian country music ~ dio album by Troy "The Greatest Hits"

artist Troy Cassar-Daley. Cassar-Daley?

Albert Herman (1887-1958)  For which company Hard Producers Releas- Albert Herman mainly
was an American actor, did Albert Herman ing Corporation worked as a director for the
screenwriter and film direc- mainly work as a di- company Albert Herman &
tor. Herman was a prolific  rector? Cie.

director, working mainly on

low-budget movies for com-

panies such as Producers Re-

leasing Corporation

Edmond Armand René Quelle est Ila Easy 17 juin 1911 1923.

Thorailler, né le 17 juin date de naissance

1911 a Nogent-le-Roi d’Edmond Tho-

(Eure-et-Loir) et mort le 24 railler?

aolt 2004 a Notre-Dame-

de-Monts (Vendée), est un

notaire et homme politique

francais.

Bloomfield Road est le nom  Quel est le nom Easy Bloomfield Road Blackpool Stadium

d’un stade de football lo- du stade situé a

calisé a Blackpool, en An- Blackpool, en An-

gleterre. C’est ’enceinte  gleterre?

du club principal de la ville,

le Blackpool Football Club,

depuis 1901. Ce stade de 16

220 places a été inauguré le

28 octobre 1899.

Der Rotstielige Zwerg- Wie heilit der Easy Russula font-queri Amanita rubescens-Team
Taubling oder Rotstieliger Rotstielige Zwerg-

Birken-Tdubling (Rus- Taubling auf

sula font-queri) ist ein Latein?

Pilz aus der Familie der
Téublingsverwandten. Es
ist ein seltener Tdubling und
typischer Birkenbegleiter
mit kupferrotem Hut und
leicht rosa iiberlaufenem
Stiel. Sein Sporenpulver ist
gelblich.

Table 7: Example of PsiloQA samples. Each sample contains the passage retrieved from Wikipedia, the question
and the Golden Answer of some complexity level generated by GPT-4o0, the LLM answer generated by some LLM,
and the hallucination ranges (highlighted in red) annotated by GPT-40 by comparing the LLM answer with the

Golden Answer.
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F QA Pairs Generation Prompt

Generate 3 question-answer pairs with different levels of complexity (easy,
medium and hard).

You must only create questions that require knowledge of the passage.

Format your answer as a Python list with 3 jsons.

Each json should contain "question”, "answer” and "complexity"” fields.

Do not generate questions that require imagination.

The questions should be factual, so do not generate questions that ask for
subjective opinion or reasoning.

It should be enough to know the facts from the provided passage.

Each question must contain exactly one question.

Do not make any reference to the passage in the question-answer pair.

Use the language in which the passage is written.
{answer_length_constraint}

**Passage:*x {p}

Figure 7: Prompt for question-answer pairs generation used for PsiloQA creation. We ask GPT-4o to generate three
different question-answer pairs of different complexity using the retrieved passage from Wikipedia. We also control
the length of the answer. In 33% of the cases we ask GPT-40 to generate long and detailed answers.
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G Inconsistency Detection Prompt

Your task is to find any inconsistencies with the correct information in LLM's
answer.

Carefully read the user's question, the golden answer, the relevant passage, and
LLM's answer.

The relevant passage contains information for answering the question.

LLM did not see the relevant passage while generating the response.

General instructions:

- If LLM refused to answer the question, then answer by simply copying LLM's
answer. There is no inconsistency if LLM did not provided any answer to the
question.

- If LLM's answer does not contain information relevant to the question, and the
information does not contradict the relevant passage, then answer by simply
copying LLM's answer.

- If LLM's answer is relevant to the question, use the opening tag [HALJ] and
closing tag [/HAL] to highlight areas of inconsistency with the golden
answer and relevant passage information. Inconsistency means something that
is related to the topic of the question, but contradicts the relevant
passage or introduces new information.

- If LLM's answer is consistent with the golden answer, do not highlight
anything, answer by simply copying LLM's answer.

How to highlight spans:

- Each span could contain from 1 to several words. In rare, specific cases, it
could be longer.

- Make spans as precise as possible, do not highlight the entire answer.

- Highlight spans at the word level, not the character level.

DO NOT ADD ANY CHANGES TO LLM'S ANSWER EXCEPT [HAL] and [/HAL]!

Begin your answer with "*xHighlighted LLM Response:xx".

Figure 8: Prompt for inconsistencies detection in LLM answers. We pass to prompt questions, answers of
different LLMs and the golden answers generated by GPT-40. In the prompt, we ask GPT-4o to find any spans of
inconsistencies in the golden answer. Here we consider the obtained inconsistencies with the gold and the context
as hallucinations.
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H Filtering Prompts

Classify the following question into one of three categories:

1. INCOMPLETE_QUESTION

Incomplete questions that use pronouns with no clear antecedent ("Where is THIS
located?” / "What is HE famous for?").

Questions that refer to a list/paragraph/excerpt that isn't included in the
question itself.

2. SUBJECTIVE
Questions whose answers require value judgments or a subjective opinion.

3. NORMAL

Any question with a clear subject ("Where is Jacksonville located?” / "Who is
Alexander Montenegro?").

The subject may be ambiguous or polysemous, but it must not be impersonal.

Open-world questions that name their subject (even if broad or multi-answer) are
NORMAL .

Instructions:
Output only one of the three categories: INCOMPLETE_QUESTION, SUBJECTIVE, or
NORMAL .

Examples:

INCOMPLETE_QUESTION

: What were the set scores in the final match?

INCOMPLETE_QUESTION

Which religious order was the abbey associated with?

INCOMPLETE_QUESTION

What is the chemical formula of perrhenic acid as stated in the passage?
INCOMPLETE_QUESTION

>0 >0 >0

SUBJECTIVE

Q: What are some of the primary aims of the Athletics Club Lechia Gdansk?

A: SUBJECTIVE

Q: What is the significance of the Fahey-Murray ministry in the context of New
South Wales government history?

A: SUBJECTIVE

NORMAL
: What was the population of Hazleton according to the 2020 census?
A: NORMAL
Q: What role did William Arrington hold in the Illinois State Senate between
1955 and 19737

A: NORMAL
Q: Which Olympic Games did Lee Jun-ho represent South Korea in?
A: NORMAL
Q: How many league appearances did James Ryan make in the EFL?
A: NORMAL

Figure 9: Prompt for the detection of subjective and incomplete questions. Subjective questions require a personal
opinion rather than a factual answer. Incomplete questions lack a clear subject and are therefore unanswerable.
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You are a strict detector of 'I don't know' style answers.

Given an answer string, return only the word TRUE if the answer expresses
refusal to answer due to lack of information, or otherwise clearly states
that it cannot answer.

If the model provides any meaningful information regarding the topic or makes
assumptions, return only the word FALSE, even if there was uncertainty
anywhere in the answer.

Do not explain.

Figure 10: Prompt for detecting cases when LLM refuses to answer.

I LLM Baseline Evaluation Prompt

Please act as an objective error detector. You will be given the user's
guestion, a relevant passage, and the LLM's response.

Your task is to analyze the response to the question and identify the parts of
the response that are most likely to contain errors or inconsistencies.
Taking into account the question and the answer provided by the language model,
you need to wrap erroneous words/phrases in the answer with special tokens:

[HAL] erroneous word/phrase [/HAL]J.

Before the question, you will be given a passage - a factual reference that will
help you identify factual errors. Use it as a guide when highlighting
hallucinations - mark words/phrases as hallucinations if they do not
correspond to the information in the passage.

Example {x3}:

Knowledge source: {sampled passage (optional)}

Question: {sampled question}

Answer: {sampled answer}

Answer with highlighted spans: {sampled highlighted answer}

Knowledge source: {passage}
Question: {question}

Answer: {answer}

Answer with highlighted spans:

Figure 11: Prompt for evaluating the baseline model Qwen2.5-32B-instruct in English. We evaluate baseline in
3-shot mode, with examples sampled from the PsiloQA validation set. The prompt is translated for each language,
and the few-shot examples are picked from the corresponding language.
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