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Abstract

Large Language Models store extensive fac-
tual knowledge acquired during large-scale pre-
training. However, this knowledge is inherently
static, reflecting only the state of the world at
the time of training. Knowledge editing has
emerged as a promising solution for updating
outdated or incorrect facts without full retrain-
ing. However, most existing locate-and-edit
methods primarily focus on token-level likeli-
hood optimization without addressing seman-
tic coherence. Our analysis reveals that such
edited knowledge is often encoded as isolated
residual streams in the model’s latent space, dis-
tinct from pre-existing knowledge and bypass-
ing natural reasoning process. To address this,
we propose STEAM, a semantic-level knowl-
edge editing framework that enhances integra-
tion of updated knowledge into the model’s
knowledge structure. STEAM first identifies tar-
get representations as semantic anchors for the
updated factual association, then guides the in-
ternal representation of the edited fact towards
these anchors through an alignment loss dur-
ing optimization. Experimental results demon-
strate that STEAM improves model’s ability to
reason with edited knowledge and enhances se-
mantic coherence, underscoring the importance
of latent-space alignment for reliable and coher-
ent knowledge editing. The code is available at
https://github.com/GY-Jeong/STEAM.

1 Introduction

Large Language Models (LLMs) have achieved im-
pressive performance in knowledge-intensive NLP
tasks (Singhal et al., 2023; Wang et al., 2024c) by
leveraging extensive factual knowledge acquired
through large-scale pre-training (Akyurek et al.,
2022; Wang et al., 2024a; Chang et al., 2024). How-
ever, this knowledge is inherently static, reflecting
only the state of the world at the time of training.
This limitation necessitates efficient methods for
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updating LLMs when new information arises or
existing facts become outdated.

Knowledge editing1 (De Cao et al., 2021; Zhang
et al., 2024; Wang et al., 2024b) has emerged as
a promising approach, enabling selective updates
to specific factual information without the need
for costly full retraining. This approach typically
identifies a fact as a triple structure (s, r, o), repre-
senting (subject, relation, object), and aims to re-
place the original object o with a new entity o∗. For
example, the outdated fact (UK, Prime Minister,
Rishi Sunak) can be updated to the current fact
(UK, Prime Minister, Keir Starmer).

For knowledge editing to be reliable, it is cru-
cial that updated facts are consistently integrated
into the model’s knowledge structure. However,
most existing methods primarily focus on token-
level likelihood optimization (i.e., maximizing the
generation probability of o∗) without addressing
semantic coherence. Consequently, these methods
face challenges in tasks that require knowledge in-
tegration, such as maintaining consistency across
interconnected facts or supporting complex rea-
soning tasks (Yao et al., 2023; Cohen et al., 2024;
Zhong et al., 2023).

To investigate this limitation, we examine how
edited knowledge is represented within the latent
semantic space of the edited model. Our analysis
reveals that edited knowledge is often encoded as
isolated residual streams – sequences of hidden
states propagated through the transformer layers –
which are distinct from model’s pre-existing knowl-
edge (§ 3.2). Building on this finding, additional
interpretability-based analysis reveals that these
residual streams reflect a direct activation for
the generation of the target token o∗, bypassing
the model’s natural reasoning process (§ 3.3). This
behavior exposes a fundamental shortcoming of

1In this paper, we focus on parameter-modifying knowl-
edge editing methods, specifically locate-and-edit approaches.
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current editing strategies and underscores the need
for approaches that promote semantic-level integra-
tion for coherent and reliable knowledge editing.

To address this challenge, we propose STEAM

(Semantic-Level Knowledge Editing Framework),
a novel approach that enhances knowledge
integration and is easily compatible with existing
locate-and-edit approaches. STEAM augments the
conventional locate-and-edit approach through
two main components: (1) Latent Positioning,
which identifies semantic anchors for edited
knowledge, and (2) Latent-Level Alignment,
which guides the edited knowledge representation
towards these anchors in the latent space. Our
experimental results demonstrate that STEAM

significantly improves the model’s reasoning
ability with edited knowledge and enhances overall
semantic consistency, supporting the advantages of
semantic-level integration for reliable knowledge
editing.

We summarize our contributions as follows:

• We systematically analyze conventional locate-
and-edit methods and reveal that they encode
edited knowledge separately from the model’s
existing knowledge (§ 3).

• We propose STEAM, a semantic-level knowledge
editing framework designed to enhance the se-
mantic coherence of updated knowledge with the
model’s internal knowledge representations (§ 4).

• We empirically demonstrate that STEAM sig-
nificantly improves reasoning with edited facts
and enhances semantic coherence, across diverse
baselines and editing settings (§ 5).

2 Locate-and-Edit Approach

Locate-and-edit approach consist of two stages: (1)
Locating, which identifies the parameters where
a fact (s, r, o) is stored, and (2) Editing, which
modifies those parameters to encode the updated
fact (s, r, o∗).

2.1 Locating

To identify the parameters responsible for encoding
factual associations (i.e., (s, r)→ o) within LLMs,
prior work has employed knowledge analysis tech-
niques such as causal tracing (Meng et al., 2022).
These methods systematically perturb intermediate
model representations to pinpoint the components
that contribute to factual recall. Empirical findings

suggest that factual associations are primarily en-
coded in the MLP modules of the early-to-middle
transformer layers (Meng et al., 2023).

2.2 Editing
Previous studies have identified MLP modules
within LLMs function as key-value memory struc-
tures (Geva et al., 2021). Specifically, the first
layer Wfc functions as a key encoder, while the sec-
ond layer Wproj retrieves the corresponding value.
In this context, the final subword of the subject s
serves as the key k, and the relation–object pair
(r, o) is represented as the value v.

As the first step of the editing phase, the updated
fact (s, r, o∗) is encoded into a new key-value pair
(k∗, v∗). The key k∗ is computed by averaging hid-
den states at the final subword position of s across
multiple contexts augmented with prefix prompts
xj . The value v∗ is obtained through an iterative
optimization process that minimizes the following
composite objective:

min
δ
L(δ) = LNLL(δ) + LKL(δ), (1)

where δ denotes a candidate vector for v∗. The
first term, LNLL(δ), maximizes the likelihood of
generating o∗ given a factual prompt p constructed
from (s, r):

LNLL(δ) = −
1

N

N∑

j=1

logP(o∗ | xj + p ; δ), (2)

where P(·) denotes the token generation probability
of the model. The second term, LKL(δ), minimizes
semantic drift by reducing the KL divergence be-
tween the updated and original predictions for a
generic prompt p′ (e.g., “subject is a”):

LKL(δ) = DKL(P(x | p′; δ) ∥P(x | p′)). (3)

To incorporate the updated key–value pair (k∗,
v∗) into the model, the original projection matrix
Wproj (denoted as W for simplicity) is modified to
produce an updated weight matrix Ŵ . This update
is defined as:

Ŵ = W + Λ(C−1k∗)T ,

where Λ =
v∗ −Wk∗

(C−1k∗)Tk∗
.

(4)

Here, C = KKT captures the second-order statis-
tics of existing keys K, which encode preserved
knowledge within the model. The edited model F ′
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is obtained by replacing the original matrix W with
the updated matrix Ŵ , thereby incorporating the
new factual association into the model.

While this minimal perturbation enables effec-
tive knowledge updates, it operates by optimizing
token-level generation probabilities (Eq. 2). This
raises the question of how the model understands
the edited knowledge: Is it hard-coded for output
prediction or integrated into the model’s knowl-
edge structure? In the following analysis, we
address this question by analyzing how edited facts
are represented and processed within the model’s
latent space.

3 Latent Space Analysis of Edited
Knowledge

Although an edited language model can generate
the updated fact, this alone does not confirm its
integration into the model’s knowledge structure.
To investigate this, we conduct two complemen-
tary analyses focusing on the residual stream, the
sequence of hidden states propagated through the
transformer layers:

• We visualize how edited knowledge propagates
through the model’s latent space (§ 3.2).

• We interpret the semantic implications of these
residual streams using the LogitLens technique
(§ 3.3).

For this analysis, we sample 1,000 instances
from the COUNTERFACT (Meng et al., 2022)
dataset, specifically focusing on cases where the
factual association (s, r) → o is preserved in the
model, and both the original target o and the edited
target o∗ are single-token entities.

3.1 Extracting Layer-wise Representations
We first establish a baseline for how the base model
encodes the target object o∗ given diverse factual
contexts. For a given edit ε : (s, r, o→ o∗), we col-
lect a set of reference triples T = {(si, ri, o∗)}Ni=1

sourced from Wikidata2, a structured knowledge
base. For instance, given an edit ε : (Eiffel
Tower, located in, Paris → London), the set T
may include related triples such as (River Thames,
flows through, London) and (Big Ben, located
in, London). Since the model may not have in-
ternalized all facts in T , we filter out triples for
which the model fails to accurately recall o∗. Fol-
lowing prior work (Zhong et al., 2023), we con-

2https://www.wikidata.org

struct a cloze-style textual prompt pi for each pair
(si, ri) and feed it into the model F . For exam-
ple, given (River Thames, flows through), we
use the prompt “River Thames flows through ”.
Through this filtering and sampling process, we
construct T ′ ⊆ T , a subset of reference knowl-
edge that the model has internalized.

For each prompt pi ∈ T ′, we extract the layer-
wise hidden representations {hℓi}Lℓ=1 from all L
layers of the base model F , at the final token po-
sition where o∗ is predicted. This captures how
the model represents pre-existing knowledge. Sim-
ilarly, for the edited model F ′, we input the edited
prompt pε (e.g., “Eiffel Tower is located in ”)
and extract its hidden states {hℓε}Lℓ=1 at the corre-
sponding prediction position, reflecting how the
model encodes the edited fact.

3.2 Layer-wise Visualization of Edited
Knowledge Flow

Takeaway 1: Edited knowledge is repre-
sented as a isolated residual stream in the
latent space, indicating a fundamental issue
with semantic integration.

To better understand how edited knowledge is rep-
resented and propagated within the model, we
conduct a qualitative analysis based on residual
stream visualization. Specifically, we compare
the layer-wise hidden representations of the edited
knowledge {hℓε}Lℓ=1 and the reference knowledge
{hℓi}Lℓ=1 to examine differences in how their se-
mantic representations evolve across layers. We
begin by applying Principal Component Analysis
(PCA) (Jolliffe and Cadima, 2016) to reduce the
dimensionality of the hidden states. In Figure 1(a),
we plot the hidden states corresponding to edited
fact as red diamonds, and those corresponding to
the reference knowledge as green circles. Addi-
tional visualizations for other samples are provided
in Appendix A.

As shown in Figure 1(a), there is a clear distinc-
tion between edited and reference knowledge in
the model’s latent space. The representations of
reference knowledge evolve progressively across
layers, becoming more dispersed in the deeper lay-
ers, which reflects their gradual integration into
broader semantic contexts (Ju et al., 2024). In con-
trast, the representations of edited knowledge fol-
low a separate and isolated path. This divergence
suggests that the model encodes edited knowledge
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Figure 1: 3D visualization of residual stream across layers. Each subplot shows PCA-projected hidden states for a
sample from the COUNTERFACT dataset (index in brackets). Red diamonds represent the residual stream of the
edited knowledge, while green circles denote that of the reference knowledge. (a) shows the result after applying
ROME, and (b) shows the result with STEAMROME.

independently, rather than incorporating it into the
its broader knowledge structure.

Notably, this separation is apparent from the mid-
layers, which are crucial for constructing knowl-
edge associations (Geva et al., 2023; Ju et al., 2024).
This observation raises concerns that the edited fac-
tual association is formed in a manner inconsis-
tent with the preserved knowledge. Since LLMs
organize knowledge in an entity-centric manner,
similar to structured knowledge bases (AlKhamissi
et al., 2022; Hu et al., 2023), this discrepancy po-
tentially leads to difficulties in leveraging related
facts, thereby hindering complex reasoning.

To complement the qualitative findings, we ad-
ditionally perform a quantitative analysis using co-
sine similarity between hidden states of edited and
reference knowledge. This supplementary analy-
sis supports our observations and is presented in
Appendix B.

3.3 Interpreting Reasoning Process of Edited
Knowledge

Takeaway 2: Edited knowledge triggers
shortcut-like activations that prioritize the
target token generation, bypassing the
model’s natural reasoning process.

To further investigate the distinction identified
in the previous analysis (§ 3.2), we conduct an
interpretability-based analysis. Specifically, we em-
ploy LogitLens (nostalgebraist, 2020), a technique
that approximates the token probability distribution
at each transformer layer based on its hidden state.
This approach enables us to trace how the model
incrementally infers the edited knowledge (i.e., the
object o∗) as information flows through the layers.
Formally, given a hidden state h ∈ Rd at a partic-
ular layer, LogitLens applies the final projection
matrix WU ∈ R|V |×d followed by a softmax over
the vocabulary space V :

LogitLens(h) = softmax(WUh) ∈ R|V |. (5)

We compute the layer-wise probability of generat-
ing o∗ using two sets of hidden states : (1) {hℓε}Lℓ=1,
which represent the reasoning process over the
edited fact, and (2) {hℓi}Lℓ=1, which correspond to
the reasoning process over the reference knowledge.
The results in Figure 2 show clear differences in
how the model processes edited knowledge (red
line) versus reference knowledge (green line). For
reference knowledge, the probability of predicting
the target token increases gradually across layers,
reflecting a progressive, context-driven reasoning
process. In contrast, for edited knowledge, the
probability rises sharply from the mid-layers and
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Figure 2: Layer-wise probability of generating the up-
dated object o∗ in edited model F ′ as computed by
LogitLens. The x-axis indicates the transformer layer;
y-axis shows the predicted probability for o∗. Results
are averaged over all samples in COUNTERFACT.

quickly saturates.
This contrast suggests that the model does not

infer edited facts through its natural knowledge
reasoning process. Instead, it relies on direct ac-
tivation, particularly from the mid-layers, which
acts as a shortcut to maximize the generation prob-
ability of the target token o∗. This behavior is a
direct consequence of current editing strategies pri-
oritizing token-level optimization, highlighting the
need for approaches that achieve deeper semantic
integration.

4 Method

To address the semantic isolation of edited knowl-
edge observed in Section 3, we introduce STEAM,
a framework designed to enhance the semantic co-
herence of updated knowledge with the model’s
internal knowledge representations. To achieve
this, STEAM augments the standard locate-and-edit
process, specifically enhancing the optimization of
the value vector v∗ through two main components:
(1) Latent Positioning, which identifies appropri-
ate semantic anchors for edited knowledge in the
model’s latent space, and (2) Latent-Level Align-
ment, which incorporates an additional objective to
steer the edited knowledge representation towards
these anchors during the optimization process.

4.1 Latent Positioning

The Latent Positioning step aims to identify target
representations for the updated factual association
(s, r → o∗), which we refer to as semantic anchors.
These anchors approximate how the model would
naturally encode the new object o∗ in the context of
the subject–relation pair (s, r), assuming the fact
had been acquired through the model’s standard
knowledge acquisition process (e.g., pre-training).

To construct these anchors for a given edit ε :
(s, r, o → o∗), we start from the set of reference
knowledge T ′ obtained through the retrieval and fil-
tering process described in Section 3.1. From this
filtered set, we sample a balanced subset, denoted
as T ′′, to mitigate relation-type biases and ensure
the anchors reflect diverse relational contexts (de-
tails in Appendix C). For each prompt pi ∈ T ′′,
we extract the layer-wise hidden states {hℓi}Lℓ=1

from the base model at the final token position cor-
responding to o∗. These hidden states represent
how the model internally encodes the target object
o∗ when processing various subject–relation pairs
(si, ri). To obtain a generalized representation that
abstracts away from specific contexts and captures
the consistent semantics of o∗, we compute the
mean of these hidden states at each layer:

φℓ =
1

|T ′′|

|T ′′|∑

i=1

hℓi , ℓ = 1, . . . , L. (6)

The resulting set of vectors {φℓ}Lℓ=1 serves
as our semantic anchors, representing context-
independent features of o∗ derived from diverse,
faithfully recalled factual contexts. In our frame-
work, we focus on semantic anchors φℓ from the
mid-layers. This choice is motivated by prior find-
ings that these layers play a central role in encod-
ing relational semantics and attribute-level infor-
mation (Hernandez et al., 2023; Geva et al., 2023),
making them suitable locus for integrating new fac-
tual knowledge in a manner consistent with the
model’s knowledge processing mechanism.

4.2 Latent-Level Alignment

The Latent-Level Alignment step guides the inter-
nal representation of the edited fact (s, r, o∗) to-
wards its corresponding semantic anchors φ within
the model’s latent space. In the conventional locate-
and-edit framework (as described in § 2), a new
factual association (s, r → o∗) is encoded into a
key-value pair (k∗, v∗) within an MLP layer, where
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Figure 3: Overview of the STEAM framework. (a) Relevant reference knowledge about the new target object o∗ (b)
The model is used to verify and filter these facts; valid references are then used to construct the semantic anchor φ
that approximates the latent representation of o∗. (c) During editing, STEAM introduces a latent-level alignment
loss LLA, which guides the edited value vector v∗ to align with the semantic anchor across mid-layers, encouraging
coherent integration of the new knowledge into the model’s latent space.

the value vector v∗ encodes the information of
the updated object o∗. The optimization of v∗ is
typically guided by two objectives: the negative
log-likelihood loss LNLL and the KL divergence
loss LKL. While these objectives are effective
for improving token-level accuracy and specificity,
they do not explicitly promote semantic coherence
within the latent space.

To address this limitation, we introduce a latent-
level alignment loss LLA, which penalizes the dis-
crepancy between the hidden representations of
edited fact and its corresponding semantic anchors.
Specifically, during the iterative optimization pro-
cess, we compute the cosine distance between the
hidden state hℓδ (obtained from a forward pass with
the current candidate vector δ), and anchor φℓ at
selected mid-layers ℓ ∈ [ℓstart, ℓend]. The align-
ment loss LLA is defined as the average of these
distances across layers:

LLA(δ) =
1

Nalign

ℓend∑

ℓ′=ℓstart

[
1− cos(hℓ

′
δ , φ

ℓ′)
]
, (7)

where Nalign = ℓend−ℓstart+1 denotes the number
of layers included in the computation. We incor-
porate LLA into the overall objective, yielding the

following composite loss:

min
δ
L(δ) = LNLL(δ) +LKL(δ) + λLLA(δ), (8)

where the hyperparameter λ controls the weight of
the latent-level alignment loss term. By minimiz-
ing LLA, edited knowledge is more effectively in-
tegrated into the model’s latent semantic space and
becomes organically connected to related knowl-
edge, rather than exist as a standalone piece of
information.

5 Experiments

5.1 Experimental Settings

Baseline Models. We evaluate our approach us-
ing GPT-J (6B) (Wang and Komatsuzaki, 2021),
Qwen2 (7B) (Yang et al., 2024), Llama 3
(8B) (Dubey et al., 2024) to ensure the robustness
of our findings.
Dataset. We utilize the COUNTERFACTPLUS (Yao
et al., 2023) dataset, which contains more challeng-
ing questions that require models to reason with
edited knowledge. To construct robust semantic
anchors, we exclude samples where the filtered ref-
erence set T ′ contains fewer than 32 triples. Con-
sequently, from the initial dataset of 1,031 samples,
we utilized 816 for GPT-J, 927 for Qwen2, and 937
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Model Editor Edit. Effi. Para. Neigh. Port. Flu. Cons.

GPT-J
(6B)

ROME 62.9 100.0 99.5 79.1 32.4 619.7 46.4
STEAMROME 67.1 (+4.2) 100.0 99.5 79.5 37.0 (+4.6) 620.0 47.1 (+0.7)

R-ROME 62.7 100.0 99.3 80.5 31.9 621.0 46.2
STEAMR-ROME 66.4 (+3.7) 100.0 99.4 80.5 36.0 (+4.1) 620.6 47.0 (+0.8)

Qwen2
(7B)

ROME 74.2 99.8 97.9 85.8 45.4 624.4 40.5
STEAMROME 75.5 (+1.3) 99.8 98.0 85.8 47.4 (+2.0) 624.9 40.9 (+0.4)

R-ROME 73.4 99.0 95.8 86.2 44.8 624.5 39.7
STEAMR-ROME 75.3 (+1.9) 99.7 96.8 86.1 47.3 (+2.5) 625.1 40.4 (+0.7)

Llama3
(8B)

ROME 72.6 100.0 99.0 85.9 42.8 626.2 43.3
STEAMROME 74.9 (+2.3) 99.6 99.2 87.2 45.9 (+3.1) 622.7 42.7 (-0.6)

R-ROME 71.9 100.0 98.4 86.9 41.7 625.4 42.4
STEAMR-ROME 76.0 (+4.1) 99.9 99.1 87.5 47.4 (+5.7) 622.8 42.2 (-0.2)

Table 1: Single-editing results on COUNTERFACTPLUS for GPT-J (6B), Qwen2 (7B), and Llama3 (8B). Results are
averaged over three runs. Values in parentheses indicate the improvement or decline relative to the baseline for Edit
score, Portability, and Consistency.

for Llama 3.
Knowledge editing approaches. We evaluate our
method under two scenarios: (1) Single editing,
where each factual update is applied independently
(i.e., the model is restored after each edit), and
(2) Batch editing, where multiple edits are ap-
plied simultaneously. For single editing, we ap-
ply our framework to existing methods, including
ROME (Meng et al., 2022) and R-ROME (Gupta
and Anumanchipalli, 2024). For batch editing, we
integrate our method with PMET (Li et al., 2024),
a state-of-the-art batch editing method. Implemen-
tation details are provided in Appendix E.
Metrics. We evaluate all methods using several
metrics: Efficacy Score (Effi.) measures whether
the model accurately recalls the updated fact; Para-
phrase Score (Para.) assesses the generalizability
of the edit; Neighborhood Score (Neigh.) evalu-
ates whether unrelated knowledge remains unaf-
fected; and Portability Score (Port.) measures the
model’s ability to apply the edited knowledge in
multi-hop reasoning. Edit Score (Edit.) is the har-
monic mean of these four metrics. Additionally,
we report Fluency (Flu.), which reflects lexical di-
versity of generated text, and Consistency (Cons.),
which captures semantic coherence.

5.2 Results

5.2.1 Single Editing

In the single editing scenario, we evaluate our
STEAM framework by integrating it into both
ROME and R-ROME, denoted as STEAMROME and
STEAMR-ROME, respectively. For all models, we set
ℓstart = 13, ℓend = 17, and λ = 5, and provide a
detailed hyperparameter analysis in Appendix G.

As summarized in Table 1, STEAM demonstrates
consistent improvements in editing quality across
all evaluated models. Portability increases robustly
in all cases, with the highest gain of +5.7 observed
in Llama3 under STAKER-ROME, indicating that
edited knowledge is more effectively integrated
and applied in multi-hop reasoning. Importantly,
these gains are observed consistently across both
baseline editors, ROME and R-ROME, underscor-
ing the generality of our framework.

Other metrics such as Efficacy, Paraphrase, and
Neighborhood remain stable, with slight gains in
some cases, showing that STEAM preserves the
local accuracy and generalization ability of the
baseline editors. These steady or improved results
collectively contribute to an overall enhancement
of the aggregated Edit score. Notably, GPT-J and
Qwen2 show modest but consistent improvements
in Consistency (up to +0.8 and +0.7, respectively),
highlighting STEAM’s ability to enhance semantic
coherence in edited knowledge.
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Model Edits Editor Edit. Effi. Para. Neigh. Port. Flu. Cons.

GPT-J
(6B)

1
PMET 63.5 100.0 97.0 82.2 32.8 620.7 45.3

STEAMPMET 65.5 (+2.0) 100.0 96.6 82.4 35.0 (+2.2) 619.0 46.4 (+1.1)

10
PMET 65.0 100.0 97.2 82.2 34.4 620.6 45.2

STEAMPMET 65.9 (+0.8) 100.0 96.6 82.4 35.4 (+1.0) 618.9 46.3 (+1.1)

100
PMET 64.1 99.9 96.9 81.6 33.5 621.3 45.3

STEAMPMET 66.0 (+2.0) 99.9 96.6 81.9 35.7 (+2.2) 619.2 46.3 (+1.0)

All
PMET 63.7 100.0 96.4 77.2 33.9 621.5 45.0

STEAMPMET 65.0 (+1.3) 100.0 96.0 77.2 35.5 (+1.6) 619.1 46.1 (+1.1)

Table 2: Batch-editing results on COUNTERFACTPLUS for GPT-J (6B). Results are averaged over three runs. Values
in parentheses indicate improvements of STEAMPMET over the PMET baseline for Edit., Portability (Port.), and
Consistency (Cons.). Each row reports performance at different batch sizes (1, 10, 100, and all 816 edits).

5.2.2 Batch Editing

In the batch-editing scenario, we incorporate
our STEAM framework into PMET, denoted as
STEAMPMET, and evaluate it on GPT-J. Experi-
ments are conducted with batch sizes of 1, 10, 100,
and all 816 edits in the dataset, as reported in Ta-
ble 2.

Across all batch sizes, STEAMPMET consistently
improves Portability (up to +2.2), indicating that
edited knowledge is more effectively transferred
and applied even under large-scale editing. Edit
scores also increase across settings (up to +2.0),
suggesting that the overall quality of edits benefits
from semantic alignment. Consistency further ex-
hibits modest but reliable gains (up to +1.1), high-
lighting that STEAM helps preserve semantic coher-
ence in batch-editing conditions. Meanwhile, other
metrics such as Efficacy, Paraphrase, and Neigh-
borhood remain stable, showing that local factual
accuracy and generalization are not sacrificed. Col-
lectively, these results demonstrate that STEAM

provides robust improvements in knowledge inte-
gration across varying batch sizes.

5.3 Discussion

Verifying Latent-Space Alignment of Edited
Knowledge. To assess whether the perfor-
mance improvements achieved by STEAM stem
from latent-level integration, we revisit the latent
space visualizations. As shown in Figure 1(b),
which illustrates the residual streams produced by
STEAMROME, the hidden states of the edited knowl-
edge (red diamonds) exhibit trajectories that are
more closely aligned with those of the reference
knowledge (green circles), compared to the base-

line ROME shown in Figure 1(a). This alignment
suggests that STEAM effectively guides the repre-
sentation of edited facts toward semantically coher-
ent regions within the model’s latent space. These
findings indicate that the observed performance
gains are the result of genuine semantic-level inte-
gration, rather than surface-level adjustments. To
further support this interpretation, we conduct a
layer-wise cosine similarity analysis (Appendix B),
which quantitatively confirms stronger alignment
between the edited representations and their corre-
sponding semantic anchors.

6 Conclusion

In this paper, we addressed a limitation of current
knowledge editing methods: their failure to coher-
ently integrate updated knowledge into the model’s
existing structure despite successful output changes.
Our analysis revealed that existing methods often
induce isolated latent representations, hindering
consistent and reliable inference with edited knowl-
edge. To address this issue, we introduced STEAM,
a framework designed to promote deeper semantic
integration. Our experimental results demonstrate
that enhancing semantic alignment improves the
model’s reasoning capabilities with edited knowl-
edge and increases semantic coherence. These find-
ings emphasize the importance of semantic-level
integration for developing more robust and coher-
ent knowledge editing techniques.
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Limitation

Dependence on External Knowledge. STEAM

constructs semantic anchors based on reference
facts retrieved from external structured knowledge
sources such as Wikidata. This design enables the
model to leverage well-grounded factual associa-
tions when guiding semantic alignment. Therefore,
for newly emerging or less well-known entities,
retrieving relevant reference knowledge may be
difficult, which can limit the applicability of the
proposed framework.
Anchor Construction and Knowledge Selection.
STEAM assumes that the latent representation of an
updated fact can be approximated by aggregating
reference knowledge about the same object. While
this offers a practical signal for alignment, it may
not fully reflect how language models internally
structure and reason over knowledge. This process
in closely related to broader questions about the
structure of factual reasoning in language models –
a topic that remains underexplored. We view our
method as a first step in this direction and leave
more systematic strategies for anchor construction
and deeper investigation of knowledge inference
mechanisms for future work.
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Appendix

A Quantitative Latent-Space Analysis via
Cosine Similarity

To complement the qualitative findings presented
in Section 3.2, we provide additional visualization
results for both GPT-J and GPT-2 XL (Radford
et al., 2019). These visualizations illustrate how
edited knowledge propagates through the residual
stream and how it aligns (or diverges) from refer-
ence knowledge across transformer layers.

Figure 5 presents PCA-projected hidden states
for multiple samples from the COUNTERFACT

dataset. Red diamonds represent the residual
stream of the edited knowledge, while green circles
correspond to the reference knowledge recalling
the same target object o∗. Under baseline editing
methods (ROME), the edited knowledge forms a
semantically isolated stream in the latent space, fol-
lowing a path that deviates from reference knowl-
edge. In contrast, under STEAM-enhanced editing,
the edited trajectories are more closely aligned with
reference knowledge, indicating improved seman-
tic integration. Figure 6 provides corresponding
results for GPT-2 XL. Despite architectural differ-
ences and increased depth, we observe a similar
trend, reinforcing the model-agnostic effectiveness
of STEAM. These qualitative observations, consis-
tent across models and examples, provide strong
visual evidence that STEAM facilitates meaning-
ful representational alignment of edited knowledge
within the latent space.

B Measuring Semantic Alignment

While existing editing methods can successfully
update model outputs, it remains unclear whether
such updates are semantically integrated into the
model’s internal knowledge structure. To investi-
gate this, we conduct a layer-wise cosine similarity
analysis between the edited knowledge representa-
tion and a reference semantic anchor vector.

For each edit (s, r, o→ o∗), we first construct a
baseline semantic representation {φℓ}Lℓ=1 for the
updated object o∗ by aggregating the hidden states
of reference facts, as described in Section 4.1. We
then compare how the edited model F ′ represents
o∗ in response to the edited prompt pε (e.g., Eiffel
Tower stands in ) by extracting the hidden
states {hℓε}Lℓ=1 and computing:

S(φ, hε) =
{
cos

(
φℓ, hℓε

)}L

ℓ=1
,

where cos(·, ·) denotes the cosine similarity. We
also apply the same procedure to the unedited
model F , obtaining S(φ, hθ). Since (s, r) → o
(e.g., Eiffel Tower stands in → Paris) and
(si, ri)→ o∗ (e.g., River Thames flows through
→ London) are semantically unrelated facts, this
comparison provides a reference for assessing the
inherent similarity between different knowledge
representations in the model.

Figure 4 (a) presents the layer-wise cosine sim-
ilarity scores for GPT-J under the ROME base-
line. Where the red curve represents S

(
φ, hε

)

for the edited model and the blue curve represents
S
(
φ, hθ

)
for the base model. Up to the edit layer,

both curves are the same; after that, they diverge,
showing a representational shift induced by the
factual update. However, this divergence does not
necessarily indicate that the updated knowledge
has been meaningfully integrated. Instead, as the
layers progress, the red curve follows a pattern
similar to the blue curve while showing a grad-
ual decline. Given the distinct semantics of o and
o∗ (e.g., Paris vs. London), these findings sug-
gest that although the edit does change the updated
fact’s representation, the new knowledge remains
separate from the original latent structure.

Figure 4 (b) shows the corresponding analysis
for the STEAM-enhanced model. In contrast to the
baseline, the red curve (after editing) exhibits a
clear upward trend after the edit layer, diverging
from the blue curve (before editing) and aligning
more closely with the semantic anchor φℓ. This
indicates that the updated knowledge (s, r)→ o∗

is not only distinguishable from the original fact
(s, r) → o, but is also actively aligned with the
reference knowledge encoding of o∗. These results
quantitatively validate the alignment mechanism
introduced in our framework and support the inter-
pretability of STEAM’s improvements in semantic
coherence.

C Reference Triple Selection and
Filtering Criteria

For each editing sample ε, we begin by collecting
a set of reference triples T = {(si, ri, o∗)}Ni=1. We
then transform each triple into a textual prompt
pi. Following previous work (Zhong et al., 2023),
we define a template tri for each relation ri. By
inserting the subject si into this template, we gen-
erate a textual prompt pi = tri(si). For instance,
if si is “United States” and ri is “capital of”, then
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[ (a) ROME ] [ (b) STEAMROME ]

Figure 4: Layer-wise cosine similarity between model representations and semantic anchors in GPT-J. Each plot
shows the average cosine similarity between anchor vectors φℓ and hidden states from the edited model hℓ

ε (red)
and the unedited model hℓ

θ (blue), with shaded areas indicating standard deviation. The vertical dashed line marks
the edit layer. (a) Result with ROME. (b) Result with STEAMROME.

pi is “The capital of United States is”, which is
designed to elicit o∗. Next, we input pi into the
unedited model F , performing greedy decoding for
k subword tokens, where k corresponds the sub-
word length of o∗. Let dec(F(pi), k) denote the
top-ranked sequence of length k. If this sequence
exactly matches o∗, we infer that the model recog-
nizes this fact. Formally, the filtered set T ′ ⊆ T
is

T ′=
{
(si, ri, o

∗)∈T
∣∣∣ dec

(
F(pi), k

)
=o∗

}
. (9)

To construct a balanced anchor set, we apply
a stratified sampling procedure to the filtered set
T ′. Specifically, we group all triples in T ′ by their
relation type ri, and assign an equal base number
of samples to each group. Any remaining quota is
distributed proportionally based on group sizes. If
a group contains fewer examples than its assigned
quota, we include all available triples from that
group. Finally, if the total number of selected sam-
ples is still below the target size, we randomly sam-
ple additional instances from the remaining pool to
complete the set. The full procedure is detailed in
Algorithm 1. This sampling strategy ensures that
the resulting subset T ′′ ⊆ T ′ reflects a diverse and
representative distribution of relation types, thereby
enabling the construction of robust and unbiased
semantic anchors. In our implementation, we set
the maximum size of T ′′ to 64 reference triples per
edit.

D COUNTERFACTPLUS

The COUNTERFACTPLUS dataset is an enhanced
version of the original COUNTERFACT benchmark,
comprising 1,031 selected entries from the original
data. Table 3 presents an example from the COUN-
TERFACTPLUS dataset. Each sample includes a
factual edit ε, such as (Skype, product of, Microsoft
→ Apple), diverse set of prompts that assess the
impact of the edit from multiple perspectives.

• Efficacy Prompt (PE) is used to assess whether
the edited knowledge is accurately reflected in
the model’s output.

• Paraphrase Prompt (PP ) tests whether the
edited information is consistently maintained
across different surface forms.

• Neighborhood Prompt (PN ) provides unrelated
factual contexts and is used to evaluate whether
the model preserves non-target knowledge after
editing.

• Multi-hop Question (q′) assesses whether the
model can reason over multiple connected facts
involving the updated knowledge. Specifically,
each question requires the model to combine
the edited fact (s, r, o∗) with an additional fact
(o∗, r′, o′), and infer the answer o′ based on this
reasoning path. This evaluates whether the up-
dated object o∗ has been semantically integrated
into the model’s broader knowledge structure in
a way that supports multi-step inference.
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Property Value

Edit request (ε) (Skype, product of, Microsoft→ Apple)
Efficacy prompt (PE) Skype was a product of
Paraphrase prompt (PP ) He moved to Edmonton, Alberta, when he was seven-years old.

Skype was created by
Neighborhood prompt (PN ) Windows Media Center, a product created by
Recalled knowledge (o∗, r′, o′) (Apple, founded by, Steve Jobs and Steve Wozniak)
Multi-hop question (q′) Who are the founders of the company that created Skype?
Multi-hop Answer (o′) Steve Jobs and Steve Wozniak

Table 3: An Example of COUNTERFACTPLUS Dataset

E Implementation Details

Our single-editing experiments were conducted on
GPT-J (6B), Qwen2 (7B), and Llama3 (8B), while
batch-editing experiments were performed only
on GPT-J (6B). All experiments were run on an
NVIDIA A100 (80GB) GPU using the Adam opti-
mizer.

For ROME and R-ROME, the primary editing
layer is set to 5 across all models, based on prior
findings about where factual associations are stored.
The value vector v∗ is optimized for 20 gradient
steps with a learning rate of 0.5 and a weight decay
of 0.5. The loss is computed at layer 27, and the KL
divergence regularization factor is set to 0.0625.

For PMET (batch editing), we follow the origi-
nal configuration and apply edits across a broader
range of layers [3, 4, 5, 6, 7, 8] on GPT-J. We set
the number of gradient steps to 30, the learning rate
to 0.2, and the clamp normalization factor to 0.75.
The KL regularization factor is set to 1.0, and the
loss is computed at layer 27.

F Metrics

We evaluate the performance of knowledge edit-
ing methods using six metrics that assess factual
accuracy, generalization, locality, and semantic co-
herence. These metrics are computed over samples
from the COUNTERFACTPLUS dataset and are de-
fined as follows:

• Efficacy Score evaluates whether the edited
model F ′ correctly recalls the updated object o∗

given the edit prompt p ∈ PE . It is computed as:

Ep∈PE [I [PF ′ (o∗ | p) > PF ′ (o | p)]] ,
where E denotes the average, I denotes the indica-
tor function, and F ′ represents the edited model.
P(o | p) indicates the probability that the model
generates output o given the input prompt p.

• Paraphrase Score measures whether the model
maintains the updated knowledge under para-
phrased prompts p ∈ PP . The formulation mir-
rors that of the Efficacy Score:

Ep∈PP [I [PF ′ (o∗ | p) > PF ′ (o | p)]] .

• Neighborhood Score assesses whether the
model preserves unrelated knowledge after edit-
ing. For neighborhood prompts p ∈ PN , which
should not reflect the updated fact, the metric is
computed as:

Ep∈PN [I [PF ′ (o∗ | p) > PF ′ (o | p)]] .

• Portability Score evaluates whether the model
can correctly answer multi-hop questions that re-
quire reasoning over the edited knowledge. Each
question q′ is constructed to test whether the
model can infer the final object o′ by combin-
ing the edited fact (s, r, o∗) with an additional
fact (o∗, r′, o′). The model’s response F ′(q′) is
evaluated against the gold answer o′ using fuzzy
string matching. A prediction is considered cor-
rect if the partial ratio (PR) between the model’s
output and o′ exceeds 0.7:

Eq′,o′∈Q
[
I
[
PR(F ′(q′), o′) > 0.7

]]
.

where PR denotes the partial ratio from the
Fuzzywuzzy library3, based on Levenshtein dis-
tance.

• Fluency measures evaluates the repetitiveness of
generated text by computing the weighted aver-
age entropy over bi-grams and tri-grams, follow-
ing the method proposed by Zhang et al., 2018.
Formally, it is calculated as:

∑

k

f(k)log2f(k)

3https://github.com/seatgeek/fuzzywuzzy
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Algorithm 1 Stratified Sampling by Relation Type

Require: Dataset T , Sample size N
Ensure: Stratified sample T ′

/* Check if dataset is empty */

1: if T is empty then
2: return ∅
3: end if

/* Group dataset by relation type */

4: G← group T by relation type
5: R← |G|

/* Compute base and extra samples */

6: n← ⌊NR ⌋
7: r ← N − (n×R)

/* Initialize sampled dataset */

8: T ′ ← ∅
/* Stratified sampling per group */

9: for all g ∈ G do
10: s← n
11: if r > 0 then
12: p← |g|

|T |
13: a← ⌊r × p⌋
14: s← s+ a
15: end if
16: T ′ ← T ′∪

RANDOMSAMPLE(g,min(s, |g|))
17: end for

/* Handle remaining samples if needed */

18: if |T ′| < N then
19: U ← T \ T ′

20: m← N − |T ′|
21: T ′ ← T ′∪

RANDOMSAMPLE(U,min(m, |U |))
22: end if

/* Return final sampled dataset */

23: return T ′

where f(k) denotes the frequency distribution of
n-grams. Lower values indicate repetitive or less
diverse outputs, while higher values reflect more
natural and varied language generation.

• Consistency measures the semantic consistency
of the generated outputs. To compute this score,
we generate text from a generation prompt p ∈
PG, and calculate the cosine similarity between
the TF-IDF vectors of the generated text and refer-
ence texts(tref ) about subjects sharing the target
property o∗. Formally, it is calculated as:

Ep∈PG [cos(F ′(p), tref )]

G Analyzing the Impact of Alignment
Strength and Layer Choice

To better understand how the latent-level alignment
in STEAM affects the integration of edited knowl-
edge, we analyze two key factors: the alignment
strength (λ) and the depth of the alignment layer
range. All experiments in this analysis are con-
ducted on GPT-J (6B), using STEAMROME.
Effect of Alignment Strength. We first fix the
alignment layers to ℓstart = 13 and ℓend = 18, and
vary the alignment strength λ ∈ 1, 3, 5, 10. Re-
sults show that moderate increases in λ improve
semantic integration. For example, Portability im-
proves from 34.7 (λ = 1) to 37.0 (λ = 5), and
Consistency increases from 47.0 to 47.2. However,
when λ is further increased to 10, these gains do
not continue to rise and begin to plateau or slightly
decline. Additionally, Fluency decreases steadily
with stronger alignment (620.7 → 619.6 → 618.5),
suggesting that overly strong alignment may intro-
duce artifacts or reduce generation quality. These
results imply that while stronger alignment encour-
ages integration of edited knowledge, there exists
an optimal range beyond which further gains are
marginal or even detrimental.
Effect of Alignment Layer Depth. Next, we fix
λ = 5 and vary the alignment layers across three
ranges: [8–13], [13–18], and [18–23]. We observe
that deeper alignment layers generally yield higher
Portability (35.0 → 35.7 → 37.9), while Consis-
tency remains stable (46.8 → 47.2). However,
Fluency shows a steady decline (621.1 → 619.6
→ 618.5) as the alignment moves to later layers.
These findings suggest that deeper layers, while
capable of capturing more abstract semantics, may
lack representational stability, making them less
ideal as anchor points. Mid-layer ranges thus of-
fer a favorable balance – rich enough in semantic
information while still providing stable targets for
alignment.
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Figure 5: 3D visualization of residual stream representations across layers for GPT-J. Each subplot shows PCA-
projected hidden states of an edited fact (red diamonds) and its corresponding reference facts (green circles), with
sample indices indicated in brackets. (a) shows results under ROME, and (b) under STEAMROME.
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Figure 6: 3D visualization of residual stream representations across layers for GPT2-XL. Each subplot shows
PCA-projected hidden states of an edited fact (red diamonds) and its corresponding reference facts (green circles),
with sample indices indicated in brackets. (a) shows results under ROME, and (b) under STEAMROME.
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