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Abstract

Large language models (LLMs) and their mul-
timodal variants can now process visual inputs,
including images of text. This raises an intrigu-
ing question: can we compress textual inputs
by feeding them as images to reduce token us-
age while preserving performance? In this pa-
per, we show that visual text representations
are a practical and surprisingly effective form
of input compression for decoder LLMs. We
exploit the idea of rendering long text inputs
as a single image and provide it directly to the
model. This leads to dramatically reduced num-
ber of decoder tokens required, offering a new
form of input compression. Through experi-
ments on two distinct benchmarks—RULER
(long-context retrieval) and CNN/DailyMail
(document summarization)—we demonstrate
that this text-as-image method yields substan-
tial token savings (often nearly half) without
degrading task performance.

1 Introduction

Running large language model (LLM) inference
on long text inputs is computationally expensive
due to the underlying architecture of the Trans-
former model, where the self-attention mecha-
nism’s complexity scales quadratically with the
input length (Vaswani et al., 2017). This can be
prohibitive when processing long documents (Liu
et al., 2023b), interactive dialogues (Zhou et al.,
2022), or complex multi-step reasoning (Feng et al.,
2025). Even with recent increases in context length,
deploying LLMs at scale (e.g., in chat assistants
or document analysis) is constrained by through-
put and cost per token (Chowdhery et al., 2022;
Xiao et al., 2024; Xu et al., 2025; Li et al., 2025a).
Reducing the token length of inputs without los-
ing information is therefore highly desirable for
improving LLM efficiency (Xu et al., 2024a; Tan
et al., 2025; Xing et al., 2025; Li et al., 2025b).

*These authors contributed equally to this work.

Context: Sofia arrived at the coworking space at 9
a.m. and put her silver MacBook on Desk 7.  At 11
a.m. she moved to the café corner for a video
call, taking only her headphones and notebook.
While she was away, Marcus borrowed her laptop
to demo a prototype in Meeting Room B, then left
it charging on the windowsill in that room.  

Context: Sofia arrived at the coworking
space at 9 a.m. and put her silver
MacBook on Desk 7.  At 11 a.m. she
moved to the café corner for a video
call, ......  Sofia finished her call at 1 : 15
p.m. and headed to reception to grab a
coffee.

Query: Where is Sofia’s laptop now?

90 tokens

50 tokens

Text-only Input

Query: Where is Sofia’s
laptop now?

Text-image Hybrid Input
MLLM

Put the
context
onto the
image

Figure 1: Illustration of our text-as-image compression
pipeline. Instead of feeding the entire 90-token context
to the model (top), we convert the context into a sin-
gle image and supply only the textual query alongside
the image (bottom). The multimodal LLM (MLLM)
reads the context from the image, so it processes just
50 visual tokens as input to the LLM decoder—cutting
token usage by nearly half while still providing all the
information needed to answer the question.

One novel avenue for input compression is to
leverage the ability of multimodal LLMs (MLLMs)
(Liu et al., 2023a; Fang et al., 2024) to read text
from images. The adage “a picture is worth a thou-
sand words” hints that visual representations might
convey the equivalent of many text tokens in a com-
pact form. Modern multimodal models like GPT-4
Vision (OpenAI, 2023) and Google Gemini 2.5
(Gemini Team, 2025) can accept images as part of
their input and reason over them. This raises the
question: Can we feed an LLM an image of text
in lieu of the text itself, to save input tokens and
still get the correct output? Early explorations (dis-
cussed in Section 2) suggest that multimodal LLMs
can interpret text-based images, but the impact on
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efficiency and downstream performance remains
under-examined.

In this paper, we present an empirical study of
multimodal LLMs that explores using visual text
inputs as a form of input compression. By ren-
dering long passages as a single image, the vi-
sion encoder produces a compact set of visual to-
kens for the decoder, directly reducing sequence
length without fine-tuning or supervision. On the
RULER needle-in-a-haystack task, GPT-4.1-mini
and Qwen2.5-VL-72B sustain 97–99% accuracy
with up to 58% fewer decoder tokens, and on CN-
N/DailyMail summarization, this approach outper-
forms two specialized pruning baselines at matched
or higher compression rates. Although vision en-
coding adds some overhead on smaller models, the
shorter decoder sequence yields up to 45% end-
to-end speedup on larger ones, demonstrating that
off-the-shelf multimodal LLMs can treat images as
an implicit compression layer, preserving perfor-
mance at nearly half the original text-token cost.

2 Related Work

Multimodal Variations of LLMs Recent ad-
vances in LLMs have extended their capabilities
beyond text to handle images (Liu et al., 2023a),
speech (Wang et al., 2023), and video (Tang
et al., 2025). In the visual domain, numerous vi-
sion–language models (VLMs) have been devel-
oped, including BLIP(-2) (Li et al., 2022, 2023a),
Flamingo (Alayrac et al., 2022), LLaVA (Liu et al.,
2023a), InternVL (Chen et al., 2024), Qwen-VL
(Wang et al., 2024a), PaLI-Gemma (Beyer et al.,
2024), and proprietary systems such as GPT-4V
(Achiam et al., 2023) and Gemini (Team et al.,
2023). A widely adopted architecture comprises
a vision encoder that extracts image features, a
projection layer that maps these features into the
LLM’s token space, and a text decoder that jointly
processes visual and textual tokens (Liu et al.,
2023a; Beyer et al., 2024; Wang et al., 2024a). Im-
portantly, the number of visual tokens produced
by this pipeline is usually small—constrained by
image size and model design—and can be far fewer
than the text tokens needed to represent the same in-
formation. This property suggests that multimodal
LLMs already embody a form of token compres-
sion, motivating our exploration of representing
long passages of text directly as images to reduce
decoder token usage.

Text as Image Several works have explored the
idea of providing text to LLMs via images. Lyu
et al. (2025) proposed a pixel-input benchmark,
finding that some advanced VLMs can interpret
and reason over text in images, though performance
can drop without specialized training. Others, such
as Lu et al. (2024), have investigated representing
large documents as visual patches for handling ex-
tended context windows. While these efforts high-
light the feasibility of text-as-image inputs, they
have not systematically evaluated the trade-off be-
tween token usage and reasoning performance on
multi-step tasks.

Our work also relates to the concept of hybrid
text-vision prompting, where instructions are given
partially in text and partially as an image (Aggarwal
and Welleck, 2025). However, prior studies focus
more on the novelty of multimodal usage or coding
from screenshots, rather than on compression. We
instead emphasize the efficiency gains and cost
savings arising from replacing a sizeable chunk of
text with an image for advanced reasoning tasks.

Information Compression There are many
works focusing on context compression (Pradeep
et al., 2023; Xu et al., 2024b; Jiang et al., 2024;
Li et al., 2025b). Our approach is complementary
to soft prompt line of work. Extreme Retrieval-
Augmented Generation (xRAG) replaces full doc-
uments with one dense embedding token, achiev-
ing a 50× compression ratio without fine-tuning
the LM (Cheng et al., 2024). Instruction-Aware
Contextual Compression (IACC) filters noisy RAG
passages based on the user query, halving context
length while retaining QA accuracy (Hou et al.,
2024). Prompt-centric surveys catalogue a spec-
trum of hard pruning, abstractive summarization,
and learned soft tokens that collectively reach
5–10× compression on reasoning benches (Li et al.,
2024b; Jha et al., 2024). Broader reviews on extend-
ing LLM context windows emphasize that modality
fusion and token dropping are orthogonal, and can
be stacked for additive gains (Wang et al., 2024b;
Li et al., 2024a). Distinct from these token-level ap-
proaches, we compress entire text spans by offload-
ing them to the vision encoder of an off-the-shelf
multimodal LLM—treating thousands of tokens
as a single image, usually represented with fixed
amounts of visual tokens or proportional to the im-
age resolutions—and thus reduce context length
to the the LLM decoder without any model fine-
tuning.
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(b) Qwen2.5-VL-72B-instruct

Figure 2: Accuracy vs. text-token size (m) with fixed visual tokens (k) for GPT-4.1-mini (left) and Qwen2.5-
VL-72B-Instruct (right). Each curve varies the rendered text length at a fixed k; vertical dashed lines mark m = k,
where text and visual tokens are equal. Both models degrade as text density increases, though Qwen’s larger decoder
sustains higher ratios before a sharper drop. The text-token tolerance (largest m within 3 points of the text-only
baseline) is shaded in the plots and reported in Table 1a. Beyond these limits, accuracy falls rapidly, revealing the
maximum achievable compression without loss.

3 Methodology

3.1 Problem Formulation
Let the context (e.g., a document or multi-
turn dialogue) be a sequence of m text tokens,
c = (t1, t2, . . . , tm), and let the accompany-
ing question be a (usually short) sequence q =
(q1, q2, . . . , q|q|) .

Text-only baseline. In the standard setting we
feed the concatenated token sequence stext =
(c, q) to a text-only LLM. The input-length budget
is therefore Ttext = m+ |q|.
Text–image (hybrid) input. To compress long
context, we first render it into an image via I =
R
(
c
)
, using a LaTeX-based typesetting pipeline

that preserves the layout and line-breaks of the orig-
inal text (see Figure 1). A frozen vision encoder1

Φ : I 7−→ (v1, v2, . . . , vk), vj ∈ Rd,

transforms the image into a fixed-length sequence
of k visual tokens. These embeddings are passed
through a projection layer ψ (e.g., a linear map)
and become part of the language decoder’s input:2

simg =
(
ψ(v1), . . . , ψ(vk), q

)
.

1For all experiments we use the native vision module
shipped with each multimodal LLM. No fine-tuning or ad-
ditional supervision is applied.

2The number of visual tokens k passed to the language
decoder depends on the VLM architecture: some models (e.g.,
LLaVA (Liu et al., 2023a)) output a fixed number, while others
(e.g., Qwen-VL (Wang et al., 2024a)) vary with image sizes.
In our experiments, for Qwen models, we define k as the
number of visual embeddings passed to the text decoder. For
GPT-4.1-mini, we use the input token count returned by the
API, which accounts for the visual input.

The corresponding token budget is

Timg = k+|q|, with k≪m possible in practice.

Compression ratio. We define the compression
ratio

ρ =
Ttext

Timg
=
m+ |q|
k + |q| ≈ m

k
when m& k ≫ |q|.

A higher ρ indicates greater token savings.

3.2 Evaluation Protocol
For each example (c,q) we run both modes: (1)
Text-only: Evaluate the LLM on stext to obtain an-
swer atext; (2) Hybrid: Evaluate the multimodal
LLM on simg to obtain answer aimg. We measure
accuracy on task-specific metrics; token usage
(Ttext, Timg) and thus ρ; and throughput and la-
tency (wall-clock time per example). Unless stated
otherwise, k is fixed by the vision encoder, so any
reduction in m directly translates to lower LLM
decoder token cost.

4 Experiments and Results

We test to what extent visual inputs of texts can
reduce discrete token consumption in LLM de-
coders without performance degradation. Long
context tasks are especially targeted, including in-
formation retrieval and summarization, with con-
figurable context lengths. We test two prominent
multimodal LLMs, the proprietary GPT-4.1-mini
(OpenAI, 2025) and the open-weight Qwen2.5-VL-
72B-Instruct (Bai et al., 2025).3

3Experiments on a smaller model Qwen2.5-VL-7B are
also presented in Figure 3 and Appendix B.
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All text-as-image rendering is performed with
pdflatex followed by rasterization at 300 dpi. Al-
gorithmic details can be found in Appendix D. Dur-
ing inference, we use the temperature=0 setting
for deterministic outputs and truncate responses to
the first newline to obtain concise answers.

4.1 Long-Context Retrieval
Setup. We evaluate our text-as-image compres-
sion strategy on the RULER S-NIAH (single
needle-in-a-haystack) task (Hsieh et al., 2024),
where a single target number (needle) is hidden
in a long distractor passage (haystack). The model
must return the exact number, testing long-context
retention. For each model, we generate 100 ran-
dom passages and report accuracy (percentage of
correct extractions). Since the query q is short, the
effective token budgets simplify to Ttext = m and
Timg = k, giving compression ratio ρ = m/k.

How much can we compress? Figures 2 sweep
m while holding k fixed. Accuracy remains stable
until a critical point m⋆(k), after which it drops
sharply. We define m⋆ as the largest m within
three percentage points of the text-only baseline,
referring to this threshold as the text-token toler-
ance. These values are highlighted in the plots
(shaded) and reported in Table 1a. For example, at
k = 783, GPT-4.1-mini tolerates m⋆ ≈ 1,300 to-
kens—equivalent to ρ≈1.9 compression—without
measurable degradation. Larger visual budgets
(k = 998, 1,258) increase tolerance to over 2,300
tokens while still saving 42–58% of the decoder
context.4 Qwen2.5-VL follows the same trend but
exhibits a steeper accuracy drop once m⋆ is ex-
ceeded, underscoring that text-token tolerance is
both model- and k-dependent.

Token savings and Latency analysis. Table 1a
collates (k,m⋆) and confirms that hybrid prompts
cut the decoder context nearly in half while match-
ing text-only accuracy across both models.5 To
better understand this relationship, Figure 3 plots
the text-token tolerance m⋆ as a function of the
visual token budget k. For all models tested,
there is a strong positive correlation: m⋆ increases
with k at a steady compression ratio ρ around 2.
The larger Qwen2.5-VL-72B model consistently
demonstrates a superior compression ratio com-
pared to both the 7B model and GPT-4.1-mini. The

4Some visual examples and details in Appendix A.
5Additional results on a different long-context reasoning

task with Gemini (Appendix C) also confirm this observation.
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Figure 3: Text-token tolerance vs. visual token count.
The maximum text tokens m⋆ that can be preserved
without accuracy loss, plotted against the visual tokens
k generated from the image. Results show a consistent
reduction of roughly 1/2 in decoder tokens.

approximately linear relationship suggests a pre-
dictable trade-off between visual budget and text
compression capacity.

We next compare wall-clock generation time
(Table 1b). For GPT-4.1-mini the vision process-
ing adds a modest < 1.5s overhead,6 whereas
for Qwen2.5-VL the shorter sequence length out-
weighs that cost, yielding 25–45% faster inference.
Across accuracy and latency, converting long tex-
tual contexts into images yields substantial token
savings without sacrificing RULER retrieval perfor-
mance, demonstrating a simple yet effective way
to reduce inference cost on large-context tasks.

4.2 Document–Level Summarization
While RULER stresses a model’s ability to retrieve
a single item from a long context, it is not expressly
designed as a compression benchmark—every to-
ken in the haystack is, by construction, irrelevant
to the answer. To gauge how well text–as-image
compression fares on a genuine compression task,
we turn to CNN/DailyMail long–document summa-
rization, where all input sentences may contribute
to the final summary.

Setup. We compare our approach against two
widely used token–pruning techniques that operate
purely in the text modality: (1) Select–Context (Li
et al., 2023b): keeps tokens whose self-information
(estimated by a small LLM) exceeds a learned

6Not exact on model due to API overhead. See Apendix A.
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Model Text–Image (hybrid) Text-only

Image size k Acc. (%) m⋆(k) Acc. (%) k/m⋆(k)↓
GPT 600×800 783 99 1,272.4 100 0.61

600×1000 998 97 1,752.5 100 0.57
750×1000 1,258 98 2,352.2 100 0.53

QWEN 600×800 635 98 1,289.6 100 0.49
600×1000 782 99 1,769.7 100 0.44
750×1000 998 98 2,369.4 100 0.42

(a) RULER accuracy and token statistics. k is the visual token count,
m⋆(k) the maximum text-token tolerance, and k/m⋆(k) the relative token
footprint. Text-image input reduces the decoder tokens by 38–58%.

Model k Timeimg (s)↓ Timetext (s)↓
GPT∗ 783 1.29 0.60

998 1.75 0.61
1,258 1.95 0.58

QWEN 635 2.81 3.61
782 3.04 4.16
998 3.35 5.09

(b) End-to-end latency. Hybrid inputs add
modest overhead for GPT but reduce total time
for Qwen thanks to smaller decoder contexts.
∗measured from API responses; see Appendix A.

Table 1: RULER S-NIAH long-context retrieval accuracy, text-as-image compression statistics, and model latency.
GPT refers to GPT-4.1-mini and QWEN denotes Qwen2.5-VL-72B-Instruct.

Model Method Remaining k↓ BERTScore ROUGE-L ROUGE-1 ROUGE-2 ROUGE-Lsum

GPT

Baseline (text-only) m=693 86.25 16.26 23.78 8.60 18.91
Text-as-image (ours) 225 (−67%) 85.33 15.31 21.98 7.40 17.75
Select-Context 295 (−57%) 85.01 12.79 18.82 5.30 15.71
LLMLingua-2 265 (−62%) 85.25 13.75 20.42 7.00 16.60

QWEN

Baseline (text-only) m=726 86.37 17.70 25.18 9.47 20.77
Text-as-image (ours) 279 (−62%) 85.64 15.53 23.28 7.54 19.16
Select-Context 181 (−75%) 84.60 13.40 20.36 5.13 17.63
LLMLingua-2 258 (−64%) 85.46 15.32 22.95 7.09 18.94

Table 2: CNN/DailyMail document summarization with token compression baselines. GPT refers to GPT-4.1-mini
and QWEN denotes Qwen2.5-VL-72B-Instruct. m is the uncompressed text length, k the remaining decoder tokens
after compression. Percentage shows token reduction relative to m. At similar compression rates, rendering the
document as an image beats both token-level baselines on every metric.

threshold. (2) LLMLingua-2 (Pan et al., 2024):
trains a Transformer encoder to predict, token by
token, whether to retain or discard.

We compute the average input length in CNN/-
DailyMail and use it to set the image resolution in
our text-to-image pipeline, yielding visual token in-
puts at roughly half the original context length—the
optimal ratio identified in previous section. This
image size is applied consistently across the task.
For fair comparison, baselines are configured with
the same decoder token compression ratio. Sum-
mary quality is evaluated with ROUGE (Lin, 2004)
and BERTSCORE (Zhang et al., 2020).

Results and Discussion. The evidence in Ta-
ble 2 shows that, even though text–image compres-
sion was not tailored for summarization, it yields
stronger summaries than two specialized pruning
methods while retaining only ∼40% of the origi-
nal tokens. We stress that the aim of this paper is
to characterize the compression capacity of visual
inputs, not to introduce yet another SOTA com-
pression model. Nevertheless, the unexpectedly
strong results suggest that our simple rendering
trick is a competitive—and orthogonal—alternative

to learned token-selection approaches. Future work
could further combine text token pruning before
rendering, stacking the benefits of both paradigms.

5 Conclusion

Our primary goal is to answer the question: “How
many tokens can be saved by replacing text with an
image without harming downstream performance?”
By converting long contexts into visual form, we
achieved nearly two-fold reductions in decoder to-
ken count while preserving task accuracy on both
retrieval (RULER S-NIAH) and generation (CN-
N/DailyMail summarization) benchmarks. The ap-
proach is model- and task-agnostic, requires no
parameter updates, and can even lower latency on
large decoders. Our findings suggest several direc-
tions for future work: (i) applying token-level prun-
ing before visual rendering to further compound
compression gains; and (ii) expanding the approach
to other domains (e.g. math) where most prompt
tokens are critical and thus difficult to prune at the
token level. We hope this study will spark broader
exploration of modality shifting as a complemen-
tary axis for scaling the usability and efficiency of
Large language models.
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Limitations

Despite showing promising token savings on short
to medium context scenarios, our work has not yet
fully evaluated the impact of text-as-image prompt-
ing on extremely large contexts that span tens of
thousands of tokens or more. Real-world applica-
tions such as document analysis or in-depth con-
versational histories may require specialized ap-
proaches (e.g., chunking, retrieval) to ensure reli-
able performance at these larger scales. Further-
more, our experiments focus on a limited number
of benchmarks, leaving open questions about per-
formance on other domains (e.g., medical, legal)
and tasks (e.g., coding, translation).
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Appendix

A Results Across Context Lengths and
Image Sizes on RULER

A central challenge is how to balance visual and
textual tokens under a fixed sequence length. In
many patch-based vision encoders used by VLMs
such as Qwen, higher image resolution produces
more patches, and thus more visual tokens, which
offsets efficiency benefits of text-as-image process-
ing for token reduction. Conversely, lowering res-
olution reduces token usage, but risks discarding
semantically important visual details. This trade-
off becomes especially critical in long-context set-
tings such as retrieval-style reasoning or the RULER

benchmark, where even small shifts in token allo-
cation can lead to large changes in accuracy.

Our experiments demonstrate that model accu-
racy is highly sensitive to the effective resolution of
image inputs, which directly controls the number
of visual tokens generated. We observe a consis-
tent trend across benchmarks: when visual tokens
account for roughly one half of the total context
window, performance remains nearly indistinguish-
able from that achieved with the original, uncom-
pressed textual context. This 1

2 allocation emerges
as a near-optimal operating point, striking a balance
between preserving visual fidelity and maintaining
sufficient capacity for textual information. The
finding aligns with broader evidence of redundancy
in long-context models, where moderate compres-
sion often preserves accuracy despite substantial
reductions in token count.

To illustrate, Figure 5–7 present representative
cases from the RULER needle-in-a-haystack task:
at a context length of 1500 with an image resolution
of 600× 800 pixels (Figure 5), at 2000 with 600×
1000 pixels (Figure 6), and at 2500 with 750×1000
pixels (Figure 7). In all three cases, the model
successfully recovers nearly all embedded image
information, achieving accuracy close to 100%.

In contrast, when the context length is extended
to 3000 tokens with a 600 × 1000 image (Fig-
ure 8), accuracy degrades substantially despite the
increase in available tokens. This illustrates that
recognition accuracy depends not only on the ab-
solute context length but also on preserving a bal-
anced allocation between textual and visual tokens.
Simply enlarging the context window is therefore
insufficient to ensure stable performance.

Collectively, these results indicate that tuning

image resolution relative to the available context
budget is critical for multimodal reasoning. The
observed 1

2 allocation (or compression ratio ρ of
2) emerges as a practical heuristic for balancing
efficiency and fidelity, though further validation
is required to assess its robustness across tasks,
datasets, and model architectures.

Inference Latency Analysis To measure the in-
ference latency of text-only input to the LLM de-
coder and text-image hybrid input to the full mul-
timodal model (shown in Table 1b), we run the
full RULER S-NIAH test set and report the aver-
age wall-clock time per sample. No batching is
used. For the proprietary GPT-4.1-mini, latency is
measured from API response times. For Qwen2.5-
VL-72B-Instruct which is open sourced, inference
is performed on 8 Nvidia RTX A6000 GPUs using
the standard Hugging Face implementation without
batching, vLLM, or other speedups.

Note that API response times for GPT-4.1-mini
may not reflect pure model latency, as they include
system overhead such as request queuing, routing,
network latency, and data transmission. Since im-
age payloads are larger than text, this overhead
is likely greater for text-as-image inputs, partially
explaining the higher latency reported in Table 1b.

B Results on Qwen2.5-VL-7B-Instruct

To understand the role of model scale in visual
text compression, we replicate the long-context
retrieval experiment from Section 4.1 on the much
smaller Qwen2.5-VL-7B-Instruct model.7 The
results, plotted in Figure 4, show that while the
general trend of performance degradation holds,
the 7B model is significantly more sensitive to text
density than its 72B counterpart.

The text-token tolerance of the 7B model is sub-
stantially lower across all corresponding visual to-
ken budgets (k). For instance, with k = 998 visual
tokens, the 72B model maintains over 97% accu-
racy up to nearly 2,400 text tokens, whereas the
7B model’s accuracy drops below 95% after only
2,000 text tokens. This highlights that larger model
scale provides greater capacity to robustly process
and reason over densely packed textual information
presented visually, making it a critical factor for
achieving high compression ratios without perfor-
mance loss.

7https://huggingface.co/Qwen/Qwen2.
5-VL-7B-Instruct.
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Figure 4: Qwen2.5-VL-7B-Instruct: accuracy vs.
text-token size (m) with fixed visual tokens (k). Each
curve varies the amount of rendered text for a fixed
visual token size. Compared to the 72B version (Fig-
ure 2b), the smaller 7B model exhibits a much steeper
performance degradation as text density increases, indi-
cating that model scale is a critical factor for effective
visual text processing.

C BABILong 1k Benchmark

To further validate our findings, we evaluate on
the BABILONG benchmark (Kuratov et al., 2024),
which is specifically designed to test the limits of
long-context reasoning in LLMs. The benchmark
extends the classical bAbI tasks to much longer
contexts, where the relevant information must be
retrieved from sequences containing up to 1k dis-
tractor tokens. This makes it well suited for assess-
ing whether multimodal token allocation strategies
remain effective in long-context scenarios.

We follow the standard setup of the BABI-
LONG 1k variant, which consists of ten subsets
(QA1–QA10) covering a range of reasoning tasks
such as single- and multi-supporting fact retrieval,
coreference, and induction. For this experiment, we
use gemini-2.5-flash-preview-04-17 (Gem-
ini Team, 2025).

Since Gemini is closed-source, we estimate vi-
sual token usage from the input/output token statis-
tics returned by the API. Specifically, we record
both text and image token counts for each query,
enabling us to analyze how token allocation is dis-
tributed between modalities.

Table 3 shows that across QA1–QA10, per-
formance is stable when image tokens constitute
roughly half the count of the original total con-
text text tokens. In this configuration, the model
achieves strong and well-aligned accuracies for
both text (0.91) and image (0.83), confirming that
the 1

2 allocation rule observed in the RULER ex-
periments generalizes to BABILong as well. This

provides additional evidence that balancing image
and text tokens at a near-equal ratio offers a prac-
tical operating point for multimodal long-context
reasoning.

D ConTexImage: A Text-to-Image
Conversion Pipeline

To standardize our experiments, we require a con-
sistent way to convert textual sequences into image
inputs of controlled resolution. We therefore de-
sign a lightweight text-to-image pipeline, which we
term ConTexImage (Algorithm 1). ConTexImage
renders arbitrary text into rasterized images while
automatically adjusting font size to achieve a target
content density. This ensures that the generated
images preserve readability, maintain consistent to-
kenization patterns, and remain comparable across
different resolutions.
LaTeX Rendering: The cleaned text is embedded
into a minimal LATEX document and compiled using
tectonic8.

The pipeline consists of three main stages:

1. Preprocessing: Input text is normalized by
replacing typographic symbols (e.g., curly
quotes, dashes, ellipses) and escaping LaTeX
special characters. This step guarantees com-
patibility with the rendering backend.

2. LaTeX Rendering: The cleaned text is em-
bedded into a minimal LATEX document and
compiled using tectonic. The output PDF
page is rasterized into an image at a specified
DPI and then resized to the target resolution
(e.g., 600× 800, 600× 1000).

3. Adaptive Font Optimization: To maximize
visual fidelity, the algorithm searches over can-
didate font sizes and evaluates the proportion
of the image occupied by text (fill ratio). The
largest font size that meets a pre-defined tar-
get fill ratio (default 0.8) is selected, ensuring
both legibility and balanced whitespace.

The resulting images are consistent across dif-
ferent contexts and allow us to precisely control
the number of image tokens relative to text tokens.
More details are illustrated in Algorithm 1.

8https://github.com/tectonic-typesetting/
tectonic.
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Task TxtAcc ImgAcc TxtIn TxtOut ImgIn ImgOut

QA1 1.00 0.96 846.9 9.0 440.0 9.1
QA2 0.85 0.65 877.0 7.0 466.0 7.0
QA3 0.87 0.59 946.2 10.0 531.0 10.0
QA4 1.00 0.98 810.5 1.1 399.0 1.1
QA5 0.92 0.89 881.0 1.0 465.4 1.0
QA6 0.99 0.96 829.0 1.0 430.0 1.0
QA7 0.54 0.48 863.1 1.0 451.0 1.0
QA8 0.99 0.95 862.7 1.1 468.0 1.1
QA9 1.00 0.96 827.7 1.0 425.0 1.0
QA10 0.98 0.92 875.1 1.0 466.0 1.0

Avg 0.91 0.83 861.9 3.3 454.1 3.3

Table 3: Gemini-2.5-flash-preview-04-17 on BABILONG 1k. “TxtAcc” is accuracy for text input. “ImgAcc” is
accuracy for image input. “TxtIn” and “TxtOut” are the average text input/output tokens. “ImgIn” and “ImgOut”
are the average image input/output tokens.

Algorithm 1: ConTexImage: A Context-Aware Text-to-Image Pipeline
def escape_latex_special_chars(text):

"""Replace LaTeX special characters with safe tokens."""
escape_map = {"\\": r"\textbackslash{}", "&": r"\&", "%": r"\%",

"$": r"\$", "#": r"\#", "_": r"\_", "{": r"\{", "}": r"\}",
"~": r"\textasciitilde{}", "^": r"\textasciicircum{}"}

for k, v in escape_map.items():
text = text.replace(k, v)

return text

def text_to_image(text, width, height, dpi=300, target_fill_ratio=0.7):
# Step 1: Preprocessing
text = normalize_typography(text) # replace curly quotes, dashes, ellipses
text = escape_latex_special_chars(text) # escape special symbols for LaTeX

# Step 2: Font size search
best_image, best_ratio = None, 0
for font_size in candidate_font_sizes(descending=True):

tex_doc = build_latex_template(text, font_size, width, height, margin=10)
pdf = compile_with_tectonic(tex_doc) # LaTeX -> PDF
image = convert_pdf_to_image(pdf, dpi=dpi,

resize=(width, height)) # PDF -> raster
ratio = calculate_fill_ratio(image) # bounding box occupancy

if ratio > best_ratio: # update best so far
best_ratio, best_image = ratio, image

if ratio >= target_fill_ratio:
break

return best_image

def generate_images(dataset, output_dir, width, height, dpi=300):
"""Batch conversion for all documents in dataset."""
for doc in dataset:

text = doc["input"]
img = text_to_image(text, width, height, dpi=dpi)
save_image(img, path=output_dir + f"/{doc['doc_id']}.png")
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Figure 5: Rendered image input for the RULER task at context length 1500 (600× 800 image resolution). Here there
is almost no accuracy degradation. This example illustrates how textual sequences are converted into rasterized
images for multimodal processing.
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Figure 6: Rendered image input at context length 2000 (600 × 1000 image resolution). Here there is almost
no accuracy degradation. The figure demonstrates scaling of resolution while preserving readability and model
performance.
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Figure 7: Rendered image input at context length 2500 (750 × 1000 image resolution). Here there is almost no
accuracy degradation. Increased resolution produces more visual tokens while maintaining comparable visual
fidelity and model performance.
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Figure 8: Rendered image input at context length 3000 (600× 1000 image resolution). Here accuracy degrades
substantially. This setting illustrates the tradeoff between tolerable text token budget and image resolution to
maintain model performance.
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