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Abstract

Image Difference Captioning (IDC) methods
have advanced in highlighting subtle differ-
ences between similar images, but their perfor-
mance is often constrained by limited training
data. Using Large Multimodal Models (LMMs)
to describe changes in image pairs mitigates
data limits but adds noise. These change de-
scriptions are often coarse summaries, obscur-
ing fine details and hindering noise detection.
In this work, we improve IDC with a noise-
robust approach at both data and model lev-
els. We use LMMs with structured prompts to
generate fine-grained change descriptions dur-
ing data curation. We propose a Noise-Aware
Modeling and Captioning (NAMC) model with
three modules: Noise Identification and Mask-
ing (NIM) to reduce noisy correspondences,
Masked Image Reconstruction (MIR) to cor-
rect over-masking errors, and Fine-grained De-
scription Generation (FDG) to produce coher-
ent change descriptions. Experiments on four
IDC benchmarks show that NAMC, pre-trained
on our large-scale data, outperforms stream-
lined architectures and achieves competitive
performance with LLM-finetuned methods, of-
fering better inference efficiency.

1 Introduction

Image Difference Captioning (IDC) involves dis-
cerning fine-grained changes between two sim-
ilar images and generating change descriptions
that summarize these changes (Jhamtani and Berg-
Kirkpatrick, 2018). Unlike general image caption-
ing task (Vinyals et al., 2015), which describes
the content of a single image, IDC requires fine-
grained semantic understanding to accurately de-
tect and articulate subtle changes between two visu-
ally and semantically similar images. The ability of
this task to model these nuanced changes proves in-
valuable in various applications, like medical case
comparison (Liu et al., 2021; Beddiar et al., 2023),
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remote sensing monitoring (Hoxha et al., 2022;
Chang and Ghamisi, 2023), and security monitor-
ing (Jhamtani and Berg-Kirkpatrick, 2018).
Recently, IDC approaches have made long-term
progress (Tu et al., 2021a; Yao et al., 2022). How-
ever, their performance is often constrained by lim-
ited training data. This limitation arises because ac-
quiring IDC training data—comprising similar im-
age pairs and their corresponding change descrip-
tions—is particularly challenging. The process
heavily relies on manual annotations, making data
curation both labor-intensive and time-consuming.
Recent efforts (Jiao et al., 2024; Hu et al., 2024)
have attempted to address this challenge by lever-
aging Large Multi-Modal models (LMMs) to gen-
erate change descriptions for pre-collected image
pairs (Brooks et al., 2023). However, these gener-
ated descriptions often introduce noise in the form
of obvious, irrelevant, or redundant details, result-
ing in weak annotations compared to those created
by human annotators, undermining model perfor-
mance. In particular, such descriptions tend to
summarize changes in a coarse manner, failing to
capture fine-grained details from both images (Hu
et al., 2024). This makes it challenging to identify
and handle noisy correspondences between images
and descriptions during subsequent model training,
especially when considering noise-aware learning.
To this end, this work focuses on noise-robust
image difference captioning at both the data and
model levels, as depicted in Figure 1. At the data
level, we aim to leverage LMMs to generate fine-
grained implicit-change descriptions for similar
image pairs, which provides the critical data foun-
dation required for enabling model-level noise iden-
tification mechanisms. At the model level, we pro-
pose NAMC: a Noise-Aware Modeling and Cap-
tioning model designed to mitigate cross-modal
noisy correspondences introduced by the generated
data. NAMC incorporates three trainable modules:
a Noise Identification and Masking (NIM) module
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Figure 1: The skeleton of our proposed noise-robust image difference captioning, which includes fine-grained
implicit-change descriptions at the data level and a noise-aware model at the model level.

to mitigate cross-modal noisy correspondences, a
Masked Image Reconstruction (MIR) module to
mitigate over-masking errors on images and en-
hance image comprehension, and a Fine-grained
Description Generation (FDG) module to enable
model to generate accurate change descriptions.

Data Level. We curate the pre-training data
generation process by using structured prompts to
guide LMMs in generating descriptions that cap-
ture fine-grained differences between two images.
Specifically, we aim to generate detailed descrip-
tions for each image at a granular level, such as
"The first image depicts a daytime scene with ...,
while the second image is a night scene with ...".
These descriptions implicitly capture changes be-
tween the images—for instance, the phrase "change
it to night" can be inferred through the contrast
between the two descriptions. Moreover, these
descriptions can be explicitly aligned with corre-
sponding image regions, facilitating noise-robust
learning in subsequent model training.

Model level. We develop three modules in
the proposed NAMC. NIM module uses dual
encoders—with contrastive loss—to project im-
ages and their corresponding descriptions into a
shared space. Within this space, cross-modal to-
ken relevance computation guides a Noise Masking
(NM) strategy to generate masks for both modal-
ities. These masks filters noise from both im-
ages and descriptions, producing denoised images
and descriptions. MIR module mitigates potential
over-masking—relevant information is mistakenly
masked—by reconstructing missing image content
through a masked image encoder, while simulta-
neously modeling cross-image interactions that ig-
nore noisy regions. This not only compensates for
masking errors but also captures cross-image re-
lationship modeling. FDG module leverages the
cross-image relationships learned by MIR and em-

ploys a multi-modal decoder for the generation
of change descriptions. It is pre-trained using the
combined denoised description as supervision, en-
abling description of subtle inter-image distinctions
through joint visual-textual decoding.

The main contributions of this work are summa-
rized as: (1) we explore a noise-robust image dif-
ference captioning, using LMMs to generate large-
scale change descriptions while mitigating the im-
pact of noise from these generated descriptions dur-
ing pre-training. (2) We introduce a pre-training
dataset generation method that automatically pro-
duces fine-grained implicit-change descriptions,
capturing subtle and implicit differences between
image pairs. (3) We propose a noise-aware model-
ing and captioning model to address cross-modal
noisy correspondences and enhance the comprehen-
sion of images and descriptions during pre-training.
(4) Experiments on four IDC datasets show that
our proposed NAMC achieves competitive perfor-
mance with the LLM-finetuned state-of-the-arts,
while maintaining superior inference efficiency.

2 Related Work

Within the domain of multi-modality learning (Guo
et al., 2023; Kainulainen et al., 2024; Radman
and Laaksonen, 2025), Image Difference Caption-
ing (IDC) was first introduced by Jhamtani and
Berg-Kirkpatrick (2018) and refined by Park et al.
(2019) with distractors like viewpoint or bright-
ness changes. Both followed a single-step training
from scratch paradigm including an image encoder
and a text decoder, typically with fewer parameters.
Leveraging this paradigm, subsequent works mit-
igated the impact of distractors (Kim et al., 2021;
Tu et al., 2024a) and concentrated on fine-grained
difference recognition (Tu et al., 2023c, 2024b),
providing a thorough exploration of the IDC task.
On the other hand, recent approaches have
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adopted a two-step training that either (1) integrates
auxiliary tasks alongside the main IDC objective, or
(2) implements a pre-alignment stage prior to cap-
tion generation, as opposed to employing end-to-
end training from scratch. Hosseinzadeh and Wang
(2021) introduced an additional retrieval task as
an auxiliary objective to enhance the performance
of image difference captioning. Both Yao et al.
(2022) and Guo et al. (2022) proposed a pretrain-
ing phase to align the image pairs with change de-
scriptions before performing difference captioning.
Particularly, Yao et al. (2022) used a cross-modal
Transformer architecture to jointly process the im-
ages and captions, leveraging multiple contrastive
learning tasks. Guo et al. (2022) utilized a CLIP-
like architecture, aligning the [CLS] token from the
encoder output with image-text retrieval objectives.
With the advent of LMMs (Peng et al., 2025;
Jiang et al., 2025), research focus has shifted
toward applying these models to IDC and fully
leveraging their rich prior knowledge. Lu et al.
(2023) and Zhang et al. (2024) partially fine-
tuned BLIP2 (Li et al., 2023) model for IDC task,
with Zhang et al. (2024) specifically introducing
retrieval-augmented generation to improve caption-
ing. Other methods (Black et al., 2024; Hu et al.,
2024; Jiao et al., 2024) utilized knowledge from
LMMs to generate additional training data for fine-
tuning. Despite promising results, handling noise
interference is still a challenge for models using
LMMs to generate additional data. Inspired by
the success of noise-robust techniques across var-
ious domains (Kang et al., 2023; Fu et al., 2024;
Tan et al., 2024; Huang et al., 2024), we propose
a noise-aware IDC model to address cross-modal
noisy correspondences in LMM-generated data.

3 Method

Figure 2 shows our proposed noise-robust image
difference captioning framework, which begins
with generating fine-grained implicit-change de-
scriptions using LMMs on curated image pairs. We
then introduce the NAMC model, composed of
three modules, NIM for noise mitigation, MIR for
reconstruction, and FDG for change description
generation, followed by the pre-training strategies.

3.1 Data Generation at Scale

Manual obtaining of image pairs and annotation
of their change descriptions is time- and labor-
intensive; therefore, we rely on automatic data

generation in our study. This process involves (1)
collecting similar image pairs and (2) generating
change descriptions for them.

3.1.1 Similar Image Pairs

We collect an image dataset comprising approxi-
mately 770K synthetic and real image pairs. Of
these, 313K synthetic pairs come from an existing
dataset (“clip-filtered-dataset” version) provided
by InstructPix2Pix (Brooks et al., 2023). For real
pairs, we leverage two sources: 8K pairs from the
existing Spot-the-Diff dataset (Jhamtani and Berg-
Kirkpatrick, 2018), and 450K pairs from the CC3M
dataset (Sharma et al., 2018). Further details on
the image collection and our similar image pair
construction pipeline are provided in Appendix D.

3.1.2 Implicit-change Descriptions

Recent works prompt LMMs to generate change
descriptions for a collection of image pairs (Brooks
et al., 2023), often resulting in summaries of
changes. However, these descriptions, generated
via typical prompts, often introduce noise by in-
cluding extraneous details or by obscuring key dif-
ferences between the images. More importantly,
this noise propagates to the model level, making it
harder to identify noisy correspondences between
the image pairs and their corresponding change
descriptions. To address these challenges, we in-
troduce the fine-grained implicit-change descrip-
tion—a format designed to capture key differences
between two images, which is essential for the IDC
task. The fine-grained implicit-change description
follows the structured template:

The difference between the two images is that the
first image {descriptive verb} [object description],
while the second image {descriptive verb} [object
description].

In the template, “{descriptive verb}” is a place-
holder for a replaceable verb, e.g. describes, cho-
sen from a predefined list provided in Appendix D.
Similarly, “[object description]” is a placeholder
for LMMs to fill in specific details of objects under-
going change, thereby focusing on the differences
between the two images.

Unlike directly summarized change descriptions
that explicitly describe the change between two im-
ages from Hu et al. (2024), our format preserves
fine-grained details from both images, allowing
the change to be inferred. Furthermore, this de-
scriptive format enables the extraction of “[object
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Figure 2: Illustration of the proposed noise-robust image difference captioning, including: Noise Identification and
Masking (NIM), Masked Image Reconstruction (MIR), Fine-grained Description Generation (FDG).

description]” for each image in the pair. The sub-
sequent NAMC model then leverages each image
and its corresponding extracted description to com-
pute their relevance, helping to identify and filter
out irrelevant information in both modalities. To
automate the generation of implicit change descrip-
tions, we prompt QWen2-VL (Wang et al., 2024),
which processes two input images, following the
structured instruction (e.g., for CC3M):

Given the first and the second images, describe the
difference between the two images. First image could
be described as: {caption}. Second image could be
described as: {caption}. Generate the description
strictly according to the template: ‘{template)’.

In the instruction, “{caption}” is a fine-grained
paragraph detailing the image in CC3M, sourced
from the existing LLava-ReCap dataset (Liu et al.,
2024b). “{template}”’ is the structured template
mentioned in Section 3.1.2. Further details on the
generation of the fine-grained implicit-change de-
scriptions are provided in Appendix D.

3.2 Noise-Aware Modeling and Captioning
3.2.1 Noise Identification and Masking

Given an image pair and its change description,
our model feeds each image I;,7 € {1,2} in the
pair along with its corresponding description 73, i.e.
the text of “[object description]”, into image and
text encoders initialized with CLIP-B/16 (Radford
et al., 2021). The dual encoders project data of
both modalities into a shared embedding space.

Image encoding. Given an input image I;, we
first divide it into n; non-overlapping patches,
which are then projected into patch representations
I? * € R1>d ysing a convolutional layer, where d is
the hidden dimension. A learnable [CLS] token is
prepended to the sequence, forming the combined
input embedding. This embedding is processed by
a 12-layer Transformer encoder £;(-), yielding the

final image embedding E7(I"") € R+ >4, Here,
excluding the first token, the remaining forms the
patch embedding Hy, = SI(Ift) e Rmxd,

Text encoding. For the corresponding component
text T;, we prepend a start-of-sequence [SOS] to-
ken and append an end-of-sequence [EOS] token.
The text is tokenized into np subword units, which
are then mapped to text embedding. The embed-
ding is fed into a separate 12-layer Transformer
encoder E7(-), producing the final text embedding
Hr, = &p(T;) € R4,

Token-to-token similarity. The relevance between
the image I; and description 7 is quantified by the
similarity between their embeddings. A token-to-
token similarity matrix S € R™ *"7 from image to
description is computed as:

" N il |- || Hry ]

where Hyp, ,, and Hr,,, denote the m-th image
patch embedding and n-th text token embedding,
respectively, Sy, ,, represents their cosine similarity,
reflecting the token-to-token relevance between im-
age and text. The elements in the relevance vector
Ry, € R™ for the image I;, is Ry, ;, = max(Sy,),
where max(S,,) denotes the maximum value in
the m-th row of matrix .S, representing the highest
relevance between the m-th image patch and all
text tokens. Symmetrically, the relevance vector
Rr, € R for the text T}, is computed by exchang-
ing patch and text embeddings in Eq. (1).

Noise identification and masking. The noise
identification for both modalities is achieved by
measuring the irrelevance between them. Given
the relevance vectors for image Ry, and text Ry,
the corresponding irrelevance vectors are com-
puted as IR, = 1 — Ry, and IRy, = 1 — Ry,
where 1 denotes a vector of ones with the same
dimensions as the corresponding relevance vec-
tors. On the basis, we propose Noise Masking
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(NM), a strategy to mask irrelevant elements in
each image and its corresponding textual descrip-
tion. Given the irrelevance vectors for both image
IR, and text I Rt;, tokens with lower relevance
scores are assigned higher probabilities of being
masked. Let p; be the masking probability ratio for
image tokens and pr be the masking probability
ratio for text tokens. The mask probability vec-
tors for image and text, denoted as Py, and Pr;,
are defined as Py, = p;r + IRy, — p(IRy,) and
Pr, = pr + IR, — n(IRr,), where p(-) denotes
the mean operation.

NIM output. For each image I; in the pair and its
description T3, the NIM module’s output is the re-
spective image mask My, € R"! and the text mask
M, € R"T. These masks are derived from the cor-
responding probability vectors, Pj, for image and
Pr, for text. Each element in M7, is binary, where
a value of 1 indicates the corresponding patch in
the image I; is masked, and O indicates that it is
preserved. The same binary interpretation applies
to the elements in the text mask Mr,.

Denoised image. During the masking process for
the image I;, the patch representation from I? "is
replaced with a learnable vector ™% € R?, yield-
ing an updated patch representation I, Z-mSk, referred
to as the denoised image.

Denoised description. During the masking pro-
cess for the description 7, each word selected for
masking is replaced with the word of [MASK],
producing T["Sk as the denoised description. Fur-
thermore, for each image pair, its corresponding
denoised implicit-change description is created by
combining the denoised descriptions of the first and
second images, in the form as:

The difference between the two images is that the
first image {descriptive verb} [denoised description],
while the second image {descriptive verb} [denoised
description].

Here, “[denoised description]” is a placeholder
for the respective denoised description.

3.2.2 Masked Image Reconstruction

Given the image I; and its mask M, produced by
NM, an over-masking issue arises where positions
of relevant patches tend to be mistakenly marked
as masked in Mj,. To address this, we introduce
the MIR module, which comprises a masked im-
age encoder trained to reconstruct the masked re-
gions. The reconstruction process consists of four
parts: (1) A pre-trained image tokenizer (Esser

et al., 2021) converts each image I; in the pair into
a discrete token sequence z; € R™!, serving as the
ground truth for reconstruction. (2) A pre-trained
CNN (He et al., 2016) encodes the image I; into the
raw image feature X; € R"/ %, where C denotes
the channel dimension. (3) For positions masked
in the image mask M7, the corresponding posi-
tions of feature elements in X; are replaced with a
learnable embedding vector ej; € RY, producing
the masked image feature XiM e Ru*C (4 A
masked image encoder processes X ZM and learns
to reconstruct the positions where e,, is inserted.
Masked image embedding. Given the masked im-
age feature X ZM € R™ %% a convolutional projec-
tion with a kernel size of one is applied to transform
the features into a d-dimensional embedding. To
encode spatial position information, a learnable po-
sitional embedding layer is added to the embedding,
resulting in the updated embedding )A(ZM € Ruxd,
Masked image encoder. This updated embed-
ding is then fed into a two-layer Transformer for
the reconstruction of regions replaced with ej;.
Within the Transformer, the self-attention layer
first processes X lM , and the resulting output is
used as the query in the subsequent cross-attention
layer. The key and the value in the cross-attention
layer, come from the text encoding of the de-
noised description 7*** in NIM module, denoted
as Er(T™F) € R*T*4 The specific reconstruc-
tion optimization is detailed in Section 3.3.

MIR output. The MIR module outputs the mod-
eled cross-image interactions between the first and
second images without attending to any noisy re-
gions. To capture their interactions, we adopt a
co-attentional style in the masked image encoder
for the two input images, as shown in Figure 2.
Specifically, given their masked image embedding,
X M and Xé\/[ , the masked image encoder &,y pro-
cesses them through two parallel streams. Each
stream applies the self-attention layer to one image
feature, producing an intermediate output that acts
as the query in the subsequent cross-attention layer.
The key and value of the cross-attention layer come
from the other image feature, thereby enabling in-
formation exchange between both images. The
outputs of the two streams are £y (XM, XM) €
R % and £ (XM, XM) € R™*4, These two
outputs are then concatenated along the last dimen-
sion and passed through a fully connected layer
to project the concatenated representation back to
dimension d. This produces the final output of the
MIR module, denoted as Ey;7r € R™*?. We en-
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sure that masked regions in both images are not
attended to by applying masking operations in both
the self- and cross-attention layers during cross-
image interaction modeling.

3.2.3 Fine-grained Description Generation

Given the output £;7r from the MIR module, the
multi-modal decoder of a two-layer Transformer is
optimized to predict the ground-truth of denoised
implicit-change descriptions.

3.3 Optimization

Optimization of NIM. We optimize NIM’s dual en-
coder using the contrastive loss proposed by Jiang
and Ye (2023), to align cross-modal representa-
tions between each denoised image I/™** in the
pair and the corresponding denoised description
Tk, The NIM’s dual encoders produce their em-
beddings of £7(I*) and Er(T;™5*), respectively.
To ensure that these embeddings are projected into
a shared space, we extract their global semantic
representations by selecting the [CLS] token em-
bedding ef'* € R? from £;(I;"**) and the [EOS]
token embedding e7?* € R? from the Ep(T7™F).
The alignment loss Lnpv for these embeddings is
detailed in Appendix E.
Optimization of MIR. The MIR’s masked image
encoder is trained to reconstruct the masked regions
in two images, guided by their respective denoised
description. For each image, given the masked im-
age embedding XZM and its respective denoised
description Tim‘*k, the masked image encoder pro-
duces the output Ex7 (XM, Ep(T"**)). Following
Bao et al. (2021), the reconstruction objective aims
to predict masked regions to align with the corre-
sponding values in the ground truth discrete token
sequence z;. To achieve this, the masked encoder
output is fed through a fully connected layer and a
softmax classifier to predict discrete tokens. The
reconstruction objective Lyr maximizes the log-
likelihood of the correct tokens for both images in
the pair, detailed in Appendix E.
Optimization of FDG. Leveraging the denoised
implicit-change descriptions as textual ground
truth, the FDG module’s multi-modal decoder is
trained to predict the next word by conditioning
on previous words as well as the MIR’s output,
which captures cross-image interactions. There-
fore, the generation loss Lppg is to maximize the
log-likelihood of the observed word sequences.
The overall loss £ for optimizing our NAMC
model is computed as the sum of the aforemen-

Model B M C R S

Streamlined Architecture
ResNet Feataures

DUDA (2019) 403 271 567 - 161
VAM (2020) 409 27.1 60.1 - 158
VACC (2021) 450 293 717 - 116
MCCFormers (2021) 469 317 716 - 146
NCT (2023b) 475 325 769 651 156
VARD (2023a) 483 324 716 - 154
SCORER (2023c) 494 334 837 661 162
MURAT 2024 50.1 330 834 66.1 162
'NAMC (Ours) 610 361 1024 711 203
””””””” CLIP Featuress
CLIP4IDC (2022) 547 330 899 - -

LMM Parameter-efficient-finetuned Architecture
BLIP2IDC (2025) 49.3 330 88.5 - -

Table 1: Results on CLEVR-DC (CDC).

Model B M C R S

Streamlined Architecture
ResNet Features

VAM (2020) 503 37.0 1149 69.7 305
VACC (2021) 524 375 1142 - 310
R3Net (2021a) 547 398 1230 73.1 326
SGCC (2021) 511 406 121.8 739 322
SRDRL (2021b) 549 402 1222 733 329
MCCFormers (2021) 524 383 1216 - 268
BiDiff (2022) 542 383 1181 - 317
PCL (2022) 512 362 1289 717 -

NCT (2023b) 551 402 1241 738 329
I3N-TD (2023) 558 40.6 1256 739 328
VARD (2023a) 554 40.1 1264 738 333
SCORER (2023c) 563 412 1268 745 333
MURAT (2024) 554 404 127.0 739 324
SMART (2024b) 56.1 408 127.0 742 334
" NAMC (Ours) 575 386 1532 713 276

CLIP Features

CLIP4IDC (2022) 569 384 1507 764 -

LMM Parameter-efficient-finetuned Architecture
VIR-VLFM (2023) 58.2 42.6 1534 789 345
FINER (2024) 55.6 36.6 1372 725 264

Table 2: Results on CLEVR-Change (CLC).

tioned losses from its three modules:

L = Lxmv + Lmr + LEDG- (2)

4 Experiments

We pre-train our NAMC model and leverage
the pre-trained MIR and FDG modules for
on IDC fine-tuning. Notably, the NIM mod-
ule is employed only during the pre-training.
We evaluate our NAMC on the CLEVR-DC
(CDC) (2021), CLEVR-Change (CLC) (2019),
Image-Editing-Request (IER) (2019), and Spot-the-
Diff (STD) (2018) datasets, with BLEU (B) (2002),
METEOR (M) (2005), CIDEr (C) (2015), ROUGE-
L (R) (2004), and Spice (2016).

Baselines. We compare the recent approaches
that fall into two tracks: (1) Streamlined architec-
ture based on either ResNet (2016) or CLIP (2021)
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Model B M C R S

Streamlined Architecture
ResNet Features

MCCFormers (2021) 8.3 143 302 392 -
BiDiff (2022) 69 146 277 385 -
NCT (2023b) 8.1 150 342 388 127
VARD (2023a) 10.0 148 357 390 -
SCORER (2023c¢) 10.0 150 334 396 -
SMART (2024b) 105 152 378 391 -

" NAMC (Ours) 144 183 510 452 150

777777777777777 CLIP Features
CLIP4IDC (2022) 82 146 322 404 -

LMM Parameter-efficient-finetuned Architecture

VIXEN-C (2024) 86 154 381 425 -
FINER (2024) 141 159 533 404 159
MGM+RP (2024) 16.6 182 68.1 457 -
BLIP2IDC (2025) 174 201 741 485 -

777777777 LMM Fully-finetuned Architecture
OneDiff (2024) 246 241 1039 3522 -

Table 3: Results on Image-Editing-Request (IER).

Model B M C R S

Streamlined Architecture
ResNet Features

VAM (2020) 10.1 124 381 313 -
VACC (2021) 9.7 126 415 321 -
R3Net (2021a) - 13.1 36.6 326 1338
SRDRL (2021b) - 13.0 353 - 18.0
MCCFormers (2021) 10.0 124 431 - 18.3
BiDiff (2022) 6.6 106 422 295 -
I3N-TD (2023) 103 13.0 427 315 186
VARD (2023a) - 125 303 293 173
SCORER (2023¢) 102 122 389 - 18.4
SMART (2024b) - 135 394 316 19.0
MURAT (2024) 102 131 394 331 188

" NAMC (Ours) 118 134 523 334 187

7 CLIPFeatures
CLIP4IDC (2022) 11.6 142 474 350 -

LMM Parameter-efficient-finetuned Architecture

VIR-VLFM (2023) 122 153 489 362 20.1
FINER (2024) 129 147 61.8 355 221
MGM+RP (2024) 108 13.1 535 330 -
BLIP2IDC (2025) 114 135 514 - -

~ " LMM Fully-finetuned Architecture
OneDiff (2024) 128 146 56.6 358 -

Table 4: Results on Spot-the-Diff (STD).

features. Specifically, we compare our NAMC
with: DUDA (2019), VAM (2020), IFDC (2021),
VACC (2021), R3Net (2021a), SGCC (2021),
SRDRL (2021b), MCCFormers (2021), BiD-
iff (2022), PCL (2022), CLIP4IDC (2022),
NCT (2023b), I3N-TD (2023), VARD (2023a),
SCORER (2023c), MURAT (2024), and
SMART (2024b). (2) LMM-finetuned architec-
tures, using parameter-efficient fine-tuning or fully
fine-tuning. Specifically, we compare our NAMC
with: VIR-VLFM (2023), VIXEN-C (2024),
FINER (2024), MGM+RP (2024), OneDiff (2024),
and BLIP2IDC (2025). Tables 1-4 present our
results alongside state-of-the-art approaches across
the four datasets. Our NAMC occupies a unique
position outside both categories, yet combines the
inference efficiency and performance.

Model #Total Params  Tokens Per Second (TPS) 1
CLIP4IDC (2022) 173.7M 1789.44

FINER (2024) 7.9B 48.51
BLIP2IDC (2025) 3.8B 106.17

NAMC (Ours) 64.2M 2248.53

Table 5: Comparison on the numbers of parameters and
efficiency during inference.

Modul CLEVR-Change Spot-the-Diff Image-Editing-Request
¢ B M ¢ R B M C R B M C R

NAMC 575 38.6 1532 773 118 134 523 334 144 183 510 452
-MIR 56.8 38.8 1493 768 106 133 479 326 142 175 475 450

--NIM 562 393 1384 754 9.6 12.0 435 315 110 164 446 442

Table 6: Effects of combining different modules.

4.1 Results

When compared to streamlined architectures that
also employ ResNet pre-extracted features, our
NAMC consistently outperforms them across all
datasets, demonstrating superior performance on
the majority of metrics. We attribute this obser-
vation to NAMC’s ability to address training data
scarcity and mitigate noise interference during the
pre-training stage. Compared to CLIP4IDC, which
also uses a pre-trained model, our NAMC shows
superior performance on all four datasets—for ex-
ample, achieving improvements of 9.7% and 58.4%
on the C score for STD and IER, respectively.

Compared with the state-of-the-art LMM-
finetuned architectures, our NAMC shows compet-
itive performance on the four datasets. For exam-
ple, our NAMC model outperforms BLIP2IDC on
the CDC, performs competitive with VIR-VLFM
on the CLC, with FINER on the IER, and with
MGM+RP on the STD, respectively. Table 5 fur-
ther compares the inference efficiency of NAMC
with a representative LMM-finetuned approach,
FINER. Due to the architectural simplicity of our
model, which incorporates a 2-layer Transformer
for MIR and FDG modules, our NAMC demon-
strates smaller numbers of parameters and more
efficient inference, achieving a higher tokens-per-
second (TPS) rate during inference. We provide
detailed analyses of various components of our
NAMC in Appendix A, and a comparison with
more LMMs in Appendix C.

4.2 Ablation Studies

We conduct ablation studies on (1) modules, exam-
ining individual impacts, NM masking ratios, NIM
pre-training alignment, and loss function choices;
and (2) pre-training datasets, assessing different
combinations and sizes. Additional ablation stud-
ies are provided in Appendix B.
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Spot-the-Diff Image-Editing-Request
B M C R B M C R
Different Contrastive Loss for NIM
InfoNCE 11.0 132 50.4 32.3 13.7 17.0 482 44.5
Contrastive (2023) 11.8 134 523 334 144 18.3 51.0 452
Different Construction Loss for MIR
L1 9.6 12.6 40.6 31.1 10.7 16.3 41.0 43.5
L2 9.7 12.7 40.4 30.5 10.2 16.8 40.8 43.0
Discrete (2021)  11.8 134 523 334 14.4 18.3 51.0 452

Loss

Table 7: Effects of different losses for NIM and MIR.

STD: Effect of Text Masking Ratio IER: Effect of Text ing Ratio
48
46
46
—@— Noise Masking —@— Noise Masking
44 Random Masking 44 Random Masking

42
42
0.10 0.15 0.20 0.25 0.30 0.10 0.15 0.20 0.25 0.30
Text Masking Ratio Text Masking Ratio

STD: Effect of Image Masking Ratio IER: Effect of Image Masking Ratio
46 46
—@— Noise Masking —@— Noise Masking
44 Random Masking Random Masking
44
42
0.1 0.2 0.3 0.1 0.2 0.3

Image Masking Ratio
Figure 3: Effect of masking ratios within NM. We com-
pare Noise Masking and Random Masking across dif-
ferent image and text masking ratios, p; and pr. When
varying py, we set pr = 0, and vice versa.

Image Masking Ratio

4.2.1 Effect of Modules

Effect of combining different modules. Table 6
shows the combined impact of NIM module (for
noise identification and masking) and MIR module
(for image comprehension enhancement). Noise
introduced in LMM-generated descriptions cre-
ates noisy image-text correspondences, degrading
model performance. Incorporating NIM module
during NAMC pre-training improves fine-tuning
performance across most metrics on all datasets.
Further integration of the MIR module, which mit-
igates over-masking issues and enhances image
comprehension, brings the improvements. This
demonstrates that integrating both modules consis-
tently enhances fine-tuning performance across all
three datasets, underscoring their effectiveness.
Effect of different losses for NIM and MIR.
Within the NAMC model, we study exclusively
on the selection of different losses for pre-training
our NIM and MIR modules. Table 7 summarizes
the selected loss functions: two contrastive losses
for the NIM module and three construction losses
for the MIR module. Our results indicate that, for
the NIM module, the contrastive loss (2023) de-
livers superior performance, whereas for the MIR
module, employing both L1 and L2 losses as a
continuous reconstruction for the raw image fea-
ture X; causes critical details blurred among noisy
information, thus degrading performance.

Denoised Denoised Spot-the-Diff Image-Editing-Request

Image Desc. B M C R B M C R
- - 10.2 125 46.1 324 12.6 159 46.1 43.4
- v 10.9 12.9 49.5 33.0 13.8 16.2 48.6 449
v - 10.6 13.0 487 32.8 13.9 16.5 482 445
v v 11.8 134 523 334 144 183 510 452

Table 8: Effects of using denoised images and descrip-
tions for NIM in pre-training.

Effect of masking ratios within NM. Figure 3
illustrates our study exclusively on various combi-
nations of the masking ratios, py and pr, in the NM
strategy. We compare NM with random masking,
where all values in the mask probability vectors,
P1, and Pr;, are set to py and pr, respectively. Gen-
erally, we observe a decline in model performance
as the masking ratios increase in random masking.
We attribute this to the increased loss of informa-
tion caused by higher masking, which disrupts the
model’s performance. The dynamic masking in
NM mitigates this issue. We select py = 0.2 and
pr = 0.15 as the masking ratios.

Effect of aligning denoised images and descrip-
tions for NIM in pre-training. Table 8 presents
our study exclusively on the effect of aligning de-
noised images and descriptions during pre-training
the NIM module, i.e., aligning &(I™*) with
Er(Tm**), as detailed in Section 3.3. We begin by
aligning £ (IP") with Ep(T}), then substitute either
Er(IPY) with Er(I7*%) or Ep(T;) with Ep(Ti™%),
achieving superior performance when employing
both the denoised images or descriptions. This
demonstrates that the NM strategy reduces noisy
correspondences between image pairs and change
descriptions, enhancing NAMC’s performance.

139.3 145.8 1415 148.5 151.9

SP 1P CcC SP+IP SP+CC IP+CC SP+IP+CC
151.2 153.2
141.0 146.3
126.3 131.6
EEE CLC Wmm STD WEE IER
49.6 52.3
375 418 LI LO—
34 8 —— B 2 510
3
26.0

0% 20% 40% 60% 80% 100%
Figure 4: Effect of pre-training dataset combinations
(top) and data sizes (bottom) on fine-tuning performance
measured by the C Score. And SP, IP, and CC refer to
image pairs from STD, InstructPix2Pix, and CC3M.

4.2.2 Effect of Pre-training Datasets

Figure 4 illustrates the impact of pre-training
datasets combinations and sizes. We observe that
the integration of datasets leads to improved per-
formance on downstream tasks. Moreover, it is
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First image Second image

Ground-truth: the large brown matte block that is left of the red object has
been newly placed

Ours: the big brown rubber block that is left of the big red metal thing has
been newly placed

FINER: there is no change

(a) Comparison on CLC

First image

Second image

Ground-truth: people moved location
Ours: the people have moved

FINER: there are no people in the parking lot

(c) Comparison on STD

First image Second image

Ground-truth: the other tiny object the same shape as the purple rubber object
has been added

Ours: the other red cylinder that is the same size as the purple cylinder has
been added

BLIP2IDC: the other purple object that is the same size as the purple cylinder

changed its location

(b) Comparison on CDC

First image

Second image

Ground-truth: increase the brightness of the entire image
Ours: brighten the entire photo

FINER: remove the cigarette

(d) Comparison on IER

Figure 5: Qualitative results on the four IDC datasets compared with FINER and BLIP2IDC. Incorrect and correct

predictions are highlighted in red and green, respectively.

evident that the NAMC’s performance steadily im-
proves as the pre-training data amount increases.
Additionally, we find that the gains on the CLC
dataset exhibit smaller, expanding the training data
from 80% to 100% yields a 1.3% improvement,
compared to a 5.4% improvement on STD.

4.3 Qualitative Results

Figure 5 compares our NAMC with FINER on the
CLC, STD, and IER datasets, and with BLIP2IDC
on the CDC dataset. Our NAMC demonstrates
strong robustness to background interference, ef-
fectively handling changes in viewpoint and main-
taining focus on the content that undergoes actual
change. We attribute this capability to the benefits
of NAMC'’s pre-training strategy, which mitigates
noisy cross-modal correspondences.

5 Conclusion

In this work, we focus on noise-robust image differ-
ence captioning at both the data and model levels.
At the data level, we aim to leverage LMMs to gen-

erate fine-grained implicit-change descriptions for
similar image pairs. At the model level, we pro-
pose NAMC: a Noise-Aware Modeling and Cap-
tioning model designed to mitigate cross-modal
noisy correspondences introduced by the generated
data. NAMC incorporates three trainable modules:
a Noise Identification and Masking (NIM) module,
a Masked Image Reconstruction (MIR) module,
and a Fine-grained Description Generation (FDG)
module. Experiments on four IDC benchmarks
demonstrate the effectiveness of our NAMC.

6 Limitations

At the data level, we use an LMM to establish a data
foundation for noise identification mechanisms
at the model level, without relying on any pre-
screening (Xu et al., 2025), knowledge injection (Li
et al., 2025) or external noise detection (Jiao et al.,
2024) pipelines. In the future, we will explore in-
corporating noise pre-screening pipelines to curate
large-scale, high-quality data, leading to a accurate
model that could produce coherent captions.
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ployed irresponsibly. These risks include potential
misuse for surveillance, biased performance across
demographic groups, and misinterpretation of vi-
sual content. While our work focuses on academic
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Appendix
A Analyses on NAMC

In this section, we first analyze how our two
proposed modules, the Noise Identification and
Masking (NIM) module (Section 3.2.1) and the
Masked Image Reconstruction (MIR) module (Sec-
tion 3.2.2), function within our proposed NAMC
pre-training. Then we analyze the robustness of
our NAMC.

A.1 NIM Analysis

We present qualitative results that demonstrate how
our NIM module assigns relevance scores between
images and their textual descriptions, conditioned
by (1) without noisy contents, and (2) with noisy
contents.

Without noisy contents. Figure 6 presents two
examples, illustrating how the corresponding rel-
evance scores are allocated. (1) For image: the
regions identified as relevant are primarily those
that exhibit a strong correspondence between the
image areas and the associated text. For instance,
in Figure 6(a), the highlighted regions focus on
the player and the basketball, which are central to
the textual description. In Figure 6(b), the regions
mainly focus on the number and text written in
the sand. (2) For text: when the same word ap-
pears multiple times in a sentence, its relevance
scores vary depending on the context in which it
occurs. The model tends to assign higher rele-
vance to word instances that more directly depict
the content of the image. For example, in the text
of Figure 6(a), when several verbs are present, the
relevance is concentrated on those that are most
descriptive of the visual content. Specifically, the
verb “catch” receives a higher score than “attempt
to” in the first sentence, and “shot” is scored higher
than both “attempt to” and “block”. In the text
of Figure 6(b), the relevance scores are assigned
to the words “number,” than “01” in the first sen-
tence, and to “text” than “happy” in the second
sentence. These examples show the aligned rele-
vance between the image and the corresponding
text provided by our NIM module.

With noisy contents. Figures 7 and 8 further
present three examples. We mainly focus on the rel-
evance score on text. (1) Figure 7(a): The relevance
is primarily focused on the background elements,
such as the wooden surface and the plain white area,
while the noisy word “bee” receives a relatively
low score. (2) Figure 7(b): In the second sentence,
noisy content exists—specifically, the word “ball,”
which does not appear in the image, is assigned a
low relevance score. Additionally, phrases like “im-
pact or just before it” are also considered irrelevant
and receive low scores. (3) Figure 8: The first sen-
tence contains a large amount of noisy content, and
our NIM assigns low relevance scores to most of
its words. Similarly, in the first image, when the de-
scribed object is irrelevant, the relevance scores are
correspondingly distributed over the background.

Overall. Our NIM module effectively mitigates
cross-modal noisy correspondences introduced by
the generated data. However, it inevitably intro-
duces over-masking, where relevant information is
mistakenly masked by the NIM module.

10137



First image Second image

Generation: The difference between two images is that the
first image captures a player in a green and yellow uniform
attempting to catch the basketball, while the second image
shows a player in a blue jersey attempting to block the shot.

(a)player] (in[a]green[and]jyellow] (uniform (attempting] to](catch](the] (basketball]

—
0.0 0.25 0.5 0.75 1.0
Normalized Relevance

First image Second image

Generation: The difference between two images is that the
first image features the number “2017” written in the sand,
while the second image contains the text “happy new year”

written in the sand.

(umber) HROYUEE ([ [the] [sand)
—

0.0 0.25 0.5 0.75 1.0
Normalized Relevance

—
0.0 0.250.50.75 1.0
Normalized Relevance

@ Eeve] ([ EuE

(a) First image pair.

(he] @& [ Rarey] [ew (year) [

m @
——

0.00.250.50.75 1.0
Normalized Relevance

(b) Second image pair.

Figure 6: Relevance scores for two examples, without noisy contents. Relevant image regions are highlighted in

blue, and a color bar indicates textual relevance scores.

A.2 MIR Analysis

To mitigate the risk of over-masking for image, we
introduce the MIR module. By reconstructing miss-
ing image content through a masked image encoder,
the MIR module learns robust feature representa-
tions that preserve critical contextual details de-
spite masked patches. To evaluate MIR’s ability to

recover masked image patches, we conduct a quan-
titative analysis on MIR and its relationship with
the VQGAN image tokenizer (Esser et al., 2021)
that guides MIR process (see Section 3.2.2). Using
a set of 1000 unseen image pairs from Instruct-
Pix2Pix (Brooks et al., 2023), we measure patch
quality and similarity using PSNR (Hore and Ziou,
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First image Second image First image Second image
Generation: The difference between two images is that the Generation: The difference between two images is that the
first image shows a bee on a wooden surface, while the first image features a golfer holding a golf club in a position
second image shows a bee against a plain white background. that suggests he is in the middle of a swing, while the second

image shows a golfer holding a golf club with the head of the
club positioned just behind the ball, indicating the moment of

impact or just before it.

® g
—
0.0 0.250.50.75 1.0 0.0 0.250.50.75 1.0
Normalized Relevance Normalized Relevance
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(a) First image pair. (b) Second image pair.

Figure 7: Relevance scores for two examples, with noisy contents highlighted as the red color.

2010) and SSIM (Hore and Ziou, 2010). Table 9  and a PSNR of 27.74, these metrics are the highest
summarizes these results, presenting comparisons:  in the table, suggesting that our MIR effectively

(1) MIR vs. VQGAN: The first row indicates a generates content highly consistent with the VQ-
strong similarity between the reconstructed patches GAN’s output.

from our MIR module and the patches from the  (2) VQGAN vs. Raw and MIR vs. Raw: The
VQGAN image tokenizer. With an SSIM of 0.805  second and third rows reveal a notable decrease in
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First image Second image

Generation: The difference between two images is that the
first image shows a person jumping, with each frame
capturing the person in mid-air, while the second image
depicts a bald eagle standing on the edge of a body of water,

looking downwards.

(8 erson] [Grmping) ) e e e () erson) W0 0

—
0.0 0.25 0.5 0.75 1.0
Normalized Relevance

(standing] (on]the]edge]of[a[body]of|(water](;] (looking)(down]wards]

L ————
0.0 0.25 0.5 0.75 1.0
Normalized Relevance

Figure 8: Relevance scores for an example, with a lot
of noisy contents.

similarity when comparing either VQGAN patches
(PSNR 25.89, SSIM 0.710) or MIR patches (PSNR
23.35, SSIM 0.616) to the original raw image
patches. This highlights that both VQGAN and
our MIR representation have information loss from
the raw image data.

(3) Overall Relationship: The results demonstrate

Reconstructed Reference

Patch Patch PSNRT SSIMT
MIR patch VQGAN patch 27.74 0.805
VQGAN patch  Raw image patch 25.89 0.710
MIR patch Raw image patch 23.35 0.616

Table 9: Quantitative results on reconstructed patch
quality and similarity of MIR and VQGAN.

that MIR is highly similar to VQGAN (first row),
yet both show reduced similarity to the raw image
(third and second rows). The observed dissimilar-
ity between MIR and the raw image is primarily
attributed to the information loss inherent in the
VQGAN transformation from raw data, which is
reflected in the MIR patches because of MIR’s
strong correspondence with the VQGAN output.

A.3 Robustness Analysis

We present an empirical evaluation of our NAMC
in Table 10, focusing on captioning robustness un-
der various noisy conditions. Specifically, we fine-
tune the pre-trained NAMC on the downstream IER
dataset, which features distribution shifts in both
text and image modalities. For text, we introduce
four levels of word-replacement noise—affecting
20%, 40%, 60%, and 80% of tokens—while for
images we apply two corruption types: Gaussian
noise and Fog. The image corruptions are with
severity level of 5, defined by Hendrycks and Diet-
terich (2019). Our results demonstrate that NAMC
maintains robust performance under these shift dis-
tributions across modalities.

Shift Type NAMC B M C R
Clean w/oNIMand MIR 11.0 164 44.6 442
w/ all 144 183 51.0 452
Replacing 20% Word w/o NIM and MIR 9.7 14.6 35.8 41.2
w/ all 11.7 159 434 43.1
Replacing 40% Word w/o NIMand MIR 8.4 13.7 335 39.7
w/ all 10.7 14.7 39.0 419
Replacing 60% Word w/o NIM and MIR 4.4 9.6 21.0 33.5
w/ all 58 108 23.7 358
Replacing 80% Word w/o NIM and MIR 0.8 3.5 2.1 99
w/ all 09 37 23 102
Gaussian Noise w/oNIMand MIR 10.1 15.2 349 41.6
w/ all 12.1 16.7 43.1 43.6
Fog Weather w/o NIM and MIR 10.3 149 345 40.8
w/ all 11.8 154 422 413

Table 10: Evaluation of NAMC'’s robustness under vari-
ous noise shift types.

B Additional Ablation Studies

We provide the study on (1) architectures, including
the effect of the number of layers our MIR and FDG
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modules; (2) data generation approaches using dif-
ferent prompts for the LMM; and (3) sensitivity
to the order of the first and second image—caption
pairs in NAMC pre-training.

B.1 Effect of Architectures

Figure 9 illustrates the impact of the number of
layers in the MIR and FDG modules. We select the
model with 2 hidden layers for both MIR’s encoder
and FDG’s decoder, as it shows a good balance
between performance and computation.

Varying Encoder Layers Varying Decoder Layers
50 ~U| s0
—&— STD —8— STD
IER IER
45 45
1 2 3 1 2 3

Encoder Layers (Decoder=2)

Figure 9: Effect of the number of layers on the MIR’s
masked image encoder and FDG’s multi-modal decoder.

Decoder Layers (Encoder=2)

B.2 Effect of Data Generation Approaches

We compare our data generation approach, pre-
sented in Section 3.1, with a conventional approach
for change caption generation. This approach
prompts the LMM, Qwen2-VL-7B-Instruct (Wang
et al., 2024), to generate the description without
following any templates, given the prompt:

Given the first and the second images, describe the
change between the two images. What has changed
from the first image to the second?

Table 11 shows their comparison on NAMC
without NIM and MIR on the downstream STD and
IER datasets. It indicates that our change caption
generation further gives quantitative improvements
compared with the conventional caption generation.
When prompting Qwen2-VL-7B-Instruct with the
conventional approach, it tends to generate descrip-
tions as short sentences, which loses some granu-
larity compared to the output of our data generation
approach, as shown in an example in Figure 10.

Spot-the-Diff Image-Editing-Request
Approach Model M C R B M C R
Conventional NAMC without 9.4 12,5 41.7 30.1 113 16.0 423 428
Ours NIMand MIR 9.6 12.0 43,5 31.5 11.0 164 44.6 44.2

Table 11: Effects of different data generation approaches
for our NAMC without NIM and MIR.

B.3 Effect of Image Orders in Pretraining

We have included a sensitivity analysis by ran-
domly (50% probability of swapping the first and

First image

Conventional: The word hunger is no longer there. the keys
are different.

Ours: The difference between two images is that the first
image shows a typewriter with the word "HUNGER" typed
on the paper, while the second image shows a typewriter with
the keys visible and no text on the paper.

Figure 10: An example of the comparison between ours

and conventional data generation approaches.

second) exchange both the order of images and
their corresponding captions during NAMC’s pre-
training stage. As shown in Table 12, we com-
pare NAMC pre-training with and without order
exchange on the downstream IER dataset. The re-
sults indicate that NAMC is not sensitive to the
order of the two input images.

Setting B M C R

With order exchange 14.6 173 50.5 45.5
Without order exchange 14.4 18.3 51.0 452

Table 12: Sensitivity to the order of the first and second
image-caption pairs in NAMC pre-training.

C More Comparisons with LMMs

Table 13 provides a further comparison between
our NAMC and four LMMs that are not fine-
tuned, QWen2-VL-7B-Instruct (2024), LLaVA-
1.5-7B (2024a), MGM-7B (2024), InternVL2-8B-
FT (2024), on STD and IER datasets. It shows that
QWen2-VL-7B-Instruct performs best among these
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four LMMs, evidenced by its superior performance
across most of the metrics. While our NAMC out-
performs state-of-the-art LMMs across all metrics
on STD. On IER, we achieve competitive results to
LLaVA and outperform InternVL2-8B-FT in three
metrics, with superior performance in metric M
compared to all models.

Spot-the-Diff Image-Editing-Request
Model B M C R B M C R
NAMC (Ours) 11.8 134 523 334 144 183 51.0 452
Qwen2-VL-7B-Instruct (2024) 7.5 13.0 47.5 323 194 174 684 455
LLaVA-1.5-7B (2024a) 85 120 383 30.1 15.1 178 60.6 452
MGM-7B (2024) 9.9 120 463 315 165 177 668 4438
InternVL2-8B-FT (2024) 6.6 11.7 265 273 124 141 515 389

Table 13: Comparison of our NAMC with four LMMs
on STD and IER datasets.

D More Details on Data Generation

D.1 Similar Image Pairs

In this work, we collect an image dataset compris-
ing approximately 770K synthetic and real image
pairs. We use the existing dataset provided by In-
structPix2Pix (Brooks et al., 2023) to get 313K
synthetic image pairs. For real image pairs, we
leverage two sources: 8K image pairs are from
the existing Spot-the-Diff dataset (Jhamtani and
Berg-Kirkpatrick, 2018), and 450K image pairs are
collected from the CC3M dataset (Sharma et al.,
2018). Unlike the datasets provided by Brooks
et al. (2023) and Jhamtani and Berg-Kirkpatrick
(2018), directly collecting similar image pairs from
CC3M is not feasible, as the images in this dataset
are not grouped together. In this section, we will
describe the methods used to collect similar image
pairs from the CC3M dataset.

D.1.1 Task Overview

Similar image pairs can be defined as images
that share similar semantic context (not identi-
cal), such as background, objects, textures, events,
and other related elements. Given a set of im-
ages D = {I,...,Iy}, our goal is to construct
a set of similar image pairs S = {(I;, I;)}, where
i,7 € {1,..., N}, and i # j. To assess the simi-
larity between images, we extract features using
off-the-shelf image encoders, CLIP (Radford et al.,
2021) and DINOvV2 (Oquab et al., 2023), and then
compute the similarity between these image fea-
tures to build candidate image sets. Then, we pro-
pose a cluster-based approach to construct the final
set of similar image pairs.

D.1.2 Candidate Set Construction

For each image I; € D, we first extract its CLIP
and DINOvV?2 features as follows:

P = Eeuw(L), PN = Epmvo(L),  3)

where Ecr1p and Epno denote the image encoder of
CLIP and DINOV2, respectively. Next, we compute
the similarity between each image based on its
CLIP and DINOvV?2 features:

s? =sim(f?, f7) (4)

where i,j € {1,..., N}, and € indicates whether
the feature is extracted using CLIP or DINOv2.
With the help of Faiss (Johnson et al., 2019), we
efficiently compute and retrieve the top k£ most sim-
ilar images to I; based on both CLIP and DINOv2
features, resulting in two candidate image sets for
Iil

T s O

CZDINO — {I?INO7 s I’?INO}. (6)

To build the target candidate set from CHP and
CZDINO, we apply thresholds {74z, Tmin} to re-
tain images whose similarity is neither too high
(indicating identical images) nor too low (indi-
cating dissimilar images) within each candidate
set. We also apply another set of thresholds

{TCLIP 7CLIP . DINO TDINO} to ensure that the can-

mazx >’ ‘min > 'mazxr ’ ‘min
didate set falls within an appropriate range by fil-
tering out any sets where the maximum similar-
ity is below 72, ... or minimum similarity is below
Tg“.n. The final candidate image set is constructed
as C; = {I.}, where I, denotes the images that
appear in both CSHP and CP™NO after filtering.

D.1.3 Cluster-based Similar Image Pair
Construction

Directly constructing similar image pairs between
I; and every image in C} is suboptimal due to po-
tential redundancy, as C; may contain numerous
semantically similar images. To mitigate this is-
sue, we propose grouping the images in C; into
categories, where intra-class similarities and inter-
class variations are maximized. Then we construct
image pairs according to each group. Thus, we
introduce a cluster-based approach to generate the
final set of similar image pairs.

For I. € C; U {I;}, we concatenate its CLIP
and DINOV?2 features, as computed in Eq. (3), to
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form a target feature for computing the similarity
in clustering:

fe= g(Ic)a @)
g(I) = concat(a&crLip(I), BEpmno (1)), (8)

where concat(-, -) denotes the concatenation oper-
ation, and « and 3 are hyperparameters used to
weight the two features, as the CLIP feature and
DINOV?2 feature have different scales.

Then we cluster C; into K clusters with the fea-
tures computed in Eq. (7):

{Cin, ..., Cik}. ©)

For each cluster, we select the image most similar
to I; as the target image:

IZk = argmax sim(g(1;), g(L;+)), (10)

I;1€Ci 1

where k € {1,..., K'}.
Finally, we can get the similar image pairs of I;
as follows:

The total set of similar image pairs is then given

by:
U s

’LE{l,,N}

S = 12)

D.1.4 Implementation Details

We use ViT-L-14 as the CLIP image en-
coder and a large backbone size for the
DINOv2 image encoder. The thresholds
{Tmazs Tmin} are set to {0.95,0.78}, and the

thresholds {7CLIP 7CLIP 7DING '7-DINOY e et 1o

min ’ ‘max > 'min
{0.80,0.78,0.80,0.78}. Spectral clustering is em-
ployed to group the candidate images into 3 clusters
(K = 3), utilizing a radial basis function (RBF)
kernel with a bandwidth parameter v = 0.1 to con-
struct the similarity matrix. The hyperparameters

o and f3 are set to 0.4 and 0.6 respectively.

D.2 Difference Descriptions

For image pairs from Spot-the-Diff, Instruct-
Pix2Pix, and CC3M, we prompt LMMs with struc-
tured instructions to generate a single difference
description for each pair. Specifically, for image
pairs from Spot-the-Diff, the structured instruction
is as:

Given the first and the second images, describe the
difference between the two images. First image could
be described as: {caption}. Second image could be
described as: {caption}. Here is the difference: {dif-
ference). Generate the description strictly according
to the template: ‘{template}’.

\. J

Here, “{difference}” is a summarized change de-
scription provided by Spot-the-Diff. For image
pairs from the InstructPix2Pix, the structured in-
struction is as:

e \

Given the first image and a prompt, the second image
is generated based on them. Describe the difference
between the two images. Here is the prompt: {instruc-
tion}. First image could be described as: {caption).
Second image could be described as: {caption]. Gen-
erate the description strictly according to the tem-
plate: ‘{template)}’.

\ 7

Here, “{prompt}” is a summarized instruction
for how to edit the image, provided by the Instruct-
Pix2Pix. For image pairs from the CC3M, the
structured instruction is as:

Given the first and the second images, describe the
difference between the two images. First image could
be described as: {caption}. Second image could be
described as: {caption}. Generate the description
strictly according to the template: ‘{template)}’.

Overall, “{caption}” is a fine-grained paragraph
detailing the image in the three datasets, sourced
from the existing LLava-ReCap dataset (Liu et al.,
2024b). For each image in Spot-the-Diff and In-
structPix2Pix, we use LLava to generate the fine-
grained paragraph. The template is shown as:

The difference between the two images is that the
first image {descriptive verb} [object description],
while the second image {descriptive verb} [object
description].

In the template, “{descriptive verb}” is a place-
holder for a replaceable verb chosen from a prede-
fined list:

( )
{is, describes, depicts, illustrates, , displays, demon-
strates, introduces, has, positions, starts, places, dis-
cusses, promotes, takes, converts, adopts, presents,
reveals, incorporates, aims, refers, offers, focuses,
suggests, attributes, specifies, captures, symbolizes,
advertises, conveys, features, appears, consists, re-
mains, shows, lists, explains, shifts, indicates, pro-
vides, contains, exhibits, labels, sets, looks, states,
showcases, creates, centers).

\ J

During the description generation process, we
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observe cases that the LMM we use, Qwen2-VL-
7B-Instruct (Wang et al., 2024), generates sen-
tences that do not follow our template. During
the description extraction process, we then filter
out with automated paradigm those not follow-
ing the given template, or containing only nega-
tions and auxiliary verbs, such as "something
does/is/was/was not/is not/does not". Overall,
about 0.2% of the descriptions are rejected in total.

D.3 Generated Descriptions Diversity

We show the statistics of repetitions in our gener-
ated descriptions in Table 14. We do not observe
a strong degree of sentence repetition, 3%, in the
770K generated sentences. We find that the SP
dataset, which is generated from downstream STD
dataset—a domain-specific dataset—exhibits a rel-
atively higher repetition in generations compared
to IP and CC.

Dataset Total Unique Repetition Repetition Ratio
P 311,499 297,485 14,014 4.49%
CcC 449,194 440,204 8,990 2.00%
SP 7,004 6,439 565 8.06%

IP+CC+SP 767,697 744,128 23,569 3.07%

Table 14: The statistics of the generated descriptions for
NAMC pre-training.

E Optimization of NIM and MIR

We present more details about the optimization of
our NIM and MIR modules.

E.1 Optimization of NIM

During training, each mini-batch contains two
subsets: (1) B pairs of masked first images and
their corresponding masked component texts, and
(2) B pairs of masked second images and their
masked component texts. To formalize the con-
trastive alignment objective, we illustrate the pro-
cedure using the first subset; the second subset
follows a similar formulation. For the global
representation of any image in the first subset,
eﬂs, a contrastive alignment set is constructed as
{(eglj,eeTf;S),yi,j}]B:l, where y;; = 1 if the im-
age I; is paired with the component text 77}, and
yi; = 0 otherwise. The ground-truth matching

distribution, ¢;, is then defined as:

B
Gig = Yo lyils lyil =Y yiy.  (13)
7=1

While the modeled matching distribution, p;, pa-
rameterized by the similarity scores between image-
text pairs, is defined as:

exp(sim(e%s, 6%8)/7)
D i exp(sim(efl®, e59%)/7)

where sim(-, -) computes the cosine similarity, and
T is a temperature hyperparameter. For the first
subset in a mini-batch, the image-to-text align-
ment loss is defined as: L0 = KL(pi||gi)s
where K L(-||-) denotes the Kullback-Leibler di-
vergence between the modeled distribution p; and
the ground-truth matching distribution ¢;. Simi-
larly, the text-to-image alignment loss, L;2;, is for-
mulated by exchanging the roles of efjf,s and e%’,s
in Eq. (14). The total alignment loss for the first
subset is:

Dij = (14)

L1, = Liot + L2 (15)

In summary, the total alignment loss across the
mini-batch is computed as the sum of such losses
from both subsets as:

Ly = Ly + Ly,
E.2 Optimization of MIR

The MIR’s masked image encoder processes
the masked image XZM and relevant textual in-
formation (e.g., T{”Sk processed by a text en-
coder £7) to produce output features ffz =
Enr (XM Ep(T/™*)) € R™*? For each posi-
tion j € {1,...,ns}, the corresponding feature
vector ﬁj € R%is projected by a fully-connected
layer and then a softmax function. This yields a
probability distribution over a vocabulary of V' dis-
crete image tokens. We denote the predicted prob-
ability of the token at position j being v (where
ved{l,...,V})as:

(16)

p(% = v|Vy), (17)

where Z; is the random variable for the token at
position j.

Let z; = (zi1, 22, - - - , Zin,; ) be the ground-truth
sequence of token indices for the n; target po-
sitions corresponding to image I;, where each
zij € {1,...,V}. The final objective of MIR is
defined by the negative log-likelihood loss (cross
entropy) over the target tokens:

ny

Lyvr = —Eznp E log p(2j = 2i5|Yij)
=1
(18)
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Here, p(2; = z;j|Vi;) is the probability assigned
by the model to the ground-truth token z;; at the
j-th position, given the encoder feature Yl] The
expectation E is typically taken over the training
data distribution D. In practice, we compute this
loss only over the masked positions (i.e. those j for
which My, ; = 1).

F Implementation Details

We describe more details of pre-training our
NAMC, and fine-tuning our model as follows.

Pre-training. We initialize the dual encoder in
the NIM module with CLIP-ViT-B/16 (Radford
et al., 2021). For the MIR module, we employ a
pre-trained ResNet-101 (He et al., 2016) to extract
the grid features of each image, with dimensions
of 14 x 14 and 1024 channels. Following this, the
image features of the two images are reduced to
a dimension of 768 and then fed into the masked
image encoder in the MIR module, which com-
prises two standard Transformer layers (Vaswani
etal., 2017), each with 12 attention heads and a hid-
den dimension of 768. For generating the change
descriptions between the two images, we employ
a multi-modal decoder with two standard Trans-
former layers, each comprising 12 attention heads
and a hidden dimension of 768. Pre-training is
carried out for 20 epochs using the Adam opti-
mizer, with an initial learning rate of 0.0001 and
a minimum learning rate of 0.00001 for the NIM
module. For the MIR and FDG modules, the Adam
optimizer is employed with an initial learning rate
of 0.0003 and a minimum learning rate of 0.0001.
The training is performed with a batch size of 512,
distributed across 8 AMD MI250x GPUs.

Fine-tuning. We fine-tune the MIR and FDG
modules in NAMC model on three benchmark IDC
tasks. The fine-tuning is performed for 40 epochs
on CLEVR-Change and CLEVR-DC, 10 epochs
on Spot-the-Diff, and 20 epochs on Image-Editing-
Request datasets, all with an initial learning rate of
0.0002 and a batch size of 128. During inference,
the model generates sequences with a maximum
length of 23 tokens using greedy search. Both
pre-training and fine-tuning are implemented using
PyTorch, and the results are computed utilizing the
Microsoft COCO evaluation package. The fine-
tuning is performed on 1 AMD MI250x GPU. The
evaluation of model efficiency during inference, as
shown in Table 5, is conducted with one RTX3090

on the IER dataset.
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