
Findings of the Association for Computational Linguistics: EMNLP 2025, pages 8280–8310
November 4-9, 2025 ©2025 Association for Computational Linguistics

LRPLAN: A Multi-Agent Collaboration of Large Language and Reasoning
Models for Planning with Implicit & Explicit Constraints

T Karthikeyan∗1, Om Dehlan∗2, Mausam1,2, Manish Gupta3

1Yardi School of Artificial Intelligence, IIT Delhi
2Department of Computer Science and Engineering, IIT Delhi

3Microsoft, India
tkarthikeyan132@gmail.com, om.dehlan@gmail.com,
mausam@cse.iitd.ac.in, gmanish@microsoft.com

Abstract

Our goal is to build language model based
multi-agent systems for complex planning prob-
lems involving multiple explicit and implicit
constraints, some of which may be common-
sense. Our initial investigations reveal that
large language models (LLMs) are often un-
able to maintain consistency across the plan-
ning process, whereas large reasoning models
(LRMs) struggle with handling implicit com-
monsense constraints. In response, we intro-
duce LRPLAN, a novel domain-independent,
language-based multi-agent architecture where
LLM and LRM-based agents collaborate at
training time to abstract important patterns,
heuristics and insights about the domain. At
test time, they collaborate in implementing
these learned patterns and insights for a new
planning instance. We perform experiments
on two datasets, TravelPlanner and TimeArena-
Static, and use two LLM-LRM combinations
from GPT and DeepSeek families. We find that
LRPLAN outperforms various multi-agent and
single-agent baselines obtaining notably higher
accuracy as well as cost efficiency. We make
the code publicly available.1

1 Introduction

Planning, a cornerstone of artificial intelligence, in-
volves generating a sequence of actions to achieve
a specified goal while adhering to various con-
straints. We study planning problems specified
in natural language, where some constraints may
be explicit, i.e., directly stated in the input, and
others implicit, often requiring commonsense rea-
soning. Our goal is to develop domain-independent
approaches that do not require human intervention
per domain; rather, make use of minimal training
data from that domain to invoke a domain-specific
architecture for handling any new instance from
the same domain.

*Equal Contribution
1https://github.com/dair-iitd/LRPlan

Agentic architectures over modern large lan-
guage models (LLMs), e.g., (Chen et al., 2024b;
Song et al., 2024) have the potential to tackle plan-
ning problems in a generalizable manner. However,
by themselves, LLMs often encounter difficulties
with complex, multi-constraint problems. They
struggle with maintaining constraint consistency
throughout the planning process and often cannot
perform robust planning or self-verification on their
own (Kambhampati et al., 2024). A recent alterna-
tive are the large reasoning models (LRMs), which
are trained to “think” before generating responses
(DeepSeek-AI et al., 2025) and might be more suit-
able for planning. Our initial explorations with
LRMs suggest that while they indeed exhibit better
performance on problems with explicit constraints,
they underperform if the domain has many implicit
commonsense constraints.

We hypothesize that, similar to a human brain,
where specialized skills in right and left hemi-
spheres work together for handling complex stimuli
(Hughes and Rutherford, 2013), agentic AI archi-
tectures will require collaboration between LLMs
and LRMs for solving such complex planning prob-
lems. In response, we design LRPLAN, a domain-
independent, language-based, multi-agent architec-
ture for complex planning that uses both LLMs and
LRMs at both training and test times.

LRPLAN first generates reasoning traces over
training samples in a domain. It then implements
several agents that are tasked with inducing com-
mon patterns, heuristics and an understanding of
mistakes by analyzing these traces. This acquired
domain-specific understanding informs a simple,
streamlined planning process for any new problem
instance, involving just two components: initial
plan generator and refiner. Reasoning trace genera-
tion (train) and refinement of initial plan (test) are
done by LRMs, and all other agents use LLMs.

To study the effectiveness of the architecture,
we use two datasets, TravelPlanner (Xie et al.,

8280

https://github.com/dair-iitd/LRPlan

Plan: [{“days”: 1,… “accom.”:
Beautiful Manhattan 1br…},
{“days”: 2,… “accom.”:
Beautiful Manhattan 1br…},
…]

Query: “Could
you help design
a 3-day trip for

a group of 4
from Las Vegas
to Santa Maria

from March
10th to March

12th, 2022? We
have a budget
of $3,700. We

have a
preference for
American and

Mediterranean
cuisines.”

AutoBuild
(GPT-4o)

MAD (o3-
mini)

LRPlan (GPT-4o
+o3-mini)

Plan: [{“days”: 1,…
“lunch”: Indian By Nature…},
{“days”: 2,…
“lunch”: Indian By Nature…},
…]

Incorrect: Invalid
Accommodation –

“Beautiful …” Does not
obey minimum (3)

nights rule. 

Incorrect: Invalid
Restaurant – “Indian

By Nature” is
repeated, does not

obey diverse
restaurants. 

Pattern Recognizer: “…
cheapest viable

accommodation for the
required nights…

Conservative Meal
Planning…”

Rule Extractor: “…
Accommodation
Selection Rule…

Matches the required
nights … Conservative
Meal Planning Rule…”

Self Corrector: “…
multiple adjustments
to meal planning …

Adjusting meal plans
iteratively to have

diversity … ”

Correct Plan:
[{“days”: 1, …,
“dinner”: Pirates of
Grill …,
“accom.”: Cozy
apartment …}
{“days”: 2, …
“breakfast”: Indian
By Nature …,
“lunch”: The
Drunk…,
“dinner”:
Bintang…,
“accom.”: Cozy
apartment…},
{“days”: 3,…
“breakfast”:
Nashta …}] 

Figure 1: Example from TravelPlanner dataset: Baselines like AutoBuild and Multi-Agent Debate fail to satisfy
commonsense constraints like “minimim nights rule” and “diverse restaurants”. Our proposed method, LRPLAN,
generates an accurate plan satisfying all constraints with the help of synergistic collaboration between planner LLM
and refiner LRM. Fig. 4 shows another example from TimeArena-Static dataset.

Method No Validator
Needed during

inference

Refines Initial
Response

Multi-Agent No Domain-
Specific

Human Effort

Learns from
Training
Samples

LLM-
LRM

Synergy

Standard Prompting ✓ ✗ ✗ ✓ ✗ ✗
CoT (Wei et al., 2022) ✓ ✗ ✗ ✓ ✗ ✗
ReAct (Yao et al., 2022) ✗ ✓ ✗ ✓ ✗ ✗
Reflexion (Shinn et al., 2023) ✗ ✓ ✗ ✓ ✓ ✗
Self-Refine (Madaan et al., 2023) ✓ ✓ ✗ ✓ ✗ ✗
Multi-Agent Debate (Du et al., 2023) ✓ ✓ ✓ ✓ ✗ ✗
AutoAgents (Chen et al., 2024a) ✓ ✓ ✓ ✓ ✗ ✗
SPP (Wang et al., 2024) ✓ ✓ ✓ ✓ ✗ ✗

AutoBuild2 (Wu et al., 2024) ✓ ✓ ✓ ✓ ✗ ✗
AgentVerse (Chen et al., 2024b) ✓ ✓ ✓ ✓ ✗ ✗
LLMFP (Hao et al., 2025b) ✗ ✗ ✓ ✓ ✗ ✗
LLM-Modulo (Kambhampati et al., 2024) ✗ ✓ ✓ ✗ ✗ ✗
PMC (Zhang et al., 2025) ✓ ✓ ✓ ✗ ✗ ✗
ExpeL (Zhao et al., 2024) ✗ ✗ ✗ ✓ ✓ ✗
AutoGuide (Fu et al., 2024) ✗ ✓ ✓ ✓ ✓ ✗

LRPLAN (ours) ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of various existing complex multi-constraint planning methods with LRPLAN. The character-
istics used for comparison are elaborated in Appendix A.6.

2024) and TimeArena (Zhang et al., 2024). Since
TimeArena is originally conceived as an online
planning dataset, we reformulate it into the static
planning setting, where a single final plan is out-
putted instead of repeated planner-simulator inter-
action. We compare LRPLAN with state-of-the-art
multi-agent systems applicable to our setting. We
use standard prompting, chain-of-thought prompt-
ing, AutoGen’s AutoBuild2 (Wu et al., 2024), and
multi-agent debate techniques (Du et al., 2023) as
strong baselines to compare with. Fig. 1 shows

2https://microsoft.github.io/autogen/0.2/blog/
2023/11/26/Agent-AutoBuild/

the supremacy of LRPLAN on an example from
TravelPlanner.

We experiment on two families of models, Ope-
nAI and DeepSeek, that both have at least one LLM
and LRM each. Our results demonstrate that LR-
PLAN outperforms all baselines on each model
family obtaining notable accuracy gains. Our best
result is LRPLAN on TimeArena-Static with GPT-
4o and o3-mini achieving a 12.7 pt accuracy im-
provement over the closest baseline, MAD with o3-
mini. Similarly for TravelPlanner, our best result
is LRPLAN with DeepSeek-V3 and DeepSeek-R1
achieving a 8.89 pt accuracy improvement over the

8281

https://microsoft.github.io/autogen/0.2/blog/2023/11/26/Agent-AutoBuild/
https://microsoft.github.io/autogen/0.2/blog/2023/11/26/Agent-AutoBuild/

closest baseline, AutoBuild with GPT-4o. More-
over, LRPLAN’s cost efficiency is superior to its
nearest competitor model. Additional ablations as-
sess the value of LLM-LRM collaboration versus
using just LLM or LRM.

In summary, our main contributions are as fol-
lows. (1) We study complex multi-constraint plan-
ning problems that contain both explicit and im-
plicit constraints, including commonsense con-
straints. We propose LRPLAN, a multi-agent ar-
chitecture that combines LLMs and LRMs for this
task. (2) We reformulate TimeArena dataset to a
static setting, and introduce evaluation metrics for
this dataset. (3) We perform several experiments
on two domains and two model families to find
that LRPLAN substantially outperforms the state
of the art in both accuracy and overall costs. We
release all code and TimeArena-Static dataset for
reproducibility and fostering further research on
the topic.1

2 Related Work

Planning has long been a central challenge in
AI, traditionally addressed through classical plan-
ners (Ghallab et al., 1998; Höller et al., 2020;
Helmert, 2006) that rely on domain-specific mod-
eling and optimization. While effective in struc-
tured settings, these approaches require significant
manual effort and lack adaptability. Supervised
machine learning and imitation learning techniques
learn from examples of problems and their solu-
tions; but need large-scale domain-dependent train-
ing data. The emergence of LLMs introduced
new paradigms for planning via zero-shot prompt-
ing and chain-of-thought reasoning (Wei et al.,
2022), enabling generalization without domain-
specific training. However, single-agent LLM
frameworks (Yao et al., 2022; Shinn et al., 2023;
Madaan et al., 2023) often struggle with constraint
consistency and implicit reasoning.

Multi-agent systems (MAS) such as Auto-
Build (Wu et al., 2024), AutoAgents (Chen
et al., 2024a), and AgentVerse (Chen et al.,
2024b) improve task decomposition and collab-
oration, but frequently lack mechanisms for learn-
ing from cumulative past experiences. Debate-
based methods (Du et al., 2023; Narsupalli et al.,
2025) enhance reasoning through iterative cri-
tique but are resource-intensive. Role-based
MAS like PMC (Zhang et al., 2025) and LLM-
Modulo (Kambhampati et al., 2024) introduce

structured agent roles, yet require manual domain
adaptation and prompt engineering.

Recent work emphasizes learning from expe-
rience (Zhao et al., 2024; Fu et al., 2024), en-
abling agents to reflect and adapt using past trajec-
tories. However, these are typically LLM-centric
and do not leverage the complementary strengths
of reasoning-focused models.

In contrast, our proposed architecture, LR-
PLAN, introduces a domain-independent, multi-
agent framework that synergistically combines
LLMs and LRMs. LRPLAN learns from reason-
ing traces to induce domain-specific heuristics and
patterns, enabling robust planning with minimal
domain-specific supervision. As opposed to previ-
ous works, in LRPLAN the validator is only being
used on a very small number of training examples
(4-10 per domain). The cost of validating this tiny
set is negligible, a simple Pass/Fail verdict can be
provided by a human expert in minutes or handled
by an LLM-based evaluator if a plan validator does
not exist. Unlike prior systems, LRPLAN handles
both explicit and implicit constraints, including
commonsense reasoning, and generalizes across
domains without re-engineering. Table 1 shows a
comparison between our proposed LRPLAN sys-
tem with other existing complex multi-constraint
planning methods. We discuss more details of re-
lated work in Appendix A.

3 Problem Setting

We wish to design planners that map a natural-
language query q (planning problem instance) to
a plan p using a structured, step-by-step sequence
of actions, p = ⟨s1, s2, . . . , sT ⟩, that satisfies two
types of constraints:

• Explicit (hard) constraints: facts and rules
explicitly mentioned in q; e.g. “arrive before
10 a.m.” or “use public transport only”.

• Implicit commonsense constraints: unstated
yet context-obvious requirements such as tem-
poral feasibility, non-overlapping resources,
or culturally acceptable sequences.

For each domain, as supervision, we are given
a few-shot training set Dtrain = {(qi,Vi)}Ni=1 with
N≤10. Here Vi : pi 7→ {pass, fail} is a black-box
validator that returns a binary correctness verdict
for a candidate plan for each sample in training set.

Given Dtrain, our problem is to design a
language-agent system that, for unseen query qtest,

8282

Figure 2: LRPLAN architecture at train and test time.

produces a plan ptest that passes all implicit and
explicit constraints.

4 The LRPLAN Framework

LRPLAN is a domain-independent planner, i.e., ap-
plies to any domain out-of-the-box. Specifically,
it induces a test-time planner, which is targeted to
a domain, without any human intervention. At a
high level (see Fig. 2), LRPLAN first prompts an
LRM M with each of the N training samples qi to
generate a plan pi along with a reasoning trace ri.
The validator Vi is then queried with the plan pi,
which generates a pass/fail label vi that is added to
the trace. All the labeled reasoning traces are col-
lated and up to C samples per label (pass/fail) are
then input to two meta-agents, Pattern Recognizer,
and Self-Corrector. We call these meta-agents, be-
cause their output is at the domain-level, not at a
query-level.

Pattern Recognizer is an LLM prompted to iden-
tify recurring structures (patterns) useful for solv-
ing problems in the domain. The output patterns
are then provided to yet another meta-agent, Rule
Extractor, whose job is to induce concrete rules
required for a plan to be correct. We find that the
use of two successive steps allows the LLMs to
reflect on the domain better, with patterns denoting
bottom-up first observations, and rules denoting a
higher-level abstraction of these observations. Fi-
nally, the self-corrector meta-agent is tasked with
extracting insights for correcting an incorrect plan.
These patterns, rules and insights are combined to
automatically construct prompts for planner and
refiner agents.

Given a test query qtest, the planner agent drafts
a candidate plan p̂test guided by the domain’s pat-
terns and the rules. The refiner agent identifies
and corrects any problems in p̂test based on the
self-corrector’s insights to generate the output plan
ptest. We now describe these components in detail.

4.1 Training Meta-Agents in LRPLAN

Pattern Recognizer is tasked with studying how
different reasoning traces unfold, finding common
patterns or steps that often lead to the right an-
swers, and spotting where things tend to go wrong.
By breaking down and comparing several exam-
ples, the meta-agent learns what makes for good
decision-making and what causes mistakes. This
helps create clear, general tips or heuristics that
might be useful for solving new problems more
effectively in the future, while also making it eas-
ier to understand and explain how decisions are
made. We list the Pattern Recognizer prompt in
Appendix C.1.
Rule Extractor is tasked with converting the com-
mon patterns found in reasoning traces into a set of
clear, easy-to-follow decision-making rules (heuris-
tics) that can be used to solve similar problems in
the future. The agent abstracts these patterns into
general rules about what actions to take in specific
situations, making planning faster, more consistent,
and easier to understand. Rules help ensure that
good strategies are reused and that decisions are
made efficiently and coherently for a new query.
We list the Rule Extractor prompt in Appendix C.2.
Self-Corrector: Sometimes, an LRM’s reasoning
trace shows that the model goes back, reflects, and
changes its answer. These self-corrections can hap-
pen when the model notices a logical mistake, a
wrong assumption, or a calculation error, and then
tries a new approach or checks its work. Self-
Corrector analyzes reasoning traces to learn how
the LRM fixed its own mistakes, and based on this,
identifies the typical types of errors that are being
corrected and strategies for correction. These are
output as a set of insights that form the basis of the
refiner’s prompt. We list the Self-Corrector prompt
in Appendix C.3.

As an example, the pattern recognizer may find a
pattern that “Plans that mix self-driving with other
modes of transport (e.g., flights, trains, buses) often
result in inconsistencies or failures.” Rule extractor
will convert it to this rule: “Avoid mixing self-
driving with other transport modes in a single plan.
Choose one consistent mode of transport through-
out the itinerary.” Finally, the corresponding in-
sight could be “When a plan includes self-driving,
replace all other transport modes with self-driving
to maintain consistency and avoid conflicts.” The
output patterns, rules and insights generated by
these meta-agents are listed in Appendix D.

8283

4.2 Test-Time Agents in LRPLAN

The prompts for Planner and Refiner are automat-
ically constructed based on the meta-agents’ out-
puts, i.e., extracted patterns and rules, and insights,
respectively. Planner and refiner are agents (and
not meta-agents) as they operate on each test query
separately.
Planner takes the input query and, using the pat-
terns and rules, constructs a step-by-step plan that
is meant to achieve the desired goal, while satisfy-
ing all relevant constraints. The planner interprets
the task requirements, applies proven reasoning
strategies and heuristics, and organizes the solution
into logical, actionable steps. By integrating heuris-
tics from previous reasoning and decision-making
patterns and rules, the planner tries to ensure that
the resulting plan is tailored to the specific needs
of the task, and likely avoids common mistakes.
LRPLAN uses an LLM for this agent.
Refiner critically evaluates and enhances the initial
plan produced by the Planner Agent, using both
the original input query and self-correction insights
provided by the Self-Corrector. The Refiner Agent
carefully reviews each step of the plan, checks for
potential errors, inefficiencies, and overlooked con-
straints, and applies relevant self-correction strate-
gies to improve the plan’s feasibility and correct-
ness. This agent is implemented with an LRM.

In summary, LRPLAN uses LLMs and LRMs
in both training and testing phases to benefit from
their complementary strengths in planning. LRMs
are used in reasoning trace generation and plan
improvement, where more emphasis is on explicit
reasoning and validation. Other components use
LLMs as they need a stronger inherent creativity in
the models to create generalizations/abstractions,
and propose a candidate plan. As an informal anal-
ogy to human brain, LRPLAN gets the intuition
and creativity (right brain, LLMs) to coordinate
with analytical thinking (left brain, LRMs) for com-
plex planning tasks. A detailed, step-by-step walk-
through of the LRPLAN with concrete examples
for each component is provided in Appendix B.

5 Datasets

We conduct experiments on two challenging bench-
marks: TravelPlanner and a static version of
TimeArena, both requiring long-horizon planning
under explicit and implicit constraints. We now
describe the two datasets and evaluation metrics
used in each.

5.1 TravelPlanner
TravelPlanner presents a complex real-world plan-
ning environment with ∼4M database entries of
Restaurants, Flights, Accommodations and Attrac-
tions, sourced from the internet. Agents must gen-
erate detailed itineraries covering transportation,
accommodations, dining, and attractions while ad-
hering to both explicit constraints (e.g., budget lim-
its) and implicit commonsense constraints (e.g.,
avoiding repetitive visits, returning the car to origin,
instead of leaving it in the middle of the journey).

The dataset consists of 1,225 curated plan-
ning intents, with a train/validation/test split of
45/180/1000. We use the first N = 10 samples
from the training set of 45 to extract initial rea-
soning traces and set C = 5 for insight extraction
sample selection. The evaluation is conducted on
the validation set of 180 queries.3 Queries are cate-
gorized into Easy, Medium, and Hard levels based
on the number and complexity of constraints.

Evaluation Metrics: Following the original
work on TravelPlanner (Xie et al., 2024), we eval-
uate AI-generated plans across multiple dimen-
sions: delivery rate (fraction of queries where
the agent delivers a feasible final plan), common-
sense constraint pass rate (fraction of common-
sense constraints satisfied, evaluated both using
micro and macro scores), hard constraint pass rate
(same value for explicit user constraints), and final
pass rate (proportion of plans satisfying all con-
straints in the query). Micro pass rate measures
per-constraint success, while macro pass rate mea-
sures per-plan success.

We note that, since TravelPlanner has been intro-
duced, several works have used the dataset for their
experiments, but in vastly different settings. Some
settings use external (non-LLM) tools along with
LLMs (Hao et al., 2025a; Gundawar et al., 2024;
Zhang et al., 2025), some have human experts write
domain-specific prompts just to solve the specific
dataset (Lee et al., 2025), and yet others make the
implicit commonsense constraints explicit in the
prompt (Chen et al., 2024c). These different set-
tings naturally yield vastly different pass rates, and
are not directly comparable with each other. We
experiment in the setting of domain-independent
planning, i.e., that no human expert writes any spe-
cific prompt for the domain. Moreover, none of
compared systems get access to any external tools.

3Since test set is large, many other papers also report re-
sults on validation set to save on LLM/LRM costs.

8284

5.2 TimeArena-Static

TimeArena is a textual simulation evaluating mul-
titasking capabilities under temporal constraints.
Agents must complete multiple tasks, manage
sub-task dependencies, and minimize idle times.
The dataset contains 90 samples across household,
cooking, and laboratory domains. Each domain
contains samples requiring achievement of 1, 2, or
3 goals (tasks). While the original dataset is de-
veloped in an online setting with planner-simulator
interactions, to enable use for our scenario, we re-
formulate it to directly provide all valid actions
and their durations at the start. This makes the
benchmark focused purely on planning, instead of
reacting to unexpected observations. The train/-
validation split is 27/63 queries, and maintains di-
versity across domains and difficulty levels. We
again use N = 10 samples from the training set of
27 to generate reasoning traces. TimeArena-Static
reasoning traces turned out to be longer than that
of Travelplanner. Hence, we set a smaller C = 2
for sample selection (to ensure that these samples
can fit within the context window of meta agents.
This leaves a few samples from even the smaller
N = 10 sample set unused) and evaluate on the
validation set.

Evaluation Metrics: We assess performance on
TimeArena-Static using several evaluation met-
rics like full completion rate (FCR) (proportion
of queries where all tasks are completed in the
plan) and task completion rate (TCR) (fraction
of tasks correctly completed aggregated over the
whole dataset). Average progress (AP) is computed
as average of percentage of task completed success-
fully weighted in terms of duration of successfully
completed subtasks. Here t is a subtask of task
s. The progress score denotes the percentage of a
task completed, measured in terms of total duration
of successfully completed subtasks. Other similar
metrics include average completion time (ACT) (av-
erage time taken for completing tasks successfully)
and progress speed (PS) (sum of highest progress
scores achieved by each task, divided by the sum of
time taken to achieve them). Other metrics include
Idle violation rate (total number of times an ac-
tion was initiated but was invalid, because another
non-idle task was underway) and Dependency vi-
olation rate (total number of times an action was
initiated but was invalid, because its prerequisite
sub-task(s) was (were) not completed). Lower is
better for violation rates and ACT, whereas higher

is better for other metrics. Details of each metric
are in Appendix E.

6 Experimental Setup

Through our experiments, we seek answers to the
following research questions. (1) How does LR-
PLAN compare with other domain-independent ar-
chitectures for planning with multiple constraints?
(2) What is the incremental value of using an LLM-
LRM combination compared to just using an LLM
or an LRM? (3) How valuable is each meta-agent
in the LRPLAN architecture? (4) What is the nature
of errors made by LRPLAN?

Experimental Details. We use LLMs and LRMs
from two model families (one proprietary and one
open source). We use a combination of GPT-4o
and o3-mini as LLM and LRM, respectively. In an-
other setting, we use DeepSeek-V3 with DeepSeek-
R1. We run the models using autogen library for
inference, employing caching and setting temper-
ature to 0.01 for reproducibility. We always use
DeepSeek-R1 as the LRM to generate reasoning
traces. This is because as of May 2025, o3-mini is
a proprietary model which does not offer detailed
reasoning traces via its API.

Baselines. For fair comparison in domain-
independent planning, we wish to identify base-
lines that represent state-of-the-art multi-agent
frameworks that minimize human intervention
in agent configuration and prompt engineering.
Hence, we select AutoBuild2 (Wu et al., 2024)
,generalized multi-agent debate (MAD) (Du et al.,
2023), and ExpeL (Zhao et al., 2024) as our base-
lines. AutoBuild dynamically provisions a team
of agents and orchestrates a group chat based on
the input task description and query to derive a
final response. The Multi-agent debate involves
iterative group interaction, typically among homo-
geneous agents over multiple rounds, to converge
on a solution. ExpeL extracts insights from Reflex-
ion (Shinn et al., 2023) traces generated on training
samples and infers using these insights via a ReAct
(Yao et al., 2022) framework.

These approaches are suitable, as they automate
key aspects of agent creation and interaction logic.
This contrasts with alternative multi-agent methods
that require significant manual effort in defining
agent roles or crafting specific prompts for each
agent in a domain. We also compare against a
vanilla single-agent baseline that queries an LLM

8285

Strategy Model Commonsense ↑ Hard Constraints ↑ Final Cost($) ↓ #API Calls ↓
Micro Macro Micro Macro Pass Rate ↑

Direct GPT-4o 84.93 29.44 41.67 22.22 3.89 7.10 1
Direct o3-mini 78.82 17.22 54.29 41.11 8.33 5.99 1
CoT GPT-4o 85.28 31.67 45.71 25.00 7.78 7.36 1
AutoBuild GPT-4o 86.81 35.56 60.24 36.67 12.78 33.02 5
AutoBuild o3-mini 78.96 13.33 72.62 54.44 5.56 23.23 5
MAD GPT-4o 79.44 7.78 10.00 6.67 2.78 44.06 6
MAD o3-mini 77.01 7.78 56.67 40.56 3.33 37.06 6
ExpeL GPT-4o 51.60 29.44 30.95 18.33 10.00 13.00 3
ExpeL o3-mini 34.58 13.88 33.57 24.44 8.88 10.86 3
LRPLAN (ours) GPT-4o + o3-mini 88.61 37.22 71.19 45.56 17.78 12.41 2

Direct DeepSeek-V3 80.83 19.44 44.76 23.33 4.44 0.55 1
Direct DeepSeek-R1 77.36 16.11 60.24 45.56 11.11 1.97 1
CoT DeepSeek-V3 71.60 9.44 16.19 10.56 2.22 0.58 1
AutoBuild DeepSeek-V3 83.06 21.11 46.43 26.11 5.00 2.03 5
AutoBuild DeepSeek-R1 81.32 18.89 52.62 50.56 11.67 17.92 5
MAD DeepSeek-V3 77.01 14.44 25.24 15.00 6.11 5.57 6
MAD DeepSeek-R1 75.97 8.33 10.71 11.11 6.11 16.18 6
ExpeL DeepSeek-V3 27.29 13.33 18.33 9.44 4.44 0.64 3
LRPLAN (ours) DeepSeek V3 + DeepSeek R1 85.90 30.00 72.14 60.56 21.67 3.30 2

Table 2: Performance comparison of different models and methods for the TravelPlanner dataset.4

Strategy Model Violations ↓ Progress Completion Rate ↑ Cost($) ↓ #API Calls ↓
#Idle Viol. #Dep. Viol. CT ↓ Prog. speed ↑ Avg Prog. ↑ Task CR Full CR

Direct GPT-4o 50 76 26.47 2.40 69.63 37.30 23.81 0.30 1
Direct o3-mini 3 43 28.00 2.79 88.30 61.90 55.56 1.70 1
CoT GPT-4o 95 78 25.60 2.72 56.81 19.84 9.52 0.45 1
AutoBuild GPT-4o 70 71 27.62 2.80 68.07 31.71 22.22 4.17 5
AutoBuild o3-mini 0 49 27.96 2.62 88.75 59.20 52.38 8.73 5
MAD GPT-4o 46 73 27.74 2.71 71.23 36.51 20.63 3.17 6
MAD o3-mini 0 41 28.30 2.90 92.53 68.25 61.90 11.07 6
ExpeL GPT-4o 77 82 29.42 2.36 63.68 26.19 14.28 3.04 3
ExpeL o3-mini 0 25 31.48 2.84 95.52 80.95 73.01 2.97 3
LRPLAN (ours) GPT-4o + o3-mini 1 17 31.94 3.01 94.64 83.33 74.60 2.41 2

Direct DeepSeek-V3 109 95 25.80 2.47 51.89 15.87 14.29 0.04 1
Direct DeepSeek-R1 31 44 28.02 2.91 75.70 43.75 25.40 1.06 1
CoT DeepSeek-V3 80 76 29.55 2.75 60.99 31.75 17.46 0.05 1
AutoBuild DeepSeek-V3 109 74 29.76 2.62 61.12 29.37 25.40 0.58 5
AutoBuild DeepSeek-R1 51 51 27.66 3.15 79.39 48.41 34.92 6.45 5
MAD DeepSeek-V3 107 92 23.63 2.77 47.94 15.08 15.87 0.34 6
MAD DeepSeek-R1 37 55 26.24 3.32 75.77 41.07 25.40 8.12 6
ExpeL DeepSeek-V3 43 58 27.70 2.84 76.17 50.00 31.75 0.25 3
LRPLAN (ours) DeepSeek V3 + DeepSeek R1 33 39 27.84 3.14 89.95 68.25 53.97 0.96 2

Table 3: Performance comparison of different models and methods for the TimeArena-Static dataset.4

or an LRM directly (with or without chain of
thought).

7 Results

7.1 Main results

Tables 2 and 3 present a comparison between per-
formances of direct prompting, chain of thought,
and other MAS methods across two different fam-
Planner Refiner Commonsense ↑ Hard Constraints ↑ Final

Micro Macro Micro Macro Pass Rate ↑

GPT-4o GPT-4o 89.93 43.89 63.81 35.56 15.56
o3-mini o3-mini 80.97 20.00 74.52 57.78 11.11
o3-mini GPT-4o 81.46 20.56 70.71 53.33 10.00
GPT-4o o3-mini 88.61 37.22 71.19 45.56 17.78

DeepSeek-V3 DeepSeek-V3 85.90 31.11 72.86 57.78 16.67
DeepSeek-R1 DeepSeek-R1 83.61 21.11 75.95 66.11 16.11
DeepSeek-R1 DeepSeek-V3 83.19 19.44 74.29 63.33 14.44
DeepSeek-V3 DeepSeek-R1 85.90 30.00 72.14 60.56 21.67

Table 4: Different LLM/LRM combinations for Plan-
ner/Refiner for TravelPlanner

ily of models, OpenAI GPT-4o and o3-mini, and
DeepSeek V3 and R1. The results show that LR-
PLAN can generalize across various domains and
backbone language models with limited training on
a domain and give considerable accuracy gains at a
much lower inference cost. Additionally from the
detailed performance of other methods, we can in-
fer that LLMs, GPT-4o and DeepSeek-V3, have
better scores on commonsense constraints than
their LRM counterparts, o3-mini and DeepSeek-
R1, when using the same methods. Equivalently,
the LRMs show better performance on hard con-
straints than the LLMs.4

4Results are not available for ExpeL on DeepSeek-R1 due
to incompatibility of the ExpeL system with the DeepSeek-
R1 API, which does not allow consecutive calls with the role
’system’ or ’assistant’ but is used in the ExpeL system.

8286

Planner Refiner Violations ↓ Progress Completion Rate ↑
#Idle Viol. #Dep. Viol. CT ↓ Prog. speed ↑ Avg Prog. ↑ Task CR Full CR

GPT-4o GPT-4o 34 49 30.31 2.65 83.15 53.17 41.27
o3-mini o3-mini 1 23 31.47 2.90 93.69 80.16 74.60
o3-mini GPT-4o 18 27 31.91 2.73 91.00 73.02 65.08
GPT-4o o3-mini 1 17 31.94 3.01 94.64 83.33 74.60

DeepSeek-V3 DeepSeek-V3 44 44 31.16 2.91 85.11 64.29 50.79
DeepSeek-R1 DeepSeek-R1 35 46 28.68 3.07 86.38 62.70 46.03
DeepSeek-R1 DeepSeek-V3 39 50 31.03 2.90 81.85 57.14 39.68
DeepSeek-V3 DeepSeek-R1 33 39 27.84 3.14 89.95 68.25 53.97

Table 5: Different LLM/LRM combinations for Planner/Refiner for TimeArena-Static

7.2 Benefit of LLM-LRM synergy

Tables 4 and 5 show that during inference of LR-
PLAN, keeping planner agent as LLM and refiner
agent as LRM, in that order, gives the best perfor-
mance. Table 4 shows that keeping both agents as
LLMs gives best commonsense scores, while keep-
ing both agents as LRMs gives best hard constraints
score. It shows that best results are achieved using
the strengths of both types of models. Even us-
ing an LRM planner and an LLM refiner results in
worse performance, showcasing poor consistency
enforcement of LLMs as refiners. In the best sce-
nario, the LLM first creates a plan which enforces
commonsense and then the LRM refines the plan,
enforcing consistency with the hard constraints. Ta-
ble 6 also reaffirms this observation as comparing
with and without refiner agent in LRPLAN, we can
see that refiner introduced some commonsense er-
rors but gives a larger boost in hard constraints,
overall giving best results.

While it is true that many LRMs are initialized
from LLM checkpoints, the training objectives and
data distributions diverge significantly. LRMs are
typically fine-tuned with a strong emphasis on ex-
plicit reasoning traces, multi-step logical deduction,
and verifiability. This may come at the cost of the
flexibility, creativity, and contextual fluency that
LLMs exhibit: traits that are crucial for satisfying
soft constraints such as diversity, user preferences,
or commonsense expectations. In our experiments,
we observed that: 1) LLMs tend to generate plans
that are more natural, diverse, and aligned with hu-
man preferences, but often violate hard constraints
(e.g., accommodation rules, budget limits) and 2)
LRMs, in contrast, produce plans that are more
logically consistent and rule-abiding, but some-
times lack the nuance or adaptability needed to
satisfy softer, implicit constraints. This divergence
is a reflection of specialization: LRMs are opti-
mized for structured reasoning, while LLMs retain
broader linguistic and commonsense priors. Our
architecture leverages this complementarity by as-

signing creative abstraction and pattern recognition
to LLMs and analytical validation and refinement
to LRMs. A similar yet different observation, that
LLMs perform better than LRMs on simpler, low-
compositional problems, is made by another recent
work, Illusion of Thinking (Shojaee* et al., 2025).

7.3 Ablation Study for LRPLAN

From Tables 6 and 7 we can see that all meta-
agents contribute to the final accuracy, although
incrementally in some cases. Pattern Recognizer
identifies patterns in the reasoning traces during
training which can guide the Planner in its process
to formulate a plan during test time. The Rule Ex-
tractor creates actionable rules from these patterns
during training time, which the Planner follows to
ensure correctness of a generated plan. The Self-
Corrector identifies and collates possible mistakes
and possible refinement paths/insights during train-
ing guiding the refinement of plan by the Refiner
during test time. Combined with very good cost
and time efficiency of training, we can conclude
that it is a good idea to keep all the meta-agents
for best performance. Similarly, even the removal
of Refiner causes siginificant effect on the metrics,
denoting its importance in LRPLAN.

7.4 Error Analysis

We conducted a detailed error analysis of LRPLAN

across both the TravelPlanner and TimeArena-
Commonsense ↑ Hard Constraints ↑ Final

Micro Macro Micro Macro Pass Rate ↑

GPT-4o + o3-mini
Full LRPLAN 88.61 37.22 71.19 45.56 17.78
w/o pattern recognizer 88.33 38.89 68.57 45.56 17.78
w/o rule extractor 88.06 37.78 69.05 43.33 16.11
w/o self corrector 89.10 40.00 69.29 43.33 17.22
w/o refiner 90.35 45.56 65.71 36.67 15.56

DeepSeek-V3 + DeepSeek-R1
Full LRPLAN 85.90 30.00 72.14 60.56 21.67
w/o pattern recognizer 85.07 27.78 74.05 65.56 18.89
w/o rule extractor 86.25 31.67 73.10 60.00 21.11
w/o self corrector 86.25 31.11 75.48 60.56 18.33
w/o refiner 85.56 30.56 72.14 57.78 16.67

Table 6: Ablation Study for TravelPlanner

8287

Violations ↓ Progress Completion Rate ↑
#Idle
Viol.

#Dep.
Viol.

CT ↓ Prog.
speed ↑

Avg
Prog. ↑

Task CR Full CR

GPT-4o + o3-mini
Full LRPLAN 1 17 31.94 3.01 94.64 83.33 74.60
w/o PR 2 61 25.52 2.95 82.96 47.62 36.51
w/o RE 1 37 27.13 2.98 90.38 68.25 60.32
w/o SC 5 28 31.54 2.84 91.28 75.40 66.67
w/o refiner 31 44 30.07 2.70 83.90 57.14 41.27

DeepSeek-V3 + DeepSeek-R1
Full LRPLAN 33 39 27.84 3.14 89.95 68.25 53.97
w/o PR 41 39 28.00 3.18 88.93 69.84 49.21
w/o RE 29 40 28.77 3.22 89.87 65.85 49.21
w/o SC 39 44 28.06 3.13 87.85 63.49 47.62
w/o refiner 30 41 30.08 2.96 87.71 66.67 57.14

Table 7: Ablation Study for TimeArena-Static
(PR=pattern recognizer, RE=rule extractor, SC=self cor-
rector)

Static domains (see Tables 8 and 9 in Appendix F).
In the TravelPlanner domain, the most frequent
error involved violations of the “minimum nights
stay” constraint, where the generated plans did not
always ensure that each accommodation met the re-
quired minimum stay. Additionally, LRPLAN occa-
sionally failed to enforce commonsense constraints
regarding transportation modes, sometimes includ-
ing both self-driving and flight segments within a
single itinerary which is an impractical scenario
since a self-driven vehicle cannot be abandoned
mid-trip. The system also exhibited difficulties in
consistently honoring traveler cuisine preferences,
particularly when balancing these preferences with
budget constraints. Table 11 shows evaluation
across difficulty levels for TravelPlanner.

Both variants of LRPLAN (GPT-4o + o3-mini
and DeepSeek-V3 + DeepSeek-R1) demonstrate
balanced performance across commonsense and
hard constraints, as shown in Fig. 3. This sug-
gests that the multi-agent collaboration and LLM-
LRM synergy effectively generalize across con-
straint types, unlike other strategies that tend to
skew toward one.

For the TimeArena-Static domain, our analysis
revealed that while LRPLAN achieves strong re-
sults in the Cooking subdomain and performs rea-
sonably well in Laboratory tasks, its efficiency in
the Household subdomain remains comparable to
baseline methods and is suboptimal. Also, there is
room for improvement in reducing the average time
required for successful task completion. Despite
being a widely used prompting strategy, Chain of
Thought performs poorly, especially in FCR (e.g.,
<14% across domains). This highlights that reason-
ing traces alone are insufficient without structured
correction mechanisms like those in LRPLAN. Ta-

ble 10 shows evaluation across difficulty levels for
TimeArena. LRPLAN maintains high TCR and
FCR across Easy, Medium, and Hard tasks, unlike
other strategies that show steep performance drops
as difficulty increases.

Finally, we provide analysis of how does the it-
erative process of baselines (AutoBuild and Multi-
Agent Debate) perform in Appendices G and H
respectively. We perform this analysis across dif-
ferent constraints and metrics, and LLMs.

8 Conclusion

We explored the capabilities of language models
in solving complex multi-constraint planning prob-
lems, introducing a novel multi-agent architecture
LRPLAN, which trains over a domain using very
few training instances and creates a streamlined,
simple and cost-efficient inference planning pro-
cess for new instances of the domain. We reformu-
late TimeArena (Zhang et al., 2024) to a static set-
ting for efficient and easier inference and explore
the planning domains TravelPlanner (Xie et al.,
2024) and TimeArena-Static using various meth-
ods, standard prompting, CoT, MAD (Du et al.,
2023), and AutoBuild (Wu et al., 2024), with both
LLMs and LRMs. We found that LLMs show poor
results in adhering to explicit constraints while
showing better results in implicit ones. On the
other hand, LRMs show poor results for implicit
constraints, being good at explicit constraints. We
show that the complementary nature of LLMs and
LRMs can be leveraged in a synergistic system to
produce best results.

9 Future Work

There are several promising avenues to extend this
work. We plan to broaden LRPLAN from static
to online planning, where the planner interacts it-
eratively with an environment and adapts to new
observations, enabling more realistic and uncer-
tain scenarios. Another direction is exploring LR-
PLAN’s integration with formal solvers and exter-
nal tools (Mittal et al., 2024), combining the flex-
ibility of language-based reasoning with the rigor
of symbolic verification. We also aim to study se-
lective incorporation of meta-agent insights, where
voting or consensus mechanisms admit only high-
confidence rules and corrections, reducing noise
and improving reliability. These extensions can
further enhance LRPLAN’s robustness and applica-
bility across diverse planning domains.

8288

Acknowledgements

The work is supported by an IBM AI Horizons
Network grant, and grants from Verisk, Huawei,
Google, and Microsoft. We would also like to
thank the IIT-D HPC facility for its computational
resources. We are grateful to Microsoft Acceler-
ate Foundation Models Research (AFMR) program
that provided us access to OpenAI models. We
thank Yardi School of AI publication grant for
travel funds. Om Dehlan also acknowledges the
supportive and friendly working environment at
DAIR Lab at IIT Delhi that encouraged him to pur-
sue serious research as an undergraduate student.

Limitations

This work has been performed on English data only.
Given that state of the art LLMs and LRMs can
handle other popular languages nicely as well, we
believe that the proposed system, LRPLAN, should
be effective on multi-lingual tasks as well but that
needs to rigorously tested.

We worked with tasks across few domains like
travel (TravelPlanner) and household, cooking, and
laboratory (TimeArena-Static). The effectiveness
of LRPLAN needs to be further explored for other
domains. While LRPLAN is domain-independent
in principle, its performance may degrade in do-
mains with highly diverse or ambiguous implicit
constraints, especially if the training data is sparse
or unrepresentative.

LRPLAN is currently limited to static planning
scenarios. Static (or classical) planning serves as a
foundational setting commonly explored as a first
step when studying a planning scenario, before fur-
ther extensions to more complex scenarios are con-
sidered. As part of future work, we plan to extend
our approach to more realistic settings, including
probabilistic planning, multi-objective planning,
and dynamic adaptation.

Deeper LRM–LLM dynamics, as to why LRMs
become worse at commonsense after reasoning
training, are out of scope; we leverage their cur-
rent complementary strengths. This is a rich area
for future work and plan to explore whether joint
training or hybrid objectives can better unify these
capabilities.

The effectiveness of LRPLAN hinges on the qual-
ity and diversity of reasoning traces generated dur-
ing training. If the traces are noisy, incomplete, or
biased, the downstream pattern and rule extraction
may be suboptimal.

The architecture assumes that LLMs and LRMs
can collaborate effectively. However, differences
in their internal representations or reasoning styles
might lead to inconsistencies or inefficiencies in
coordination.

Although LRPLAN is more cost-efficient than
some baselines, the multi-agent architecture still in-
volves multiple model invocations (planner, refiner,
meta-agents), which could introduce latency and
computational overhead in real-time applications.

Ethics Statement

The system may generate incorrect plans with hal-
lucinations. Users may over-trust the system’s out-
puts, assuming that the plans are optimal or error-
free, even when implicit constraints are misunder-
stood or missed. Hence, we expect all deployments
of this system to build post-processing verifiers (au-
tomated or human) to ensure correctness of these
plans before exposing them to real users.

The LLMs and LRMs used in LRPLAN may in-
herit biases from their training data, which could
lead to unfair or discriminatory plans. A travel plan
might consistently recommend more expensive
or Western-centric destinations, ignoring budget-
friendly or culturally diverse options.

The datasets employed in our study are dis-
tributed under the following licenses:

• TravelPlanner: MIT License

• TimeArena: Publicly available without any
specific license

The models have been utilized in our experiments
as APIs as per their terms of intended use.

Both of our datasets have been cleaned for per-
sonally identifiable information at source itself.

References
Blai Bonet and Héctor Geffner. 2001. Planning as

heuristic search. Artif. Intell., 129(1–2):5–33.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang,
Jaward Sesay, Börje Karlsson, Jie Fu, and Yemin
Shi. 2024a. Autoagents: a framework for automatic
agent generation. In Proceedings of the Thirty-Third
International Joint Conference on Artificial Intelli-
gence, pages 22–30.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang,
Chenfei Yuan, Chi-Min Chan, Heyang Yu, Yaxi Lu,
Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong,
Ruobing Xie, Zhiyuan Liu, Maosong Sun, and Jie
Zhou. 2024b. Agentverse: Facilitating multi-agent

8289

https://doi.org/10.1016/S0004-3702(01)00108-4
https://doi.org/10.1016/S0004-3702(01)00108-4
https://openreview.net/forum?id=EHg5GDnyq1

collaboration and exploring emergent behaviors. In
The Twelfth International Conference on Learning
Representations.

Yanan Chen, Ali Pesaranghader, Tanmana Sadhu, and
Dong Hoon Yi. 2024c. Can we rely on llm agents to
draft long-horizon plans? let’s take travelplanner as
an example. ArXiv, abs/2408.06318.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Jun-Mei Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiaoling Bi, Xiaokang
Zhang, Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou,
Zhihong Shao, Zhuoshu Li, Ziyi Gao, and 179 oth-
ers. 2025. Deepseek-r1: Incentivizing reasoning ca-
pability in llms via reinforcement learning. ArXiv,
abs/2501.12948.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Yao Fu, Dong-Ki Kim, Jaekyeom Kim, Sungryull Sohn,
Lajanugen Logeswaran, Kyunghoon Bae, and Ho-
Sun Lee. 2024. Autoguide: Automated generation
and selection of context-aware guidelines for large
language model agents. In Neural Information Pro-
cessing Systems.

M. Ghallab, A. Howe, C. Knoblock, D. Mcdermott,
A. Ram, M. Veloso, D. Weld, and D. Wilkins. 1998.
PDDL—The Planning Domain Definition Language.

Atharva Gundawar, Mudit Verma, L. Guan, Karthik
Valmeekam, Siddhant Bhambri, and Subbarao Kamb-
hampati. 2024. Robust planning with llm-modulo
framework: Case study in travel planning. ArXiv,
abs/2405.20625.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu
Fan. 2025a. Large language models can solve real-
world planning rigorously with formal verification
tools. In Proceedings of the 2025 Conference of the
Nations of the Americas Chapter of the Association
for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), pages 3434–
3483, Albuquerque, New Mexico. Association for
Computational Linguistics.

Yilun Hao, Yang Zhang, and Chuchu Fan. 2025b. Plan-
ning anything with rigor: General-purpose zero-shot
planning with LLM-based formalized programming.
In The Thirteenth International Conference on Learn-
ing Representations.

Malte Helmert. 2006. The fast downward planning
system. ArXiv, abs/1109.6051.

Daniel Höller, Gregor Behnke, Pascal Bercher, Susanne
Biundo, Humbert Fiorino, Damien Pellier, and Ron
Alford. 2020. Hddl: An extension to pddl for express-
ing hierarchical planning problems. In Proceedings
of the AAAI conference on artificial intelligence, vol-
ume 34, pages 9883–9891.

Andrew J Hughes and Barbara J Rutherford. 2013.
Hemispheric interaction, task complexity, and emo-
tional valence: Evidence from naturalistic images.
Brain and cognition, 81(2):167–175.

Subbarao Kambhampati, Karthik Valmeekam, Lin
Guan, Mudit Verma, Kaya Stechly, Siddhant Bham-
bri, Lucas Paul Saldyt, and Anil B Murthy. 2024.
Position: Llms can’t plan, but can help planning in
llm-modulo frameworks. In Forty-first International
Conference on Machine Learning.

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, David
Marwood, Shumeet Baluja, Dale Schuurmans, and
Xinyun Chen. 2025. Evolving deeper llm thinking.
ArXiv, abs/2501.09891.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
Sean Welleck, Bodhisattwa Prasad Majumder,
Shashank Gupta, Amir Yazdanbakhsh, and Peter
Clark. 2023. Self-refine: Iterative refinement with
self-feedback. ArXiv, abs/2303.17651.

Chinmay Mittal, Krishna Kartik, Mausam, and Parag
Singla. 2024. Fcorebench: Can large language mod-
els solve challenging first-order combinatorial rea-
soning problems? CoRR, abs/2402.02611.

Yaswanth Narsupalli, Abhranil Chandra, Sreevatsa Mup-
pirala, Manish Gupta, and Pawan Goyal. 2025. Refer:
Improving evaluation and reasoning through hierar-
chy of models. Transactions of Machine Learning
Research (TMLR).

Noah Shinn, Federico Cassano, Beck Labash, Ashwin
Gopinath, Karthik Narasimhan, and Shunyu Yao.
2023. Reflexion: language agents with verbal re-
inforcement learning. In Neural Information Pro-
cessing Systems.

Parshin Shojaee*, Iman Mirzadeh*, Keivan Alizadeh,
Maxwell Horton, Samy Bengio, and Mehrdad Fara-
jtabar. 2025. The illusion of thinking: Understanding
the strengths and limitations of reasoning models via
the lens of problem complexity.

Linxin Song, Jiale Liu, Jieyu Zhang, Shaokun Zhang,
Ao Luo, Shijian Wang, Qingyun Wu, and Chi Wang.
2024. Adaptive in-conversation team building for
language model agents. ArXiv, abs/2405.19425.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao
Ge, Furu Wei, and Heng Ji. 2024. Unleashing the
emergent cognitive synergy in large language mod-
els: A task-solving agent through multi-persona self-
collaboration. In Proceedings of the 2024 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 257–279,
Mexico City, Mexico. Association for Computational
Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,

8290

https://openreview.net/forum?id=EHg5GDnyq1
https://api.semanticscholar.org/CorpusID:271855766
https://api.semanticscholar.org/CorpusID:271855766
https://api.semanticscholar.org/CorpusID:271855766
https://api.semanticscholar.org/CorpusID:275789950
https://api.semanticscholar.org/CorpusID:275789950
https://api.semanticscholar.org/CorpusID:274446149
https://api.semanticscholar.org/CorpusID:274446149
https://api.semanticscholar.org/CorpusID:274446149
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212
https://api.semanticscholar.org/CorpusID:270199944
https://api.semanticscholar.org/CorpusID:270199944
https://aclanthology.org/2025.naacl-long.176/
https://aclanthology.org/2025.naacl-long.176/
https://aclanthology.org/2025.naacl-long.176/
https://openreview.net/forum?id=0K1OaL6XuK
https://openreview.net/forum?id=0K1OaL6XuK
https://openreview.net/forum?id=0K1OaL6XuK
https://api.semanticscholar.org/CorpusID:17305
https://api.semanticscholar.org/CorpusID:17305
https://api.semanticscholar.org/CorpusID:275606406
https://api.semanticscholar.org/CorpusID:257900871
https://api.semanticscholar.org/CorpusID:257900871
https://arxiv.org/abs/2402.02611v3
https://arxiv.org/abs/2402.02611v3
https://arxiv.org/abs/2402.02611v3
https://api.semanticscholar.org/CorpusID:258833055
https://api.semanticscholar.org/CorpusID:258833055
https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
https://ml-site.cdn-apple.com/papers/the-illusion-of-thinking.pdf
https://api.semanticscholar.org/CorpusID:270123654
https://api.semanticscholar.org/CorpusID:270123654
https://doi.org/10.18653/v1/2024.naacl-long.15
https://doi.org/10.18653/v1/2024.naacl-long.15
https://doi.org/10.18653/v1/2024.naacl-long.15
https://doi.org/10.18653/v1/2024.naacl-long.15

and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22,
Red Hook, NY, USA. Curran Associates Inc.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu,
Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang,
Shaokun Zhang, Jiale Liu, Ahmed Hassan Awadallah,
Ryen W White, Doug Burger, and Chi Wang. 2024.
Autogen: Enabling next-gen LLM applications via
multi-agent conversations. In First Conference on
Language Modeling.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze
Lou, Yuandong Tian, Yanghua Xiao, and Yu Su. 2024.
Travelplanner: A benchmark for real-world planning
with language agents. In International Conference
on Machine Learning, pages 54590–54613. PMLR.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2022.
React: Synergizing reasoning and acting in language
models. ArXiv, abs/2210.03629.

Cong Zhang, Xin Deik Goh, Dexun Li, Hao Zhang,
and Yong Liu. 2025. Planning with multi-constraints
via collaborative language agents. In Proceedings of
the 31st International Conference on Computational
Linguistics, pages 10054–10082, Abu Dhabi, UAE.
Association for Computational Linguistics.

Yikai Zhang, Siyu Yuan, Caiyu Hu, Kyle Richardson,
Yanghua Xiao, and Jiangjie Chen. 2024. TimeArena:
Shaping efficient multitasking language agents in a
time-aware simulation. In Proceedings of the 62nd
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3894–
3916, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin,
Yong-Jin Liu, and Gao Huang. 2024. Expel: Llm
agents are experiential learners. In Thirty-Eighth
AAAI Conference on Artificial Intelligence, AAAI
2024, Thirty-Sixth Conference on Innovative Applica-
tions of Artificial Intelligence, IAAI 2024, Fourteenth
Symposium on Educational Advances in Artificial
Intelligence, EAAI 2024, February 20-27, 2024, Van-
couver, Canada, pages 19632–19642. AAAI Press.

8291

https://openreview.net/forum?id=BAakY1hNKS
https://openreview.net/forum?id=BAakY1hNKS
https://api.semanticscholar.org/CorpusID:252762395
https://api.semanticscholar.org/CorpusID:252762395
https://aclanthology.org/2025.coling-main.672/
https://aclanthology.org/2025.coling-main.672/
https://doi.org/10.18653/v1/2024.acl-long.215
https://doi.org/10.18653/v1/2024.acl-long.215
https://doi.org/10.18653/v1/2024.acl-long.215
https://doi.org/10.1609/aaai.v38i17.29936
https://doi.org/10.1609/aaai.v38i17.29936

Overview of Appendices
• Appendix A: Detailed Related Work.

• Appendix B: Walkthrough of LRPLAN

• Appendix C: Meta Agent Prompts.

• Appendix D: Meta Agent Outputs

• Appendix E: Evaluation Metrics for TimeArena-Static.

• Appendix F: Error Analysis.

• Appendix G: Analyzing AutoBuild.

• Appendix H: Analyzing Multi-Agent Debate.

• Appendix I: TimeArena Case Study.

A Detailed Related Work

A.1 Classic Planning Literature

Traditional approaches to multi-constraint planning relied on classical, domain-independent planners and
optimization techniques. These methods, often utilizing formalisms (Ghallab et al., 1998; Höller et al.,
2020) like the Planning Domain Definition Language (PDDL), enabled the generation of hierarchial and
partially ordered plans. PDDL standardized AI planning languages by separating domain descriptions from
problem-specific details, allowing planners to tackle a wide range of domains. Classical planning (Helmert,
2006; Bonet and Geffner, 2001) typically addressed problems with known initial states, deterministic
actions, and a single agent. Many planning problems can indeed be viewed as optimization problems,
seeking an optimal solution under given constraints. To alleviate the significant human effort required in
crafting domain models in PDDL and to enhance adaptability, researchers turned to supervised machine
learning and imitation learning, these techniques aimed to learn action strategies for specific planning
domain from examples of problems and their solutions. However, a primary drawback was the need for
domain-dependent training data or the manual creation of domain files, limiting broad applicability.

A.2 Single-agent LLMs for Planning

The advent of LLMs introduced new paradigms for planning. LLMs are increasingly explored as
single-agent planners, leveraging techniques like zero-shot prompting and chain-of-thought (CoT) (Wei
et al., 2022) reasoning to generate plans without task-specific training. In online settings, where agents
interact with an environment and receive feedback to adapt their plans, several frameworks have emerged.
ReAct (Yao et al., 2022) integrates reasoning and action steps. Reflexion (Shinn et al., 2023) uses
environmental feedback for iterative plan improvement and episodic memory updates. Given that LLMs
are trained for next-token prediction, their initial plan may require refinement, a process addressed by
frameworks like Self-Refine (Madaan et al., 2023) where models iteratively critique and improve their
own inputs.

A.3 Multi-agent systems

Multi-agent systems (MAS) offer a collaborative approach to solving complex tasks and have found suc-
cess in diverse areas such as web-navigation, e-commerce, question answering, and robotics. Frameworks
like AutoGen’s AutoBuild (Wu et al., 2024) and AutoAgents (Chen et al., 2024a) automate the creation
and coordination of specialized agent teams tailored to task descriptions. AutoAgents, for instance
dynamically generates required agents and includes an observer roles for reflection and improvement. A
potential drawback of dynamically creating new agent sets for every query is redundancy and difficulty in
learning from cumulative past experiences. The multi-agent debate (Du et al., 2023) paradigm involves

8292

multiple, often identical, LLM agents proposing and critiquing solutions iteratively to converge on a
refined answer, enhancing factuality and reasoning. AgentVerse (Chen et al., 2024b) structures multi-agent
problem-solving into four stages: expert recruitment, collaborative decision-making, action execution,
and evaluation with feedback for iterative refinement. LLMFP (Hao et al., 2025b) is a framework where
LLMs convert planning problems into formal optimization problems for dedicated solvers. This approach
assumes that all the constraints will be explicitly stated which might not be the case always. ReFeR (Nar-
supalli et al., 2025) is a tuning-free framework that evaluates generative outputs in both text and images
by leveraging a hierarchical multi-agent strategy with pre-trained LLM and VLM evaluators, enhancing
performance through increased test-time reasoning.

A.4 Role-based Multi-agent systems

Collaborative LLM-based multi-agent planning frameworks further explore specialized roles. For instance,
the LLM-Modulo (Kambhampati et al., 2024) framework is conceptualized with multiple critics for
different analytical purposes. The Planning with Multi-Constraints (PMC) (Zhang et al., 2025) framework
employs a manager agent for hierarchical task decomposition into a sub-task graph, executor agents to
handle these sub-tasks, a supervisor agent for information sharing, and a deliverer agent to consolidate final
results. Both PMC and LLM-Modulo necessitate initial human effort for each new domain, particularly in
defining agent roles, available tools, and tailoring prompt structures for the agents to function effectively
within that specific domain’s constraints.

A.5 Learning from experience in Multi-agent systems

Learning from experience is a critical theme in recent LLM-based planning research. Reflexion (Shinn
et al., 2023) highlights the importance of updating episodic memory by reflecting on past attempts to
understand constraints and improve future performance. ExpeL (Zhao et al., 2024) enables agents to learn
from a collection of experiences across multiple instances, deriving insights and using successful past
trajectories as in-context examples. AutoGuide (Fu et al., 2024) automatically generates context-aware
guidelines from offline trajectories to aid decision-making. These approaches underscore a trend towards
enabling agents to continuously learn and adapt from their interactions.

A.6 Characteristics used for comparison in Table 1

• No Validator Needed during inference: Indicates whether the method can generate valid
outputs without relying on an external validator at test time.

• Refines Initial Response: Specifies if the method includes a mechanism to revise or improve
its initial output through self-correction or refinement.

• Multi-Agent: Denotes whether the approach uses multiple interacting agents or components to
collaboratively solve the task.

• No Domain-Specific Human Effort: Shows whether the method avoids manual engineering or
human intervention tailored to specific domains.

• Learns from Training Samples: Indicates if the method leverages any training data to extract
insights for better performance.

• LLM-LRM Synergy: Highlights whether the method explicitly combines large language models
(LLMs) and large reasoning models (LRMs) to exploit their complementary strengths.

B Walkthrough of LRPLAN

The LRPLAN framework is designed to enhance the planning capabilities of Large Language Models
(LLMs) by learning from reasoning traces. The architecture, depicted in Fig. 2, operates in two distinct
phases: a Training Phase where the system learns successful strategies, rules, and error-correction patterns,
and a Test Phase where these learned components are applied to solve new planning queries.

8293

B.1 Training Phase: Learning from Reasoning

The training process begins with a set of Training Samples , each containing an input query, a generated

plan, a binary PASS/FAIL for the generated plan, and a corresponding reasoning trace. These elements
are used to train three specialized modules.

B.1.1 Data Generation and Validation
For each training sample, a Large Reasoning Model (LRM) generates a step-by-step Reasoning Trace

that explains its thought process for creating a Plan . For instance, given Train Sample 1 :

Input: Please help me plan a trip from St. Petersburg to Rockford spanning 3 days from March
16th to March 18th, 2022. The travel should be planned for a single person with a budget of $1,700.

The LRM produces both the detailed trace and the plan:

Reasoning Trace: Okay, let’s tackle this query step by step. The user wants a 3-day itinerary from
St. Petersburg to Rockford from March 16th to 18th, 2022, for a single person with a $1,700
budget. Let’s see the reference info provided. First, check transportation options. There’s a flight
from St. Petersburg to Rockford on March 16th (F3573659) priced at $474. The return flight on
March 18th (F3573120) is $346. The total flight cost is $820. Since self-driving and taxi options
have no valid info, flights are the only viable option . . .
. . .
. . .
. . .
Day 1: After arrival, maybe visit a couple of attractions. For example, Burpee Museum and
Discovery Center. Day 2: More attractions like Midway Village Museum, Anderson Japanese
Gardens, etc. Day 3: Maybe one attraction in the morning before departure. Putting it all together,
ensuring all data is from reference info.

Plan:
Day 1 (from St. Petersburg → Rockford): Transportation: Flight F3573659 (Dep. 15:40, Arr.
17:04) Dinner: Coco Bambu, Rockford Accommodation: Private Room in a two-bedroom apart-
ment, Rockford Attractions: Burpee Museum of Natural History; Discovery Center Museum
Day 2 (Rockford): Breakfast: Cafe Coffee Day, Rockford Lunch: Flying Mango, Rockford Dinner:
The Gourmet Shack, Rockford Accommodation: Private Room in a two-bedroom apartment,
Rockford Attractions: Midway Village Museum; Anderson Japanese Gardens; Tinker Swiss
Cottage Museum and Gardens
Day 3 (from Rockford → St. Petersburg): Transportation: Flight F3573120 (Dep. 19:00, Arr.
22:43) Breakfast: Subway, Rockford Lunch: Aroma Rest O Bar, Rockford Attraction: Nicholas
Conservatory & Gardens

The generated plan is then evaluated by a Validator function, V:Plan→ {pass,fail}, which labels the
plan’s adherence to all explicit and implicit constraints. For Train Sample 1 , the plan successfully met all

requirements, resulting in a PASS label. Conversely, Train Sample 2 failed validation due to constraint

violations, receiving a FAIL label. This collection of samples, traces, and validation labels serves as the
foundational dataset for the learning modules.

B.1.2 Learning Modules
The annotated training data is concatenated and fed into three LLM-based modules that learn distinct
aspects of the planning process:

8294

Pattern Recognizer: This module primarily analyzes successful reasoning traces (i.e., those leading
to a PASS validation) to identify high-level, winning strategies. It abstracts the general workflow from
specific examples.

Sample traces generally proceed through a sequence of steps: identifying requirements (dates,
budget, destination), evaluating transportation, selecting accommodation... High-level princi-
ples include prioritizing budget constraints, sequential decision-making, adherence to reference
information, and iterative cost verification.

Rule Extractor: This module also primarily processes successful traces but focuses on distilling
concrete, actionable heuristics or rules that can be explicitly followed from the output of the Pattern
Recognizer.

Key heuristics emerge... First, planners must prioritize budget alignment... Second, they should
follow a sequential decision-making process—transportation → accommodation → meals →
attractions. Third, iterative budget checks after major decisions help avoid misalignment.

Self Corrector: This module learns from both successful and failed traces to identify common error
patterns and the self-correction steps taken within the reasoning process. It learns how to detect and fix
mistakes.

Reasoning traces reveal frequent initial errors such as miscalculations, incorrect assumptions, and
logical inconsistencies... These are typically resolved through self-corrections, including revisiting
assumptions, recalculating costs, and re-evaluating decisions against reference information.

B.2 Test Phase: Planning and Refinement

During the test phase, the insights gained during training are operationalized to solve new, unseen queries.

B.2.1 Planner
When a New Query is received, it is first sent to the Planner module. This LLM is prompted using the
high-level strategies from the Pattern Recognizer and the explicit heuristics from the Rule Extractor.
This guidance enables it to generate a structured and logical initial plan.

Test Input: Please create a travel plan for me where I’ll be departing from Washington and heading
to Myrtle Beach for a 3-day trip from March 13th to March 15th, 2022. Can you help me keep this
journey within a budget of $1,400?

The Planner , guided by the learned rules, produces a coherent initial plan:

Day 1 (from Washington → Myrtle Beach): Transportation: Flight F3927581 (Dep. 11:03,
Arr. 13:31) Lunch: Catfish Charlie’s Dinner: Exotic India Accommodation: Yellow Submarine
Attractions: SkyWheel, WonderWorks
Day 2 (Myrtle Beach): Breakfast: First Eat Lunch: Nagai Dinner: Twigly Accommodation: Yellow
Submarine Attractions: Ripley’s Aquarium, Broadway at the Beach
Day 3 (from Myrtle Beach → Washington): Transportation: Flight F3791200 (Dep. 11:36, Arr.
13:06) Breakfast: The Night Owl

B.2.2 Refiner
The initial plan is then passed to the Refiner module. This LRM leverages the knowledge from the Self
Corrector module. It proactively scans the plan for common error types (e.g., budget miscalculations,

8295

logical inconsistencies, constraint violations) identified during training and applies the learned correction
strategies to produce a more robust and accurate Refined Plan . This final output is then presented to the
user.

Day 1 (from Washington → Myrtle Beach): Transportation: Flight F3927581 (Dep. 11:03,
Arr. 13:31) Lunch: Catfish Charlie’s Dinner: Exotic India Accommodation: Yellow Submarine
Attractions: SkyWheel, WonderWorks
Day 2 (Myrtle Beach): Breakfast: First Eat Lunch: Nagai Dinner: Twigly Accommodation: Yellow
Submarine Attractions: Ripley’s Aquarium, Broadway at the Beach
Day 3 (from Myrtle Beach → Washington): Breakfast: The Night Owl Lunch: Quick meal at the
airport before departure Transportation: Flight F3791200 (Dep. 11:36, Arr. 13:06)

C Meta Agent Prompts

This section presents the prompts used for the three meta agents in our framework: Pattern Recognizer,
Rule Extractor, and Self-Corrector. These prompts were carefully designed to enable the agents to extract
insights from reasoning traces and support the planning process.

C.1 Pattern Recognizer Agent Prompt

Pattern Recognizer

You are an expert in recognizing patterns and structures in logical reasoning traces. Your goal is to
analyze multiple instances of reasoning traces and identify recurring themes, decision flows, and
common problem-solving steps.

Instructions:
1. **Segment Analysis**: Break down each reasoning trace into key logical steps.
2. **Pattern Detection**: Identify frequently occurring sequences, transitions, or dependencies in
the reasoning.
3. **Comparison**: Compare reasoning traces to detect similarities in decision-making strategies.
4. **Abstraction**: Generalize patterns into high-level principles that can be applied across
different contexts.
5. **Edge Case Identification**: Detect cases where the reasoning process struggles, including
ambiguous scenarios, conflicting evidence, and novel problem structures.
6. **Success and Failure Analysis**: Compare reasoning traces with correct and incorrect verdicts to
identify factors contributing to successful reasoning ("success recipe").
7. **Output Format**:

- **Identified Patterns**: List of common reasoning steps and their frequency.
- **Edge Cases**: Difficult scenarios and their characteristics.
- **Success Recipe**: Identifiable patterns in correct reasoning traces that lead to accurate
responses.
- **Examples**: Instances from the traces where the patterns occur.
- **Observations**: Any deviations or anomalies in reasoning.

Ensure that the identified patterns are clear, interpretable, and useful for extracting decision
heuristics.

Here are the sample reasoning traces for your analysis:
<<<sample_input_reasoning_trace>>>

C.2 Rule Extractor Agent Prompt

Rule Extractor
You are an expert in extracting decision-making rules from structured reasoning patterns. Your goal is
to convert observed reasoning patterns into explicit heuristics that can be applied to future problems.

Instructions:
1. **Pattern Input**: Given a set of identified patterns from the Pattern Recognizer Agent, infer the
underlying rules that guide decision-making.
2. **Heuristic Formation**: Convert patterns into well-defined, generalizable rules.

8296

3. **Condition-Based Rules**: Specify conditions under which each rule is applied.
4. **Efficiency Evaluation**: Assess whether the extracted rule optimizes problem-solving efficiency.
5. **Output Format**:

- **Rule Description**: A concise statement describing the heuristic.
- **Supporting Patterns**: Reference to identified patterns that led to the rule.
- **Example Application**: A brief example illustrating the rule in action.

Your heuristics should be logically sound, interpretable, and effective for improving decision making
in similar scenarios.

Here are the identified research patterns for rule extraction:
<<<identified_research_patterns>>>

C.3 Self Corrector Agent Prompt

Self Corrector
You are an expert in iterative self-improvement, specializing in analyzing reasoning traces to extract
insights from self-correction processes. Your goal is to track instances where the reasoning model
self-corrects, identify the nature of these corrections, and refine future decision-making to
minimize errors.

Instructions:
1. **Correction Detection**: Identify points in the reasoning trace where self-correction occurs.
2. **Error Categorization**: Classify the types of mistakes being corrected (e.g., logical
inconsistencies, incorrect assumptions, miscalculations).
3. **Correction Strategies**: Extract patterns in how corrections are made (e.g., revisiting
assumptions, adjusting calculations, re-evaluating premises).
4. **Cumulative Learning**: Maintain a repository of frequently occurring errors and corresponding
self-correction strategies.
5. **Refinement Mechanism**: Suggest proactive adjustments to prevent similar mistakes in future
reasoning.
6. **Output Format**:

- **Common Errors**: List of frequently occurring errors and their nature.
- **Correction Strategies**: General strategies used to fix these errors.
- **Heuristic Refinements**: How these self-corrections can be integrated into a proactive
decision-making process.

Your role is to **accumulate self-correction insights** and refine the reasoning process **to reduce
reliance on post-hoc corrections**. Ensure that extracted strategies improve overall robustness
and efficiency.

Here are the sample reasoning traces for your analysis:
<<<sample_input_reasoning_trace>>>

D Meta Agent Outputs

This section presents the detailed outputs from our meta agents across TravelPlanner and TimeArena-
Static.

D.1 TravelPlanner
We include comprehensive meta agent responses generated by LRPLAN with DeepSeek-V3 and
DeepSeek-R1.

Pattern Recognizer

Identified Patterns

1. **Initial Setup and Constraints Check**:
- **Frequency**: High (100% of traces)
- **Description**: The reasoning starts by identifying the task's constraints (e.g., budget,
duration, preferences) and verifying available options from the reference data.
- **Example**:
- Trace #1: Checks budget ($1,700), duration (3 days), and transportation options (flight, taxi,
self-driving).
- Trace #2: Checks budget ($900), duration (3 days), and transportation options (flight, taxi,

8297

self-driving).

2. **Transportation Selection**:
- **Frequency**: High (100% of traces)
- **Description**: The reasoning evaluates transportation options (flight, taxi, self-driving)
based on cost, availability, and budget constraints. Flights are prioritized if available and
affordable; otherwise, self-driving is chosen.
- **Example**:
- Trace #1: Selects flights due to availability and budget fit.
- Trace #2: Selects self-driving due to no flights and taxi being too expensive.

3. **Accommodation Selection**:
- **Frequency**: High (100% of traces)
- **Description**: The reasoning picks the cheapest viable accommodation for the required nights,
ensuring it fits the remaining budget after transportation.
- **Example**:
- Trace #1: Chooses the cheapest Private Room in Rockford for two nights.
- Trace #2: Chooses the cheapest "Amazing apartment" in Pensacola for two nights.

4. **Meal Planning**:
- **Frequency**: High (100% of traces)

- **Description**: The reasoning selects restaurants for each meal (breakfast, lunch, dinner) based
on average cost and cuisine preferences (if specified). It skips meals if timing conflicts with
travel.
- **Example**:
- Trace #1: Skips lunch on Day 1 due to flight timing; selects affordable restaurants for other
meals.
- Trace #2: Plans meals for all days but struggles with high-cost options.

5. **Attraction Selection**:
- **Frequency**: High (100% of traces)

- **Description**: The reasoning includes free or low-cost attractions each day, ensuring they align
with the city and timing.
- **Example**:
- Trace #1: Visits Burpee Museum and Discovery Center on Day 1.
- Trace #2: Plans visits to Historic Pensacola Village and Pensacola Museum of Art.

6. **Budget Tracking**:
- **Frequency**: High (100% of traces)
- **Description**: The reasoning continuously updates the remaining budget after accounting for
transportation, accommodation, and meals.
- **Example**:
- Trace #1: Tracks expenses ($820 flights, $210 accommodation, $289 meals) to ensure $1,700 budget
is not exceeded.

- Trace #2: Tracks expenses ($143 transportation, $148 accommodation, ~$200 meals) but misses some
costs.

7. **Output Structuring**:
- **Frequency**: High (100% of traces)
- **Description**: The reasoning formats the output into daywise dictionaries with keys like
`current_city`, `transportation`, `meals`, `accommodation`, and `attractions`.
- **Example**:
- Both traces structure the output as per the required format.

Edge Cases

1. **Missing or Conflicting Reference Data**:
- **Description**: When reference data is missing (e.g., no flights, no restaurants in departure
city), the reasoning struggles to fill gaps.
- **Example**:
- Trace #1: Skips lunch on Day 1 because no St. Petersburg restaurants are listed.

- Trace #2: Incorrectly assumes no flights are available (may be due to incomplete reference data).

2. **High-Cost Items**:
- **Description**: When meal or accommodation costs are high, the reasoning may exceed the budget or
make suboptimal choices.
- **Example**:
- Trace #2: Selects expensive restaurants (e.g., Blue Point Grill at $75) without proper budget
checks.

8298

3. **Travel Timing Conflicts**:
- **Description**: Meal or attraction planning becomes ambiguous when travel times conflict with
typical meal times.
- **Example**:
- Trace #1: Skips lunch on Day 1 due to flight timing.
- Trace #2: Struggles with meal planning on the return day (Day 3).

Success Recipe

1. **Budget-Centric Prioritization**:
- **Pattern**: Successful traces prioritize budget-friendly options first (transportation →
accommodation → meals → attractions).
- **Example**:
- Trace #1: Starts with flights, then picks the cheapest accommodation and affordable meals.

2. **Explicit Reference Adherence**:
- **Pattern**: Strictly using reference data for all decisions (e.g., restaurant names, flight
numbers) ensures correctness.
- **Example**:
- Trace #1: Uses exact flight numbers and restaurant names from the reference.

3. **Conservative Meal Planning**:
- **Pattern**: Skipping meals or choosing low-cost options when timing or budget is tight avoids
overspending.
- **Example**:
- Trace #1: Skips lunch on Day 1 and selects affordable restaurants for other meals.

4. **Continuous Budget Updates**:
- **Pattern**: Regularly updating the remaining budget after each decision prevents overspending.
- **Example**:
- Trace #1: Tracks expenses after flights, accommodation, and meals.

Observations

1. **Incorrect Verdict in Trace #2**:
- The reasoning in Trace #2 is marked incorrect, likely due to:
- Overlooking flight options (assuming none are available).

- Poor meal cost estimation (selecting high-cost restaurants like Blue Point Grill without budget
checks).
- Incomplete budget tracking (total expenses are underestimated).

2. **Ambiguity Handling**:
- Successful traces handle ambiguity (e.g., missing data) by skipping non-critical items (e.g.,
meals) or choosing defaults (e.g., cheapest options).

- Unsuccessful traces fail to handle ambiguity gracefully (e.g., Trace #2 assumes no flights without
proper verification).

Examples of Patterns

1. **Transportation Selection**:
- Trace #1: "The total flight cost is $820. Since self-driving and taxi options have no valid info,
flights are the only viable option."
- Trace #2: "Self-driving total is 71 + 72 = $143, which fits well within the budget."

2. **Budget Tracking**:
- Trace #1: "Total so far: $820 + $210 = $1,030. Remaining budget: $1,700 - $1,030 = $670."
- Trace #2: "Total so far: 143 + 148 + 132 = $423. That leaves plenty of budget room."

3. **Edge Case (Missing Data)**:
- Trace #1: "Lunch would be in St. Pete before departure, but the user's reference info only includes
Rockford restaurants. So maybe skip lunch on day 1."

Deviations/Anomalies

1. **Trace #2's Incorrect Flight Assumption**:
- The reasoning incorrectly assumes no flights are available, leading to suboptimal self-driving
selection. This may stem from incomplete reference data or oversight.

8299

2. **Trace #2's High-Cost Meals**:
- The reasoning includes high-cost restaurants (e.g., Blue Point Grill at $75) without ensuring
budget compliance, unlike Trace #1's conservative approach

Rule Extractor
Here are the extracted heuristics based on the identified patterns:

1. Constraint-First Initialization Rule
- **Rule Description**: Always start by explicitly listing all constraints (budget, duration,
preferences) and verifying available options from reference data before making any decisions.
- **Supporting Patterns**: Initial Setup and Constraints Check (100% frequency).
- **Example Application**:
- *Input*: Budget = $1,700, Duration = 3 days.
- *Action*: First check transportation options (flight/taxi/self-driving), then accommodation and
meal costs.

2. Transportation Cost-Priority Rule
- **Rule Description**: Prioritize transportation options in this order:
1. **Flight** (if available and total cost <= 40\% of budget).
2. **Self-driving** (if flight unavailable or too expensive, and cost <= 25\% of budget).
3. **Taxi** (only if no other options fit).

- **Conditions**: Skip if no reference data exists for any option.
- **Supporting Patterns**: Transportation Selection (100% frequency), Edge Case #1 (missing flights).
- **Example Application**:
- *Budget $900*: Self-driving ($143) chosen because flights are missing/unaffordable.

3. Greedy Accommodation Selection Rule
- **Rule Description**: Select the cheapest viable accommodation that:
- Fits the remaining budget (after transportation).
- Matches the required nights.

- **Conditions**: If no options exist, mark as "unavailable" and proceed.
- **Supporting Patterns**: Accommodation Selection (100% frequency).
- **Example Application**:
- *Remaining budget $670*: Choose "$105/night Private Room" over costlier options.

4. Conservative Meal Planning Rule
- **Rule Description**: For each meal:
1. Skip if travel timing conflicts (e.g., flights during lunch).
2. Select the lowest-cost restaurant that fits cuisine preferences (if specified).
3. Cap meal cost at 15% of remaining daily budget.

- **Supporting Patterns**: Meal Planning (100% frequency), Success Recipe #3 (conservative planning).
- **Example Application**:
- *Day 1 Lunch*: Skipped due to flight conflict.
- *Day 2 Dinner*: Choose "$20 avg cost" restaurant over "$75" option.

5. Attraction Inclusion Rule
- **Rule Description**: Include 1–2 free/low-cost attractions per day, prioritizing:
- Proximity to current city.
- Alignment with remaining budget (cost <= 10% of daily budget).

- **Supporting Patterns**: Attraction Selection (100% frequency).
- **Example Application**:
- *Day 1*: Visit free "Burpee Museum" instead of paid options.

6. Dynamic Budget Tracking Rule
- **Rule Description**: After each decision (transportation → accommodation → meals → attractions):

8300

1. Subtract cost from total budget.
2. If remaining budget < 0, backtrack and replace the most expensive item with a cheaper alternative.

- **Supporting Patterns**: Budget Tracking (100% frequency), Edge Case #2 (high-cost items).
- **Example Application**:
- *After flights + accommodation*: "$1,700 → $670 remaining".
- *If meals exceed $670*: Swap "$75 restaurant" for "$20 option".

7. Structured Output Rule
- **Rule Description**: Format output as daywise dictionaries with keys:
`current_city`, `transportation`, `meals`, `accommodation`, `attractions`.

- **Conditions**: Omit keys with no data (e.g., missing meals).
- **Supporting Patterns**: Output Structuring (100% frequency).

Edge Case Handling Heuristics
1. **Missing Data Fallback**:
- If reference data is missing (e.g., no flights), default to next viable option (self-driving) and
log a warning.
- *Example*: Trace #2 should have flagged "no flight data" instead of assuming unavailability.

2. **High-Cost Item Mitigation**:
- If an item (meal/accommodation) exceeds 30% of remaining budget, reject it and search for cheaper
alternatives.
- *Example*: Trace #2’s "$75 restaurant" should trigger a re-search.

3. **Travel Conflict Resolution**:
- If travel overlaps with meal times, skip the meal and reallocate budget elsewhere.

Efficiency Evaluation
- **Optimization**: These rules reduce backtracking by prioritizing high-impact decisions
(transportation/accommodation) first.
- **Robustness**: Explicit budget tracking and fallbacks handle edge cases gracefully.
- **Interpretability**: Each rule is condition-based and mirrors human-like prioritization
(e.g., "cheapest first").

Let me know if you'd like to refine any rule further!

Self Corrector
Analysis of Reasoning Traces and Self-Corrections

1. Correction Detection
- **Sample #1**: The reasoning process involves multiple adjustments to meal planning and budgeting,
particularly around flight timings and restaurant availability. Corrections occur when recalculating
meal costs and aligning flight schedules with meal times.
- **Sample #2**: The initial assumption about flight availability is corrected when the reference shows
no flights, leading to a shift to self-driving. Later, the reasoning adjusts meal selections to fit the
budget better, though the final verdict is incorrect due to incomplete adherence to reference
constraints.

2. Error Categorization
- **Logical Inconsistencies** (Sample #2): Assuming flights exist when they don’t, leading to an
initial incorrect plan.
- **Incorrect Assumptions** (Both Samples): Assuming meals can be skipped or adjusted without strict
adherence to reference data (e.g., skipping lunch in Sample #1 when no St. Pete restaurants are listed).
- **Miscalculations** (Sample #1): Recalculating meal costs multiple times due to misalignment with
flight schedules.
- **Reference Misalignment** (Sample #2): Failing to strictly use reference data for all details
(e.g., restaurant names, attraction listings).

3. Correction Strategies

8301

- **Revisiting Assumptions**: Checking flight availability first before proceeding (Sample #2).
- **Recalculating Costs**: Adjusting meal plans iteratively to fit the budget (Sample #1).
- **Realigning with Reference**: Ensuring all restaurants, accommodations, and attractions are
strictly from the reference (Sample #2 correction needed).
- **Temporal Alignment**: Matching meal times with transportation schedules (Sample #1).

4. Common Errors
1. **Assuming Unavailable Options**: Assuming flights or restaurants exist without verifying the
reference.
2. **Budget Miscalculations**: Underestimating or overestimating costs due to incomplete calculations.
3. **Ignoring Reference Constraints**: Including restaurants or accommodations not listed in the
reference.
4. **Temporal Misalignment**: Not accounting for travel times when scheduling meals or activities.

5. Correction Strategies
- **Preemptive Verification**: Always check the reference for transportation, meals, and
accommodations before planning.
- **Iterative Budgeting**: Recalculate costs after each addition to ensure budget compliance.
- **Strict Adherence**: Use only reference-listed options for all details (restaurants, attractions,
etc.).
- **Schedule Validation**: Ensure meal and activity times align with transportation schedules.

6. Heuristic Refinements
- **Transportation First**: Always verify transportation options before proceeding with the itinerary.
- **Budget Buffering**: Leave a buffer in the budget for unexpected costs or adjustments.
- **Reference Cross-Check**: Double-check every detail (restaurant names, attraction spellings)
against the reference.
- **Temporal Mapping**: Create a timeline of travel and activities to avoid scheduling conflicts.

Output Format
Common Errors
1. Assuming unavailable flights or restaurants.
2. Miscalculating total costs due to incomplete iterations.
3. Including non-reference options in the plan.
4. Misaligning meal/activity times with travel.

Correction Strategies
1. Verify all options against the reference first.
2. Recalculate costs iteratively after each addition.
3. Use strict reference matching for all details.
4. Map out a timeline to align travel, meals, and activities.

Heuristic Refinements
1. **Transportation Priority**: Confirm transportation before other planning.
2. **Budget Tracking**: Maintain a running total of expenses.
3. **Reference Rigor**: Enforce strict use of reference data.
4. **Schedule Synchronization**: Use a timeline to ensure logical flow.

Final Notes
- **Sample #1** succeeds due to iterative corrections and strict reference adherence.
- **Sample #2** fails because of initial incorrect assumptions and incomplete reference alignment. The
heuristic refinements would prevent such errors in future iterations.

D.2 TimeArena-Static

We include comprehensive meta agent responses generated by LRPLAN with GPT-4o and o3-mini.

Pattern Recognizer

Analysis of Reasoning Traces

Segment Analysis
1. **Task Breakdown**: Each reasoning trace begins by listing the tasks and their dependencies,
identifying which actions are Type 1 (occupy until completion) and Type 2 (allowing other
actions).
2. **Dependency Mapping**: The traces identify dependencies between tasks, such as needing to wash a
dish before adding ingredients or picking ingredients before cooking.
3. **Action Sequencing**: The traces attempt to sequence actions to minimize total time, often by

8302

interleaving Type 2 actions with Type 1 actions.
4. **Time Management**: Each trace involves calculating the time steps required for each action and
ensuring actions are performed in the correct order.

Pattern Detection
1. **Initial Setup**: Each trace starts with washing the dish, a common initial step due to its
dependency requirement.
2. **Parallel Processing**: Attempts to run Type 2 actions in parallel with Type 1 actions to optimize
time.
3. **Sequential Dependencies**: Ensuring that actions dependent on previous steps (e.g., adding
ingredients to a dish) are correctly sequenced.
4. **Time Step Calculation**: Consistent use of time steps to manage and track the duration of actions.

Comparison
- **Similarities**: All traces follow a similar structure of listing tasks, identifying dependencies,
and attempting to interleave actions to optimize time.
- **Differences**: Variations occur in how effectively actions are interleaved, with some traces
struggling to manage overlapping actions due to fryer or pot usage.

Abstraction
1. **Heuristic for Efficiency**: Start with actions that have dependencies (e.g., washing dishes) and
interleave Type 2 actions with Type 1 actions to maximize efficiency.
2. **Dependency First**: Always address dependencies first to avoid blocking subsequent actions.
3. **Time Step Management**: Use time steps to track action durations and ensure no overlaps in
resource usage (e.g., fryer).

Edge Case Identification
1. **Resource Conflicts**: Struggles occur when multiple actions require the same resource (e.g.,
fryer) simultaneously.
2. **Action Overlaps**: Difficulty arises in managing overlapping Type 1 actions due to their blocking
nature.
3. **Complex Dependencies**: Scenarios with multiple dependencies and interleaving requirements can
lead to inefficient sequencing.

Success and Failure Analysis
- **Success Recipe**: Efficient traces correctly interleave Type 2 actions with Type 1 actions, manage
dependencies upfront, and avoid resource conflicts.
- **Failure Points**: Inefficient traces often mismanage time steps, leading to resource conflicts or
incorrect sequencing of dependent actions.

Examples
- **Efficient Interleaving**: In Sample Reasoning Trace #2, the agent successfully interleaves cooking
and preparation tasks, minimizing idle time.
- **Resource Conflict**: In Sample Reasoning Trace #4, the agent struggles with overlapping fryer
usage, leading to inefficiencies.

Observations
- **Common Errors**: Mismanagement of time steps and resource conflicts are frequent issues.
- **Optimization Challenges**: Balancing parallel processing with sequential dependencies is a
recurring challenge.
- **Complexity Management**: As tasks increase in complexity, maintaining an efficient sequence
becomes more difficult.

Overall, the reasoning traces reveal a consistent approach to task management, with common challenges
in resource allocation and dependency management. The key to success lies in effectively
interleaving actions and managing time steps to avoid conflicts.

Rule Extractor
Heuristic 1: Dependency-First Approach
- **Rule Description**: Always address tasks with dependencies first to prevent blocking subsequent
actions.
- **Supporting Patterns**: Dependency Mapping, Initial Setup, Dependency First.
- **Example Application**: Before starting to cook, ensure all necessary ingredients are prepared and
the dish is washed, as these are prerequisites for the cooking process.

Heuristic 2: Interleave Type 2 Actions with Type 1 Actions
- **Rule Description**: To optimize time, interleave Type 2 actions (non-blocking) with Type 1 actions

8303

(blocking) whenever possible.
- **Supporting Patterns**: Action Sequencing, Parallel Processing, Efficient Interleaving.
- **Example Application**: While a dish is baking (Type 1), prepare the salad (Type 2) to utilize the
waiting time effectively.

Heuristic 3: Time Step Management
- **Rule Description**: Use time steps to track action durations and ensure no overlaps in resource
usage.
- **Supporting Patterns**: Time Management, Time Step Calculation, Success Recipe.
- **Example Application**: Allocate specific time slots for each task and monitor them to prevent two
tasks from requiring the same resource simultaneously.

Heuristic 4: Resource Conflict Avoidance
- **Rule Description**: Plan tasks to avoid simultaneous use of the same resource, especially for Type
1 actions.
- **Supporting Patterns**: Resource Conflicts, Action Overlaps, Failure Points.
- **Example Application**: If two dishes require the fryer, schedule them sequentially or use an
alternative cooking method for one.

Heuristic 5: Complexity Management
- **Rule Description**: Break down complex tasks into simpler, manageable steps and address each
dependency systematically.
- **Supporting Patterns**: Task Breakdown, Complex Dependencies, Optimization Challenges.
- **Example Application**: For a multi-course meal, list all tasks, identify dependencies, and
sequence them to ensure each course is ready at the right time.

Efficiency Evaluation
- **Dependency-First Approach**: Optimizes workflow by preventing bottlenecks.
- **Interleave Actions**: Reduces idle time, increasing overall efficiency.
- **Time Step Management**: Ensures smooth operation without resource conflicts.
- **Resource Conflict Avoidance**: Prevents delays caused by resource contention.
- **Complexity Management**: Simplifies task execution, reducing errors and inefficiencies.

These heuristics provide a structured approach to managing tasks with dependencies and resource
constraints, enhancing decision-making efficiency in complex scenarios.

Self Corrector
Analysis of Reasoning Traces

Correction Detection
1. **Sample Reasoning Trace #1**: The model initially miscalculates the timing of actions,
particularly the overlap of Type 1 and Type 2 actions. It corrects itself by realizing that Type
2 actions allow for parallel processing.
2. **Sample Reasoning Trace #2**: The model struggles with the timing of Type 1 actions, initially
thinking they can overlap with Type 2 actions. It corrects by ensuring Type 1 actions are
completed before starting another.
3. **Sample Reasoning Trace #3**: The model initially mismanages the sequence of actions, particularly
the overlap of frying and adding to the dish. It corrects by adjusting the sequence to avoid
conflicts.
4. **Sample Reasoning Trace #4**: The model attempts to interleave tasks but struggles with the
complexity of managing two dishes. It corrects by trying to sequence tasks more linearly.

Error Categorization
- **Logical Inconsistencies**: Misunderstanding the nature of Type 1 and Type 2 actions, leading to
incorrect assumptions about parallel processing.
- **Incorrect Assumptions**: Assuming actions can overlap when they cannot, particularly with Type 1
actions.
- **Miscalculations**: Errors in calculating the end times of actions, especially when transitioning
between tasks.

Correction Strategies
- **Revisiting Assumptions**: The model frequently revisits its assumptions about action types and
dependencies to correct errors.
- **Adjusting Calculations**: It recalculates the timing of actions to ensure they fit within the
constraints.
- **Re-evaluating Premises**: The model re-evaluates the sequence of actions to find a more efficient
order.

8304

Cumulative Learning
- **Common Errors**: Misunderstanding of Type 1 and Type 2 actions, incorrect sequencing of tasks, and
miscalculations of action durations.
- **Correction Strategies**: Reassessing action dependencies, recalculating action timings, and
reordering tasks to avoid conflicts.

Refinement Mechanism
- **Heuristic Refinements**:
- **Action Type Clarification**: Clearly define and differentiate between Type 1 and Type 2 actions
to prevent overlap errors.
- **Dependency Mapping**: Create a visual map of dependencies to better understand the sequence of
actions.
- **Time Management**: Implement a time-tracking mechanism to accurately calculate the start and end
times of actions.
- **Parallel Processing Awareness**: Develop a heuristic to identify when parallel processing is
possible and when it is not.

Output Format
- **Common Errors**:
- Misunderstanding of action types.
- Incorrect sequencing of tasks.
- Miscalculations of action durations.

- **Correction Strategies**:
- Reassessing action dependencies.
- Recalculating action timings.
- Reordering tasks to avoid conflicts.

- **Heuristic Refinements**:
- Clarify action types.
- Map dependencies visually.
- Implement time-tracking.
- Develop parallel processing awareness.

By integrating these insights, future reasoning processes can be refined to minimize errors and
improve efficiency in task completion.

8305

E Evaluation Metrics for
TimeArena-Static

• Full Completion Rate (FCR) The rate of
completely correct samples:

FCR =

∑
s∈S complete(s, ps)

|S| (1)

where S is the set of all samples, each sample
being a set of tasks and complete(.) returns 1
when all tasks in the sample s are completed
by the given plan ps corresponding to the sam-
ple.

• Task Completion Rate (TCR) The rate of
completely correct tasks:

TCR =

∑
s∈S

∑
t∈s complete({t}, ps)∑

s∈S |s| (2)

• Average Progress (AP) The average of
progress percentage achieved per task:

AP =

∑
s∈S

∑
t∈s progress(t, ps)∑

s∈S |s| (3)

where progress returns a progress score out
of 100 for the percentage of task completed
successfully weighted in terms of duration of
successfully completed subtasks

• Average Completion Time (ACT) The aver-
age time taken for completing tasks success-
fully:

ACT =

∑
i∈Ct

Ti

|Ct|
(4)

where Ct is the set of completed tasks and Ti

is the time at which task i was completed.

• Progress Speed (PS) Sum of highest progress
scores achieved by each task divided by the
sum of time taken to achieve them.

PS =

∑
s∈S

∑
t∈s progress(t, ps)∑
s∈S

∑
t∈s Tt

(5)

• Idle Violation Rate Total number of times an
action was initiated but was invalid, because
another non-idle task was underway, across
all plans.

• Dependency Violation Rate Total number of
times an action was initiated but was invalid,
because its prerequisite sub-task(s) was(were)
not completed, across all plans.

F Error Analysis

We conducted a detailed error analysis of LRPLAN

across both the TravelPlanner and TimeArena-
Static domains (see Tables 8 and 9. Also, Ta-
ble 10 shows evaluation across difficulty levels for
TimeArena.

F.1 TravelPlanner

In the TravelPlanner domain, the most frequent
error involved violations of the “minimum nights
stay” constraint, where the generated plans did not
always ensure that each accommodation met the re-
quired minimum stay. Additionally, LRPLAN occa-
sionally failed to enforce commonsense constraints
regarding transportation modes, sometimes includ-
ing both self-driving and flight segments within a
single itinerary which is an impractical scenario
since a self-driven vehicle cannot be abandoned
mid-trip. The system also exhibited difficulties in
consistently honoring traveler cuisine preferences
at restaurants, particularly when balancing these
preferences with budget constraints.

Both variants of LRPLAN (GPT-4o + o3-mini
and DeepSeek-V3 + DeepSeek-R1) demonstrate
balanced performance across commonsense and
hard constraints. This suggests that the multi-agent
collaboration and LLM-LRM synergy effectively
generalize across constraint types, unlike other
strategies that tend to skew toward one. Strategies
like Direct Prompting and Chain of Thought with
GPT-4o achieve high scores on commonsense con-
straints (e.g., CI, DA, DR), but their hard constraint
performance is weak, especially on Budget (B),
Cuisine (C), and Room Type (RT). This indicates
that while these models can reason well with gen-
eral knowledge, they lack precision in satisfying
rigid, domain-specific rules.

AutoBuild with o3-mini and DeepSeek-R1
shows relatively better performance on hard con-
straints, particularly Budget and Room Rule. How-
ever, it lags in commonsense reasoning, suggesting
that its structured planning may come at the cost of
flexibility or contextual understanding.

Despite high scores on some commonsense con-
straints (e.g., DA, RCR, WCC), Multi-Agent De-
bate strategies show very poor hard constraint
adherence and low pass rates. This suggests
that while debate mechanisms may surface di-
verse ideas, they struggle to converge on coherent,
constraint-satisfying plans.

The Pass Rate metric, which reflects overall plan

8306

Figure 3: TravelPlanner: Trade-off between common-
sense and hard constraint performance, with bubble size
representing the final pass rate

validity, is highest for LRPLAN, reinforcing that
its architecture not only performs well on individ-
ual constraints but also produces consistently valid
plans. Notably, even when individual constraint
scores are close, LRPLAN’s integration and refine-
ment steps give it a clear edge in final outcomes.

F.2 TimeArena-Static
For the TimeArena-Static domain, our analysis re-
vealed that while LRPLAN achieves strong results
in the Cooking subdomain and performs reasonably
well in Laboratory tasks, its efficiency in the House-
hold subdomain remains comparable to baseline
methods and is suboptimal. Also, there is room for
improvement in reducing the average time required
for successful task completion.

Cooking domain is the hardest for baselines.
Most methods, especially GPT-4o and DeepSeek-
V3, show very low performance in Cooking, sug-
gesting that this domain requires more nuanced
reasoning and constraint satisfaction. LRPLAN’s
strong performance here suggests its meta-agent-
driven refinement is particularly effective in re-
covering from initial plan errors. Despite being a
widely used prompting strategy, Chain of Thought
performs poorly, especially in FCR (e.g., <14%
across domains). This highlights that reasoning
traces alone are insufficient without structured cor-
rection mechanisms like those in LRPLAN.

Table 10 shows evaluation across difficulty levels
for TimeArena. LRPLAN maintains high TCR and
FCR across Easy, Medium, and Hard tasks, unlike
other strategies that show steep performance drops
as difficulty increases.

G Analyzing AutoBuild

AutoBuild is a multi-agent system where agents
are peers. Let us consider two of the agents as
first agent and final agent. First agent is the agent
which is the first agent which generates a plan draft.

Final agent is the one that outputs the final plan.
Tables 12 and 13 show performance of the first
agent and final agent output using AutoBuild with
various LLMs and LRMs for TravelPlanner and
TimeArena-Static respectively.

Table 12 shows that for GPT-4o, the final agent
does not improve over the first. Commonsense
slightly drops, and hard constraint scores remain
flat or marginally improve. This suggests lim-
ited benefit from iterative refinement in this setup.
DeepSeek-R1, however, shows a notable jump in
final agent performance, especially in macro-level
constraint satisfaction and final pass rate. This
implies that iterative reasoning or planning helps
DeepSeek-R1 course-correct and generalize better.

Table 13 also shows that GPT-4o’s final agent
shows a regression in both completion rates (Task
CR drops by ∼5%, Full CR by ∼8%) and aver-
age progress (from 73.59 to 68.07), despite a slight
improvement in completion time (CT). This sug-
gests that the final agent may be over-optimizing
for speed, sacrificing task completeness and con-
straint adherence. DeepSeek-V3 shows virtually
no change across all metrics, suggesting that the
final agent adds little value, possibly due to limited
internal state evolution or lack of effective feed-
back incorporation. DeepSeek-R1 shows mixed
signals: while completion rates improve slightly,
violations increase, and progress metrics decline.
This may indicate instability in refinement, where
the final agent introduces new errors while trying
to optimize.

H Analyzing Multi-Agent Debate

Multi-Agent Debate is also a multi-agent system
where agents are peers. Tables 14 and 15 show
performance of the first agent and final agent out-
put using Multi-Agent Debate with various LLMs
and LRMs for TravelPlanner and TimeArena-Static
respectively.

Unlike Autobuild, Table 14 shows that Multi-
Agent Debate leads to significant improvements
across metrics from first to final agent across mod-
els. GPT-4o shows modest improvements across
all metrics, with steady gains in commonsense rea-
soning, constraint satisfaction, and final task suc-
cess. o3-mini exhibits the most dramatic gains,
especially in satisfying hard constraints, while also
improving in commonsense reasoning and over-
all success. DeepSeek-V3 demonstrates balanced
progress, with strong improvements in both com-

8307

Strategy LLM Commonsense Constraints ↑ Hard Constraints ↑ Final

CI DA DR MNS NCT RCR WCC B C RR RT T Pass Rate

Direct Prompting GPT-4o 88.33 100.00 95.00 60.00 73.33 84.44 98.33 30.00 9.44 10.00 26.11 21.67 3.89
Direct Prompting o3-mini 98.89 99.44 48.89 49.44 73.33 94.44 95.00 41.67 16.67 27.22 21.67 19.44 8.33
Chain of thought GPT-4o 98.33 100.00 96.67 57.22 73.33 81.11 98.33 33.33 17.22 10.56 25.00 20.56 7.78
AutoBuild GPT-4o 93.89 97.78 91.67 56.67 72.22 93.89 97.78 46.67 18.33 19.44 30.00 26.11 12.78
AutoBuild o3-mini 96.67 96.67 36.67 41.11 72.22 96.67 99.44 56.67 21.11 34.44 31.67 25.56 5.56
Multi-Agent Debate GPT-4o 16.11 99.44 90.00 66.11 73.33 99.44 100.00 7.78 3.89 4.44 3.33 3.89 2.78
Multi-Agent Debate o3-mini 87.22 96.11 16.67 74.44 72.22 96.67 98.33 45.56 14.44 25.56 26.67 20.00 3.33
ExpeL GPT-4o 82.50 84.17 82.50 60.83 70.00 80.00 84.17 35.83 45.45 36.73 68.18 70.59 10.00
ExpeL o3-mini 56.67 58.33 50.00 28.33 52.50 55.83 57.50 38.33 45.45 59.18 68.18 61.76 8.89
LRPLAN (ours) GPT-4o + o3-mini 98.33 99.44 86.67 66.11 74.44 90.56 99.44 50.56 22.78 33.89 31.67 27.22 17.78

Direct Prompting DeepSeek-V3 97.78 86.11 80.00 35.56 72.22 97.22 98.33 32.22 12.22 18.33 21.11 20.56 4.44
Direct Prompting DeepSeek-R1 94.44 95.00 57.22 38.89 70.00 95.00 95.00 53.33 15.56 25.00 24.44 22.22 11.11
Chain of thought DeepSeek-V3 97.78 100.00 81.67 47.22 71.11 99.44 47.78 14.44 6.67 2.22 8.89 5.56 2.22
AutoBuild DeepSeek-V3 97.78 92.78 76.67 38.33 81.67 95.00 99.44 38.33 11.67 16.67 21.11 20.56 5.00
AutoBuild DeepSeek-R1 85.00 98.33 61.11 54.44 76.11 97.22 98.33 55.56 15.56 20.00 17.78 13.89 11.67
Multi-Agent Debate DeepSeek-V3 48.89 100.00 90.56 43.89 71.11 98.33 100.00 18.89 11.67 8.89 8.89 10.56 6.11
Multi-Agent Debate DeepSeek-R1 27.22 97.78 83.33 72.22 72.22 94.44 97.78 11.67 2.22 5.00 2.78 3.33 6.11
ExpeL DeepSeek-V3 88.33 88.33 83.33 46.67 86.67 88.33 88.33 35.00 35.29 62.50 86.36 94.12 4.44
LRPLAN (ours) DeepSeek-V3 + DeepSeek-R1 97.22 99.44 83.33 45.00 73.89 99.44 99.44 74.44 20.56 24.44 25.00 23.89 21.67

Table 8: Evaluation of different strategies across constraint categories. Abbreviations: CI: Complete Information,
DA: Diverse Attractions, DR: Diverse Restaurants, MNS: Minimum Nights Stay, NCT: Non-conf. Transportation,
RCR: Reasonable City Route, WCC: Within Current City, B: Budget, C: Cuisine, RR: Room Rule, RT: Room Type,
T: Transportation. All constraint values are reported as pass rates (%).

Strategy LLM Household Cooking Laboratory Total

TCR ↑ FCR ↑ TCR ↑ FCR ↑ TCR ↑ FCR ↑ TCR ↑ FCR ↑

Direct Prompting GPT-4o 47.62 28.57 4.76 4.76 59.52 38.10 37.30 23.81
Direct Prompting o3-mini 64.29 38.10 30.95 42.86 90.48 85.71 61.90 55.56
Chain of thought GPT-4o 21.43 9.52 2.38 0.00 35.71 19.05 19.84 9.52
AutoBuild GPT-4o 25.64 19.05 0.00 0.00 69.05 47.62 31.71 22.22
AutoBuild o3-mini 69.05 47.62 12.2 14.29 95.24 95.24 59.20 52.38
Multi-Agent Debate GPT-4o 47.62 23.81 4.76 0.00 57.14 38.10 36.51 20.63
Multi-Agent Debate o3-mini 80.95 61.90 28.57 33.33 95.24 90.48 68.25 61.90
ExpeL GPT-4o 40.48 23.81 0.00 0.00 38.10 19.05 26.19 14.29
ExpeL o3-mini 78.57 57.14 66.67 66.67 97.62 95.24 80.95 73.01
LRPLAN (ours) GPT-4o + o3-mini 71.43 52.38 88.10 85.71 90.48 85.71 83.33 74.60

Direct Prompting DeepSeek-V3 11.90 19.05 7.14 9.52 28.57 14.29 15.87 14.29
Direct Prompting DeepSeek-R1 40.74 9.52 38.71 28.57 50.00 38.10 43.75 25.40
Chain of thought DeepSeek-V3 28.57 14.29 21.43 14.29 45.24 23.81 31.75 17.46
AutoBuild DeepSeek-V3 21.43 23.81 16.67 14.29 50.00 38.10 29.37 25.40
AutoBuild DeepSeek-R1 33.33 9.52 33.33 23.81 78.57 71.43 48.41 34.92
Multi-Agent Debate DeepSeek-V3 11.90 14.29 11.90 14.29 21.43 19.05 15.08 15.87
Multi-Agent Debate DeepSeek-R1 25.64 9.52 38.24 23.81 58.97 42.86 41.07 25.40
ExpeL DeepSeek-V3 59.52 42.86 28.57 19.05 61.90 33.33 50.00 31.75
LRPLAN (ours) DeepSeek-V3 + DeepSeek-R1 76.19 57.14 54.76 52.38 73.81 52.38 68.25 53.97

Table 9: Evaluation of different task types in TimeArena-Static Abbreviations: FCR: Full Completion Rate, TCR:
Task Completion Rate. All values are reported as pass rates (%).

monsense and constraint metrics, leading to a no-
table increase in final task success. DeepSeek-R1
also shows solid gains, particularly in final success
rate and constraint handling, with consistent im-
provements in commonsense reasoning. Overall,
all models benefit from the multi-agent debate pro-
cess, with o3-mini and DeepSeek-V3 standing out
for their substantial advancements.

Table 15 shows that GPT-4o has an increase in
idle and departure violations, with slight improve-
ments in completion time and progress speed, but a
decrease in average progress and completion rates.
o3-mini exhibits a reduction in both idle and depar-
ture violations, with slight improvements in com-
pletion time and progress speed, and notable in-
creases in average progress and completion rates.

DeepSeek-V3 shows a slight increase in idle viola-
tions and a decrease in departure violations, with
significant improvements in completion time and
progress speed, but a drop in average progress and
task completion rate. DeepSeek-R1 experiences in-
creases in both idle and departure violations, with
minor gains in completion time and progress speed,
but declines in average progress and completion
rates. Overall, o3-mini demonstrates the most con-
sistent and substantial improvements, while the
other models show mixed outcomes with both gains
and regressions.

I TimeArena Case Study

Fig. 4 shows an example from TimeArena-Static
dataset. Baselines like AutoBuild and Multi-Agent

8308

Strategy LLM Easy Medium Hard Total

TCR ↑ FCR ↑ TCR ↑ FCR ↑ TCR ↑ FCR ↑ TCR ↑ FCR ↑

Direct Prompting GPT-4o 42.86 42.86 40.48 23.81 33.33 04.76 37.30 23.81
Chain of thought GPT-4o 19.05 19.05 26.19 09.52 15.87 00.00 19.84 09.52
AutoBuild GPT-4o 33.33 33.33 35.71 19.05 28.33 14.28 31.71 22.22
Multi-Agent Debate GPT-4o 33.33 33.33 38.10 19.05 36.51 09.52 36.51 20.63
ExpeL GPT-4o 28.57 28.57 28.57 14.29 23.81 0.00 26.19 14.29
Direct Prompting o3-mini 95.24 95.24 59.52 47.62 52.38 23.81 61.90 55.56
AutoBuild o3-mini 75.00 71.43 61.90 52.38 52.38 33.33 59.20 52.38
Multi-Agent Debate o3-mini 85.71 85.71 64.28 57.14 65.08 42.86 68.25 61.90
ExpeL o3-mini 95.24 95.24 76.19 66.67 79.37 57.14 80.95 73.01
LRPLAN (ours) GPT-4o + o3-mini 90.48 90.48 83.33 71.43 80.95 61.90 83.33 74.60

Direct Prompting DeepSeek-V3 42.86 42.86 14.28 00.00 07.94 00.00 15.87 14.29
Chain of thought DeepSeek-V3 23.81 23.81 42.86 19.05 26.98 09.52 31.75 17.46
AutoBuild DeepSeek-V3 42.86 42.86 03.33 19.05 22.22 14.28 29.37 25.40
Multi-Agent Debate DeepSeek-V3 42.86 42.86 14.28 04.76 06.35 00.00 15.08 15.87
ExpeL DeepSeek-V3 42.86 42.86 61.90 38.10 44.44 14.29 50.00 31.75
Direct Prompting DeepSeek-R1 57.89 52.38 38.46 09.52 41.18 14.28 43.75 25.40
AutoBuild DeepSeek-R1 52.38 52.38 50.00 28.57 46.03 23.81 48.41 34.92
Multi-Agent Debate DeepSeek-R1 47.62 47.62 50.00 23.81 25.40 04.76 41.07 25.40
LRPLAN (ours) DeepSeek-V3 + R1 80.95 80.95 71.43 52.38 61.90 28.57 68.25 53.97

Table 10: Evaluation of TimeArena-Static across difficulty levels. TCR = Task Completion Rate, FCR = Full
Completion Rate (all in %).

Strategy LLM Easy Micro Medium Micro Hard Micro Full Micro

Commonsense ↑ Hard ↑ Commonsense ↑ Hard ↑ Commonsense ↑ Hard ↑ Pass Rate ↑

Direct Prompting GPT-4o 84.38 45.00 82.08 35.83 88.33 43.75 3.89
Chain of thought GPT-4o 84.58 46.67 83.33 45.00 87.92 45.83 7.78
AutoBuild GPT-4o 84.58 60.00 85.42 54.17 90.42 63.33 12.78
Multi-Agent Debate GPT-4o 78.75 16.67 76.88 6.25 82.71 11.25 2.78
ExpeL GPT-4o 78.75 37.50 80.00 52.50 73.44 45.62 10.00
Direct Prompting o3-mini 80.21 68.33 76.46 49.17 79.79 53.33 8.33
AutoBuild o3-mini 78.12 83.33 76.88 63.33 81.88 74.58 5.56
Multi-Agent Debate o3-mini 76.88 58.33 73.33 45.00 80.83 62.08 3.33
ExpeL o3-mini 37.50 42.50 55.62 50.00 62.50 52.50 8.88
LRPLAN (ours) GPT-4o + o3-mini 89.38 60.00 84.79 64.17 91.67 77.50 17.78

Direct Prompting DeepSeek-V3 80.42 36.67 80.83 44.17 81.25 47.08 4.44
Chain of thought DeepSeek-V3 70.00 23.33 73.96 20.83 70.83 12.08 2.22
AutoBuild DeepSeek-V3 81.88 48.33 83.33 43.33 83.96 47.50 5.00
Multi-Agent Debate DeepSeek-V3 73.96 20.00 77.29 24.17 79.79 27.08 6.11
ExpeL DeepSeek-V3 80.00 60.00 81.88 47.50 83.75 57.50 4.44
Direct Prompting DeepSeek-R1 78.12 68.33 73.75 53.33 80.21 61.67 11.11
AutoBuild DeepSeek-R1 82.92 78.33 80.62 63.33 80.42 40.83 11.67
Multi-Agent Debate DeepSeek-R1 76.88 21.67 73.54 10.83 77.50 11.88 6.11
LRPLAN (ours) DeepSeek-V3 + R1 84.79 88.33 83.75 69.17 89.17 69.58 21.67

Table 11: Evaluation of TravelPlanner across difficulty levels (all in %).

Commonsense ↑ Hard Constraints ↑ Final

Micro Macro Micro Macro Pass Rate ↑

GPT-4o
first agent 88.13 37.78 59.52 34.44 12.78
final agent 86.81 35.56 60.24 36.67 12.78

o3-mini
first agent 79.86 15.56 78.33 60.00 7.22
final agent 78.96 13.33 72.62 54.44 5.56

DeepSeek-V3
first agent 83.61 21.11 45.00 22.78 4.44
final agent 83.06 21.11 46.43 26.11 5.00

DeepSeek-R1
first agent 81.32 13.33 53.81 47.78 7.78
final agent 81.32 18.89 52.62 50.56 11.67

Table 12: AutoBuild: First Agent Vs Final for Trav-
elPlanner

Debate fail to satisfy implicit constraints like “sub-
task dependencies” and “non-idle state”. Our pro-
posed method, LRPLAN, generates an accurate
plan satisfying all constraints with the help of syn-
ergistic collaboration between planner LLM and

Violations ↓ Progress Completion Rate ↑
#Idle
Viol.

#Dep.
Viol.

CT ↓ Prog.
speed ↑

Avg
Prog. ↑

Task
CR

Full
CR

GPT-4o
first agent 53 65 28.42 2.75 73.59 36.59 30.16
final agent 70 71 27.62 2.80 68.07 31.71 22.22

o3-mini
first agent 3 52 26.43 2.87 86.70 56.45 46.03
final agent 0 49 27.96 2.62 88.75 59.20 52.38

DeepSeek-V3
first agent 108 78 29.59 2.65 60.95 29.84 25.40
final agent 109 74 29.76 2.62 61.12 29.37 25.40

DeepSeek-R1
first agent 36 34 26.54 3.32 82.01 47.90 30.16
final agent 51 51 27.66 3.15 79.39 48.41 34.92

Table 13: AutoBuild: First Agent Vs Final for
TimeArena-Static

refiner LRM.

8309

Task: Prepare and bake a cheese and tomato pizza.
Valid actions with time required for completion: -wash dish: 1 min -pick dough: 1 min -chop dough: 3 min -add dough to dish: 2
min -pick cheese: 2 min -chop cheese: 1 min -add cheese to dish: 4 min
-pick tomato: 3 min -chop tomato: 2 min -add tomato to dish: 1 min -bake dish in oven: 10 min

Multi-Agent Debate AutoBuild LRPlan (Ours)

0: wash dish 1: pick dough 2: chop dough 3:
wait 4: wait 5: add dough to dish 6: wait 7:
pick cheese 8: wait 9: chop cheese 10: add
cheese to dish 11: wait 12: wait 13: wait 14:
pick tomato 15: wait 16: chop tomato 17: wait
18: add tomato to dish 19: bake dish in oven
20: wait 21: wait 22: wait 23: wait 24: wait 25:
wait 26: wait 27: wait 28: wait 29: wait

0: wash dish 1: pick dough 2: chop dough 3:
wait 4: wait 5: add dough to dish 6: pick
cheese 7: wait 8: chop cheese 9: add cheese to
dish 10: pick tomato 11: wait 12: wait 13: chop
tomato 14: add tomato to dish 15: bake dish in
oven 16: wait 17: wait 18: wait 19: wait 20:
wait 21: wait 22: wait 23: wait 24: wait 25:
wait

0: wash dish 1: pick dough 2: chop dough 3:
wait 4: wait 5: add dough to dish 6: wait 7:
pick cheese 8: wait 9: chop cheese 10: add
cheese to dish 11: wait 12: wait 13: wait 14:
pick tomato 15: wait 16: wait 17: chop tomato
18: wait 19: add tomato to dish 20: bake dish
in oven 21: wait 22: wait 23: wait 24: wait 25:
wait 26: wait 27: wait 28: wait 29: wait

Action 'chop tomato' initiated at time
16 while a non-idle action is underway

Non-idle action 'add cheese to dish’
started at time 9 before dependency
'chop cheese' completed.

Problem Input

Planner (LLM)

Refiner (LRM)

Patterns

Rules

Insights

Figure 4: Example from TimeArena-Static dataset: Baselines like AutoBuild and Multi-Agent Debate fail to satisfy
implicit constraints like “sub-task dependencies” and “non-idle state”. Our proposed method, LRPLAN, generates
an accurate plan satisfying all constraints with the help of synergistic collaboration between planner LLM and
refiner LRM.

Commonsense ↑ Hard Constraints ↑ Final

Micro Macro Micro Macro Pass Rate ↑

GPT-4o
first agent 75.42 3.89 4.29 2.22 1.11
final agent 79.44 7.78 10.00 6.67 2.78

o3-mini
first agent 69.86 1.11 0.48 1.11 1.11
final agent 77.01 7.78 56.67 40.56 3.33

DeepSeek-V3
first agent 70.98 3.33 7.62 4.44 1.11
final agent 77.01 14.44 25.24 15.00 6.11

DeepSeek-R1
first agent 69.44 2.77 2.86 2.22 1.67
final agent 75.97 8.33 10.71 11.11 6.11

Table 14: Multi-Agent Debate: First Agent Vs Final for
TravelPlanner

Violations ↓ Progress Completion Rate ↑
#Idle
Viol.

#Dep.
Viol.

CT ↓ Prog.
speed ↑

Avg
Prog. ↑

Task
CR

Full
CR

GPT-4o
first agent 30 70 28.35 2.52 74.25 40.48 31.75
final agent 46 73 27.74 2.71 71.23 36.51 20.63

o3-mini
first agent 3 47 28.14 2.83 88.46 63.49 57.14
final agent 0 41 28.30 2.90 92.53 68.25 61.90

DeepSeek-V3
first agent 105 94 26.41 2.34 49.69 17.46 14.29
final agent 107 92 23.63 2.77 47.94 15.08 15.87

DeepSeek-R1
first agent 33 37 26.30 3.43 81.54 50.96 36.51
final agent 37 55 26.24 3.32 75.77 41.07 25.40

Table 15: Multi-Agent Debate: First Agent Vs Final for
TimeArena-Static

8310

