ReMamba: Equip Mamba with Effective Long-Sequence Modeling

Danlong Yuan, Jiahao Liu, Bei Li, Huishuai Zhang, Jingang Wang, Xunliang Cai, Dongyan Zhao


Abstract
While the Mamba architecture demonstrates superior inference efficiency and competitive performance on short-context natural language processing (NLP) tasks, empirical evidence suggests its capacity to comprehend long contexts is limited compared to transformer-based models. In this study, we investigate the long-context efficiency issues of the Mamba models and propose ReMamba, which enhances Mamba’s ability to comprehend long contexts. ReMamba incorporates selective compression and adaptation techniques within a two-stage re-forward process, incurring minimal additional inference costs overhead. Experimental results on the LongBench and L-Eval benchmarks demonstrate ReMamba’s efficacy, improving over the baselines by 3.2 and 1.6 points, respectively, and attaining performance almost on par with same-size transformer models.
Anthology ID:
2025.findings-emnlp.361
Volume:
Findings of the Association for Computational Linguistics: EMNLP 2025
Month:
November
Year:
2025
Address:
Suzhou, China
Editors:
Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, Violet Peng
Venue:
Findings
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
6830–6840
Language:
URL:
https://preview.aclanthology.org/name-variant-enfa-fane/2025.findings-emnlp.361/
DOI:
10.18653/v1/2025.findings-emnlp.361
Bibkey:
Cite (ACL):
Danlong Yuan, Jiahao Liu, Bei Li, Huishuai Zhang, Jingang Wang, Xunliang Cai, and Dongyan Zhao. 2025. ReMamba: Equip Mamba with Effective Long-Sequence Modeling. In Findings of the Association for Computational Linguistics: EMNLP 2025, pages 6830–6840, Suzhou, China. Association for Computational Linguistics.
Cite (Informal):
ReMamba: Equip Mamba with Effective Long-Sequence Modeling (Yuan et al., Findings 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/name-variant-enfa-fane/2025.findings-emnlp.361.pdf
Checklist:
 2025.findings-emnlp.361.checklist.pdf