ReMamba: Equip Mamba with Effective Long-Sequence Modeling
Danlong Yuan, Jiahao Liu, Bei Li, Huishuai Zhang, Jingang Wang, Xunliang Cai, Dongyan Zhao
Abstract
While the Mamba architecture demonstrates superior inference efficiency and competitive performance on short-context natural language processing (NLP) tasks, empirical evidence suggests its capacity to comprehend long contexts is limited compared to transformer-based models. In this study, we investigate the long-context efficiency issues of the Mamba models and propose ReMamba, which enhances Mamba’s ability to comprehend long contexts. ReMamba incorporates selective compression and adaptation techniques within a two-stage re-forward process, incurring minimal additional inference costs overhead. Experimental results on the LongBench and L-Eval benchmarks demonstrate ReMamba’s efficacy, improving over the baselines by 3.2 and 1.6 points, respectively, and attaining performance almost on par with same-size transformer models.- Anthology ID:
- 2025.findings-emnlp.361
- Volume:
- Findings of the Association for Computational Linguistics: EMNLP 2025
- Month:
- November
- Year:
- 2025
- Address:
- Suzhou, China
- Editors:
- Christos Christodoulopoulos, Tanmoy Chakraborty, Carolyn Rose, Violet Peng
- Venue:
- Findings
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 6830–6840
- Language:
- URL:
- https://preview.aclanthology.org/name-variant-enfa-fane/2025.findings-emnlp.361/
- DOI:
- 10.18653/v1/2025.findings-emnlp.361
- Cite (ACL):
- Danlong Yuan, Jiahao Liu, Bei Li, Huishuai Zhang, Jingang Wang, Xunliang Cai, and Dongyan Zhao. 2025. ReMamba: Equip Mamba with Effective Long-Sequence Modeling. In Findings of the Association for Computational Linguistics: EMNLP 2025, pages 6830–6840, Suzhou, China. Association for Computational Linguistics.
- Cite (Informal):
- ReMamba: Equip Mamba with Effective Long-Sequence Modeling (Yuan et al., Findings 2025)
- PDF:
- https://preview.aclanthology.org/name-variant-enfa-fane/2025.findings-emnlp.361.pdf