The Green KNIGHT: Green Machine Translation with
Knowledge-Distilled, Narrow, Inexpensive, Greedy, Hybrid Transformers

Andreas Guta*!

Frithjof Petrick*!

Peter Polak!~>

! AppTek, apptek.ai, Aachen, Germany
2Charles University, Czech Republic
{aguta, fpetrick}@apptek.com, polak@ufal.mff.cuni.cz

Abstract

State-of-the-art neural machine translation
(NMT) models deliver high-quality translations
at the expense of high inference latency and en-
ergy consumption, requiring vast GPU fleets
and contributing significantly to carbon emis-
sions. To democratize and “green” NMT, we
introduce the Green KNIGHT, a hardware-
agnostic collection of recipes to optimize trans-
lation speed and energy consumption, with
only a moderate trade-off in quality. On high-
resource En—De and En— Ko benchmarks, we
achieve up to 117x CPU speedup and 98.2%
energy savings with 9% relative BLEU decrease.
On WMT 2014 En—De and En—Fr bench-
marks, we obtain up to 140x speedup with
98.7% energy savings, while staying within
10-12% relative BLEU decrease. Our results
demonstrate that efficient and environmentally
conscious NMT can be realized through op-
timizations built on well-understood, off-the-
shelf techniques with no custom low-level code
required, making our approach immediately de-
ployable in real-world translation pipelines.

1 Introduction

Neural Machine Translation (NMT) has rapidly
become the standard for automated language trans-
fer, achieving human-competitive fluency and ade-
quacy across dozens of language pairs with Trans-
former architectures (Vaswani et al., 2017). Most
research aims at improving model performance,
which is typically achieved with larger and in par-
ticular deeper models whose inference time and
energy consumption grow significantly due to the
quadratic dependence on target length of the au-
toregressive decoder and high cost of beam search.

As shown in Figure 1, the conventional Trans-
former ‘big’ model can spend over 95% of its
batch runtime in the decoder. This imbalance not
only throttles throughput but also drives up energy

“Equal contribution.

Vanilla Transformer runtime

encoder: 100 ms decoder: 2500 ms

x generated target tokens

Optimized Green KNIGHT runtime

encoder: 32 ms decoder: 24 ms

~ v

x generated target tokens

Figure 1: Runtime breakdown for the vanilla Trans-
former (100 ms encoder + 2500 ms decoder for a single
batch, 95% spent in the decoder) versus our optimized
Green KNIGHT model. By shifting the workload to-
ward the encoder (32 ms) and drastically reducing de-
coder cost (24 ms), our design ultimately yields 117 x
CPU speedup and 98.2% energy savings for En—De
(unconstrained).

consumption. Recent years have seen large lan-
guage models (LLMs) surpass traditional Trans-
former models in translation quality (Kocmi et al.,
2024). However, LLMs tend to be orders of mag-
nitude larger and more expensive to operate than
Transformers, which is not matched by the gains
in quality. This heavy resource burden renders
LLM-based translation even less sustainable for
most enterprises and hinders broader deployment.
In contrast, we aim at NMT with a better quality-
speed/energy trade-off than recent LLMs and there-
fore focus on improving encoder-decoder models.

Parallel to our goal of making machine trans-
lation more efficient, we want to reduce the eco-
logical footprint of machine translation systems in
order to reduce carbon emissions—an issue which
has been advocated before in the context of gen-
eral Al (Strubell et al., 2019; Schwartz et al., 2020)

5916

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 59165931
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://www.apptek.ai

and NMT systems in particular (Shterionov and
Vanmassenhove, 2023), but received only minor
attention by the broad NMT community. Hence,
we ask the question: How “green” can machine
translation become while still being practicable?
To tackle these issues, we aim at gaining as
much translation speed and energy savings as
possible while trying not to lose more than 10%
relative translation quality measured in BLEU
and COMET or BLEURT. As a solution we
introduce the Green KNIGHT, a recipe to build
hardware-agnostic Transformer models for green
machine translation. It combines inference-time
optimizations such as greedy decoding and
dynamic 8-bit quantization with architectural
changes to decrease the decoder workload. In
particular, we investigate fast hybrid models with
RNN (Cho et al., 2014; Bahdanau et al., 2015) and
SSRU decoders (Kim et al., 2019), augmented
with knowledge distillation (Kim and Rush, 2016).

The main contributions of our work areas follows:

1. A comprehensive analysis of stacked infer-
ence and architecture optimizations, measur-
ing quality, speed and energy at each step.

2. A comparison of hybrid translation models
under these optimizations and optionally com-
bined with knowledge distillation.

3. Extensive evaluations on real-life Eng-
lish—+German and English—Korean tasks,
where we achieve translation speedups of up
to 117x with 98.2% energy savings. On
WMT English—French, we gain a 140x
speedup and 98.7% energy savings.

The final model achieves an 18 x speedup on CPU
over the baseline model run on GPU. When ap-
plying only greedy search and quantization, run-
ning the model on CPU is already twice as fast as
on GPU, with relative drops of only 2.5% BLEU
and 0.6% COMET, making it a viable deployment
option even in resource-constrained environments.
Our work proves that easy-to-implement methods
can make MT substantially more time- and energy-
efficient, encouraging more research teams to con-
sider Green AI (Schwartz et al., 2020) when devel-
oping and deploying NMT systems.

2 Related Work

Kim et al. (2019) introduce a suite of model-
ing and engineering improvements for fast NMT.

They enhance teacher-student training with multi-
agent dual learning and noisy back-translation,
and replace self-attention in the decoder with a
lightweight recurrent unit (SSRU), tying weights
between decoder layers, thereby reducing param-
eters and improving CPU cache efficiency. Their
inference optimizations include 8-bit quantization,
16-bit GPU inference, and concurrent GPU streams,
all implemented in a custom C++ Marian frame-
work. Their models achieve up to 24x CPU and
14x GPU speedups over their 2018 baselines with-
out BLEU loss. In contrast, our work uses standard
PyTorch, explores a broader range of decoder sizes
and employs a simpler knowledge distillation ap-
proach. We also explore more RNN decoder vari-
ants and do not rely on C++-specific optimizations
or weight tying.

Hsu et al. (2020) empirically combine sev-
eral known techniques, including multi-agent dual
learning for distillation, SSRU and AAN de-
coders (Zhang et al., 2018), removal of the de-
coder feed-forward network (FFN), and a deep
encoder—shallow decoder structure (12/1 layers).
They further reduce parameters by pruning atten-
tion heads, achieving 2.2x CPU and 1.7x GPU
speedups with 25% fewer parameters, while match-
ing the Transformer “base” quality. Unlike their
work, we do not focus on parameter reduction, but
rather on maximizing speed and energy efficiency
with minimal quality loss. We systematically eval-
uate various decoder sizes, tune the beam size, and
find that removing the decoder’s FFN is not benefi-
cial in our setting.

Lin et al. (2021) present a combination of simple,
hardware-agnostic techniques for efficient Trans-
former inference, such as tuning the vocabulary
size, using a shallow decoder, pruning attention
heads, dropping the decoder FFN, and factorizing
the output projection. They also employ weight dis-
tillation and “weak” distillation (training without
dropout or label smoothing in the shallow decoder).
Their approach yields a ~ 3.5x speedup without
quality degradation. In contrast, we achieve much
higher speedups (between 84 x and 140x) by per-
mitting small quality degradation and incorporating
RNN-based decoders.

Lin et al. (2023) present an NMT system opti-
mized for mobile deployment through three key
architecture improvements: reducing vocabulary
size instead of using embedding factorization, re-
ducing model width rather than using parameter
sharing, and employing a deep encoder with a

5917

shallow decoder. Combined with knowledge dis-
tillation, dropout removal, and optimization of
integer operations, their 10MB model achieves
a ~ 47x speedup while maintaining 88.4% of
Transformer-big performance, with 99.5% mem-
ory reduction. Their 20MB variant achieves 95.5%
baseline performance with a ~ 27.7x speedup.
Unlike their approach, our work does not require
custom hardware-specific implementations, and we
thoroughly investigate beam size tuning and RNN
decoder alternatives.

3 Transformer Models

Since the introduction of the Transformer (Vaswani
et al., 2017), this network architecture is the
de facto standard for machine translation. The
model can be described as being composed of
two main parts; an encoder which compresses
the input source sentence, and a decoder which
autoregressively—i.e. word-by-word—generates
the hypothesis in the target language. Both, en-
coder and decoder consist of a stack of layers which
transform dense vector-representations of a fixed
model dimension d. The encoder as well as the de-
coder layers consist of a self-attention component,
which scales quadratically in the input sequence
length, as well as a feedforward sub-layer. In addi-
tion, the decoder also has a cross-attention compo-
nent of similar complexity as the self-attention.
Despite encoder and decoder having a com-
parable total number of floating-point operations
(roughly weighted 2:3 due to the cross-attention
in the decoder), the computations of the encoder
can be parallelized while the decoder in this archi-
tecture is inherently autoregressive. This effect is
further amplified by beam search, and in our case
leads to 95% of the total computation time being
spent in the decoder, as presented in Figure 1.

4 Inference Optimizations

We commence with optimizing inference as it is
independent of any system, i.e. it introduces no re-
training burden and can be adopted with minimal
engineering effort.

4.1 Greedy Search

To begin with, we reduce the number of candidate
hypotheses per time step by shrinking the beam
size down to 1. Moreover, by utilizing greedy de-
coding, we eliminate all overhead due to beam
management.

4.2 Quantization

The most expensive operations in the Transformer
are vector-matrix multiplications. In our measure-
ments, they take around 55% of the total baseline
computation time.

These operations can be sped up by comput-
ing them in 8-bit integer arithmetic, with hard-
ware acceleration on recent CPUs (Bhandare et al.,
2019). We apply a dynamic post-training quanti-
zation scheme which computes ranges of the ac-
tivations on-the-fly during inference (Tang et al.,
2024) and apply it to all major vector-matrix mul-
tiplications: the feedforward blocks, the attention
key/value/query computation and projection, the
softmax, and the RNN cells (in case of the SSRU
and LSTM experiments).

5 Architectural Optimizations

As our baseline, we adopt the state-of-the-art Trans-
former ‘big’ model, in which the encoder and de-
coder share the same depth. As previously shown
in Figure 1, the decoder dominates the encoder in
inference runtime. Hence, our focus lies on apply-
ing architectural modifications that shift computa-
tion towards the encoder and thus streamline the
decoder, as illustrated in Figure 2.

5.1 Layer Reallocation & Reduction

At first, we shift all decoder layers but one to the
encoder, leveraging the parallelism in the encoder.
The reallocation results in a model comprising Lg+
Lp — 1 encoder layers and a single-layer decoder.

Moreover, we empirically investigate the trade-
off between translation quality and efficiency re-
garding translation speed and energy consumption.
Since the mapping between encoder depth and
quality-efficiency ratio is not linear, our focus does
not lie on reducing the encoder to as few layers as
possible, but rather on finding a good optimum.

The combined effect of both steps is illustrated
in Figure 2b. In comparison to the baseline model
(Figure 2a), the resulting model contains only a
shallow single-layer decoder and an encoder that is
significantly less deep.

5.2 Decoder Width Compression

After having shrunk the decoder to just a single
layer (see Figure 2b), we aim at further improving
translation speed by also reducing the decoder hid-
den dimension d to a smaller dimension d’ < d,

5918

%

L

Decoder

6 o o

Encoder

6 o o

Encoder

(a) Baseline model.

(b) Reallocated & reduced layers.

L

Decoder

L

Decoder

6 o o

Encoder

(c) Compressed decoder width.

Figure 2: Architecture optimizations.

as pictured in Figure 2c. Accordingly, we also de-
crease the size of the forward-projections (which
in the baseline was chosen as 4d) to 4d’. As every
component in the Transformer decoder scales with
the model dimension, this reduces the computa-
tional load of the entire decoder.

5.3 Replacing Transformer with Interleaved
RNN Decoder

Finally, we replace the Transformer decoder with a
custom lightweight RNN module. First, we experi-
ment with replacing the self-attention layer of the
decoder with an RNN layer (Kim et al., 2019; Hsu
et al., 2020; Lin et al., 2021). We tested a standard
LSTM (Hochreiter and Schmidhuber, 1997) and an
optimized SSRU (Kim et al., 2019). Unlike previ-
ous work, we use only one decoder layer (see Sec-
tion 5.1). In our initial experiments with LSTM, we
observed a notable decrease in quality, with some
smaller models practically diverging (see Table 4).
We assume that this is due to the fact that the RNN
cell is never exposed to hidden representations of
the encoder. Therefore, we rewire the decoder by
enriching the hidden state of the RNN cell h; with
a cross-attention to the hidden representation of the
encoder H,.,. (Bahdanau et al., 2015):

h;, Ct = RNN(l‘t, htfl, thl),

1
hi = hy + Attention(Hep,, hy). 1

In this way, the RNN cell has a direct information
path to the source sentence. We dub this method
interleaving, as RNN cell and cross-attention com-
putations are interleaved between token positions.
As the original SSRU design lacks a hidden state,
we integrate one by concatenating the input embed-
ding x; with the previous output Ay, i.e., 2}V 1=
[l‘t, ht] .

6 Training Optimizations

After improving translation speed and energy con-
sumption by optimizing inference and the model
architecture, we address the question of how to
optimize the training of our models. Here, the
goal is different, as we aim to obtain better models
in terms of translation quality rather than making
them faster and more energy efficient.

To achieve this goal, we apply sequence-level
knowledge distillation (KD; Kim and Rush, 2016)
using the baseline model as the teacher model pr,
which aids the training of the student model pg
using the aforementioned optimized architecture.
However, instead of using the cross-entropy be-
tween student and teacher, we use the Kullback-
Leibler divergence Dy (-, -) to compute the addi-
tional training loss Lxp:

1
Lxp = —*(DKL(ps,pT) + DKL(pT,ps)>- 2

2
The resulting overall training loss is computed as
L=a-Lcg+ B Lkp. (3)

LcE is the cross-entropy loss of the student model
and «, 3 are corresponding hyper parameters.

7 Experiments

We evaluate our findings on four tasks in total:
Two general domain translation tasks resembling a
industry-typical, unconstrained data condition for
En—De and En— Ko, as well as the WMT 2014
datasets for En—De and En—Fr. We provide de-
tailed intermediate results for both unconstrained
settings, however moved the intermediate En—Ko
results to Appendix B due to limited space.

The overall goal is to build a system that pre-
serves 90% translation quality of the baseline,

5919

while yielding as much translation speed and en-
ergy savings as possible.

7.1 Data

For the two unconstrained tasks (En—De/Ko), we
trained on a large chunk of data available publicly
via OPUS (Tiedemann and Thottingal, 2020). To
evaluate the general-domain ability of these models,
we chose four test sets of different domains for both
tasks respectively. The corresponding training data
was selected as a mix of in-domain data matching
the test set domains, and general out-of-domain
and crawled data.

The unconstrained En—De task is evaluated on
four test sets from the movie subtitles (OpenSub-
titles 2018 test set), talks (TED tst2018), news
(WMT newstest2019), and parliament speech do-
main (Europarl ST test) (Tiedemann, 2012; Tiede-
mann and Thottingal, 2020). As for En—Ko,
we report on four test sets comprised of subtitles
(2018 OpenSubtitles test set), talks (TED tst2018),
newswire texts from FBIS (2013 test set), as well as
a general-domain test set from the Korean-English
treebank (2013 version).

For the WMT 2014 En—De and En—Fr tasks
we evaluate on the corresponding newstest2014 test
sets (Bojar et al., 2014).

In summary, we obtain these training and evalua-
tion dataset sizes (counting English source words):

Task Train Evaluation
as Sents Sents Words
Unconstrained En—De 90M 9k 154k
Unconstrained En—Ko 28M 10k 123k
WMT 2014 En—De 4M 3k 59k
WMT 2014 En—Fr 32M 3k 62k

Detailed dataset descriptions and statistics can be
found in the Appendix C.

7.2 Setup

We train models based on the Transformer architec-
ture and implemented them in PyTorch 2.5 (Paszke
et al., 2019). We apply byte-pair encodings (Sen-
nrich et al., 2016; Kudo and Richardson, 2018) to
the training data and obtain a source and target vo-
cabulary of 30k and 10k units respecively. Segmen-
tation and casing is encoded via two separate trans-
lation factors (Wilken and Matusov, 2019). Our
models are trained for 250 sub-epochs of 1M sen-
tences each using the Adam optimizer (Loshchilov
and Hutter, 2019) with weight decay 0.01 and base

learning rate of 3-10~%, 0.1 label smoothing and 0.1
dropout. For more details we refer to Appendix C.

In the following, we abbreviate a model with Lg
encoder and Lp decoder layers by Lg/Lp, e.g. a
12/12 model refers to a system with 12 encoder and
decoder layers each.

We evaluate both the translation quality, as well
as the inference speed and energy consumption
of each of the trained model configurations. For
this we compute BLEU (Papineni et al., 2002) and
COMET (Rei et al., 2020) for each of the test sets,
and in the interest of readability report the average
over all four corresponding test sets for the uncon-
strained tasks. BLEU is computed via Sacrebleu
(Post, 2018; p < 0.005) with paired approximate
randomization (Riezler and III, 2005), COMET
uses the checkpoint Unbabel/wmt22-comet-da
and bootstrap resampling (Koehn, 2004). As the
use of whitespaces is inconsistent in Korean, we
report character-level BLEU for this language.

Profiling the CPU time and energy is done on
a single fixed machine which resembles a server-
typical setup with a total of 128 Intel® Xeon®
Gold 6438Y+ CPUs (Sapphire Rapid) and 500 GB
RAM running Ubuntu 22. We reserve this machine
exclusively for the translation executable which we
give access to a subset of 8 of these CPUs. For
each model, we concatenate the four language-pair
specific test sets (unconstrained tasks), and then the
total time and energy required for the translation
itself. Sequences are sorted by length to reduce the
amount of padding. We tune the batch size sepa-
rately for each experiment for the best decoding
speed. Our models are converted into TorchScript
and automatically optimized using PyTorch’s JIT
engine!. As it may take longer to translate when
the model and data is first loaded, we run a trans-
lation of all data once as a warmup phase before
profiling the actual runtime and energy usage.

The CPU energy usage is measured in a separate
thread by rapidly polling the current power usage”
and integrating over time. This also includes the
passive energy usage by running the node and op-
eration system. As the runtime and energy con-
sumption varies between different executions, we
run each inference three times and then report the
median to omit outliers. For GPU inference we use
one NVIDIA RTX 2080 Ti?.

'Using torch. jit.optimize_for_inference

2Via s-tui, https://github.com/amanusk/s-tui

3Running nvidia-smi --query-gpu=power.draw peri-
odically to poll the power usage

5920

https://github.com/amanusk/s-tui

Beam Size BLEU COMET WpPS KkJ Enc Dec BLEU COMET WPS KkJ
32 353 85.4 18 2.5k 12 12 34.4 84.8 1.1k 42.5

16 35.3 85.3 37 1.1k 18 6 34.3 85.0 1.5k 30.2

12 35.3 854 51 894 21 3 34.2 84.9 19k 249

8 35.3 85.3 76 596 23 1 33.7 83.4 23k 21.1

4 5.1 853 145 314 12 1 335 830 35k 153

2 348 852 264 172 6 1 330 823 48k 128

! 343 80 477 954 5 1 328 82 52k 123
greedy 34.3 85.0 629 743 4 1 32.3 81.7 5.6k 12.0
+ quantiza 344 84.8 1.1k 425 3 1 31.8 81.1 6.5k 11.5
2 1 309 80.3 73k 11.0

Table 1: Impact of beam size on quality, speed and 1 1 28.7 77.8 77k 10.8

energy for the unconstrained En—De 12/12 system. We
also investigate greedy search and quantization.

We report the translation speed measured in unto-
kenized English words per second (WPS), and the
energy consumption in kJ for running the complete
inference.

7.3 Evaluation: Inference Optimizations

At first, we investigate the effect of the beam size
during inference in terms of translation quality,
speed and energy. The results for the unconstrained
En—De task are presented in Table 1. Starting
from the baseline beam size of 8, increasing it step-
wise to 32 does not affect quality, but slows down
translation from 76 to 18 WPS while also increas-
ing the energy consumption by a factor of 4. This
underlines that higher beam sizes yield no improve-
ment (Yang et al., 2018). For each beam size, we
tuned the batch size to maximize translation speed:
For greedy search and beam size 1, we use 128
sentences per batch; which we then decrease pro-
portionally for higher beam sizes (64 for beam size
2, 32 for beam size 4, etc.).

Moving into the opposite direction, decreasing
the beam size down to 1 yields a 6.3x speedup
and a 6.2x energy efficiency boost at the cost of
1.0 BLEU and 0.3 COMET. To discard the overhead
of beam search, we replace it by a greedy search
implementation. This does not affect quality, but
further improves speed and energy to 629 WPS and
74.3 kJ, respectively.

Additionally quantizing the model results in a
translation speed of 1.1k WPS while consuming
42.5 kJ, which corresponds to improvement fac-
tors of 14.5x and 14.0x over the baseline. If not
mentioned otherwise, we use greedy search and
quantization for all evaluations to follow, carried

Table 2: Impact of layer reallocation and reduction on
quality, speed and energy for En—De (unconstrained).
All systems here utilize greedy search and quantization.

out on CPU.

7.4 Evaluation: Architectural Optimizations

We then investigate the impact of reallocating lay-
ers from the decoder to the encoder (see Table 2,
lines 1-4). Starting from the 12/12 baseline model,
we can shift 6 or even 9 layers without seeing a
degradation in quality, increasing translation speed
from 1.1k to 1.9k WPS. Moving all but one layer
to the encoder results in the 23/1 model which is
2.1x faster than the 12/12 model at the cost of
0.7 BLEU. The energy consumption is improved
by a factor of 2.0. As before, we tuned the batch
size for each configuration. For 12/12 and 18/6
systems 128 is optimal, while all other models with
further reduced decoder size use batch size 64.
Furthermore, we reduce the number of layers
in the decoder to a point that is still acceptable in
terms of translation quality, bearing in mind that
we also want to improve the decoder width. The
results are presented in the bottom part of Table 2.
Given our minimum 90% threshold with respect to
the baseline, i.e. 31.8 BLEU, the 3/1 model with
6.5k WPS would be still acceptable. However, as
we want to have the possibility to further improve
the decoder width, we settle with the 5/1 model
as trade-off between quality and efficiency. Note
that the number of encoder layers has only a minor
effect on the energy consumption (lines 4-11).
Having settled on a quantized 5/1 model with
greedy search, we proceed with decoder-width opti-
mization (see Table 3). Starting with a Transformer
‘big’ decoder, we stepwise halve the decoder dimen-

5921

Decoder BLEU COMET WpPSs KkJ Decoder BLEU COMET WpPS KkJ
‘big’ 32.8 822 53k 123 Transformer ~ 31.7 79.8 8.0k 107
‘base“, gi; 3;; g'gllz iég SSRU 3057 7847 88k 104
sma L c0 sak 106 +interleave 30.67 798 8.8k 10.5
tiny : 78. : : LSTM 760 4337 74k 109
+ interleave 314 80.5% 8.7k 10.6

Table 3: Impact of decoder width on quality, speed and
energy for the quantized 5/1 system with greedy search
(En—De, unconstrained).

sion d until reaching the Transformer ‘tiny’ model
with only 1/8 dimension width in comparison to
Transformer ‘big’ (where d = 1024). The number
of attention heads and the feedforward dimension
is down-scaled accordingly. Although the quality
loss per step is 0.5-0.6 BLEU, the speed gain di-
minishes as the decoder becomes narrower, while
the energy consumption stays basically unaffected.
Thus, we choose the Transformer ‘small’ decoder
(decoder model dimension d = 256, 4 attention
heads, dg = 1024) for further experiments, as it
offers a good trade-off between the speedup and
quality loss.

7.5 Evaluation: RNN Decoder Replacement

A common approach to speed up the inference for
MT is to replace the decoder with an RNN (Kim
etal., 2019; Hsu et al., 2020; Lin et al., 2021). How-
ever, existing research has not studied the perfor-
mance of such hybrid models when they are com-
bined with inference optimizations such as greedy
search and quantization—which for themselves al-
ready yield a speedup of factor 14x at only minor
drop in quality.

In Figure 3 we show that the effect of quantiza-
tion and beam size reduction varies between differ-
ent metrics: we compare our hybrid models with
Transformer and LSTM decoders (with interleav-
ing). Across all metrics, the hybrid LSTM decoder
performs better than the Transformer decoder when
using beam search and not applying quantization.
However, in BLEU this advantage vanishes when
decoding with quantization and greedy search. For
COMET and BLEURT, this is not the case.

We proceed to compare different RNN architec-
tures: the standard LSTM (Hochreiter and Schmid-
huber, 1997) and the optimized SSRU (Kim et al.,
2019); and apply our proposed interleaving ap-
proach to both models.

As shown in Table 4, the interleaved SSRU de-
coder is similarly fast as the LSTM but the quality

Table 4: Different decoder architectures, applied to
the quantized 5/1 model with the ‘small’ decoder size
(En—De, unconstrained). { indicates a statistically sig-
nificant difference with respect to the Transformer de-
coder.

Decoder KD BLEU COMET WPS
Transformer X 31.7 79.8 8.0k
v 32.2 80.5 8.1k
SSRU interl. X 30.6 79.8 8.8k
v 31.7 81.0 8.9k
LSTM interl. X 31.4 80.5 8.7k
v 32.0 81.3 8.9k

Table 5: Impact of knowledge distillation (KD) on
quality, speed and energy for the quantized 5/1 system
with a Transformer ‘small’ decoder and greedy search
(En—De, unconstrained). All systems consume 10.5—
10.7 kJ. All three KD systems have pairwise statistically
significantly different COMET scores.

is worse. Interleaving proves to be crucial for the
LSTM decoder, which offers the best speed-quality
trade-off: It has the best COMET score of 80.5, and
despite its 31.4 BLEU being slightly lower than the
31.7 BLEU gained with the Transformer decoder,
this difference is statistically not significant. At
the same time it is 114 x faster than the baseline
model.

7.6 Evaluation: Training Optimization

After having improved the model speed and en-
ergy consumption, we shift our focus on improving
its translation quality through knowledge distilla-
tion (KD). We utilize the strongest model—the
12/12 Transformer ‘big’ baseline—as the teacher
and weigh the CE and KD losses with o = 0.5 and
B = 1.0, respectively. This setting performed best
in prior experiments.

Table 5 presents the performance of the models
trained with KD in comparison to their counter-
parts without. The Transformer system with KD
performs best in BLEU with a small 0.2 advantage

5922

Decoder type

x Transf.

@ + quant.
LSTM +il

© +quant.

33.0 -
o 32.5 1
m
—
A 32.0

31.5 A

N

RS
Ny O&

[CR S}

TxX— e

83 -
= 82 -
=
S 81 -

1 @]

(€]

| i
I s0

44

X
) x‘-b-

T T T
2500 5000 7500

WPS

o

21
®

1
X

[©

1
)

T T T
2500 5000 7500

WPS

BLEURT

N
[\
1

\]

()

!

X

o x‘-lk

o+~

2
()

1

1
X

2
©)

1
)

T T T
2500 5000 7500
WPS

Figure 3: Comparing the decoding quality and speed, with different beam sizes: 4, 2, and 1 (using greedy search).
All models use the 5/1 architecture with either a Transformer ‘small’ or interleaved LSTM ‘small’ decoder (En—De,

unconstrained).

Unconstrained English — German Unconstr. English — Korean

Technique Quality CPU GPU Quality CPU
BLEU CoMET Wps KkJ Wps kJ | BLEU COMET Wps kJ
Transformer ‘big’ 353 85.3 76 596 484 76 28.1 82.8 92 402
+ greedy search 343 85.0 629 743 34k 104 | 273 82.4 544 679
+ quantize 34.4 84.8 1.1k 425 na. na. | 272 82.4 1.2k 572
+ depth opt. 32.8 82.2 52k 123 160k 19 | 256 81.0 4.8k 13.0
+ width opt. 31.7 79.8 8.0k 10.7 214k 1.3 | 249 799 74k 11.8
+LSTM interl. 31.4 80.5 87k 10.6 225k 1.2 | 247 799 75k 11.8
+ KD 32.0 81.3 89k 105 22.6k 1.2 | 257 81.0 7.7k 11.6

Table 6: Incrementally applying all proposed techniques to the En—De and En— Ko unconstrained tasks. We report
inference speed (WPS) and energy consumption (kJ) on CPU and GPU.

WMT14 English — German WMT14 English — French

Technique Quality CPU Quality CPU
BLEU CoOMET WpS kJ | BLEU COMET Wps KkJ
Transformer ‘big’ (6/6 layers) 29.0 84.4 142 121 | 415 85.9 111 158
Transformer ‘big’ (12/12 layers) 29.2 84.7 72 240 | 421 86.4 60 289
+ greedy search 28.5 83.9 600 300 | 414 85.9 530 342
+ quantize 28.4 83.8 965 17.8 | 412 85.8 848 20.6
+ depth opt. 25.5 77.7 49k 3.8 | 388 82.8 49k 3.6
+ width opt. 23.7 73.4 85k 3.7 | 378 80.8 7.5k 3.7
+ LSTM interl. 242 75.4 85k 3.7 | 375 80.9 83k 3.7
+ KD 25.7 78.7 85k 3.6 | 377 814 84k 3.7

Table 7: Incrementally applying all proposed techniques to models trained on the WMT 2014 tasks in En—De
and En—Fr. We measure translation quality, inference speed (WPS) and energy consumption (kJ) on CPU for the

newstest2014 test set.

5923

over the interleaved LSTM with KD, which in turn
outperforms the Transformer by 0.8 COMET and is
faster by 0.8k WPS. On the other hand, the inter-
leaved SSRU offers the same inference speed as the
interleaved LSTM, but its performance is worse by
0.3 BLEU as well as COMET points in comparison
to the interleaved LSTM.

Note that the BLEU score of 31.7 gained by the
interleaved SSRU with KD corresponds to only
89.8% translation quality with respect to our base-
line Transformer system, which does not fulfill our
goal to preserve at least 90% quality.

7.7 Evaluation: Summary

In the following, we summarize the final results
on the unconstrained En—De and En— Ko tasks as
well as the WMT 2014 En—De and En—Fr tasks.

7.7.1 Unconstrained Tasks

Table 6 summarizes the gains by all optimization
techniques proposed in this work when applied in-
crementally for both unconstrained tasks, En—De
and En—Ko. Details on all intermediate results for
En—Ko are to be found in the Appendix B.

An extended analysis reveals that the speed gains
are particularly high for long sequences (see ap-
pendix, Figure 4).

On GPU we obtain 47 x translation speed and
98.4% energy savings. The final model is 18 x
faster on CPU than the vanilla Transformer ‘big’
model on GPU. Moreover, it is 0.4x as fast on
CPU as it is on GPU. Note that no GPU kernels
exist in PyTorch 2.5 for quantization. Hence, all
GPU results are obtained without quantization.

In the En—Ko test sets, there are 1.19 target
tokens per source token on average, whereas in
the En—De test sets this number is 1.36. As there
are fewer target words to be generated per source
word in the En—Ko task, there are fewer decoding
steps, which explains why for En— Ko the baseline
system achieves a translation speed of 92 WPS.

Overall, the En—Ko speedup is 84-fold and
our final system achieves 97.1% energy savings,
while still reaching 91.5% relative BLEU and 97.8%
relative COMET, which underlines the general ap-
plicability and gains of our proposed optimizations.
However, as there are less decoding steps than in
the En—De task on average, there is also less gain
to be expected by the proposed techniques.

7.7.2 WMT 2014 Tasks

The WMT2014 En—De and En—Fr results are
presented in Table 7. On the WMT 2014 En—De
task, our approach yields 118 x translation speed
and 98.5% energy savings, which is very similar
to the unconstrained task. At the same time, we
lose 12.0% and 7.1% relative in BLEU and COMET,
respectively.

On the WMT 2014 En—Fr task, we even
achieve 140 x translation speed and 98.7% en-
ergy savings. This comes at a cost of 10.5% and
5.8% relative in BLEU and COMET, respectively.

Generally speaking, En—Fr translation requires
fewer word reorderings than En—De translation,
which might explain why our final narrow single-
layer decoder model performs better in compari-
son to the Transformer ‘big’ (12/12 layers) base-
line. However, an actual analysis remains for future
work.

8 Conclusion

In this work, we introduced Green KNIGHT, an
easy-to-cook recipe that substantially accelerates
inference and reduces energy consumption of NMT
models while incurring only minimal loss in transla-
tion quality. In contrast to specialized low-level or
hardware-specific optimizations, Green KNIGHT
achieves these gains through widely used and well-
understood tools and methods, making it immedi-
ately adoptable in production NMT pipelines. Our
experiments on two language pairs show that this
recipe achieves up to 140x speed-ups and up to
98.7% energy reduction, while maintaining at least
92.9% COMET and 88.0% Bleu scores relative to
the baseline.

Crucially, the final models achieve the a 18-fold
throughput on CPU in comparison to the through-
put of the baseline model on GPU, significantly
contributing to democratizing NMT. When applied
on GPU, our model achieves a 47 x speeup over the
baseline model while reducing energy consumption
by 98.4%.

Limitations

The empirical relevance of this work might be lim-
ited by the tasks we report on and the evaluation.
We report on four high-resource datasets translat-
ing from English as the source language. Although,
according to our findings, the encoder (and there-
fore the source language) does not seem to be the
bottleneck, further investigation would be needed

5924

to confirm this. We base our findings on medium
and high-resource language pairs and do not in-
vestigate low-resource settings or other language
pairs.

Due to resource constraints, we were also only
able to perform a single training run per reported
system and do not account for variability of dif-
ferent training runs. Furthermore, our evaluation
relies solely on automatic metrics. We validate our
results using a range of automatic metrics (COMET,
BLEURT, and BLEU), but we do not perform a
human evaluation.

We only reported results measured on a single
machine and one specific driver version for the
measurement of translation speed and energy. Al-
though the setup used is typical for a server CPU,
using different hardware might impact the transla-
tion speed and energy consumption. Furthermore,
time and energy measurements inherently suffer
from some variance between runs, which can de-
pend on exterior factors such as the server temper-
ature or system background jobs. The same holds
for the GPU measurements.

Potential Risks

As our primary results are based on automated met-
rics, they do not necessarily reflect the quality as
assessed by humans. This is especially true for neu-
ral metrics such as COMET and BLEURT, which are
not auditable and may lead to unpredictable results
in varying domains and language pairs. Relying
blindly on these metrics to make decisions can lead
to misjudgments in translation quality.

Acknowledgments

This work was (partially) supported by the project
RESCALE within the program Al Lighthouse
Projects for the Environment, Climate, Nature and
Resources funded by the Federal Ministry of Ger-
many for the Environment, Nature Conservation,
Nuclear Safety and Consumer Protection (BMUYV),
funding ID: 6KI132006B.

Furthermore, this work was (partially) supported
by NeuroSys, which as part of the initiative “Clus-
ters4Future” is funded by the Federal Ministry of
Education and Research BMBF (03ZU1106DD).

The work has been partially supported by the
grant 272323 of the Grant Agency of Charles Uni-
versity.

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd International
Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings.

Aishwarya Bhandare, Vamsi Sripathi, Deepthi Karkada,
Vivek Menon, Sun Choi, Kushal Datta, and Vikram A.
Saletore. 2019. Efficient 8-bit quantization of trans-
former neural machine language translation model.
CoRR, abs/1906.00532.

Ondrej Bojar, Christian Buck, Christian Federmann,
Barry Haddow, Philipp Koehn, Christof Monz, Matt
Post, and Lucia Specia, editors. 2014. Proceedings
of the Ninth Workshop on Statistical Machine Trans-
lation. Association for Computational Linguistics,
Baltimore, Maryland, USA.

Kyunghyun Cho, Bart van Merriénboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder—decoder
for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1724—
1734, Doha, Qatar. Association for Computational
Linguistics.

Fangxiaoyu Feng, Yinfei Yang, Daniel Cer, Naveen Ari-
vazhagan, and Wei Wang. 2022. Language-agnostic
BERT sentence embedding. In Proceedings of the
60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2022, Dublin, Ireland, May 22-27, 2022, pages 878—
891. Association for Computational Linguistics.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9(8):1735-
1780.

Yi-Te Hsu, Sarthak Garg, Yi-Hsiu Liao, and Ilya Chatsv-
iorkin. 2020. Efficient inference for neural machine
translation. In Proceedings of SustaiNLP: Workshop
on Simple and Efficient Natural Language Process-
ing, pages 48-53, Online. Association for Computa-
tional Linguistics.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317-1327, Austin,
Texas. Association for Computational Linguistics.

Young Jin Kim, Marcin Junczys-Dowmunt, Hany Has-
san, Alham Fikri Aji, Kenneth Heafield, Roman
Grundkiewicz, and Nikolay Bogoychev. 2019. From
research to production and back: Ludicrously fast
neural machine translation. In Proceedings of the
3rd Workshop on Neural Generation and Transla-
tion, pages 280-288, Hong Kong. Association for
Computational Linguistics.

5925

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1906.00532
https://arxiv.org/abs/1906.00532
https://aclanthology.org/W14-3300/
https://aclanthology.org/W14-3300/
https://aclanthology.org/W14-3300/
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/V1/2022.ACL-LONG.62
https://doi.org/10.18653/V1/2022.ACL-LONG.62
https://doi.org/10.18653/v1/2020.sustainlp-1.7
https://doi.org/10.18653/v1/2020.sustainlp-1.7
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D19-5632
https://doi.org/10.18653/v1/D19-5632
https://doi.org/10.18653/v1/D19-5632

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
Ondrej Bojar, Anton Dvorkovich, Christian Feder-
mann, Mark Fishel, Markus Freitag, Thamme Gowda,
Roman Grundkiewicz, Barry Haddow, Marzena
Karpinska, Philipp Koehn, Benjamin Marie, Christof
Monz, Kenton Murray, Masaaki Nagata, Martin
Popel, Maja Popovic, and 3 others. 2024. Findings
of the WMT24 general machine translation shared
task: The LLM era is here but MT is not solved yet.
In Proceedings of the Ninth Conference on Machine
Translation, WMT 2024, Miami, FL, USA, November
15-16, 2024, pages 1-46. Association for Computa-
tional Linguistics.

Philipp Koehn. 2004. Statistical significance tests for
machine translation evaluation. In Proceedings of
the 2004 Conference on Empirical Methods in Nat-
ural Language Processing , EMNLP 2004, A meet-
ing of SIGDAT, a Special Interest Group of the ACL,
held in conjunction with ACL 2004, 25-26 July 2004,
Barcelona, Spain, pages 388-395. ACL.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2018: System Demonstrations, Brussels, Belgium,
October 31 - November 4, 2018, pages 66—71. Asso-
ciation for Computational Linguistics.

Ye Lin, Yanyang Li, Tong Xiao, and Jingbo Zhu. 2021.
Bag of tricks for optimizing transformer efficiency.
In Findings of the Association for Computational
Linguistics: EMNLP 2021, pages 42274233, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Ye Lin, Xiaohui Wang, Zhexi Zhang, Mingxuan Wang,
Tong Xiao, and Jingbo Zhu. 2023. MobileNMT:
Enabling translation in 15MB and 30ms. In Proceed-
ings of the 61st Annual Meeting of the Association
for Computational Linguistics (Volume 5: Industry
Track), pages 368-378, Toronto, Canada. Association
for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Paulius Micikevicius, Sharan Narang, Jonah Alben,
Gregory F. Diamos, Erich Elsen, David Garcfia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev,
Ganesh Venkatesh, and Hao Wu. 2017. Mixed preci-
sion training. CoRR, abs/1710.03740.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, July 6-12, 2002, Philadelphia,
PA, USA, pages 311-318. ACL.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward Z.
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
and 2 others. 2019. Pytorch: An imperative style,
high-performance deep learning library. In Advances
in Neural Information Processing Systems 32: An-
nual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada, pages 8024—-8035.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, WMT 2018,
Belgium, Brussels, October 31 - November 1, 2018,
pages 186—-191. Association for Computational Lin-
guistics.

Ricardo Rei, Craig Stewart, Ana C. Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing, EMNLP 2020, Online, November 16-20, 2020,
pages 2685-2702. Association for Computational
Linguistics.

Stefan Riezler and John T. Maxwell III. 2005. On some
pitfalls in automatic evaluation and significance test-
ing for MT. In Proceedings of the Workshop on
Intrinsic and Extrinsic Evaluation Measures for Ma-
chine Translation and/or Summarization @ACL 2005,
Ann Arbor, Michigan, USA, June 29, 2005, pages
57-64. Association for Computational Linguistics.

Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren
Etzioni. 2020. Green Al. Commun. ACM, 63(12):54—
63.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics, ACL 2016, August 7-12, 2016, Berlin, Ger-
many, Volume 1: Long Papers. The Association for
Computer Linguistics.

Dimitar Shterionov and Eva Vanmassenhove. 2023. The
ecological footprint of neural machine translation
systems. In Helena Moniz and Carla Parra Escartin,
editors, Towards Responsible Machine Translation -
Ethical and Legal Considerations in Machine Trans-
lation, volume 4, pages 185-213. Springer.

Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 3645-3650.
Association for Computational Linguistics.

Yehui Tang, Yunhe Wang, Jianyuan Guo, Zhijun Tu, Kai
Han, Hailin Hu, and Dacheng Tao. 2024. A survey
on transformer compression. CoRR, abs/2402.05964.

5926

https://aclanthology.org/2024.wmt-1.1
https://aclanthology.org/2024.wmt-1.1
https://aclanthology.org/2024.wmt-1.1
https://aclanthology.org/W04-3250/
https://aclanthology.org/W04-3250/
https://doi.org/10.18653/V1/D18-2012
https://doi.org/10.18653/V1/D18-2012
https://doi.org/10.18653/V1/D18-2012
https://doi.org/10.18653/v1/2021.findings-emnlp.357
https://doi.org/10.18653/v1/2023.acl-industry.36
https://doi.org/10.18653/v1/2023.acl-industry.36
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1710.03740
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/V1/W18-6319
https://doi.org/10.18653/V1/W18-6319
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.213
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.213
https://aclanthology.org/W05-0908/
https://aclanthology.org/W05-0908/
https://aclanthology.org/W05-0908/
https://doi.org/10.1145/3381831
https://doi.org/10.18653/V1/P16-1162
https://doi.org/10.18653/V1/P16-1162
https://doi.org/10.1007/978-3-031-14689-3_10
https://doi.org/10.1007/978-3-031-14689-3_10
https://doi.org/10.1007/978-3-031-14689-3_10
https://doi.org/10.18653/V1/P19-1355
https://doi.org/10.18653/V1/P19-1355
https://doi.org/10.48550/ARXIV.2402.05964
https://doi.org/10.48550/ARXIV.2402.05964

Jorg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation, LREC 2012, Istanbul, Turkey, May 23-
25, 2012, pages 2214-2218. European Language Re-
sources Association (ELRA).

Jorg Tiedemann and Santhosh Thottingal. 2020. OPUS-
MT - building open translation services for the world.
In Proceedings of the 22nd Annual Conference of
the European Association for Machine Translation,
EAMT 2020, Lisboa, Portugal, November 3-5, 2020,
pages 479-480. European Association for Machine
Translation.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30, pages 5998—6008. Cur-
ran Associates, Inc.

Patrick Wilken and Evgeny Matusov. 2019. Novel appli-
cations of factored neural machine translation. CoRR,
abs/1910.03912.

Yilin Yang, Liang Huang, and Mingbo Ma. 2018. Break-
ing the beam search curse: A study of (re-)scoring
methods and stopping criteria for neural machine
translation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, Brussels, Belgium, October 31 - November 4,
2018, pages 3054-3059. Association for Computa-
tional Linguistics.

Biao Zhang, Deyi Xiong, and Jinsong Su. 2018. Accel-
erating neural transformer via an average attention
network. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1789—-1798, Melbourne,
Australia. Association for Computational Linguistics.

5927

http://www.lrec-conf.org/proceedings/lrec2012/summaries/463.html
http://www.lrec-conf.org/proceedings/lrec2012/summaries/463.html
https://aclanthology.org/2020.eamt-1.61/
https://aclanthology.org/2020.eamt-1.61/
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://arxiv.org/abs/1910.03912
https://arxiv.org/abs/1910.03912
https://doi.org/10.18653/V1/D18-1342
https://doi.org/10.18653/V1/D18-1342
https://doi.org/10.18653/V1/D18-1342
https://doi.org/10.18653/V1/D18-1342
https://doi.org/10.18653/v1/P18-1166
https://doi.org/10.18653/v1/P18-1166
https://doi.org/10.18653/v1/P18-1166

Beam Size BLEU COMET WPS KkJ Enc Dec BLEU COMET WPS KkJ
32 278 826 22 1645 12 12 272 824 12k 307
16 279 828 46 8l1 21 3 273 826 18k 202
12 279 828 60 621 21 1 266 816 23k 184
8 281 828 92 402 12 1 263 816 3.0k 154
4 281 829 180 207 6 1 257 810 42k 136
2 27.8 828 321 115 5 1 256 810 48k 13.0
! 273 824 54 619 4 1 251 807 52k 128
greedy 273 824 668 572 3 1 249 804 55k 125
+quantize 272 824 12k 307 > 1 241 797 62k 122
1 1 24 778 68k 118

Table 8: Various beam sizes of En-Ko system with a
12-layer encoder and a 12-layer decoder. We also inves-
tigate greedy search and quantization.

A Relative Speed Improvements per
Sequence Length

Figure 4 shows the relative speed improvement, de-
pending on the sequence length. As the baseline
inference time is mostly dictated by the decoding
steps, it is particularly slow when decoding long
sentences. Our improved model shifts computation
time towards the encoder, which leads to a particu-
larly high relative speedup for longer sentences.

B Extended Evaluation on Unconstrained
English — Korean Task

We present detailed intermediate results on the un-
constrained English to Korean task in this section.

The procedure here is exactly the same as for the
unconstrained English to German setup. We inves-
tigate the beam size first as shown in Table 8. We
choose the beam size of 8 as a baseline, as it gives
the best BLEU and BLEURT. Then we follow the
recipe as described for English to German. We then
start with the inference optimization (greedy search
and quantization) in Table 8. Then we optimize the
architecture, i.e. the depth and width shown in Ta-
bles 9, and 10 respectively. We then replace the
decoder with our LSTM implementation, and ap-
ply knowledge distillation, as shown in Table 11.
In each step, the chosen hyperparameters corre-
spond to the same ones as for the unconstrained
English — German task.

C Training Details

The statistics of our training and test data are pre-
sented in Table 12. For the unconstrained tasks, we
mix in-domain and out-of-domain data in a ratio

Table 9: Comparison of En-Ko systems with varying
encoder and decoder depth. All investigated systems
utilize greedy search with quantization.

Decoder BLEU COMET WpPS KkJ

‘big’ 25.6 81.0 48k 13.0
‘base’ 25.1 80.4 6.1k 122
‘small’ 24.9 79.9 74k 11.8
‘tiny’ 24.2 78.8 75k 11.6

Table 10: Comparison of En-Ko system with various
decoder width. All investigated system utilize a 5-layer
Transformer ‘big’ encoder, a single layer Transformer
decoder and greedy search with quantization.

of 1:3. The exact lists of used corpora and their
weights are stated in Tables 13a and 13b. For the
WMT14 tasks, we train on all released corpora for
that year’s shared tasks and do not perform addi-
tional weighting between corpora.

We apply some simple filtering to our training
data based on a set of rules, as well as similarity-
based on LaBSE embeddings (Feng et al., 2022).

All models, independently of the configuration,
are trained for 250 sub-epochs of 1M samples. Our
optimizer is AdamW (Loshchilov and Hutter, 2019)
with 8 = (0.9,0.98), weight decay 0.01 and a

Decoder BLEU COMET WpSs KkJ

Transformer 24.9 79.9 74k 11.8
+ KD 25.4 80.6 74k 11.7

Interl. LSTM 24.7 79.9 75k 11.8
+ KD 25.7 81.0 77k 11.6

Table 11: Impact of training optimization on quality,
speed and energy for the En—Ko quantized 5/1 system
with a ‘small’ decoder and greedy search.

5928

220
—@— Unconstrained En—De
200 + Unconstrained En—Ko
—@— WMTI14 En—De

.g 180 1 —@— WMTI14 En—Fr
i)
£ 160 -
)
>
o
= 140 A
S
8
2120 A
=
@]
[}
« 100

80

60] T T T T T T T T

5 10 15 20 25 30 35 40 45 50

Source sequence length (tokens)

Figure 4: Relative CPU speed up of our optimized model (final row in Tables 6, 7) vs. the Transformer ‘big’
baseline, binned by source sequence length. While the baseline scales poorly with increasingly long sequences, this
effect is mitigated with our optimized models.

learning rate of 3 - 10~%, which after a warmup of
ten epochs is reduced by factor 0.9 if the validation
perplexity plateaus. We use 16-bit mixed precision
training (Micikevicius et al., 2017) as provided by
PyTorch lighting, and an effective batch size of up
to 120k source plus target tokens. We apply label
smoothing of 0.01 and a training dropout of 0.1 in
almost all cases. As the WMT2014 En—De dataset
is relatively small, we increased the dropout rate
on this task to 0.3 for the models that used a ‘big’
decoder to prevent overfitting.

For both unconstrained tasks, we compile a held-
out validation set that approximately equally repre-
sent the four test sets, and use this validation set to
select the best checkpoint after each sub-epoch by
computing validation BLEURT. For the WMT 2014
tasks, we use the newstest2013 sets as validation
data.

Our unconstrained En—De baseline system has
485M trained parameters and was trained on two
NvVIDIA RTX A6000 GPUs, which took around
103 hours to complete. Other models train faster
due to their reduced complexity. All datasets and
tools that this work is based on are publicly avail-
able.

5929

Dataset Sentences Total Words Vocabulary Words
English German English German
Training Data 90.6M 1.6B 1.4B 11.3M 229M
Test Data (total) 8984 154.0k 1427k 29.6k 36.2k
WMT newstest2019 1997 42.0k 42.1k 10.6k 12.4k
TED tst2018 1978 38.0k 35.1k 6.7k 8.4k
Europarl ST 2631 60.4k 52.3k 8.2k 11.2k
OpenSubtitles 2018 2378 13.6k 13.1k 4.0k 4.3k
(a) Unconstrained English to German task.
Dataset Sentences Total Words Vocabulary Words
English Korean English Korean
Training Data 27.9M 265M 201M 1832M 3.4M
Test Data (total) 10483 123.6k 83.4k 16.0k 77.7k
FBIS test 2013 676 21.8k 13.0k 4.7k 12.6k
Korean English treebank 3883 51.5k 36.7k 5.9k 33.7k
TED tst2015 1214 21.2k 15.1k 4.9k 14.4k
OpenSubtitles 2018 4710 29.1k 18.6k 6.0k 16.9k
(b) Unconstrained English to Korean task.
Dataset Sentences Total Words Vocabulary Words
English German English German
Training Data 3.9M 86.9M 81.2M 1.4M 2.5M
Test Data (newstest2014) 3003 59.3k 54.9k 14.1k 16.8k
(c) WMT 2014 English to German task.
Dataset Sentences Total Words Vocabulary Words
English French English French
Training Data 31.8M 709.4M 809.2M 5.3M 5.2M
Test Data (newstest2014) 3003 62.3k 69.6k 14.4k 15.7k

(d) WMT 2014 English to French task.

Table 12: Total training and test set sizes, without tokenization and cased.

5930

10%
5%
5%
5%

65%

10%

10%

1%
14%
65%

10%

Table 13: Training dataset statistics per weight group. Training data is mostly taken from OPUS (Tiedemann and

OPUS-OpenSubtitles (16,166,700)

OPUS-TED2020 (162,134)

News-Commentary (317,129), OPUS-Global Voices (83,240)

OPUS-Europarl (2,308,549)

pattr (12,183,523), OPUS-CCAligned (10,876,712), OPUS-EuroPat (10,664,245), OPUS-
EUbookshop (5,459,744), OPUS-TildeMODEL (3,249,472), OPUS-MultiCCAligned
(2,638,152), OPUS-ELRC (2,599,018), OPUS-ParaCrawl (2,551,919), OPUS-DGT
(2,240,204), OPUS-JW300 (1,707,885), OPUS-WikiMatrix (1,139,146), OPUS-Wikipedia
(1,073,073), rapid (692,934), OPUS-Tatoeba (546,960), CommonCrawl (523,024), OPUS-
Tanzil (492,585), WikiTitles (487,528), OPUS-QED (417,637), OPUS-JRC-Acquis
(265,780), covost (258,177), OPUS-EMEA (201,860), EUTV (152,233), must-c (115,563),
OPUS-KDE4 (100,791), OPUS-MultiUN (63,833), OPUS-ECB (63,277), OPUS-bible-
uedin (37,857), OpenOffice (25,980), OPUS-MPC1 (15,794), OPUS-GNOME (12,814),
OPUS-Ubuntu (6,971), OPUS-PHP (6,557), OPUS-EUconst (1,928), OPUS-Salome (1,057),
OPUS-RF (165)

extracted parallel short phrases and dictionary entries from the above corpora

(a) Unconstrained English to German training data.

OPUS-TED2020 (323,188)

fbis (39,867)

OPUS-OpenSubtitles (947,351)

OPUS-NLLB (13,736,682), OPUS-CCMatrix (3,799,459), OPUS-ParaCrawl (2,267,324),
OPUS-CCAligned (2,199,281), OPUS-LinguaTools-WikiTitles (1,533,792), systran
(576,744), OPUS-MultiCCAligned (475,984), naver (375,119), OPUS-XLEnt (328,552),
taus (315,934), subscene (188,012), jaykim (118,297), OPUS-QED (112,298), OPUS-
WikiMatrix (88,069), OPUS-Tanzil (62,991), jhe-park (52,850), joongang (47,555), joint-
pubs (42,438), OPUS-bible-uedin (40,161), kaist (30,269), OPUS-KDE4 (23,249), OPUS-
wikimedia (18,285), osc translated text (15,813), goodneighbor (14,484), various-book1-
johanna (13,513), OPUS-Tatoeba (11,403), donga-ilbo (10,728), various-military (9,202),
OPUS-Mozilla-110n (6,791), OPUS-GlobalVoices (6,108), bible world (4,794), sejong
(4,632), OPUS-MDN Web Docs (3,655), kgf (3,442), various-unknown-topic (2,871), nvtc
(2,673), OPUS-tldr-pages (1,096), OPUS-ELRC (732), usembassy (575), usfkgovplan (204),
various-medical (140), OPUS-PHP (126), social-media (92), OPUS-GNOME (74), OPUS-
Ubuntu (13)

extracted parallel short phrases and dictionary entries from the above corpora

(b) Unconstrained English to Korean training data.

Thottingal, 2020) and then filtered. We report the number of sentences after filtering here.

5931

