CodeContests*: High-Quality Test Case Generation for
Competitive Programming

Zihan Wang'2, Siyao Liu?, Yang Sun?, Ming Ding3, Hongyan Li'?*
!State Key Laboratory of General Artificial Intelligence, Peking University
2School of Intelligence Science and Technology, Peking University
3ByteDance Seed
zh.wang@stu.pku.edu.cn
{liusiyao.sine, sunyang.46135, shen.kai}@bytedance.com
leehy@pku.edu.cn

Abstract

Competitive programming, due to its high rea-
soning difficulty and precise correctness feed-
back, has become a key task for both train-
ing and evaluating the reasoning capabilities
of large language models (LLMs). However,
while a large amount of public problem data,
such as problem statements and solutions, is
available, the test cases of these problems are
often difficult to obtain. Therefore, test case
generation is a necessary task for building large-
scale datasets, and the quality of the test cases
directly determines the accuracy of the evalua-
tion. In this paper, we introduce an LLM-based
agent system that creates high-quality test cases
for competitive programming problems. We ap-
ply this system to the CodeContests dataset and
propose a new version with improved test cases,
named CodeContests*'. We evaluated the qual-
ity of test cases in CodeContests*. First, we
used 1.72 million submissions with pass/fail
labels to examine the accuracy of these test
cases in evaluation. The results indicated that
CodeContests* achieves significantly higher
accuracy than CodeContests, particularly with
a notably higher True Positive Rate (TPR). Sub-
sequently, our experiments in LLM Reinforce-
ment Learning (RL) further confirmed that im-
provements in test case quality yield consider-
able advantages for RL.

1 Introduction

Competitive programming is widely recognized as
an important benchmark for evaluating the reason-
ing and coding capabilities of LLMs (El-Kishky
et al., 2025). Solving complex competitive pro-
gramming problems requires strong reasoning ca-
pabilities, as well as mastery of a wide range of al-
gorithms, data structures, and mathematical knowl-
edge. More importantly, competitive programming

"Project page: https://huggingface.co/datasets/
ByteDance-Seed/Code-Contests-Plus
*Corresponding author.

Given a Directed Acyclic Graph (DAG) with n
vertices and m edges (1<n<10%, 0sm<105).
Output any topological order.

b c

O—®

2 V]

Figure 1: Competitive programming problems typically
impose constraints on the input. (a) A simple example
of a topological sort problem, which requires the input
to be a Directed Acyclic Graph (DAG) and specifies
limits on its size. (b) An invalid input, as the graph
contains a cycle, which means no topological sort exists.
(c) A valid input.

problems are objectively verifiable tasks; thus, they
are not only widely used for benchmarks, but they
can also provide accurate rewards for reinforce-
ment learning and serve as a vital data foundation
for training large reasoning models (Chen et al.,
2025; Guo et al., 2025).

Existing open-source competitive programming
datasets usually collect problems from competi-
tion platforms like CodeForces (Mirzayanov et al.,
2020), LeetCode, and AtCoder. However, these
platforms do not publicly release their test cases.
Consequently, although large amounts of problems
with statements and solutions are publicly avail-
able, the lack of test cases prevents these problems
from being effectively constructed into RL training
datasets.

Therefore, existing open-source datasets typi-
cally have to construct test cases using various
methods. Common methods include mutation, as
well as using LLMs to output test cases, etc. How-
ever, these methods still have shortcomings in the
following two aspects:

5576

Findings of the Association for Computational Linguistics: EMNLP 2025, pages 5576-5600
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://huggingface.co/datasets/ByteDance-Seed/Code-Contests-Plus
https://huggingface.co/datasets/ByteDance-Seed/Code-Contests-Plus

Limited coverage. Some methods, such as Mu-
tation, can only blindly construct large amounts
of random data. They struggle to generate tricky
cases and corner cases that require deep algorith-
mic understanding to discover, making it hard to
cover deep-level, complex boundary conditions or
special situations within the problem’s logic. Ad-
ditionally, some methods, like directly outputting
test cases via LLMs, are often unable to generate
large-scale test cases. Therefore, they cannot iden-
tify incorrect solutions that are logically correct
but fail due to excessively high time or memory
complexity. Limited coverage may lead to false
positives, meaning that incorrect solutions might
be judged as correct.

Incorrect test cases. As shown in Fig. 1, a typ-
ical programming problem usually imposes con-
straints on the test cases themselves. Existing
methods struggle to ensure that the generated test
cases can satisfy these constraints, and incorrect
test cases can simultaneously lead to both false
positives and false negatives. To the best of our
knowledge, the issue of incorrect test cases has not
received attention in previous research. We exam-
ined the test cases in the CodeContests dataset and
found that incorrect test cases are one of the main
causes of inaccurate evaluation.

In this paper, we propose an LL.M-based agent
system for constructing test cases for programming
problems that have more comprehensive coverage
and better correctness. This will allow for further
improvement in the quality and scale of code RL
datasets. Specifically, to address the above two
limitations, we propose the following solutions:

An Agent for Test Case Generation. We de-
signed a Generator agent that writes a generator
program for each problem to specifically construct
diverse test cases, including random data, corner
cases, and tricky cases, thereby fully testing vari-
ous possible solutions and potential error patterns,
as well as examining the efficiency of the algorithm
through large test cases. This generator program
can be run any number of times with different ran-
dom seeds, thus obtaining any number of test cases,
further improving coverage.

An Agent for Test Case Validation. Although
this generator agent consciously attempts to satisfy
the constraints in the problem, it still has a notice-
able probability of making mistakes. Therefore,
we designed a validator agent. This agent writes
a validator program to check whether the input of
the generated test cases satisfies all the constraints

in the problem. Incorrect test cases and the spe-
cific reasons for the errors will be fed back to the
generator for revision until all test cases satisfy the
conditions.

The contributions of this paper is summarized as
follows:

1) An LLM-Based Agent System for Test Case
Construction. We propose the Generator-Validator
(G-V) agent system, the first LLM agent system
designed for constructing high-quality test cases
for competitive programming problems.

2) A Code Dataset with Verified Test
Cases. Using the G-V agent system, we create
CodeContests™, the first competition-level code
dataset with verified test cases. We verify the cov-
erage and correctness of the test cases by evaluating
the true positive rate (TPR) and true negative rate
(TNR) of each problem using 1.72 million labelled
solutions. CodeContests*share the same problem
set with CodeContests, but replacing test cases with
those generated by our G-V agent system.

3) Study. Comparing under the same TPR and
TNR thresholds, CodeContests*can yield twice the
number of effective problems compared to Code-
Contests, thus validating that the test case quality
of CodeContests*is significantly better than that
of CodeContests. We trained a 32B reasoning
model using RL separately with CodeContests™*and
CodeContests and observed a clear advantage for
CodeContests*during the training process.

2 Related Work

Since most competitive programming platforms
do not disclose their test cases, constructing test
cases is one of the primary bottlenecks in building
code datasets. The test case generation methods
currently employed by existing code datasets can
generally be categorized into three types: manual
generation, mutation-based generation, and LLM-
based generation.

Manual. Representative works that use manu-
ally constructed test cases include MBPP (Austin
et al., 2021), HumanEval (Chen et al., 2021), and
LiveCodeBench (Jain et al., 2025). There are slight
differences among these three: the test cases in
MBPP and HumanEval are handcrafted, resulting
in a smaller quantity and insufficient coverage. In
contrast, for a portion of the problems in Live-
CodeBench, test cases are constructed by human
experts specifically targeting the problem charac-
teristics, leading to better coverage.

5577



Table 1: Comparison between CodeContests* and other code datasets and benchmarks.

T # Probl Problem  Customized How Test Cases
ype roblems Difficulty Checker Are Constructed?

MBPP (Austin et al., 2021) Benchmark 974 * X Handcrafted
HumanEval (Chen et al., 2021) Benchmark 164 * X Handcrafted
USACO (Shi et al., 2024) Benchmark 307 Y % X Publicly accessible
LiveCodeBench (Jain et al., 2025)  Benchmark 511 * % X Semi-automatic
APPS (Hendrycks et al., 2021) Train 10000 ' & & ¢ X Crawled
CodeContests (Li et al., 2022) Train 13610 ' & & ¢ X Mutation
TACO (Li et al., 2023) Train 26433 * % % X Output by LLM
CodeContests* (Ours) Train 11690 * % % v G-V agent system

The common drawbacks of manually construct-
ing test cases are their high cost, lack of automa-
tion, and difficulty in scaling up. Therefore, such
methods are only suitable for building small-scale
evaluation sets and are too costly to use for con-
structing large-scale training sets.

Mutation-Based. Liu et al. (2023) identified the
issue of high False Positive Rates (FPR) in MBPP
and HumanEval due to their small number of test
cases. They proposed “Type-aware input mutation"
to generate new test cases by recombining a few
existing test cases. A similar mutation approach
was also employed to construct the CodeContests
(Li et al., 2022) dataset. The advantage of mutation
methods lies in their complete automation, allow-
ing for the generation of a large volume of test
cases. However, their limitation is that if a prob-
lem involves complex constraints, mutation often
fails to satisfy these constraints, thereby introduc-
ing incorrect test cases and leading to a high False
Negative Rate (FNR). According to our verifica-
tion, approximately one-third of the test cases in
CodeContests are incorrect.

LLM-based. Since competitive programming
problems often involve complex constraints on test
input, some approaches turn to LLMs to handle
this. TACO (Li et al., 2023), for instance, uses
LLMs to directly output test input. However, while
LLM:s can access the problem description and un-
derstand the constraints to some extent, they are
not guaranteed to output an input that satisfies these
constraints. Furthermore, this method can only con-
struct small test cases and is limited by the context
window size, preventing it from outputting large
test cases. For example, an LLM cannot directly
output a graph containing one million vertices.

3 The Generator-Validator Agent System

To simultaneously address the challenges of cor-
rectness and coverage in test case construction, we
propose a Generator-Validator agent system. The
Generator agent is an LLM-based agent that writes
test input generators based on the problem descrip-
tion. The Validator agent is also an LLM agent that
writes test input validators to supervise the Gener-
ator agent, ensuring that the test input generated
by the Generator agent conforms to the problem
constraints. This agent system can automatically
build a large-scale and rigorous dataset for LLM
training by leveraging publicly available data such
as problem statements and ground truth solutions.
An overview of the workflow is presented in Fig. 2.
Specific implementation details for the generator
and validator are presented below.

3.1 Generator

Generator Program. The generator program is
a C++ program that accepts input data conditions,
such as data size and characteristics, via command-
line arguments. It generates a piece of input data
that conforms to these specified conditions. This
generated input data is then fed into the ground
truth solution to produce outputs and hence form
a complete set of test cases. The advantage of this
design is that a single generator program, com-
bined with varying command-line arguments, can
generate a diverse range of test cases, thus simpli-
fying the process. A generator demo is presented
in Appendix D.2.

Agent Workflow. Initially, the Generator Agent
is given a problem statement. It is then instructed
to read the statement carefully, and identify, and
summarize the constraints of the input data. Sub-
sequently, the Generator Agent will analyze the
problem to anticipate potential mistakes contes-
tants might make and identify possible corner cases.

5578



a. Test Case Generation

h

I

| vertices and m edges |

! (1=n<105, 0=m<10%). ! [
1 Output any topological !

i order. i LLM

I |

Generator Agent

if (type = "rand"

// generate a chain

Problem Statement

Generator Program

b. Test Case Validation

Given a DAG with n
vertices and m edges

! void validate(Graph g) {
I
I
(1<n<105, 0<m<109). ,
I
1
|
|

assert g.n >= 1;
assert g.n <= 100000;
assert g.m >= 0;
assert g.m <= 100000;
assert has_no_cycle(g);

Output any topological
order.

Problem Statement

LLM

Validator Program

Validator Agent e

Graph gen(int n, char[] type) {
) {

// generate a random graph
} else if (type == "chain") {

// generate a random tree
} else if (type == "dense") {

i
I

I

i

i

i

i

|} else if (type == "tree") {
i

I

H // generate a dense graph
| coo

|

i

E
B

i
1
....................... :
./gen —n 1 —type rand | |
./gen —n 100 —type rand i !
./gen —n 100000 —type rand 1
i i

1 1

1 1

i i

1

1

I

i

Q
UNIT TEST
AN
UNIT TEST Jll UNIT TEST

Q

UNIT TES

&

./gen —n 100000 —type chain
./gen —n 100000 —type tree
./gen —n 300 —type dense

Generator Commands

mg

UNITTEST [l UNIT TEST

Vommoomcommooscanoo o

Validation failed on
condition has_no_cycle(g).

AN
UNIT TEST

1
1
N 1
m |
1
|
UNIT TEST 1
1 AN
1
1
1
PR UNIT TEST
1
1
1
1
1
1
1

N
v Validation failed on
Validate UNITTEST Feedback
N N Invalid Test
m Validation failed on Cases
ey condition g.n >= 1.

i
i
I
i
i
I
I
i
condition g.m <= 100000. !
I
I
i
1
I
i
i

ValdTest ~ InvalidTestCases
Cases with Comments

Figure 2: Generator-Validator Agents Pipeline. (a) The Generator Agent writes a generator program and generator
commands to produce test cases. (b) The Validator Agent writes a validator program to check if the test cases satisfy
all the constraints stated in the problem. Test cases that fail validation, along with specific comments provided by
the validator program, are then fed back to the Generator Agent for revision.

Based on this analysis, it will design targeted ad-
versarial test cases. Finally, the Generator Agent
will synthesize all of this information to produce
a compliant generator program. Since it is up to
the agent to determine which command-line argu-
ments the generator program needs to receive, we
also require the agent to provide approximately
20 commands. These commands should cover a
range of data sizes, from small to large, and all
relevant special types. We will then execute these
commands to finally obtain the test input.

Details. The generator agent is instructed to use
testlib (Mirzayanov, 2005), a tool library devel-
oped by Codeforces for contest problem setters, to
implement the generator. testlib provides some
useful utility functions, such as random number
generators and command-line argument parsing
tools. Building upon testlib, we have developed a
more LLM-friendly version, reducing the difficulty
of LLM usage and the likelihood of compilation er-
rors and hallucinations. The use of testlib helps
regularize the behavior of LLM-written generators.
For instance, we enforce the use of testlib’s ran-
dom number generator, rather than using the C++
standard library’s random facilities. This is to en-
sure random number consistency, i.e., the same
command and the same generator, even on differ-
ent platforms, will produce identical test cases.

Scalability. Some commands provided by the

agent can generate not only a single test case but
also an arbitrary number of test cases by altering
the random seed, thereby enhancing the robustness
of the test cases. The random seed for the gener-
ator program is calculated based on the hash of
the command. This random seed is automatically
set by testlib and cannot be modified by the agent,
ensuring that the same command always produces
identical test cases. Therefore, we can obtain differ-
ent random seeds by appending an irrelevant label
to the end of the command. This label will not be
parsed, and therefore will not affect the behavior
of the generator program. Consequently, a sin-
gle generator can output any number of test cases.
Users can flexibly adjust the strength of the test
cases based on their needs, for example, they can
reduce the strength appropriately during training
to minimize evaluation time overhead and improve
training efficiency. When used for benchmarking,
the strength can be increased to reduce the FP rate.

Supervision. The generator agent is very likely
to make mistakes while writing the generator pro-
gram. Although the agent may recognize some
constraints in the problem description, it can still
miss specific details either partially or entirely due
to limited attention or imperfect comprehension.
Therefore, a supervision mechanism is necessary
to help the generator agent identify and correct er-
rors. We use a validator to check if the test input

5579



satisfies all the constraints specified in the problem
statement. If errors are found, it provides specific
error locations and causes. These error reports are
then fed back to the generator agent. Subsequently,
the agent reflects and corrects the issue, provid-
ing a revised generator program and commands.
Additionally, specific error messages for other po-
tential errors, like compilation errors or generator
timeouts, are also provided to the agent for fur-
ther revision. An example of the supervision and
reflection procedure is shown in Fig. 7. The imple-
mentation details of the validator will be discussed
in Section 3.2.

3.2 Validator

Validator Program. Generating test cases is a
very intricate task, so even professional competi-
tive programming problem setters can make mis-
takes sometimes due to oversight. For example,
in the ACM ICPC World Finals 2007, Problem J
was found to have an incorrect test case due to an
error by the problem setter. As mentioned above,
the validator plays an even more crucial role for
the generator agent; it not only provides a double
check on the correctness of test cases but also pro-
vides important supervision information to help the
generator agent reflect and correct its errors. A
validator is a C++ program that takes one input
data as its input and determines whether this input
data satisfies all the constraints of the problem. If
errors exist, the validator outputs exactly which
constraints were violated. For errors where the lo-
cation can be specifically identified, the validator
also provides the error location, for example, the
line number in the input data where the error was
found. An example of a validator is presented in
Appendix D.1.

Agent Workflow. Initially, the validator agent is
provided with a problem statement. Next, the agent
is required to carefully read the problem statement,
identify all input data constraints, including data
ranges, format requirements, and structural con-
straints, and summarize them. Finally, the agent
will write a validator program to check these con-
straints.

Supervision. While the probability of a valida-
tor agent making mistakes is much lower than that
of a generator agent, errors are still possible. Based
on our observations, common errors fall into two
categories: The first is where the agent correctly un-
derstands the constraints but makes mistakes while
writing the validator program. The second is where

Table 2: Comparison between CodeContests and
CodeContests*

CodeContests CodeContests*
Problem Count 13610 11690
Average Tests 101 25/44/62/80/98/ 0
Validation Pass Rate 67.1% 100%
Generator X v
Validator X v
Checker X v

the agent overlooks some of the constraints stated
in the problem. Errors of the first type can lead
to the program failing to compile or run correctly,
or causing valid input data to fail the validation.
Therefore, for the first type of error, we feed the
sample inputs from the problem statement to the
validator and check whether these data pass the
validator’s checks. If not, it indicates an error in
the validator. In this case, both the sample data and
the validator’s output are fed back to the valida-
tor agent, which then reflects and makes revisions
based on the feedback. Additionally, the valida-
tor receives specific error messages for common
issues like compilation failures, runtime errors, and
timeouts. This supervision mechanism could de-
tect most of the errors of the agent. Unfortunately,
we still lack an automatic supervision method to
address the second type of error, which can still
result in a small number of incorrect data being
generated. Detailed statistics and case studies will
be presented in Section 4.4 below.

4 CodeContests*: A Competitive Coding
Dataset with Verified Test Cases

CodeContests (Li et al., 2022) stands as one of the
largest and most widely recognized competitive
coding datasets. It collects a large number of prob-
lems, authentic contestant submission records, and
generates numerous additional test cases through
mutation. However, test cases generated through
mutation are often of low quality and may yield
unreliable evaluation results, such as misclassify-
ing incorrect solutions as correct and vice versa. In
this Section, we present our methodology for con-
structing an enhanced dataset, CodeContests™, by
building upon the original CodeContests. Section
4.1 outlines the data cleaning procedures we im-
plemented. Section 4.2 details how we utilized the
G-V Agent system to generate higher-quality test
cases for CodeContests*. Section 4.3 describes the
development of customized checkers for problems

5580



that accept multiple valid solutions.

Following this, we compare the quality of
CodeContests*and CodeContests across two pri-
mary dimensions. First, in Section 4.4, we verify
the quality of the test cases of both datasets. More
specifically, we utilized 1.72 million authentic con-
testant submissions, which comprise both correct
and incorrect ones, to assess the performance of
both datasets in discriminating between correct and
incorrect solutions. Then, in Section 4.5, we em-
ployed each dataset to train a 32B LLM through
GRPO, to evaluate the impact of dataset quality on
RL training efficacy.

4.1 Data Cleaning

We examined the problems in the CodeContests
dataset and identified some that were either incor-
rect or unsuitable for training. We then cleaned
up these problems. Specifically, we removed the
following types of problems: (1) problems without
problem statements, (2) interactive problems, (3)
problems without correct submissions, (4) prob-
lems involving file input/output (5) special prob-
lems, such as April Fools’ Day problems, (6) prob-
lems that require images for proper understanding,
(7) problems with crawling errors, (8) other low-
quality problems, e.g., problems which lack data
ranges, have unclear requirements, or contain in-
correct sample formats. After cleaning, the total
problem count was reduced from 13,610 to 11,690.
It should be noted that due to our additional filter-
ing work, CodeContests and CodeContests* differ
in the number of problems. In the experiments in
Sections 4.4 and 4.5, our focus is solely on the im-
pact of test case quality. Therefore, we selected
the same subset of problems for CodeContests as
well, ensuring that the set of problems used for
both datasets in these experiments is identical.

4.2 Generated Test Cases using G-V Agent
System

In CodeContests™, we have replaced all original
test cases from CodeContests with generators and
validators produced by the G-V Agent system. Fur-
thermore, we offer two methods for utilizing these
test cases:

Dynamic Generation. Using the provided gen-
erators and validators to produce test cases. This
approach offers greater flexibility, allowing for the
generation of an arbitrary number of test cases
based on specific needs and computational budgets.
As detailed in Section 3.1, we have ensured ran-

dom consistency, guaranteeing that using the same
generator and commands will produce identical
test cases across different platforms. To facilitate
the execution of these generators and validators
and enable automated evaluation, we will be open-
sourcing a sandbox. This sandbox will support over
20 programming languages, including C++, Java,
Python, Rust, Go, and more than 10 open-source
datasets, such as MBPP, HumanEval, CodeCon-
tests.

Pre-Processed Test Cases. We release
five versions of pre-generated test cases, la-
beled CodeContests™ 1x through CodeContests* 5x.
These correspond to running each generator com-
mand 1 to 5 times, respectively, each time with a
different random seed. The 1x version contains
an average of 25 test cases per problem, while the
2x, 3x, 4x, and 5x versions contain averages of 44,
62, 80, and 98 test cases per problem, respectively.
Using these pre-generated test sets offers easier
compatibility with other sandboxes and evaluation
environments. The statistics of CodeContests*and
CodeContests are presented in Table 2. All the pre-
processed test cases have passed the validators. We
used validators to check the correctness of all 1.18
million generated test cases in CodeContests. Only
0.79 million of these passed validation, which is
67.1%.

4.3 Customized Checkers for
Multiple-Answer Problems

Problems with multiple valid solutions are com-
mon in programming contests. For such problems,
multiple distinct outputs can be considered correct
for the same input. For instance, as illustrated by
the examples in Fig. 1 and Fig. 2, a DAG can
have multiple valid topological sorts, and any one
of these is an acceptable output. Furthermore, the
number of correct solutions can be vast, potentially
even infinite. For example, a DAG with n nodes
can have up to n! distinct topological sorts, making
it infeasible to enumerate and store all of them.
Previous datasets, such as CodeContests, have
collected numerous problems with multiple solu-
tions but lack customized judging logic for them.
We have developed a Checker Agent that provides
customized checker programs for all problems. A
checker program is designed to determine if a
code’s output is correct for a given input. Tak-
ing the topological sort problem as an example,
its checker program would read the input graph
and the submitted code’s output, then verify if this

5581



1unoD waigoid

2000

5 08 10

10
0. 6 08
0.4
0.0 O‘Zme Positive Rate

1 =
o -
Trug 08,
Negg, 04 o.
0agi, 0.2 2 04
V6 gy 00 00 0. Qrvue positive Rate

(a) CodeContests (b) CodeContests™ 5x

Figure 3: The histogram of the TPR and TNR of
selected problems from (a) CodeContests and (b)
CodeContests™*.

output constitutes a valid topological order.

Due to space constraints, the implementation
details of the Checker Agent are provided in the
Appendix B.

4.4 Test Case Quality Verification

Task. Test cases serve to determine the correct-
ness of a given code. Consequently, we treat code
evaluation as a binary classification problem. This
approach allows us to evaluate the test cases them-
selves as binary classifiers, assessing their ability
to accurately distinguish between correct and in-
correct solutions. By doing so, we can objectively
and rigorously evaluate the quality of test cases
within a code dataset, including their coverage and
correctness. To our knowledge, CodeContests*is
the first dataset project to conduct such rigorous
validation of test case accuracy. We believe this
level of evaluation is paramount for establishing a
dataset’s trustworthiness.

Data. CodeContests has collected tens of
millions of submissions, each with a ‘“cor-
rect"/“incorrect” label. We sampled 100 positive
samples (correct submissions) and 100 negative
samples (incorrect submissions) for each problem.
For problems without sufficient samples, we in-
cluded available submissions as many as possible.
In this way, we selected 10,166 problems that con-
tained at least 10 positive and negative samples, as
well as a corresponding 1.72 million submissions.
We used these problems and samples to evaluate
the accuracy of the test cases in CodeContests™
and CodeContests.

Engineering. Since each submission needs to
be evaluated on approximately 200 test cases on
average, the total number of program executions is
more than 300 million. We implemented a cloud
architecture for such large-scale evaluation, run-
ning on a cluster with 25,000 CPU cores and 70
TB memory, and completed the experiment on this

8000

6000

4000

Problem Count

2000

0.9 08 07 0.6
Threshold

Figure 4: The number of qualified problems
with TPR and TNR greater than a threshold in
CodeContests*(blue ones, ours) and CodeContests
(red).

platform. Some engineering details are presented
in Appendix C.

Metric. We use True Positive Rate (TPR) and
True Negative Rate (TNR) to quantitatively assess
accuracy. TPR measures the ability of test cases
to correctly classify positive instances (correct so-
lutions), thus reflecting the test case’s correctness.
This is because if a test case satisfies all the prob-
lem’s constraints, a correct solution should not
be misclassified as incorrect. Therefore, a low
TPR primarily indicates that the test case itself
is flawed. TNR measures the ability of test cases
to correctly classify negative instances (incorrect
solutions) as incorrect, thereby primarily reflect-
ing the test case’s coverage. Overly simplistic test
cases may fail to identify errors in incorrect code,
leading to false positives (i.e., incorrect solutions
being deemed correct).

Results. We calculated the TPR and
TNR for each problem in CodeContests and
CodeContests*5x and plotted histograms, which
are shown in Fig 3. From the results, it is clearly
observed that in CodeContests, there are over 4000
problems with TPR < 0.1 and TNR > 0.9, indicat-
ing that these problems incorrectly classify almost
all correct submissions as incorrect, making these
problems practically impossible to solve and can-
not be used in training. We analyzed these prob-
lems and identified two primary reasons for this
phenomenon. First, CodeContests includes a large
number of incorrect test cases, causing program
outputs to be meaningless or causing programs to
fail to run properly. Second, CodeContests does not
provide custom checkers for multi-solution prob-
lems. In contrast, our proposed Agent System can
better ensure the correctness of test cases and pro-
vide custom checkers for multi-solution problems,
so similar phenomena are not as prominent.

5582



Table 3: Avg@15 on LiveCodeBench across difficulty
levels. CodeContests*achieves consistent gains over
CodeContests.

Dataset Easy Medium Hard All
CodeContests 0.958 0.786 0.329 0.622
CodeContests*-Verified 0.965 0.812 0.340 0.637

Furthermore, we can observe that as the num-
ber of test cases increases (from 1x to 5x), the
overall evaluation accuracy improves. This is re-
flected in Fig. 5 by the gradual increase in the
number of problems with TPR&TNR > 0.9. To
more clearly demonstrate this change, we counted
the number of problems with TPR&TNR greater
than a given threshold, and the results are shown
in Fig. 4. The results show that, at various
thresholds, the number of qualified problems in
CodeContests* increases as the number of test
cases rises. In particular, the number of qualified
problems in CodeContests* 5x is almost twice that
of CodeContests. Even with only one-quarter of
the test cases as compared to CodeContests, the
1x version of CodeContests™ has a significantly
higher evaluation accuracy and yields over 80%
more qualified problems than CodeContests.

This large-scale verification effort, as described
above, allows us to further refine our selection by
identifying problems with high-quality test cases
and excluding those with problematic ones. Conse-
quently, we have selected problems achieving both
TPR&TNR > 0.9 to form a distilled subset, which
we designate CodeContests*-Verified. In the next
Section, we will use both CodeContests*-Verified
and the original CodeContests for RL training to
demonstrate that higher-quality test cases yield sig-
nificant benefits for the training process. Within
our dataset, we provide the TPR and TNR for each
problem, enabling users to set appropriate thresh-
olds for quality-based filtering according to their
specific requirements.

4.5 Test Case Quality Matters in RL Training

To investigate the effect of unit test coverage
on code generation performance, we conduct
a controlled ablation study using reinforcement
learning (RL) based on the PPO-style training
paradigm (Shojaee et al., 2023).

Benchmark. Our experiments are performed on
the LiveCodeBench benchmark (Jain et al., 2025),
which evaluates code generation models across

varying difficulty levels: Easy, Medium, and Hard.
The time window is Aug 2024 - Feb 2025. We use
avg@15 as the performance metric, which is the
average of pass@1 from 15 independent responses.

Cold Start. We initialize our policy
from Qwen2.5-32B (Team, 2024), a reasoning-
optimized large language model. To enhance its
zero-shot reasoning capabilities, we further per-
form supervised fine-tuning using a curated cold-
start reasoning dataset.

Optimization Objective. We adopt the Grouped
Relative Policy Optimization (GRPO) objective
(Shao et al., 2024), which utilizes a group-based
advantage estimation to refine policy updates. For
a sampled group G = {§;}%, of candidate outputs
generated from a given input z, the GRPO objec-
tive is defined as:

j(@) :Ex~D, G~mg(+z2)C

[l imin (—We(q}lx) A
G i3 7T901d(in|x) 7

(mln) Y,
chp(—mom((jilx)J 1+ )Al)
~ 8Dkt (mol- | @) | et ) ]

where A; is the relative advantage of §; within
the group, and 7, is a reference policy used for
KL regularization. The hyperparameters ¢ and 3
control the clipping and KL penalty strength, re-
spectively. Additionally, we adopt the Decoupled
Clip and Dynamic Sampling Policy Optimization
(DAPO) settings (Yu et al., 2025) to enhance policy
learning further.

Rule-based Reward. We use a rule-based re-
ward. A sample receives a reward of +1 if it passes
all unit tests and —1 otherwise.

Results. Table 3 shows performance across diffi-
culty levels. We observe consistent improvements
in CodeContests*across all categories, especially
on Easy and Medium tasks. This demonstrates
the benefit of incorporating better test cases during
training.

5 Conclusion and Future Work

In this paper, we propose an LLM-based Generator-
Validator agent system capable of leveraging pub-
lic problem data to construct high-quality test
cases for competitive programming problems. This
system facilitates the scaling up of high-quality

5583



code datasets. Using this agent system, we have
developed CodeContests*by enhancing the orig-
inal CodeContests dataset with better test cases.
Experimental results demonstrate that the test
cases in CodeContests*are of significantly higher
quality than those in CodeContests, and that
CodeContests™also exhibits substantial advantages
in RL training.

According to our rough estimate, there are more
than 100,000 coding problems with publicly avail-
able problem statements and ground truth solutions.
Therefore, our proposed agent system will enable
the full utilization of these data resources, thereby
laying the data foundation for further enhancing
the reasoning and coding capabilities of LLMs.

Limitations

The agent we implemented is entirely based on
few-shot prompting. The underlying base model
has not been specifically trained for these types
of tasks, which means its performance still has
certain limitations. These limitations are evident,
for example, in areas such as instruction following
and problem comprehension, manifesting when the
model incorrectly utilizes provided utility functions
or attempts prohibited operations (such as modify-
ing the random seed). Further fine-tuning on test
case generation tasks, or the advent of more pow-
erful foundation models, could potentially lead to
performance improvements.

Acknowledgement

This work is supported by the National Natural
Science Foundation of China (N0.62172018).

References

Jacob Austin, Augustus Odena, Maxwell 1. Nye,
Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le,
and Charles Sutton. 2021. Program synthesis with
large language models. CoRR, abs/2108.07732.

Jiaze Chen, Tiantian Fan, Xin Liu, Lingjun Liu, Zhiqi
Lin, Mingxuan Wang, Chengyi Wang, Xiangpeng
Wei, Wenyuan Xu, Yufeng Yuan, Yu Yue, Lin Yan,
Qiying Yu, Xiaochen Zuo, Chi Zhang, Ruofei Zhu,
Zhecheng An, Zhihao Bai, Yu Bao, and 253 others.
2025. Seed-thinking-v1.5: Advancing superb reason-
ing models with reinforcement learning. Preprint,
arXiv:2504.13914.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg

Brockman, Alex Ray, Raul Puri, Gretchen Krueger,
Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela
Mishkin, Brooke Chan, Scott Gray, and 39 others.
2021. Evaluating large language models trained on
code. CoRR, abs/2107.03374.

Yao Cheng, Jianfeng Chen, Jie Chen, Li Chen, Liyu
Chen, Wentao Chen, Zhengyu Chen, Shijie Geng,
Aoyan Li, Bo Li, Bowen Li, Linyi Li, Boyi Liu,
Jerry Liu, Kaibo Liu, Qi Liu, Shukai Liu, Siyao Liu,
Tianyi Liu, and 35 others. 2024. FullStack Bench:
Evaluating LLMs as full stack coders. Preprint,
arXiv:2412.00535.

Ahmed El-Kishky, Alexander Wei, Andre Saraiva, Bo-
rys Minaiev, Daniel Selsam, David Dohan, Francis
Song, Hunter Lightman, Ignasi Clavera, Jakub Pa-
chocki, Jerry Tworek, Lorenz Kuhn, Lukasz Kaiser,
Mark Chen, Max Schwarzer, Mostafa Rohaninejad,
Nat McAleese, 03 contributors, Oleg Miirk, and 5
others. 2025. Competitive programming with large
reasoning models. Preprint, arXiv:2502.06807.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai
Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong Shao,
Zhuoshu Li, Ziyi Gao, Aixin Liu, and 180 others.
2025. DeepSeek-R1: Incentivizing reasoning capa-
bility in LLMs via reinforcement learning. Preprint,
arXiv:2501.12948.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob
Steinhardt. 2021. Measuring coding challenge com-
petence with APPS. In Proceedings of the Neural
Information Processing Systems Track on Datasets
and Benchmarks 1, NeurlPS Datasets and Bench-
marks 2021, December 2021, virtual.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2025. Live-
CodeBench: Holistic and contamination free eval-
uation of large language models for code. In The
Twelfth International Conference on Learning Repre-
sentations, ICLR 2025, Singapore, April 24-28, 2025.
OpenReview.net.

Yichuan Jiang. 2016. A survey of task allocation and
load balancing in distributed systems. IEEE Trans.
Parallel Distributed Syst., 27(2):585-599.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong
Sun, Chen Lyu, Guang Liu, Zhi Jin, and Ge Li. 2023.
TACO: topics in algorithmic code generation dataset.
CoRR, abs/2312.14852.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’ Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey

5584


https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2504.13914
https://arxiv.org/abs/2504.13914
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2412.00535
https://arxiv.org/abs/2412.00535
https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2502.06807
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/c24cd76e1ce41366a4bbe8a49b02a028-Abstract-round2.html
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://openreview.net/forum?id=chfJJYC3iL
https://doi.org/10.1109/TPDS.2015.2407900
https://doi.org/10.1109/TPDS.2015.2407900
https://doi.org/10.48550/ARXIV.2312.14852

Cherepanov, and 7 others. 2022. Competition-
level code generation with AlphaCode. Science,
378(6624):1092-1097.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by Chat-
GPT really correct? Rigorous evaluation of large
language models for code generation. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurlPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Mike Mirzayanov. 2005. Testlib.

Mike Mirzayanov, Oksana Pavlova, Pavel MAVRIN,
Roman Melnikov, Andrew Plotnikov, Vladimir Par-
fenov, and Andrew Stankevich. 2020. Codeforces as
an educational platform for learning programming
in digitalization. Olympiads in Informatics, 14(133-
142):14.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, Y. K. Li, Y. Wu, and Daya Guo. 2024.
Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. Preprint,
arXiv:2402.03300.

Quan Shi, Michael Tang, Karthik Narasimhan, and
Shunyu Yao. 2024. Can language models solve
Olympiad programming? CoRR, abs/2404.10952.

Parshin Shojaee, Aneesh Jain, Sindhu Tipirneni, and
Chandan K. Reddy. 2023. Execution-based code
generation using deep reinforcement learning. arXiv
preprint arXiv:2301.13816.

Qwen Team. 2024. Qwen?2.5 technical report.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,
Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian Fan,
Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin,
Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan
Tong, Chi Zhang, Mofan Zhang, Wang Zhang, and
16 others. 2025. DAPO: An open-source LLM
reinforcement learning system at scale. Preprint,
arXiv:2503.14476.

5585


https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://github.com/MikeMirzayanov/testlib
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://doi.org/10.48550/ARXIV.2404.10952
https://doi.org/10.48550/ARXIV.2404.10952
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2503.14476
https://arxiv.org/abs/2503.14476

6000
5000

6000
5000

3 3 3
& 4000 & 4000 & 4000
3 3 3
2, 3000 2 3000 2, 3000
o o o
S 2000 S 2000 S 2000
1000 1000 1000
] 0 0
1.0 1.0, 1.0
0.8 0.8 0.8
Thy X 1.0 Tig 0.6 1.0 Trge o 00.6 1.0
elvegat/v: '40’200 00 02 %4 o0 \gﬁe eNegafiv/eo '40'200 00 0204 S8 \gﬁe eNegaﬁv; . 0200 g 02_04 OO0 rgf\e
Ry te O . True positive Rale o . True positive /?a,e . | True Ppositive
+ + +
(a) CodeContests™ 1x (b) CodeContests™ 2x (c) CodeContests™ 3x
6000 6000 6000
5000 5000 5000
R 3 3
§ 4000 S 4000 & 4000
3 3 3
2 3000 2 3000 2 3000
13 13 13
S 2000 § 2000 S 2000
1000 1000 1000
0 0 0
1.0, 1.0, 1.0,
0.8 0.8 0.8 s
r,,,elvego.eo_402 04 06 08 1.0 T’“emeg°‘60-402 04 06 08 1.0 Tre Nego.eo_402 04 06 08 1.0
atiye p, O 02 04 " gate iy, O 02 04 "° oo atiyg p, O 02 04 " oot
E/?a’e 0.0 0.0 True Positive Rat Ve ’:’are 0.0 0.0 True Ppositive Rat e Raze 0.0 0.0 True positive Ral

(d) CodeContests™ 4x (e) CodeContests™ 5x (f) CodeContests

Figure 5: The histogram of the TPR, TNR of problems in (a)-(¢) CodeContests* 1x-5x (ours) and (f) CodeContests.

LiveCodeBench Performance Easy Difficulty Medium Difficulty Hard Difficulty

1
s |

063 o~ /
1

]

Avg pass@15

N

o 0 ) & 0

W W W
Training Steps Training Steps Training Steps

Figure 6: Evaluation results during RL training process.

A Terms and Definitions

The terms used in this paper and their definitions are summarized as follows.

Submission. In programming competitions, a submission is a program submitted by a contestant. This
submission is evaluated by a judging system, resulting in a verdict such as Accepted, Wrong Answer,
Time Limit Exceeded, Runtime Error, or Compile Error, among others.

Test case, test data. In competitive programming, a test case is used to check whether the participant’s
submission is correct. It usually consists of test input and test output.

Test input, input data. The input data of a test case will be fed into the contestant’s program. The
output obtained will then be compared with the ground truth data.

Test output, output data, reference answer. The output data of a test case is the correct answer
corresponding to the input data. For problems with multiple correct solutions, the output data typically
represents one of the possible correct answers.

Validator, input validator, validator program. A validator is a program used to check if input data is
correct.

Generator, input generator, generator program. Because some input data is very large or complex
and cannot be handcrafted, a generator is used to produce it. A generator is a program that creates test
input.

Checker, output checker, special judge. A checker is a program used to determine if a contestant’s
output is correct. Usually, it simply checks if the contestant’s output matches the test output. For problems
with multiple solutions, it may contain more complex logic.

5586



Table 4: Built-in checkers and their uses.

Name Use

ncmp. cc Compare ordered sequences of signed 64-bit integer numbers.

rcmp4.cc Compare two sequences of floating point numbers, with max absolute or relative error = 107,
rcmpé. cc Compare two sequences of floating point numbers, with max absolute or relative error = 107°.
rcmp9.cc Compare two sequences of floating point numbers, with max absolute or relative error = 107°.

wemp. cc Compare sequences of tokens. Invisible characters are regarded as separators and are not compared.
hcmp. cc Compare two signed huge integers.
nyesno.cc  Compare multiple YES or NO (case insensitive).
femp.cc Full-text comparison. Whitespaces, tabs, and linebreaks are also strictly compared.
B Checker

Checker Program. Previous research has largely employed a simple character-by-character comparison
to determine if a program’s output is correct. However, this approach does not apply to problems with
multiple solutions. Many problems in programming competitions have multiple valid solutions, meaning
the same input can correspond to multiple correct outputs. For example, approximately 1/4 of the problems
on Codeforces are multi-solution problems. These types of problems require special checking logic. A
Checker is a program used to check if a program’s output is correct; its inputs include the input data,
program output, and the reference answer, and it determines if the program output is correct. For problems
without multiple solutions, a checker program may still be necessary. For example, problems with
floating-point outputs need to compute relative or absolute errors to judge the correctness of the answer.
Even for the most general problems, a checker program may need simple logic to ignore extra spaces or
line breaks from the program’s output. Therefore, we believe providing a custom checker program for
every problem is necessary. A checker example is presented in Appendix D.2.

Additionally, the checker can provide richer error feedback than a simple correct/incorrect binary label.
For example, the checker can specify the exact location of the error in the output, the differences between
the correct answer and the program’s output, and even the reason for the error. This information can be
utilized in future research, for example, to help Code LLMs with reflection.

Agent Workflow. First, the checker agent is provided with a problem statement. Next, the agent is
required to carefully read the problem statement and determine if the problem has multiple valid solutions.
Multi-solution problems typically have explicit hints, such as "If multiple feasible solutions exist, output
any one of them." If the agent determines that the problem does not have multiple solutions, the agent
then needs to select one of the built-in checkers based on the problem’s output format. These built-in
checkers include an integer checker, a floating-point checker, a yes/no checker, and a general full-text
comparison checker, among others. A complete list of built-in checkers is presented in Table 4. If the
agent determines that the problem has multiple solutions, then it needs to implement custom checking
logic based on the problem requirements and output a checker program.

Supervision. Based on our observations, the main errors made by the checker agent are concentrated
in multi-solution problems where the checker is more difficult to implement, and more often, these errors
involve incorrectly checker correct answers as incorrect. We use a relatively simple supervision method
where we input the problem’s sample input and sample output into the checker (with the sample output
serving as both the program’s output and the reference answer). If the checker fails, it indicates an error in
the checker’s implementation. In such cases, the sample input, sample output, and the checker’s output are
all fed back to the checker agent for reflection and correction. Even with this, there are still some problems
where the agent is unable to correctly implement the checker. These case studies will be presented in the
Section 4.4.

To ease the burden on the agent, for problems without multiple valid solutions, we provide the agent
with a selection of pre-written checkers, eliminating the need for the agent to write one itself. These
built-in checkers are presented in Table 4.

5587



e System
Here is a problem statement.

Color the Map Extreme
Time Limit: 8000 ms Memory Limit: 512 MB

Please carefully read the problem statement, and write
a test case generator, and generator commands.

@ Generator
Of course. First, | need to carefully read the problem

statement and find all the requirements for the input.
Then, | need to think about ...

Here is the generator and generator commands.

iCC

gen.cc gen.sh

Validator Q
Validation failed when executing . /gen -n 35 -rand.

FAIL in Line 18, Polygon must have positive area and
CCW order (area = -34).

Please revise the generator and generator commands.

@ Generator
OK. First, | need to find out why the generator outputs

a polygon with negative area. Then, | need to think
about how to ...

Here is the revised generator and commands.

ieC L

gen.cc gen.sh
Validator e
OK. All test cases validated.

Figure 7: An illustration of the reflection process of Geneartor Agent.

C Evaluation as a Service (EaaS): A Cloud Architecture for Large-Scale Code Evaluation

Training Code LLMs with RL requires sampling a large amount of solutions and evaluating them to
obtain rewards for model training. Therefore, code evaluation has become a bottleneck affecting training
efficiency, with its computational overhead being comparable to the LLM’s parameter updates. To address
this, we implemented a cloud service for large-scale code evaluation.

This cloud service runs on a cluster of 25,000 CPU cores, where 8,000 cores comprise 2,000 4c16g
judging pods, and 17,000 cores comprise 8,500 2c4g execution pods. Each judging pod is responsible
for evaluating an entire code request, while each execution pod (Cheng et al., 2024) is responsible for
running a code with a single test input and returning the output. The judging pod passes the code and
input files to the execution pod; after execution, the execution pod returns the output to the judging pod,
which runs a checker to determine the correctness of the output. Execution pods have a concurrency of 1
and exclusively use two cores of the host machine, ensuring both isolation and consistent performance.
Judging pods, on the other hand, have higher concurrency and do not need to run with exclusive cores.
Execution pods are scheduled using load balancing (Jiang, 2016) while judging pods are scheduled using
a message queue. All test cases are preprocessed and synchronized across judging pods via a network file
system, which eliminates the time overhead of compiling and running generators. Execution pods are
equipped with runtime environments for multiple languages, including C, C++, Java, Python, Rust, Go,
C#, and PHP, among others.

5588



Color the Map Extreme
Time Limit: 8000 ms Memory Limit: 512 MB

Description

You have just transferred to another world, and got a map of this
world. There are several countries in this world. Each country
has a connected territory, which is drawn on the map as a simple
polygon consisting of its border segments in the 2-dimensional
plane.

You are strange to this world, so you would like to paint countries
on the map to distinguish them. If you paint adjacent countries
with same color, it would be rather difficult to distinguish the
countries. Therefore, you want to paint adjacent countries with
different colors. Here, we define two countries are adjacent if
their borders have at least one common segment whose length is
strictly greater than zero. Note that two countries are NOT
considered adjacent if the borders only touch at points.

Because you don't have the currency of this world, it is hard for
you to prepare many colors. What is the minimum number of
colors to paint the map such that adjacent countries can be
painted with different colors?

Input

The input consists of multiple datasets. The number of dataset is
no more than 35.

The first line of each dataset contains an integer n (1 < n < 35),
which denotes the number of countries in this world.

The rest of each dataset describes the information of n polygons
representing the countries. The first line of the information of the
i-th polygon contains an integer m; (3 < m; < 50), which denctes
the number of vertices. The following m; lines describe the
coordinates of the vertices in the counter-clockwise order. The j-
th line of them contains two integers x;;and y;; (|x; |, ly;;| < 103),
which denote the coordinates of the j-th vertex of the i-th polygon.
You can assume the followings.

+ Each polygon has an area greater than 0.

« Two vertices of the same polygon have distinct coordinates.

+ Two segments of the same polygon do not have any common
points except that exactly two segments meet at each vertex.

« Two polygons have no common area.

The end of input is indicated by a line containing a single zero.
Output

For each dataset, output the minimum number of colors to paint
the map such that adjacent counfries are painted with different
colors in a line.

Figure 8: An example problem Color the Map Extreme.

D Illustrations, Demos and Cases

D.1 Demo: Validator

The agent-written validator of the problem Color the Map Extreme, which is presented in Fig. 8, is as
follow:

#include "testlib.h”
#include <bits/stdc++.h>
using namespace std;

struct Point {
long long x, y;
e

static long long cross(const Point &A, const Point &B, const Point &C) {
// Returns the cross product (B-A) x (C-A).
// Positive if A->B->C is counter-clockwise turn,
// negative if clockwise, @ if collinear.
return (B.x - A.x) * (C.y - A.y)
- (B.y - A.y) * (C.x - A.x);
}

// Check if two line segments (p1,p2) and (p3,p4) intersect in a way
5589



// that produces a 2D area overlap (i.e., truly crossing).
// We *allowx them to share endpoints or overlap on boundary with no interior
crossing.
bool segmentsProperlylIntersect(const Point &pl, const Point &p2,
const Point &p3, const Point &p4)
{
long long c1 = cross(pl, p2, p3);
long long c2 cross(pl, p2, p4);
long long c3 cross(p3, p4, pl);
long long c4 = cross(p3, p4, p2);

// If the two segments share more than a point on the boundary in a line overlap
// that is still not an "area"” intersection. We consider a "proper” intersection
// if each segment straddles the line extended by the other segment
// (typical computational geometry check for crossing).
if ((cl == @ && c2 == @ && c3 == 0 && c4 == 0)) {
// Collinear or overlapping segments on same line:
// We check bounding boxes for overlap. That's still not 2D overlap (area).
// So do not treat as an area intersection.
return false;

3

// If there's a genuine crossing, each cross product pair has different sign
// (i.e. cl1 and c2 differ in sign, c3 and c4 differ in sign).
// That means a proper crossing that yields an intersection in the interior.
bool s1 = (c1 < @ & & ¢c2 > @) || (c1 > @ && c2 < 0);
bool s2 = (c3 < 0 & & c4 > 0) || (c3 > 0 && c4 < 0);
return (s1 && s2);

3

// Checks if point P is strictly inside the polygon poly (not on boundary).
// Standard ray casting or winding approach. Here we'll use winding number
// or cross approach. We exclude boundary checks, so if it is on boundary
// we'll consider that "not strictly inside.”
bool pointInPolygonStrict(const vector<Point> &poly, const Point &P) {
// A typical approach is to check the sum of angles or the winding number.
// We'll do a ray-casting approach that ignores boundary if crossing hits a
vertex.
// Because coordinates can be negative and up to 1000 in absolute value, we'll
do
// the standard approach carefully with integer checks.
int cnt = 0;
for (int i = @; i < (int)poly.size(); i++) {
Point A = poly[il;
Point B = poly[(i + 1) % poly.size()1;
// Check if the ray from P horizontally to the right intersects segment AB.
// We'll skip boundary checks in a way that if P is exactly on an edge, we
return false.
if ((A.y > P.y) != (B.y > P.y)) {
// Possible crossing in y
long double x_cross = (long double)(B.x - A.x) * (long double)(P.y - A.y

)
/ (long double)(B.y - A.y) + A.x;
if (x_cross > P.x) {
cnt++;
3
}
// Also check if P is exactly on segment AB. If so, it's not strictly inside
long long c¢ = cross(A, B, P);
if (c == 0) {
// Check if P is within bounding box of A and B
if (min(A.x, B.x) <= P.x && P.x <= max(A.x, B.x) &&
min(A.y, B.y) <= P.y & P.y <= max(A.y, B.y)) {
// On boundary
return false;
3
}
}

5590



// If odd, inside; if even, outside.

// Because we skip boundary as "strict inside,’
inside.

return (cnt % 2 == 1);

I

we only count if definitely

}

// Check if polygon is simple (no self intersections)
// and has strictly positive area (CCW is required).
void checkSimplePolygon(const vector<Point> &poly) {
int m = (int)poly.size();
// 1) Check no two vertices coincide.
// 2) Check edges do not intersect except at adjacent vertices.
// 3) Check area > @ and orientation is CCW.

// Distinct vertices:

set<pair<long long, long long>> st;

for (auto &pt : poly) {
auto p = make_pair(pt.x, pt.y);
ensuref (!st.count(p), "Polygon has duplicate vertices.");
st.insert(p);

}

// Check area (signed area for CCW).
// Standard shoelace formula:
long long area2 = ©; // 2 * area, signed
for (int i = @; i < m; i++) {
int j = (i + 1) % m;
area2 += (poly[il.x * poly[jl.y - poly[jl.x x polyl[il.y);
3
ensuref (area2 > @, "Polygon must have positive area and CCW order (area2=%11d)",
area?);

// Check self-intersections:
// We'll compare every pair of edges (i, i+1) with (j, j+1), skipping adjacency.
for (int i = 0@; i < m; i++) {

Point pl1 = poly[il];

Point p2 = poly[(i + 1) % ml;

for (int j =1 + 1; j < m; j++) {

// edges (i->i+1) and (j->j+1) share endpoints if j == i+1 or i == j+1
// (mod m). We'll skip adjacency or the same edge.
if (abs(i - j) <=1 || (i == 0 && j ==m - 1) || (j == 0 && i ==m - 1))
{
continue; // adjacent edges or the same edge
3
Point p3 = poly[jl;
Point p4 = poly[(j + 1) % ml;
// If a proper intersection occurs, it's invalid:
if (segmentsProperlyIntersect(pl, p2, p3, pd)) {
ensuref (false, "Polygon edges intersect in their interiors.”);
3
}
}

3

// Check if polygons A and B share any area.
// Return true if they do share area > 0, false if they only meet at boundary or do
not meet at all.
bool polygonsShareArea(const vector<Point> &A, const vector<Point> &B) {
// We'll do:
// 1) Check if any vertex of A is strictly inside B => area overlap
// 2) Check if any vertex of B is strictly inside A => area overlap
// 3) Check if edges properly intersect (cross) => area overlap
// If none of these => no area overlap.
// Overlapping in a line or point only is fine (no area).
for (auto &p : A) {
if (pointInPolygonStrict(B, p)) {
return true;
}

}
for (auto &p : B) {

5591



if (pointInPolygonStrict(A, p)) {
return true;
}
3

// Check edges pairwise for a crossing intersection
for (int i = 0; i < (int)A.size(); i++) {
Point p1 ALi];
Point p2 A[L(L + 1) % A.size()];
for (int j = @; j < (int)B.size(); j++) {
Point p3 = B[jl;
Point p4 = B[(j + 1) % B.size()];
if (segmentsProperlylIntersect(pl, p2, p3, p4)) {
return true;

3
b
3

return false;

int main(int argc, char* argv[]) {
registerValidation(argc, argv);

while (true) {
int n = inf.readInt(@, 35); // n can be zero or up to 35
inf.readEoln();
if (n == 0) {
// End of input
break;

}

// Read n polygons
vector<vector<Point>> polygons(n);
for (int i = @; i < n; i++) {
int m = inf.readInt(3, 50);
inf.readEoln();
vector<Point> poly(m);
for (int j = 0; j < m; j++) {
long long x = inf.readlLong(-1000, 1000);
inf.readSpace();
long long y = inf.readlLong(-1000, 1000);
inf.readEoln();
poly[jl = {x, v};
3
// Check that this polygon is valid (simple, area>@0, CCW).
checkSimplePolygon(poly);
polygons[i] = poly;
}

// Check that no two polygons share area.
// (They may only meet at boundary or be disjoint.)
for (int i = @; i < n; i++) {
for (int j =i + 1; j < n; j++) {
bool hasAreaOverlap = polygonsShareArea(polygons[i], polygons[jl);

ensuref (! hasAreaOverlap, "Two polygons share area (overlap).");
3
}
3
inf.readEof ();
return 0;

D.2 Demo: Generator and Checker
Problem: https://codeforces.com/problemset/problem/152/E
The generator of this problem is as follows:

#include "testlib.h”
#include <bits/stdc++.h>
using namespace std;

5592


https://codeforces.com/problemset/problem/152/E

/*
This generator produces a single test case for the "Vasya's Garden"” problem.
It reads four arguments: n, m, k, and type (default = "random”).

Constraints to satisfy:
T <= n, m <= 100
nxm <= 200
1 <= k <= min(n*m, 7)
1 <= alillj]l <= 1000
All k important squares must have different coordinates.

The generator supports several "type" parameters to produce a variety of data
patterns, exposing different corner cases.

NOTE :
- Please DO NOT set or parse a random seed parameter.
- This generator will produce ONE test.
- We rely on "rnd” from testlib for randomness.
*/

int main(int argc, charx argv[])
{

registerGen(argc, argv, 1);

// Parsing parameters with default values where appropriate
int n = opt<int>("n");

int m = opt<int>("m");

int k = opt<int>("k");

string type = opt<string>("type”, "random");

// Basic validation (not strictly required but good for sanity)

// Ensure 1 <= n*m <= 200

// Ensure 1 <= k <= min(nxm, 7)

// We'll assume user input doesn't violate constraints, but you may check if

needed.

if (n <=0 || m<=0@ || n*m>200 || k <1 [] k>min(nxm, 7)) {
cerr << "Invalid parameters: n=" << n << ", m=" << m << ", k=" << k << endl;
return 1;

}

// Create a 2D array to store the number of flowers.
// We'll fill it depending on the "type".
vector<vector<int>> garden(n, vector<int>(m, 0));

// A helper lambda to generate random in [1..1000].
auto genValue = [&]() {

return rnd.next(1, 1000);
I

// Fill the garden according to "type":
if (type == "allmin") {
// All squares have 1 flower
for (int i = @; i < n; i++) {
for (int j = 0; j < m; j++) {
garden[iJ[j] = 1;

3
3
3
else if (type == "allmax") {
// All squares have 1000 flowers
for (int i = @; i < n; i++) {
for (int j = 0; j < m; j++) {
garden[iJ[j] = 1000;
3
3
else if (type == "random") {
// Fully random
for (int i = @; i < n; i++) {

5593



for (int j = 0; j < m; j++) {
garden[i][j] = genValue();

3
}
3
else {
// For "corners"”, "line"”, "block"”, or anything else, we'll do a random fill
// and then handle building squares in a special pattern.
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
garden[i][j] = genValue();
3
}
}

// We'll store the building squares here
vector<pair<int,int>> buildings;
buildings.reserve(k);

// According to "type"”, choose building squares.
// Must ensure distinct squares. We'll do it differently for each type.
// Indices are 1-based for the final output, but we'll pick @-based internally.
if (type == "corners") {

// Up to 4 corners: (0,0), (0,m-1), (n-1,0), (n-1,m-1)

// If k <= 4, place them in corners first. If k > 4, fill corners, then
random for the rest.

vector<pair<int,int>> corners;

corners.push_back ({0, 0});

if (m > 1) corners.push_back ({0, m-1});

if (n > 1) corners.push_back({n-1, 0});

if (n > 1 & m > 1) corners.push_back({n-1, m-1});

int used = 0;
for (int ¢ = 0; ¢ < (int)corners.size() && used < k; c++) {
buildings.push_back (corners[c]);
used++;
}
// If not enough, fill the remainder randomly
while ((int)buildings.size() < k) {
int rr = rnd.next(@, n-1);
int cc = rnd.next(0, m-1);
if (find(buildings.begin(), buildings.end(), make_pair(rr,cc))
buildings.end()) {
buildings.push_back({rr, cc});

3
}
}
else if (type == "line"”) {
// Place building squares in the first row, left to right, then second row,
etc.
// We only do this if it doesn't exceed n*m (which it doesn't: k <= nxm).
// If k squares don't fit in row 1 alone, continue row by row.
// Could also do a single row if n=1 or m=2, etc.
int count = 0;
for (int 1 = @; i1 < n && count < k; i++) {
for (int j = @0; j < m && count < k; j++) {
buildings.push_back({i, j});
count++;
3
}
}
else if (type == "block") {

// Place building squares in top-left block
// We'll place them in reading order (row by row)
int count = 0;
for (int i = @; i < n && count < k; i++) {
for (int j = 0; j < m && count < k; j++) {
buildings.push_back ({i, j});
count++;

5594



=> pick k distinct squares at random

n

or leftover type,

integers

3
else {
// "random” or any unknown type
// (If we got here from "random
//
// Just pick k distinct squares randomly.
set<pair<int,int>> used;
while ((int)used.size() < k) {
int rr = rnd.next(@, n-1);
int cc = rnd.next(@0, m-1);
used.insert({rr, cc});
}
for (auto &x: used) {
buildings.push_back (x);
}
3
// Now we
// Output format:
// line 1: n m k
// next n lines: each line has m
// next k lines: "row col”
printf("%d %d %d\n”", n, m, k);
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {

printf ("%d%c",

}
3
for (int i = 0;
// Add 1 for
printf ("%d %d\n",
}
return 0;

garden[iJ[j]

i < k; i++)

, (§+1 == m ? '\n'

1-based coordinates

buildings[il].

The generator commnads are:

first + 1,

we handle it similarly.)

We'll skip the fill since we already filled the grid above.

have our matrix of flowers and a set of k building squares.

for building squares (1-based)

buildings[i].second + 1);

# Below are approximately 20 distinct commands to run the generator.
# Each produces a single test case on stdout.

# 1) Minimum case:

1

x1 grid

./gen -n 1 -m 1 -k 1 -type random

# 2) Small case: 1x2 grid, k=1

./gen -n 1 -m 2 -k 1 -type random

# 3) Square grid, small

./gen -n 2 -m 2 -k 2 -type corners

# 4) Another small grid

./gen -n 2 -m 3 -k 2 -type line

# 5) Another small grid with "block”
./gen -n 3 -m 3 -k 3 -type block

# 6) Mixed dimensions,
-k 3

./gen -n 10 -m 20

-type random

# 7) Same nx*m=200 but different k

./gen -n 10 -m 20

# 8) Another large shape,
-m 8 -k 5 -type line

./gen -n 25

-k 7

-type corners

# 9) Also near max area

./gen

-n 20 -m 10 -k 7 -type block

# 10) All minimal values

near upper limit in product (10 x 20

a tall but narrow grid

5595

= 200)



./gen -n 5 -m 5 -k 5 -type allmin

# 11) All maximal values
./gen -n 5 -m 5 -k 3 -type allmax

# 12) Very narrow, but tall
./gen -n 100 -m 2 -k 2 -type random

# 13) Another shape with block
./gen -n 8 -m 8 -k 6 -type block

# 14) "line" style with a bit bigger dimension
./gen -n 5 -m 10 -k 4 -type line

# 15) Corners with bigger dimension
./gen -n 4 -m 7 -k 4 -type corners

# 16) Random distribution with k=7
./gen -n 10 -m 10 -k 7 -type random

# 17) Dimensions 4x8 = 32 squares
./gen -n 4 -m 8 -k 3 -type random

# 18) Single row case
./gen -n 1 -m 10 -k 5 -type line

# 19) Single column case
./gen -n 10 -m 1 -k 3 -type block

# 20) Another random large (n*m=200) with max k=7
./gen -n 4 -m 50 -k 7 -type random

This is also a problem with multiple valid answers. The checker of this problem is:

#include "testlib.h”
#include <bits/stdc++.h>
using namespace std;

int n, m, k;
vector<vector<int>> a;
vector<pair<int, int>> important_squares;

int main(int argc, charx argv[]) {
registerTestlibCmd(argc, argv);

n = inf.readInt();
inf.readInt();
inf.readInt();

m
k

// Read the garden's flower counts
a.resize(n, vector<int>(m));
for (int i = @; i < n; i++) {
for (int j = @; j < m; j++) {
alillj] = inf.readInt();
}
}

// Read the important squares

set<pair<int, int>> important_set;

for (int 1 = @; i < k; i++) {
int x = inf.readInt();
int y = inf.readInt();
important_squares.emplace_back(x - 1, y - 1);
important_set.emplace(x - 1, y - 1);

}

// Read the jury's answer (minimal total sum)
int jans = ans.readInt();

// Read the participant's total sum
int pans = ouf.readInt();

5596



// Read the participant's plan
vector<string> plan(n);
for (int i = @; i < n; i++) {
plan[i] = ouf.readToken();
if (int(plan[i].length()) != m) {
quitf(_wa, "Invalid plan: line %d should have length %d, but has length
%d”, 1 + 1, m, int(plan[i].length()));

}
for (char c¢ : plan[i]) {
if (c !'= 'X' && ¢ !'= '".") {
quitf(_wa, "Invalid character '%c' in plan at line %d", c, i + 1);
3
}

3

// Compute the actual total sum over 'X's
int actual_pans = 0;

for (int i = @; i < n; i++) {
for (int j = 0; j < m; j++) {
if (plan[il[j] == 'X') {
actual_pans += al[il[j];
3
}
3
if (actual_pans != pans) {

quitf(_wa, "The total sum of dead plants does not match the plan: expected %
d, found %d", actual_pans, pans);

3

if (pans > jans) {

quitf(_wa, "Participant's total sum (%d) is greater than minimal total sum
(%d)", pans, jans);
} else if (pans < jans) {

quitf(_fail, "Participant's total sum (%d) is less than minimal total sum (%
d)", pans, jans);
3
// Check that all important squares are covered with concrete ('X"')
for (auto [x, y]l : important_squares) {

if (plan[x1Lyl !'= 'X') {

quitf(_wa, "Important square (%d, %d) is not covered with concrete”, x +

T, y + 1);

3
3

// Check connectivity between all important squares

queue<pair<int, int>> q;

vector<vector<bool>> visited(n, vector<bool>(m, false));
g.push(important_squares[0]);
visited[important_squares[@].first][important_squares[@].second] = true;

// Directions: up, down, left, right
int dx[]1 = {-1, 1, @, @};
int dy[]l = {o, o, -1, 13};

while (!q.empty()) {
auto [x, yl = q.front();
q.pop();

for (int dir = 0; dir < 4; dir++) {
int nx = x + dx[dir];
int ny = y + dy[dir];
if (0 <= nx & nx < n & @ <= ny && ny < m) {
if (!visited[nx]J[ny] && plan[nx][ny]l == 'X') {
visited[nx][ny] = true;
g.emplace(nx, ny);

5597



3
// Verify that all important squares are connected
for (auto [x, yl : important_squares) {

if (!visited[x1[yl)

quitf(_wa, "Important square (%d, %d) is not connected to all other

important squares”, x + 1, y + 1);

}
3
quitf (_ok, "Correct solution with minimal total sum %d"”, pans);

D.3 Case Study: Problems with Stronger Test Cases than Official Test Cases

Problem: https://codeforces.com/problemset/problem/392/D
The following submission passes the official test cases.

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 6e5 + 21, inf = 1e7 + 21;
int n, sz;
int ACMAXN], B[LMAXN], CLMAXN], a[MAXN], b[MAXNI, c[MAXNI;
int dp[MAXN], cnt[MAXNTJ;
int bw[MAXN << 2], lazy[MAXN << 2];
struct node {
int ans, mn, mx;
node(int a = @, int b = @, int ¢ = @) { mn = a, mx = b, ans = c; }
} seg[MAXN << 27;
inline node MRG(node a, node b) {
return node(min(a.mn, b.mn), max(a.mx, b.mx), min(a.ans, b.ans));
3
inline void relax(int x, int id, int st) {
seg[id] = node(lazy[id] = x, x, x <= n ? x + st : 3 * n);
3
inline void shift(int id, int st, int en) {
if (!(~lazy[id])) return;
int mid = (st + en) >> 1;
relax(lazy[id], id << 1, st);
relax(lazy[id], id << 1 | 1, mid);

lazy[id] = -1;
}
void build(int id = 1, int st = @, int en = n + 1) {
lazy[id] = -1;
if (en - st == 1) {
seg[id] = node(dp[st], dpl[stl, dp[st]l + st);
return;
3
int mid = (st + en) >> 1;
build(id << 1, st, mid);
build(id << 1 | 1, mid, en);
segl[id] = MRG(seglid << 1], seglid << 1 | 11);
void update(int 1, int r, int x, int id = 1, int st = @, int en = n + 1) {
if (r <= st || en <=1 || segl[id]l.mn >= x) return;
if (1 <= st && en <= r && seg[id].mx < x) return relax(x, id, st);
shift(id, st, en);
int mid = (st + en) >> 1;
update(l, r, x, id << 1, st, mid);
update(l, r, x, id << 1 | 1, mid, en);
seg[id] = MRG(seglid << 1], seglid << 1 | 11);
3
inline void pre() {
int cur = 0;
sort(bw, bw + sz);
sz = unique(bw, bw + sz) - bw;

fill(A, A + sz, n + 1);
fill(B, B + sz, n + 1);
fill(C, C + sz, n + 1);

5598


https://codeforces.com/problemset/problem/392/D

}

for (int i = n; 1i; i--) {

alil

lower_bound(bw, bw + sz, ali

1) - bw;

b[i] lower_bound(bw, bw + sz, b[i]) - bw;
c[i] = lower_bound(bw, bw + sz, c[i]) - bw;
ACalil]l = 1i;
B[b[il]l = i;
CLcl[il] = 1i;
3
for (int i = 1; i <= n; i++) {
cur += !cnt[ali]ll++;
cur += l!cnt[c[i]]++;
3
for (int i = 0, p = n; i <= n; i++) {

cur += lcnt[b[i]]++;

while (p && cntl[clpl] > 1) cntlclp--11--;

if (cur < sz)
dp[i] = 3 * n;

else
dp[i]

P
3

build();
return;

int main() {
ios::sync_with_stdio (@), cin.tie(Q),

1

cin >> n;

for (int i = 1; i <= n; i++)
cin >> al[il;
bwlsz++] = alil;

3

for (int i = 1; i <= n; i++)

cin >> b[il;
bwlsz++] = b[i];

3

for (int i = 1; i <= n; i++)
cin >> c[i];
bwlsz++] = c[il;

3

pre();

int ans = n + seg[1].ans;

for (int i =n; i > 0; i--) {

if (Afalil]l == i) {

{

update (0, B[al[ill, CLalill);

}

ans = min(ans, i + segl[1].ans - 1);
3
cout << ans;
return 0;

cout.tie(0);

The agent system constructed the following input:

497025789
364691059
954413461

The correct answer is 3 but the program outputs 2. Therefore, this submission is actually incorrect.

D.4 Artifact Details

CodeContests dataset is released under the Apache-2.0 license. CodeContests*is released under CC-BY-
4.0 license. CodeContests*has removed all personalized information.

Your access to and use of this dataset are at your own risk. We do not guarantee the accuracy of this
dataset. The dataset is provided “as is” and we make no warranty or representation to you with respect to
it and we expressly disclaim, and hereby expressly waive, all warranties, express, implied, statutory or
otherwise. This includes, without limitation, warranties of quality, performance, merchantability or fitness
for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or

absence of errors, whether or not known or discoverable.

5599



In no event will we be liable to you on any legal theory (including, without limitation, negligence) or
otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses,
costs, expenses, or damages arising out of this public license or use of the licensed material.

The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner
that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.

D.5 Use of AI assistants

This work is assisted by Al as a writing assistant.

5600



