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Abstract

Large language models (LLMs) have become
essential tools for digital task assistance. Their
training relies heavily on the collection of vast
amounts of data, which may include copyright-
protected or sensitive information. Recent stud-
ies on detecting pretraining data in LLMs have
primarily focused on sentence- or paragraph-
level membership inference attacks (MIAs),
usually involving probability analysis of the tar-
get model’s predicted tokens. However, these
methods often exhibit poor accuracy, failing
to account for the semantic importance of tex-
tual content and word significance. To address
these shortcomings, we propose Tag&Tab, a
novel approach for detecting data used in LLM
pretraining. Our method leverages established
natural language processing (NLP) techniques
to tag keywords in the input text, a process
we term Tagging. Then, the LLM is used to
obtain probabilities for these keywords and cal-
culate their average log-likelihood to determine
input text membership, a process we refer to
as Tabbing. Our experiments on four bench-
mark datasets (BookMIA, MIMIR, PatentMIA,
and the Pile) and several open-source LLMs of
varying sizes demonstrate an average increase
in AUC scores ranging from 5.3% to 17.6%
over state-of-the-art methods. Tag&Tab not
only sets a new standard for data leakage detec-
tion in LLMs, but its outstanding performance
is a testament to the importance of words in
MIAs on LLMs.

1 Introduction

The rapid advancement of generative artificial in-
telligence (GenAI) in recent years has significantly
shifted the tech industry’s focus toward the devel-
opment of powerful tools such as large language
models (LLMs).

LLMs are now widely used for tasks such as
conversational AI, content generation, and scien-
tific research (Hoang et al., 2019; Nakano et al.,
2021; OpenAI, 2022; Touvron et al., 2023). Their

adoption reflects a broader shift in AI towards large-
scale language understanding.

The widespread use of LLMs has intensi-
fied competition to improve model performance,
which relies on the collection of vast amounts of
data (Wang et al., 2023).

To achieve these improvements, LLMs are
primarily trained on open-source datasets ob-
tained from various sources using methods such
as synthetic data generation and web scrap-
ing (Nikolenko, 2021; Khder, 2021). The type of
data collected includes books, code, academic pa-
pers, and medical records (Axon, 2024; Gao et al.,
2020; Achiam et al., 2023; Touvron et al., 2023).
The methods employed for data collection raise
significant privacy and ethical concerns (Neel and
Chang, 2023; Yao et al., 2024), primarily regarding
the inclusion of personally identifiable information
(PII) (Lukas et al., 2023) and copyright-protected
content (Rahman and Santacana, 2023; Wu et al.,
2024; Axon, 2024).

High-profile lawsuits, such as The New York
Times Company vs. OpenAI (Times, 2023), high-
light the need for tools that can detect unauthorized
use of data in LLM training (Maini et al., 2024).

Membership inference attacks (MIAs) aim to
identify whether a given text was part of a model’s
training data by exploiting behavioral differences in
how LLMs process seen versus unseen data (e.g.,
higher prediction confidence or lower loss) (Hu
et al., 2022; Carlini et al., 2022a). Existing MIAs
face several key limitations. First, most methods
rely solely on token-level probabilities, neglect-
ing the semantic importance of words within the
broader context (Yeom et al., 2018; Carlini et al.,
2021). Second, their performance varies widely
across different models and datasets, often lacking
consistent generalization (Duan et al., 2024; Maini
et al., 2024). Lastly, MIAs are often evaluated on
data that is not independently and identically dis-
tributed (IID), which can lead to the detection of
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distribution shifts rather than genuine membership
inference, thereby undermining the attacks’ relia-
bility (Zhou et al., 2023).

To address the limitations of existing methods,
we introduce Tag&Tab, a novel approach based on
common natural language processing (NLP) meth-
ods that is designed to efficiently and effectively
detect LLMs’ pretraining data. Specifically, our
method aims to determine whether an LLM was
trained on a given text sample, given black-box
access to the target LLM (i.e., can only query the
model).

Building on the work of Lukas et al. (Lukas et al.,
2023), who highlighted the role of named entities
in PII leakage detection, Tag&Tab prioritizes infor-
mative keywords using entropy-based selection.

Tag&Tab is designed to address the three key
limitations of prior MIA methods. First, rather
than relying solely on token-level probabilities, our
method introduces semantic awareness by prioritiz-
ing meaningful content through keyword selection.
Second, our results demonstrate strong generaliza-
tion across models and datasets, addressing the is-
sue of model inconsistency. Finally, while no MIA
is entirely immune to distribution shifts, our focus
on rare and informative keywords, rather than shal-
low statistical artifacts, provides better resilience
to distributional variations.

Our method consists of the following steps:

1. Preprocessing - Constructing a word entropy
map and filtering certain sentences to ensure
optimal keyword selection.

2. Tagging - Combining (i) Named Entity Recog-
nition (NER) spans, and (ii) the K words in
the sentence with the lowest entropy contribu-
tion value. The final set is not constrained to
exactly K words.

3. Tabbing - Passing the entire text to the tar-
get LLM and calculating the average log-
likelihood of the selected keywords.

4. Inference - Comparing the average log-
likelihood to a threshold to determine the
text’s membership (i.e., whether it was in the
inspected model’s training set).

Words with a low entropy contribution are usu-
ally either very common or very rare. After con-
structing the entropy map, we observed that rare
content words stand out more in the low-entropy

pool, making them more likely to be chosen as
keywords.

Our method is based on the intuition that a higher
log-likelihood for low-entropy words, together with
NER spans, suggests that the model encountered
the text during training (Carlini et al., 2022b) Based
on this intuition, we hypothesize that these rare
low-entropy words and rare entities are more likely
to be memorized by the model and thus serve as
effective indicators of the text’s membership in the
pretraining dataset (Thakkar et al., 2021; Carlini
et al., 2019). By selecting a small number of low-
entropy keywords and augmenting them with NER
spans, our method captures the most informative
text elements while minimizing noise from other
word probabilities.

We evaluated our method on ten LLMs of vary-
ing sizes and four datasets containing nine types of
textual data. Our results show that Tag&Tab out-
performs state-of-the-art (SOTA) MIAs, achieving
an average increase in AUC scores ranging from
5.3% to 17.6% compared to the best-performing
SOTA method on multiple textual data types.
The contributions of our paper are as follows:

• We propose Tag&Tab, a novel approach for
the detection of LLMs’ pretraining data that
focuses on the contextual and semantic rel-
evance of the words in a text and opens the
door to additional research on MIAs against
LLMs.

• To the best of our knowledge, this is the first
robust reference-free MIA method to achieve
consistently high performance across multiple
textual data types and LLMs, outperforming
SOTA methods.

• Our approach is both resource- and time-
efficient. Unlike reference-based attacks that
require training a separate model or reference-
free methods that depend on auxiliary mod-
els (e.g., the Neighbor attack (Mattern et al.,
2023)), Tag&Tab operates without any addi-
tional model training or inference. This mini-
mizes computational overhead and simplifies
deployment in real-world scenarios.

2 Related Work

Membership inference (MI) (Shokri et al., 2017)
is a classification task that determines whether a
data sample x was part of a model’s training Dtrain
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Figure 1: Illustration of the Tag&Tab method - The process starts by inputting a text (in this example, the input is
the conclusion of the well-known poem “The Road Not Taken" (Frost, 1916)) in the target LLM to obtain its word
probability distribution (word probability). In the tag step, the keywords are selected based on the lowest-entropy
words (computed in the preprocessing phase) and NER spans. In the tab step, the log-likelihood of the selected
keywords is calculated. Finally, in the infer step, the average log-likelihood of the chosen keywords is compared
against a threshold γ to determine if the text was part of the target LLM’s pretraining data.

of a model f . An attacker receives a sample x
and a model f , and applies an attack model A to
classify x as a member x ∈ Dtrain if A(f(x)) = 1;
otherwise, x is classified as a non-member x /∈
Dtrain.

Large language model membership inference
is a subdomain of membership inference that has
gained increasing research attention. Within this
subdomain, detecting pretraining data has been
the focus of numerous studies exploring different
methodologies for determining whether specific
texts were included in an LLM’s training dataset.
Existing MIAs for LLMs fall into two categories:
reference-based and reference-free.

Reference-based (Shokri et al., 2017) meth-
ods compare a target model’s outputs to those of
reference models, which are typically trained on
the same data distribution. One such method is
LiRA (Carlini et al., 2022a), which estimates the
likelihood ratio of a target example’s loss under
models trained with and without the example, using
Gaussian distributions to simplify the computation.

In contrast, reference-free methods aim to
determine membership by applying different
probability-based calculations on token predictions.
One such method, the LOSS Attack (Yeom et al.,
2018), uses model loss values, which in language
models correspond to text perplexity. Perplexity
measures how well a probability model predicts a
sample and is calculated as the exponentiation of
the negative average log-likelihood per token:

Perplexity(P ) = exp

(
− 1

N

N∑

i=1

logP (ti | t1, . . . , ti−1)

)

where N is the number of tokens, and P (ti |
t1, . . . , ti−1) is the conditional probability of the
i-th token given its preceding tokens. The attack as-
sumes that lower perplexity indicates a text is more
familiar to the model, suggesting it was part of the
training set. The Zlib attack (Carlini et al., 2021),
infers membership by calculating the ratio of a
text’s log-likelihood to its Zlib compression length.
Newer attacks, such as the Neighbor attack (Mat-
tern et al., 2023), modify selected words in a given
text using a different language model to generate
’neighbor’ sentences, then compare the original
text’s perplexity to that of its neighbors. Although
the Neighbor attack showed some success, its com-
putational cost is very high compared to other
known methods. More computationally efficient
attacks that outperform the Neighbor attack include
Min-K% (Shi et al., 2023), and Min-K%++ (Zhang
et al., 2024a), which focus on the least confident
model predictions. Min-K% calculates the average
of the lowest k% probabilities from the model’s
output, and Min-K%++ extends this by normal-
izing token log probabilities using the mean and
variance. Lastly, two recently published attacks
are ReCaLL (Xie et al., 2024), which measures
the relative change in log-likelihood when condi-
tioning the target text on non-member prefixes, and
DC-PDD (Zhang et al., 2024b), which calibrates to-
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ken probabilities using divergence from a reference
corpus, effectively mitigating the impact of high-
frequency tokens. While each of these attacks has
demonstrated success on some datasets and models,
their performance remains inconsistent across dif-
ferent studies. However, recent research performed
by Maini et al. (Maini et al., 2024) showed that ag-
gregating the results of multiple MIAs improves the
accuracy of dataset membership inference. While
promising, these findings suggest that the success
of this aggregated approach in real-world scenar-
ios depends on improved MIAs, meaning attacks
achieving AUC scores above 0.5.

Common models for evaluating MIAs on LLMs
include open-source models with known pretrain-
ing data. One such model is LLaMA 1 (Touvron
et al., 2023), created by Meta, which was trained
on a mixture of publicly available datasets, includ-
ing certain subsets of the Pile such as Books3 and
Gutenberg, according to Meta’s original paper.

The open-source Pythia model suite (Biderman
et al., 2023), which includes eight LLMs ranging
from 70M to 12B parameters. These models were
trained on data including the Pile dataset, with all
models processing the public data in the same order
during training.

3 Method

We introduce Tag&Tab, a novel resource- and time-
efficient method for identifying data used to pre-
train LLMs. Tag&Tab applies common NLP tech-
niques to tag keywords in the pretraining data and
predict their membership using the target LLM.

Our method strategically selects words from the
input that should be challenging for the LLM to
predict. Successful prediction may indicate that
the model previously learned the content during
pretraining. In Tag&Tab, words are selected ac-
cording to their entropy contribution values. Words
with a low entropy contribution value tend to be
either very common (e.g., ’or,’ ’in’) or very rare.
After constructing an entropy map, we found that
the low-entropy pool tends to be dominated by rare
content words, which are therefore more likely to
be selected as keywords.

Tag&Tab relies on the hypothesis that while
LLMs tend to memorize repeated data, they also
memorize rare or unique training data. This aligns
with the findings of Carlini et al. (Carlini et al.,
2022b), who stated that: "memorization does still
happen, even with just a few duplicates—thus,

deduplication will not perfectly prevent leakage."
This insight was further validated by Lukas et
al. (Lukas et al., 2023), who found that PIIs tokens,
which are distinctive rare tokens, are effective in re-
vealing memorized content. Thus, an LLM is likely
to assign a higher probability to these low-entropy
words when they appear in familiar contexts it has
seen before, compared to the same low-entropy
words in novel or unfamiliar contexts. For exam-
ple, in the sentence "Astronomers detected light
from the edge of the universe emitted by a quasar,"
the word "quasar" is a low-entropy word. If this
sentence appeared in the training data, the model
will assign a higher probability to "quasar" in this
context than if it had not seen the sentence before.

Tag&Tab selects K words with the lowest en-
tropy values in a sentence, which are referred to
as keywords. By selecting a small number of infor-
mative keywords, it aims to capture the semantic
importance of the pretraining content. This ap-
proach hinges on a hypothesis that only K selected
keywords are needed to accurately predict the mem-
bership of the entire input text in the pretraining
data, minimizing noise from other words in the
input text (Shi et al., 2023).

Tag&Tab operates under black-box constraints,
meaning that we can observe token probabilities
from a given input but lack access to the model’s
weights, which is standard practice in MIAs (Truex
et al., 2019; Hu et al., 2022; Mattern et al., 2023;
Zhang et al., 2024a).

The Tag&Tab method consists of four stages,
which are illustrated in Figure 1:

1. Preprocessing - First, the word entropy map
is constructed using the Python package word-
freq (Speer, 2022), which provides frequency
estimates for words in a specified language.
The entropy contribution value for each word
is calculated using the formula:

H(wi) = −p(wi) · log2 p(wi)

This value is high for mid-frequency words
and low for both very common and very rare
words. In this stage, the text is also split into
individual sentences, using segmentation tools
(e.g., the NLTK package (Bird et al., 2009)).
To avoid selecting less informative keywords
due to insufficient sentence length, sentences
with fewer than a specified number of words
are filtered out.
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2. Tagging - From each sentence S in the
text file T , the method first takes the K
lowest-entropy words according to the en-
tropy map. We then identify named-entity
spans (e.g., people, organizations, locations)
using spaCy (Honnibal and Montani, 2017).
The final keyword set is the union of the low-
entropy words and the NER spans. Because
this is a union, the set may be larger than K,
but in practice it is often exactly K, because
NER spans often overlap with low-entropy to-
kens. For clarity, we continue to denote the
size of this final set as K, referring to the
number of keywords after the union.

3. Tabbing - This stage mimics the auto-
completion feature found in interfaces like
a command line, where it predicts and fills
in the rest of the command based on the
context of the preceding input. Using the
target model M , the method computes the
log-likelihood of the entire text, then fo-
cuses on the log-likelihood of the previ-
ously identified keywords. For each sentence
S ∈ T consisting of n words w1, w2, . . . , wn,
where each word wi is decomposed into to-
kens, denoted as wi = ti1 , ti2 , . . . , tim , to-
ken tij , given its preceding tokens, is cal-
culated as log pM (tij |ti1 , . . . , tij−1). We de-
fine the log-likelihood of a word wi us-
ing the log-likelihood of its first token ti1
given its preceding tokens, expressed as
log pM (ti1 |t11 , t12 , . . . , ti−1j ). As a result,
we obtain:

log pM (wi | ·) = log pM (ti1 | ·)

The method selects the K keywords from S
and computes the average log-likelihood of
the keywords:

Keywords’ Prob(S) =
1

K

∑

wi∈Keywords(S)

log pM (wi|·)

4. Inferring - In this stage, the method calcu-
lates the average probability of the keywords
across all sentences in text T and compares it
to a predetermined threshold γ to determine
membership.

4 Evaluation

This section presents a detailed evaluation of
Tag&Tab’s effectiveness. The experiments were

conducted on a NVIDIA RTX 6000 GPU, running
for nearly three days on all models and datasets.
We used the default parameter settings of widely
adopted libraries, including spaCy and NLTK.

4.1 Model Comparison
To compare Tag&Tab with other reference-free
baseline detection methods, we examined various
open-source LLMs, including LLaMA 1 (7B, 13B,
30B) (Touvron et al., 2023), Pythia (160M, 1.4B,
2.8B, 6.9B, 12B) (Biderman et al., 2023), and
Qwen1.5-14B (Cloud, 2024). Additionally, we
included GPT-3.5 Turbo1 (trained on data up to
September 20212), given partial knowledge of its
training on known books, as discussed in previous
studies (Shi et al., 2023; Chang et al., 2023). Our
black-box assumption still holds because the Ope-
nAI API exposes token-level log probabilities for
this model. LLaMA 1 and Pythia are well-suited
for MIA evaluation due to their transparency re-
garding pretraining datasets, unlike newer models
such as LLaMA 2 and 3, which lack such trans-
parency.

4.2 Dataset Comparison
The experiments were conducted on the Book-
MIA3 (Shi et al., 2023), Pile4 (Gao et al., 2020),
and MIMIR5 (Duan et al., 2024) datasets, meet-
ing the requirement that MIA evaluation datasets
should be as comprehensive and diverse as pos-
sible (Duan et al., 2024), covering various types
of text while maintaining a consistent distribution
between training and test sets.

The Pile is a collection of diverse texts of differ-
ent types from a wide range of sources, designed to
train and evaluate LLMs using open-source data. In
our experiments, for each domain we used 10,000
samples for training and an additional 10,000 sam-
ples from the same domain for testing. BookMIA
is a dataset consisting of 100 books, with 100 text
chunks of 512 words extracted from each, total-
ing 10,000 samples. The dataset is evenly split
into member and non-member sets. The member
set includes 5,000 samples from 50 books from
the Books3 dataset (Reisner, 2023), a collection
of ebooks, most of which were published between

1https://platform.openai.com/docs/models/gpt-3-5-turbo
2https://learn.microsoft.com/en-us/azure/ai-

services/openai/concepts/models
3www.huggingface.co/datasets/swj0419/BookMIA
4www.huggingface.co/datasets/monology/

pile-uncopyrighted/viewer/default/validation
5www.huggingface.co/datasets/iamgroot42/mimir
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2000 and 2020. The non-member set comprises
5,000 samples from 50 new books with first edi-
tions in 2023 that could not have been in the train-
ing data of GPT-3.5 Turbo (Chang et al., 2023).
BookMIA is designed to evaluate MIAs by con-
trasting model behavior on seen and unseen con-
tent. For our evaluation on Pythia and LLaMA 1,
we leveraged the fact that their training corpora,
the Pile and Books3 respectively, have significant
overlap with the Gutenberg dataset. The Book-
MIA member set, sourced from Books3, contains
50 books, 34 of which are also present in Guten-
berg. To construct a high-confidence member set,
we focused our evaluation on this specific overlap,
filtering out the 16 member books from BookMIA
that are not part of the Gutenberg corpus. This
ensures that our test set consists of books with
the strongest possible evidence of inclusion in the
pretraining data, providing a more controlled exper-
imental setup. We note that cutoff-based datasets
such as BookMIA have been critiqued as unsuitable
for strict benchmarking of MIAs due to temporal
distribution shifts (Das et al., 2025; Maini et al.,
2024). Accordingly, we do not treat BookMIA as
a primary benchmark but rather as an illustrative
case study simulating a practical audit scenario.
MIMIR is a dataset built from the Pile, designed
to evaluate memorization in LLMs. MIMIR is a
post-processed subset of the Pile, intended to re-
duce distributional artifacts such as temporal drift
and stylistic shifts. It contains data known to have
been used in training all Pythia model sizes, offer-
ing a unified benchmark for assessing membership
inference. In our evaluation, we utilized around
2,000 samples per domain (approximately 1,000
member and 1,000 non-member samples).

The PatentMIA6 (Zhang et al., 2024b) corpus
was used in a dedicated non-Latin evaluation on
the Chinese language, using the Qwen1.5-14B
model. The setup and results are discussed in Ap-
pendix A.4.

It is important to note that we opted not to eval-
uate our method on the WikiMIA dataset,7 (Shi
et al., 2023) as recent publications (e.g., (Maini
et al., 2024)) questioned the reliability of the data
due to temporal shifts in writing styles and an in-
sufficient number of samples.

6https://github.com/zhang-wei-chao/DC-PDD/
tree/main

7www.huggingface.co/datasets/swj0419/WikiMIA

4.3 Evaluation Approach

To assess our method’s performance, we followed
a systematic process that begins with the input
dataset. Each text file in the dataset is processed,
with every document truncated to a maximum of
2,048 tokens to ensure a consistent input size. Sen-
tences with fewer than seven words are excluded.
We identify and save the K keywords for every
sentence. We documented the outcomes of select-
ing 1 to 10 entropy keywords per sentence (before
adding the NER words).

After selecting the K keywords, the entire text is
processed by the target model, which outputs proba-
bility distributions for each token. Then we average
the log-likelihoods of all tokens in the keywords,
conditioned on their preceding tokens, assessing
the model’s familiarity with the entire keyword.

Following Carlini et al.’s evaluation process (Car-
lini et al., 2022a), we set a threshold to assess attack
performance, focusing on TPR at low FPR, denoted
as T@F.

We also report the area under the ROC curve
(AUC score) to provide a clearer measure of de-
tection performance. The AUC score quantifies
the overall performance of a classification method
by considering TPRs and FPRs at all classification
thresholds. Since AUC offers a comprehensive,
threshold-independent evaluation metric, we do
not need to determine a specific threshold γ for our
method.

To simulate a real-world application, Ap-
pendix A.3 details how we pick a working thresh-
old γ when only non–member data from the same
domain are available. The appendix further shows
that applying this book-derived threshold to a differ-
ent domain (mathematics) degrades performance,
so γ must be recalibrated for every model–dataset
pair.

4.4 Comparison with Baseline Methods

To benchmark Tag&Tab’s performance, we com-
pared it with SOTA reference-free methods for de-
tecting pretraining data. The baseline methods in-
cluded LOSS Attack, Zlib Attack, Neighbor Attack,
Min-K% Prob, Min-K%++ Prob, Max-K% Prob,
ReCaLL, and DC-PDD. A detailed description of
these attacks can be found in the Related Work
section.
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Table 1: Comparison of AUC results for Tag&Tab and baseline methods on the MIMIR and Pile benchmarks.
The upper table presents the best results from Tag&Tab and baseline methods across four MIMIR datasets, while
the lower table shows the best results for three Pile datasets. The best results for each dataset and model size are
highlighted in bold, and the second-best AUC is underscored.

Method
DM Mathematics GitHub Pile CC C4

160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B

Loss 0.85 0.76 0.84 0.68 0.86 0.80 0.85 0.86 0.88 0.88 0.53 0.54 0.54 0.55 0.55 0.50 0.51 0.51 0.51 0.51
Zlib 0.68 0.59 0.66 0.55 0.69 0.84 0.88 0.89 0.90 0.90 0.51 0.53 0.53 0.54 0.54 0.51 0.51 0.51 0.51 0.51
Min-20% Prob 0.61 0.53 0.70 0.50 0.82 0.80 0.85 0.86 0.88 0.88 0.52 0.53 0.54 0.55 0.55 0.51 0.51 0.51 0.51 0.50
Max-20% Prob 0.63 0.67 0.61 0.58 0.51 0.78 0.85 0.85 0.87 0.86 0.52 0.53 0.53 0.53 0.54 0.51 0.50 0.50 0.50 0.50
Min-K%++ (20%) 0.81 0.79 0.66 0.81 0.73 0.57 0.57 0.61 0.63 0.66 0.51 0.50 0.52 0.53 0.53 0.52 0.51 0.51 0.50 0.50
ReCaLL 0.80 0.73 0.78 0.64 0.86 0.79 0.76 0.74 0.71 0.72 0.53 0.54 0.54 0.55 0.55 0.51 0.51 0.51 0.51 0.51
DC-PDD 0.90 0.86 0.86 0.85 0.86 0.87 0.91 0.92 0.93 0.93 0.54 0.55 0.56 0.57 0.57 0.51 0.51 0.51 0.51 0.51

Ours (Tag&Tab K=4) 0.96 0.96 0.96 0.95 0.95 0.78 0.82 0.83 0.84 0.85 0.54 0.56 0.56 0.57 0.57 0.53 0.52 0.52 0.52 0.51
Ours (Tag&Tab K=10) 0.92 0.92 0.93 0.92 0.95 0.79 0.83 0.84 0.85 0.86 0.55 0.56 0.56 0.57 0.56 0.53 0.52 0.52 0.52 0.51

Method
Ubuntu IRC Gutenberg EuroParl Average

160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B 160M 1.4B 2.8B 6.9B 12B

Loss 0.63 0.59 0.60 0.58 0.58 0.53 0.53 0.53 0.53 0.53 0.52 0.52 0.50 0.52 0.51 0.67 0.67 0.69 0.66 0.70
Zlib 0.52 0.52 0.53 0.54 0.54 0.53 0.60 0.53 0.53 0.53 0.51 0.51 0.50 0.51 0.51 0.63 0.63 0.65 0.62 0.66
Min-20% Prob 0.58 0.57 0.52 0.51 0.52 0.53 0.53 0.53 0.53 0.60 0.53 0.54 0.52 0.50 0.51 0.61 0.61 0.65 0.61 0.69
Max-20% Prob 0.69 0.69 0.71 0.68 0.67 0.67 0.73 0.60 0.67 0.67 0.53 0.54 0.55 0.53 0.55 0.61 0.64 0.62 0.62 0.60
Min-K%++ (20%) 0.52 0.51 0.52 0.54 0.61 0.67 0.60 0.60 0.60 0.60 0.54 0.53 0.51 0.51 0.51 0.60 0.59 0.57 0.62 0.61
ReCaLL 0.72 0.64 0.69 0.64 0.60 0.53 0.80 0.67 0.73 0.80 0.51 0.51 0.51 0.55 0.57 0.67 0.64 0.65 0.62 0.68
DC-PDD 0.58 0.53 0.53 0.53 0.53 0.53 0.60 0.60 0.53 0.53 0.51 0.52 0.50 0.51 0.54 0.70 0.70 0.72 0.71 0.70

Ours (Tag&Tab K=4) 0.64 0.65 0.64 0.66 0.64 0.67 0.67 0.67 0.67 0.67 0.55 0.54 0.55 0.54 0.56 0.70 0.72 0.73 0.72 0.73
Ours (Tag&Tab K=10) 0.61 0.63 0.62 0.61 0.62 0.60 0.67 0.67 0.67 0.67 0.56 0.54 0.55 0.54 0.55 0.70 0.71 0.73 0.72 0.72

5 Results

This section presents the results of two case stud-
ies using Tag&Tab, each examining a different as-
pect of pretraining data detection in LLMs. Each
case study is evaluated using the following metrics:
AUC and TPR at a low FPR of 5% (T@F=5%).

Throughout this section, we report the results
for Tag&Tab using K = 4 and K = 10, as
these values yielded the most consistent and high-
performing outcomes across models and datasets.
This choice is supported by the results presented
in Figure 2, which shows that Tag&Tab performs
robustly for K values between 4 and 10 for most
of the models, with minimal performance varia-
tion—making the method resilient to non-optimal
keyword selections.

Case Study 1 serves as the primary benchmark
evaluation, while Case Study 2 is included to illus-
trate a more practical, engineered audit scenario
closer to real-world use.

The reported results are based on a single run,
as we observed minimal variation across multiple
runs.

5.1 Case Study 1: Detecting Various Types of
Pretraining Data in LLMs

This case study evaluates Tag&Tab’s effectiveness
and robustness in detecting different types of pre-
training data in LLMs. We evaluate our method
on various sizes of the Pythia model and compare
its effectiveness against baseline attacks on seven
types of text in the Pile and MIMIR datasets. Ta-
ble 1 summarizes the results obtained when target-
ing five Pythia model sizes ranging from 160M to
12B parameters, tested with two configurations of
tagged keywords: 4 and 10.
The main findings from these results are as follows:

• When averaging performance across all
datasets, Tag&Tab (K = 4) outperforms all
baseline methods over all the models, estab-
lishing itself as the most effective approach
overall. Tag&Tab (K = 10) ranks as the
second-best method, demonstrating strong
performance but falling short of the results
achieved with K = 4.

• Notably, Tag&Tab (K = 4) achieves either
the best or second-best results for the majority
of textual data types examined. Even when
it does not come in first or second place, its
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Method LLaMA-7b LLaMA-13b LLaMA-30b Pythia-6.9b Pythia-12b GPT-3.5 Average

AUC T@F5 AUC T@F5 AUC T@F5 AUC T@F5 AUC T@F5 AUC T@F5 AUC T@F5

Neighbor 0.65 0.27 0.71 0.38 0.90 0.73 0.65 0.26 0.71 0.36 0.96 0.88 0.76 0.48
Loss 0.59 0.25 0.70 0.43 0.89 0.74 0.62 0.24 0.69 0.32 0.97 0.90 0.74 0.48
Zlib 0.53 0.22 0.67 0.42 0.89 0.74 0.55 0.19 0.61 0.25 0.96 0.88 0.70 0.45
Min-20.0% Prob 0.61 0.24 0.70 0.42 0.87 0.70 0.65 0.25 0.70 0.34 0.95 0.86 0.75 0.47
Min-K%++ (20%) 0.60 0.23 0.68 0.38 0.78 0.60 0.59 0.20 0.56 0.20 0.95 0.86 0.69 0.41
Max-20.0% Prob 0.51 0.15 0.66 0.34 0.87 0.69 0.51 0.13 0.59 0.20 0.96 0.91 0.68 0.40
ReCaLL 0.58 0.22 0.70 0.42 0.84 0.64 0.66 0.29 0.72 0.37 0.74 0.50 0.70 0.41
DC-PDD 0.61 0.27 0.71 0.47 0.88 0.77 0.68 0.34 0.74 0.44 0.95 0.89 0.76 0.53

Ours (Tag&Tab K=4) 0.69 0.28 0.78 0.48 0.91 0.76 0.72 0.30 0.75 0.36 0.97 0.90 0.80 0.51
Ours (Tag&Tab K=10) 0.67 0.26 0.77 0.46 0.91 0.77 0.72 0.30 0.76 0.36 0.96 0.87 0.80 0.50

Table 2: Detection of data from the BookMIA dataset used in pretraining seven models using Tag&Tab and six
baseline MIAs, evaluated in terms of AUC and T@F=5%. All results are reported as decimal fractions. The last
two rows compare the Tag&Tab method when selecting four and ten keywords. The best results are bolded, and
second-best are underscored.

1 2 3 4 5 6 7 8 9 10
Number of Tagged Keywords

60

65

70

75

80

85

90

95
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C

Model
LLaMa1-7b
LLaMa1-13b
LLaMa1-30b
Pythia-6.9b
Pythia-12b
GPT-3.5 Turbo
Average

Figure 2: AUC scores as a function of the number of
tagged keywords for the examined models on the Book-
MIA dataset. Yellow points indicate optimal perfor-
mance: 2-3 keywords for LLaMA 1, 7 for Pythia and
GPT-3.5 Turbo, and 4 on average (Average).

performance remains competitive, serving as
a robust alternative to the leading method.

• While Tag&Tab (K = 10) selects more key-
words, increasing the number of probabilities
considered for text membership inference, its
results are consistently lower than those of
Tag&Tab when K = 4. This supports the
hypothesis that selecting a smaller number of
keywords allows the method to extract noise-
free information from the model.

We also observe that certain formal texts, such
as mathematical proofs, may contain fewer named
entities or conventional keywords. However, they
often feature domain-specific terminology or sym-
bolic expressions that carry strong membership
signals. This is evidenced by our results on the

DM Mathematics subset (Table 1), where Tag&Tab
maintained SOTA performance, achieving an AUC
between 0.95 and 0.96.

Despite outperforming the baseline MIAs, the
AUC achieved by Tag&Tab is relatively low in
certain cases, hovering around 0.55. However, re-
cent research by Maini et al. (Maini et al., 2024)
showed that aggregating multiple MIAs improves
dataset membership inference accuracy, emphasiz-
ing the need for better attacks that achieve AUC
over 0.5 for improved aggregated attack perfor-
mance. Tag&Tab meets this criterion, making it a
valuable component in an ensemble of MIAs, as
we further demonstrate in Appendix A.6.

5.2 Case Study 2: Detecting Specific
Pretraining Data in LLMs

This case study focuses on the precision in detect-
ing specific pretraining data in LLMs. We designed
a targeted attack to infer whether copyrighted
data was part of the model’s pretraining. Unlike
Case Study 1, the member and non-member data
come from different sources. Using the BookMIA
dataset, we simulate partial knowledge of a model’s
pretraining data to infer specific text files suspected
of being included in the target model’s training
set. For validation, we selected non-members from
books published after the target model’s release
thus ensuring they were not part of its pretraining
data.

To determine the optimal number of keywords to
select, we evaluate the results by selecting between
1 and 10 keywords from each sentence The results
shown in Figure 2 demonstrate that the optimal
number of keywords required to ensure effective
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detection depends on the model architecture. As
can be seen, for different sizes of the LLaMA 1
model, the optimal number of keywords ranged
from 2 to 3, while for the Pythia models and GPT-
3.5 Turbo, the optimal number of tagged keywords
was 7. The best results across all models were
achieved with K = 4, yielding an average AUC
score of 0.8.

Table 2 summarizes the results of Tag&Tab and
reference-free baseline attacks.
The main findings from these results are as follows:

• Tag&Tab outperforms all other attacks in
terms of the AUC, with an average improve-
ment of 5.3%–17.6% over baseline methods
when K = 4.

• Tag&Tab (K = 4) outperforms other attacks
in terms of the T@F=5% on the LLaMA-7B
and LLaMA-13B models. However, for most
other models, the DC-PDD attack performs
better, with Tag&Tab consistently ranking sec-
ond.

• As the size of the examined LLM increases,
the AUC scores of the MIAs also increase due
to the model’s memorization capacity (Carlini
et al., 2022b). This can be seen in the results
for Tag&Tab which achieved very high AUC
scores: (1) 0.91 on LLaMA-30b compared to
0.69 on LLaMA-7b, (2) 0.75 on Pythia-12b
compared to 0.72 on Pythia-6.9b, and (3) 0.97
on GPT-3.5 Turbo, the largest model tested.

To better understand our method’s performance,
in Appendix A.1, we examine the impact of our
method’s tagging stage by comparing the selection
of the lowest K entropy words with random token
selection, observing that prioritizing the lowest K
entropy words significantly enhances performance
across all models, resulting in superior AUC scores.

Finally, Appendix A.2 reports the results ob-
tained on additional experiments on our tagging
choices. Using only named-entity tokens or only
low-entropy tokens improves on the baselines, but
combining the two as done in Tag&Tab produces
the best results. We also experimented with rank-
ing tokens based on TF-IDF rather than entropy,
which resulted in noticeably poorer performance.

6 Conclusion

We present Tag&Tab, a novel black-box method
for detecting pretraining data in LLMs. By focus-
ing on the semantic and contextual relevance of

words, the method enhances detection capabilities.
Tag&Tab outperforms SOTA attacks and consis-
tently achieves high performance across diverse
textual data types. Our comprehensive evaluation
spans nine textual data types from four datasets (the
Pile, MIMIR, BookMIA, and PatentMIA) and ten
LLMs of varying sizes and architectures (LLaMA
1-7b, 13b, 30b, Pythia-160m, 1.4b, 2.8b, 6.9b, 12b,
GPT-3.5 Turbo, Qwen1.5-14b). Our study con-
firms that the selection of low-entropy contribu-
tion keywords, augmented with NER spans, im-
proves membership inference attack results, fur-
ther validating our approach. Future work could
extend Tag&Tab by considering keyword context
and placement within documents. Additionally, de-
veloping new MIAs that leverage advanced NLP
techniques to assess word significance could fur-
ther improve the detection of pretraining data in
LLMs.

7 Limitations

While Tag&Tab demonstrates strong performance
in detecting pretraining data in LLMs, it has several
limitations:

1. Effectiveness Against Fine-Tuning:
Tag&Tab is less effective in benchmark
settings where MIAs are evaluated on models
fine-tuned specifically on entire documents.
This fine-tuning process involves targeted
adaptation to a small set of documents, ampli-
fying memorization across the entire input.
In these evaluation scenarios, methods that
consider a larger portion of the input text by
aggregating probabilities from many tokens
tend to achieve better inference performance,
as they can capture memorization signals
spread throughout the entire document. In
contrast, Tag&Tab focuses on a small set of
informative keywords, making it less suited
for scenarios where fine-tuning amplifies
memorization uniformly across all tokens.
It is important to note that this evaluation
setup does not reflect realistic pretraining data
detection, where memorization patterns are
typically more localized and sparse.

2. Language Generalization: As shown in our
experiments, Tag&Tab’s effectiveness is cur-
rently limited to English texts. When ap-
plied to other languages, such as Chinese, the
method’s performance degrades. Extending
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Tag&Tab to multilingual settings requires fur-
ther adaptation of the tagging process.

3. Black-Box and Training Data Trans-
parency: Tag&Tab assumes black-box access
to LLMs that provide token-level probability
outputs. While this is common for many com-
mercial APIs, it is not guaranteed for all mod-
els. Furthermore, newer open-source LLMs
often do not disclose their exact pretraining
datasets, making it challenging to construct re-
liable member and non-member sets for eval-
uation. This lack of transparency affects the
applicability and benchmarking of MIAs, in-
cluding ours, on recent models.

8 Ethical Considerations

Our primary goal is to improve the detection of sen-
sitive pretraining data in LLMs, addressing critical
issues like copyright violations and data misuse.
However, we acknowledge that as an MIA tech-
nique, this method could be misused to compro-
mise privacy or extract sensitive information from
models.

To mitigate these risks, we carefully selected the
datasets used in our evaluations, ensuring they are
publicly available and free of personally identifi-
able information (PII) or other private data. Ad-
ditionally, our research follows ethical guidelines
and emphasizes the importance of transparency in
model training and evaluation.
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A Appendix

Our code is available in our GitHub repository. 8

A.1 Impact of Our Word Selection Process
To evaluate the impact of our word selection pro-
cess, Tagging, we compared it against a random se-
lection of words using the same Tabbing algorithm.
Tagging selects the lowest K entropy words, aug-
mented with NER spans, while the random baseline
selects words without regard to entropy. Figure 3 il-
lustrates the results of this comparison. The dataset
used in this evaluation was BookMIA. For each
model, we report the AUC scores obtained when
selecting between one and ten keywords per text us-
ing the Tag&Tab entropy-based method (blue) and
a random word selection (orange). The results show
that Tag&Tab’s original Tagging process improves
performance across all models. Tag&Tab’s original
Tagging process achieved an average AUC of 0.8,
compared to the average AUC of 0.64 obtained by
randomly selecting K words. This demonstrates
the Tag method’s effectiveness in enhancing model
performance by focusing on rare words.

A.2 Ablation Study: Alternative Word
Selection Strategies

To analyze the contribution of different word se-
lection strategies, we conducted an ablation study
comparing several variants of our method on the
BookMIA dataset. Specifically, we evaluated the
following alternatives to the Tagging process used
by the Tag&Tab method:

8https://github.com/sagivantebi/Tag-Tab

• Entropy-Only: selecting the four lowest en-
tropy tokens per sentence.

• NER-Only: selecting the first four named
entities identified via spaCy per sentence.

• TF-IDF: selecting the top four tokens with
the highest TF-IDF scores per sentence.

We evaluated these variants on all of the models
except GPT-3.5 Turbo.

The results, summarized in Table 3, show that
both the Entropy-Only and NER-Only variants
achieved competitive performance, with AUC val-
ues slightly below those achieved when the original
Tagging process is used by the Tag&Tab method.
The TF-IDF variant performed notably worse, con-
firming that low-entropy and named-entity tokens
are more effective indicators of membership when
used together. These findings validate our design
choice of combining both strategies for optimal
pretraining data detection.

A.3 Threshold Calibration
A.3.1 Calibrating γ with No Member Labels
While in a realistic “zero-knowledge” setting, we
assume no access to the model’s training data, we
can still collect data that were not seen during train-
ing. This includes texts published after the model’s
release or synthetically generated samples. To cal-
ibrate the decision threshold γ, we run Tag&Tab
on a set of known non-member samples and select
γ based on the upper tail of Tag&Tab’s scores dis-
tribution (e.g., the 95th percentile). This threshold
is then used to flag samples that appear “member-
like” relative to the known non-members. Using
BookMIA with LLaMA-30B and K=4, this ap-
proach yielded γ ≈ 0.0392, resulting in an AUC of
0.85 on the test split, a modest drop from the 0.91
AUC achieved when member labels were available.
Although the performance was slightly poorer, the
method still achieved strong results, demonstrating
its potential for practical real-world applications
even under limited knowledge conditions.

A.3.2 Domain Mismatch Test
To examine the threshold’s transferability, we ap-
plied the same γ = 0.0392 to a math corpus from
MIMIR (DM Mathematics), using the same model,
LLaMA-30B. Performance dropped sharply (AUC
< 0.60), showing that Tag&Tab’s scores distribu-
tion differs across domains. We saw the same effect
when switching models and concluded that each
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Figure 3: Comparison of Tag&Tab’s Tabbing performance with our original Tagging keyword selection against
Tabbing performance with random word selection for different K values. For each model, we report the AUC
scores obtained when selecting 1-10 keywords per text using the Tag&Tab entropy-based with NER spans process
(blue) and a random word selection method (orange). Each bar represents the AUC achieved for a specific K value.
Results are presented for all evaluated models on the BookMIA dataset as well as the overall average (AVG). The
plot highlights the consistent advantage of low-entropy keyword selection across varying K values and model sizes.

Table 3: AUC scores of Tag&Tab and the evaluated variants on the BookMIA dataset, all with K = 4 selected
keywords.

Method LLaMA-7B LLaMA-13B LLaMA-30B Pythia-6.9B Pythia-12B

Tag&Tab 0.69 0.78 0.91 0.72 0.75
Entropy-Only 0.67 0.76 0.89 0.70 0.73
NER-Only 0.62 0.72 0.85 0.68 0.73
TF-IDF 0.60 0.68 0.81 0.65 0.67

model–dataset pair needs its own calibrated thresh-
old.

A.3.3 Cross-Domain Generalization

To further investigate domain transferability, we
extended our thresholding approach beyond a
fixed scalar γ. Instead of using a single cutoff,
we trained a supervised XGBoost classifier on
Tag&Tab scores extracted from each of seven do-
mains (DM Mathematics, GitHub, Pile CC, C4,
Ubuntu IRC, Gutenberg, and EuroParl). In this
setup, the XGBoost model functions as a learned,
domain-specific thresholding mechanism: it estab-
lishes a more flexible decision boundary in score
space that generalizes the role of γ.

Each trained classifier was then evaluated across
all domains, yielding the 7×7 AUC matrix shown
in Figure 4. This experiment therefore examines
whether thresholds calibrated in one domain can
transfer effectively to other domains.

The results reveal a clear trend: classifiers
achieve the highest AUC when evaluated on the
same domain they were trained on (diagonal en-
tries), but their performance drops sharply when

applied to different domains. For example, the
classifier trained on Ubuntu IRC data achieves an
AUC of 0.967 when tested on Ubuntu IRC data but
falls below 0.50 on most other domains. Similarly,
classifiers trained on Gutenberg (0.990) and Eu-
roParl (0.980) achieve near-perfect within-domain
performance but transfer poorly elsewhere.

These findings confirm that Tag&Tab’s inference
thresholds are highly domain-specific.

A.3.4 Recommendation

Thresholds should be recalibrated whenever the
target model or data domain changes. A small,
trustworthy non-member dev set from the intended
domain is sufficient; no labeled members are re-
quired.

A.4 Generalization to Chinese Texts

To examine whether Tag&Tab can generalize to
a non-Latin language with a fundamentally dif-
ferent structure, we evaluated it on a Chinese
text using the PatentMIA dataset (Zhang et al.,
2024b), which contains patents sourced from
Google Patents (Google, 2006). This evaluation
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Figure 4: Cross-domain membership inference AUC
scores using XGBoost classifiers (threshold’s transfer-
ability). Each row corresponds to a classifier trained on
the domain listed, and each column indicates the evalua-
tion domain. Diagonal values represent in-domain eval-
uation, while off-diagonal entries show cross-domain
transfer performance.

was performed using the Qwen1.5-14B model,9

an open-source LLM developed by Alibaba Cloud,
optimized for Chinese and multilingual understand-
ing (Cloud, 2024). Tag&Tab still achieved a good
score (AUC = 0.6), but it did not surpass the
strongest baseline (DC-PDD, 0.69 AUC). We at-
tribute this gap to structural differences between
Chinese and English, such as the absence of ex-
plicit word boundaries and different entropy dis-
tributions, which diminish the effectiveness of our
current keyword–entropy heuristic.

A.5 Robustness to Adversarial and
Distributional Perturbations

To evaluate Tag&Tab’s robustness against minor
textual modifications, we conducted an experi-
ment where 2–5 words per sample in the Book-
MIA dataset were replaced with suitable synonyms.
These changes preserved the original meaning
while altering the lexical form, simulating both
adversarial-style perturbations and natural distribu-
tion shifts.

We evaluated the impact of these modifications
on the LLaMA-7B, LLaMA-13B, LLaMA-30B,
Pythia-6.9B, and Pythia-12B models. In all cases,
we used Tag&Tab with K = 4 keywords.

The results, presented in Table 4, show that
Tag&Tab exhibits only a minor performance drop
of 1–2% in the AUC across all models. These

9https://huggingface.co/Qwen/Qwen1.5-14B

findings confirm that the method remains effective
even when the exact data distribution is unknown,
demonstrating resilience to small-scale semantic-
preserving shifts.

Table 4: Robustness of Tag&Tab (K=4) under synonym-
based perturbations on the BookMIA dataset.

Model Original AUC Perturbed AUC

LLaMA-7B 0.69 0.68
LLaMA-13B 0.78 0.76
LLaMA-30B 0.91 0.89
Pythia-6.9B 0.72 0.71
Pythia-12B 0.75 0.73

A.6 Ensemble Membership Inference Attacks
While Tag&Tab achieves strong standalone results,
recent work has shown that ensemble methods,
combining multiple MIA scores, often outperform
individual attacks (Maini et al., 2024). To evaluate
whether Tag&Tab score contributes complemen-
tary information, we trained a simple XGBoost
classifier on features extracted from different at-
tack methods. Experiments were conducted on the
BookMIA dataset using the LLaMA-30b model.
The feature sets used to train the classifiers in-
cluded: (i) Tag&Tab scores only, (ii) an ensemble
of existing methods’ scores (PPL, Zlib, Min-20%),
and (iii) the ensemble augmented with Tag&Tab
scores.

The results, summarized in Table 5, demonstrate
that Tag&Tab substantially improves ensemble per-
formance. While the ensemble of other methods
achieved an AUC of 0.94, adding Tag&Tab raised
the AUC to 0.97. These findings confirm that
Tag&Tab captures complementary signals not fully
exploited by existing approaches, strengthening its
value as a component in broader attack pipelines.

Table 5: Ensemble membership inference attack perfor-
mance on the BookMIA dataset and LLaMA-30b.

Feature Set AUC

Tag&Tab only 0.91
Ensemble (PPL, Zlib, Min-20%) 0.94
Ensemble + Tag&Tab 0.97
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