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Abstract

Texts generated by large language models
(LLMs) are increasingly widespread online.
Due to the lack of effective attribution mech-
anisms, the enforcement of copyright and the
prevention of misuse remain significant chal-
lenges in the context of LLM-generated con-
tent. LLMs watermark emerges as a crucial
technology to trace the source of AI-generated
content. However, most existing watermarking
methods reduce the fidelity of semantics. To
address this issue, this paper introduces a novel
watermarking framework. To enhance the fi-
delity of semantics, we propose low-entropy
POS-guided token partitioning mechanism and
z-score-driven dynamic bias mechanism. More-
over, to enhance the robustness against poten-
tial bias sparsity exploitation attack, we pro-
pose a relative position encoding (RPE) mecha-
nism, which can uniformly distribute bias in the
generated text. Evaluated across 6 baselines, 4
tasks, and 5 LLMs under 8 attacks, compared
to the KGW, our watermark improves semantic
fidelity by 24.53% (RC-PPL) and robustness by
3.75% (F1). Our code is publicly available, fa-
cilitating reproducibility in LLM watermarking
research.

1 Introduction

In recent years, Large Language Models (LLMs)
have made rapid progress, exemplified by models
such as LLaMA-3 (Grattafiori et al., 2024), GPT-
4 (OpenAI, 2023), Qwen2.5 (Qwen et al., 2025),
and DeepSeek-R1 (DeepSeek-AI, 2025b,a). These
models have been widely applied across diverse
natural language processing (NLP) tasks, includ-
ing text generation (Raffel et al., 2020), long-form
question answering (Hudeček and Dusek, 2023),
and story extension (Mostafazadeh et al., 2016). As
LLMs continue to advance in these NLP domains,
critical research topics have emerged concerning

*Xiaojun Chen is the corresponding author.

copyright (Gillotte, 2020; Megías et al., 2021), pri-
vacy (Patil et al., 2023; Perez et al., 2022), and
security (Bender et al., 2021; Mirsky et al., 2023),
which have become prominent areas of investiga-
tion. Watermarking (Chang et al., 2024; Guo et al.,
2024; Lau et al., 2024) has emerged as a pivotal
technology for tracing the origin of text outputs
(Liu et al., 2024a; Crothers et al., 2023).

Table 1: Comparison of state-of-the-art watermarking
methods.

Quality RobustnessDetectability Detection

KGW (Kirchenbauer et al., 2023) (50.79%) (0.91) (1.00) Only Text
SWEET (Lee et al., 2024) (36.67%) (0.89) (1.00) Only Text
EWD (Lu et al., 2024) (41.39%) (0.91) (1.00) Only Text
Unigram (Zhao et al., 2023) (46.69%) (0.95) (1.00) Only Text
DiPMark (Wu et al., 2023) (23.57%) (0.77) (1.00) Only Text
EXP (Aaronson and Kirchner., 2022) (186.69%) (0.85) (1.00) Only Text
SynthID (Dathathri et al., 2024) (174.32%) (0.83) (1.00) Only Text
SIR (Liu et al., 2023) (31.86%) (0.83) (0.99) Only Text
Unbiased (Hu et al., 2023) (18.71%) (0.77) (1.00) Model+Text
Ours (22.97%) (0.98) (1.00) Only Text

Note: represent a gradual increase in performance. Higher ACC and Avg
F1, lower RC-PPL and inference Time indicate superior performance. Evaluated on
Qwen-2.5 with 300 tokens at temperature 1.0. Quality, robustness, and detectability are
measured by RC-PPL, AVG F1, and ACC, respectively.

However, the existing watermarking methods (as
shown in Fig.1) do not consider the determinacy of
different parts of speech, and parts of speech with
high determinacy (low entropy) should often not be
modified because the core semantics of a sentence
are generally determined by these words. Consider
KGW (Kirchenbauer et al., 2023), a mainstream
watermarking approach that categorizes vocabulary
into a red-green list and significantly modifies to-
ken sampling probabilities. However, this method
overlooks the determinacy disparities among dif-
ferent parts of speech, thus declines in semantic fi-
delity. The recent SIR framework (Liu et al., 2023)
attempts to enhance semantic fidelity by aligning
watermark logits with semantic embeddings gener-
ated by an auxiliary LLM. Nevertheless, it fails to
modulate vocabulary selection based on the entropy
values of distinct parts of speech.

In this paper, we introduce a watermarking
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Figure 1: The application scenarios of our watermark.

framework with low-entropy POS-guided token
partitioning and z-score-driven dynamic bias for
large language models (LLMs). As illustrated in
Fig. 1, our method is designed for applications
where it can protect legitimate copyright and deter
malicious users through the implementation of our
watermark. The key contributions of our work are
as follows:
• Low-Entropy POS-Guided Token Partition-

ing: We utilize entropy statistics based on part-
of-speech (POS) to partition vocabulary list. By
excluding blue list tokens from logit perturbations,
it mitigates grammatical distortions.
• Z-Score-Driven Dynamic Bias: We propose a

z-score-driven dynamic bias for high-entropy POS,
adaptively adjusting bias intensity to avoid over-
distorting token distributions.
• Comprehensive Evaluation and Generaliza-

tion: We conduct extensive experiments involving
6 watermarking methods, 4 tasks, and 5 LLMs
under 8 types of adversarial perturbations. Exper-
imental results demonstrate that compared to the
KGW method, our framework achieves a 24.53%
(PC-PPL) improvement in semantic fidelity and a
3.75% (F1) enhancement in robustness.

2 Background

2.1 Text Generation of LLMs
As shown in Fig.2(a), LLMs compute the logits
as logitsLLM (·|x0:t−1) based on the input text se-
quence x0:t−1. The probability distribution is ob-
tained by applying the Softmax(·) operation to
logitsLLM (·|x0:t−1), and the next token xt is sam-
pled according to probability distribution p:

p = Softmax (logitsLLM (·|x0:t−1)) (1)

2.2 KGW Watermark Generation
Divide Red-Green List. As shown in Fig.2(b),
given a vocabulary of size |V | (typically |V | ≥

50000), a prefixed hash Hp of the previous token
xt−1 seeds a random number generator. This gen-
erator partitions the vocabulary into a "green list"
G (γ|V | tokens) and a "red list" R ((1 − γ)|V |
tokens).

Introduce Bias into Green Tokens. For tokens
in the green list, their logits are adjusted by a fixed
bias δ:

logitsw(·|x0:t−1) = logits(·|x0:t−1) + δ (2)

Here, logitsw represents the watermarked logits.
Token Sampling. The watermarked token xwt is

sampled from the watermarked probability distri-
bution p̂:

p̂ = Softmax (logitsw (·|x0:t−1)) (3)

2.3 KGW Watermark Detection
As shown in Fig.2(c), given a text sequence x0:T ,
count the number of green tokens |s|G, the detec-
tion statistic is computed as:

Z-score =
|s|G − γT√
Tγ(1− γ)

(4)

γ denotes the proportion of the green token.
The text is classified as watermarked if zscore >
threshold, and non-watermarked otherwise.

3 Related Work

Existing LLM watermarking methods 1 can be
broadly classified into two categories: logits
perturbation-based methods and token sampling-
based methods, as systematically summarized in
Table 1. The KGW framework (Kirchenbauer
et al., 2023), a representative approach in this field,
employs a Red-Green list vocabulary partitioning

1Our work builds upon the MarkLLM toolkit (Pan et al.,
2024), an open-source framework for constructing extensible
watermarking architectures.
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Figure 2: The overview of KGW watermark for LLM.

mechanism, significantly altering token sampling
probabilities. However, this aggressive perturba-
tion often results in substantial semantic fidelity
degradation. Moreover, its dynamic partitioning
mechanism, which relies on preceding token states,
makes any alteration of upstream text can disrupt
the token distribution balance, thereby reducing
detection robustness.

Logits Perturbation-Based Methods. To ad-
dress detectability challenges in low-entropy do-
mains like code generation, methods such as
SWEET (Lee et al., 2024) and EWD (Lu et al.,
2024) introduce adaptive watermark embedding
strategies that condition on local entropy estimates.
However, their reliance on task-specific entropy
thresholds limits generalizability across diverse
NLP tasks. The SIR model (Liu et al., 2023) aligns
watermark logits with semantic embeddings gen-
erated by external language models to preserve
semantic fidelity, yet it fails to maintain robustness
against syntactic transformations. DIP (Wu et al.,
2023) adopts context-aware logit reweighting to
maintain output distribution consistency, but its per-
turbation mechanism lacks the structural resilience
necessary to withstand sophisticated adversarial
manipulations.

Token Sampling-Based Method. Early
sampling-based approaches like Christ (Christ
et al., 2024) leverage pseudo-random binary se-
lection sequences to embed watermarks, but their
strict binary constraints and lack of semantic aware-
ness limit practical applicability in real-world gen-
eration tasks. The EXP framework (Aaronson and
Kirchner., 2022) improves usability by introduc-
ing exponential score boosting to bias token selec-
tion, though this aggressive sampling mechanism
often leads to unnatural text outputs and signifi-
cant quality degradation. These limitations high-
light the need for a more adaptive watermarking
framework that can maintain robust detection per-
formance while preserving output quality across

task contexts.

4 Proposed Method

4.1 Overview

Typically consisting of two stages—watermark in-
jection and detection—the general framework of
watermarking methods operates as follows: during
each generation step, a watermark key is derived
to partition vocabulary into green/red lists, after
which a bias is applied to token probabilities to
promote sampling from the green list. Following
this framework, we propose (1) low-entropy POS-
guided token partitioning (Sec. 4.2), which splits
vocabulary into red-green-blue lists to optimize the
distribution of POS; (2) z-score-driven dynamic
bias (Sec. 4.3), which adaptively adjusts bias based
on z-score to improve semantic fidelity.

Our framework (as systematically illustrated in
Fig. 3) first employs the entropy statistics to obtain
sort of POS for splitting the Low-entropy POS-
guided token partitioning. Then we calculate dy-
namic bias according to z-score. Finally, we in-
troduce bias into the green tokens and obtain the
watermarked text.

4.2 Low-Entropy POS-Guided Token
Partitioning

Step 1: Entropy statistics based on part of
speech. Linguistic analysis indicates that part-
of-speech (POS) categories exhibit distinct en-
tropy characteristics in natural language genera-
tion. As supported by sparse watermarking re-
search (Hoang et al., 2024), nouns and adjectives
consistently demonstrate significantly lower en-
tropy values compared to verbs and adverbs, as
empirically validated in Fig. 3(a) step 1.

Step 2: Token partitioning based on entropy.
Leveraging this observation, we introduce a low-
entropy POS-guided token partitioning mechanism:
low-entropy POS tokens (nouns, adjectives) are as-
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Figure 3: Overall architecture of the our watermark framework.

signed to a static blue list that remains unperturbed
during watermarking, while higher-entropy POS
tags (verbs, adverbs, etc.) form the dynamic red-
green list subject to probabilistic bias adjustments
(Fig. 3(a) step 2). This partitioning mechanism
explicitly separates tokens into three mutually ex-
clusive sets using a hybrid hashing mechanism,
formalized as:

V = VBlue∪VRed∪VGreen, Vi∩Vj = ∅ (i ̸= j) (5)

In this context, VBlue comprises static low-entropy
tokens identified through global Part-of-Speech
(POS) analysis. In order to facilitate watermark
detection, the proportion of tokens in the green list
is fixed at half of the total vocabulary. Meanwhile,
the tokens in VRed/Green are subject to dynamic clas-
sification relying on contextual hashing.

4.3 Z-Score-Driven Dynamic Bias

To address the excessive distributional distortion
caused by KGW’s global fixed bias, our framework
introduces a z-score-driven dynamic bias mecha-
nism that dynamically adjusts perturbation inten-
sity based on cumulative watermark signal strength,
formalized through the following stages:

Step 1: Calculate Z-score. The z-score quan-
tifies the watermark signal strength in the current
text, thus we calculate it to determine whether to
adjust the bias intensity. We can obtain the z-score
of previous tokens according to eq. 6 (Fig. 3(b) step
1):

Z-score =
|s|G − γT√
Tγ(1− γ)

(6)

where γ denotes the green list proportion in the
vocabulary and T is the text length (number of
tokens). The number of green tokens denoted as
|s|G.

Step 2: Dynamic bias adaptation. During the
initial generation phase, green tokens receive a
fixed bias δ to establish a detectable watermark
signal:

logitst = logits(xt|x0:t−1)+δ·I(xt ∈ VGreen) (7)

where I(·) is the indicator function ensuring bias ap-
plication only to green list tokens (Fig. ?? middle).
Once the cumulative z-score z—measuring the de-
viation of green token frequency from expected
values—exceeds a threshold τ , the bias intensity
decays logarithmically to mitigate distributional
distortion:

logitsW
t = logits(xt|x0:t−1)+

δ

log(z)
·I(xt ∈ VGreen)

(8)
This adaptive decay balances watermark detectabil-
ity and semantic fidelity by reducing perturbation
as the watermark signal becomes sufficiently strong
(Fig. 3(b) step 2).

Step 3: Relative Position Encoding. Unlike
global fixed bias of KGW (Fig. 4(a)), to counter po-
tential bias sparsity exploitation by attackers, we in-
tegrate relative position encoding (RPE) (Fig. 3(b)
step 3), dividing the generation process into non-
overlapping intervals and applying dynamic bias
uniformly across all intervals. This RPE mecha-
nism prevents localized perturbation accumulation,
making targeted watermark removal significantly
more challenging. This mechanism of applying
biases evenly across the entire scope prevents bias
concentration in local areas, which could otherwise
render the watermark vulnerable to targeted attacks
(Pang et al., 2024; Liu et al., 2024b).

4.4 Workflow of Watermark Injection and
Detection

For watermark injection, LLMs generate logits by
using input text x0:t−1 as shown in Fig. 3(c) step 1
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Figure 4: Qualitative comparisons of robustness against typical attacks between our watermark and KGW.

and 2. We utilize low-entropy POS-guided token
partitioning mechanism to splits vocabulary into
Low-entropy POS-guided token partitioning and
utilize z-score-drive dynamic bias mechanism to
obtain adaptive bias δ∗. Then, we introduce adap-
tive bias δ∗ into green tokens. Finally, we get next
token xt.

In watermark detection, given a text sequence,
we first derive a watermark key for each token from
its contextual information and partition the vocabu-
lary into green/red lists consistent with the water-
mark injection procedure to determine token mem-
bership in the green list. We then count the number
of green tokens (denoted as |s|G) and compute the
z-score statistic for watermark presence verifica-
tion (eq. 6). A higher z-score indicates greater
confidence in watermark presence. Detailed de-
tection derivation and procedure are provided in
Appendix A.3 and Algorithm 2, respectively.

5 Theoretical Foundation

5.1 Theoretical Proof of Detectability

We introduce the concept of Sharpness Entropy
to characterize the distributional perturbation in-
duced by watermarking, serving as a generalization
of KGW’s "Spike Entropy" (Kirchenbauer et al.,
2023) with enhanced sensitivity to token distribu-
tional changes.

Definition 1 (Sharpness Entropy). The Sharpness
Entropy of a watermarked probability distribution
p̂(xt) with modulus θ is defined as:

Es(p̂(xt), θ) = −
∑

xt∈V
(1 + θp̂(xt)) log2 p̂(xt)

where θ ≥ 0 is a hyperparameter controlling the
sensitivity to high-certainty POS. This metric quan-
tifies the trade-off between distributional sharpness
and watermark signal strength.
Theorem 1 (Entropy Lower Bound). For a water-
marked sequence of length T with average Sharp-
ness Entropy, there exists a non-trivial lower bound
E∗

s such that: 1
T

∑T
t=1Es(p̂(xt), θ) ≥ E∗

s , where
E∗

s is the infimum (greatest lower bound) deter-
mined by the low-entropy POS-guided token par-
titioning mechanism and z-score-driven dynamic
bias mechanism.
Theorem 2 (Green Token Expectation). The ex-
pected number of green list tokens E[|s|G] in a
watermarked sequence satisfies:E[|s|G] ≥ γTE∗

s

where γ = |VGreen|/|V | is the green list propor-
tion, and |s|G denotes the count of green tokens in
sequence s. This lower bound ensures sufficient
watermark signal accumulation for reliable detec-
tion.
Theorem 3 (Green Token Variance). The vari-
ance of green token counts is upper-bounded
by:Var[|s|G] ≤ Tγ(1−γ) This bound follows from
the independence of token selections under the our
watermark framework, enabling efficient hypothe-
sis testing via z-score statistics.

5.2 Theoretical Proof of Semantic Fidelity
We formalize semantic fidelity loss using
the expected PPL score discrepancy between
original and watermarked sequences:Q =

E
[
1
T

∑T
t=1 PPL(yt, ŷt)

]
where yt and ŷt denote

the original and watermarked tokens at posi-
tion t. The optimization problem balances
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quality loss Q against a minimum detection
accuracy constraint using Lagrange multipliers:
minδ,αQ s.t. A(ρ) ≥ A0 The optimal bias δ∗

decreases with the square root of sequence length
and inversely with Sharpness Entropy, ensuring
minimal distributional distortion while maintaining
detectability.

5.3 Theoretical Proof of Robustness

Static Blue List Invariance. By selecting low-
entropy POS tags (e.g., nouns, adjectives) to form
the static blue list B:B = argminc∈POS EPOS(c)
where EPOS(c) denotes the entropy of POS cate-
gory c, the retention probability of blue list tokens
under deletion/replacement attacks is significantly
enhanced. For an attacked sequence ỹ0:T , the con-
ditional retention probability of a blue token at po-
sition t is:P (yt ∈ B | ỹ<t) =

∏h
i=1(1− ρi) where

ρi is the attack success rate at position i. Due to
the context-independent nature of B, this proba-
bility decays as O(1/

√
T ), in contrast to dynamic

list methods whose retention probability decays
exponentially with context changes.

Adaptive Bias Perturbation Control. The
KL-divergence between watermarked and origi-
nal distributions is decomposed as: DKL(p̂∥p) =∑

xt∈G p̂(xt) log
p̂(xt)
p(xt)

+
∑

xt∈R∪B p̂(xt) log
p̂(xt)
p(xt)

Under the Z-Score-Driven Dynamic Bias mech-
anism, when the cumulative z-score exceeds the
detection threshold (zt−1 > τ ), the bias decays as
δ/ log(z), leading to a second-order approximation:
DKL(p̂∥p) ≤ δ2

2

∑
xt∈G

∂2p(xt)
∂δ2

∣∣∣
δ=0

+ o(δ2)

This inequality shows that SAB limits distribu-
tional perturbation to a quadratic term in δ, ensur-
ing that semantic fidelity is preserved while main-
taining non-trivial detection signals against adver-
sarial attacks.

Examples. Under word substitution attacks (e.g.,
replacing "sat" with "lay" in Fig. 4(b)(c)), the re-
placement of preceding words can induce misclas-
sification of subsequent tokens in the red-green list
framework. For instance, "on" might shift from the
green list to the red list due to altered contextual
hashing Hp, thereby degrading watermark detec-
tion robustness. Unlike KGW’s context-dependent
partitioning, our static blue list assignment—using
a global hash function Hf—ensures consistent to-
ken categorization regardless of preceding token
modifications. For example (Fig. 4(e)(f)), substitut-
ing "sat" with "lay", our framework maintains "on"
as a blue token, significantly enhancing watermark

robustness against substitution attacks.

6 Experimental Setting

We conduct a comprehensive evaluation of 6 water-
marking methods across 4 NLP tasks, 4 datasets,
and 5 LLMs under 8 types of adversarial attacks.
Experiments are performed on two NVIDIA A800
(80GB) GPUs, using datasets with over 500 sam-
ples each, taking up a total of around 100 GPU
hours. This section details task configurations, eval-
uation metrics, and parameter settings.

6.1 Tasks and Datasets

Following previous works (Kirchenbauer et al.,
2023; Wu et al., 2023; Aaronson and Kirchner.,
2022; Liu et al., 2023), the evaluation encompasses
four representative tasks, spanning diverse NLP
scenarios:

Text Generation: Leveraging the C4 corpus
(Raffel et al., 2020) with OPT-1.3B (Zhang et al.,
2022) model for general text generation tasks.

News Generation: Utilizing CNN/Daily-Mail
dataset (Hermann et al., 2015) with Llama-3-8B-
Instruct model (Grattafiori et al., 2024) for news
generation tasks.

Story Extension: Employing the ROCStories
dataset (Mostafazadeh et al., 2016) with Qwen2.5
(Qwen et al., 2025) to extend narrative sequences.

Long-Form QA: Using the ELI5 dataset (Fan
et al., 2019) with DeepSeek-R1-Distill-Qwen-7B
(DeepSeek-AI, 2025a) for detailed question an-
swering.

6.2 Evaluation Metrics

Following previous works (Kirchenbauer et al.,
2023; Wu et al., 2023; Aaronson and Kirchner.,
2022; Liu et al., 2023), quantitative metrics are
defined to assess performance across dimensions:

Semantic Fidelity: Perplexity (PPL) and Rela-
tive Change in Perplexity (RC-PPL). Log Diversity
(LD) and Relative Change in Log Diversity (RC-
LD), formulation as following:

RC-X =
Xw − Xnw

Xnw × 100%

where X is PPL or LD.
Detectability: Best F1-score and Accuracy

(ACC) for binary watermark presence classifica-
tion.

Robustness: F1-score against the following
attacks: word deletion (Del), word substitution

4845



(Sub), keyboard-based typo attack (Typo), expan-
sion (Exp) attack (e.g., expanding “don’t” to “do
not”), position-based swap attack (Swap), and
all-lowercase conversion (LC) attacks (Liu et al.,
2024b). For robustness evaluation, we compute the
average F1-score (AVG) across these eight attack
scenarios.

Higher values for LD, RC-LD, P, R, F1, and
ACC indicate superior performance, while lower
RC-PPL signifies better semantic fidelity preserva-
tion.

6.3 Baselines

Our baselines consist of the following water-
mark methods: KGW (Kirchenbauer et al., 2023),
SWEET(Lee et al., 2024), EWD(Lu et al., 2024),
DiPMark(Wu et al., 2023), SIR.

6.4 Parameter Configuration

Key hyperparameters are optimized via grid search
(Fig. 5 and App. C.2), including:

Blue List POS Selection: static to low-entropy
parts of speech (nouns and adjectives), comprising
36% of tokens in the model of LLAMA(Touvron
et al., 2023), ensuring grammatical integrity.

Temperature Robustness : Temperature of
model in main experiments is 1.0, and additional
results in Table 8 and Fig. 5b cover lengths from
0.1 to 1.0.
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Figure 5: Influence of hyper-parameters of our water-
mark (Soft). The y-axis lines with • and ♦ are right and
left, respectively.

Length Scalability: Token lengths in main ex-
periments are 500, and additional results in Table 7
and Fig. 5a cover lengths from 50 to 400.

7 Experimental Results

7.1 Detectability Performance

Our watermark achieves perfect detectability
(F1=1.00, ACC=1.00) across all tested models (Ta-
ble 2), matching the KGW method’s detection logic.

Table 2: The semantic fidelity and detectability of dif-
ferent methods.

Tasks/
Datasets/
Models

Methods
Semantic Fidelity Detectability

Perplexity Diversity Performance

PPL↓ RC-PPL↓ LD↑ RC-LD↑ F1↑ ACC↑

Stroy
Extension/
ROCStories/
Qwen2.5

KGW 14.72 50.79% 7.59 -0.61% 1.00 1.00
SWEET 13.34 36.67% 7.47 -2.28% 1.00 1.00
EWD 13.80 41.39% 7.47 -2.19% 1.00 1.00
DiPMark 12.06 23.57% 7.71 0.89% 1.00 1.00
EXP 27.98 186.69% 8.93 16.82% 1.00 1.00
SIR 12.87 31.86% 7.12 -6.75% 1.00 1.00
Ours 11.62 19.06% 8.95 17.15% 1.00 1.00

Text
Generation/
C4/
OPT

KGW 13.45 28.83% 7.44 -2.46% 1.00 1.00
SWEET 12.70 21.63% 7.48 -1.99% 1.00 1.00
EWD 13.51 29.39% 7.58 -0.72% 1.00 1.00
DiPMark 12.00 14.97% 7.84 2.81% 1.00 1.00
EXP 23.62 126.28% 8.44 10.62% 1.00 1.00
SIR 13.60 30.30% 7.55 -1.08% 0.99 0.99
Ours 11.60 11.11% 8.46 10.88% 1.00 1.00

News
Generation/
CNN-Daily-Mail/
LLAMA3

KGW 6.75 26.56% 7.26 0.31% 0.99 0.99
SWEET 6.46 21.24% 7.15 -1.21% 0.99 0.99
EWD 6.81 27.81% 7.38 1.94% 1.00 1.00
DiPMark 5.61 5.22% 7.35 1.51% 0.96 0.97
EXP 9.46 77.51% 7.19 -0.68% 0.99 0.99
SIR 6.64 24.61% 7.12 -1.66% 0.94 0.94
Ours 5.59 4.88% 7.73 6.77% 1.00 1.00

Long-form
Question
Aswer/
ELI5/
DeepSeek-R1

KGW 5.92 28.50% 7.40 0.77% 1.00 1.00
SWEET 5.34 15.88% 7.28 -0.82% 1.00 1.00
EWD 5.79 25.52% 7.27 -0.96% 0.99 1.00
DiPMark 4.85 5.14% 7.36 0.23% 0.97 0.97
EXP 6.52 41.42% 7.45 1.51% 1.00 1.00
SIR 5.59 21.36% 7.15 -2.66% 0.94 0.94
Ours 4.68 1.52% 7.59 3.41% 1.00 1.00

note: 1. ↑ denotes that the larger the value and ↓ means the opposite. 2.
Temperature is 1.0 and token length is 300. 3. Bold indicates first place ranking.

This consistency is enabled by maintaining the stan-
dard z-score calculation framework, ensuring com-
patibility with existing detection pipelines.

7.2 Semantic Fidelity Analysis

As shown in Table 2, our watermark demonstrates
superior semantic fidelity preservation. On the
DeepSeek-R1 model, it achieves an RC-PPL of
+1.52%, significantly lower than KGW’s +28.50%
and SIR’s +21.36%. The RC-LD of +3.41% in-
dicates slight improvement to token distribution
diversity, attributed to the z-score-driven dynamic
bias mechanism that dynamically adjusts logit per-
turbations to avoid over-distortion.

7.3 Robustness Evaluation

Our watermark retains an F1-score of AVG ≥ 0.89
on different tasks (Table 3), outperforming KGW
(≥0.84) and SIR (≥0.77). The static blue list
design contributes to 36% higher information re-
tention under word replacement attacks, as static
low-entropy POS tokens are less susceptible to
semantic-preserving modifications.

7.4 Ablation Experiments

Core component validation (Table 4) demonstrates
the critical role of individual mechanisms in our
framework:
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Table 3: The robustness of different methods.

Tasks/
Datasets/
Models

Methods
Robustness against Attacks

Del Sub CS DP Typo AE Swap LC AVG

F1↑ F1↑ F1↑ F1↑ F1↑ F1↑ F1↑ F1↑ F1↑

Stroy
Extension/
ROCStories/
Qwen-2.5

KGW 0.86 0.87 1.00 0.90 0.69 1.00 0.98 1.00 0.91
SWEET 0.76 0.89 0.98 0.87 0.67 1.00 0.96 1.00 0.89
EWD 0.81 0.91 0.99 0.89 0.67 1.00 0.97 1.00 0.91
DiPMark 0.67 0.68 0.79 0.68 0.67 1.00 0.69 0.99 0.77
EXP 0.66 0.81 0.94 0.78 0.66 1.00 0.92 1.00 0.85
SIR 0.66 0.79 0.97 0.87 0.68 1.00 0.66 0.98 0.83
Ours 0.92 0.95 1.00 0.92 0.72 0.99 0.98 1.00 0.94

Text
Generation/
C4/
OPT

KGW 0.86 0.94 1.00 0.90 0.69 1.00 0.98 1.00 0.92
SWEET 0.81 0.97 0.99 0.93 0.67 1.00 0.97 1.00 0.92
EWD 0.85 0.96 1.00 0.94 0.67 1.00 0.98 1.00 0.92
DiPMark 0.68 0.70 0.81 0.68 0.67 1.00 0.71 0.97 0.78
EXP 0.67 0.86 0.96 0.75 0.67 1.00 0.88 0.99 0.85
SIR 0.69 0.74 0.96 0.84 0.79 0.99 0.87 0.97 0.85
Ours 0.90 0.98 1.00 0.95 0.79 0.99 0.99 1.00 0.95

News
Generation/
CNN-Daily-Mail/
Llama-3

KGW 0.74 0.85 0.92 0.78 0.67 0.99 0.84 0.93 0.84
SWEET 0.71 0.82 0.91 0.74 0.67 0.99 0.80 0.94 0.82
EWD 0.76 0.87 0.94 0.76 0.67 1.00 0.88 0.95 0.85
DiPMark 0.67 0.68 0.70 0.68 0.67 0.96 0.67 0.81 0.73
EXP 0.67 0.79 0.89 0.75 0.67 0.99 0.76 0.94 0.81
SIR 0.66 0.75 0.88 0.80 0.73 0.94 0.69 0.87 0.79
Ours 0.80 0.91 0.96 0.83 0.75 0.99 0.90 0.96 0.89

Long-form
Question
Aswer/
ELI5/
DeepSeek-R1

KGW 0.78 0.90 0.93 0.79 0.73 1.00 0.88 0.99 0.87
SWEET 0.73 0.85 0.93 0.80 0.70 0.99 0.86 0.98 0.86
EWD 0.80 0.87 0.95 0.84 0.68 0.99 0.90 0.98 0.88
DiPMark 0.66 0.67 0.72 0.66 0.66 0.96 0.67 0.86 0.73
EXP 0.68 0.73 0.89 0.70 0.67 1.00 0.73 0.98 0.80
SIR 0.67 0.68 0.86 0.76 0.69 0.93 0.67 0.88 0.77
Ours 0.85 0.93 0.97 0.87 0.75 0.96 0.92 0.99 0.91

note: 1. ↑ denotes that the larger the value and ↓ means the opposite. 2. Temperature
is 1.0 and token length is 300. 3. Bold indicates first place ranking.

Removal of Low-Entropy POS-Guided To-
ken Partitioning Omitting the low-entropy POS-
guided token partitioning mechanism leads to a
significant degradation in semantic fidelity, man-
ifested as a 9.7% increase in RC-PPL. This out-
come underscores the necessity of stabilizing low-
entropy parts of speech (POS), as their perturbation
directly disrupts core sentence semantics. Notably,
log diversity (LD) exhibits a marginal increase
of 2.31%, likely due to the absence of POS con-
straints allowing broader token sampling, though
this comes at the cost of semantic coherence.

Removal of Z-Score-Driven Dynamic Bias Ex-
cluding the z-score-driven dynamic bias mecha-
nism results in a 2.89% increase in RC-PPL and
a 12.7% reduction in attack F1-score, highlighting
the indispensable role of adaptive bias in balanc-
ing semantic fidelity and robustness. The fixed
bias scheme (replaced by static perturbation) over-
distorts token distributions, leading to unnatural
text generation and reduced resilience against ad-
versarial attacks such as word substitution and dele-
tion.

Combined Removal of Both Mechanisms The
simultaneous removal of both mechanisms causes
a synergistic decline in performance: RC-PPL in-
creases by 12.39%, and attack F1-score drops by

3%. This drastic degradation confirms the comple-
mentary nature of the low-entropy POS partitioning
(preserving semantic integrity) and dynamic bias
(maintaining distributional consistency), emphasiz-
ing their indispensable roles in achieving robust
and semantically faithful watermarking.

These findings validate that the proposed mech-
anisms are not only individually critical but also
exhibit strong synergistic effects, collectively opti-
mizing the trade-off between watermark detectabil-
ity, semantic fidelity, and robustness against adver-
sarial manipulations.

Table 4: Comparison with ablation experiment.

Method
Semantic Fidelity Robustness Detectability

Perplexity Diversity Del Sub DP Performance

PPL↓ RC-PPL↓ LD↑ RC-LD↑ F1↑ F1↑ F1↑ F1↑ ACC↑

w/o L 12.17 +21.26% 7.50 -1.69% 0.81 0.88 0.85 0.99 0.99
w/o Z 11.49 +14.45% 7.59 -0.46% 0.73 0.76 0.76 0.99 0.99
w/o Both 12.44 +23.95% 7.49 -1.77% 0.81 0.88 0.85 0.98 0.98
Ours 11.20 +11.56% 7.67 +0.54% 0.84 0.92 0.87 1.00 1.00

Note: 1.↑ denotes that the larger the value and ↓ means the opposite.
2.“w/o L” is without “Low-entropy POS-guided token partitioning”;
“w/o Z” is without “Z-score-driven dynamic bias”. 3.Temperature is 1.0
and task is text generation.

7.5 Qualitative Examples
Table 5 illustrates watermarked text outputs com-
pared to KGW. our watermark generates gram-
matically correct sentences with lower RC-PPL
(22.97% vs. KGW’s 50.79%). Visualized to-
ken distributions show tighter alignment with non-
watermarked text, demonstrating semantic fidelity.

Table 5: Watermarked Examples

KGW Non-watermarked Text KGW Watermarked Text

Our Non-watermarked Text Our watermarked Text
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8 Conclusion

This paper introduces a novel watermark frame-
work, which contains two innovations: (1) a low-
entropy POS-guided token partitioning mechanism
using low-entropy POS tags to fix critical tokens,
enhancing semantic fidelity; (2) a z-score-driven
dynamic bias mechanism with relative position en-
coding for adaptive logit adjustments, maintain-
ing distributional consistency while enabling effi-
cient detection. The framework establishes a new
benchmark for trustworthy AI content by enabling
provenance tracing in different scenarios. Its gener-
alizable design supports seamless integration into
heterogeneous LLM ecosystems, offering solutions
for copyright protection and accountability in gen-
erative AI.

9 Limitation and Future Work

Shorter Token Lengths. While the framework
demonstrates strong performance across diverse
settings, it exhibits a minor decline in detection ac-
curacy for token lengths shorter than 100, primarily
due to insufficient watermark signal density. This
limitation motivates future research into context-
aware watermark embedding for short-form texts,
such as incorporating syntactic dependency mod-
eling or adaptive thresholding based on sequence
length.

Multi-Modal Input. Additionally, explor-
ing the integration of multi-modal input encod-
ing—beyond text-only scenarios—to enhance wa-
termark resilience in image-to-text and audio-to-
text generation tasks represents an exciting avenue
for expansion. These efforts will further solidify
the framework’s utility in real-world applications
where content brevity and modality diversity are
common challenges.

Acknowledgments

This work was supported in part by the Beijing
Municipal Science Technology Commission New
generation of information and communication tech-
nology innovation Research and demonstration ap-
plication of key technologies for privacy protection
of massive data for large model training and appli-
cation (Z231100005923047).

Ethical considerations

This work focuses on watermarking techniques for
large language models (LLMs) with the goal of en-
abling reliable attribution of AI-generated content,

thereby supporting copyright protection and miti-
gating misuse. Our methodology does not involve
human subjects, and therefore did not require IRB
review. All experiments were conducted using pub-
licly available datasets (e.g., C4, CNN/DailyMail,
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does not introduce new generative capabilities or
alter model behavior beyond controlled logit ad-
justments.

We note that watermarking technologies can be
dual-use: while they enable positive applications
such as content provenance and accountability, they
could also be misused in contexts of censorship or
false attribution. To mitigate such risks, we ad-
vocate for transparent deployment and clear com-
munication regarding the presence and purpose of
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tended for research purposes only, and we encour-
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A Variations of Our Method

The dynamic bias driven by z-score in our method
can be modified according to actual needs. We
will refer to the methods in the main text as “soft”.
Next, we will introduce two variants, “hard” and
“wavy”. The algorithm of watermark generation is
shown in Algo. 1.

Algorithm 1 Our Watermark Generation
Require: Fixed hash Hf , bias δ, sharpness factor

θ, thresholds τ1, τ2
Ensure: Watermarked text sequence x0:T

1: Initialize: x← ∅, |s|G ← 0
2: Select low-entropy POS tags to form blue list

B using Hf

3: Partition vocabulary into G,B,R using Hp

and Hf

4: for t = 0 to T − 1 do
5: Calculate sharpness entropy

ESharpness(Pt, θ)
6: if ESharpness < τ1 then
7: δ∗ ← 0 {No bias for low sharpness}
8: else
9: Calculate zscore for previous tokens

10: if zscore < τ2 then
11: δ∗ ← δ {Apply fixed bias}
12: else
13: δ∗ ← δ/ log(z) {Adaptive bias reduc-

tion (soft)}
14: δ∗ ← 0 {Adaptive bias reduction

(hard)}
15: δ∗ ← 1

2cos(
2πη(t−1)

T + π
2 ) +

δ
2 {Adap-

tive bias reduction (wavy)}
16: end if
17: end if
18: Adjust logits: logits ← logitsLLM + δ∗ ·

I(xt ∈ G)
19: Sample next token: xt ← Softmax(logits)
20: Update: x ← x ∪ {xt}, |s|G ← |s|G +

I(xt ∈ G)
21: end for
22:

23: return x0:T

A.1 Details of Low-Entropy POS-Guided
Token Partitioning

How to calculate the entropy of Part of Speech?
To guarantee the semantic fidelity, tokens with low
entropy can not be added bias. Because next token
with low entropy represents that it has the highest

probability, the main idea of one sentence will be
changed if we modify the logits. Therefore, we
define a “Sharpness Entropy” to determine whether
introduce bias:

Es(Pt, θ) = −
N∑

t=0

(1 + θPt) ∗ log2(Pt). (9)

where logits will not be added bias if Es(Pt, θ) are
lower than a threshold τ1.

How to partition “blue list”? Firstly, we calcu-
late the entropy of the next token of every Part of
Speech EN−PoS , and choose Part of Speech with
Low Entropy. Then, we use the fixed hash Hf

to seed fixed random number generator. Finally,
we use fixed random number generator to generate
“blue list” B of size α|V |:

α|V | ⇐ min(EN−PoS) (10)

How to Partition “Red-Green List” We com-
pute a prefixed hash Hp of previous token xt−1 and
use it to seed prefixed random number generator.
Then we use prefixed random number generator
partition the vocabulary into a “green list” G of
size γ|V | and a “red list” R of size (1− γ)|V |:

(1− α)|V | ⇒ γ|V |+ (1− α− γ)|V | (11)

where α, γ and (1 − α − γ) are the size of blue,
green and red list, respectively.

A.2 Details of Z-Score-Driven Dynamic Bias

How to calculate the z-score? To relieve the de-
crease of text-quality, bias should be adaptively
adjusted according to the z-score of previous token
sequence. Because the larger the bias added, the
poorer quality of the watermarked text, when the
z-score of previous token sequence is enough to
detect watermark. Therefore, we define a threshold
of z-score to determine that the bias should big or
small. The z-score is calculated as follows:

zt−1 =
|s|G − γ ∗ (t− 1)√
(t− 1) ∗ γ ∗ (1− γ)

(12)

where ng is the number of tokens in green list.
How to calculate the “Dynamic Bias”?
If the z-score of previous token sequence is not

enough to detect watermark, the bias should be big-
ger than original δ. On the contrary, the bias should
be smaller than original δ. In addition to the "soft
bias" (Fig. 6(a)) in the main text, we also designed
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"hard bias" (Fig. 6(b)) and "wavy bias" (Fig. 6(c)).
We calculate the “wavy bias” as follows:

δ∗ =

{
δ, if zt−1 ≤ z + ϵ
1
2cos(

2πη(t−1)
T + π

2 ) +
1
δ , otherwise

(13)
We calculate the “hard bias” as follows:

δ∗ =

{
δ, if zt−1 ≤ z + ϵ

0, otherwise
(14)

How to calculate watermarked logits? Dy-
namic bias are introduced into tokens when them
in green list.

logitsw =

{
logits(·|x0:t−1) + δ∗, if xt ∈ G

logits(·|x0:t−1), if xt ∈ R ∪B
(15)

How to sample token? Sample the next token
xt from the watermarked logits:

xt = Samp(Softmax(logitsscale(·|x0:t−1)))
(16)

A.3 Watermark Detection

How to judge watermarked or not? The detec-
tion process mirrors the KGW method, leveraging
statistical analysis of green list token frequency to
determine watermark presence. The cumulative
z-score (eq. 6) measures the deviation of green list
token count from the expected value. A threshold
τ classifies the text based on the z-score:

result =

{
non-watermarked, zscore ≤ τ

watermarked, zscore > τ
(17)

This binary decision efficiently identifies water-
marked text while maintaining low false positive
rates. The algorithm of watermark detection is
shown in Algo. 2.

B Theoretical Foundation

In cross-modal tasks such as image captioning, pre-
serving low-entropy nouns and adjectives is critical
for semantic integrity. Substituting "white dog"
with "black cat" (noun substitution) disrupts core
image semantics more severely than modifying
"running quickly" to "walking slowly" (adverb sub-
stitution), justifying the exclusion of blue list to-
kens from logit perturbations to maintain content
fidelity.

Algorithm 2 Our Watermark Detection
Input: Text sequence x0:T , green ratio γ, blue
ratio α
Parameters: Threshold τ2
Output: Detection result (Watermarked / non-
watermarked)

1: Initialize: |s|G ← 0
2: for each token xt in x0:T do
3: if xt ∈ Green List then
4: |s|G ← |s|G + 1
5: end if
6: end for
7: Calculate z-score:
8: zscore =

|s|G−γT√
Tγ(1−γ)

9: if zscore > τ2 then
10: return Watermarked
11: else
12: return non-watermarked
13: end if

B.1 Theoretical Proof of Detectability
Definition 2. We define the “Sharpness Entropy”
of discrete probability vector Pt with modulus θ as:

Es(Pt, θ) = −
|V |∑

t=0

(1 + θPt) log2(Pt) (18)

where |V | is the size of vocabulary (or token) set.

Similar to the “Spike Entropy” of KGW
(Kirchenbauer et al., 2023), "Sharpness Entropy"
serves as an indicator for the degree of distribu-
tion dispersion. The "sharpness entropy" attains
its minimum value of 0 when the entire mass of
Pt is concentrated at a single point. It reaches its
maximum value of (|V | + θ) log2(|V |) when the
mass of Pt is uniformly distributed. For large θ:

(1 + θPt) log2(Pt) ≈
{
θ, if Pt >

1
θ

log2(θ), if Pt <
1
θ

(19)
For this reason, the “Sharpness Entropy” can be
interpreted as a measure of the number of entries
in Pt that are greater than 1

θ .
The following theorem predicts the number of

green and blue list tokens that will appear in a
sequence with a watermark.

Theorem 4. Consider watermarked text sequences
of T tokens. Each sequence is produced by sequen-
tially sampling a raw probability vector Pt from
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Figure 6: The comparisons of different bias.

the language model, sampling a random green list
of size γN , and boosting the green list logits by δ∗

before sampling each token. Let |s|G denote the
number of green list tokens in sequence s.

If a randomly generated watermarked sequence
has average spike entropy at least E∗

s , i.e.,

1

T

T∑

t=0

Es

(
Pt,

(exp(δ∗)− 1)(1− γ)

log2((1 + (exp(δ∗)− 1)γ)

)
≥ E∗

s ,

(20)
then the number of green list tokens in the sequence
has expected value at least

E|s|G ≥
γ exp(δ∗)T

log2(1 + (exp(δ∗)− 1)γ)
E∗

s . (21)

Furthermore, the number of green list tokens has
variance at most

Var |s|G ≤T
γ exp(δ∗)E∗

s

log2(1 + (exp(δ∗)− 1)γ)

∗
(
1− γ exp(δ∗)E∗

s

log2(1 + (exp(δ∗)− 1)γ)

)
.

(22)

If we have chosen γ ≥ .5, then we can use the
strictly looser but simpler bound

Var |s|G ≤ Tγ(1− γ). (23)

Remark 1. It may seem like there are a lot of messy
constants floating around in this bound. However,
when we choose γ = 1

2 and δ∗ = ln(2) ≈ 0.7, this
bound simplifies to

E|s|G ≥
ln 2

ln 1.5
TE∗

s , (24)

Var|s|G ≤
ln 2

ln 1.5
TE∗

s

(
1− ln 2

ln 1.5
E∗

s

)
(25)

where E∗
s is a bound on spike entropy with modulus

ln 2
ln 2.25 . If we study the “hard” red-green-blue list
rules by choosing γ = 1

2 and letting δ∗ → 0, we
have

E|s|G ≥ TE∗
s , Var|s|G ≤ TE∗

s (1− E∗
s ) (26)

where E∗
s is a bound on spike entropy with modulus

1.

B.2 Theoretical Proof of Semantic Fidelity
We formalize semantic fidelity loss using
the expected PPL score discrepancy between
original and watermarked sequences:Q =

E
[
1
T

∑T
t=1 PPL(yt, ŷt)

]
where yt and ŷt denote

the original and watermarked tokens at posi-
tion t. The optimization problem balances
quality loss Q against a minimum detection
accuracy constraint using Lagrange multipliers:
minδ,αQ s.t. A(ρ) ≥ A0 The optimal bias δ∗

decreases with the square root of sequence length
and inversely with Sharpness Entropy, ensuring
minimal distributional distortion while maintaining
detectability.

B.3 Theoretical Proof of Robustness
Statistical Robustness against Attacks When the
text is subjected to a deletion attack with a propor-
tion of ρ, the effective detection length becomes
T ′ = T (1−ρ), and the detection statistic becomes:

z′ =
γ̂T ′ − γT√
γ(1− γ)T

(27)

By adjusting the proportion of the blue list α, it can
be proved that when the attack intensity ρ ≤ 0.5,
the detection power is maintained:

β = Φ

(
∆γ
√
T − ϵ√

γ(1− γ)

)
(28)

Information-theoretic Limit against Adver-
sarial Attacks Under the character replacement
attack, the surviving information of the watermark
I satisfies:

I ≥
T∑

t=1

[
log2

p̂(yt)

p(yt)
−DKL(p̂||p)

]
(29)

When the attack intensity is ρ, the lower bound of
the surviving information is:

I ≥T (1− ρ)(γ log2
γ +∆γ

γ

+ (1− γ) log2
1− γ −∆γ

1− γ
) (30)
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C Experiment Setting

C.1 Metrics
To systematically evaluate the impact of watermark-
ing on semantic fidelity, we introduce three relative
metrics: Relative Changes Perplexity (RC-PPL),
Relative Changes BLEU (RC-BLEU), and Relative
Changes Log Diversity (RC-LD). These metrics
are defined as:

RC-PPL =
PPLw − PPLnw

PPLnw × 100% (31)

RC-LD =
LDw − LDnw

LDnw × 100% (32)

Here, PPLw and LDw denote the perplexity and
log diversity of watermarked text, while PPLnw

and LDnw represent the corresponding metrics for
non-watermarked text. For BLEU scores, BLEUw

and BLEUnw follow the same convention. Higher
values of LD, RC-LD, Precision (P), Recall (R),
F1-score (F1), and Accuracy (ACC) indicate bet-
ter performance, whereas lower PPL and RC-PPL
values reflect superior semantic fidelity.

C.2 Hyper-parameters Analysis
the Part-of-Speech (PoS) selection: (Fig. 7)

• Previous studies have shown that low-entropy
tokens (e.g., numerals and nouns) are less sen-
sitive to watermark perturbations while main-
taining grammatical integrity (Hoang et al.,
2024). Fig. 7a illustrates the entropy distri-
bution across different PoS categories, con-
firming that nouns and numerals exhibit sig-
nificantly lower entropy compared to verbs
or punctuation. To construct the blue list, we
calculated the document frequency of each
PoS in the C4 dataset (Fig. 7b). Numerals
and nouns, which account for 18.7% of all
tokens, were selected as blue tokens to mini-
mize semantic disruption. The percentage of
occurrences for each POS tag in one passage
is as shown in Fig. 7c.

Temperature Sensitivity: (Table 8)

• At T = 0.7, Ours(S) achieves RC-
PPL=10.63% (LLaMA-7B), maintaining
F1=0.96 under 70% deletion.

• Figure 5b reveals that increasing temperature
improves semantic fidelity (PPL↓ 19.4%) but
slightly reduces robustness (F1↓ 3.2%).

Token Length: (Table 7)

• For short sequences (100 tokens), Ours(H)
achieves F1=0.92 under 70% deletion, outper-
forming SIR (F1=0.75).

• Figure 5a demonstrates that longer sequences
(500 tokens) enhance robustness (F1↑ 8.7%)
due to increased watermark signal density.

Attack Resilience Analysis: (Table 6)

• Word Deletion: Ours(H) maintains F1=0.995
at 50% deletion, outperforming Unigram
(F1=0.980).

• Word Substitution: Ours(S) achieves
F1=0.90 at 70% substitution, significantly bet-
ter than KGW (F1=0.81).

• Paraphrase: Ours(H) retains F1=0.89 under
strong paraphrasing (BART-based), while SIR
fails (F1=0.70).

C.3 The Setting of Baselines

We test nine baselines: KGW(Kirchenbauer et al.,
2023), SWEET(Lee et al., 2024), EWD(Lu et al.,
2024), Unigram(Zhao et al., 2023), DiPMark(Wu
et al., 2023), EXP(Aaronson and Kirchner., 2022),
SynthID(Dathathri et al., 2024), SIR(Liu et al.,
2023) and Unbiased watermark(Hu et al., 2023).
The configuration of them is as following.

• "algorithm name": "KGW", "gamma":
0.5, "delta": 2.0, "hash_key": 15485863,
"prefix_length": 1, "z_threshold": 4.0,
"f_scheme": "time", "window_scheme":
"left", "temperature_inner": 1.0

• "algorithm_name": "SWEET", "gamma":
0.5, "delta": 2.0, "hash_key": 15485863,
"z_threshold": 4.0, "prefix_length": 1, "en-
tropy_threshold": 0.9, "temperature_inner":
1.0

• "algorithm_name": "EWD", "gamma": 0.5,
"delta": 2.0, "hash_key": 15485863, "pre-
fix_length": 1, "z_threshold": 4.0, "tempera-
ture_inner": 1.0

• "algorithm_name": "Unigram", "gamma":
0.5, "delta": 2.0, "hash_key": 15485863,
"z_threshold": 4.0, "temperature_inner": 1.0
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• "algorithm_name": "DIP", "gamma":
0.5, "alpha": 0.45, "key": 42, "pre-
fix_length": 5, "z_threshold": 1.513,
"ignore_history_generation": 0, "ig-
nore_history_detection": 0, "tempera-
ture_inner": 1.0

• "algorithm_name": "EXP", "prefix_length":
4, "hash_key": 15485863, "threshold":
0.0001, "sequence_length": 200, "top_k": 0,
"temperature_inner": 1.0

• "algorithm_name": "SynthID", "ngram_len":
5, "keys": [ 654, 400, 836, 123, 340, 443, 597,
160, 57, 29, 590, 639, 13, 715, 468, 990, 966,
226, 324, 585, 118, 504, 421, 521, 129, 669,
732, 225, 90, 960 ], "sampling_table_size":
65536, "sampling_table_seed": 0, "wa-
termark_mode": "non-distortionary",
"num_leaves": 2, "context_history_size":
1024, "detector_type": "mean", "threshold":
0.52, "temperature_inner": 1.0

• "algorithm_name": "SIR", "delta": 1.0,
"chunk_length": 10, "scale_dimension":
300, "z_threshold": 0.2, "trans-
form_model_input_dim": 1024,
"transform_model_name": "water-
mark/sir/model/transform_model_cbert.pth",
"embedding_model_path":
"./models/compositional-bert-large-
uncased/", "mapping_name": "water-
mark/sir/mapping/300_mapping_152064.json",
"temperature_inner": 1.0

• "algorithm_name": "Unbiased", "gamma":
0.5, "key": 42, "prefix_length": 5,
"z_threshold": 1.513, "ignore_history":
1, "temperature_inner": 1.0

D Additional results

Table 8 demonstrates our framework’s superiority
across multiple dimensions:

• Semantic Fidelity: On the OPT-1.3B model,
Ours(S) achieves RC-PPL=14.45% (com-
pared to KGW’s 23.95%) and RC-LD=-1.69%
(vs. KGW’s -9.44%).

• Robustness: Under 70% word deletion,
Ours(H) maintains F1=0.97, outperforming
KGW (F1=0.81) and SynthID (F1=0.67).

• Detectability: Both Ours(S) and Ours(H)
achieve perfect detectability (ACC=1.00) due
to preserved z-score calculations.

E Case Study: Watermarked Text
Examples

Table 9 provides qualitative examples:

• KGW: "Bh art i has earned only Rs
58.19crore" (grammatical errors due to dy-
namic partitioning)

• Ours: "Bharati has earned only Rs 58.19
crore" (grammatically correct with static blue
tokens)

• Detection statistics: Ours achieves z-
score=4.1 (KGW=3.2) while maintaining
lower PPL (10.1 vs. 12.1).
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Table 6: Robustness against different attacks with different ratio.

Attack Word Deletion Word Substitution Paraphrase

Ratio 0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

Metric TPR F1 TPR F1 TPR F1 TPR F1 TPR F1 TPR F1 TPR F1 TPR F1 TPR F1

KGW 1.000 1.000 0.995 0.995 0.970 0.951 0.965 0.806 1.000 1.000 0.990 0.995 0.965 0.941 0.905 0.889 0.890 0.858
Unigram 1.000 1.000 0.995 0.997 0.995 0.990 0.995 0.966 1.000 1.000 0.995 0.995 0.985 0.980 0.965 0.970 0.950 0.931
DiPMark 0.965 0.972 0.955 0.675 0.990 0.669 0.990 0.668 0.985 0.978 0.845 0.818 0.970 0.668 0.985 0.679 1.000 0.668
EXP 1.000 1.000 0.985 0.983 0.845 0.845 0.980 0.677 1.000 1.000 0.995 0.997 0.900 0.918 0.810 0.869 0.780 0.768
SynthID 0.990 0.992 0.865 0.874 0.810 0.675 0.995 0.664 0.990 0.990 0.885 0.876 0.920 0.733 0.940 0.686 0.860 0.703
SIR 0.930 0.951 0.805 0.854 0.660 0.767 0.995 0.664 0.935 0.957 0.850 0.881 0.750 0.792 0.875 0.734 0.775 0.836
Ours(S) 0.995 0.990 0.995 0.995 0.995 0.990 0.960 0.970 0.975 0.987 0.960 0.960 0.945 0.930 0.940 0.900 0.915 0.890
Ours(H) 0.995 0.990 0.995 0.990 0.975 0.980 0.970 0.965 0.970 0.970 0.970 0.940 0.830 0.850 0.875 0.805 0.910 0.900

Note: The length of token is 200. Ours(S) is our watermark with the soft way. Ours(H) is our watermark with the hard
way.
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Table 7: The results of different methods under different token length.

Token
Length

Method
Semantic Fidelity Robustness Detectability

Perplexity Diversity Del(0.7) Sub(0.7) Para Performers

PPL RC-PPL LD RC-LD F1 F1 F1 F1 ACC

100

KGW 9.79 +10.82% 10.66 +0.96% 0.77 0.85 0.77 0.94 0.94

SWEET 9.26 +4.87% 9.94 -5.83% 0.71 0.75 0.76 0.95 0.95

EWD 9.76 +10.53% 9.98 -5.48% 0.71 0.79 0.76 0.97 0.97

Unigram 9.48 +7.38% 10.08 -4.51% 0.81 0.82 0.82 0.94 0.94

DiPMark 9.43 +6.75% 10.61 +0.48% 0.66 0.66 0.66 0.83 0.82

EXP 6.31 -28.58% 7.14 -32.43% 0.67 0.69 0.71 0.96 0.96

SynthID 9.65 +9.33% 10.91 +3.34% 0.66 0.68 0.67 0.89 0.89

SIR 9.79 +10.83% 9.36 -11.35% 0.67 0.67 0.67 0.82 0.82

Unbiased 9.25 +4.80% 10.60 +0.35% 0.66 0.67 0.67 0.85 0.84

Ours(S) 6.57 +5.83% 6.88 -0.18% 0.72 0.80 0.78 0.99 0.99
Ours(H) 6.60 +7.60% 6.88 -0.24% 0.77 0.80 0.81 0.97 0.97

200

KGW 9.65 +33.86% 7.92 +2.24% 0.78 0.84 0.76 0.99 0.99

SWEET 7.54 +4.53% 7.53 -2.90% 0.74 0.81 0.80 0.99 0.99

EWD 7.97 +10.57% 7.41 -4.34% 0.77 0.82 0.84 1.00 1.00

Unigram 7.72 +7.04% 7.62 -1.66% 0.83 0.84 0.83 0.97 0.97

DiPMark 7.42 +2.92% 7.76 +0.08% 0.67 0.67 0.67 0.91 0.91

EXP 6.31 -12.54% 7.14 -7.94% 0.67 0.68 0.68 0.96 0.96

SynthID 7.47 +3.63% 7.79 +0.52% 0.66 0.67 0.67 0.96 0.96

SIR 7.40 +2.63% 7.28 -6.10% 0.67 0.68 0.72 0.87 0.86

Unbiased 7.51 +4.13% 7.71 -0.54% 0.67 0.67 0.67 0.92 0.92

Ours(S) 5.17 +10.78% 7.39 +0.25% 0.70 0.80 0.78 0.97 0.97
Ours(H) 5.10 +9.13% 7.32 -0.65% 0.72 0.80 0.78 0.98 0.98

300

KGW 8.60 +31.51% 7.49 +2.64% 0.82 0.92 0.79 1.00 1.00

SWEET 6.85 +4.67% 7.08 -3.01% 0.76 0.82 0.78 0.99 0.99

EWD 7.19 +9.91% 7.12 -2.45% 0.82 0.86 0.85 1.00 1.00

Unigram 7.13 +8.95% 7.02 -3.83% 0.88 0.86 0.88 0.98 0.98

DiPMark 6.71 +2.67% 7.33 +0.38% 0.66 0.68 0.67 0.96 0.96

EXP 6.31 -3.58% 7.14 -2.26% 0.67 0.68 0.67 0.96 0.97

SynthID 6.31 -3.58% 7.14 -2.26% 0.67 0.68 0.67 0.96 0.97

SIR 6.78 +3.69% 7.05 -3.36% 0.67 0.67 0.75 0.91 0.91

Unbiased 6.82 +4.36% 7.22 -1.04% 0.67 0.67 0.66 0.95 0.95

Ours(S) 8.82 +11.12% 8.87 -0.20% 0.70 0.75 0.73 0.94 0.94
Ours(H) 8.73 +9.96% 8.94 +0.57% 0.70 0.75 0.73 0.95 0.95

400

KGW 8.16 +30.69% 7.16 +1.96% 0.85 0.95 0.83 1.00 1.00

SWEET 6.59 +5.56% 6.88 -1.97% 0.79 0.86 0.81 0.99 1.00

EWD 6.72 +7.70% 6.81 -2.97% 0.81 0.90 0.86 1.00 1.00

Unigram 6.73 +7.85% 6.86 -2.34% 0.89 0.88 0.89 0.99 0.99

DiPMark 6.53 +4.61% 6.96 -0.81% 0.67 0.67 0.67 0.98 0.98

EXP 6.31 +1.06% 7.14 +1.64% 0.67 0.68 0.69 0.97 0.97

SynthID 6.31 +1.06% 7.14 +1.64% 0.67 0.68 0.69 0.97 0.97

SIR 6.59 +5.54% 6.79 -3.22% 0.67 0.68 0.82 0.94 0.94

Unbiased 6.62 +6.03% 7.05 +0.46% 0.67 0.67 0.66 0.97 0.97

Ours(S) 8.85 +11.47% 9.73 +9.47% 0.77 0.82 0.76 0.99 0.99
Ours(H) 8.85 +11.47% 9.73 +9.47% 0.77 0.82 0.76 0.99 0.99

note: 1. The number in the upper right corner represents the ranking. 2. ↑ denotes that the larger the value and ↓ means the opposite. 3.
Temperature is 0.7 and model is DeepSeek-R1-Distill-Qwen-7B 4. Dataset is eli5.
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Table 8: The results of different methods under temperature = 0.7.

Tasks Datasets Models Methods
Semantic Fidelity Robustness against Attacks Detectability

Perplexity Diversity Del Sub Typo Exp Swap LC Performance

PPL↓ RC-PPL↓ LD↑ RC-LD↑ F1↑ F1↑ F1↑ F1↑ F1↑ F1↑ F1↑ ACC↑

Text
Generation

C4 OPT

KGW 7.51 22.36% 6.80 -1.84% 0.97 0.96 0.96 1.00 0.99 1.00 1.00 1.00
SWEET 7.50 22.11% 6.79 -2.09% 0.95 0.96 0.96 1.00 0.98 1.00 1.00 1.00
EWD 7.46 21.46% 6.79 -2.04% 0.97 0.97 0.97 1.00 0.99 1.00 1.00 1.00
Unigram 7.08 15.23% 6.17 -10.91% 0.99 0.99 0.97 1.00 1.00 0.99 1.00 1.00
DiPMark 6.85 11.49% 7.11 2.61% 0.66 0.69 0.68 1.00 0.75 0.93 1.00 1.00
EXP 19.91 224.28% 8.52 22.93% 0.82 0.90 0.89 1.00 0.98 0.99 1.00 1.00
SynthID 15.36 150.15% 7.99 15.27% 0.85 0.88 0.86 1.00 0.97 1.00 1.00 1.00
SIR 7.24 17.90% 6.70 -3.38% 0.81 0.81 0.81 0.99 0.94 0.98 0.99 0.99
Unbiased 7.14 16.21% 7.12 2.74% 0.67 0.68 0.69 1.00 0.70 0.95 1.00 1.00
Ours(H) 6.52 6.21% 6.93 0.03% 0.69 0.71 0.66 0.94 0.79 0.76 0.94 0.94
Ours(S) 6.61 7.59% 6.85 -1.10% 0.80 0.84 0.67 0.99 0.91 0.91 0.99 0.99

Text
Generation

C4 GPT2

KGW 8.04 25.21% 7.00 -0.02% 0.97 0.98 0.97 1.00 0.98 1.00 1.00 1.00
SWEET 8.07 25.76% 7.03 0.44% 0.94 0.97 0.95 1.00 0.98 0.99 1.00 1.00
EWD 8.14 26.83% 6.99 -0.16% 0.97 0.97 0.97 1.00 0.99 0.99 1.00 1.00
Unigram 7.59 18.24% 6.90 -1.43% 1.00 0.99 0.99 1.00 1.00 0.99 1.00 1.00
DIP 7.38 14.89% 7.24 3.40% 0.68 0.70 0.71 0.99 0.76 0.95 0.99 0.99
EXP 23.87 271.74% 8.44 20.63% 0.84 0.92 0.92 1.00 0.98 0.99 1.00 1.00
SynthID 18.24 184.13% 8.15 16.48% 0.81 0.88 0.84 1.00 0.94 0.99 1.00 1.00
SIR 7.44 15.91% 6.79 -2.97% 0.73 0.75 0.71 0.97 0.89 0.94 0.97 0.97
Unbiased 7.44 15.85% 7.29 4.12% 0.67 0.69 0.69 1.00 0.69 0.92 1.00 1.00
Ours(H) 6.74 4.92% 6.98 -0.26% 0.71 0.71 0.67 0.93 0.79 0.81 0.93 0.93
Ours(S) 6.81 6.10% 6.96 -0.53% 0.77 0.78 0.67 0.98 0.91 0.92 0.98 0.98

News
Generation

CNN-
daily-
Mail

Llama3

KGW 4.81 12.19% 6.82 -0.33% 0.85 0.86 0.82 0.98 0.89 0.94 0.98 0.98
SWEET 4.74 10.50% 6.88 0.62% 0.81 0.85 0.81 0.99 0.87 0.92 0.99 0.99
EWD 4.91 14.40% 6.99 2.25% 0.84 0.87 0.85 0.99 0.89 0.94 0.99 0.99
Unigram 5.02 16.91% 6.78 -0.88% 0.97 0.95 0.95 0.97 0.96 0.92 0.97 0.97
DiPMark 4.47 4.08% 7.12 4.09% 0.67 0.67 0.67 0.93 0.68 0.77 0.93 0.94
EXP 8.41 96.13% 7.19 5.12% 0.71 0.80 0.80 0.99 0.88 0.94 0.99 0.99
SynthID 6.70 56.18% 7.42 8.46% 0.68 0.75 0.74 1.00 0.76 0.93 1.00 1.00
SIR 4.85 13.14% 6.67 -2.45% 0.68 0.76 0.71 0.94 0.77 0.86 0.94 0.94
Unbiased 4.45 3.82% 6.94 1.43% 0.67 0.68 0.67 0.93 0.68 0.76 0.92 0.92
Ours(H) 4.59 6.92% 6.88 0.61% 0.75 0.70 0.67 0.93 0.81 0.83 0.93 0.93
Ours(S) 4.67 8.76% 6.91 0.96% 0.79 0.71 0.67 0.96 0.83 0.85 0.96 0.96

Stroy
Extension

ROCStories Qwen2.5

KGW 8.13 26.22% 6.84 -0.80% 0.96 0.89 0.95 1.00 1.00 1.00 1.00 1.00
SWEET 7.71 19.79% 6.77 -1.90% 0.94 0.92 0.94 0.99 0.98 0.99 0.99 1.00
EWD 7.93 23.13% 6.83 -1.04% 0.94 0.93 0.95 1.00 0.99 1.00 1.00 1.00
Unigram 7.89 22.45% 6.35 -8.04% 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00
DiPMark 7.26 12.70% 7.09 2.70% 0.67 0.67 0.68 1.00 0.74 0.97 1.00 1.00
EXP 24.52 280.71% 8.93 29.35% 0.79 0.85 0.90 1.00 1.00 1.00 1.00 1.00
SynthID 16.86 161.76% 8.02 16.17% 0.79 0.80 0.84 1.00 0.93 1.00 1.00 1.00
SIR 7.67 19.09% 6.49 -5.87% 0.73 0.82 0.75 0.99 0.82 0.99 0.99 0.99
Unbiased 7.28 12.99% 7.14 3.52% 0.68 0.67 0.69 1.00 0.70 0.97 1.00 1.00
Ours(H) 7.06 9.70% 6.88 -0.29% 0.73 0.69 0.66 0.98 0.79 0.94 0.98 0.98
Ours(S) 7.27 12.89% 6.97 1.04% 0.83 0.74 0.66 0.99 0.91 0.98 0.99 0.99

Long-form
Question

Aswer
ELI5 DeepSeek-R1

KGW 7.21 7.09% 7.17 -1.56% 0.90 0.91 0.90 1.00 0.92 0.99 1.00 1.00
SWEET 6.91 2.70% 7.17 -1.56% 0.85 0.84 0.87 0.99 0.92 0.98 0.99 0.99
EWD 7.12 5.86% 7.06 -3.07% 0.89 0.89 0.90 1.00 0.94 1.00 1.00 1.00
Unigram 7.14 6.07% 7.08 -2.77% 0.94 0.89 0.93 0.98 0.95 0.97 0.98 0.98
DiPMark 7.64 13.50% 7.28 0.01% 0.67 0.69 0.68 0.97 0.67 0.88 0.97 0.97
EXP 9.39 39.53% 7.45 2.34% 0.70 0.78 0.77 0.99 0.82 0.98 0.99 1.00
SynthID 9.32 38.43% 7.70 5.72% 0.68 0.73 0.75 1.00 0.78 0.98 1.00 1.00
SIR 8.18 21.55% 7.23 -0.73% 0.67 0.69 0.67 0.93 0.67 0.87 0.93 0.94
Unbiased 6.74 0.18% 7.19 -1.18% 0.67 0.67 0.68 0.95 0.68 0.85 0.95 0.95
Ours(H) 7.06 4.84% 7.07 -2.93% 0.76 0.70 0.67 0.97 0.78 0.94 0.97 0.97
Ours(S) 7.03 4.44% 7.09 -2.58% 0.80 0.68 0.67 0.96 0.80 0.95 0.96 0.97

note: 1. The number in the upper right corner represents the ranking. 2. ↑ denotes that the larger the value and ↓ means the opposite. 3.
Temperature is 0.7.
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Table 9: Examples of Prompts and Watermarked Text

Method Prompt Non-Watermarked Text Watermarked Text PPL z

KGW

Belying
expectations,
Prasar
Bharti
has
earned
only
Rs
58.19
crore
(Rs 581.9
million)
as
revenue
during
the

12.1 3.2

Method Prompt Non-Watermarked Text Watermarked Text PPL z

EWD

Belying
expectations,
Prasar
Bharti
has
earned
only
Rs
58.19
crore
(Rs 581.9
million)
as
revenue
during
the

12.1 3.2

Method Prompt Non-Watermarked Text Watermarked Text PPL z

Ours

Belying
expectations,
Prasar
Bharti
has
earned
only
Rs
58.19
crore
(Rs 581.9
million)
as
revenue
during
the

10.1 4.1
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