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Abstract

Cross-lingual Named Entity Recognition (CL-
NER) aims to transfer knowledge from high-
resource languages to low-resource languages.
However, existing zero-shot CL-NER (ZCL-
NER) approaches primarily focus on Latin
script language (LSL), where shared linguis-
tic features facilitate effective knowledge trans-
fer. In contrast, for non-Latin script language
(NSL), such as Chinese and Japanese, perfor-
mance often degrades due to deep structural
differences. To address these challenges, we
propose an entity-aligned translation (EAT) ap-
proach †. Leveraging large language models
(LLMs), EAT employs a dual-translation strat-
egy to align entities between NSL and English.
In addition, we fine-tune LLMs using multi-
lingual Wikipedia data to enhance the entity
alignment from source to target languages. Ex-
tensive experiments demonstrate that EAT out-
performs prior methods on NSL by bridging
language gaps through entity-aware translation.

1 Introduction

Cross-lingual Named Entity Recognition (CL-
NER) aims to transfer knowledge from high-
resource source languages to low-resource target
languages, so as to enhance the NER performance
(Li et al., 2021; Mhaske et al., 2023; Xie et al.,
2023, 2024). Recently, while zero-shot CL-NER
(ZCL-NER) approaches demonstrate strong perfor-
mance on several low-resource languages (Zeng
et al., 2022; Ge et al., 2023, 2024), we observe an
interesting phenomenon in prior approaches and
different language scripts.

Previous ZCL-NER approaches typically apply
a teacher-student (T-S) learning framework, trans-
ferring English knowledge to the target language
(Ma et al., 2022; Zeng et al., 2022). This recasts

*Corresponding Author
†Our code and dataset are available at: https://github.

com/ZelateCalcite/EAT_NER
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The clever advice makes a lot of sense, I will follow it

[高明]的建议很有道理，我会遵从他
Golden Translation: Gaoming’s advice makes a lot of sense, I will follow him

[Reus] wird das [Britische Museum] fotografieren

[Reus] will photograph the [British Museum]

Figure 1: Two examples: German, as LSL, tends to
be translated more accurately into English due to their
shared lexicon, making it more suitable for NER. In
contrast, Chinese, as NSL, faces inherent challenges in
translation to English because of significant typological
divergences. The translations are obtained by GPT-4.

the source language into the same space as the
target language to achieve ZCL-NER. Regarding
the existing studies (Ge et al., 2023, 2024), they
achieve competitive performance on the English-
like target languages that have shared vocabulary
origins, as well as similar grammatical and syntac-
tic structures such as German and French (Finiasz
et al., 2024). For example, as illustrated in Figure 1,
the German words “Britische” and “fotografieren”
are derived from the English words “British” and
“photograph”, respectively. We refer to such lan-
guages, which are closely related to English, as
Latin script language (LSL). However, as shown
in our pilot experiments and previous reports (Ge
et al., 2023, 2024), T-S approaches work not well
on non-Latin script language (NSL), such as Chi-
nese and Japanese. This is mainly due to significant
linguistic discrepancies between LSL and NSL, i.e.,
differences in scripts, grammar, and syntax (Singh
et al., 2022), which are summarized in Table 1 for
various languages. For example, German (DE), as
LSL, shares the same Subject-Verb-Object (SVO)
and fusional scripts characteristics with English
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AR HI HY JA ES FR EN

Language Family Afroasiatic Indo-European Indo-European Japonic Indo-European Indo-European
· Semitic · Indo-Iranian · Armenian · Japanese · Romance · Germanic

Linguistic Type Fusional Fusional Fusional Agglutinative Fusional Analytic
Scripts Arabic Abjad Devanagari Armenian script Kanji & Kana Latin Scriptsi Latin Scriptsi

Word Order VSOii SOV SOV SOV SVO SVO

KA KO RU ZH DE NL EN

Language Family Kartvelian Koreanic Indo-European Sino-Tibetan Indo-European Indo-European
· Karto-Zan · Korean · Slavic · Sinitic · Germanic · Germanic

Linguistic Type Agglutinative Agglutinative Fusional Isolating Fusional Analytic
Scripts Georgian Scripts Hangul / Chosŏn’gŭl Cyrillic Chinese Characters Latin Scriptsi Latin Scriptsi

Word Order SVO SOV SVO SVO SVOiii SVO

Table 1: Comparison of linguistic typology between different languages using different scripts (Language Code
follows ISO 639-1:2002 *). SVO (Subject-Verb-Object, similar with SOV / VSO) refers to the order in which the
elements of a sentence typically appear in languages that follow this structure. i: These languages are both based on
Latin Scripts with unique pronunciation differences or additional characters. ii: The word order of Modern Written
Arabic is VSO while Modern Spoken Arabic is SVO, here we only discuss the writing systems. iii: The usual word
order of these two languages is SVO, but in subordinate clauses the word order shifts to SOV.

(EN), while Japanese (JA), as NSL, is an aggluti-
native language with Subject-Object-Verb (SOV)
order. Consequently, translating Japanese into En-
glish poses greater challenges compared to German
due to these typological divergences.

To this end, we believe that it is essential to miti-
gate the language gap between NSL and English.
In this way, we can utilize the abundant English
resources to improve ZCL-NER performance on
targeted NSL, which constitutes the core focus of
this paper. As we know, translation appears to
be the most intuitive approach to bridging the lin-
guistic disparity (Li et al., 2024). However, direct
translation between English and NSL typically re-
sults in the key entity omissions due to various
word misalignment issues (Yang et al., 2022). For
instance, in Figure 1, the Person entity “高明” in
target language (Chinese) is incorrectly translated
as the adjective “clever” (by GPT-4o and Deepseek
in May 2025 with evidences in Appendix). Such
translation inconsistencies hinder the progress of
our task.

To address the above issues, we propose an
Entity-Aligned Translation (EAT) approach at dual
levels with large language models (LLMs) for ZCL-
NER, with a focus on NSL as the target languages.
Different from T-S approaches, we recast the tar-
get NSL into the same space with English to
achieve ZCL-NER. Specifically, we first leverage
the powerful reasoning and interpretation abili-
ties of LLMs to perform target-to-English forward
translation using multi-round chain-of-thought (Mr-
CoT). Then, we extract potential entities from

*https://en.m.wikipedia.org/wiki/ISO_639-1

the translated English text using pre-trained En-
glish NER extractor. Finally, to restore these en-
tities in the target language, we design a back-
ward translation process with MrCoT, ensuring
that this stage’s translated entities correspond to
the correct fragments in the original sentence. The
process allows us to achieve ZCL-NER without
relying on parallel cross-lingual corpora. To fur-
ther refine entity alignment, we fine-tune LLMs on
English-oriented entity-aligned cross-lingual cor-
pora (EACL), sourced from multilingual Wikipedia.
In general, our contributions are summarized:
• We identify the linguistic script discrepancies

and entity misalignment between LSL and NSL for
ZCL-NER.
• We propose an entity-aligned translation (EAT)

framework from the perspective of enhancing
entity-aware translation ability for various NSL as
the target languages.
• We introduce two metrics (BLEU and Shan-

non Entropy) to quantify the correlation between
translation quality and ZCL-NER performance.

2 Related Work

2.1 Linguistic Differences Between Scripts

Previous research has explored how linguistic and
cognitive processes are influenced by different writ-
ing systems, such as Latin scripts, Hanzi, and De-
vanāgarı̄. Gelman and Tardif (1998) argue that for-
mal language properties (e.g., scripts, morphemes)
impact the use of generic noun phrases, which are
essential for knowledge organization and reason-
ing (Gelman and Markman, 1986; Finiasz et al.,
2024). The Script Relativity Hypothesis (Pae,
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Figure 2: The overall architecture of our proposed EAT approach.

2020) suggests that script influences cognitive pro-
cesses, with first-language experiences shaping
how we process other languages (Li and Koda,
2022; Singh et al., 2022). Systemic functional
linguistics (Halliday and Matthiessen, 1999) also
highlights how information is conveyed differently
across languages due to their unique semantic and
syntactic structures (Yang, 2008; Chen, 2016; Arús-
Hita et al., 2018). In contrast to previous studies,
which generalize NER models without considering
linguistic typology, our approach leverages LLMs
to bridge these gaps, yielding improved perfor-
mance.

2.2 Zero-shot Cross-Lingual NER

Recent zero-shot CL-NER approaches, particularly
those using teacher-student (T-S) learning frame-
works, have achieved promising results by distilling
NER knowledge from source languages to target
languages (Wu et al., 2020; Liang et al., 2021; Chen
et al., 2021; Zeng et al., 2022). Some works focus
on improving knowledge distillation by reducing
noise (Ma et al., 2022; Ge et al., 2023, 2024). Addi-
tionally, machine translation is employed to gener-
ate pseudo-training data for CL-NER, using meth-
ods such as dictionary-based translation (Mayhew
et al., 2017; Xie et al., 2018), sequence translation
models (Liu et al., 2021; Yang et al., 2022) and
label projections (Chen et al., 2023; Parekh et al.,
2024) for data augmentation. However, these meth-
ods often underperform compared to the T-S learn-
ing framework, mainly because of their limited
entity-aligned translation capabilities. While T-S
frameworks achieve strong results for LSL, they
struggle with NSL, such as Chinese and Japanese,
where linguistic differences hinder accurate seman-
tic and lexicogrammatical alignment.

2.3 LLMs for NER and Multilinguality
Large Language Models (LLMs) have demon-
strated significant potential across NLP tasks, in-
cluding NER (Xie et al., 2023, 2024; Liu et al.,
2024). LLMs have also been used for data aug-
mentation to enhance the performance of smaller
models (Zhang et al., 2021, 2024; Kang et al.,
2024; Ju et al., 2024). Recent studies have fur-
ther improved their multilingual capabilities, en-
abling cross-lingual applications (Wu et al., 2025).
However, due to performance disparities between
LLMs’ English and non-English capabilities (Zhu
et al., 2024a), many studies use LLMs to translate
non-English texts into English before performing
downstream tasks (Zhu et al., 2024b; Chen et al.,
2024). Inspired by these approaches, we utilize
LLMs for entity-aligned translation, enhancing the
alignment between source and target languages.
The advanced semantic understanding and reason-
ing abilities of LLMs help capture implicit infor-
mation during translation, mitigating information
loss and improving overall performance.

3 Methodology

In this section, we first introduce our proposed
Entity-Aligned Translation (EAT) framework, as
illustrated in Figure 2: dual translation, source-
oriented cross-lingual corpora collection, and
entity-level alignment fine-tuning. Then, we
present two metrics to evaluate the correlation be-
tween translation quality and ZCL-NER perfor-
mance.

3.1 Dual Translation for ZCL-NER
To minimize entity loss during translation, we pro-
pose a dual translation model (DT) that focuses
on preserving potential entities of target language
throughout the process.

Target to Source Forward Translation. LLMs

4543



may not be able to paraphrase the words of enti-
ties in single round of inference and may directly
output the raw input words. Therefore, the gen-
erated translation with raw words from languages
that do not use Latin scripts will affect the models’
overall understanding and may lead to failure in
subsequent tasks. One possible solution is to in-
struct the LLMs in several rounds instead of single
round in each direction, which we call multi-round
text translation with chain-of-thought (MrCoT).

In the first round, we instruct the model to con-
sider the entities the target sentence x may con-
tain and explain those entities, when translating
from target language a to source language (En-
glish) b. Formally,

ot1 = LM(pt1,x, a, b) (1)

where LM denotes a large language model. pt1 is
the first prompt that instructs the model to consider
the entities where x may contain and describe them.
ot1 is supposed to provide a CoT context for the next
round. Then the second round output is:

ot2 = LMot1(pt2,x, a, b) (2)

where pt2 is the second prompt that instructs the
model to translate x taking previous inference ot1
into consideration. The translation result T t

a→b(x)
is obtained by filtering non-relevant words:

T t
a→b(x) = LMot2(pf ,x, a, b) (3)

where pf is the filter prompt. T t
a→b(x) denotes the

complete sentence by target-to-English language
translation.

Text-to-Text Generation for NER. To better
utilize the semantics of the sentences, we refor-
mulate the NER task as a text-to-text generation
task following (Zhang et al., 2024). The inputs are
divided as: 1) PREFIX(P ): define the task as label-
ing entities of the input sentence. 2) TAG: the set
T of entity tags from the dataset. 3) SENTENCE:
the input sentence T t

a→b(x). Then, given the entire
input I = (P,T, T t

a→b(x)), the output entities by
generation model are defined as:

E = EXTRACTORρ(I) (4)

where ρ denotes the trainable parameters
of the text-to-text English NER model
EXTRACTOR. The result E contains entity
pairs as (T t

a→b(x)l1:r1 , tag), where l1 : r1 denotes
the text boundary.

Source to Target Backward Translation. This
stage plays a crucial role in ensuring entity align-
ment across languages. In neural machine transla-
tion, LLMs may generate tokens that are semanti-
cally related to entities, rather than directly translat-
ing them. As a result, relying solely on the LLM-
generated translation may lead to the omission of
possible entities that were captured in the above
stage. To ensure effective cross-lingual entity align-
ment, we check whether the translated results of
this stage for potential input entities in English
(i.e., output) closely match the corresponding
segments in the real target language.

Formally, to translate an entity T t
a→b(x)l1:r1

from language b to a, the first round output is:

oe1 = LM(pe1, T t
a→b(x)l1:r1 ,x, a, b) (5)

where l1 : r1 is the text boundary, and pe1 is the
first prompt that instructs the model to translate the
entity and analyze if oe1 could appear in x. Then
the translation result in second round with MrCoT
is obtained similarly:

oe2 = LM(pe2, o
e
1,x, a, b) (6)

xl2:r2 = T e
b→a(T t

a→b(x)l1:r1) = LM(pf , oe2) (7)

where l2 : r2 is the text boundary, and pe2 is the
second prompt to instruct the model to check if the
result appears in x, and pf is the filter prompt.

At this stage, we can finalize ZCL-NER, where
xl2:r2 represents the target language entity we aim
to extract.

3.2 Source-oriented Cross-lingual Corpora

To reduce the hallucination and further amplify
the ability of entity alignment in the above trans-
lation process, we collect English-oriented entity-
aligned cross-lingual corpora (EACL) to fine-tune
the translation model. The EACL Corpora are col-
lected from Interlanguage Links * provided by
the Wikipedia API †.

We leverage the entities from the CoNLL2003
English dataset to construct EACL. As shown in
Figure 2, for an English entity e ∈ e, the links
from the API of e are the content of target language
related to e:

I(e) = {(ua,va)e|a ∈ A} (8)

*Detailed information in https://en.wikipedia.org/
wiki/Help:Interlanguage_links

†https://api.wikimedia.org/wiki/Main_Page
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AR HI HY JA

Sen. 2,746 1,195 1,568 2,890
Tok. 69,336 83,287 62,669 217,252

KA KO RU ZH

Sen. 1,451 2,014 796 2,382
Tok. 8,177 32,667 7,521 206,279

Table 2: Detailed information of our collected EACL
Corpora, including the amounts of (ua, va1 )e and tokens
in va1 for each language a.

where ua and va denote the title (entity or short
description for e in target language a) and sum-
maries of language a corresponding to e (a text to
explain and describe title), and A denotes the set
of languages. We leverage ua as the entity, and the
first sentence va1 of va as the text to construct the
entity-description pair: Da = {Ia(e)|e ∈ e} =
{(ua, va1)e|e ∈ e}.

However, not all entities have corresponding
Wikipedia pages with interlanguage links. More-
over, not all languages have Wikipedia pages
that align with English entities, especially in less-
resourced languages. As a result, the corpus size
varies across languages. Detailed information on
the collected corpora can be found in Table 2.

3.3 Entity-level Alignment Fine-tuning
To amplify the DT model’s entity-level alignment
ability, we leverage EACL Corpora obtained above
to fine-tune (FT) the backward translation. This
is because the model struggles to identify the
positions of entities. Specifically, we leverage
Quantized-LoRA (QLoRA) (Dettmers et al., 2024)
to accelerate model fine-tuning under constrained
resources. Instead of global quantization, we
use block-wise k-bit quantization (Dettmers et al.,
2022; Tang et al., 2025):

D2(c, cd,W q) = D(D(c, cd),W q) = W (9)

where the quantization constants c are quantized
as cd. W and W q denote the model’s raw and
quantized weights.

We employ cross-entropy loss to train the DT
model:

LT (y, ŷ) = −
η∑

i=1

ŷi log(yi) (10)

where y = LM(e, va1). ŷi ∈ ŷ is ua in (ua, va1)e
of EACL. yi ∈ y denotes the predicted entity. LM

denotes a large language model and η denotes the
max length of model output.

Lang. Tokens RatioTrain Valid Test

AR 129,184 64,291 64,347 4.96%
HI 29,443 5,808 6,005 11.05%
HY 95,614 6,214 6,220 0.08%
JA 603,301 300,844 306,959 1.60%
KA 80,402 81,159 81,922 0.05%
KO 162,031 80,786 80,841 1.06%
RU 141,529 70,279 71,288 3.33%
ZH 420,054 213,682 207,505 17.75%

EN 160,394 80,536 80,326 19.76%

Table 3: Detailed information of our selected languages
in the dataset WikiANN. Ratio represents the approxi-
mate proportion of speakers to the total world popula-
tion, and the statistics are referred from Wikipedia.

3.4 Evaluating Entity-aligned Translation

We use BLEU score (Papineni et al., 2002) and
Information Entropy (Shannon, 1948) to measure
the information loss in the translation process, so
as to demonstrate the relevance between the NER
results and the information loss.

Bilingual Evaluation Understudy (BLEU) is
widely used as an evaluation metric in machine
translation due to its fast and unified features. In
our setting, the BLEU score is evaluated between
the generated target sentence in backward transla-
tion and original input in forward translation.

Information Entropy (Shannon Entropy) is also
commonly used to quantify the information of the
sentences. For better analysis, we leverage the
Bi-Gram Model to calculate the joint information
entropy as: H(s) =

∑n
i=1H(si−1, si).

To evaluate the information loss between raw
target sentence and dual translated sentence, we
define the measurement using the above Shannon
Entropy as: Le =

H(T t
b→a(sr))

H(sr)
, where sr denotes

the sentence of target language b and a denotes the
source language.

4 Experimentation

4.1 Datasets

The experiments are conducted on two
public and most widely used datasets, in-
cluding WikiANN (Pan et al., 2017) and
CoNLL2003 (Tjong Kim Sang and De Meulder,
2003):

1) WikiANN involves 176 languages, and each
language has balanced train, valid, and test splits.
The entity categories of WikiANN are PERSON
(PER), LOCATION (LOC), and ORGANIZATION
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Models Non-Latin Scripts
AR HI HY JA KA KO RU ZH Avg.

mBert (Wu and Dredze, 2019) 42.30 64.79 52.12 29.82 64.68 57.38 64.09 43.85 52.38
A-align(Dou and Neubig, 2021) 46.00 73.90 49.83 20.30 70.40 57.70 64.80 45.40 53.54
CROP (Yang et al., 2022) 52.44 55.55 44.49 45.37 46.02 48.93 50.73 45.33 48.61
EasyProject(Chen et al., 2023) 34.40 73.00 48.61 41.30 66.40 48.20 66.30 42.00 52.54
CLaP(Parekh et al., 2024) 48.70 73.10 51.68 45.30 70.50 60.10 68.30 49.70 58.42

TSLM (Wu et al., 2020) 43.12 65.26 53.56 31.19 66.20 58.94 66.02 45.60 53.74
RIKD (Liang et al., 2021) 45.96 65.69 55.17 31.49 66.83 58.03 65.63 47.38 54.52
AdvPicker (Chen et al., 2021) 49.16 70.00 52.49 37.62 68.37 59.25 68.28 53.02 57.27
DualNER (Zeng et al., 2022) 59.00 66.24 55.92 31.07 67.28 57.48 65.06 47.84 56.24
MSD (Ma et al., 2022) 62.88 73.43 56.22 33.34 69.23 61.44 67.71 57.06 60.16
ProKD (Ge et al., 2023) 50.91 70.72 62.58 33.72 69.07 61.31 65.59 51.80 58.21
DenKD (Ge et al., 2024) 60.01 69.76 65.20 37.90 69.30 62.51 69.35 55.62 61.21

EAT w/o FT 66.53 76.26 65.62 45.43 71.63 66.03 71.45 60.12 65.38
EAT 67.29 75.46 68.02 52.26 73.68 65.23 63.25 61.27 65.81

Table 4: Performance comparison of existing zero-shot CL-NER studies and our approaches. Bold represents the
best result, and underlining represents the second best result.

(ORG). We select 8 non-Latin script languages as
our test sets (target language), representing both
widely and less widely spoken languages: Arabic
(AR), Hindi (HI), Armenian (HY), Japanese (JA),
Georgian (KA), Korean (KO), Russian (RU), and
Chinese (ZH). The English (EN) train and valid
sets (source language) are leveraged to build the
NER Extractor. Detailed information and statistics
about these languages are presented in Table 3.

2) CoNLL2003 includes two languages: English
and German. Each language has train, valid, and
test splits. Due to its higher quality of manual an-
notation compared to WikiANN, we use the entity
phrases only from the English train set to construct
the EACL Corpora.

4.2 Baselines and Implementation

Baselines. To compare our approach with previous
translation-based and teacher-student approaches,
we report the baselines as follows:

Translation based: 1) mBert (Wu and Dredze,
2019). 2) A-align (Dou and Neubig, 2021) 3)
CROP (Yang et al., 2022) 4) EasyProject (Chen
et al., 2023) 5) CLaP (Parekh et al., 2024).

T-S based: 3) TSLM (Wu et al., 2020). 4)
RIKD (Liang et al., 2021). 5) AdvPicker (Chen
et al., 2021). 6) DualNER (Zeng et al., 2022).
7) MSD (Ma et al., 2022). 8) ProKD (Ge et al.,
2023). 9) DenKD (Ge et al., 2024), the SOTA for
ZCL-NER.

Implementation Details. The EACL Corpora
are leveraged to fine-tune the model Qwen2.5-14B-
Instruct (Yang et al., 2024; Qwen Team, 2024).
We first quantize the model to 4-bits, and freeze

its parameters. The rank parameter and the scale
parameter of the Low-Rank Adapter are set to 64
and 16. The ratio of train and valid sets is 90: 10,
and the model is trained using the divided corpora
for 5 epochs with the learning rate set to 1.0e−4.

We leverage English train and valid sets from
the WikiANN dataset to train the Flan-T5-Base
model (Chung et al., 2024). After 50 epochs of
training with a learning rate of 1.0e−4, we will
obtain the final NER Extractor.

Since there are no reference translation results
(entities) for the WikiANN dataset, we utilize the
raw input x of target language and dual translated
text T t

b→a(T t
a→b(x)) to calculate the BLEU scores

and Entropy Loss.

4.3 Main Results

We use the token-level micro F1 score to evalu-
ate the NER results, following previous works (Ge
et al., 2023, 2024; Ma et al., 2022). The baseline
results of T-S based approaches are cited from their
papers. Based on the performance comparison in
Table 4, we primarily address the following ques-
tions:

How does EAT perform and why do we design
it? Translation-based methods perform poorly in
NSL. This indicates that the traditional translation
schema between English and NSL is not suitable
for ZCL-NER. Therefore, we need to develop a
completely new translation mechanism to account
for the significant differences between English and
NSL, which aligns with our core motivation. Fur-
thermore, although T-S framework (e.g., DenKD)
apparently outperforms previous translation meth-
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AR HI JA ZH
F1.↑ BLEU↑ F1.↑ BLEU↑ F1.↑ BLEU↑ F1.↑ BLEU↑

EAT-14B 66.53 12.10 76.26 10.66 45.43 1.86 60.12 9.26
EAT-7B 65.30 9.70 73.89 8.57 40.25 1.60 59.73 8.81
EAT-3B 54.93 6.63 67.87 6.03 34.25 1.46 55.62 7.18
EAT-1.5B 46.51 4.10 60.59 2.22 28.06 0.57 48.46 5.54

Table 5: Performance comparison of our EAT w/o FT
using homologous LLMs with different sizes of param-
eters.

ods (e.g., CLaP), the principles of the T-S series
remain largely similar. As a result, its effectiveness
in bridging the linguistic gap between English and
NSL is limited. Consequently, performance gains
over previous works from the past two years have
remained modest, averaging only at 1%-2%. How-
ever, our EAT achieves a substantial improvement
of 4% over SOTA. This suggests that our approach
genuinely addresses the fundamental disparities
between different languages.

In particular, the T-S based approaches perform
particularly poorly on JA and ZH, almost at 30%-
55%. However, we found that there are a signifi-
cant number of people worldwide speak these lan-
guages, as the ratio in Table 3. This motivates us
to enhance the performance of NER for these lan-
guages. Therefore, we develop an intuitive and
effective approach that significantly outperforms
SOTA in ZCL-NER.

Why doesn’t EAT w/ FT always perform bet-
ter than it w/o FT? Although our EAT w/ FT per-
forms well on average, it does not take effect in
certain languages. One possible reason is inductive
bias. The inductive bias is the structure imposed in
the FT datasets to instruct the LLMs how to think,
and it may be toxic:

*Clever structures posed by human re-
searchers typically become the bottle-
neck when scaled up.

The fine-tuning on EACL allows LLMs to learn
new knowledge, but the structures introduced by FT
may hinder LLMs’ inference ability (Kimi Team
et al., 2025; DeepSeek-AI et al., 2025). In other
words, FT may force LLMs to think structurally,
hence hindering the inference process where LLMs
can correct previously generated errors.

4.4 Analysis and Discussion
Impact of Translation Ability. We present Figure
3 and Table 5 to examine whether translation abil-

*Hyung Won Chung (OpenAI). 2024-05. Don’t teach.
Incentivize: Scale-first view of Large Language Models. MIT
EI seminar.

AR HI JA ZH

EAT-T5-NER 67.29 76.26 52.26 61.27
EAT-mBERT-NER 67.63 73.75 52.72 60.99

Table 6: Performance comparison of our approach using
different NER EXTRACTOR models. LLM for DT keeps
14B for fair comparison.
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Figure 3: The relevance of BLEU scores and entropy
loss compared with NER results (F1-scores). The BLEU
scores are not the accurate values, we resize them to
draw the plot.

ity directly affects NER performance by the trans-
lation quality evaluation metrics we introduced.

Figure 3 shows that on each language, the co-
ordinate point of the F1-Score is always between
BLEU and Loss Le. This suggests a positive cor-
relation between NER performance and transla-
tion ability. Table 5 demonstrates that the BLEU
score decreases as the size of homologous LLMs
decreases, which means that the model’s translation
ability weakens. This, in turn, negatively impacts
the performance of our EAT framework. These
findings underscore the critical importance of im-
proving translation ability to enhance ZCL-NER
performance. In addition, we also evaluate our
approach with heterologous LLMs (different back-
bones) as presented in Appendix D.

Impact of NER Extractor Ability. To better
compare our approach with T-S based approaches,
we leverage mBERT (Pires et al., 2019) with
sequence-labeling as the NER model. As shown in
Table 6, there is a little difference between mBERT
and T5 as both models are well-trained for the
English NER task. In general, our EAT with T5
performs slightly better than it with mBERT. This
suggests the robustness of our EAT.

Impact of Direct Using LLMs for ZCL-NER.
We leverage both LSL and NSL LLMs (GPT and
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LOC: 霧島山
(Mount Kirishima)
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(Kaimondake - Mountain)

On clear winter days, you can also see the 
Kirishima Mountains and Kaimon Peak in 
the distance

Mount Kirishima is a volcano in the northern part of Kagoshima 
Bay, Japan, and Kirishima is a city located in southern Kyushu, 
Japan. They are different locations.

LOC: 霧島
LOC: 開聞岳

LOC: 霧島山
LOC: 開聞岳

Figure 4: Comparison of the NER results for T-S based
approaches (T-S Res.) and our approach (EAT Res.).

AR HI JA ZH

EAT w/o FT 66.53 76.26 45.43 60.12
GPT-4 60.60 56.14 34.44 52.35
Qwen-14B-ICL 45.71 61.18 41.95 52.89
Qwen-14B-DA 29.82 72.27 41.34 49.05

Table 7: Performance comparison of our approach and
CoT-based LLMs for ZCL-NER. ICL denotes in-context
learning for Qwen with source labeled data. DA de-
notes data augmentation for NER model with trans-
lated source labeled data. Details are described in Ap-
pendix Eand F.

Qwen) directly on the ZCL-NER task to explore
whether LLMs could perform better without our
proposed Dual-Translation mechanism. As shown
in Table 7, our approach performs better than GPT-
4 (OpenAI et al., 2024), which is recognized as
one of the best LLMs. Even directly using source-
labeled data for Qwen in-context learning (ICL)
or translated into target language (DA) both fail to
improve its poor NER performance, which aligns
with insights from existing studies (Xie et al., 2023,
2024; Li et al., 2025a,b).

Generalization Ability. As shown in Ta-
ble 8, our approach also outperforms the SOTA
teacher-student model and GPT-4 significantly on
MultiCoNER-1 (Malmasi et al., 2022). This sug-
gests the excellent generalization ability of our pro-
posed EAT.

Case Study. From NER Results aspect, as
shown in Figure 4, our approach EAT correctly
comprehends the semantics of the given sentence
due to accurate translation and explanation. Hence,
EAT accurately identifies the entities and their cor-
responding tags. However, T-S based approaches
struggle to grasp the meaning of all phrases. As
a result, they recognize a wrong entity that mis-
matches the intended semantics.

From Entity Alignment aspect, as shown in
Figure 5, EAT model w/ FT seems to become in-

LLM without SFT
User

User

EAT w/o FT
「Inference」

「 Based on the provided information, the English phrase “Ming Dy-
nasty” translates to “明代” or simply “명나라” in Korean. However, in 
the given Korean sentence ... 」

......
To summarize:
- The character “명” refers to Ming Dynasty.
- The full phrase “Ming Dynasty” in Korean is "명나라".

English Phrase: Ming Dynasty
Korean Sentence: 명 ( 明 ) 태조 홍무제 ( 太祖 洪武帝 ) 25년

Check the result and make sure each word of the result appears in the 
given Korean sentence.

EAT w/o FT
「 Let's break down the task again to ensure accuracy:
We need to find the corresponding Korean phrase for “Ming Dy-
nasty” that appears exactly in the given Korean sentence. 」
In the sentence “명 ( 明 ) 태조 홍무제 ( 太祖 洪武帝 ) 25년”:
- “명” (明) directly translates to “Ming”.
Therefore, the Korean phrase for “Ming Dynasty” that ap-
pears in the given sentence is “명”.

EAT w/ FT
The given English phrase “Ming Dynasty” can be translated 
into Korean as “명 태조 홍무제 25년”, and the raw Korean 
phrase in the given sentence should be “명 태조 홍무제 25년”.

EAT w/ FT
Sure! I have checked the result “명 태조 홍무제 25년” and it 
really appears in the given sentence.

Figure 5: Comparison of the entity alignment process
for LLM with and without FT. Texts in pink background
denote the wrong alignments, w/o pink denotes right.

HI KO RU ZH

EAT w/o FT (Ours) 47.38 64.12 52.66 63.00
GPT-4 47.02 49.45 37.72 48.58
DenKD (Ge et al., 2024) 33.67 44.61 45.26 41.48

Table 8: Performance comparison on MultiCoNER-
1 (Malmasi et al., 2022).

flexible. It loses the ability of inference and thus
outputs the wrong entity alignment. However, EAT

model w/o FT can infer multiple alignment results
for entities from the source language to the target
language. This not only presents error analysis of
our EAT w/ FT, but also indicates that the inference
progress will enhance alignment results and makes
the NER results more accurate. This finding also
matches recent studies (DeepSeek-AI et al., 2025;
Kimi Team et al., 2025): reasoning progress can
improve LLMs’ performance.

5 Conclusion

We introduce a novel entity-aligned translation
(EAT) approach with LLMs for zero-shot cross-
lingual NER (ZCL-NER) approach to mitigate the
linguistic differences between non-Latin script lan-
guage (NSL) and English, so as to better leverage
the rich English NER resources for multilingual
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NER tasks. In addition, we fine-tune the LLM
using collected source-oriented cross-lingual cor-
pora to enhance entity alignments for better NER.
Furthermore, we employ BLEU and information
entropy to analyze the correlation between NER
performance and translation ability.
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Limitations

Although our approach has achieved impressive
results on zero-shot cross-lingual NER, there are
still limitations. The LLMs are pre-trained on un-
even corpora in different languages, making their
multilingual ability differs. However, multilingual
semantic understanding is crucial in our approach,
as it directly affect translation ability. If the LLM
fails to operate dual translation, our approach will
also fail. In addition, the amount of knowledge in
different languages correlates positively with the
size of LLMs, and the model size affects computa-
tional resources usage. For instance, Qwen2.5 sup-
ports 29 languages while GPT-4 supports over 80,
with significantly different resource requirements.
Therefore, we must strike a balance between per-
formance and universality, where the LLM is large
enough to undertake the multilingual dual transla-
tion while remaining as small as possible to maxi-
mize the inference speed and minimize the energy
usage and carbon emissions.
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Appendix

A Evidences of our Motivation

As the case in Figure 1, the Person entity “高明” in
target language (Chinese) is incorrectly translated
as the adjective “clever” by GPT-4o and Deepseek
tested in May 2025. This can be seen from Figure
6 as evidences. Such translation inconsistencies
make it impossible to proceed our task, naturally
motivating this work.

B Details of Method

B.1 Task Formulation
Given an n-token sentence x =< x1, · · · , xn >
and k-type entity set T =< t1, · · · , tk >, the ob-
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Target to Source Forward Translation

EAT
Of course! Please provide the Russian sentences you would like 
translated, and I'll do my best to accurately translate them while rec-
ognizing any named entities following notation: [ORGANIZATION], 
[PERSON], [LOCATION].

User
You are a senior Russian-English translation master, please help me 
translate some Russian sentences into English.
Note that part of the given Russian sentences may contain named 
entities which can be labeled as ORGANIZATION, LOCATION, 
PERSON. Try your best to recognize them and give the accurate 
translation of them.

User
The Russian sentence is: Каррингтон , Хиуорд
Analyze the given sentence and recognize the possible named entities 
which can be labeled as ORGANIZATION, LOCATION, PERSON.

EAT
The given sentence "Каррингтон, Хиуорд" contains two names:
1. Каррингтон (Carrington) - This appears to be a person's name.
2. Хиуорд (Heword/Howard) - This also appears to be a person's 
name, likely a misspelling or transliteration variation of "Howard."
Therefore, the named entities in this sentence can be labeled as:
- Каррингтон: [PERSON]
- Хиуорд: [PERSON]
If you need further assistance or a specific translation, feel free 
to let me know!

User
Take these entities in mind and translate the sentence more accurately.

EAT
Certainly! Given the context that both "Каррингтон" and "Хиуорд" 
are names of people, here is the accurate translation:
"Carrington, Howard"
This translation maintains the proper recognition of the named enti-
ties as [PERSON].

User
Give me the final result without other words.

EAT
Carrington, Howard

PREFIX: The task is to label named entities 
in the given sentence.
TAG: [ location, organization, person ]
SENTENCE: Aimi will go to Shanghai and 
attend the 「Shiny High-Five!!」.

(Aimi, person)
(Shanghai, location)

Text-To-Text
Generation

Text-to-Text Generation for NER

Source to Target Backward Translation

EAT
Sure, I can assist with that. Please provide the English phrase and the 
Korean sentence it appears in so I can identify the corresponding 
Russian phrase for you.
Please format the input as follows:
English phrase: [insert English phrase]
Korean sentence: [insert Korean sentence]
I'll then provide the raw Korean phrase that corresponds to the En-
glish translation result.

User
You are a senior Korean-English translation master, please help me 
translate some English sentences into Korean. Note that the correct 
result should be a phrase that appears in the sentence.
I will give you an English phrase and a Korean sentence, where the 
English phrase is the translation result in the Korean sentence. I want to 
find the raw Korean phrase of the English translation result.
Please think step by step.

User
English Phrase: Ming Dynasty
Korean Sentence: 명 ( 明 ) 태조 홍무제 ( 太祖 洪武帝 ) 25년

......

EAT
Based on the provided information, the English phrase “Ming Dy-
nasty” translates to “明代” or simply “명나라” in Korean. However, in 
the given Korean sentence ...

Figure 7: Full process of Dual Translation for ZCL-NER. Texts in green denote the interchangeable templates. The
portion which has been appeared in Figure 5 is omitted in Source to Target Backward Translation. *

ject of NER task is to extract all entities ei ∈ E
from x and assign one of the types in T to each
entity, where ei = (xstart:end, t) denotes the i-th
entity of x and t ∈ T refers to the type of the
entity. xstart:end refers to a continues word span
< xstart, · · · , xend > in x, where start and end
refers to the entity boundary indexes respectively.
Given dataset Ds of the source language (i.e., En-
glish in our setting) and dataset Dt of the target
language, the objective of the ZCL-NER task is
to acquire target-related knowledge from Ds to en-
hance model’s performance on Dt.

B.2 Detailed Process of Dual Translation for
ZCL-NER

To better describe our proposed EAT framework,
we give an example in Figure 7 of the key process:
Target to Source Forward Translation, Text-to-Text
Generation for NER, and Source to Target Back-
ward Translation.
Prompts Since our approach is not focusing on
prompt engineering, we just use the only prompts

shown in Figure 5 and 7.

B.3 Details of Entity-level Alignment
Fine-tuning

To amplify the DT model’s entity-level alignment
ability, we leverage EACL Corpora obtained above
to fine-tune the model. Specifically, we leverage
Quantized-LoRA(QLoRA) (Dettmers et al., 2024)
to accelerate model fine-tuning and reduce mem-
ory usage under constrained resources. Instead
of global quantization, we use block-wise k-bit
quantization (Dettmers et al., 2022) for its improve-
ments in terms of accuracy, efficiency, and flexi-
bility. More formally, for a given tensor T , it is
chunked into n contiguous blocks and each block
is flattened to [−1, 1]:

Qb(T ) = [T q
1, · · · ,T q

n] (11)

*Part of the images are provided by Gu: https://b23.tv/
RAKSxQg
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The i-th block is independently quantized as:

T q
i = Q(T i) = round(

2k−1 − 1

absmax(T i)
T i)

= round(ci · T i)

(12)

where ci ∈ c is the quantization constant for each
block. And the dequantization is:

T i = D(ci,T
q
i ) =

T q
i

ci
(13)

The model is quantified in 4-bit NormalFloat
(NF4) as described above, and the quantization
constants c are quantized as cd to further reduce
memory usage. For a single layer’s parameters of
the model with LoRA adapter is:

Y = XD2(c, cd,W q) +XL1L2 (14)

D2(c, cd,W q) = D(D(c, cd),W q) = W (15)

where W and W q denote the model’s raw and
quantized weights, and L1L2 denotes the trainable
parameters of the LoRA adapters.

Cross-entropy loss is optimized to train the DT
model:

y = LM(e, va1) (16)

LT (y, ŷ) = −
η∑

i=1

ŷi log(yi) (17)

where ŷi ∈ ŷ is ua in (ua, va1)e of EACL. yi ∈ y
denotes the predicted entity. LM denotes a large
language model and η denotes the max length of
model output.

B.4 Details of Entity-aligned Translation
Ability Evaluation

We use BLEU score (Papineni et al., 2002) and
Information Entropy (Shannon, 1948) to measure
the information loss in the translation process, so
as to demonstrate the relevance between the NER
results and the information loss.

Bilingual Evaluation Understudy (BLEU) is
widely used as an evaluation metric in machine
translation. BLEU is a fast and unified metric, and
it can evaluate all languages effectively. Since there
are no reference translations of source language a
for target language b, we obtain the candidate as:

Given a sentence sr of target language b, the
candidate sentence is:

sc = T t
a→b(T t

b→a(sr)) (18)

And the n-gram precision is:

Pn =

∑Kn
k min(hk(sc), hk(sr))∑Kn

k hk(sc)
(19)

where Kn denotes the n-gram divided sequence,
and hk(·) denotes the counts of k-th n-gram.

The Brevity Penalty is introduced to avoid the
scoring bias:

BP =

{
1 if lc > lr

e1−lr/lc if lc ≤ lr
(20)

where lc and lr are the lengths of sc and sr.
We adopt n = 4, and the BLEU score is finally

calculated by the geometric mean of the n-gram
precision:

BLEU = BP × exp(
1

4

4∑

n=1

log(Pn)) (21)

Information Entropy (Shannon Entropy) is also
commonly used to quantify the information of the
sentences. We leverage the Bi-Gram Model to cal-
culate the joint information entropy as:

H(s) =
n∑

i=1

H(si−1, si)

=
n∑

i=1

P (si−1, si)(− logP (si−1|si))
(22)

where P (si−1, si) denotes the joint probability of
si−1, si appearing in the n-length text s with si−1

exactly before si, and P (si−1|si) denotes the con-
ditional probability of si−1 appearing before si.

We demonstrate the information loss is relevant
to the entropy loss. The entropy loss Le is defined
using the above Shannon Entropy H(·) as:

Le =
H(T t

b→a(sr))

H(sr)
(23)

where sr denotes the sentence of target language b
and a denotes the source language.

C More Implementation Details

As shown in Figure 2, we first collect the EACL

Corpora as described in Section 3.2. The num-
ber of original English entities we used in the
CoNLL2003 train set is 8,082. After obtaining
all entity-text pairs, we remove those pairs where
the entity does not appear in the corresponding
text. Then the texts and entities are constructed in
ShareGPT format following previous work (Zheng
et al., 2024). Detailed statistics of our collected
corpora are listed in Table 2.

4554



Lang. Tokens RatioTrain Valid Test

DE 195,387 97,805 97,646 1.75%
ES 129,283 64,329 64,728 7.30%
FR 136,788 68,220 68,754 4.07%
NL 169,449 84,146 85,122 0.39%

EN 160,394 80,536 80,326 19.76%

Table 9: Detailed information of our selected languages
in the dataset. Ratio represents the approximate propor-
tion of speakers to the total world population, and the
statistics are referenced from Wikipedia.

C.1 Prompts

All prompts used in our proposed EAT are listed in
Figure 5 and 7. It is worth noting that these prompts
are only normal descriptions and instructions of
what we want LLMs to do, which do not require
special design or strict screening. Therefore, we
believe that there is no need to conduct experiments
based on the same meaning but different forms of
prompts.

C.2 Baselines

To compare our approach with previous translation-
based and T-S framework based approaches, we
report the baselines as follows:

Translation based:
1) mBert (Wu and Dredze, 2019) leverages a

pre-trained model to directly transfer from source
languages to target languages.

2) Awesome-align (Dou and Neubig, 2021) fine-
tunes PLMs with paralleled data on source and
target languages to extract label alignments.

3) CROP (Yang et al., 2022) leverages a se-
quence translation model to operate the ZCL-NER
task with a cross-lingual entity projection frame-
work.

4) EasyProject (Chen et al., 2023) improves
mark-then-translate method to better perform trans-
lation and label projection.

5) CLaP (Parekh et al., 2024) proposes contex-
tual translation to better translate the labels to the
target languages.

Teacher-Student Framework based:
3) TSLM (Wu et al., 2020) proposes vanilla

teacher-student learning to distill knowledge for
cross-lingual NER.

4) RIKD (Liang et al., 2021) proposes a teacher-
student learning approach with reinforcement-
learning-based knowledge distillation.

5) AdvPicker (Chen et al., 2021) introduces
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Figure 8: Speed of token generation on different lan-
guages.

adversarial learning in the training process of the
teacher model to denoise in knowledge distillation.

6) DualNER (Zeng et al., 2022) proposes a
unified framework that combines NER learning
paradigms and applies multi-task learning for
knowledge distillation.

7) MSD (Ma et al., 2022) designs a multichan-
nel distillation framework with a parallel domain
adaptation to efficiently transfer information.

8) ProKD (Ge et al., 2023) proposes prototyp-
ical alignment with prototypical self-training for
knowledge distillation to better acquire knowledge.

9) DenKD (Ge et al., 2024) proposes a denois-
ing approach using uncertainty- and discrepancy-
awareness to reduce the noise in the knowledge
distillation process, which is the SOTA model.

D Additional Results

D.1 Results on Latin Script Languages

We also conduct experiments on LSL for better
comparison, including German (DE), Spanish (ES),
French (FR), and Dutch (NL). As shown in Ta-
ble 10, our approach achieves similar performance
compared with previous teacher-student learning
models. This illustrates our approach works on not
only NSL but also LSL.

D.2 Results on CoNLL dataset

To better evaluate our approach, we conduct ex-
periments on the CoNLL dataset and use Llama3-
Instruct (Llama team et al., 2024) to compare. As
shown in Table 11, Qwen2.5 defeats Llama3 with
the same level parameters on all languages. This re-
sult matches the translation ability difference eval-
uated in Qwen Team (2024).
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Latin Scripts
DE ES FR NL

mBert (Wu and Dredze, 2019) 78.64 74.55 80.20 82.55
CROP (Yang et al., 2022) 60.87 62.05 55.79 54.77

TSLM (Wu et al., 2020) 79.96 77.18 80.38 83.80
RIKD (Liang et al., 2021) 80.20 77.79 81.20 84.65
AdvPicker (Chen et al., 2021) 79.72 77.81 79.91 84.27
DualNER (Zeng et al., 2022) 80.17 78.42 80.92 84.36
MSD (Ma et al., 2022) 80.62 75.75 81.16 84.23
ProKD (Ge et al., 2023) 79.74 79.19 81.45 84.73
DenKD (Ge et al., 2024) 82.50 84.68 82.34 85.69

EAT 83.91 83.43 84.50 81.79
EAT w/ SFT 81.69 84.35 85.22 81.69

Table 10: Performance comparison of our approaches on languages using Latin scripts. Bold represents the best
result, and underlining represents the second best result.

DE ES NL
Qwen Llama Qwen Llama Qwen Llama

EAT-14B 77.51 - 82.84 - 78.76 -
EAT-7B∗ 71.39 60.16 78.36 62.06 76.24 -
EAT-3B 56.05 48.20 56.90 49.33 58.46 -
EAT-1B∗ 40.31 19.16 40.60 15.71 40.39 -

Table 11: Performance comparison on CoNLL dataset
using different models as backbones. ’-’ represents no
result since Dutch is not officially supported by Llama3
and Llama3 does not have an official 14B version.

HI KO RU ZH

EAT w/o FT (Ours) 47.38 64.12 52.66 63.00
GPT-4 47.02 49.45 37.72 48.58
DenKD (Ge et al., 2024) 33.67 44.61 45.26 41.48

Table 12: Performance comparison of our approach with
previous SOTA approaches on MultiCoNER-1. Due to
the limit of computational resources and time, the test
set is downsized through random sampling.

D.3 Results on MultiCoNER-1

To better evaluate the generalization ability of our
approch, we conduct experiments on MultiCoNER-
1 (Malmasi et al., 2022). MultiCoNER-1 is a larger
dataset and all the annotations are made by human.
We mainly select four most representative NSLs
and two SOTA approaches for fair comparison, as
shown in Table 12. From this table, we can see
that our approach obviously outperforms the SOTA
teacher-student model and GPT-4. This reveals
the excellent generalization ability of our proposed
approach EAT.

D.4 Ablation Study on CoT Rounds

To measure round differences, we add ablation stud-
ies about the round depth. As shown in Table 13,
the results of round 1 were not good, while the

ZH AR

5 rounds 61.33 66.58
3 rounds 61.27 67.29
1 round 59.62 64.17

Table 13: Performance comparison of our approach with
different CoT rounds.

results of round 5 were too time-consuming and
unstable. Therefore, 3 rounds should be a realistic
choice..

D.5 Inference Acceleration of QLoRA

We evaluate the efficiency of QLoRA described
in Section 3.3. As shown in Figure 8, the token
generation speed increases after using QLoRA.

E Comparison with In Context Learning

We conduct experiments on in context learning
(ICL) for ZCL-NER. We use English NER exam-
ples and ask the model to do NER task following
the given examples.

F Comparison with Data Augmentation

We conduct experiments on data augmentation
(DA) for ZCL-NER. We translate the English (EN)
train set into the target languages, and use trans-
lated train set to train the model for NER task.

The EN train set is directly translated using
Qwen2.5-14B-Instruct without fine-tuning. Since
T5-base can not directly take non-Latin scripts
such as Devanagari and Hanzi as input, we use
mT5-base (Xue et al., 2021) as an alternative. The
model is trained for 50 epoch with a learning rate
of 1.0e−4.
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ZH AR

Full size 61.27 67.29
1k samples 61.20 67.10

Table 14: Performance comparison of our approach with
different EACL size. 1k samples are randomly selected
from the full corpus.

EAT DenKD

Avg. second per iterator 5.85 1.86
Avg. second per token 0.026 0.74

Table 15: Average time comsumption per iterator or
token for EAT and DenKD (Ge et al., 2024).

The NER results are evaluated as described in
Section 4. As shown in Table 7, the DA approach
performs worse than our approach. Furthermore,
it also performs worse than the best T-S based ap-
proach.

In addition to the poor performance, no matter
how many sentences are recognized, it is necessary
for the DA approach to translate the full EN train
set into one specific language for the NER model
training. In other words, even recognizing just
one sentence also requires complete translation and
training. Translation of the full EN train set and
training the NER model require large amounts of
computational resources, as well as time consump-
tion. However, the minimum train requirement
of our approach is just the English NER model.
Our approach is more flexible and efficient than
DA approach, and is more practical for real-world
applications.

G Fine-tuning Trade-offs

In our preliminary experiments, the loss reaches
a stable convergence state after about 5 epochs of
fine-tuning. Therefore, we set fine-tuning epochs
to 5. To this end, we add further ablation studies
on performance with different EACL corpus sizes.

As shown in Table 14, smaller size of EACL
corpus leads to the slight drop on performance.
This suggests that the data scale and fune-tuning
epochs we are currently using are reasonable.

H Inference Cost and Computational
Overhead Comparison

We add the average time consumption of a single
sentence or token inference for assessment of prac-
tical feasibility.

Table 15 indicates that our EAT consumes
slightly more time than traditional best-performed
method. But this is due to the time-consuming
inference process of using LLMs, and our EAT
performs much better than DenKD. Following
the description in the paper of DenKD, the algo-
rithm complexity of DenKD is O(n log n) (ignor-
ing MLPs). During training strategy, for each input
token, DenKD needs to calculate the Prediction
Discrepancy Loss with a double circulation. How-
ever, the algorithm complexity of EAT is O(n), as
there is no additional calculations for loss.
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