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Abstract

Multimodal Retrieval-Augmented Generation
(MM-RAG) has emerged as a promising
approach for enhancing the reliability and
factuality of large vision-language models
(LVLMs). While end-to-end optimization is
infeasible due to non-differentiable operations
across each component during the forward
process, current methods primarily focus on
component-level optimizations, necessitate ex-
tensive component-specific training datasets,
and suffer from a gap between local and global
optimization objectives. In this paper, we pro-
pose a new paradigm that ensures end-to-end
optimization, referred to as MM-RewardRAG.
It backpropagates global rewards instead of
losses from the system output to each compo-
nent, and then transforms these rewards into
specific local losses, enabling each component
to perform gradient descent and thus perform
end-to-end optimization. Specifically, we first
insert two lightweight multimodal components,
a query translator and an adaptive reranker, to
address the heterogeneity of multimodal knowl-
edge and the varying knowledge demands for
different questions, and then tune only these
inserted components, relying exclusively on an
external verifiable reward signal. Our method
achieves state-of-the-art performance on mul-
tiple knowledge-intensive multimodal bench-
marks with high training efficiency, using only
4k training data samples. Ablation study results
show the performance evolution of each com-
ponent during the training process, revealing
that each component learns how to generate
outputs that contribute to better final answers,
demonstrating the potential of this paradigm
as a promising direction for MM-RAG re-
search. The code is available at https://
github.com/toward-agi/MM-Reward-RAG.

1 Introduction

Large Vision Language Models (LVLMs) (Lu
et al.,, 2024; Bai et al., 2025) have extended
LLMs (Grattafiori et al., 2024; Jiang et al., 2024)
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Figure 1: Non-differentiable tensor operations during
the forward process render direct loss backpropagation
infeasible by disrupting the tensor graph and preventing
gradient flow. Our method instead sequentially propa-
gates global rewards backward, converts them into local
losses for each component, and then applies gradient
descent for optimization.

with vision encoders (Radford et al., 2021; Oquab
et al., 2024), enabling them to process visual in-
puts and achieve exceptional performance across
various vision-language tasks. However, due
to parameter capacity constraints and outdated
parametric knowledge after pretaining (Huang
et al., 2025), these models perform poorly on
knowledge-intensive tasks, generating hallucinated
responses lacking reliability and factuality. The
multimodal misalignment during the visual instruc-
tion tuning further distrupts the parametric knowl-
edge. The research community thus proposed Mul-
timodal Retrieval-Augmented Generation (MM-
RAG) (Khandelwal et al., 2020; Lewis et al., 2021;
Caffagni et al., 2024) as a solution to provide ad-
ditional contextual knowledge as a supplement to
parametric knowledge, therefore mitigating hallu-
cinations.

However, due to the discrete tensor operations
between components during the forward process of
the RAG system, direct optimization through loss
backpropagation and gradient descent is infeasible,
as shown in Figure 1. Several approaches (Yu et al.,
2025; Xia et al., 2024b) have sought to optimize
components separately, but they need extensive spe-
cific training datasets for each component, and suf-
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Figure 2: Illustration of MM-RewardRAG. (Left) Forward inference: Multimodal question processing utilizing a
query translator to route queries to text, image, and LLM knowledge bases, with adaptive reranking subsequently
applied for answer generation. (Right) Reward backpropagation optimization: upper part shows reward propagation
via alignment based on direct instance and relative relationship within group ranking respectively, and lower part
illustrates the process of query adaptation for integrating knowledge bases using a time-evolving reward signal.

fer from a misalignment between local and global
objectives, where components that achieve higher
individual performance may still produce outputs
that negatively impact the final answer.

In this paper, we introduce a novel paradigm for
MM-RAG that enables end-to-end optimization by
reward backpropagation, called MM-RewardRAG.
As shown in Figure 1, after obtaining the system
output from the answer generator, a verifiable re-
ward model calculates the global reward by compar-
ing the model prediction and the ground truth. The
resulting reward is then backpropagated to each
component and converted into component-specific
local losses to guide parameter optimization. To
preserve general retrieval and instruction-following
capabilities, our method tunes only the inserted
lightweight components. As illustrated in more
detail in Figure 2, to propagate the reward signal
from the answer generator to the adaptive reranker,
both traditional direct instance alignment and our
proposed novel Group Preference Alignment are
employed to model relative relationships within
rankings. To guide the query translator, a group-
weighted reward signal, derived from the ongoing
optimization process, is backpropagated from the
adaptive reranker to adapt the translator to hetero-
geneous knowledge bases.

We evaluate our approach on a diverse set
of knowledge-intensive multimodal benchmarks,
advancing beyond previous studies that focused
solely on benchmarks requiring only textual
knowledge, to incorporate those demanding both
textual and visual knowledge to perform deep
cross-modal reasoning. Our approach achieves
state-of-the-art performance on E-VQA (Mensink
et al., 2023), Infoseek (Chen et al., 2023), Multi-
modalQA (Talmor et al., 2021), WebQA (Chang
et al., 2022), OKVQA (Marino et al., 2019) and A-
OKVQA (Schwenk et al., 2022), with only 4k total
training questions without human-labeled ground
truth for each component, depending entirely on
an external verifiable reward signal. We provide
a detailed analysis to interpret the performance
evolution of each component during the training
process, demonstrating that our adaptive reranker
surpasses three proprietary models that use sub-
stantially more training data, despite sharing the
same model architecture. Our contributions can be
summarized as follows:

* We propose MM-RewardRAG, a novel approach
enabling end-to-end optimization for MM-RAG
systems.

* We introduce two multimodal components, a
query translator and an adaptive reranker, de-
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signed to retrieve relevant information from mul-
tiple multimodal knowledge bases and filter noisy
data, and conduct an interpretative analysis of
their learned evolution during the training pro-
cess.

» Experimental results validate the effectiveness of
our approach on six knowledge-intensive bench-
marks and underscore its considerable potential
as a promising new direction for MM-RAG re-
search.

2 Related Work

Large Vision Language Models. Recent
LVLMs (Bai et al., 2025; Wang et al., 2024)
have demonstrated remarkable capabilities by
extending LLMs with multimodal alignment
modules connected to vision encoders. However,
the parametric knowledge of these models is
capacity-constrained and outdated after pretraining,
and insufficient multimodal alignment further
compromises the knowledge already embedded
in the language model backbone, which leads
to hallucinations (Zhou et al., 2024) in model
responses when encountering knowledge-intensive
visual questions (Marino et al., 2019; Chen et al.,
2023; He et al., 2025).

Retrieval Augmented Generation. RAG en-
hances the factuality and reliability of LLM re-
sponses while reducing hallucinations by retriev-
ing relevant information from external knowledge
bases. Recent works have extended RAG to the
multimodal domain, retrieving text documents or
image-text pairs as in-context examples to pro-
vide additional commonsense and visual knowl-
edge. EchoSight (Yan and Xie, 2024) and Wiki-
LLaVA (Caffagni et al., 2024) retrieve supplemen-
tary textual knowledge to improve LVLM perfor-
mance on knowledge-intensive visual tasks. For
domain-specific tasks, RULE (Xia et al., 2024b)
and MMed-RAG (Xia et al., 2024a) enhance the
factuality of medical LVLMs by retrieving rel-
evant medical reports associated with radiology
images. The scope of retrieved content further
broadens to diverse visual inputs: V-RAG (Chu
et al., 2025) extends retrieval to include similar
images, MORE (Cui et al., 2024) leverages im-
ages for commonsense reasoning, and VisRAG (Yu
et al., 2025) incorporates screenshots as a distinct
document type. Regarding optimization strategies,
SURT (Sun et al., 2024), RULE (Xia et al., 2024b),
and RoRA-VLM (Qi et al., 2024) primarily aim

to train the answer generator to selectively utilize
retrieved information and avoid being misled by
irrelevant or noisy data, while V-RAG (Chu et al.,
2025) enables the answer generator to accept mul-
tiple interleaved multimodal inputs. Alternatively,
VisRAG (Yu et al., 2025) focuses on training the
retriever to better adapt to screenshots. Contrary
to current works that focus on local component-
level optimization, our proposed MM-RewardRAG
aims to optimize the entire RAG system end-to-end,
thereby reducing the need for extensive training
data and directly aligning local component objec-
tives (improved retrieval results and filtering accu-
racy) with the global system objective (generating
faithful output with reduced hallucinations).

3 Methodology

3.1 Overview

In this section, we first introduce the necessity of
heterogeneous knowledge bases for MM-RAG and
then detail the proposed native multimodal compo-
nents designed for the MM-RAG system, followed
by an explanation of the reward backpropagation
algorithm that enables end-to-end optimization of
the MM-RAG framework.

Notation. We denote the input question by Q;
the translated query from () and input Image [
for each specific knowledge base by g,,, where
m € {T, I, L} indicates the text, image, or LLM,
respectively; the i-th retrieved document by d;; and
the model’s output based on d; by O;. Each item
can be assigned a reward R} corresponding to dif-
ferent stages n: query translation (n = 1), adaptive
reranking (n = 2), and answer generation (n = 3).
The ranking of model outputs r,, for each stage is
derived from the corresdonding rewards set { R} },
which indidates the preference from the reward
model; specifically for the adaptive reranking stage
(n = 2), ry can be derived from either usefulness
levels {l;}, which are unique to this stage, or the
rewards { R?}.

3.2 Heterogeneous Knowledge Bases

Our framework leverages three distinct types of
knowledge bases to address the inherent hetero-
geneity of multimodal information, which stems
from the fact that some knowledge is modality-
specific: Text KB contains background content re-
lated to entities, including historical context, con-
ceptual definitions, and specific details like times
and names. Image KB provides information mainly
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Q: Do Parker Hall at Bates College and Schaeffer
Theatre have the same number of columns out
front?

A: Parker Hall at Bates College and Schaeffer
Theatre do not have the same number of columns

out front.

Visual Knowledges:

BDF Schaeffer Front
Schaeffer Theatre.

Parker Hall Bates Parker
Hall at Bates College.

Q: An injury that mainly occurs from falls in the
elderly may result in what kind of injury that
results in a neurological deficit?

A: Vertebral fractures.

Textual Knowledges:

1. [ The injury mainly occurs from falls, usually in
elderly adults, and motor accidents mainly due
to impacts of high force causing extension of the
neck and great axial load onto the C2 vertebra. In
a study based in Norway, 60% of reported
cervical fractures came from falls and 21% from
motor-related accidents.

2. | Vertebral fractures of the thoracic vertebrae,
lumbar vertebrae or sacrum are usually
associated with major trauma and can cause
spinal cord injury that results in a neurological
deficit.

Figure 3: Examples of Multimodal RAG. The left example shows a question that requires visual knowledge
from images to be answered. The right example shows a question that is answered by reasoning over the textual

knowledge.

embedded in the visual modality, such as land-
marks, the relative sizes of different buildings, and
visual attributes, as shown in Figure 3. LLM-as-a-
KB is leveraged to supplement parametric knowl-
edge interruption during the multimodal alignment
process, following the previous works (Gao et al.,
2022). We provide qualitative examples in Ap-
pendix H for interested readers.

3.3 Query Translator

The information needed to answer a multimodal
question exists across different modalities in a com-
plementary manner. However, using the question
directly as a query to retrieve leads to poor perfor-
mance and incomplete recall due to modality mis-
match and semantic decoupling. We thus design
a modality-aware query translator that generates
queries adapted to different knowledge bases, serv-
ing as a soft connector to couple the multimodal
question with the appropriate knowledge based.
The generation process can be modeled probabilis-
tically as:

P{ar.an a1, Q) = [ Pl Q.q<5)

je{T,I,L}
(D

where these queries are then used to retrieve from
each knowledge base, resulting in the candidate
sets {dTl, dro, ... ,di}, {d[l, dra, ... ,d[k}, and
{dr1,dr2,...,dpi} that represent texts, images,
and LLM responses, respectively.

3.4 Adaptive Reranker

This component is designed to address the variable
knowledge demands across diverse questions. Tra-
ditional fixed Top-K reranking methods fail to ac-
commodate the fluctuating knowledge needs: they
either introduce unnecessary noise when minimal
context would suffice, or truncate critical infor-
mation when more comprehensive knowledge is
required. Our adaptive reranker, instead, dynami-
cally calibrates the amount of knowledge to match
the specific requirements of each question. Specif-
ically, it evaluates each candidate and assigns dif-
ferent levels of usefulness, indicating how help-
ful the knowledge snippet is anticipated to be for
the answer generator. Subsequently, all candidates
deemed useless are discarded. The remaining can-
didates, along with their assigned usefulness levels,
are passed to the answer generator, explicitly in-
forming the generator about the potential utility
of each piece of information, highlighting which
might be noisy (e.g., neutral) and should be utilized
selectively.

3.5 Optimization Process

The supervised signal for training is solely pro-
vided by an external verifiable reward model, which
directly compares the model prediction and the ref-
erence answer. The optimization objective of ev-
ery component within the whole MM-RAG system
is to collaboratively maximize this global reward.
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The core idea involves propagating this global re-
ward backward to each component step-by-step.
For each neural network-based component, the re-
ward is then converted into a specific local loss,
enabling gradient-based optimization of its parame-
ters. To ensure the general retrieval and instruction
following capabilities remain unaffected, which is
necessary for robustness and transferability across
different domains, we freeze the parameters of the
retriever and answer generator while only tuning
the parameters of the inserted lightweight compo-
nents to enhance coupling and alignment within
the system, which is detailed in Section 3.5 FIX:
this is odd, as this sentence is *in* sec3.5. It is
noted that the query translator can be viewed as a
pre-retrieval domain shifter. Even if a distribution
gap exists between the target data and the corpus
used by the retriever, retrieval performance can still
be optimized. Furthermore, the adaptive reranker
serves a dual function. Firstly, it acts as a post-
retrieval filter to further improve retrieval results.
Secondly, it operates as a coupler to ensure that
the contextual knowledge supplied to the answer
generator is both preferred and complementary to
the parametric knowledge of the answer generator.

Generator to Reranker. For retrieved docu-
ments, the reranker assigns usefulness levels /; to
each item, producing a ranking r2. These items are
then individually paired with the input question )
and fed to the generator to produce corresponding
answers O;, which the reward model evaluates and
assigns each score Rg’ to create another ranking r3.
Ideally, the ranking ro, provided by the reranker
without assessing the final answer directly, should
be consistent with r3, but due to the noisy label pro-
duced by the reranker and the misaligned knowl-
edge preference, there is a discrepancy between
these two rankings. We show the detailed analysis
results in Appendix A. To address this problem,
we propagate the final global reward R} backward
to the reranker to obtain R?, which is then trans-
formed into a local loss for reranker optimization.
This procedure consists of two sequential stages:
The first stage distills preference from the gener-
ator to the reranker directly, transferring awareness
of knowledge usefulness for answering questions
and aligning the two components. For an input
question (), the generator answers the question
both with and without each candidate document d;
separately, then compares the results to determine
whether the candidate is helpful. The outcome can

be constructed into a restricted-format CoT reason-
ing sequence, which is then directly used to train
the reranker:

Laisin = — »_log Par(CoT, 1;|(Q, 1), d;) (2)

2

The second stage, which we propose as Group
Preference Tuning, involves a comparative align-
ment process. The reranker first samples two
groups of usefulness levels {I¢}, {I?} from n re-
trieved candidates {d;}, generating two distinct
rankings ¢ and 3. These rankings are then com-
pared with the reference r3 to determine which
group demonstrates closer alignment with the de-
sired outcome. Items within the better-aligned
group are considered preferred. The reranker,
parameterized by 0 4, assigns usefulness levels
[(d;04R) to each document d. We define the
aggregate score for a group of documents G as
U(G;04R) = D 4cq 1(d;04R). The Group Pref-
erence Tuning then aims to maximize the score
difference between a preferred winner group (Gyy)
and a dispreferred loser group (G,), where prefer-
ence (Gw >r, G 1) is determined by their relative
alignment with the reference ranking r3. This ob-
jective is formalized by minimizing the following
loss:

EGrOUp = _E(GW,GL) st. Gw=ry G,
logo (U(Gw;0ar) — U(GL; 0ar))]
3)
This loss guides the reranker to adjust its usefulness
levels I(d; 0 4R) to favor groups that better align
with the global objective reflected in 3. Unlike
traditional methods that focus solely on the qual-
ity of individual item outputs, our proposed Group
Preference Tuning emphasizes the relative relation-
ships among multiple items within a group. The
supervised signal extends beyond the prediction ac-
curacy of single items to encompass the correctness
of relative relationships among predictions across
multiple items, making it inherently suitable for
addressing the challenges posed by questions that
require multi-hop reasoning across multiple ground
truth documents.

Reranker to Translator. Since the adaptive
reranker has been aligned with the global rewards
of the system output, we continue to propagate sig-
nals derived from the reranker’s evaluations back-
ward to optimize the query translator. We denote
the reinforcement signal for the j-th query group
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\ \ \ E-VQA \ InfoSeek
Model | Retriever | Feature | Single-Hop ~ All | Unseen-Q Unseen-E  All
Zero-shot MLLMs
BLIP-2 - - 12.6 124 | 12.7 12.3 12.5
InstructBLIP - - 11.9 12.0 | 89 7.4 8.1
LLaVA-v1.5 - - 16.3 169 | 9.6 9.4 9.5
Qwen2-VL-Instruct - - 16.4 164 | 17.9 17.8 17.9
Qwen2-VL-Instruct(sft) - - 25.0 23.8 | 22.7 20.6 21.6
Retrieval-Augmented Models
Wiki-LLaVA CLIP ViT-L/14+Contriever | Textual 17.7 20.3 | 30.1 27.8 28.9
EchoSight EVA-CLIP-8B Visual 26.4 249 | 18.0 19.8 18.8
ReflectiVA EVA-CLIP-8B Visual 35.5 35.5 | 28.6 28.1 28.3
MM-RewardRAG (Ours) | Query-Translator Native multimodality 41.3 43.2 | 39.3 40.2 39.8

Table 1: Comparative performance on Encyclopedia-VQA and Infoseek benchmarks. MM-RewardRAG demon-
strates the ability to leverage diverse multimodal retrievers without being constrained to dataset-specific retrieval

strategies.

as le-. For each multimodal question (Q, ) or
textual question (), the query translator (param-
eterized by 0gr) generates n distinct groups of
modality-specific queries Gq = {Gg; | Gg; =
{QT,j7QI,j7q[z,j}};‘l:_01' Each query group G, is
then used to retrieve a corresponding ranked list
of m candidate documents, denoted as D; =
(dj1,dja,...,djm). An optimal query transla-
tor should formulate queries that maximize the
retrieval of pertinent knowledge, with high-utility
documents concentrated at the top of each retrieved
list Dj. This minimizes the computational load on
the adaptive reranker by providing a more focused
set of initial candidates. To this end, we define
a position-sensitive reward function R for each
list Dj retrieved by its corresponding query group
GqJ‘Z

B i J ks HAR) “4)
D, bt — (logy (k+1))8
where [(d; ;6% ) is the usefulness score assigned
to document d; ;. (at rank % in list Dj) by the pre-
viously aligned adaptive reranker, and 8; > O is a
time-dependent position sensitivity parameter. This
computed reward R (Dj, 3;) serves as the reinforce-
ment signal R} for optimizing the query transla-
tor’s parameters 7 using appropriate policy opti-
mization algorithms (e.g., PPO, GRPO for online
settings, or adapting for offline settings like DPO).
During the initial training phase of the query trans-
lator, we employ a curriculum learning strategy
for 5;. We start with 3; close to zero by setting a
large retrieval size m and a small initial 3y, which
encourages the query translator to retrieve any rel-
evant items, regardless of their position, thus ini-

tially optimizing for recall. As training progresses,
the objective shifts to prioritize the placement of
high-scoring documents at higher ranks. Thus, S;
evolves according to:

t

where A > 0 controls the rate of convergence to
Bmax. This evolving 3; adapts the reward landscape,
guiding the query translator to generate queries that
not only retrieve high-quality content but also rank
it effectively, thereby enhancing the synergy with
the subsequent component.

B = B (1= 5)

4 Experiments

Detailed experimental settings are provided in Ap-
pendix B.

4.1 Main Results

The experimental results on Infoseek and E-VQA
benchmarks are presented in Table 1. MM-
RewardRAG demonstrates superior performance
over all existing methods, including those leverag-
ing proprietary search engines and models as well
as open-source LLMs and LVLMs, achieving new
state-of-the-art results. MM-RewardRAG differs
from others in three key aspects: 1) We only use
4k data samples for training, which reduces compu-
tational resource requirements. 2) Only the query
translator and adaptive reranker are fine-tuned to
couple each component, thereby preserving the
general visual instruction-following capability of
the answer generator, which contrasts with previ-
ous methods that sacrifice general capabilities to
obtain domain-specific performance; 3) The super-
vised signal is only provided by a verifiable reward
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Metrics Text Image All
EM Fl EM Fl EM Fl
Hard Negatives
Question-Only 154 184 11.0 156 138 -
AutoRouting 49.5 569 37.8 378 46.6 -
ImplicitDecomp 51.6 584 446 512 488 555
MuRAG 60.8 67.5 582 582 602 -
SKURG 66.1 69.7 525 572 598 64.0
Solar 69.7 748 555 654 69.8 66.1
PERQA 69.7 741 547 603 628 67.8
MM-RewardRAG (Ours) 77.2 781 639 678 721 69.3
Full Wiki

356 402 325 325 347 -
49.7 56.1 565 565 514 -
576 598 632 647 595 60.3

AutoRouting
MuRAG
MM-RewardRAG (Ours)

Table 2: MultimodalQA evaluation results show that
our approach surpasses other methods, including those
specifically designed for different settings.

Method QA-FL QA-Acc QA
Baseline 47.6 493 274
VLP + VinVL 47.6 496 275
VLP + x101fpn 46.9 443 238
OFA-Cap + GPT 52.8 554 335
PROMPTCAP + GPT 53.0 572 345
ETG 60.1 772 4.1
MM-RwardRAG (Ours)  64.1 779 582

Table 3: Evaluation results on WebQA.

from the system output, and then distributed to
each component through reward backpropagation,
which ensures that the local optimization objec-
tives of each component are aligned with the global
goals for improved accuracy and factuality of the
system output.

Results on MultimodalQA and WebQA bench-
marks are presented in Table 2 and Table 3, re-
spectively. Notably, previous MM-RAG methods
mainly focus on scenarios requiring only textual
knowledge, while neglecting those demanding joint
multimodal reasoning across text and vision infor-
mation. Additionally, current approaches address-
ing these two benchmarks typically aim to train
task-specific models rather than develop general so-
lutions, due to the challenges in effectively retriev-
ing relevant cross-modality information and lever-
aging combined multimodal content. Despite these
limitations, MM-RewardRAG still outperforms all
specialized fine-tuned models. Our proposed native
multimodal query translator effectively leverages
modality-specific retrieval methods by translating
the original question into separate queries for differ-
ent knowledge bases, while the adaptive reranker
further reduces the noise of external knowledge for

Models OK-VQA(%) A-OKVQA(%)
ViLBERT 30.6 25.8
LXMERT 30.7 26.1
ClipCap 30.9 27.2
KRISP 33.7 29.4
GPV-2 48.6 393
REVEAL-Base 50.4 41.7
REVEAL-Large 51.5 42.8
REVEAL 522 44.5
MM-RwardRAG (Ours) 66.1 63.8

Table 4: Performance comparison on OK-VQA and
A-OKVQA benchmarks. All scores are reported in
Accuracy (%).

| E-VQA | InfoSeek

Model | Single-Hop | Un-Q Un-E  All

KB Article
Vanilla (Vicuna-7B) 34.1 5.3 4.3 4.7
Vanilla (LLaMA-3-8B) 72.9 100 79 88
Vanilla (LLaMA-3.1-8B) 73.6 152 139 145
LLaVA-v1.5 (Vicuna-7B) 42.9 142 134 138
LLaVA-v1.5 (LLaMA-3.1-8B) 54.1 20.1 177 18.8
Ours 83.2 59.8 59.7 598

KB Passages
Wiki-LLaVA 38.5 527 503 515
Wiki-LLaVA ¢ 46.8 512 506 509
ReflectiVA 75.2 57.8 574 576
Ours 89.2 62.6 623 624

Table 5: Oracle evaluation under different out-of-
domain settings, including unseen questions and unseen
entities, using VQA accuracy as the metric. Results
demonstrate that our approach achieves superior upper
bounds across different LVLM backbones and corpus
granularities when given identical ideal retrieval results.

the answer generator, more effectively activating
its cross-modality reasoning capability to generate
superior answers.

Table 4 presents the results on OK-VQA and
A-OKVQA benchmarks. It is observed that cur-
rent LVLMs already possess sufficient paramet-
ric knowledge to answer these relatively outdated
questions accurately, and the naive introduction
of external knowledge potentially degrades model
performance due to misleading content. However,
our adaptive reranker effectively filters out noisy
information, selectively retaining only knowledge
beneficial to the answer generator, which develops
an innovative fusion of contextual and paramet-
ric knowledge, thereby further enhancing overall
performance.

We also evaluate our framework under oracle
settings, with results presented in Table 5, demon-
strating consistent superior performance with a sub-
stantial margin of improvement. This suggests that
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our approach can continuously benefit from ad-
vances in multimodal retrieval techniques. Our
framework exhibits robust model transferability,
which is detailed in Appendix C, enabling straight-
forward integration of emerging models.

The transfer results on M2KR benchmarks using
PreFLMR are presented in Table 6. Our method
consistently outperforms all previous approaches,
further demonstrating its robustness and general-
ization effectiveness.

Model | OKVQA Infoseek E-VQA
Zero-shot MLLMs

RA-VQAv2 55.44 21.78 19.80
Qwen2-VL-Instruct 60.45 21.75 19.01
Retrieval-Augmented Models

RA-VQAv2 w/ FLMR 60.75 - -
RA-VQAvV2 w/ PreFLMR 61.88 30.65 54.45
Qwen2-VL-Instruct w/ PreFLMR 46.99 24.68 51.81
Qwen2.5-VL-Instruct w/PreFLMR 65.07 30.74 53.89
Ours w/ PreFLMR 66.02 44.44 63.28

Table 6: Evaluation results on M2KR filtered bench-
marks using PreFLMR as a retriever.

4.2 Query Translator Analysis

In this section, we provide the answer to the ques-
tion: What has changed during the optimization
process of the query translator? As shown in
Figure 5, the overall recall across heterogeneous
knowledge bases increases as training progresses,
with the position of pseudo documents gradually
advancing toward the front of retrieval results until
reaching a threshold. Notably, the optimized query
translator enables top-50 retrieval results to achieve
performance comparable to the original top-100,
which allows us to set a lower value of n for the
retriever, passing significantly fewer candidates to
the reranker, thereby reducing computational re-
sources and latency while maintaining comparable
performance.

4.3 Reranker Comparison

We compared our adaptive reranker with other mul-
timodal rerankers based on the Qwen-VL architec-
ture, which includes (1) Jina-reranker-me', in-
cluding an additional post-trained MLP head to gen-
erate ranking scores measuring query-document rel-
evance; (2) Mono-reranker?, which compares the
logits of two tokens (True and False) to obtain a rel-
evancy score that can be used to rerank candidates;

'https://huggingface.co/jinaai/jina-reranker-m0
Zhttps://huggingface.co/lightonai/MonoQwen2-VL-v0.1

(3) Dse-reranker?, which generates embeddings
for the query and document separately and then cal-
culates the relevance score. Unlike our approach
that dynamically selects candidates based on use-
fulness, these models all use fixed top-k selection
after ranking. Additionally, our model features
versatile any-to-any modality support, contrasting
with existing models constrained to fixed text-to-
image or image-to-text comparisons. As shown in
Table 7, our adaptive reranker outperforms other
competitors on four benchmarks across all metrics,
with much less computing resources and datasets
for training. For inference, our model achieves a
throughput of 21.5k tokens per second on a single
GPU, which significantly outperforms others that
incorporate non-autoregressive structures, resulting
in slower processing speeds despite higher GPU
power utilization. Specifically, competing mod-
els consume substantially more power (e.g. Jina:
453 W, Des: 315 W, Mono: 426 W) compared to our
model’s 271 W.

4.4 Scaling Law of the Retrieved Documents

Figure 4 shows the scaling behavior of MM-
RewardRAG on three benchmarks within M2KR
as the number of retrieved documents increases,
using the PreFLMR retriever. Despite minor fluc-
tuations across different benchmarks, the trends
remain consistent. Performance increases to reach
an upper bound before subsequently declining,
which demonstrates that indiscriminately retrieving
more documents is not optimal due to the uncer-
tainty in determining the ideal quantity for each
dataset. However, when incorporating our adap-
tive reranker, which dynamically determines the
optimal number of external knowledge sources
for the answer generator, MM-RAG consistently
achieves superior performance. Even when the re-
trieval count reaches high values, the knowledge
sources passed to the answer generator remain ef-
fectively filtered, eliminating potentially mislead-
ing content. We provide additional ablation studies
in Appendix C.

5 Conclusion

In this paper, we introduce MM-RewardRAG, a
novel framework that applies reward backpropa-
gation to enable end-to-end optimization of MM-
RAG systems. This design eliminates the need
for data labeling of each individual component.

3https://huggingface.co/MrLight/dse-qwen2-2b-mrl-v1
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Figure 4: Scaling Law of retrieved documents on three datasets across models with different parameters.

Model Webqa MMOQA Infoseek E-VQA
NDCG MAP MRR P@l NDCG MAP MRR P@l NDCG MAP MRR P@l NDCG MAP MRR P@l
Mono  73.51 7099 74.69 6147 8281 7948 8023 71.73 - - - - - - - -
Des 68.74 6545 69.71 5528 8033 7742 78.60 6847 4736 2742 2742 1480 60.29 4861 47.99 41.90
Jina 79.02 78.07 81.16 7045 8721 85.04 86.14 80.16 77.20 74.76 74.76 63.10 65.02 59.39 58.95 41.90
Ours  90.87 91.22 91.79 8562 92.00 92.11 92.50 86.68 100.0 100.0 100.0 100.0 97.34 97.03 100.0 100.0

Table 7: Performance comparison of various reranker models across different benchmark hard-negative datasets.
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Figure 5: The impact of the query translator on re-
trieval performance. Results are reported on documents
extracted from the Infoseek and E-VQA benchmarks.
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Experimental results demonstrate significant im-
provements across multiple knowledge-intensive
multimodal benchmarks, with only 4k training sam-
ples. We conduct detailed analysis experiments of
the query translator and adaptive reranker behav-
iors during the training process, providing clear
evidence for the effectiveness of our method.

Limitations

A primary factor limiting the upper-bound perfor-
mance of MM-RewardRAG is the inherent capa-
bility of the employed retriever. While our method
effectively trains lightweight components to couple
with the retriever at both pre-retrieval (e.g., query
translation) and post-retrieval (e.g., adaptive rerank-
ing) stages, the overall system’s ability to surface

relevant knowledge is ultimately constrained by the
retriever’s performance. Consequently, future work
incorporating more powerful pretrained retrievers
will be essential to further boost the performance
of our MM-RewardRAG system.

Ethics Statements

MM-RewardRAG directly tackles a pressing issue:
hallucinations in LVLMs’ output. Our method re-
duces these false outputs, making LVLM responses
more factual and reliable. From a practical perspec-
tive, MM-RewardRAG’s training efficiency offers
broader benefits. Since it only needs a verifiable re-
ward signal during training, the system works well
even with limited computational resources. This
accessibility means more researchers can deploy
trustworthy LVLMs without requiring extensive
computing infrastructure.
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A Retrieval Performance

We provide a detailed analysis of retrieval perfor-
mance in this section, explaining why the query
translator and adaptive reranker are necessary for
MM-RAG, which operate in the pre-retrieval and
post-retrieval stages, respectively. As shown in
Tables 15, 16, 17, and 18, the optimal model and
retrieval strategies (e.g., img2img or text2img) vary
across different benchmarks, likely due to distri-
bution shifts and differences in data architecture.
Additionally, directly using a single input question
or image as a query leads to poor performance, as
this approach ignores the complementary nature of
multimodal questions. Despite advancements in
unsupervised learning methods for retrieval, some
neural network-based approaches still fall behind
the sparse BM25 algorithm. Therefore, it is nec-
essary to fuse multimodal information before the
retrieval phase and utilize heterogeneous knowl-
edge bases equipped with different retrieval models
to obtain targeted retrieval results. After retrieval,
documents that can lead to the correct final answer
are not limited to just the annotated ground truth,
as human annotations are often imperfect and in-
sufficient. In practice, useful documents frequently
extend beyond labeled ground truth, as shown in
Table 13. The suboptimal retriever performance
makes it inadvisable to provide all retrieved con-
tent directly to the answer generator. Therefore,
the adaptive reranker plays a crucial post-retrieval
role in refining retrieved documents. Even in the
worst-case scenario where all retrieved documents
are filtered out, the system would simply revert
to a vanilla multimodal QA task, which is still su-
perior to a MM-RAG system contaminated with
misleading noisy content.

B Experimental Settings

B.1 Datasets

Evaluation Benchmarks. Previous MM-RAG
methods have primarily focused on benchmarks
requiring only textual knowledge, which over-
looks realistic scenarios where essential knowl-
edge exists across both textual and visual modali-
ties, necessitating cross-modality joint understand-
ing and reasoning. To bridge this gap, we eval-
uate our approach using six datasets comprehen-
sively covering scenarios that better reflect real-
world multimodal information needs. (1) In-
foseek (Chen et al., 2023), which focuses on
information-seeking visual questions that cannot be

answered directly through common sense knowl-
edge; (2) Encyclopedia-VQA (Mensink et al.,
2023), containing visual questions about detailed
properties of fine-grained categories and instances
requiring Wikipedia knowledge (hereafter referred
to as E-VQA); (3) MultimodalQA (Talmor et al.,
2021) and (4) WebQA (Chang et al., 2022), which
include questions necessitating reasoning across vi-
sual and textual knowledge; (5) OK-VQA (Marino
et al., 2019) along with its augmented successor (6)
A-OKVQA (Schwenk et al., 2022), both contain-
ing visual questions requiring outside knowledge
to answer.

Metrics. We evaluate our system using the
benchmark-specific metrics: Accuracy, F1 score,
Fluency, Exact Match, and BARTScore for the
answer generator; recall@{1, 3, 5, 10, 20, 50, 100}
for the retriever to comprehensively assess result
distributions; and standard ranking metrics NDCG,
MAP, MRR, and P@1 for the reranker perfor-
mance.

Knowledge Base. We utilize dataset-provided
multimodal knowledge sources for WebQA and
MultimodalQA, including both distractor and full-
wiki settings. For E-VQA, we employ WIT (Srini-
vasan et al., 2021), which contains 2M Wikipedia
pages consisting of free-form text and images.
For Infoseek, we use OVEN (Hu et al., 2023),
which includes 6M Wikipedia information entries.
We also use the filtered knowledge corpus pro-
vided by Echosight and Reflectiva for fair com-
parison. Since OK-VQA and A-OKVQA do not
provide dedicated knowledge sources, we employ
the same knowledge base as used for Infoseek, and
use GS112k (Luo et al., 2021) to study the trans-
fer capabilities of optimized MM-RAG systems
across different knowledge bases, following previ-
ous works.

B.2 Implementation Details

Retrieval. CLIP-ViT-Large, EVA-CLIP-8B, and
Jina-CLIP-v2 are employed for cross-modality re-
trieval. While the first two models are constrained
by a context window of 77 tokens, Jina-CLIP-v2
extends this capacity to 1024 tokens and incorpo-
rates additional optimizations for text-to-text re-
trieval. For image-to-image retrieval, we utilize the
vision encoders from these models to extract image
features. BGE dense embedding model and BM25
sparse algorithms are used for text-to-text retrieval.
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Index. All embeddings are precomputed in
advance to enhance computational efficiency.
FAISS-GPU is leveraged for index construction,
specifically implementing IndexFlatIP for ex-
haustive vector search operations.

Backbone. The backbone of the query trans-
lator and adaptive reranker is initialized with
Qwen-2-VL 3B, allowing for fair comparisons
against other models with comparable parameter
counts. Qwen-2-VL 7B/3B is utilized for the answer
generator without any finetuning.

C Ablation Study

Backbone. We find that using alternative LVLMs
as backbones for answer generators, including
those not involved in the training process, also
yields improvements across these benchmarks,
highlighting the practical value of our approach
in being compatible with existing models for in-
ference without requiring additional training for
adaptation.

Cross-KB Transferability. Knowledge bases in
real-world scenarios inevitably require temporal
updates to maintain currency and timeliness, which
requires MM-RAG systems to seamlessly incor-
porate newly available information. Our learned
query translator and adaptive reranker can effec-
tively operate with different embedded corpora,
simulating the extreme scenario of complete knowl-
edge replacement during practical updates. This
confirms that our framework ensures knowledge
bases can be continuously updated to maintain
current information, which is critical for long-
term deployment in environments where knowl-
edge rapidly evolves.

Computational Efficiency Our approach re-
quires significantly fewer training data and compu-
tational resources due to its efficient design. Dur-
ing the training or adapting to new domains, the
embedding models do not require retraining, thus
eliminating the need for costly frequent reindexing,
a critical and resource-intensive phase in traditional
RAG systems. Instead, we insert the tunable query
translator and adaptive reranker at the pre-retrieval
and post-retrieval stages, respectively, allowing for
targeted optimization without disturbing the core
indexing and retrieval infrastructure.

D Evaluation Details.

D.1 Inference Parameters.

The query translator, adaptive reranker, and answer
generator are all served in an OpenAl-compatible
format, using vllm. To make sure the results can be
reproduced, the temperature is set to 0, and top-p
is set to 1, max length is 2048. To accelerate the
evaluation process, eight instances are served at the
same time across multiple servers. Power consump-
tion is calculated through nvml. The models that
support flash-attn are all enabled to accelerate
inference speed.

D.2 Hard Negatives Construction.

Hard negatives for the MMQA and WebQA
datasets are sourced directly from their respective
original datasets. For Infoseek and EVQA, hard
negatives are derived from the top-10 results of re-
trieval results that separately use questions, images,
and ground truth documents as query inputs. To
simulate demanding real-world conditions where
strong retrievers are employed, and thus generate
negatives that are genuinely difficult to discrim-
inate, BGE, Eva-CLIP, and CLIP-Large are lever-
aged as our retriever models to construct these hard-
negative samples.

E Training Details

E.1 Component Initialization.

We leverage the visual instruction following capa-
bilities to initialize the query translator and adap-
tive reranker components by designing prompt tem-
plates that guide the model to produce responses
in the expected format. For the query translator,
we prompt the model to generate queries in a strict
JSON format, which can be easily parsed and tai-
lored to different knowledge bases. For the Adap-
tive Reranker, we instruct the model to perform
Chain-of-Thought (CoT) (Wei et al., 2023) reason-
ing first to improve interpretation, then output a
usefulness level from predefined options. Note that
the initialization phase only sets up the output style
of these components, while their critical policies
still need to be activated and aligned through the
following algorithms.

E.2 Hyperparameters

We use LoRA to train these models to preserve
their original general visual instruction capabilities.
The hyperparameters for training these models are
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Parameter Value
SFT Stage Parameters
Learning Rate 2x107°

Batch Size (per device) 16

Number of Epochs 3
Optimizer AdamW
Weight Decay 0.01
Warmup Steps 500

LR Scheduler Type Cosine
Max Sequence Length 2048
Max Gradient Norm 1.0
Dataset Size 4k
LoRA Rank (r) 8

LoRA Alpha (a) 16
LoRA Trainable Modules q_proj, v_proj

DPO Stage Parameters
Learning Rate 1x 1076
Batch Size (per device) 8

Number of Epochs 1
Optimizer AdamW
Weight Decay 0.01
Warmup Steps 100

LR Scheduler Type Constant
Max Gradient Norm 1.0

Max Sequence Length 2048
Dataset Size 4k

DPO g 0.1
Label Smoothing 0.0
Loss Type Sigmoid

Table 8: Hyperparameters for SFT and RL Training
Stages of MM-RewardRAG Components.

presented in Table 8. All models are trained on a
server with 8 H200 GPUs.

E.3 Training Datasets

To train our inserted components, we construct a
dataset by sampling 1,000 question-answer pairs
(along with any associated images) from each of
the E-VQA, Infoseek, MultimodalQA, and WebQA
benchmarks, yielding a total of 4,000 examples.
The supervision for optimizing these components
is provided exclusively by an external verifiable
reward model. This reward model generates a
scalar reward for each system output by compar-
ing it against the corresponding ground-truth an-
swer, reflecting aspects such as accuracy and factu-
ality. This reward then serves as the basis for the
learning signals propagated throughout our MM-

RewardRAG framework.

F SFT Limitations

This section provides the answer to the question:
Why can SFT not be solely used to optimize the
query translator and adaptive reranker?, to dis-
criminate the contributions of our proposed end-to-
end optimization paradigm and the two lightweight
components designed.

The query translator aims to generate queries to
retrieve relevant knowledge from diverse knowl-
edge bases. A primary challenge for SFT here
is the absence of available ground truth for what
constitutes an optimal translated query. While hu-
man labeling could theoretically produce training
datasets (i.e., pairs of original queries and ideal
translated queries), determining the “best” trans-
lation is non-trivial, even for humans. The effec-
tiveness of a translated query can often only be
assessed after executing a search with the retriever
and evaluating the results again and again. This
inherent characteristic suggests that the optimiza-
tion of the query translator is more aptly modeled
as a reinforcement learning problem. In such a
framework, the model iteratively refines its query
generation strategy (action) by interacting with the
retriever and corpus (environment) and analyzing
the retrieval performance (reward).

For the adaptive reranker, SFT faces limitations
even though a ground truth document is typically
provided for each question. As demonstrated in Ta-
ble 13, documents capable of leading to the correct
answer are often not restricted to this single ground
truth instance. Consequently, an SFT approach that
narrowly defines only the provided ground truth
as positive and other retrieved candidates as nega-
tive can introduce significant training noise. This
occurs when other genuinely useful documents,
which could also lead to the correct answer, are in-
correctly labeled and penalized as negatives during
the SFT process.

G Detailed Discussion with Related
Works

Before the era of large pre-trained models, early
MM-RAG systems aimed to jointly train a genera-
tion module for final answers, a knowledge encoder,
and an embedding model. Common methods in-
cluded using MIPS for optimizing knowledge re-
trieval and employing momentum encoders for up-
dating embeddings. However, these early systems

456



faced several limitations. They were typically pre-
trained from scratch, resulting in models with sig-
nificantly smaller parameter counts than contempo-
rary LVLMSs. Furthermore, the joint training of the
generation and knowledge encoding components
often led to tight coupling between them, mak-
ing it difficult to independently upgrade or replace
modules, such as integrating more advanced, sep-
arately developed retriever models. Additionally,
these approaches required loading all model param-
eters and knowledge base embeddings into mem-
ory for training, necessitating substantial comput-
ing resources. In contrast, our MM-RewardRAG
paradigm, while aiming for end-to-end optimiza-
tion, is designed to leverage the power of LVLMs.
It enables end-to-end optimization by strategically
tuning only lightweight, newly inserted compo-
nents via reward backpropagation, which preserves
the general capabilities of the foundational models,
reduces the need for extensive resources for pre-
training from scratch, mitigates hardware demands
for fine-tuning, and offers greater modularity for
component updates.

H Qualitative Examples

Figure 6 presents qualitative results underscoring
the necessity of a heterogeneous knowledge base
for MM-RAG. Information pertinent to queries
often spans multiple modalities and is frequently
modality-specific. Consequently, reliance on a uni-
modal knowledge base inherently leads to an in-
complete representation of the required knowledge.

[lustrative outputs from the RL process are pre-
sented in Table 9 and Table 10. These exam-
ples demonstrate that queries achieving the highest
and lowest reward scores often exhibit only mi-
nor lexical differences, yet yield substantially di-
vergent retrieval results. The sensitivity to subtle
query variations underscores the impracticality of
manually annotating translated queries for these
knowledge bases, given the prevalence of nuanced,
system-specific biases. Consequently, employing
RL to train a model capable of adapting to these
knowledge bases by discerning their implicit biases
through exploration presents a resource-efficient
and, indeed, necessary strategy.

Tables 11 and 12 show that, during the RL pro-
cess, the output of the adaptive reranker gradually
aligns with the preferences of the answer genera-
tor, exhibiting subtle refinements in semantics and
logical flow. The subtle nature of these refinements

makes them difficult for humans to directly iden-
tify and distinguish. This, in turn, complicates the
direct collection of labeled datasets required for
supervised tuning. Consequently, after training, the
adaptive reranker becomes closely coupled with the
answer generator to maximize this implicit reward.

I Prompt Tuning vs. Parameter Tuning

While directly fine-tuning the parameters of the
answer generator might be an intuitive solution,
we found this approach suboptimal for two main
reasons: (i) intensive parameter tuning on spe-
cific datasets can degrade its broad, pre-trained vi-
sual instruction-following capabilities, potentially
harming its generalization. (ii) More importantly,
with our proposed query translator and adaptive
reranker, which effectively filter noisy data and
dynamically determine the optimal amount of con-
textual information passed to the generator, we find
that lightweight prompt engineering, primarily just
to define input and output formats, is sufficient
for achieving high performance. Consequently,
the additional advantages of full parameter fine-
tuning for the generator become minimal in our
MM-RewardRAG framework.

J Prompt Templates

We provide the prompts used in this paper in Fig-
ure 7,9, 8, 10.
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Example: Dirt Track Racing Driver

Highest Scoring Output Details

Chain of Thought: The image shows a dirt track racing car. The question asks about a New
Zealander who raced on this track in 2008. We need to identify the track and find out if any New
Zealanders raced there in 2008.

Generated Queries:
» "New Zealand dirt track racing 2008"
* "2008 New Zealand dirt track racing driver"

Keywords String: New Zealand, dirt track, racing, 2008, driver
Lowest Scoring Output Details

Chain of Thought: The image shows a race car on a dirt track, suggesting it might be related
to motorsport, possibly involving New Zealand racing history. The question asks about a New
Zealander who raced at this track in 2008. The first step is to identify the race track, which could
be inferred from the context or the track’s distinctive features. If the track is not recognizable,
the focus shifts to identifying any specific races or events in 2008 where New Zealand drivers
participated. This could involve searching for notable New Zealand racing events from that year.

Generated Queries:
» "New Zealand motorsport history 2008"
» "New Zealand race cars 2008"

Keywords String: New Zealand motorsport 2008 race track

Table 9: Qualitative example for Dirt Track Racing Driver case: generated queries and reasoning during RL training.
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Example: Plant Synonym from Seed Pod

Highest Scoring Output Details

Chain of Thought: The question asks for a synonym of the plant shown in the image. To find
this information, I need to identify the plant species first. The image shows a dry seed pod with a
distinctive shape. This could be a type of plant like a milkweed or a similar species known for its
seed pods. Once the plant species is identified, I can search for synonyms related to that species.

Generated Queries:

* "dry seed pod plant"

e "plant with dry seed pod synonyms"

* "common names for plants with dry seed pods"

Keywords String: dry seed pod, plant, synonyms, common names

Lowest Scoring Output Details

Chain of Thought: The question asks for a synonym of the plant shown in the image. The first step
is to identify the plant in the image. Once identified, synonyms can be searched.

Generated Queries:

* "What is a synonym for the plant in the image?"

* "Identify the plant in the image and find its synonyms."
Keywords String: plant, synonyms

Table 10: Qualitative example for Plant Synonym from Seed Pod case: generated queries and reasoning during RL
training.
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Transition: useful — useless

Positive Case (Predicted Label: useful)

Chain of Thought: The knowledge snippet provides information about Monarda didyma, commonly
known as crimson beebalm. It mentions that this plant grows in dense clusters along stream banks,
moist thickets, and ditches. This directly answers the VQA question about what kind of clusters
the plant grows in.

Negative Case (Predicted Label: useless)

Chain of Thought: The knowledge snippet provides information about Monarda didyma, commonly
known as crimson beebalm or scarlet monarda. It describes various aspects of the plant, such as its
family, habitat, and characteristics. However, it does not explicitly mention the type of clusters in
which the plant grows. Therefore, the knowledge snippet is not directly relevant to answering the
VQA question about the plant’s cluster growth pattern.

Transition: useful — neutral

Positive Case (Predicted Label: useful)

Chain of Thought: The knowledge snippet provides information about Monarda didyma, commonly
known as crimson beebalm. It mentions that the plant grows in dense clusters along stream banks,
moist thickets, and ditches. This matches the VQA question which asks about the type of clusters
the plant grows in. Therefore, the knowledge snippet is relevant and useful for answering the
question.

Negative Case (Predicted Label: neutral)

Chain of Thought: The knowledge snippet provides information about the plant Monarda didyma,
commonly known as crimson beebalm. It describes various aspects of the plant such as its
appearance, growth habits, and historical uses. However, it does not specifically mention how the
plant grows in clusters or provide details about its cluster formation.

Table 11: Qualitative examples of textual knowledge for adaptive reranker.
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Transition: useful — neutral

Positive Case (Predicted Label: useful)

Chain of Thought: The image confirms that the city in question is Tokyo, which hosted events in
the BWF Super Series in 2017 and has a tall, narrow tower (Tokyo Skytree) illuminated in blue
light. This visual evidence supports the question’s requirements, making the image useful for
answering the population-related part.

Negative Case (Predicted Label: neutral)

Chain of Thought: The question asks about the population of a city that hosted a scheduled event in
2017°s BWF Super Series and has a tall, narrow tower illuminated in blue light. The image shows
Tokyo, which is known to host such events and has a distinctive tall, narrow tower (the Tokyo
Skytree) that is illuminated in blue at night. However, the image does not provide information
about the population of Tokyo’s metropolitan area.

Transition: neutral — useless

Positive Case (Predicted Label: neutral)

Chain of Thought: The image confirms that the city in question is Tokyo, which fits the description
of having a tall, narrow tower (Tokyo Skytree) lit up in blue light. However, the image does not
provide any data or indicators regarding the population of the metropolitan area.

Negative Case (Predicted Label: useless)

Chain of Thought: The image shows Tokyo and the Tokyo Skytree illuminated in blue, but it does
not confirm that Tokyo hosted the 2017 BWF Super Series events or provide data on the population
of its metropolitan area.

Table 12: Qualitative examples of visual knowledge for adaptive rerankers.

Pseudo Recall Recall
@1 @5 @10 @20 @50 @100 @1 @5 @10 @20 @50 @100

OKVQA 0421 0.676 0.781 0.866 0941 0969 0.136 0.303 0.392 0.493 0.635 0.718
EVQA 0.511 0.719 0.785 0.833 0.883 0.909 0.402 0.624 0.702 0.780 0.861 0.912
Infoseek 0.311 0.575 0.686 0.780 0.874 0916 0.190 0.392 0.487 0.584 0.713 0.797

Dataset

Table 13: PReFLMR Recall Performance on Different Datasets.
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NDCG Precision
Dataset Model
Overall @3 @5 @10 @1 @3 @5 @10 MAP MRR
Mono - - - - - - - - - -
DES 60.29 4342 47.03 57.54 34.10 18.33 13.36 10.51 48.61 47.99
EVQA Jinaimg 6502 5690 6250 6536 4190 2530 10.00 1146 5939 58.95
Jinagerr 86.16 8599 8741 8642 76.80 3453 2236 11.54 8556 85.33
Ours 97.34 99.69 98.83 97.51 100.0 3423 2142 1146 97.03 100.0
Mono - - - - - - - - - -
DES 4736 2034 2196 3598 1480 820 590 6.86 2742 2742
Infoseek Jina;,, 77.20 7452 7639 76.64 63.10 27.76 18.08 9.75 7476 74.16
Jinagerr 7176 68.26 70.56 71.89 5430 2633 1754 990 68.97 68.97
Ours 100.0 100.0 100.0 100.0 100.0 33.33 20.00 10.00 100.0 100.0
Text-to-Image
Mono 82.81 79.89 81.28 81.72 71.73 30.15 21.01 11.34 79.48 80.23
DES 80.33 77.87 80.18 80.13 6847 31.32 21.28 11.59 7742 78.60
MMQA Jina 87.21 8570 86.33 85.79 80.16 33.33 22.01 11.51 85.04 86.14
Ours 92.00 93.05 93.36 91.87 86.68 37.24 2375 12.12 92.11 92.50
Text-to-Text
Mono - - - - - - - - - -
DES 7547 7699 7838 7546 6827 37.36 26.03 1532 71.46 78.60
Jina 90.66 9193 91.82 90.67 87.62 47.70 30.01 1539 9047 92.22
Ours 95.70 9624 96.37 9570 93.74 49.54 30.64 1539 9571 96.20
Text-to-Image
Mono 73.51 7474 7640 7537 6147 3326 22.63 13.08 70.99 74.69
DES 68.74 68.83 71.01 71.03 5528 30.80 21.87 13.10 6545 69.71
WebQA Jina 79.02 81.54 81.81 8096 7045 36.92 2459 1340 78.07 81.16
Ours 90.87 93.01 92.89 91.66 8562 44.17 2746 13.88 91.22 91.79
Text-to-Text
Mono - - - - - - - - - -
DES 76.05 84.33 82.26 7835 7755 47.09 33.06 1894 72.83 85.44
Jina 89.65 30.00 30.00 21.54 30.00 16.66 20.00 5.00 88.09 30.00
Ours 100.0 100.0 100.0 100.0 100.0 66.66 40.00 20.00 100.0 100.0

Table 14: Performance Comparison of Reranker Models Across Multiple Datasets.
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Visual Knowledge LLM Knowledge

Q: What animals race in the
Kentucky Derby?

Q: What kind of medical
usage has this plant? Q: In what year was the
Swabhili Wikipedia first

A: help urinary tract ted?
infections and as an created:

antioxidant.

A:horses
A [}

© ©
Ethnobotany [edit] LLM: 2003 Y

Smilaxbona-nox has many uses. The
leaves of this plant were used for cigarette
wrappers by the Native Americans. The
roots can be used not only to make bread
but also as medicines. The roots of this
plant are known to help urinary tract
infections and as an antioxidant.*!

LVLM: 2007 GQ

Figure 6: Different types of knowledge that are required to answer questions.

Prompt For Verifiable Reward Model

Given a question, a ground truth answer, and a prediction answer, please
evaluate the prediction answer.

If the prediction answer is correct, please return "True”.
If the prediction answer is wrong, please return "False”.
The question is: {{ {question}} }}

The ground truth answer is: {{ {ground_truth_answer} }}
The prediction answer is: {{ {prediction_answer} }}
Please answer with "True” or "False".

Figure 7: Prompt for Verifiable Reward Model.

. Recall
Model Modality @1 @3 @5 @I0 @20 @50 @100
T51 1099 1746 20.62 2481 3135 38.66 44.01

T — Tpart 231 509 645 1043 15.18 22.50 28.13
Z — Twhole 443 833 10.06 14.67 1949 2796 34.88
T—-1 027 043 060 1.06 153 285 4.10
T — Tpart 375 542 671 831 998 13.00 15.84
T — Tahole 1.89 264 328 426 549 793 1038
-1 1034 17.72 21.32 26.69 3337 40.60 47.66
CLIP-Large 7 — Tiige 21.85 23.89 3245 3584 39.02 43.23 45.09
7 — Zyymmary 1523 1996 31.89 35.55 39.08 42.12 45.79
I—-1 15.28 25.09 3020 37.28 43.86 50.97 55.66
EVA-CLIP-8B 7 — e 17.29 30.01 3322 3513 41.12 45.09 49.82
7 — Zyymmary 20.83  33.72 37.56 4230 43.58 47.26 50.39

Jina-CLIP-V2

Table 15: Recall results on E-VQA dataset
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Prompt For Answer Generator

Given a Visual Question Answering (VQA) question and a knowledge snippet,
please generate the answer to the question.

Here is the VQA question:

<img_start><img><img_end>

Question: {question}

Here is the knowledge snippet: {document?}

Please output the answer to the question.

-~
-

(a) Prompt For Answer Generator (VQA with Knowledge Snippet).

Prompt For Answer Generator

Given a question and a knowledge snippet, please generate the answer to the
question.

Here is the question:

Question: {question}

Here is the knowledge snippet: {document?}

Please output the answer to the question.

(b) Prompt For Answer Generator (Text Question with Knowledge Snippet).

Prompt For Answer Generator

Given a question and an image with a caption, please generate the answer to
the question.

Here is the question:

Question: {question}

Here is the image with caption:

<img_start><img><img_end>

Caption: {caption}

Please output the answer to the question.

s
&

(c) Prompt For Answer Generator (Question with Image and Caption).

Figure 8: Examples of different prompts for the Answer Generator module.
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Prompt For Query Translator

Given a Visual Question Answering (VQA) question, please generate some
possible search engine queries and keywords that can be used to retrieve
knowledge from an external knowledge base that can answer the question
without referring to the input image.

Please output strict JSON that can be directly parsed by Python, in the
following format: {"Chain_of_Thought”: your analysis here, "queries": search
engine queries here, "image_queries"”: image search engine queries here, "
key_words_string"”: keywords for BM25 here.}.

Here is the VQA question:

<img_start><img_token><img_end>

Question: {question}

Please output the Chain of Thought reasoning and the queries in strict JSON
format.

Ve

Figure 9: Prompt For Query Translator.

Prompt For Adaptive Reranker

Given a Visual Question Answering (VQA) question and a knowledge snippet,
please determine whether this knowledge snippet is useful for answering the

VQA question. Please output one of the following levels: useful, neutral,
useless. First, perform Chain of Thought (CoT) reasoning and then output the
label. Please output strict JSON that can be directly parsed by Python, in
the following format: {"CoT": your analysis here, "level”: the level obtained
after analysis}.

Here is the VQA question:

<img_start><img_token><img_end>

Question: {question}

Here is the knowledge snippet: {document?}

Please output the Chain of Thought reasoning and the label in strict JSON

format.
&

Figure 10: Prompt For Adaptive Reranker.

. Recall
Model Modality @1 @3 @5 @I0 @20 @50 @100
T51 276 457 547 693 879 1186 14.87
. T 99 1682 2067 2634 32.64 4149 48.00
Jina-CLIP-V2 0 7 0 0 0 0 001 001 009
T ST 0 0 0 004 015 030 067
-1 1081 1622 1978 23.89 27.96 3352 37.36
CLIP-Large 7 — Zie 972 1322 17.08 21.09 2278 2532 29.85
T = Tommary 983 1572 17.99 2537 2890 31.85 33.05
-1 1600 2321 2666 3029 33.60 38.17 4142

Eva-CLIP-8b 7 — Ty 21.23  26.79 3395 3523 40.26 43.23 47.58
7 — Zgmmary 20.01 27.83 3523 37.21 39.89 42.08 43.72

Table 16: Recall results on Infoseek dataset
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Model

Modality

Recall

@1 @3 @5 @10 @20 @50 @100
T—>17 1240 24.80 29.60 33.20 37.60 44.00 50.40
Jina-CLIP-V2 T — Zgge 82.80 88.00 89.20 90.40 92.00 93.60 94.40
T—=T 39.67 5829 63.80 71.08 77.66 8399 §87.22
BM?25 T = Lyye 87.60 90.40 90.80 91.20 91.20 92.00 92.00
T—=>T 36.08 60.06 6747 7601 8152 86.84 90.06
BGE T — Ziine 86.13 90.53 91.13 91.93 9293 93.53 94.33
T—>T 45776 70.76 77.28 83.19 86.37 89.96 91.43
Table 17: Recall results on MMQA dataset
. Recall
Model Modality, —Gi—@3 @5 @10 @20 @50 @i00
T—->7 65.20 80.00 91.60 99.20 1 - -
Jina-CLIP-V2 7T — Zjge 93.60 97.20 98.80 1 - - -
T—=T 53.73 77.15 86.84 1 - - -
T — Lige 96.80 99.60 1 - - - -
BM25 T=>T 4842 85.06 92.59 1 - - -
BGE T — Lige 96.40 99.20 99.60 1 - - -
T-—>T 61.65 89.56 95.13 1 - - -

Table 18: Recall results on WebQA dataset
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