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Abstract

Predicting drug-target interaction (DTI) is crit-
ical in the drug discovery process. Despite
remarkable advances in recent DTI models
through the integration of representations from
diverse drug and target encoders, such models
often struggle to capture the fine-grained in-
teractions between drugs and protein, i.e. the
binding of specific drug atoms (or substruc-
tures) and key amino acids of proteins, which
is crucial for understanding the binding mecha-
nisms and optimising drug design. To address
this issue, this paper introduces a novel model,
called FusionDTI, which uses a token-level Fu-
sion module to effectively learn fine-grained in-
formation for Drug-Target Interaction. In par-
ticular, our FusionDTI model uses the SELF-
IES representation of drugs to mitigate se-
quence fragment invalidation and incorporates
the structure-aware (SA) vocabulary of target
proteins to address the limitation of amino acid
sequences in structural information, addition-
ally leveraging pre-trained language models
extensively trained on large-scale biomedical
datasets as encoders to capture the complex in-
formation of drugs and targets. Experiments
on three well-known benchmark datasets show
that our proposed FusionDTI model achieves
the best performance in DTI prediction com-
pared with eight existing state-of-the-art base-
lines. Furthermore, our case study indicates
that FusionDTI could highlight the potential
binding sites, enhancing the explainability of
the DTI prediction.

1 Introduction

The task of predicting drug-target interactions
(DTI) plays a pivotal role in the drug discovery
progress, as it helps identify potential therapeutic
effects of drugs on biological targets facilitating the
development of effective treatments (Askr et al.,
2023). DTI fundamentally relies on the binding
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of specific drug atoms (or substructures) and key
amino acids of proteins (Schenone et al., 2013). In
particular, each binding site is an interaction be-
tween a single amino acid and a single drug atom,
which we refer to as a fine-grained interaction. For
instance, Figure 1 B demonstrates the interaction
between HIV-1 protease and the drug lopinavir. A
critical component of this interaction is the forma-
tion of a hydrogen bond between a ketone group
in lopinavir (represented in the SELFIES (Krenn
et al., 2022) notation as [C][=0]) and the side chain
of an aspartate residue Asp25 (i.e. Dd) within
the protease (Brik and Wong, 2003; Chandwani
and Shuter, 2008). Therefore, capturing such fine-
grained interaction information during the fusion
of drug and target representations is crucial for
building effective DTI prediction models (Wu et al.,
2022; Peng et al., 2024; Zeng et al., 2024).

To obtain representations of drugs and targets
for the DTI task, some previous studies (Lee et al.,
2019; Nguyen et al., 2021) have used graph neu-
ral networks (GNNSs) or convolutional neural net-
works (CNNSs) using a fixed-size window, poten-
tially leading to a loss of contextual information,
especially when drugs and targets are in a long-
term sequence. These models directly concate-
nate the representations together to make predic-
tions without considering fine-grained interactions.
More recently, some computational models (Huang
et al., 2021; Bai et al., 2023) employed the fusion
module (e.g. Deep Interactive Inference Network
(DIIN) (Gong et al., 2018) and Bilinear Attention
Network (BAN) (Kim et al., 2018)) to obtain fine-
grained interaction information and the 3-mer ap-
proach that binds three amino acids together as a
target binding site to address the lack of structural
information in the amino acid sequence. While
useful for highlighting possible regions of inter-
action, these models do not offer the sufficient
granularity needed to gauge the specifics of bind-
ing sites, as each binding site only contains one
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Figure 1: A. Illustration of the FusionDTI model: frozen encoder, fusion module and classifier. The token-level
fusion (TF) focuses on fine-grained interactions between tokens within and across sequences. B. This is a token-level
interaction instance of HIV-1 protease and lopinavir. Lopinavir forms a hydrogen bond with residue Dd (Asp25) in
the active site of the protease via its ketone molecule ([C][=O]). C. The attention map of TF visualises the weight
between tokens, indicating the contribution of each drug atom and residue to the final prediction result.

residue (Schenone et al., 2013). Therefore, obtain-
ing contextual representations of drugs and targets
and capturing fine-grained interaction information
for DTI remains challenging.

To address these challenges, we propose a novel
model (called FusionDTT) with a Token-level Fu-
sion (TF) module for an effective learning of
fine-grained interactions between drugs and tar-
gets. In particular, our FusionDTI model utilises
two pre-trained language models (PLMs), namely
Saport (Su et al., 2023) as the protein encoder that
is able to integrate both residue tokens with struc-
ture token; and SELFormer (Yiiksel et al., 2023) as
the drug encoder to ensure that each drug is valid
and contains structural information. To effectively
learn fine-grained information from these contex-
tual representations of drugs and targets, we ex-
plore two strategies for the TF module, i.e. Bilinear
Attention Network (BAN) (Kim et al., 2018) and
Cross Attention Network (CAN) (Li et al., 2021;
Vaswani et al., 2017), to find the best approach
for integrating the rich contextual embeddings de-
rived from Saport and SELFormer. We conduct
a comprehensive performance comparison against
eight existing state-of-the-art DTI prediction mod-
els. The results show that our proposed model
achieves about 6% accuracy improvement over the
best baseline on the BindingDB dataset. The main
contributions of our study are as follows:

* We propose FusionDTI, a novel model that
leverages PLMs to encode drug SELFIES, as
well as protein residues and structures for rich
semantic representations and uses the token-

level fusion to capture fine-grained interaction
between drugs and targets effectively.

* We compare two TF modules: CAN and BAN
and analyse the influence of fusion scales
based on FusionDTI, demonstrating that CAN
is superior for DTI prediction both in terms of
effectiveness and efficiency.

* We conduct a case study of three drug-target
pairs by FusionDTI to evaluate whether poten-
tial binding sites would be highlighted for the
DTI prediction explainability.

2 Related Work

2.1 Drug and Protein Representation

For drug molecules, most existing methods repre-
sent the input by the Simplified Molecular Input
Line Entry System (SMILES) (Weininger, 1988;
Weininger et al., 1989). However, SMILES suffers
from numerous problems in terms of validity and
robustness, and some valuable information about
the drug structure may be lost which may prevent
the model from efficiently mining the knowledge
hidden in the data (Krenn et al., 2022). To address
the limitations of SMILES, we apply SELFIES, a
string-based representation that circumvents the is-
sue of robustness and that always generates valid
molecular graphs for each character.

Regarding proteins, the conventional approach
uses amino acid sequences as model inputs (Huang
et al., 2021; Bai et al., 2023), overlooking the cru-
cial structural information of the protein. Inspired
by the SA vocabulary of SaProt (Su et al., 2023),
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the SaProt enhances inputs by amalgamating each
residue of the amino acid sequence with a 3D geo-
metric feature that is obtained by encoding protein
structure information using Foldseek (Van Kem-
pen et al., 2024). This innovative combination
offers richer protein representations through the
SA vocabulary, contributing to the discovery of
fine-grained interactions.

2.2 Molecular and Protein Language Models

Molecular language models trained on the large-
scale molecular corpus capture the subtleties of
chemical structures and their biological activities,
setting new standards in the encoding of chem-
ical compounds achieving meaningful represen-
tations (Ying et al., 2021; Rong et al., 2020).
For example, MoLFormer (Ross et al., 2022) fo-
cused on leveraging the self-attention mechanism
to interpret the complex, non-linear interactions
within molecules, while SELFormer (Yiiksel et al.,
2023) employed SELFIES, ensuring valid and in-
terpretable chemical structures.

Protein language models have revolutionized
the way we understand and represent protein se-
quences, learning intricate patterns and features
that define the protein functionality and interac-
tions. ProtBERT (Elnaggar et al., 2021) and
ESM (Lin et al., 2023) applied a transformer ar-
chitecture to protein sequences, capturing the com-
plex relationships between amino acids. Saport (Su
et al., 2023, 2024) further enhanced this approach
by integrating SA vocabularies to provide protein
structure information.

3 Methodology

3.1 Model Architecture

Given a sequence-based input drug-target pair, the
DTI prediction task aims to predict an interaction
probability score p € [0, 1] between the given drug-
target pair, which is typically achieved through
learning a joint representation F space from the
given sequence-based inputs. To address the DTI
task and effectively capture fine-grained interac-
tion, we proposed a novel model, called FusionDTI,
which is a bi-encoder model (Liu et al., 2021) with
a fusion module that fuses the representations of
drugs and targets. The overall framework of Fu-
sionDTI is illustrated in Figure 1 A. In general,
FusionDTTI takes sequence-based inputs of drugs
and targets, which are encoded into token-level rep-
resentation vectors by two frozen encoders. Then,

a fusion module fuses the representations to cap-
ture fine-grained binding information for a final
prediction through a prediction head.

Input: The initial inputs of drugs and targets
are string-based representations. For protein P, the
SA vocabulary (Su et al., 2023; Van Kempen et al.,
2024) is employed, where each residue is replaced
by one of 441 SA vocabularies that bind an amino
acid to a 3D geometric feature to address the lack
of structural information in amino acid sequences.
For drug D, as mentioned in the previous section,
we use the SELFIES, which is a formal syntax that
always generates valid molecular graphs (Krenn
et al., 2022). We provide the steps and code to
obtain SA and SELFIES in Appendix A.3.

Encoder: The proposed model contains two
frozen encoders: Saport (Su et al., 2023) and SELF-
ormer (Yiiksel et al., 2023), which generate a drug
representation D and a protein representation P
separately. It is of note that FusionDTI is flexible
enough to easily replace encoders with other PLMs
or address SELFIES or SA representations that are
unavailable. Furthermore, D and P are stored in
memory for later-stage online training.

Fusion module: In developing FusionDTI, we
have investigated two options for the fusion mod-
ule: BAN and CAN to fuse representations, as indi-
cated in Figure 2. The CAN is utilised to fuse each
pair as D* and P*, and then concatenate them into
one F for fine-grained binding information. For
BAN, we need to obtain bilinear attention maps
and generate F through the bilinear pooling layer.

Prediction head: Finally, we obtain the proba-
bility score p of the DTI prediction by a multilayer
perceptron (MLP) classifier trained with the binary
cross-entropy loss, i.e. p = MLP(F).

Since the encoders and the fusion module consti-
tute the key components of our FusionDTI model,
we will describe them in detail in the following.

3.2 Drug and Protein Encoders

Employing sequences with detailed biological func-
tions and structures is a critical step in exploring
the fine-grained binding of drugs and targets. For
drugs, SMILES is the most commonly used in-
put sequence but suffers from invalid sequence
segments and potential loss of structural informa-
tion (Krenn et al., 2022). To address the limitations,
we transform SMILES into SELFIES, a formal
grammar that generates a valid molecular graph
for each element (Krenn et al., 2022). Besides, to
address the lack of structural information in the
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Figure 2: BAN: In step 1, the bilinear attention map is obtained by a bilinear interaction modelling via transformation
matrices. In step 2, the joint representation F is generated using the attention map by bilinear pooling via the shared
transformation matrices U and V. CAN: It fuses protein and drug representations through multi-head, self-attention
and cross-attention. Then fused representations P* and D* are concatenated into F' after mean pooling.

amino acid sequences, we utilise the SA sequence
of targets to combine each amino acid with an SA
vocabulary by Foldseek (Van Kempen et al., 2024).

PLMs have shown promising achievements in
the biomedical domain leveraging transformers
since they pay attention to contextual informa-
tion and are pre-trained on large-scale biomedi-
cal databases. Therefore, we utilise Saport (Su
et al., 2023) as a protein encoder to encode pro-
tein input P of both the SA sequence and amino
acid sequence. Meanwhile, SELFormer (Yiiksel
et al., 2023) is used as our drug encoder to encode
the drug SELFIES input D. Then these encoded
protein representation P and drug representation
D are further used as inputs for the later fusion
module (Subsection 3.3). These rich contextual
representations ensure that we can explore the fine-
grained binding information effectively. To further
justify this, we also compare our encoders with
other existing protein language models (such as
ESM-2 (Lin et al., 2023)) and molecular language
models (such as MoLFormer (Ross et al., 2022)
and ChemBERTa-2 (Ahmad et al., 2022)), and the
results can be found in Appendix A.6.

3.3 Fusion Module

In order to capture the fine-grained binding infor-
mation between a drug and a target, our FusionDTI
model applies a fusion module to learn token-level
interactions between the token representations of
drugs and targets encoded by their respective en-
coders. As shown in Figure 2, two fusion modules
are investigated to fuse representations: the Bilin-
ear Attention Network (Kim et al., 2018) and the

Cross Attention Network (Vaswani et al., 2017).

3.3.1 Bilinear Attention Network (BAN)

Motivated by DrugBAN (Bai et al., 2023), our
model considers BAN (Kim et al., 2018) as an
option to learn pairwise fine-grained interactions
between drug D € R™*? and target P € R™*?,
denoted as FusionDTI-BAN. For BAN as indicated
in Figure 2, bilinear attention maps are obtained by
a bilinear interaction modelling to capture pairwise
weights in step 1, and then the bilinear pooling
layer to extract a joint representation F. The equa-
tion of BAN is shown below:

F = BAN(P, D; Att)

1
= SumPool(c(P"U) - Att - (D V), s), W

where U € R and V € R™*X are transfor-
mation matrices for representations. SumPool is
an operation that performs a one-dimensional and
non-overlapped sum pooling operation with stride
s and o(+) denotes a non-linear activation function
with ReLU(+). Att € RP*? represents the bilinear
attention maps using the Hadamard product and
matrix-matrix multiplication and is defined as:

Att =((1-q ) oo(PTU)) - o(V'D), )

Here, 1 € R” is a fixed all-ones vector, q € RE
is a learnable weight vector and o denotes the
Hadamard product. In this way, pairwise interac-
tions contribute sub-structural pairs to predictions.

BAN captures the token-level interactions be-
tween the protein and drug representations without
considering the relationships within each sequence
itself, which may limit its ability to understand
deeper contextual dependencies.
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3.3.2 Cross Attention Network (CAN)

Inspired by ProST (Xu et al., 2023), we also con-
sider CAN as our fusion module to learn fine-
grained interaction information of drugs and targets.
We denote our FusionDTI model that uses a CAN
fusion module as FusionDTI-CAN. By processing
D € R™ " and P € R™*" separately, the fused
drug D* € R™*" and target P* € R™ " represen-
tations are obtained. To synthesise the fine-grained
joint representation F', we employ a pooling aggre-
gation strategy for both D* and P*independently
and then concatenate them as shown in Figure 2.
The process is described by the following equation:

F = Concat[MeanPool(D™), MeanPool(P*)], (3)

where MeanPool calculates the element-wise
mean of all tokens across the sequence dimension,
and Concat denotes the concatenation of the result-
ing mean vectors. In this context, the multi-head,
self-attention and cross-attention mechanisms are
used to refine the representations of each residue
and atom as below:

D" = | [MHA(Qq, Ku, V) + MHA(Qp, Ko, V)], (4)

P’ = % [MHA(Qp, Kp, Vy) + MHA(Qa, Ky, Vy)], (5)
where Qq, K4, Vg € R™*" and Q). K, V, €
R™*" are the queries, keys and values for drug and
target protein, respectively. And MHA denotes the
Multi-head Attention mechanism. To guide this
process, two distinct sets of projection matrices
guide the attention mechanism as follows:

V.=DW{, (6
V, =PW., (7

K, = DWY,
K, = PW?,

Q. = DW{,
Q, = PW?,

Here, the projection matrices Wg, W,‘i, Wi ¢
R and W1, WP W1 € R"*" are used to de-
rive the queries, keys and values, respectively.

In summary, our CAN module combines multi-
head, self-attention and cross-attention mecha-
nisms to capture dependencies within individual
sequences and between different sequences for a
more nuanced understanding of interactions. In the
results of Sections 4.3 and 4.5, we analyse and
compare these two fusion strategies and different
fusion scales in detail.

4 Experimental Setup and Results

4.1 Datasets and Baselines

Three public DTI datasets, namely Bind-
ingDB (Gilson et al., 2016), BioSNAP (Zitnik

et al., 2018) and Human (Liu et al., 2015; Chen
et al., 2020), are used for evaluation, where each
dataset is split into training, validation, and test
sets with a 7:1:2 ratio using two different splitting
strategies: in-domain and cross-domain. For the
in-domain split, the datasets are randomly divided.
For the cross-domain setting, the datasets are split
such that the drugs and targets in the test set do
not overlap with those in the training set, making
it a more challenging scenario where models
must generalise to novel drug-target interactions.
Since DTI is a binary classification task, we use
AUROC (Bai et al., 2023; Huang et al., 2021)
and AUPRC (Nguyen et al., 2021) as the major
metrics to evaluate models’ performance. In
Appendix A.10, we report other evaluation metrics,
including F1-score, Sensitivity, Specificity, and
Matthews Correlation Coefficient (MCC) to
provide a more comprehensive assessment.

We compare FusionDTI with eight baseline mod-
els in the DTI prediction task. These models in-
clude two traditional machine learning methods
such as SVM (Cortes and Vapnik, 1995) and Ran-
dom Forest (RF) (Ho, 1995), as well as five deep
learning methods including DeepConv-DTI (Lee
et al., 2019), GraphDTA (Nguyen et al., 2021),
MolTrans (Huang et al., 2021), DrugBAN (Bai
et al., 2023) and SiamDTI (Zhang et al., 2024).
In addition, we also include the BioT5 (Pei et al.,
2023) model, which is a biomedical pre-trained
language model that could directly predict the DTI.

Furthermore, results on three additional bench-
mark datasets (DAVIS (Davis et al., 2011),
KIBA (Tang et al., 2014), and DUD-E (Mysinger
et al., 2012)) are reported, with comparisons to 8
task-specific baselines (Nga et al., 2025; Li et al.,
2025). Further details regarding the datasets, base-
line models, and the methodology for generating
drug SELFIES and protein SA sequences are pro-
vided in Appendix A.3.

4.2 Evaluation of DTI Prediction

We start by comparing our FusionDTI model
(FusionDTI-CAN and FusionDTI-BAN) with eight
existing state-of-the-art baselines for DTI predic-
tion on three widely used datasets. Table 1 reports
the in-domain comparative results. In general, our
FusionDTI-CAN model performs the best on all
metrics across all three datasets. A key highlight
from these results is the exceptional performance of
FusionDTI-CAN on the BindingDB dataset, where
FusionDTI-CAN demonstrates superior metrics
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BindingDB Human BioSNAP

Method AUROC AUPRC Accuracy AUROC AUPRC AUROC AUPRC Accuracy
SVM .939+.001 .928+.002 .825+.004 .940+.006 .920+.009 .862+.007 .864+.004 .777+.011

RF 942+.011 .921+.016 .880£.012 .952+.011 .953+.010 .860+£.005 .8864.005 .804+£.005
DeepConv-DTI .9454.002 .925+.005 .882+.007 .980+£.002 .9814.002 .886£.006 .890+.006 .805+£.009
GraphDTA ~ .951£.002 .934+.002 .888+.005 .981£.001 .982+.002 .887+.008 .890+£.007 .800+.007
MolTrans .952+.002 .936+.001 .887+£.006 .980+.002 .978+.003 .895+.004 .897+.005 .825+.010
DrugBAN .960£.001 .948+.002 .904+.004 .982+.002 .980£.003 .903+.005 .902+.004 .834+4.008
SiamDTI 961£.002 .945+.002 .890£.006 .970+.002 .969+.003 .912+.005 .910£.003 .855+.004
BioT5 963£.001 .952+.001 .907+.003 .989+£.001 .9854.002 .937+£.001 .9374.004 .874+£.001
FusionDTI-BAN .975+.002 .976+.002 .933+.003 .984+.002 .984+.003 .923+.002 .921+.002 .856+£.001
FusionDTI-CAN .989-+£.002 .990+.002 .961+.002 .991-+.002 .989+.002 .951+.002 .952+.002 .889+.002

Table 1: In-domain performance comparison of FusionDTI and the baselines on the BindingDB, Human and

BioSNAP datasets (Best, Second Best).

BindingDB Human BioSNAP
Method AUROC AUPRC Accuracy AUROC AUPRC AUROC AUPRC Accuracy
SVM 4904.015 .4604.001 .531+.009 .621+£.036 .637£.009 .6024.005 .5284+.005 .513+.011
RF 4934.021 .4684+.023 .535+.012 .642+£.011 .663+.050 .5904.015 .568+.018 .499+.004
GraphDTA .5364.015 .496+.029 .472+.009 .822+.009 .759+4.006 .6184+.005 .618+.008 .535+.024
DeepConv-DTI .527+.038 .4994+.035 .490+.027 .761+.016 .628+.022 .645+.022 .642+.032 .558+.025
MolTrans .5544.024 5114+.025 470+.004 .810+.021 .7454+.034 .6214.015 .608+.022 .546+.032
DrugBAN .6044.027 .5704+.047 .509+.021 .833+.020 .7604.031 .6854.044 .713+.041 .565+.056
SiamDTI .6274.027 .571+.024 .563+.033 .863+.019 .8074.040 .7184.055 .725+.054 .623+.070
BioT5 .6514.002 .6534+.003 .621+.005 .856+.003 .853+.003 .7204.008 .718+.004 .715+.009
FusionDTI-BAN .659+4+.002 .663+.002 .6334+.003 .784+.002 .7904.003 .723+.002 .721+.002 .734+.001
FusionDTI-CAN .681+.005 .680+.012 .652+.005 .801+.037 .803+.032 .748+.021 .766+.017 .756+.012

Table 2: Cross-domain performance comparison of FusionDTI and the baselines on the BindingDB, Human and

BioSNAP datasets (Best, Second Best).

across the board: an AUROC of 0.989, an AUPRC
of 0.990, and an accuracy of 96.1%. Note that
the main difference between the FusionDTI-CAN
model and others is the fusion strategy. Further-
more, despite FusionDTI-BAN and DrugBAN both
utilising the same BAN module, FusionDTI-BAN
consistently outperforms DrugBAN on all datasets.

However, in-domain classification using random
splits holds limited practical significance. Thus, we
also evaluate the more challenging cross-domain
DTT prediction, where the training data and the
test data contain distinct drugs and targets. This
setting precludes the use of known drug or target
features when making predictions on the test data.
As shown in Table 2, the performance of all mod-
els is diminished compared to the in-domain set-
ting due to the reduced availability of information.
Nevertheless, the FusionDTI-CAN model demon-
strates outstanding performance in cross-domain
DTT prediction on the BindingDB and BioSNAP
datasets, highlighting its robustness in predicting
novel drug-target interactions. For instance, on the
BindingDB dataset, FusionDTI-CAN achieves the

highest metrics with an AUROC of 0.675 and an
AUPRC of 0.676. This underscores the effective-
ness of the model’s fusion strategy in diverse and
challenging scenarios. Similarly, despite sharing
the BAN module, FusionDTI-BAN continues to
outperform DrugBAN, further confirming the effec-
tiveness of the FusionDTI framework in addressing
cross-domain prediction challenges.

These findings highlight not only the substan-
tial improvements of FusionDTI over existing ap-
proaches but also its effectiveness in capturing fine-
grained information on DTI. The key to this suc-
cess lies in FusionDTTI’s token-level fusion module,
which enables the model to consider fine-grained
interactions for each drug-target pair. This fine-
grained interaction information aligns closely with
biomedical pathways, where binding events often
depend on the specific atoms or substructures in-
volved in interactions with residues. Therefore,
the model’s ability to capture such fine-grained
interactions significantly enhances its predictive
performance for DTIL.
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Figure 3: Performance comparison of two fusion strate-
gies: BAN and CAN on the BindingDB.

CAN AUC AUPRC Accuracy
X 0.954 0.963 0.894
v 0.989 0.990 0.961

Table 3: Ablation study of the CAN module on the
BindingDB dataset.

4.3 Comparison of the BAN and CAN

There are two fusion strategies available: BAN and
CAN, thus determining which one works better is
a key step for establishing FusionDTI’s prediction
effectiveness. We perform a fair comparison in-
volving the same encoders, classifier and dataset.
As shown in Figure 3, we compare BAN and CAN
by employing two linear layers to adjust the feature
dimensions of the drug and target representations.
With the feature dimension increasing, the perfor-
mance of FusionDTI-CAN continues to rise, while
that of FusionDTI-BAN reaches a plateau. When
the feature dimension is 512, both of the variants
attain their peak positions with an AUC of 0.989
and 0.967, respectively. These results indicate that
the CAN module seems to be better suited to the
DTI prediction tasks and in capturing fine-grained
interaction information. In contrast, BAN may not
be able to fully capture fine-grained binding infor-
mation between proteins and drugs, such as the
specific interactions between the drug atoms and
residues. Therefore, these findings suggest that the
CAN strategy is more effective and adaptable to the
complexities involved in DTI prediction, provid-
ing superior performance, especially as the feature
dimension scales.

4.4 Ablation Study

The fine-grained interaction of drug and target rep-
resentations is critical in DTI as it directly impacts

0.960 —+— CAN
— BAN
0.955
>
$0.950
]
$0.945
0.940
0.935
1 64 128 256 512

Group Size

Figure 4: Performance evaluation of fusion scales on
the BindingDB dataset.

the model’s ability to infer potential binding sites.
For FusionDTI, this interaction is facilitated by the
CAN module, which markedly enhances the pre-
dictive accuracy by capturing the fine-grained inter-
action information between the drugs and targets.
Table 3 demonstrates the impact of the CAN mod-
ule on the prediction performance. When the fusion
module is omitted, the model achieves an AUC of
0.954 and an accuracy of 0.894. Conversely, using
the CAN module, there is a significant improve-
ment, with the AUC increasing to 0.989 and the
accuracy reaching 0.961. This highlights the ef-
fectiveness of the CAN module in improving the
inference ability of FusionDTI. In Appendix A.7
and A.8, we further compare time-consuming and
time complexity with baselines.

4.5 Analysis of Fusion Scales

In assessing fusion representations, it is critical to
determine whether more fine-grained modelling en-
hances the predictive performance. Thus, we define
a grouping function with the parameter g (Group
size) for averaging tokens within each group be-
fore the CAN fusion module. The parameter g,
representing the number of tokens per group, con-
trols the granularity of the attention mechanism.
Specifically, when g is set to 1, the fusion operates
at the token level, where each token is considered
independently. In contrast, when g is set to 512,
the fusion occurs at a global level, considering the
entire embedding as a single unit. We have the
flexibility to control the fusion scale for the drug
and protein representations, but the token length
must be divisible by the group size. As shown in
Figure 4, as the number of tokens per group in-
creases from 1 to 512 (Maximum Token Length),
the performance of the FusionDTI model declines
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Drug-Target Interactions

EZL - 6QL2:

1. sulfonamide oxygen - Leu198, Thr199 and Trp209;
2. amino group - His94, His96, His119 and Thr199;

3. benzothiazole ring - Leu198, Thr200, Tyr131, Pro201
and GIn92;

4. ethoxy group - GIn135;

9YA - SWSL:

1. amino group of sulfonamide - Asp140, Glu191;

2. sulfonamide oxygen - Asp140, Ile141 and Val139;

3. carboxylic acid oxygens - Arg168, His192, Asp194 and
Thr247;

4. biphenyl rings - Arg105, Asn137 and Pro138;

5. hydrophobic contact - Ala237, Tyr238 and Leu322;

EJ4 - 4N6H:

1. basic nitrogen of ligand - Asp128;

2. hydrophobic pocket - Tyr308, Ile304 and Tyr129;
3. water molecules - Tyr129, Met132, Trp274, Tyr308
and Lys214;

Table 4: FusionDTT predictions: Bold represents new
predictions versus DrugBAN.

accordingly. This also aligns with the biomedical
rules governing drug-protein interactions, where
the principal factor influencing the binding is the
interplay between the key atoms or substructures
in the drug and primary residues in the protein.
Furthermore, the CAN module outperforms BAN
consistently at various scale settings, indicating that
CAN better accesses the information between the
drug and target. Consequently, this supports that
the more detailed the interaction information ob-
tained between the drugs and targets by the fusion
module, the more beneficial it is for the enhance-
ment of the model’s prediction performance.

4.6 Case Study

A further strength of FusionDTT to enable explain-
ability, which is critical for drug design efforts, is
the visualisation of each token’s contribution to
the final prediction through cross-attention maps.
To compare with the DrugBAN model, we exam-
ine three identical pairs of DTI from the Protein
Data Bank (PDB) (Berman et al., 2007): (EZL -
6QL2 (Kazokaité et al., 2019), 9YA - SWSL (Rai
et al., 2017) and EJ4 - 4N6H (Fenalti et al., 2014)),
which are excluded from the training data. As
shown in Table 4, our proposed model predicts
more binding sites existing in the PDB (Berman
et al., 2007) (in bold) by ranking the binding sites
shown in the attention map. For instance, to pre-
dict the interaction of the drug EZL with the target
6QL2, our proposed model using BertViz (Vig,
2019) highlights potential binding sites as illus-

Hd [C]

Wa [C]
Ga [O]
Yc [C]
Gd [=C]
Kp [C]
Hv [=C]
Nr [N]
Gr [=C]
Pl [Branch1]
Ev [=Branch2]
Hn [S]
wi [Branch1]
Hc [C]
Kv [N]
Dv [=Branch1]
Fa [C]
Pv [=0]

Ic [=0]

Figure 5: EZL - 6QL2: Fine-grained interactions via
attention visualization.

trated in Figure 5. Specifically, our CAN module
is effective in capturing fine-grained binding infor-
mation at the token level, as we have successfully
predicted the novel binding between GIn92 and the
benzothiazole ring (Di Fiore et al., 2008). In partic-
ular, we address the lack of structural information
on protein sequences by employing the SA vocabu-
lary, which matches each residue to a correspond-
ing 3D feature via Foldseek (Van Kempen et al.,
2024). This study highlights the effectiveness of
FusionDTI in enhancing performance on the DTI
task, thereby supporting more targeted and efficient
drug development efforts. In Appendix A.9, we fur-
ther investigate ten DTI pairs in non-small cell lung
cancer (NSCLC) from PDB (Waliany et al., 2025),
highlighting predicted binding residues.

5 Conclusions

With the rapid increase of new diseases and the
urgent need for innovative drugs, it is critical to
capture fine-grained interactions, since the binding
of specific drug atoms to the main amino acids is
key to the DTI task. Despite some achievements,
fine-grained interaction information is not effec-
tively captured. To address this challenge, we in-
troduce FusionDTI uses token-level fusion to ef-
fectively obtain fine-grained interaction informa-
tion. Through experiments on three well-known
datasets, we demonstrate that our proposed Fu-
sionDTI model outperforms eight state-of-the-art
baselines, particularly in the more realistic cross-
domain scenario. Additionally, we show that the
attention weights of the token-level fusion module
can highlight potential binding sites, providing a
certain level of explainability.
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Limitations

Even if our proposed model identifies potentially
useful DTI, these predictions need to be validated
by wet experiments, a time-consuming and expen-
sive process. We have shown that FusionDTT is
effective and efficient in screening for possible DTI
in large-scale data as well as in locating potential
binding sites in the process of drug design. How-
ever, it is not directly applicable to human medical
therapy and other biomedical interactions because
it lacks clinical validation and regulatory approval
for medical use.
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A Appendix

A.1 Hyperparameter of FusionDTI

FusionDTT is implemented in Python 3.8 and the
PyTorch framework (1.12.1)". The computing de-
vice we use is the NVIDIA GeForce RTX 3090.
In the "Experimental Setup and Results" section,
we only present experiment results based on the
BindingDB dataset, as the performance trends are
identical to the BioSNAP dataset and the Human
dataset. Table 5 shows the parameters of the Fu-
sionDTI model and Table 6 lists the notations used
in this paper with descriptions.

A.2 Dataset Sources

All the data used in this paper are from public
sources. The statistics of the experimental datasets
are presented in Table 7.

1. The BindingDB (Gilson et al., 2016) dataset
is a web-accessible database of experimen-
tally validated binding affinities, focusing
primarily on the interactions of small drug-
like molecules and proteins. The BindingDB
source is found at https://www.bindingdb.
org/bind/index. jsp.

2. The BioSNAP (Zitnik et al., 2018) dataset is
created from the DrugBank database (Wishart
et al., 2008). It is a balanced dataset with

4(2):025035.

"https://pytorch.org/
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Module Hyperparameter Value
Mini-batch Batch size 64 (options: 64, 128)
Drug Encoder PLM HUBioDatalLab/SELFormer

Protein Encoder PLM westlake-repl/SaProt_650M_AF2
BAN Heads of bilinear attention 3
Bilinear embedding size 512 (options: 32, 64, 128, 256, 512, 768)
Sum pooling window size 2
CAN Attention heads 8
Hidden dimension 512 (options: 32, 64, 128, 256, 512, 768)
Integration strategies Mean pooling (options: Mean pooling, CLS)
Group size 1 (options: from 1 to 512)
MLP Hidden layer sizes (1024, 512, 256)
Activation Relu (options: Tanh, Relu)
Solver AdamW
(options: AdamW, Adam, RMSprop, Adadelta, LBFGS)
Learning rate scheduler =~ CosineAnnealingl.R
(options: CosineAnnealingL.R, StepLR, ExponentialLR)
Initial learning rate le-4 (options: from le-3 to 1e-6)
Maximum epoch 200
Table 5: Configuration Parameters
Notations Description
D Drug feature
P Target feature
q € RE weight vector for bilinear transformation
Att € RPX9 Bilinear attention maps in BAN
o, p The feature dimensions of drug and protein embeddings
U € R<K Transformation matrix for drug features
V ¢ Rm*K Transformation matrix for target features
m,n The maximum allowed sequence length of drugs and protein
g The number of tokens per group
D* € R™xh Fused drug representations in token-level interaction
P* ¢ R™*h Fused target representations in token-level interaction

validated positive interactions and an equal
number of negative samples randomly ob-
tained from unseen pairs.
source is found at https://github.com/
kexinhuang12345/MolTrans.

Qu, K4, V4 € Rx1
Q,,K,,V, € R™h
Wi Wi Wi e RExh
WH WP W1 e Rixh

F
p € [0,1]
H
h

Queries, keys, and values for the drug in token-level interaction
Queries, keys, and values for target in token-level interaction
Projection matrices for drug queries, keys, and values
Projection matrices for target queries, keys, and values
drug-target joint representation

output interaction probability

Number of attention heads in token-level interaction

Hidden dimension in token-level interaction

Table 6: Notations and Descriptions

3. The Human (Liu et al., 2015; Chen et al.,
2020) dataset includes highly credible neg-
ative samples. The balanced version of the
Human dataset contains the same number of
positive and negative samples. The Human

The BioSNAP
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Dataset Drugs Proteins Interactions
BindingDB 14,643 2,623 49,199
BioSNAP 4,510 2,181 27,464
Human 2,726 2,001 6,728
DAVIS 68 442 30,056
KIBA 2,068 229 118,254
DUD-E 1,200,966 102 1,434,019

Table 7: Dataset Statistics.

source is found at https://github.com/
lifanchen-simm/transformerCPI.

4. The DAVIS (Davis et al.,, 2011) dataset
provides continuous binding affinity mea-
surements (K, values) between kinase in-
hibitors and proteins. It is commonly
used for regression-based drug—target inter-
action (DTI) prediction tasks. The DAVIS
source is available at https://tdcommons.
ai/multi_pred_tasks/dti/.

5. The KIBA (Tang et al., 2014) dataset inte-
grates multiple bioactivity measures to pro-
vide a unified KIBA score for kinase—inhibitor
pairs. It is widely adopted in benchmark
studies for affinity prediction. The KIBA
source is available at https://tdcommons.
ai/multi_pred_tasks/dti/.

6. The DUD-E (Mysinger et al., 2012) (Direc-
tory of Useful Decoys, Enhanced) dataset
is a large-scale benchmark set for virtual
screening, containing active compounds and
challenging decoys for various protein tar-
gets. The DUD-E source is found at http:
//dude.docking.org/.

A.3 How to Obtain the Structure-aware (SA)
Sequence of a Protein and the SELFIES
of a Drug?

To obtain the SA sequence of a protein, the first step
is to obtain Uniprot IDs from the UniProt website
using information such as the amino acid sequences
or protein names, and then save these IDs in a
comma-delimited text file. Subsequently, we use
the UniProt IDs to fetch the relevant 3D structure
file (.cif) from AlphafoldDB (Varadi et al., 2022)
using Foldseek. The SA vocabulary of the protein
can then be generated from this 3D structure file.
For drugs, the SELFIES could be derived from
SMILES strings. This conversion requires specific
Python packages, and upon installation, the SELF-
IES strings can be generated through appropriate

scripts. Please refer to our submission file for de-
tailed procedures, including the necessary code.
Notably, our submission of supplementary mate-
rial contains step-by-step descriptions and code for
generating the SA sequences and SELFIES.

A.4 Baselines

We compare the performance of FusionDTI with
the following eight models on the DTT task.

Baselines on BindingDB, BioSNAP, and Human.

1. Support Vector Machine (Cortes and Vap-
nik, 1995) on the concatenated fingerprint
ECFP4 (Rogers and Hahn, 2010) (extended
connectivity fingerprint, up to four bonds) and
PSC (Cao et al., 2013) (pseudo-amino acid
composition) features.

2. Random Forest (Ho, 1995) on the concate-
nated fingerprint ECFP4 and PSC features.

3. DeepConv-DTI (Lee et al., 2019) uses a
fully connected neural network to encode the
ECFP4 drug fingerprint and a CNN along with
a global max-pooling layer to extract features
from the protein sequences. Then the drug
and protein features are concatenated and fed
into a fully connected neural network for the
final prediction.

4. GraphDTA (Nguyen et al., 2021) uses GNN
for the encoding of drug molecular graphs,
and a CNN is used for the encoding of the
protein sequences. The derived vectors of the
drug and protein representations are directly
concatenated for interaction prediction.

5. MolTrans (Huang et al., 2021) uses a trans-
former architecture to encode the drugs and
proteins. Then a CNN-based fusion module is
adapted to capture DTI interactions.

6. DrugBAN (Bai et al., 2023) use a Graph Con-
volution Network and 1D CNN to encode
the drug and protein sequences. Then a bi-
linear attention network (Kim et al., 2018) is
adopted to learn pairwise interactions between
the drug and protein. The resulting joint rep-
resentation is decoded by a fully connected
neural network.

7. BioT5 (Pei et al., 2023) is a cross-modelling
model in biology with chemical knowledge
and natural language associations.
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8. SiamDTI (Zhang et al., 2024) is a double-
channel network structure to acquire local and
global protein information for cross-field su-
pervised learning.

Baselines on DAVIS and KIBA.

9. ML-DTI (Yang et al., 2021) combines molec-
ular fingerprints with physicochemical de-
scriptors and applies MLPs for regression.

10. DGraphDTA (Alphafold2) (Wu et al., 2022)
integrates protein 3D structural data (from Al-
phaFold2) with drug graphs through a dual-
graph encoding strategy.

11. INGNN-DTI (Sun et al., 2024) intro-
duces an interpretable graph neural network
with attention-based gating mechanisms for
drug—target regression tasks.

12. MIN (Li et al., 2025) uses a hierarchical multi-
channel network that combines structure-
aware and structure-agnostic representations
with interpretable attention mechanisms.

13. LANTERN (Nga et al.,, 2025) is a ver-
satile deep learning framework that inte-
grates PLMs with transformer-based fusion
to deliver structure-free prediction of diverse
molecular interactions including DTI, DDI,
and PPL

Baselines on DUD-E.

13. DrugVQA (Zheng et al., 2020) formulates
DTI prediction as a visual question answer-
ing task over molecular structures and protein
sequences.

14. DrugClip (Gao et al., 2023) adapts a con-
trastive pretraining framework, aligning drug
molecules and protein embeddings using a
CLIP-style architecture.

15. HyperPCM (Svensson et al., 2024) utilises
hyperbolic protein—compound matching for
robust generalisation in few-shot virtual
screening scenarios.

16. MIN (Li et al., 2025) introduces multi-
instance networks to model DTT at the binding
site level using hierarchical attention.

FusionDTI-BAN (without pre-encoded)
FusionDTI-CAN (without pre-encoded)
Fusionl DTI-BAN (pre-encoded)
FusionDTI-CAN (pre-encoded)
DrugBAN

10000

1000

100

Time (in minutes)

=
o

BindingDB Biosnap Human

Datasets

Figure 6: Time comparison on the BindingDB, Human
and BioSNAP datasets.

A.5 Ablation Study

In Table 8, we compare the performance of two ag-
gregation strategies within the CAN module. The
pooling strategy outperforms the CLS-based aggre-
gation, achieving an AUC and AUPRC of 0.989
and 0.990, respectively. This comparison high-
lights the superior effectiveness of the pooling in
aggregating contextual information. Thus, the inte-
gration of a CAN module, particularly employing a
pooling aggregation strategy, is shown to be essen-
tial for making confident and accurate predictions.

A.6 Evaluation of PLMs Encoding

The protein encoder and drug encoder are funda-
mental for the token-level fusion of representa-
tions, as these encoders are responsible for gen-
erating fine-grained representations to better ex-
plore interaction information. Our proposed model
employs two PLMs encoding two biomedical en-
tities: the drug and protein, respectively. In
terms of the protein encoders, Figure 7 com-
pares the the performance of the two protein en-
coders (SaProt (Su et al., 2023) and ESM-2 (Lin
et al., 2023)) in combination with three differ-
ent drug encoders: ChemBERTa-2 (Ahmad et al.,
2022), SELFormer (Yiiksel et al., 2023) and MoL-
Former (Ross et al., 2022). From the figure, we find
that SaProt consistently outperforms ESM-2 when
combined with all three drug encoders. As can be
seen in Figure 8, SELFormer achieves the best per-
formance in encoding the drug sequences among
the three advanced drug encoders. Notably, the top-
performing combination is SaProt and SELFormer,
hence our proposed FusionDTT uses them as drug
and protein encoders.
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Figure 7: Performance comparison of protein encoders
on the BindingDB dataset.

Aggregation AUC AUPRC Accuracy
CLS 0.982 0.983 0.956
Pooling 0.989 0.990 0.961

Table 8: Comparison of aggregation strategies for
FusionDTI-CAN on the BindingDB dataset.

A.7 Efficiency Analysis

Efficiency in computational models is crucial, par-
ticularly when handling large-scale and exten-
sive datasets in drug discovery. Our proposed
model stores drug representations and target rep-
resentations in memory for later online training.
As evidenced by Figure 6, FusionDTI-CAN and
FusionDTI-BAN with pre-encoded representations
process the BindingDB dataset much faster than the
non-pre-coded models, approximately 45 minutes
and 220 minutes, respectively. This stark difference
highlights the advantage of pre-encoding, which
eliminates the need for real-time data processing
and accelerates the overall throughput. While
FusionDTI-BAN and DrugBAN have the same
fusion module, the pre-encoded FusionDTI-BAN
runs faster and predicts more accurately, as shown
in Table 1. In addition, FusionDTI-BAN runs
faster than FusionDTI-CAN, indicating that the
BAN fusion module is more efficient. Ultimately,
FusionDTI-BAN with pre-encoded data stands out
as a highly efficient approach, offering substantial
benefits in scenarios where large-scale data exists.

A.8 Time Complexity Analysis

The feature dimensions of the representations gen-
erated by different PLM encoders are fixed, but
the size of the feature dimensions may not be the
same. Therefore, in order to fuse protein and drug

1.00
MoLFormer

ChemBERTa-2

Drug Encoder:

SELFormer
0.98

0.96

AUC

0.94

0.92

0.90 Saprot ESM-2

Protein Encoder

Figure 8: Performance comparison of drug encoders on
the BindingDB dataset.

Fusion module Complexity (O) Parameters
BAN Op-¢-K) 790k
CAN O(m-n-h) 1572k

Table 9: Time complexity and parameters comparison
of BAN and CAN.

representations, we use two linear layers to keep
the representations’ feature dimension equal to the
token length (512).

The time complexity of BAN depends on the
computation of bilinear interaction maps. The
bilinear attention involves a Hadamard product
and further matrix operations as given in Equa-
tion (2). The computation of U TP and VT D re-
quires O(N - p- K) and O(M - ¢ - K) operations,
respectively. Here, K denotes the dimensionality
of the transformation, which is the rank of the fea-
ture space to which the protein and drug features
are projected. When the token length is equal to
the feature dimension and the dimensions of trans-
formation are two times either, the overall time
complexity is O(p - ¢ - K).

For the token-level interaction in the DTT task,
the time complexity is also markedly influenced by
the attention mechanisms. It also satisfies the con-
dition that the token length is equal to the feature
dimension of the drug and protein. With multi-head
attention heads (I = 8), the complexity for com-
puting the queries, keys, and values in the Equa-
tion (6) and (7), as well as the softmax attention
weights, is given by O(H -n-m-h), where mandn
represents the token lengths for the drug and pro-
tein, respectively, and h is the hidden dimension.
Since each head contributes its own set of compu-
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Drug-Target (Ligand -

Predicted Binding Residues

PDB ID)

VGH - 2YFX Glul13, Val46, Gly117, Met115, Asp186, Argl25, Lys225, GIn50, Ala190, Pro319
C6F - 6JQR Tyr126, Asp209, Ala72, Glu208, Glu197, Leu219, Pro163, GIn97, Val225, His151
5P8 - 4CLI GLul13, Leul72, Gly118, Ala64, Asp186, Alal50, I1e99, Pro290, Ala312, Glu316

OWM - 4G5J His296, Pro102, Pro156, Met295, Asn116, Ser92, Thr217, Lys237, His143, Trp188

YY3 - 6LUD Phel02, Leul51, Met1100, Lys52, Glul11, Ile22, Pro60, Ala129, Val141, Gly42
AQ4 - 1IM17 Leul55, Leu99, Met104, Phe106, Thr165, Aspl11, Lys171, Trp209, Ala61, Asp280

YMX - SFTO Asn162, Gly110, Phe35, Glul18, Val38, His155, ALal97, Met46, Leul12, Asp280
1C9 - 4123 AlaS0, Leu95, Met100, Pro101, Glu69, Thr247, Tyr120, His177, Pro221, Val49

VGH - 2XP2 Leul72, Gly185, Alal16, Lys66, Asp119, Pro58, Met82, Pro131, Alal67, Val27

EMH - 3A0X Glu143, LeuS5, Gly56, Vall13, Met132, Glu91, Leul57, Val44, Ala59, Ile166

Table 10: Predicted binding sites for DTI in NSCLC. Bold residues are supported by the PDB database, while others

remain unverified.

tations and the attention mechanism operates over
all tokens, the m - n term (stemming from the soft-
max operation across the token length) becomes
significant. This leads to a total time complexity of
O(m - n - h) per batch for the attention mechanism.

From the above analysis of the time complexity
of the two fusion strategies, the time complexity of
CAN is lower than BAN in the case of the same
input protein and drug features. BAN is markedly
affected by the transformation dimension K. When
the K is larger than the token and feature dimen-
sion, the time complexity of BAN is higher than
CAN. However, we observe that the number of pa-
rameters in BAN is smaller than that of CAN via
the PyTorch package, as shown in Table 9.

A.9 Case Study

The top three predictions (PDB ID: 6QL2 (Ka-
zokaité et al., 2019), SW8L (Rai et al., 2017) and
4N6H (Fenalti et al., 2014)) of the co-crystalised
ligands are derived from the Protein Data Bank
(PDB) (Berman et al., 2007). Following the setup
of the DrugBAN case study, we only chose X-ray
structures with a resolution greater than 2.5 A cor-
responding to human proteins. In addition, the
co-crystalised ligands are required to have pICsg <
100 nM and are not part of the training dataset.

To further DTI in non-small cell lung cancer
(NSCLC), we identify ten additional drug-protein
pairs from PDB. The selected targets—Epidermal
Growth Factor Receptor (EGFR), Anaplastic Lym-
phoma Kinase (ALK), and ROS1—are well-
established oncogenic drivers in NSCLC (Waliany
et al., 2025). The corresponding inhibitors, in-

cluding Erlotinib, Gefitinib, Osimertinib, Crizo-
tinib, and Lorlatinib, exhibit high binding affini-
ties (Herrera-Judrez et al., 2023). Table 10 presents
the predicted binding residues for these interac-
tions, with bolded residues supported by experi-
mental PDB data, while others remain unverified.

A.10 Performance Comparison

Tables 11 and 12 provide a detailed performance
evaluation of FusionDTI and baseline models
across both in-domain and cross-domain settings.
To ensure a comprehensive assessment, we report
multiple evaluation metrics, including AUROC and
AUPRC as primary indicators, alongside F1-score,
Sensitivity, Specificity, and Matthews Correlation
Coefficient (MCC). These additional metrics of-
fer deeper insights into model performance across
different classification aspects.

In addition, Tables 13, 14, and 15 present re-
sults on three benchmark datasets: DAVIS (Davis
etal., 2011), KIBA (Tang et al., 2014), and DUD-
E (Mysinger et al., 2012). Each table compares
FusionDTI with strong task-specific baselines un-
der standard evaluation metrics for their respec-
tive tasks, further demonstrating the robustness and
adaptability of our model.
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Model AUC AUPR Accuracy F1 Sensitivity ~ Specificity MCC
BindingDB
SVM 0.93940.001 0.9284+0.002 0.825+0.004 0.821+0.004 0.810+0.010 0.84040.007 0.700+0.012
RF 0.9424+0.011 0.9214+0.016 0.880+£0.012 0.875+0.012 0.87040.015 0.89040.010 0.815+0.009
DeepConv-DTI  0.9454+0.002 0.925+0.005 0.882+0.007 0.8784+0.008 0.870+£0.011 0.885+0.010 0.81840.013
GraphDTA 0.951+£0.002 0.934+0.002 0.888+0.005 0.88440.005 0.88040.006 0.890+0.004 0.82540.008
Mol Trans 0.95240.002 0.93640.001 0.887+0.006 0.882+0.006 0.875+0.009 0.890+0.007 0.820+0.010
DrugBAN 0.960+0.001 0.9484+0.002 0.906+0.004 0.901+0.004 0.900+0.008 0.9084+0.004 0.87240.005
SiamDTI 0.9611+0.002 0.94540.002 0.890+£0.006 0.886+0.006 0.880+0.007 0.89540.005 0.830+0.006
BioT5 0.963+0.001 0.95240.001 0.90740.003 0.905+£0.003 0.900+0.004 0.91040.003 0.85040.005
FusionDTI-BAN 0.975+0.002 0.9764+0.002 0.9334+0.003 0.934-+0.002 0.932+0.004 0.9354+0.003 0.900+0.003
FusionDTI-CAN 0.989+0.002 0.990+0.002 0.961+0.002 0.963-+0.012 0.954+0.003 0.955+0.012 0.925+0.023
BioSNAP
SVM 0.8621+0.007 0.8644+0.004 0.77740.011 0.773+£0.011 0.760+0.015 0.78040.008 0.690+0.013
RF 0.860+0.005 0.88640.005 0.804=+0.005 0.800+0.005 0.795+0.008 0.81040.007 0.715+0.006
DeepConv-DTI  0.8861+0.006 0.890+0.006 0.805+0.009 0.80140.009 0.800+£0.013 0.810+0.010 0.71840.012
GraphDTA 0.887+0.008 0.890+0.007 0.800£0.007 0.79640.007 0.79040.010 0.8104+0.009 0.71240.009
MolTrans 0.895+0.004 0.89740.005 0.825+0.010 0.820+0.010 0.815+0.013 0.83040.012 0.730+0.011
DrugBAN 0.9034+0.005 0.90240.004 0.834+0.008 0.830+0.009 0.820+0.021 0.84740.010 0.719+0.007
SiamDTI 0.91240.005 0.91040.003 0.855+0.004 0.852+0.004 0.85040.006 0.86040.004 0.740+0.006
BioT5 0.937+0.001 0.93740.004 0.874+0.001 0.870+0.001 0.865+0.002 0.88040.003 0.765+0.004
FusionDTI-BAN 0.92340.002 0.92140.002 0.8564+0.001 0.857+0.001 0.854+0.002 0.858+0.002 0.724+0.001
FusionDTI-CAN 0.951+0.002 0.951+0.002 0.889+0.002 0.890-+0.002 0.888+0.003 0.891+0.002 0.778+0.002
Human

SVM 0.940+0.006 0.92040.009 0.895+0.010 0.892+0.011 0.880+0.015 0.91040.009 0.800+0.012
RF 0.9524+0.011 0.95340.010 0.920£0.012 0.915+0.013 0.91040.017 0.93040.014 0.820+0.009
DeepConv-DTI  0.980+0.002 0.98140.002 0.927+0.007 0.9234+0.006 0.920+0.009 0.930+0.008 0.86040.010
GraphDTA 0.981+£0.001 0.982+0.002 0.93040.008 0.92540.008 0.92040.011 0.9354+0.009 0.870+0.009
Mol Trans 0.980+0.002 0.9784+0.003 0.925+0.011 0.920+0.012 0.9154+0.016 0.930+0.013 0.855+0.010
DrugBAN 0.9824+0.002 0.98040.003 0.930-+0.004 0.903+0.003 0.9004+0.005 0.908+0.004 0.810+0.004
SiamDTI 0.9701+0.002 0.96940.003 0.920£0.006 0.915+0.006 0.91040.008 0.92540.007 0.840+0.009
BioT5 0.989+0.001 0.98540.002 0.939+0.008 0.937+0.004 0.9294+0.010 0.94140.004 0.892-+0.006
FusionDTI-BAN 0.984+0.002 0.984+0.003 0.9384+0.003 0.934-+0.002 0.927+0.004 0.9314+0.003 0.870+0.003
FusionDTI-CAN 0.991+£0.002 0.989+0.002 0.94740.002 0.948-+0.002 0.955+0.033 0.950+0.031 0.905+0.045

Table 11: In-domain performance comparison of FusionDTI and the baselines on the BindingDB, Human and
BioSNAP datasets (Best, Second Best).
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Model AUC AUPR Accuracy F1 Sensitivity ~ Specificity MCC
BindingDB
SVM 0.4904+0.015 0.46040.001 0.531£0.009 0.521+0.010 0.508+0.015 0.548+0.011 0.150+0.012
RF 0.493+0.021 0.4684+0.023 0.53540.012 0.525+0.013 0.512+0.020 0.5504+0.014 0.16240.015
GraphDTA 0.536+0.015 0.49640.029 0.472+0.009 0.462+0.008 0.460+0.014 0.478+0.011 0.100+£0.012
DeepConv-DTI 0.52740.038 0.49940.035 0.490+0.027 0.480+0.026 0.475+0.030 0.495+0.023 0.11540.020
Mol Trans 0.55440.024 0.51140.025 0.470+0.004 0.460+0.005 0.4554+0.008 0.478+0.007 0.105+0.008
DrugBAN 0.6044+0.027 0.5704+0.047 0.509+0.021 0.582+0.030 0.565+0.022 0.58040.025 0.187+0.031
SiamDTI 0.6271+0.027 0.57140.024 0.563+0.033 0.550+0.032 0.5404+0.036 0.58040.028 0.190+0.030
BioT5 0.651+0.002 0.65340.003 0.621£0.005 0.608+0.004 0.60040.006 0.63540.005 0.220+£0.007
FusionDTI-BAN 0.659+0.002 0.663+0.002 0.6334+0.003 0.587-+0.002 0.603+0.003 0.5894+0.002 0.276+0.003
FusionDTI-CAN 0.681+0.005 0.680+0.012 0.652+0.005 0.601-+0.005 0.628+0.006 0.692+0.005 0.302+0.005
BioSNAP
SVM 0.6021+0.005 0.5284+0.005 0.513+£0.011 0.502+0.012 0.490+0.014 0.5234+0.013 0.150+0.010
RF 0.590+0.015 0.5684+0.018 0.499+0.004 0.488+0.005 0.4784+0.008 0.51340.007 0.135+0.008
GraphDTA 0.618+0.005 0.61840.008 0.53540.024 0.528+0.023 0.520+0.027 0.55040.020 0.17040.025
DeepConv-DTI 0.645+0.022 0.64240.032 0.558+0.025 0.550+0.024 0.543+0.030 0.573£0.027 0.20040.028
Mol Trans 0.621+0.015 0.60840.022 0.546+0.032 0.538+0.031 0.5304+0.035 0.563+0.033 0.185+0.034
DrugBAN 0.685+0.004 0.7134+0.005 0.692+0.006 0.587+0.005 0.5224+0.011 0.690+0.012 0.219+0.017
SiamDTI 0.7184+0.005 0.72540.005 0.623+0.007 0.610+0.006 0.60040.007 0.67540.006 0.240+0.008
BioT5 0.720+0.008 0.71840.004 0.715£0.009 0.590+0.010 0.510+0.012 0.71040.010 0.250+0.011
FusionDTI-BAN 0.72340.002 0.72140.002 0.72640.001 0.5974+0.001 0.504+0.012 0.713+£0.011 0.254=£0.010
FusionDTI-CAN 0.748+0.021 0.766+0.017 0.734+0.012 0.602-£0.012 0.531+0.013 0.736+0.012 0.268+0.011
Human

SVM 0.621+0.036 0.63740.009 0.533+0.011 0.525+0.012 0.5204+0.015 0.54640.010 0.175£0.011
RF 0.6421+0.011 0.66340.050 0.543+0.014 0.535+0.015 0.53040.018 0.55640.013 0.184+0.012
GraphDTA 0.822+0.009 0.75940.006 0.709+0.016 0.705+0.017 0.7024+0.020 0.71340.015 0.198+0.017
DeepConv-DTI 0.761£0.016 0.6284+0.022 0.71140.030 0.70440.031 0.704+0.035 0.728+0.027 0.203£0.030
Mol Trans 0.810+0.021 0.74540.034 0.713+0.032 0.725+0.033 0.7204+0.037 0.740+0.031 0.215+0.032
DrugBAN 0.8334+0.020 0.76040.031 0.709+0.005 0.713+£0.030 0.706+0.022 0.72040.015 0.242+0.010
SiamDTI 0.8631+0.019 0.80740.040 0.72040.010 0.729+0.015 0.712+0.020 0.73640.013 0.25040.015
BioT5 0.856+0.003 0.8534+0.003 0.71540.002 0.741+£0.010 0.738+0.009 0.739+0.013 0.258+0.013
FusionDTI-BAN 0.78440.002 0.79040.003 0.73340.003 0.725+0.002 0.713+£0.004 0.698+0.013 0.212+0.011
FusionDTI-CAN 0.801+£0.037 0.8034+0.032 0.738+0.002 0.736+0.010 0.732+0.013 0.7374+0.010 0.261+0.010

Table 12: Cross-domain performance comparison of FusionDTI and the baselines on the BindingDB, Human and
BioSNAP datasets (Best, Second Best).
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Method AUROC AUPRC Sensitivity Specificity

DeepDTA 0.892 + 0.0066 0.378 4+ 0.0231 0.854 £ 0.0066 0.792 + 0.0291
MolTrans 0.898 + 0.0050 0.371 £ 0.0067 0.865 £+ 0.0050 0.783 £+ 0.0387
ML-DTI 0.910 £ 0.0034 0.381 +0.0247 0.895 £ 0.0034 0.795 + 0.0183
DGraphGTA (Alphafold2) 0.885 £ 0.0099 0.316 &+ 0.0447 0.894 4+ 0.0034 0.724 4+ 0.0467
iNGNN-DTI 0.931 £0.0027 0.473 £0.0167 0.922 £ 0.0155 0.802 £ 0.0240
LANTERN 0.995 + 0.0037 0.905 +0.0238 0.976 £ 0.0159 0.964 + 0.0207
FusionDTI-BAN 0.973 £0.0045 0.969 +£0.0121 0.962 +0.0122 0.952 +0.0134
FusionDTI-CAN 0.987 £0.0032 0.978 + 0.0103 0.979 £ 0.0102 0.972 + 0.0116

Table 13: Performance comparison on the DAVIS dataset (Best, Second Best).

Method

AUROC

AUPRC

Sensitivity

Specificity

DeepDTA
MolTrans
ML-DTI

DGraphGTA (Alphafold2)

iNGNN-DTI
LANTERN

0.912 £ 0.0037
0.899 +£ 0.0022
0.909 £ 0.0020
0.911 £ 0.0004
0.915 £0.0016
0.976 £ 0.0154

0.743 £ 0.0127
0.691 £ 0.0142
0.727 £0.0108
0.739 £ 0.0043
0.753 £ 0.0071
0.977 £ 0.0088

0.881 £ 0.0056
0.872 £0.0116
0.878 £0.0111
0.881 £ 0.0183
0.888 £ 0.0183
0.959 £ 0.0268

0.780 £ 0.0127
0.760 £ 0.0160
0.779 £0.0113
0.784 £ 0.0277
0.779 £ 0.0146
0.965 £ 0.0074

FusionDTI-BAN
FusionDTI-CAN

0.974 £ 0.0081
0.981 + 0.0064

0.976 £ 0.0054
0.981 £ 0.0045

0.952 £ 0.0162
0.969 £ 0.0124

0.947 £0.0138
0.967 £+ 0.0156

Table 14: Performance comparison on the KIBA dataset (Best, Second Best).

Model AUC 0.5% RE 1% RE 2% RE 5% RE
DrugVQA 0.972 £ 0.003 88.170 £ 4.88 58.710 £2.74  35.060 £ 191  17.390 +0.94
DrugClip 0.966 118.10 67.17 37.17 16.59
HyperPCM 0.982 £ 0.006 183.04 £4.53 91.28 £3.35 45.62 £2.15 17.13 £1.17
MIN 0.983 £0.002  197.741 £4.73  99.563 +£2.49 49.926 £1.87  19.965 + 0.91
FusionDTI-BAN  0.9769 + 0.015 176.8525 £2.71 89.2656 +2.36 45.9098 + 1.38 18.5168 + 0.33

FusionDTI-CAN  0.986 + 0.012

186.7469 £ 6.26 97.8801 £ 3.50 52.6352 +£2.05 21.5439 £+ 0.26

Table 15: Performance comparison on the DUD-E dataset (Best, Second Best).
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